Abstracts

Arithmetic properties of rigid local systems HÉLÈNE ESNAULT (joint work with Michael Groechenig)

1. INTRODUCTION

The aim of the lecture, which relies on [3], is to generalize to the quasi-projective non-projective case the theorem described in the introduction and Theorem 5.4 of [2] stating that irreducible complex rigid local systems, while restricted to a p-adic formal scheme with good reduction, for p large, underlie the structure of a Fontaine-Lafaille module and define p-adic local systems.

2. Assumption and preliminary geometric facts

Assumption 1 (Throughout). X smooth quasi-projective $/\mathbb{C}$; all *irreducible* complex local systems \mathbb{L} of rank r with unipotent monodromies at ∞ are strongly cohomologically rigid i.e. $H^1(X, \mathcal{E}nd(\mathbb{L})) = 0$. (Verified for Shimura varieties of real rank ≥ 2 by Margulis superrigidity.)

Facts 2 (Preliminary geometry). 1) For $j: X \hookrightarrow \overline{X}$ a good compactification, has

$$H^1(\bar{X}, j_{!*}\mathcal{E}nd(\mathbb{L})) \xrightarrow{\operatorname{IIIJ}} H^1(X, \mathcal{E}nd(\mathbb{L}))$$

so (strongly cohomologically rigid) \implies (cohomologically rigid) (fixing unipotent conjugacy classes at ∞ and the determinant) \implies (rigid) (fixing unipotent conjugacy classes at ∞ and the determinant).

2) E Deligne's extension of $(\mathbb{L} \otimes_{\mathbb{C}} \mathcal{O}^{\mathrm{an}}, 1 \otimes d)$ with $E \to \Omega^1_{\bar{X}}(\log \infty) \otimes_{\mathcal{O}_{\bar{X}}} E$ with nilpotent residues. So

$$H^1(\bar{X}, \Omega^{\bullet}(\log \infty) \otimes \mathcal{E}nd(E, \nabla)) = H^1(X, \mathcal{E}nd(\mathbb{L})) = 0.$$

Atiyah class computation + Hodge theory $([4, \text{Appendix B}]) \Longrightarrow$

$$0 = c_i(E) \in H^{2i}(\bar{X}, \mathbb{Q}), \ i \ge 1.$$

3) (E, ∇) necessarily semi-stable as saturated sub $(E', \nabla') \subset (E, \nabla)$ has also nilpotent residues, so $(E', \nabla') \subset (E, \nabla)$ locally split outside of a codimension 2 subset $\Sigma \subset \infty \subset \overline{X}$ in \overline{X} , and for $j : \overline{X} \setminus \Sigma \hookrightarrow \overline{X}$, has $(E', \nabla') = j_* j^*(E', \nabla') \subset$ $(E, \nabla) = j_* j^*(E, \nabla)$. Thus (E', ∇') is Deligne's extension as it is determined outside of codimension 2. Thus $0 = c_i(E') \in H^{2i}(\overline{X}, \mathbb{Q}), i \geq 1$.

4) Langer moduli ([9, Theorem 1.1]) $M_{dR}(r)$, $M_{Dol}(r)$ of stable log-objects to the Hilbert polynom $P(E) = P(\bigoplus_{i=1}^{r} \mathcal{O}_{\bar{X}})$ are defined over some S smooth $/\mathbb{Z}$, $M_{dR}(r)_S \ M_{Dol}(r)_S \to S$ flat and $X_S, \bar{X}_S \to S$ relative NCD and base change for $H^1(\bar{X}_S, \Omega^{\bullet}(\log \infty) \otimes \mathcal{E}nd(E_S, \nabla_S))$.

5) The characteristic polynomials of the residues $E_S \to \Omega^1(\log \infty_S) \otimes E_S$ at ∞_S are regular functions on $M_{dR}(r)_S$, so the nilpotent residues condition defines closed

subs $M_{dR}^{\circ}(X)(r)_S \subset M_{dR}(r)_S$, which after shrinking are flat /S. $M_{dR}^{\circ}(X)(r)_S(\mathbb{C})$ consists precisely of the Deligne's extensions of the underlying (strongly cohomologically rigid) *irreducible* local systems. So it is 0-dimensional, say of cardinality N. By taking an étale cover of S, we may assume that $M_{dR}^{\circ}(X)(r)_S$ consists of N-sections.

6)

Theorem 3 ([1], Theorem 1.1). All \mathbb{L} are integral. (Finiteness of $\{\mathbb{L}\}$ implies all \mathbb{L} defined over one \mathcal{O}_L , L number field).

7) Mochizuki ([10, Theorem 10.5]): any (E, ∇) with nilpotent residues deforms real analytically to a polarized \mathbb{C} -VHS, so rigidity implies all the (E, ∇) underlie a polarized \mathbb{C} -VHS. So with 6)

Claim 4. Assumption $1 \Longrightarrow$ all \mathbb{L} underlie a polarized $\overline{\mathbb{Z}}$ -VHS.

8) Boundedness of possible Hodge filtrations.

Definition 5 (Good model). S/\mathbb{Z} smooth, condition 5), plus: all (E, ∇, Fil) defined over S, Fil locally split /S. So $(gr^{Fil}(E), KS)$ stable Higgs, locally free /S nilpotent. We assume also for any $\text{Spec}(W(\mathbb{F}_q)) \to S$, char $\mathbb{F}_q > 2r + 2$.

Theorem 6 ([3], Theorem A.4). Assumption $1 \Longrightarrow$ on a good model, for any $\operatorname{Spec}(W) \to S$, with $W = W(\mathbb{F}_q)$, the formal connection $(\hat{E}_W, \hat{\nabla}_W)/\widehat{X}_W$ carries the structure of a locally free Fontaine-Lafaille module.

(Standard definition of a Fontaine-Lafaille module right now irrelevant as we shall work with an equivalent definition).

3. Sketch of Proof of Theorem 6

s closed point of $\operatorname{Spec}(W)$. Has $M_{dR}^{\circ}(r)_s =: (dR)_s^{\circ}$ consisting of N s-points, and $(Dol)_s^{\circ}$ defined as the set of stable rank r log Higgs bundles (V, θ) with the residues of θ being nilpotent and Hilbert polynomial $P(V) = P(\bigoplus_1^r \mathcal{O}_{\bar{X}})$.

Claim 7. C^{-1} (Ogus-Vologodksy [11, Theorem 2.8]) : $(Dol)_s^{\circ} \to (dR)_s^{\circ}$ and is injective (in particular $(Dol)_s^{\circ}$ is finite).

Proof. C^{-1} defined for p > r + 1 plus lift to W_2 , preserves stability, total Chern classes and nilpotency of the residues at ∞ .

Claim 8. $H^1(\bar{X}_s, \mathcal{E}nd(C^{-1}(V, \theta))) = H^1(\bar{X}_s, \mathcal{E}nd(V, \theta)) = 0.$

Proof. C^{-1} defined for 2r rank objects, preserves cohomology, LHS = 0 by 4). \Box

By Claim 7, $|(Dol)_s^{\circ}| = M \leq N = |(dR)_s^{\circ}|$. Let $M' \leq M$ be the number of objects in $(Dol)_s^{\circ}$ of the shape $(V, \theta) = (gr^{Fil}(E), KS)$.

Corollary 9. Given $(V, \theta) \in (Dol)^{\circ}_{s}$ there is at most one possible possible (E, ∇, Fil) with $(V, \theta) = (gr^{Fil}(E), KS)$.

Proof. Given Fil on (E, ∇) , then Rees $(\bigoplus_{i \in \mathbb{Z}} (Fil^i E)t^{-i}, \nabla_t)$ on $X[t, t^{-1}]$ has fibre $(gr^{Fil}E, KS)$ at t = 0 and (E, ∇) at $t = \infty$. Deformation of $(gr^{Fil}E, KS)$ from $\mathbb{F}_q[t]/(t^n)$ to $\mathbb{F}_q[t]/(t^{n+1})$ is computed by $H^1(\bar{X}_s, \mathcal{E}nd(V, \theta)) = 0$. As any (E, ∇) is endowed with at least one Fil (by 7) and good model), has $N \leq M'$. \Box

Corollary 10. 1) M' = M = N; C is bijective; the p-curvature of any $(E, \nabla) \in (dR)^{\circ}_{s}$ is nilpotent;

- 2) any $(E, \nabla) \in (dR)^{\circ}_{s}$ carries precisely one Fil;
- 3) $gr: (dR)^{\circ}_{s} \to (Dol)^{\circ}_{s}, (E, \nabla) \mapsto (gr^{Fil}E, KS)$ is well defined and bijective.

Proof. Ad 1): $N = M' \leq M \leq N$ (first inequality from Corollay 9, last inequality by Claim 7). Thus M' = M = N. C^{-1} sends nilpotent Higgs to nilpotent *p*-curvature dR.

Ad 2): any $(E, \nabla) \in (dR)^{\circ}_{s}$ carries at least one *Fil* by the good model and more would imply M > N by Corollary 9. 3) follows.

Corollary 11. $\sigma := C^{-1} \circ gr$ is a permutation of $(dR)^{\circ}_{s}$ and has finite order f|N!.

Definition 12. The chain

 $(E_0, \nabla_0, Fil_0, \phi_0 : C^{-1}(gr^{Fil_0}E_0, KS) \cong (E_1, \nabla_1),$

 $E_1, \nabla_1, Fil_1, \dots, E_{f-1}, \nabla_{f-1}, Fil_{f-1}, \phi_{f-1} : C^{-1}(gr^{Fil_{f-1}}E_{f-1}, KS) \cong (E_0, \nabla_0))$ is called a *f*-periodic Higgs-de Rham flow. ([7], [8]).

Proposition 13. 1) The *f*-periodic Higgs-de Rham flow lifts to \widehat{X}_W in what is still a *f*-'periodic Higgs-de Rham flow' over \widehat{X}_W .

2) The operator σ becomes the Frobenius on the isocrystals $(\hat{E}_W, \hat{\nabla}_W)_K$.

Here $W = W(\mathbb{F}_q)$, $K = \operatorname{Frac}(W)$ and recall that the *p*-curvatures of the mod *p*-reduction are nilpotent so we have isocrystals with a Frobenius structure.

Proof. The (E, ∇) in $(dR)_s^{\circ}$ lift by definition to \widehat{X}_W together with their Hodge filtration. So gr is defined on \widehat{X}_W yielding some $(\hat{V}_W, \hat{\theta}_W)$ so (V_K, θ_K) which in addition are stable. C^{-1} is defined on \widehat{X}_W by Ogus-Vologodsky. As the lift $(\hat{E}_W, \hat{\nabla}_W)$ is uniquely determined by its reduction to $s \Longrightarrow f$ -periodicity.

Remark 14. Claim $8 \implies$ (semi-continuity of coherent cohomology)

 $H^1(\bar{X}_K, \mathcal{E}nd(V_K, \theta_K)) = 0 \Longrightarrow (V_K, \theta_K) \in M^{\circ}_{Dol}(r)_S(K).$

If we define $M_{Dol}^{\circ}(X)(r)_{S} \subset M_{dR}(r)_{S}$, so $(V, \theta) \in M_{Dol}^{\circ}(\mathbb{C})$ if the residues at ∞ are nilpotent and $H^{1}(\bar{X}, \mathcal{E}nd(V, \theta)) = 0$, and we assume by étally shrinking S in the good model that in addition $M_{Dol}^{\circ}(X)(r)_{S}(S)$ consists of different (finitely many) S-sections, we see that in fact we have N such and they all come from the Higgs-de Rham flow. If we had a log-Simpson correspondence at the level of moduli $/\mathbb{C}$, we would know this and could shorten the argument. **Proposition 15.** Lan-Sheng-Zuo, Lan-Sheng-Yang-Zuo: 1) Fully faithful functor: (f-periodic Higgs-de Rham flow with nilpotent residues level $\leq p - 1$) \rightarrow (log-Fontaine-Lafaille modules with Frob^f-structure, with nilpotent residues level $\leq p - 1$).

2) Generalization of Fontaine-Lafaille-Faltings [5] Theorem 2.6^{*} and p.43 i) applied to $\oplus_{i=0}^{f-1} Frob^i(object)$: fully faithful functor (log-Fontaine-Lafaille modules with $Frob^f$ -structure, with nilpotent residues, level $\leq p-1$) \rightarrow (crystalline local systems on X_K with values in $GL_r(\mathbb{Z}_{p^f})$).

Remark 16. Crystalline here is defined by Fontaine on K, Faltings on 'small' opens defined by a ring R, étale over the Tate algebra of \mathbb{G}_m^d over W, then on their rings by admissibility of a $B_{crys}(R)$, then gluing. Generalization by Tan-Tong, and just a few days ago Du-Lu-Moon-Shimizu. All those concepts restricted to $\operatorname{Spec}(W) \to X_W$ yield the same definition, which is Fontaine's one. Matti Würthen told us that he can construct directly a prismatic F-crystal in the sense of Bhatt-Scholze out of a Fontaine-Lafaille module. Granted this in the log-version, one could enhance a bit Theorem 6 to

Theorem 17 (?). Assumption $1 \Longrightarrow$ on a good model, for any $\operatorname{Spec}(W) \to S$, the formal connection $(\hat{E}_W, \hat{\nabla}_W)/(\widehat{X}_W \setminus \infty_W)$ carries the structure of a prismatic *F*-crystal.

4. Étale theorem

Has $\mathcal{O}(S) \subset \mathbb{C}$ and choose $W \subset \mathbb{C}$ for $\operatorname{Spec}(W) \to S$ as in Theorem 6. This defines $\overline{K} \subset \mathbb{C}$ with (Grothendieck) $\pi_1(X_{\mathbb{C}}) \xrightarrow{\cong} \pi_1(X_{\overline{K}})$. By Theorem 3, under Assumption 1, each \mathbb{L} is integral. A *p*-place \mathfrak{p} of \mathcal{O}_L , $p = \operatorname{char}(\mathbb{F}_q)$, defines $\mathbb{L}_{\mathfrak{p}}$ on $X_{\mathbb{C}}$. Keep the same letter $\mathbb{L}_{\mathfrak{p}}$ for the $\mathcal{O}_{\overline{L}_{\mathfrak{p}}}$ local system on $X_{\overline{K}}$.

Theorem 18 ([3], Theorem A.21). Assumption $1 \Longrightarrow \mathbb{L}_{\mathfrak{p}}$ defined on $X_{\overline{K}}$ descends to a crystalline local system on X_K with values in $GL_r(\mathbb{Z}_{p^f})$ for some f|N!.

Proof. By the compatibility of Faltings *p*-adic Simpson correspondence on \widehat{X}_W [6, Theorem 5] with his Fontaine-Lafaille functor [5] *loc.cit*, calling π_i , $i = 1, \ldots, N$ the $GL_r(\mathbb{Z}_{p^f})$ local systems on X_K defined Proposition 15, where f is a l.c.m. of the periods, which divides N!, the $\pi_i/X_{\bar{K}}$ correspond to the Higgs bundles $(V, \theta)_{\bar{K}}$ which are stable, so in particular $\pi_i/X_{\bar{K}}$ is irreducible. Likewise

$$\dim_{\mathbb{C}_p} \operatorname{Hom}(X_{\mathbb{C}_p}, \pi_1, \pi_2) \leq \dim_{\mathbb{C}_p} \operatorname{Hom}(X_{\mathbb{C}_p}, (V_1, \theta_1), (V_2, \theta_2)) = 0$$

as Faltings functor from small *p*-adic local systems to Higgs bundles is faithful. So the number of isomorphism classes of $\pi_i/X_{\bar{K}}$ is the same as the one of π_i/X_K which is *N*. But by the complex Riemann-Hilbert correspondence, there are precisely *N* isomorphism classes of \mathbb{L}_p .

Remark 19. Theorem 18 via Remark 16 is the way Pila-Ananth Shankar-Tsimerman use our work for Shimura varieties of real rank ≥ 2 in their proof of the André-Oort conjecture for those [12, Theorem 1.2].

References

- H. Esnault, M. Groechenig, Cohomologically rigid connections and integrality, Selecta Mathematica 24 (5) (2018), 4279–4292.
- [2] H. Esnault, M. Groechenig, Rigid connections and F-isocrystals, Acta Math. 225 1 (2020), 103–158.
- [3] H. Esnault, M. Groechenig, Frobenius structures and unipotent monodromy at infinity, Appendix to [12], https://arxiv.org/abs/2109.08788
- [4] H. Esnault, E. Viehweg, Logarithmic de Rham complexes and vanishing theorems, Inventiones math. 86 (1986), 161–194.
- [5] G. Faltings, Crystalline cohomology and p-adic Galois-representations, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), 25–80, Johns Hopkins Univ. Press, Baltimore, MD, 1989.
- [6] G. Faltings, A p-adic Simpson correspondence, Advances in Math. 198 (2005), 847-862.
- [7] G. Lan, M. Sheng, K. Zuo, Semistable Higgs bundles, periodic Higgs bundles and representations of algebraic fundamental groups, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 10, 3053–3112.
- [8] G. Lan, M. Sheng, Y. Yang, K. Zuo, Uniformization of p-adic curves via Higgs-de Rham flows, Journal f
 ür die reine und angewandte Mathematik (Crelles Journal) 747 (2019), 63– 108.
- [9] A. Langer, Semistable modules over Lie algebroids in positive characteristic, Doc. Math. 19 (2014), 509-540.
- [10] T. Mochizuki, Kobayashi-Hitchin correspondence for tame harmonic bundles and an application, Astéerisque textbf309 (2006), viii+117.
- [11] A. Ogus, V. Vologodksy, Nonabelian Hodge theory in characteristic p, Publ. math. Inst. Hautes Études Sci. 106 (2007), 1–138.
- [12] J. Pila, Ananth Shankar, J. Tsimerman, Canonical Heights on Shimura Varieties and the André-Oort Conjecture, https://arxiv.org/abs/2109.08788