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Let X be an n-dimensional complete irreducible smooth variety defined over
the field Cl of complex numbers. For any Zariski open subset V of X, we have
the following graded rings.

(i)
n⊕
i=0

CH i(V )Ql , where CH i(V )Ql is the Chow group of algebraic cycles of

codimension i on V with rational coefficients, modulo rational equivalence
(see [F], Chapter 8, Prop. 8.3).

(ii)
n⊕
i=0

H i(V )/N1H i(V ), where H i(V ) = H i(Van,Ql ) is the singular cohomol-

ogy of the underlying complex manifold Van, and

NaH i(V ) = lim
−→

codimZ≥a
ker

(
H i(V ) −−→ H i(V − Z)

)
defines Grothendieck’s coniveau filtration (here Z runs over the Zariski
closed subsets of V of codimension ≥ a).

(iii)
n⊕
i=0

H0(V,Hi
V ), where Hi

V is the sheaf for the Zariski topology associated

to the presheaf
U 7−→ H i(U) = H i(Uan,Ql ).

(iv) We also have a graded ring associated to X:
n⊕
i=0

H i(Cl (X)), where

H i(Cl (X)) := lim
−→
V⊂X

H i(V ) = lim
−→
V⊂X

H i(V )/N1H i(V )

= lim
−→
V⊂X

H0(V,Hi
V )

Here the direct limits are over the non-empty Zariski open sets V in X,
and Cl (X) denotes the function field of X. The first equality defines the



cohomology of the function field; the right side of the equality is clearly
a birational invariant of X.

In (ii), (iii), (iv) above, we consider only cohomology in degrees upto n,
since the singular cohomology of an affine variety of dimension n vanishes in
degrees larger than n, by the weak Lefschetz theorem (this implies that for any
variety V of dimension n, we have H i(V ) = N1H i(V ) for i > n).

Theorem 1 Let X be a smooth complete variety of dimension n over Cl . Sup-
pose there exists a non empty Zariski open subset V ⊂ X, and positive integers
n1, . . . , nr with

∑
i ni = n, such that one of the following product maps is sur-

jective:

(i) CHn1(V )Ql ⊗ · · · ⊗ CHnr(V )Ql −−→ CHn(V )Ql

(ii) Hn1(V )/N1Hn1(V )⊗ · · · ⊗Hnr(V )/N1Hnr(V ) −−→ Hn(V )/N1Hn(V )

(iii) H0(V,Hn1
V )⊗ · · · ⊗H0(V,Hnr

V ) −−→ H0(V,Hn
V )

(iv) Hn1(Cl (X))⊗ · · · ⊗Hnr(Cl (X)) −−→ Hn(Cl (X))

Then the cup product map for the coherent cohomology

Hn1(X,OX)⊗Hn2(X,OX)⊗ · · · ⊗Hnr(X,OX) −−→ Hn(X,OX) (∗)

is surjective.

The proof of (i) is motivated by Bloch’s proof [B] of Mumford’s theorem
that for surfaces X with H2(X,OX) 6= 0, the Chow group of 0-cycles CH2(X)
is not ‘finite dimensional’ (see also the ‘metaconjecture’ in Chapter 1 of [B2]).
Many other variants of Bloch’s method have been considered by several authors.
The method involves the action of correspondences on the cohomology. At the
referee’s suggestion, we try to make this argument with some care, though this
type of reasoning is well known to experts.

The proofs of (ii), (iii) and (iv) are a consequence of the mixed Hodge struc-
ture on the cohomology of the open sets V (see [D]). For V = X, the surjectivity
of the map (ii) trivially implies that (∗) is surjective, using the Hodge decom-
position on cohomology, since the ring ⊕H i(X,OX) is a graded quotient of
⊕(H i(X)/N1H i(X))⊗ Cl .



The proof of the theorem

We first discuss (i). Let C = X−V , and let k ⊂ Cl be a countable algebraically
closed field of definition of X, C and V . Let X0, C0, V0 be the corresponding
models over k, and for any extension L of k, let XL = X0×k L, etc. We embed
k(X0) ↪→ Cl as a k-subalgebra, and consider the generic point of X0 as a closed
point η ∈ Xk(X0), hence as an element of CHn(Xk(X0))Ql . By assumption, its
image under the composite

CHn(Xk(X0))Ql −−→ CHn(X)Ql −−→ CHn(V )Ql

decomposes as ∑
finite

mn1 · · · · ·mnr

where mni
∈ CHni(V )Ql . The mni

are defined over a subfield L ⊂ Cl which is
finitely generated over k(X0), and (see [B2], Lecture 1, Appendix, Lemma 3)
the natural map

CHn(VL)Ql −−→ CHn(V )Ql

is injective, so ∑
finite

mn1 · · · · ·mnr = [η] (1)

holds in CHn(VL)Ql .
Let F be the algebraic closure of k(X0) in L; since L is finitely generated over

k(X0), F is a finite algebraic extension of k(X0). We can find a non-singular
affine F -variety W with function field L. The graded ring⊕

i≥0

CH i(VL)

is the direct limit of the graded rings⊕
i≥0

CH i(VF ×F W
′),

where W ′ runs over the non-empty Zariski open sets in W (see [B2], Lecture 1,
Appendix, Lemma 1). So after replacing W by a nonempty open subset, we
may assume given classes mni

∈ CHni(VF ×F W ) such that (1) holds in

CHn(VF ×F W )Ql ,

where [η] now denotes the image in CHn(VF ×F W )Ql of the earlier class

[η] ∈ CHn(Vk(X0))Ql ⊂ CHn(VF )Ql .



Let P ∈ W be a closed point. Then there is a homomorphism of rings

f ∗ :
⊕
i≥0

CH i(VF ×F W ) →
⊕
i≥0

CH i(VF ×F SpecF (P )),

where f : VF ×F SpecF (P ) → VF ×F W is induced by the inclusion of P into
W (f is a morphism of non-singular F -varieties, hence by [F], Prop. 8.3, such
a homomorphism f ∗ exists). Then f ∗[η] is just [η] considered as an element of
CHn(Vk(X0))Ql ⊂ CHn(VF (P ))Ql . Hence∑

finite

f ∗(mn1) · · · · · f ∗(mnr) = [η] (2)

holds in CHn(VF (P ))Ql , where f ∗(mni
) ∈ CHni(VF (P ))Ql .

Hence, we are reduced to the situation when (1) holds, where L is a finite
algebraic extension of k(X0), and mni

∈ CH i(VL)Ql .
By resolution of singularities, we can find a projective non-singular k-variety

Z0, together with a k-morphism σ0 : Z0 → X0, such that the induced map on
function fields is the given inclusion k(X0) → L. Since L is a finite extension
of k(X0), the morphism σ0 is generically finite.

The (flat) k-morphism SpecL → Z0 given by the inclusion of the generic
point gives rise to a natural surjective homomorphism of graded rings

Cl :
⊕
i≥0

CH i(X0 ×k Z0)Ql →
⊕
i≥0

CHn(VL)Ql ,

such that if [∆σ0 ] ∈ CHn(X0×k Z0)Ql is the class of the transposed graph of σ0,
then Cl([∆σ0 ]) is just [η] ∈ CHn(VL)Ql . The kernel of

CHn(X0 ×k Z0)Ql → CHn(VL)

consists of the subgroup generated by the classes supported on subsets of the
form (C0 ×k Z0) ∪ (X0 ×k D0), as D0 runs over all proper subvarieties of Z0

(see [B2], Lecture 1, Appendix, Lemma 1, and [F], Prop. 1.8). Thus we have
an equation

[∆σ0 ]−
∑

Mn1 · · · · ·Mnr = γ0 + δ0

in CHn(X0 ×k Z0), where for some divisor D0 ⊂ Z0, we have

Mni
∈ CHni(X0 ×k Z0)Ql , Mni

7→ mni
∈ CHni(VL)Ql

γ0 ∈ CHn(X0 ×k Z0)Ql , supp γ0 ⊂ C0 ×k Z0

δ0 ∈ CHn(X0 ×k Z0)Ql , supp δ0 ⊂ X0 ×k D0

Thus if Z = Z0 ×k Cl , σ : Z −−→ X the induced map, M ′
ni

= (Mni
)Cl , γ = (γ0)Cl ,

δ = (δ0)Cl , C = (C0)Cl , D = (D0)Cl , then

[∆σ]−
∑

M ′
n1
· · · · ·M ′

nr
= γ + δ (3)



in CHn(X×Z)Ql , where γ is supported on C×Z, and δ is supported on X×D
(in the rest of this proof, × denotes ×Cl ).

Elements of CHn(X × Z)Ql act on Hn(X) as follows. First, there is a cycle
class homomorphism of graded rings⊕

i≥0

CH i(X × Z) →
⊕
i≥0

H2i(X × Z)

(see [F], Chapter 19, Cor. 19.2(b)). By [F], Prop. 16.1.2 and Example 19.2.7,
an element α ∈ CHn(X × Z)Ql yields mappings

α∗ : CH i(X)Ql → CH i(Z)Ql , α∗ : CH i(Z)Ql → CH i(X)Ql

on Chow groups, and

α∗ : H i(X) → H i(Z), α∗ : H i(Z) → H i(X)

on cohomology, where if p : X×Z → X, and q : X×Z → Z are the projections,
then α∗(x) = q∗(p

∗(x) ∪ α), and α∗(y) = p∗(q
∗(y) ∪ α). Since X, Z are proper

and smooth over Cl , the required operations exists on cohomology as well as
Chow groups. Further, if α is the class of the transposed graph of a morphism
f : Z → X, then α∗ = f ∗, and α∗ = f∗, where f ∗ is the natural map on
cohomology, and f∗ is the Gysin map (see [F], Prop. 16.1.2 and Example 19.2.7).

On the level of cohomology, the Gysin (push forward) map

q∗ : Hm(X × Z) → Hm−2n(Z)

is defined via Poincaré duality. As we see below, an equivalent (up to sign)
description of q∗ is as follows: one may use the Künneth isomorphism

Hm(X × Z) ∼=
⊕

i+j=m

H i(X)⊗Hj(Z)

to project onto the summand H2n(X)⊗Hm−2n(Z), and then use the canonical

isomorphism degX : H2n(X)
∼=−→ Ql (for any non-singular projective variety T

over Cl of dimension d, let degT : H2d(T )
∼=−→ Ql denote the natural isomor-

phism). The map p∗ is defined similarly.
To see that the two procedures for defining q∗ are equivalent upto sign, note

that the natural isomorphism (induced by degX×Z)

H2n(X)⊗H2n(Z) = H4n(X × Z)
∼=−→ Ql

is the tensor product of the natural isomorphisms

H2n(X)
∼=−→ Ql , H2n(Z)

∼=−→ Ql



(this is because a similar assertion is valid for integral cohomology – now we are
comparing two isomorphisms ZZ⊗ ZZ ∼= ZZ, which are equal because the natural
orientation on X × Z is the product orientation of those on X and Z). Now if
x ∈ Hm(X × Z), then q∗(x) defined via Poincaré duality is the unique element
of Hm−2n(Z) such that for any x′ ∈ H4n−m(Z), we have

degX×Z(x ∪ q∗(x′)) = degZ(q∗(x) ∪ x′).

But x ∪ q∗(x′) depends only on the Künneth component of x in

H2n(X)⊗Hm−2n(Z).

If this Künneth component of x is
∑
j p

∗xj ∪ q∗yj, then

x ∪ q∗(x′) = ±
∑
j

p∗(xj) ∪ q∗(yj ∪ x′),

so that

degZ(q∗(x) ∪ x′) = degX×Z(x ∪ q∗(x′)) = ±
∑
j

degX(xj) degZ(yj ∪ x′).

On the other hand, the second procedure for defining q∗(x) yields the element∑
j degX(xj)yj, whose cup product with x′ is

∑
j degX(xj)(yj ∪ x′), which thus

has the same image under degZ as q∗(x) ∪ x′, upto sign.
The cup product on the cohomology of X×Z is compatible upto signs with

the Künneth decomposition, and the cup products on the cohomology of X and
Z respectively. This is because we may view the Künneth component

H i(X)⊗Hj(Z) ⊂ H i+j(X × Z)

as image of the mapping given by

x⊗ y 7→ p∗x ∪ q∗y.

Now our assertion follows because the cup product is functorial, associative,
and commutative upto sign.

In particular, the action of α ∈ H2n(X×Z) on Hn(X) (via α∗) or on Hn(Z)
(via α∗) is determined by the Künneth component of α in Hn(X)⊗Hn(Z). If
α =

∑
i p
∗xi ⊗ q∗yi, then

α∗(z) = ±
∑
i

degZ(yi ∪ z)xi,

where yi ∪ z ∈ H2n(Z), and degZ : H2n(Z) → Ql is the natural isomorphism.



The Künneth decomposition, as well as the action of classes of elements of
CHn(X × Z)Ql on cohomology, are compatible with the Hodge decompositions
on the various cohomology groups. Hence for α ∈ CHn(X × Z)Ql , the map

α∗ : Hn(Z,Cl )/F 1Hn(Z,Cl ) → Hn(X,Cl )/F 1Hn(X,Cl )

depends only on the image of the class of α under the composite

CHn(X × Z)Ql → H2n(X × Z,Cl ) → Hn(X,Cl )⊗Hn(Z,Cl ) →
Hn(X,OX)⊗H0(Z,Ωn

Z/Cl ).

Here the last map is a tensor product of projections onto appropriate summands
of the Hodge decompositions. This is because if y ∈ Hn(X,Cl ) is of Hodge
type (p, q), z ∈ Hn(X,OX) (i.e.,is of type (0, n)), and x ∈ Hn(X,OX), then
degZ(y ∪ z)x is 0, unless y has type (n, 0). Let∑

j

tj ⊗ xj ∈ Hn(X)⊗Hn(X)

be the Künneth component of type (n, n) of the diagonal of X × X, whose
inverse image ∑

i

ti ⊗ σ∗(xi) ∈ Hn(X)⊗Hn(Z)

is the Künneth component of type (n, n) of ∆σ. Then

σ∗ = [∆σ]
∗ : Hn(Z,Cl ) → Hn(X,Cl )

is given by
z 7→

∑
j

degZ(σ∗xj ∪ z)tj.

On the other hand, if αni
∈ H2ni(X × Z) is the cohomology class of M ′

ni
, then

[M ′
n1
· · · · ·M ′

nr
]∗ : Hn(Z) → Hn(X)

is determined by the (n, n)th Künneth component of the cohomology class
αn1 ∪ · · · ∪ αnr . Further, the map on the Hodge components of type (0, n)

ξ = [M ′
n1
· · · · ·M ′

nr
]∗ : Hn(Z,OZ) → Hn(X,OX)

depends only on the Hodge component of type (0, n)⊗ (n, 0) in

Hn(X,Cl )⊗Hn(Z,Cl )



of αn1∪· · ·∪αnr . This is just α′n1
∪· · ·∪α′nr

, where α′ni
is the Hodge component

of αni
in Hni(X,OX)⊗H0(Z,Ωni

Z/Cl ). Hence ξ is expressible in the form

ξ(z) =
∑
finite

degZ(yn1 ∪ · · · ∪ ynr ∪ z)zn1 ∪ · · · ∪ znr ,

for suitable ynj
∈ H0(Z,Ω

nj

Z/Cl ), and znj
∈ Hnj(X,OX). In particular,

image ξ ⊂ image (Hn1(X,OX)⊗ · · · ⊗Hnr(X,OX) −−→ Hn(X,OX)) .

The correspondence γ∗ maps Hn(Z) into NaHn(X), where a is the codi-
mension of C in X, whereas δ∗ maps Hn(Z) into N1Hn(X) (see [B], and [J],
proof of (10.1)).

Hence on the Hodge components of type (0, n), the map

σ∗ : Hn(Z,Cl ) → Hn(X,Cl )

maps Hn(Z,OZ) into

image (Hn1(X,OX)⊗ · · · ⊗Hnr(X,OX) −−→ Hn(X,OX)) .

Finally, we note that σ∗ ◦ σ∗ : Hn(X,Cl ) → Hn(X,Cl ) is multiplication by the
degree of σ; hence it is an isomorphism. Hence σ∗ is surjective, i.e.,

Hn1(X,OX)⊗ · · · ⊗Hnr(X,OX) −−→ Hn(X,OX)

is surjective.
This proves that if the map (i) is surjective, so is the map (∗). Hence to

complete the proof of the theorem, it suffices to show that if any of the maps
(ii), (iii) or (iv) is surjective, so is (∗). From Hodge theory (see [D]), there is a
surjection

θV : H i(V )⊗ Cl −−→ H i(X,OX)

for any non empty Zariski open set V ⊂ X, which is compatible with cup
products; this is just the quotient modulo the subspace F 1(H i(V )⊗Cl ), where
F j(H i(V )⊗ Cl ) is the Hodge filtration for Deligne’s mixed Hodge structure on
H i(V ). Further, for any inclusion of Zariski open sets W ⊂ V ⊂ X, the triangle

H i(V )⊗ Cl −−−−−−−−−→ H i(W )⊗ Cl

J
Ĵ

θV




�
θW

Hn(X,OX)

commutes, by functoriality of the mixed Hodge structure.



Hence there is a commutative diagram of graded rings
n⊕
i=0

(H i(V )/N1H i(V ))⊗ Cl −−−→
n⊕
i=0

H0(V,Hi
V )⊗ Cl −−−→

n⊕
i=0

H i(Cl (X))⊗ Cl

Z
ZZ~

α

yβ �
��=
γ

n⊕
i=0

H i(X,OX)

where α, β and γ are induced by the θW for all open W ⊂ V , and are all
surjective (incidentally the horizontal maps are known to be injective by [BO]).
The surjections α, β and γ immediately imply that if the maps in (ii), (iii) or
(iv) respectively are surjective, then so is (∗). 2

From the formulation of the proof, it appears that (ii), (iii) and (iv) are
directly related to (∗) via the maps α, β and γ, while the relation between (i)
and (∗) is indirect. It is possible to give another proof (which is really more or
less a reformulation of the old one) which looks more like the proof in the other
three cases, as follows.

We make use of the existence of a cycle class homomorphism
n⊕
i=0

CH i(X)Ql −−→
n⊕
i=0

H i(X,Ωi
X/ZZ),

where Ωi
X/ZZ is the sheaf of absolute Kähler i-forms (see [S], for example; the

proof below is motivated by the proof in [S] of the infinite dimensionality the-
orem for zero cycles). If k, X0 are as in the proof above, this induces a ring
homomorphism

n⊕
i=0

CH i(X)Ql −−→
n⊕
i=0

H i(X,Ωi
X/X0

) = H i(X0,OX0)⊗k Ωi
Cl /k.

Suppose l : Hn(X0,OX0) −−→ k is a non-zero linear functional such that the
composite

Hn1(X0,OX0)⊗ · · · ⊗Hnr(X0,OX0) −−→ Hn(X0,OX0)
l−−→ k

is zero. Then the induced homomorphism

CHn1(X)Ql ⊗ · · · ⊗ CHnr(X)Ql −−−→ CHn(X)Ql −−−→ Hn(X0,OX0)⊗kΩ
n
Cl /k

Z
ZZ~

µ l⊗1

y
Ωn

Cl /k

clearly vanishes. We claim that



(a) for any P ∈ C, [P ] ∈ CHn(X)Ql lies in the kernel of the map (defined
above using the functional l)

µ : CHn(X)Ql −−→ Ωn
Cl /k

(b) if k(X0) ↪→ Cl yields the point η ∈ X, corresponding to the generic point
of X0, then µ([η]) 6= 0.

These properties follow from certain properties of the cycle map

CHn(X)Ql −−→ Hn(X0,OX0)⊗k Ωn
Cl /k,

discussed below. If P ∈ X has ideal sheaf I, then there is an exact sequence

I/I2 ψ−−→ Ω1
X/X0

⊗OP −−→ Ω1
P/X0

−−→ 0. (4)

The image of
∧n ψ under the composite

Hom(
∧nI/I2,Ωn

X/X0
⊗OP ) ∼= ExtnX(OP ,Ω

n
X/X0

) −−→ Hn
P (X,Ωn

X/X0
) −−→

−−→ Hn(X,Ωn
X/X0

) = Hn(X0,OX0)⊗ Ωn
Cl /k

is the cycle class of P (this follows from the definition of the cycle class given
in [S]). If Q ∈ X0 is the image of P (note that Q need not be a closed point),
then the sequence (4) may be rewritten as

Cl n
ψ−−→ Ω1

Cl /k

χ−−→ Ω1
Cl /k(Q) −−→ 0

where χ is the natural surjection. Thus

rank ψ = tr.deg. (k(Q)/k).

Hence if P ∈ C, so that Q ∈ C0 ⊂ X0 but C0 6= X0, then rank ψ < n, and∧n ψ = 0. This proves (a).

Secondly the linear functional

l : Hn(X0,OX0) −−→ k

is determined, via Serre duality, by a unique ω ∈ H0(X0,Ω
n
X0/k

). The embed-
ding k(X0) ↪→ Cl used to determine η ∈ X also yields an embedding

H0(X0,Ω
n
X0/k

) ↪→ Ωn
k(X0)/k ↪→ Ωn

Cl /k,

and it is shown in [S] that µ(η) is the image of ω under this map. In particular
it is non-zero.



Further remarks

1. The theorem has been stated in the present form, as urged by the referee.
However, possible applications would seem to be in the direction that if
the cup product on coherent cohomology is not surjective, then none of
the other products (i)-(iv) is surjective. This is because it is presumably
easier to directly compute the cup product on coherent cohomology than
to compute any of the products (i)-(iv), in most situations.

2. One might hope (this is consistent with the philosophy outlined in [B2],
Chapter 1) that if

Hn1(X)/N1Hn1(X)⊗ · · · ⊗Hnr(X)/N1Hnr(X) −−→ Hn(X)/N1Hn(X)

is not surjective, then for any non empty open set V ⊂ X,

CHn1(V )Ql ⊗ · · · ⊗ CHnr(V )Ql −−→ CHn(V )Ql

is not surjective. In an earlier version of the paper, the authors had
claimed to prove this, but the argument was found to be incomplete.
This statement is purely algebraic, and suggests an analogous theorem in
arbitrary characteristics, if we interpret H i(X) as a suitable l-adic coho-
mology group, equipped with Grothendieck’s coniveau filtration, defined
as before.

However, note that if (∗) is surjective, then the image of

Hn1(X)⊗ · · · ⊗Hnr(X) → Hn(X)

is a Ql -Hodge substructure, which after tensoring with Cl , maps onto
H(0,n)(X). Hence this image maps onto the smallest quotient Hodge struc-
ture with the same space H(0,n). According to Grothendieck’s generalized
Hodge conjecture, this smallest quotient is just Hn(X)/N1Hn(X). Thus
the surjectivity of the map in (ii) for V = X is conjecturally equivalent
to that of (∗).

3. Of course, it would be very interesting to have information in the converse
direction to the theorem. For example, for n = 2 and surfaces of general
type for which H2(X,OX) = 0, one also knows that H1(X,OX) = 0, so
that CH1(X) = Pic (X) is a finitely generated abelian group. Now the
implication (i) =⇒ (∗) is equivalent to Bloch’s conjecture that CH2(X) =
ZZ. (Here and below, by ‘(i)’ or ‘(∗)’ we mean the surjectivity of the
corresponding map, for some choices of n1, . . . , nr; these choices will be
fixed in each discussion.) This is because the subgroup of CH2(X) of



cycles of degree 0 is a divisible group ([B2], Lemma 1.3), so if it is finitely
generated, it must be 0. Note that (∗) and (ii) are equivalent for surfaces;
a generalisation of Bloch’s conjecture is the assertion that (ii) =⇒ (i).

However, (∗) =⇒ (iii) is false in general. If X is the Jacobian of a general
curve of genus 3, then the natural map

H i(X,Ql ) −−→ H0(X,Hi
X)

is surjective for i ≤ 2, while the cokernel for i = 3 is the Griffiths group of
codimension 2 cycles (with rational coefficients) homologous to 0 modulo
algebraic equivalence, by results of [BO]. But Ceresa [C] has shown that
this Griffiths group is a non-zero Ql -vector space. Hence the map (iii) is
not surjective, while (∗) (and even (i)) is always surjective on an abelian
variety (see [B3]).

We do not know an example where the map (iv) is known to be surjective.

4. In contrast to the situation in (iv), Bloch (see [B2], 5.12) wonders whether
the graded ring

n⊕
i=0

H i(Cl (X),ZZ/mZZ) = lim
−→
V⊂X

n⊕
i=0

H i(Van,ZZ/mZZ)

is generated by H1(Cl (X),ZZ/mZZ) as a ZZ/mZZ-algebra. If n = 2, this is
known, from the Merkurjev-Suslin theorem, and Bloch (loc. cit.) states
that

H1(Cl (X),ZZ/mZZ)⊗n −−→ Hn(Cl (X),ZZ/mZZ)

is always surjective. More generally, Kato has conjectured that for any
field K containing a primitive l th root of unity, the Galois cohomology
ring with ZZ/lZZ coefficients, l 6= charK, is generated by H1(K,ZZ/lZZ).

One may be tempted to argue using inverse limits that in view of the
above conjectures, one should expect that

n⊕
i=0

H i(Cl (X),Ql l) =
n⊕
i=0

H i(Cl (X),Ql )⊗Ql l

is generated by H1(Cl (X),Ql l) as a Ql l-algebra. However, the inverse sys-
tems

{H i(Cl (X),ZZ/lmZZ)}m≥1

do not satisfy the Mittag-Leffler condition, so the surjectivity of multipli-
cation maps need not be preserved under taking inverse limits.



5. If R =
n⊕
i=0

Ri is a graded Ql -algebra, define x ∈ Rn to be r-decomposable

if there is an expression

x =
r∑
i=1

xiyi

where the xi, yi ∈ R are homogeneous of degree > 0. If x is not r-
decomposable, we say that x is r-indecomposable.

Nori [N] has shown that if X is a proper smooth variety of dimension n
over Cl with Hn(X,OX) 6= 0, then for any non-empty open subset V ⊂ X
and any r > 0, CHn(V )Ql contains elements which are r-indecomposable
in

⊕
iCH

i(V )Ql . Nori’s proof involves an argument analogous to the sec-
ond proof of (i) ⇒ (∗) using the cycle class.

In a similar vein, suppose X is a smooth proper variety of dimension n
over a universal domain Ω, such that Hn

ét(X,Ql l) 6= N1Hn
ét(X,Ql l). Then

one may raise the following questions.

(1) For any non-empty open set V ⊂ X and any r > 0, does CHn(V )Ql

contain r-indecomposable elements?

(2) Does Hn
ét(Ω(X),Ql l) contain elements which are r-indecomposable in⊕

i

H i
ét(Ω(X),Ql l),

for each r > 0? Is this true at least when Ω = Cl andHn(X,OX) 6= 0?
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