APPENDIX
CLASSES OF LOCAL SYSTEMS OF HERMITIAN VECTOR
SPACES

KEVIN CORLETTE AND HELENE ESNAULT

For a local system V' on a topological manifold S associated to a represen-
tation

p:m(S,s) = GL(n,C)

of the fundamental group we denote by
&(V) = ¢é(p) = Bi+ v € H*7'(S,C/Z)
the class defined in [4], [1] :
B; € H*Y(S,R) ([1], (2.20))

v € H*Y(S,R/Z) (4], §4).
If f:X — S is asmooth proper morphism of C* manifolds with orientable
fibers, the Riemann-Roch theorem ([1], Theorem (0.2), Theorem (3.11)) says

dim(X/5)

a( > (-1)RfC)=0
=0

in H#71(S,C/Q), for all i > 1.

The purpose of this short note is to show how to apply Reznikov’s ideas [12]
to obtain vanishing of the single classes ¢;( R’ f.C) under some assumptions.

Definition 0.1. Let A be a ring with Z C A C C. A local system of A
hermitian vector spaces is a local system associated to a representation p whose
image p(m(S,s)) lies in GL,(A) € GL,(C) and U(p,q) C GL,(C), for some
pair (p,q) with n = p + ¢, where U(p, q) is the unitary group with respect to
a non degenerate hermitian form with p positive, and ¢ negative eigenvalues.

Theorem 0.2. Let S be a topological manifold and let p : m,(S,s) — GL(n, F)
be a representation of the fundamental group with values in a number field
F. Assume that for all real and complex embeddings o : F' — R(C C) and
o:F —=C,o0p:m(S,s) = GL(n,C) is a local system of o(F) hermitian
vector spaces. Then ¢;(p) = 0 in H*71(S,C/Q) for all i > 1.

Examples of local systems of Q hermitian vector spaces are provided by
Q variations of Hodge structures [9] 1.2, whose main instances are the Gauf-

Manin local systems R’ f,C, where f : X — S is a smooth proper morphism
of complex manifolds with Kahler fibres. So Theorem 0.2 implies

Theorem 0.3. Let f : X — S be a smooth proper morphism of complex
manifolds with Kahler fibres. Then

&(Rf.C)=0

in H*=1(S,C/Q) for alli>1, j > 0.
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In the C* category, other examples are provided by Poincaré duality:

Theorem 0.4. Let f : X — S be a smooth proper morphism of C* manifolds
with orientable fibres. Then

& (R f,C @ RUMX/9)=0) £ C) =0
in H*=1(S,C/Q) and
éi(Rdim(X/S)/Qf*C) =0

in H*~1(S,C/Q) if dim(X/S) is even.
Proof of Theorem 0.2.
The U(p,q) flat bundle being isomorphic to the conjugate of its dual, the
formula ([1] (2.21)) says that §; = 0. Thus we just have to consider ;.

We may first assume that A"p : m1(S,s) — C* is trivial. In fact, it is torsion

as a unitary and rational representation, say of order N, and V& ... @V (N
times) has trivial determinant. On the other hand

in H*71(S,C/Q), as
fori > 1,7 > 1,in H2+)=1(S C/Q). (The multiplication is defined by
Image (¢;(V) in H*(S,Z)). ¢;(V) [4] (1.11)).

Furthermore, by adding trivial factors to V', one may assume that n is as
large as one wants.

There is an open cover S = U, S, trivializing V' with transition functions
)\ag € F(Sag, SLn(F))

such that
00 Aay € T(Sup, SLulo(F)) N U (p, ).

One has the continuous maps
¢ Se = BSL,(F) -2 BSL,(0(F)) —— BSL,(C); —= BSL,(C),
and
¥ Se 22 BSU(p, q) - BSL,(C),

where S, is the simplicial classifying manifold associated to the open cover
Se, BSL,(F) and BSL,(c(F)) are the simplicial classifying sets, BG is the
simplicial (C*) classifying manifold for

G =SL,(C),SU(p,q),
BSL,(C)s is the discrete simplicial classifying set. So ¢ = 1.

By [4] §8 , there is a class 1™V € H*~1(BSL,(C)s;,R), whose image
M e H*Y(BSL,(C)5,R/Q) = H* 1 (BSL,(C)s,R)/H*(BSL,(C)s,Q)

verifies

* __k—univ

Vi = N0t



CLASSES OF LOCAL SYSTEMS 3

We now apply Reznikov’s idea to use Borel’s theorem. By [2], (7.5), (11.3)
and [3] (6.4) iii, (6.5), for n sufficiently large compared to i, H*~1(BSL,(F)),R)
is generated by

(o 1*H*(BSL,(C),R))*V

where (2i — 1) denotes the part of the tensor product of degree (2i — 1). Thus
o* TR € H* 7Y (BSL,(F),R) is a sum of elements of the shape ®,0*7*1*z,,
where at least one z, € H2'(SL,(C),R), for some j < i. This implies that

cont

Vi = Z ®U<U o )‘>*M*x07
and for each summand, there is at least one

prr, € H2 N (SU(p, q), R).

cont

It remains to observe that
for p+qg=n large H2'(SU(p,q),R) = 0.

cont

In fact, if p = ¢, this is part of [2] 10.6. In general, the continuous cohomology
of the R valued points of the R algebraic group SU(p, q) is computed by

Hc.ont<SU<p7 Q)7 R) = H’(HOTTLK(A.ﬁ/ﬁ), R)
where K is the maximal compact subgroup SU(p,q) N (U(p) x U(q)), R is its
Lie algebra, & is the Lie algebra of SU(p, q). The right hand side equals
H*(Homg(A*®./R),R),

where &, is the Lie algebra of the compact form SU(p + q) of SU(p,q). This
group is the de Rham cohomology of the manifold SU(p + q)/SU(p + q) N
(U(p) x U(q)), a Grassmann manifold without odd cohomology.

Remark 0.5. To a representation p, one may also associate the classes
ci(p) € H*7'(S, C/Z(q))

defined by \*cf™V, where A : Sy — BGL,(C);s is defined by locally constant
transition functions of the local system, and

"™ € H*~/(BGLa(C)s, C/Z(i)) = Hp (BGLn(C)s, (i),

univ

where Hp is the Deligne-Beilinson cohomology, where c¢™" are the restriction
to BGL,(C)s of the Chern classes in the Deligne-Beilinson cohomology of the
universal bundle on the simplicial algebraic manifold BGL,. One does not
know in all generality that A\*c{™v = ¢;(V).
Again writing ¢!V as bV + ZMV with

™ € H* ' (BGL,(C)s,R(i — 1)),

5™ € H"/(BGL,(C)s, R(1)/Z(7)),
one knows that by definition o™ lies in the image of the continuous cohomol-
ogy of GL,(C):

HZ Y(BGL,(C)e,Z(i)) — Hz(BGL,(C)e,R(3)) —

H* Y (BGLn(C)o, SRi1y) = HZ (G Ly (C),R(i—1)) — H*'(BGL,(C)s,R(i—1)),
where Sy, ;) is the sheaf of R(i — 1) valued C* functions. (In fact Beilinson

gave a precise identification of this class in terms of the Borel regulator. See
[11] for details). Thus by the previous argument, \*bi"Y = 0.



4 KEVIN CORLETTE AND HELENE ESNAULT

As before, we may assume that p has SU(p, ¢) values, since the multiplication

ci(p) - ¢(p)

factorizes through the Betti class in H*(S,Z(i)) of p ([6] (3.4) proof). Fur-
thermore, by definition, 2™V is a discrete cohomology class. Thus one can
apply the same argument as in Theorem 0.2 to prove

Theorem 0.6. Let S be a topological manifold and let p : m,(S,s) — GL(n, F)
be a representation of the fundamental group with values in a number field
F. Assume that for all real and complex embeddings o : F' — R(C C) and
o:F —C,o0p:m(S,s) = GL(n,C) is a local system of o(F') hermitian
vector spaces. Then c;(p) =0 in H*71(S,C/Q) for all i > 1.

On the other hand, if S is an algebraic manifold, then the image of ¢;(p)
under the map
H*Y(S,C/Z(i)) — HZ (S, Z(i))
is the Chern class cP(E) of the underlying algebraic vector bundle E on V ®¢
Osan [6], (3.5). So one has

Corollary 0.7. Let S be an algebraic manifold and let p : (S, s) — GL(n, F)
be a representation of the fundamental group with values in a number field
F. Assume that for all real and complex embeddings o : F — R(C C) and
o:F —=C,o0p:m(S,s) = GL(n,C) is a local system of o(F) hermitian
vector spaces. Then the Chern classes of the underlying algebraic bundle in
the Deligne cohomology are torsion.

Remark 0.8. Let f : X — S be a proper equidimensional morphism of
algebraic smooth complex proper varieties X and S, such that f is smooth
outside a normal crossing divisor ¥, with D := f~!(3) a normal crossing

divisor without multiplicities (that is f is “semi-stable” in codimension 1).
Then the GauB-Manin bundles

W = RI£.0% s(log D)

have an integrable holomorphic (in fact algebraic) connection with logarithmic
poles along ¥ whose residues are nilpotent (monodromy theorem, see eg [8],
(3.1)). This implies [7], appendix B, that the de Rham classes of H’ are zero.
Therefore

¢l (H7) € H*1(S,C/Z(i))/F' C Hp (S, Z(i))
that is, modulo torsion, cP(H7) lies in the intermediate Jacobian, and cP (H’|s_x)
is torsion(Corollary 0.7, Theorem 0.3). It would be interesting to understand
those classes, in particular as one knows that there are only finitely many such
classes for H? of a given rank, as there are, according to Deligne [5], finitely
many Z variations of Hodge structures of a given rank on S — X, and H/ is
the canonical extension of R’ f|g_x-C.

In fact, if f has relative (complex) dimension 1, even the Chern classes of
H’ in the Chow groups of S are torsion, as a consequence of Grothendieck-
Riemann-Roch theorem [10] (5.2).
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