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Introduction

The complicated nature of the theory of cycles of codimension two and
higher became apparent with Mumford’s paper [M], which showed that pg = 0
is a necessary condition for the representability of the group of zero-cycles on a
smooth projective surface over C. This was generalized by Roitman [R] when
he showed that the vanishing of all the groups H0(Ωq), q > 1, is necessary
for the representability of the group of zero-cycles on a smooth projective
variety over C. Bloch, Kas and Lieberman [BKL] investigated the zero-cycles
on surfaces with pg = 0, showing that the group of zero- cycles was in fact
representable, at least if the surface is not of general type; Bloch [Bl] has
conjectured that pg = 0 is sufficient for the representability of the zero-cycles
on a smooth projective surface. The case of surfaces of general type is still
an open problem, although there has been some progress, most recently by
Voisin [V].

Bloch’s proof in [Bl] of Mumford’s infinite dimensionality theorem views
the diagonal in X×X as a family of zero-cycles on X, parametrized by X, and
goes on to consider the consequences of the generic triviality of this family.
This may be the first appearance of this point of view. Coombes and Srinivas
used this idea in [CS] to get a decomposability result for H1(K2) of a surface.
Bloch and Srinivas [BS] push this approach further, making a study of the
cycle groups on a smooth variety X which relies on a partial decomposition of
the diagonal in X×X. They have applied this method to give some examples
for which certain cycle groups are representable. This approach was recently
used by Paranjape [P] in his discussion of the cycle groups of subvarieties of
projective space of small degree and small codimension. Schoen [S] has also
applied this method to give generalizations of the Mumford-Roitman criterion
for non-representability to the Chow groups of cycles of positive dimension.
Jannsen [J] used the ideas of Bloch and Srinivas in his discussion of smooth
projective varieties X for which the rational topological cycle maps

CHp(X) ⊗Q→ H2p
B (X,Q)
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are injective. For such a variety, Jannsen shows that the diagonal in X ×X
decomposes in CH∗(X ×X)Q into a sum of product cycles

∆ = A0 ×B0 + A1 ×B1 + . . . + Ad ×Bd

where Ai is a dimension i cycle, Bi is a codimension i cycle, and d = dim(X).
One consequence of this decomposition is that the total cycle map

d⊕
p=0

CHp(X) ⊗Q→
2d⊕

q=0

Hq
B(X,Q)

is an isomorphism; in particular, X has no odd cohomology.
In this paper, we prove an analog of Jannsen’s result, considering the

cycle map to rational Deligne cohomology rather than Betti cohomology. As-
suming injectivity of the Deligne cycle maps, we arrive at a decomposition of
the diagonal into a sum of codimension one cycles on products of the form
Γi+1 ×Di, with dim(Γi+1) = i + 1, cod(Di) = i (see Theorem 1.2 for a more
precise statement). The consequences of this decomposition are a surjectiv-
ity statement for certain cycle maps to Deligne cohomology and some other
related maps (Theorem 2.5), a vanishing result for certain Hodge numbers
(Theorem 3.2), and a decomposability result for the K-cohomology (Theo-
rem 4.1). If we assume that all the rational cycle class maps for a smooth
projective variety X are injective, then

(1) all the rational Hodge cycles on X are algebraic (Corollary 2.6)
(2) the Abel-Jacobi maps

cln: CHn(X)alg → Jn(X)

are all surjective (Corollary 3.3)
(3) the Hodge numbers hp,q(X) all vanish for |p− q| > 1.
(4) the maps

CHp(X) ⊗ C× → Hp(X,Kp+1)

are all surjective.
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The results on the Hodge numbers are a direct generalization of the re-
sults of Mumford-Roitman mentioned above. This points the way to some
possible generalizations of Bloch’s conjecture to a conjecture on the repre-
sentability of cycle groups of higher dimension (see Questions 1 and 2 in §3).
What is novel about the situation is that it involves all the groups of cycles
of dimension 0 to s rather than the cycles of a single dimension s. Schoen
has raised similar questions in his paper [S], from a slightly different point of
view, replacing the injectivity assumption with an assumption that the gen-
eralized Hodge conjecture holds, and that the group of dimension s cycles is
representable; we haven’t attempted to reconcile these two points of view.

We would like to thank Uwe Jannsen and Kapil Paranjape for sending us
preliminarly version of their manuscripts, which have greatly influenced this
work. This joint paper arose out of conversations while the second author
was visiting at the University of Essen; he would like to thank the University
of Essen for its gracious hospitality and the DFG Schwerpunkt “Komplexe
Mannigfaltigkeiten” for its generous support.

§1. Decomposition of the diagonal

In this section, we show how the injectivity of the cycle map to Deligne
cohomology leads to a decomposition of the diagonal. If X is a smooth pro-
jective variety, we let Zn(X) denote the group of codimension n cycles on X,
CHn(X) the group of cycles modulo rational equivalence. We let Zn(X) and
CHn(X) denote the group of dimension n cycles and cycle classes. If X is
defined over C, we have the cycle class map

cln:Zn(X) → H2n
D (X,Z(n)).

This map passes to rational equivalence, giving the map

cln: CHn(X) → H2n
D (X,Z(n)).

We refer to an element of Zn(X)Q as a Q-cycle. We also denote by cln

the maps induced by cln after extending the coefficient ring. For the basic
properties of Deligne cohomology and the cycle map, we refer the reader to
[B].
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Let Hgn(X) denote the group of codimension n Hodge cycles on X:

Hgn(X) := {x ∈ H2n(X,Z(n)) | x⊗ 1 ∈ FnH2n(X,C)}.

We have the exact sequence describing H2n
D (X,Z(n)) as an extension:

0 → H2n−1(X,C)
H2n−1(X,Z(n)) + FnH2n−1(X,C)

→ H2n
D (X,Z(n)) → Hgn(X) → 0.

The nth intermediate Jacobian, Jn(X), is the complex torus on the left-hand
side of the above sequence.

Lemma 1.1. Let X be a smooth projective variety over C of dimension d.
Suppose the Q-cycle class map

cln:CHn(X)Q → H2n
D (X,Q(n))

is injective. Let D be a pure codimension i = d − n closed subset of X, and
let γ be a codimension d Q-cycle on X×X, supported on X×D. Then there
are closed subsets D′ and Γ of X, codimension d Q-cycles γ? and γ? on X×X
such that

(1) D′ has pure codimension i + 1 and Γ has pure dimension i + 1.

(2) γ? is supported on Γ ×D and γ? is supported on X ×D′.

(3) γ = γ? + γ? in CHd(X ×X)Q.

Proof. If D has irreducible components D1, . . . , Ds, we can write γ as a sum

γ = γ1 + . . . + γs

with γj supported on X × Dj . Thus we may assume that D is irreducible.
Write γ as a sum, γ = γ′ + γ′′, such that each irreducible component of the
support of γ′ dominates D, and no irreducible component of the support of γ′′

dominates D. Since γ′′ is supported on X × p2(supp(γ′′)), and p2(supp(γ′′))
has codimension at least i+1 on X, we may assume that γ = γ′. We may then
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find a smooth projective variety D̃, mapping birationally to D by p: D̃ → D,
and a Q-cycle γ̃ on X × D̃ such that

(i) for each y ∈ D̃, X × y and γ̃ intersect properly on X × D̃.

(ii) (idX × p)∗(γ̃) = γ.

Indeed, for a resolution of singularities r:E → D, and a subvariety Z of
X ×D, there is a subvariety W of X × E which is generically finite over Z.
Thus each cycle γ as above can be lifted to a Q-cycle γE on X × E. Having
done this, we may further blow-up E via D̃ → E so that each component of
γE has proper transform to X × D̃ which is flat over D̃, giving us the desired
resolution D̃ and Q-cycle γ̃.

For a point y ∈ D̃, let γy be the Q- cycle pX∗((X × y) · γ̃). Each γy has
codimension n on X. Fix a point 0 ∈ D̃. Since D̃ is connected, the cycles
γ0 and γy are homologous on X, for each y in D̃. Thus cln(γy − γ0) is in
Jn(X)Q, for each y ∈ D̃. Let cl: D̃ → Jn(X)Q be the map

cl(y) = cln(γy − γ0).

In similar fashion, we have the map ch: D̃ → CHn(X)Q defined by

ch(y) = γy − γ0 mod rational equivalence.

Both ch and cl extend by linearity to maps

ch: CH0(D̃) →CHn(X)Q
cl: CH0(D̃) →Jn(X)Q.

The map cl factors further through the Albanese map

αD̃:CH0(D̃) → Alb(D̃).

Clearly we have cln ◦ ch = cl; since the map cln is injective by hypothesis,
this implies that ch factors through Alb(D̃) as well.
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Take an embedding of D̃ in a PN , and let C be a smooth linear section
of D̃ of dimension one; we assume that C contains 0. By the weak Lefschetz
theorem, the map Alb(C) → Alb(D̃) is surjective; in particular, this implies
that, for each y ∈ D̃, there is a Q-zero cycle ay, supported on C, such that
cl(y) = cl(ay). As the map ch factors through Alb(D̃), we have ch(y) =
ch(ay).

Take y to be a geometric generic point of D̃ over C, so C(y) = C(D̃) =
C(D). The zero-cycle ay is defined over some finitely generated field extension
of C(D̃); by specializing ay and changing notation, we may assume that the
zero-cycle ay is defined over a finite extension L of C(D̃), of degree say M .
Let by be the zero cycle 1

M · NmL/C(D̃)(ay). Then by is defined over C(D̃),
by is supported on C and ch(y) = ch(by). In particular, there is a unique
Q-cycle γ̃? on X × D̃ such that

(iii) pX∗((X × y) · γ̃?) = pX∗((X × by) · γ̃), for y a geometric generic point of
D̃ over C.

(iv) each irreducible component of supp(γ̃?) dominates D̃.

Let S = pX(supp(γ̃)∩ X×C). Since the fibers of supp(γ̃) over D̃ all have
dimension i, S has dimension at most i+ 1. By (iii) and (iv), γ̃? is supported
on S × D̃. Since ch(y) = ch(by), (iii), together with the localization sequence
for the Chow groups, implies there is a codimension one closed subset D̃′ of
D̃, and a cycle γ̃? ∈ CHd−i(X × D̃), supported on X × D̃′, such that

(v) γ̃ = γ̃? + γ0 × D̃ + γ̃? in CHd−i(X × D̃)Q.

Let Γ be a pure dimension i + 1 closed subset of X containing S and
supp(γ0), let D′ be a pure codimension i + 1 closed subset of X containing
p(D̃′). Take γ? = (idX × p)∗(γ̃? + γ0 × D̃), γ? = (idX × p)∗(γ̃?). Since
(idX × p)∗(γ̃) = γ, we have

γ = γ? + γ? in CHd(X ×X)Q
γ? is supported on X ×D′

γ? is supported on Γ ×D,

as desired.
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Theorem 1.2. Let X be a smooth projective variety over C of dimension d,
and let ∆ be the class of the diagonal in CHd(X ×X)Q. Suppose the Q-cycle
class maps

cln:CHn(X)Q → H2n
D (X,Q(n))

are injective for n = d, d − 1, . . . , d − s, for some integer s, 0 ≤ s ≤ d − 2.
Then there are closed subsets X = D0, D1, . . . , Ds+1, Γ1, . . . ,Γs+1, and cycles
γ1, . . . , γs, γ

s+1 ∈ CHd(X ×X)Q such that

(1) Di has pure codimension i, Γi has pure dimension i.

(2) γi is supported on Γi+1 ×Di, for i = 0, . . . , s.
(3) γs+1 is supported on X ×Ds+1.

(4) ∆ = γ0 + . . . + γs + γs+1 in CHd(X ×X)Q.

Proof. We first apply Lemma 1.1 to the cycle ∆ on X ×X, with n = d, i = 0
and D = X. This gives us the Q-cycles γ0 and γ1, a codimension one closed
subset D1 and a dimension one closed subset Γ1 with γ0 supported on Γ1×X,
γ1 supported on X×D1 and with ∆ = γ1 +γ1 in CHd(X×X)Q. This proves
the case s = 0. The general case follows by induction on s, applying Lemma
1.1 to the cycle γs+1 supported on X ×Ds+1.

Note. We have systematically indexed our cycle groups by codimension rather
than dimension for notational convenience. However, it seems instructive to
view the hypotheses of Theorem 1.2 as requiring the injectivity of the rational
cycle maps for cycles of dimension 0 to s.

§2. Surjectivity

In this section, we use the decomposition of the diagonal given in §1 to
study the surjectivity of the cycle map.

Let X be a smooth projective variety over C of dimension d. Let γ be in
CHd(X×X)Q, supported on a product Γ×D, with Γ ⊂ X of pure dimension
j, D ⊂ X of pure codimension i. Let p: Γ̃ → Γ, q: D̃ → D be birational
maps, with Γ̃ and D̃ smooth and projective. If Z is a subvariety of Γ × D,
then there is a subvariety W of Γ̃ × D̃, with (p × q)(W ) = Z, and with W
generically finite over Z. In particular, there is a cycle γ̃ ∈ CHj−i(Γ̃ × D̃)Q
with (p× q)∗(γ̃) = γ.

The cycle γ determines the homomorphisms

γ∗:Ha
D(X,Q(b)) → Ha

D(X,Q(b))
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by

γ∗(η) = p2∗(p∗1(η) ∪ cld(γ)), for η ∈ Ha
D(X,Q(b)).

Let f : Γ̃ → X, g: D̃ → X be the obvious maps, and let pD̃: Γ̃ × D̃ → D̃,
pΓ̃: Γ̃×D̃ → Γ̃ denote the projections. The cycle γ̃ determines homomorphisms
γ̃∗:Ha

D(Γ̃,Q(b)) → Ha−2i
D (D̃,Q(b− i)) by

γ̃∗(η) = pD̃∗(p
∗
Γ̃
(η) ∪ clj−i(γ)), for η ∈ Ha

D(Γ,Q(b)).

Lemma 2.1. Let η ∈ Ha
D(X,Q(b)). Then

γ∗(η) = f∗(γ̃∗(g∗(η))).

Proof. We have

γ∗(η) = p2∗(p∗1(η) ∪ cld(γ))

= p2∗(p∗1(η) ∪ cld((g × f)∗(γ̃)))

= p2∗(p∗1(η) ∪ (g × f)∗(clj−i(γ̃)))

= p2∗((g × f)∗((g × f)∗(p∗1(η)) ∪ clj−i(γ̃))) (projection formula)

= f∗(pD̃∗(p
∗
Γ̃
(g∗(η)) ∪ clj−i(γ̃)))

= f∗(γ̃∗(g∗(η))).

The Deligne cohomology groups H0
D and H1

D of a point ∗ are easily com-
puted; we give here a partial computation:

For k ≥ 0, we have

H0
D(∗,Q(−k)) = Q(−k)

H1
D(∗,Q(1 + k)) = C/Q(k)
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Let pX :X → ∗ be the projection to a point. Using the cycle class map cln,
we obtain the maps

cln0,−k: CHn(X) ⊗H0
D(∗,Q(−k)) → H2n

D (X,Q(n− k))

cln1,k: CHn(X) ⊗H1
D(∗,Q(1 + k)) → H2n+1

D (X,Q(n + 1 + k)),

defined by

cln0,−k(η ⊗ α) = cln(η) ∪ p∗X(α)
cln1,k(η ⊗ β) = cln(η) ∪ p∗X(β),

for α ∈ H0
D(∗,Q(−k)), β ∈ H1

D(X,Q(1 + k)) and η ∈ CHn(X).

Lemma 2.2. Let Y be a smooth irreducible projective variety over C of
dimension dY . Then, for k ≥ 0, we have

H0
D(Y,Q(−k)) = Q(−k)

H1
D(Y,Q(1 + k)) = C/Q(1 + k).

The map

cldY
0,0:CHdY (Y ) ⊗H0

D(∗,Q(0)) → H2dY

D (Y,Q(dY ))

is surjective. If ι : ∗ → Y is a point of Y , the maps

ι∗:H0
D(∗,Q(−k)) → H2dY

D (Y,Q(dY − k)), k > 0
and

ι∗:H1
D(∗,Q(1 + k)) → H2dY +1

D (Y,Q(dY + 1 + k)), k ≥ 0

are isomorphisms.

Proof. The computation of H0
D and H1

D follow directly from the isomorphism

H0
D(Y,Q(−k)) → H0(Y,Q(−k)) ∩ F−kH0(Y,C)
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and the short exact sequence

0 → H0(Y,C)
H0(Y,Q(1 + k)) + F 1+kH0(Y,C)

→ H1
D(Y,Q(1 + k)) → H1(Y,Q(1 + k)) ∩ F 1+kH1(Y,C) → 0,

together with the identities (for k ≥ 0)

F−kH0(Y,C) = H0(Y,C)

F 1+kH0(Y,C) = 0

F 1+kH1(Y,C) = 0.

For the surjectivity statement, we have the exact sequence

0 → H2dY −1(Y,C)
H2dY −1(Y,Z(dY − k)) + F dY −kH2dY −1(Y,C)

→ H2dY

D (Y,Z(dY − k))

→ H2dY (Y,Z(dY − k)) ∩ F dY −kH2dY (Y,C) → 0.

For k = 0, this is just the exact sequence

0 → Alb(Y ) → H2dY

D (Y,Z(dY )) → H2dY (Y,Z(dY )) → 0;

and the cycle class map cldY breaks up into degree map to H2dY (Y,Z(dY )) =
Z and the Albanese map α: CH0(Y )0 → Alb(Y ). As both these maps are
surjective, cldY

0,0 is surjective as well. For k < 0, we have

H2dY

D (X,Q(dY − k)) = H2dY (Y,Q(dY − k)).

As this latter group is isomorphic to Q(−k), generated by the class of a point,
the map ι∗ is an isomorphism as claimed. The computation of the group
H2dY +1

D (X,Q(dY + 1 + k)) is similar.
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Lemma 2.3. Let X be a smooth projective variety over C of dimension d,
let Γ be a closed subset of pure dimension i + 1, D a closed subset of pure
codimension i, and let γ ∈ CHd(X ×X)Q be a Q-cycle supported on Γ ×D.
Then, for all n, k ≥ 0, γ∗(H2n

D (X,Q(n − k))) is contained in the image of
cln0,−k, and γ∗(H2n+1

D (X,Q(n + 1 + k))) is contained in the image of cln1,k.

Proof. As in the paragraph preceeding Lemma 2.1, we let p: Γ̃ → Γ, q: D̃ → D
be birational maps, with Γ̃ and D̃ smooth and projective. Let g: Γ̃ → X,
f : D̃ → X be the obvious maps, and let γ̃ ∈ CH1(Γ × D̃)Q be a Q-cycle with
(g × f)∗(γ̃) = γ. By Lemma 2.1, we have

γ∗(η) = g∗(γ̃∗(f∗(η)))

for η ∈ Ha
D(X,Q(b))). Also, the homomorphism γ̃∗ ◦ g∗ maps Ha

D(X,Q(b)))
to Ha−2i

D (D̃,Q(b − i))), and g∗ maps Ha
D(X,Q(b))) to Ha

D(Γ̃,Q(b))). Since
Ha

D(Γ̃,Q(b))) = 0 for a > 2i + 3, and Ha−2i
D (D̃,Q(b− i))) = 0 for a < 2i, we

need only consider four cases:

(1) a = 2n = 2i, b = n− k;
(2) a = 2n + 1 = 2i + 1, b = n + 1 + k;
(3) a = 2n = 2i + 2, b = n− k;
(4) a = 2n + 1 = 2i + 3, b = n + 1 + k.

For cases (1) and (2), it follows from Lemma 2.2 that f∗(H0
D(D̃,Q(−k))

is in the image of cli0,−k, and that f∗(H1
D(D̃,Q(1 + k)) is in the image of

cli1,k. For case (3) , it follows from Lemma 2.2 that H2i+2
D (Γ̃,Q(i+ 1 − k)) is

generated by cli+1
0,−k(CHi+1(Γ̃) ⊗ H0

D(∗,Q(−k)), i.e., by the classes of points
of any dense Zariski open subset of Γ̃. If x is a point of Γ̃, let γ̃x be the
divisor pD̃∗(γ̃ · x× D̃), when the intersection γ̃ ∩ x× D̃ has codimension one
on Γ̃ ×D. Then γ̃∗(x) is the class in H2

D(D̃,Q(1))) of γ̃x, when the latter is
defined; using the projection formula, we see that

γ̃∗(H2i+2
D (Γ̃,Q(i + 1 − k))) ⊂ cl10,−k(CH1(D̃) ⊗H0

D(∗,Q(−k))).

Following γ̃∗ by f∗, and using the compatibility of cycle classes with proper
pushforward, we see that

γ∗(Ha
D(X,Q(b))) ⊂ cli+1

0,−k(CHi+1(X) ⊗H0
D(∗,Q(−k))).

Case (4) is similar, and is left to the reader.
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Lemma 2.4. Let X be a smooth projective variety over C of dimension d,
let D be a closed subset of pure codimension s+1, and let γ ∈ CHd(X×X)Q
be a Q-cycle supported on X ×D. Then

(i) γ∗(H2n
D (X,Q(n− k))) = γ∗(H2n+1

D (X,Q(n+ 1 + k))) = 0, for n < s+ 1,
and for all k ≥ 0.

(ii) γ∗(H2n
D (X,Q(n− k))) is contained in the image of cln0,−k, and

γ∗(H2n+1
D (X,Q(n+1+k))) is contained in the image of cln1,k, for n = s+1,

and for all k ≥ 0.

(iii) γ∗(H2n
D (X,Q(n))) is contained in the image of cln0,0, for n = s + 2.

Proof. The proofs of (i) and (ii) are similar to the argument in the proof of
the preceeding lemma, and are left to the reader. For (iii), let D̃ → D be a
resolution of singularities, and let f : D̃ → X be the obvious map. Arguing
as in the preceeding lemma, we see that γ∗(H2n

D (X,Q(n))) is contained in
f∗(H2

D(D̃,Q(1))). Since the cycle class map cl1: CH1(D̃) → H2
D(D̃,Z(1)))

is an isomorphism, we find that γ∗(H2n
D (X,Q(n))) is contained f∗(CH1(D̃)),

proving (iii).

Theorem 2.5. Let X be a smooth projective variety over C of dimension d.
Suppose there is an integer s, with 0 ≤ s ≤ d− 2, such that the Q-cycle class
maps

cln:CHn(X)Q → H2n
D (X,Q(n))

are injective for n = d, d− 1, . . . , d− s. Then the maps

cln0,−k:CHn(X) ⊗H0
D(∗,Q(−k)) → H2n

D (X,Q(n− k))
and

cln1,k:CHn(X) ⊗H1
D(∗,Q(1 + k)) → H2n+1

D (X,Q(n + 1 + k))

are surjective for n = 0, . . . , s + 1 and for all k ≥ 0. The map

cln0,0:CHn(X) ⊗Q→ H2n
D (X,Q(n))

is surjective for n = s + 2. In particular, if the Q-cycle class maps cln are
injective for all n ≥ 0, then the maps cln0,−k and cln1,k are surjective for all
n ≥ 0 and for all k ≥ 0.

Proof. This follows from Theorem 1.2, and Lemmas 2.3 and 2.4, noting the
the map ∆∗ is the identity.
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Corollary 2.6. Let X be a smooth projective variety over C of dimension
d. Suppose the Q-cycle class maps

cln:CHn(X)Q → H2n
D (X,Q(n))

are injective for all n. Then the group Hgn(X) ⊗Q of rational Hodge cycles
of X is generated by the classes of algebraic cycles for all n.

Proof. The surjectivity of the rational cycle class map

CHn(X)Q → Hgn(X) ⊗Q

follows directly from Theorem 2.5.

Remark. We will show in the next section that the injectivity of the cycle
maps implies that the intermediate Jacobians of X are generated by the classes
of algebraic cycles which are algebraically equivalent to zero.

§3. Hodge numbers and the failure of injectivity of the cycle map

We proceed to examine some consequences of Theorem 1.2 for the Hodge
numbers of a smooth projective variety, and derive a criterion for ensuring that
the cycle class maps are not injective. This can be viewed as a generalization
of the theorems of Mumford-Roitman ([M], [R]) on the non-representability
of the group of zero cycles on smooth projective varieties with non-trivial
holomorphic p-forms for p > 1. What is novel in this setting is that it is
not clear which cycle group is contributing to the lack of injectivity, although
there is an obvious question one can pose (see Question 1 below).

For a smooth projective variety X over C, we let Hp,q(X) denote (p, q)-
component in the Hodge decomposition of H∗(X,C), and let hp,q(X) =
dimC(Hp,q(X)). Let cln,n(γ) denote the cohomology class in Hn,n(X) of
γ ∈ CHn(X)Q. If Y and Z are smooth projective varieties over C, with Z of
dimension a, and if γ is in CHb(Y × Z), we have the homomorphism

γ∗:Hp,q(Y ) → Hp+b−a,q+b−a(Z)

defined by γ∗(η) = p2∗(p∗1(η) ∪ clb,b(γ)).
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Lemma 3.1. Let X, D and Γ be smooth projective varieties over C, with
maps f :D → X, g: Γ → X. Let γ̃ be in CHb(Γ×D), and let γ = (g× f)∗(γ̃).
Then γ∗ = f∗ ◦ γ̃∗ ◦ g∗.
Proof. The proof is the same as the proof of Lemma 2.1.

Let CHn(X)hom denote the group of cycles homologous to zero, modulo
rational equivalence, and let CHn(X)alg denote the group of cycles alge-
braically equivalent to zero, modulo rational equivalence.

Theorem 3.2. Let X be a smooth projective variety over C of dimension d.
Suppose there is an integer s, 0 ≤ s ≤ d− 2 such that the Q-cycle class maps

cln:CHn(X)Q → H2n
D (X,Q(n))

are injective for n = d, d − 1, . . . , d − s. Then the Hodge numbers hp,q(X)
vanish if

(i) p + q ≤ 2s + 2 and |p− q| > 1,

or if

(ii) p + q > 2s + 2 and p < s + 1.

In particular, if the Q-cycle class maps cln are injective for all n ≥ 0, then
the Hodge numbers hp,q(X) vanish if |p− q| > 1. In addition, the cycle class
map cln induce a surjection

cln:CHn(X)alg → Jn(X)

for n ≤ s + 2.

Proof. For (i), first suppose p + q = 2n is even. By Theorem 2.5, the map

cln0,−k:CHn(X) ⊗H0
D(∗,Q(−k)) → H2n

D (X,Q(n− k))

is surjective for all k ≥ 0. On the other hand, for k = n, we have

H2n
D (X,Q(n− k)) = H2n

D (X,Q(0)) = H2n(X,Q),
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and the map cln0,−n is the usual topological cycle class map to singular co-
homology (after twisting by Q(−n)). Since the topological cycle class map
lands in Hn,n(X), the surjectivity of cln0,−n forces the vanishing of the Hodge
numbers hp,q(X) if p �= q. This proves (i) for p + q even.

For p+q = 2n−1 odd, consider the groups CHn(X)hom and CHn(X)alg.
As the difference of two cycles belonging to the same connected component
of a family of cycles on X goes to zero in the quotient group

CHn(X)hom/CHn(X)alg,

this latter group is generated by the connected components of the union of
the Chow varieties of degree t cycles of codimension n on X, for varying t.
In particular, CHn(X)hom/CHn(X)alg is a countably generated group. On
the other hand, cln(CHn(X)alg) is an abelian subvariety A of Jn(X), with
tangent space T0(A) contained in the the subspace Hn−1,n(X) of T0(Jn(X)).
By Theorem 2.5, the restriction of cln to CHn(X)hom gives a surjective map

CHn(X)hom ⊗Q→ Jn(X) ⊗Q.

Thus, the complex torus Jn(X)/A is a countably generated group, which is
impossible unless Jn(X) = A. But, as

T0(Jn(X)) = H0,n(X) ⊕H1,n−1(X) ⊕ . . .⊕Hn−1,n(X),

the Hodge numbers hp,q(X) vanish if |p− q| > 1, completing the proof of (i).
The same argument, using the surjectivity of

cln: CHn(X)Q → H2n
D (X,Q(n))

for n ≤ s + 2, as given by Theorem 2.5, shows that

cln:CHn(X)alg → Jn(X)

is surjective for n ≤ s + 2.
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For (ii), we use the decomposition

∆ = γ0 + . . . + γs + γs+1

of the diagonal ∆ given by Theorem 1.2, with γi supported on Γi+1×Di. Take
resolutions of singularities D̃i → Di, Γ̃i → Γi, and let gi: Γ̃i → X, f i: D̃i → X
be the obvious maps. Take Q-cycles γ̃i on Γ̃i ×Di−1 with (gi × f i−1)∗(γ̃i) =
γi. We note that g∗i (Hp,q(X)) = 0 if p + q > 2i, for dimensional reasons.
Applying Lemma 3.1, we see that ∆∗ = γs+1

∗ as endomorphisms of Hp,q(X),
for p + q > 2s + 2. Let D = Ds+1, let D̃ → D be a resolution of singularities
of D, and let f : D̃ → X be the obvious map. Take a Q-cycle γ̃ on X× D̃ such
that γs+1 = (idX × f)∗(γ̃); applying Lemma 3.1 again, we see that

Hp,q(X) = ∆∗(Hp,q(X)) = γs+1
∗ (Hp,q(X)) ⊂ f∗(Hp−s−1,q−s−1(D̃)),

the second equality being valid for p + q > 2s + 2. In particular, we have
Hp,q(X) = 0 if p + q > 2s + 2 and p < s + 1, proving (ii).

Corollary 3.3. Let X be a smooth projective variety over C of dimension
d. Suppose that the Q-cycle class maps

cln:CHn(X)Q → H2n
D (X,Q(n))

are injective for all n. Then the Hodge numbers hp,q(X) vanish if |p− q| > 1,
and the cycle class maps

cln:CHn(X)alg → Jn(X)

are surjective for all n.

Proof. This follows directly from Theorem 3.2.

If we adjoin the identities hp,q(X) = hq,p(X) = hd−p,d−q(X) to the
information supplied by Theorem 3.2, we obtain a nice picture of the Hodge
diamond of X, assuming that the Q-cycle maps cln are injective for n =
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d, d− 1, . . . , d− s. Here the stars represent all the coordinates (p, q) where it
is possible that hp,q(X) �= 0; in this example d = 20, s = 5.

∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗

∗ ∗ ∗
∗ ∗ ∗
∗ ∗

0 s + 1 d− s− 1 d

Theorem 3.2, taken in the light of Bloch’s conjecture that the zero-cycles
on a smooth projective surface with pg = 0 should be detected by the Albanese
map, leads to the following:
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Question 1. Let X be a smooth projective variety over C of dimension d.
Suppose there is an integer s ≥ 0 such that the Hodge numbers hp,q(X)
vanish if

(i) p + q ≤ 2s + 2 and |p− q| > 1,
and if
(ii) p + q > 2s + 2 and p < s + 1.

Then are the cycle class maps

clp: CHp(X) → H2p
D (X,Z(p))

injective for p = d, d− 1, . . . , d− s? If not, are at least the Q-cycle class maps

clp: CHp(X) ⊗Q→ H2p
D (X,Q(p))

injective for p = d, d− 1, . . . , d− s?

In light of the proof of Theorem 3.2, it might be better to replace (ii) with

(ii)′ There are smooth projective varieties Y1, . . . , Ys of dimension dX − s− 1
and morphisms Yi → X inducing a surjection of Q-Hodge structures

⊕iH
∗(Yi,C) ⊗Q(−s− 1) → ⊕2dX

n=2s+2H
n(X,C),

or even

(ii)′′ For each n > 2s+2, there is a pure Q- motive (i.e. a compatible collection
of Galois representations, together with Hodge and Betti realizations, in
the sense of Deligne [D] and Jannsen [J2]) Mn of weight n− 2s− 2 and
an isomorphism of Q-motives Mn ⊗Q(−s− 1) → Hn(X).

As far as we know, the integral question is unsettled even for torsion
cycles, except for zero-cycles (Roitman [R2], Bloch [Bl]) and for codimension
two cycles (Murre [M]).

In any case, the contrapositive of Theorem 3.2 gives a criterion for the
failure of the injectivity of the cycle map.
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Corollary 3.4. Let X be a smooth projective variety over C of dimension d.
Suppose there is an integer s, 0 ≤ s ≤ d − 2, such that some Hodge number
hp,q(X) is non-zero, with

(i) p + q ≤ 2s + 2 and |p− q| > 1,

or with

(ii) p + q > 2s + 2 and p < s + 1.

Then there is an integer n, d− s ≤ n ≤ d such that the Q-cycle class map

cln:CHn(X)Q → H2n
D (X,Q(n))

is not injective.

Nori [N] has given examples of projective varieties with CHn(X)h⊗Q �= 0,
but with Jn(X) = 0 as generic complete intersections of sufficiently high de-
gree in certain smooth quadrics. It would be interesting to check the Hodge
numbers of these varieties, to see if similar non-injectivity results could be
obtained by applying Corollary 3.4. With reference to Question 1, one could
ask if the minimal s satisfying the conditions of Corollary 3.4 points to pre-
cisely the cycle group of highest codimension for which the cycle class map
fails to be injective, i.e.,

Question 2. Let X be a smooth projective variety over C of dimension d. Let
s be the minimal integer such that some Hodge number hp,q(X) is non-zero,
with

(i) p + q ≤ 2s + 2 and |p− q| > 1,

or with

(ii) p + q > 2s + 2 and p < s + 1

(supposing such an s exists). Then does the Q-cycle class map

cln: CHn(X)Q → H2n
D (X,Q(n))

have a non-trivial kernel for n = d− s?
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§4. Relations with K-theory

The injectivity of the cycle maps, and the ensuing decomposition of the
diagonal given by Theorem 1.2, have consequences for higher K-theory, most
notably K1, although one can say something about the other K-groups as
well. This leads to a generalization of a result of Coombes and Srinivas [CS],
who showed that the map

CH1(X) ⊗K1(C) → H1(X,K2)

is surjective, assuming that the group of zero-cycles modulo rational equiva-
lence on X is representable.

Using the Gersten resolution (see [Q]) of the K-sheaves Kp on a smooth
variety X over a field k, one arrives at the exact sequence

0 → H0(X,Kp) → Kp(k(X)) → ⊕x∈X(1)Kp−1(k(x)),

where X(p) is the set of codimension p points of X. In particular, the map
H0(X,Kp) → Kp(k(X)) is injective; thus, if p:Y → X is a proper birational
map of smooth varieties, the maps

p∗:H0(Y,Kp) → H0(X,Kp); p∗:H0(X,Kp) → H0(Y,Kp)

are inverse isomorphisms. If we require X to be smooth and projective,
the group H0(X,Kp) is thus a birational invariant (assuming resolution of
singularities for varieties over k). In particular, we may define the group
Kp(X)gen for X an arbitrary projective variety over C by setting Kp(X)gen =
H0(X̃,Kp), where X̃ → X is a resolution of singularities. We have

K0(X)gen = Z;
K1(X)gen = C×,

for X an arbitrary projective variety over C. The groups Kp(X)gen for p > 1
are more mysterious, and in general contain Kp(C) as a proper summand.
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The cup product in K-theory gives rise to the natural maps

K0(X) ⊗Kq(C) →Kq(X)
Hp(X,Kp) ⊗Kq(X)gen →Hp(X,Kp+q),

we call the image of these maps the decomposable part of Kq(X) or of
Hp(X,Kp+q), respectively. There is a possibly larger subgroup of
Hp(X,Kp+q), which we now describe.

Let Zp(X, q) be the group

Zp(X, q) =
⊕

x∈X(p)

Kq(x̄)gen,

where x̄ is the closure of x in X. Via the Gersten resolution for Kp+q, we
have the natural map

Zp(X, q) → Hp(X,Kp+q).

We call the image of this map the geometrically decomposable part of
Hp(X,Kp+q). For q = 0, 1, the decomposable part and geometrically decom-
posable part of Hp(X,Kp+q) agree; in general, the geometrically decompos-
able part contains the decomposable part. We extend the definition of the
decomposable and geometrically decomposable parts to the rational versions
Kq(X)Q and Hp(X,Kp+q)Q in the obvious way.

Theorem 4.1. Let X be a smooth projective variety over C of dimension d.
Suppose the Q-cycle class maps

cln:CHn(X)Q → H2n
D (X,Q(n))

are injective for n = d, d−1, . . . , d−s, for some integer s, 0 ≤ s ≤ d−2. Then
the groups Hp(X,Kp+q)Q are geometrically decomposable for 0 ≤ p ≤ s + 1.
In particular, the map

CHp(X) ⊗ C× ⊗Q→ Hp(X,Kp+1)Q
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is surjective for 0 ≤ p ≤ s + 1.

Proof. The bi-graded ring ⊕p,qH
p(X,Kq)Q satisfies the Bloch-Ogus axioms

[BO] for a twisted duality theory; in particular, if γ is a codimension d cycle on
X×X, γ gives rise to the endomorphism γ∗:Hp(X,Kp+q)Q → Hp(X,Kp+q)Q,
and the obvious analog of Lemmas 2.1 and 3.1 hold. We apply Theorem 1.2,
retaining the notation of that theorem. The vanishing of Hp(Y,Kp+q) for
p > dim(Y ) and for p < 0, together with the decomposition of the diagonal

∆ = γ0 + . . . + γs + γs+1

implies that, on Hp(X,Kp+q),

∆∗ =
{
γp−1∗ + γp∗; if 0 ≤ p ≤ s
γs∗ + γs+1

∗ ; if p = s + 1

For Y smooth of dimension dY , the map

CHdY (Y ) ⊗Kq(C) → HdY (Y,KdY +q)

is surjective; arguing as in the proof of Lemma 2.3, we see that the image
γp−1∗(Hp(X,Kp+q)) is in the decomposable part of Hp(X,Kp+q). Similarly,
the argument of Lemma 2.3 shows that γp∗(Hp(X,Kp+q)) is in the geomet-
rically decomposable part of Hp(X,Kp+q). Finally, arguing as in the proof
of Lemma 2.4, we see that γs+1

∗ (Hp(X,Kp+q)) is in the geometrically decom-
posable part of Hp(X,Kp+q). This proves the theorem.
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