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1. INTRODUCTION

The aim of the lecture, which relies on [3], is to generalize to the quasi-projective
non-projective case the theorem described in the introduction and Theorem 5.4
of [2] stating that irreducible complex rigid local systems, while restricted to a
p-adic formal scheme with good reduction, for p large, underlie the structure of a
Fontaine-Lafaille module and define p-adic local systems.

2. ASSUMPTION AND PRELIMINARY GEOMETRIC FACTS

Assumption 1 (Throughout). X smooth quasi-projective /C; all irreducible com-
plex local systems L. of rank r with unipotent monodromies at oo are strongly co-
homologically rigidi.e. H(X,End(L)) = 0. (Verified for Shimura varieties of real
rank > 2 by Margulis superrigidity.)

Facts 2 (Preliminary geometry). 1) For j : X < X a good compactification, has
HY(X, juénd(L)) 2 HY(X, End(L))

so (strongly cohomologically rigid) = (cohomologically rigid) (fixing unipotent
conjugacy classes at oo and the determinant) = (rigid) (fixing unipotent conju-
gacy classes at oo and the determinant).

2) E Deligne’s extension of (L ®@c O**,1® d) with E — Q% (logoo) ®o, E
with nilpotent residues. So

HY(X,Q%(logo0) ® End(E,V)) = H' (X, End(L)) = 0.
Atiyah class computation + Hodge theory ([4, Appendix B])=
0=c(E)e H*(X,Q), i > 1.

3) (F,V) necessarily semi-stable as saturated sub (E’, V') C (E,V) has also
nilpotent residues, so (E’, V') C (E, V) locally split outside of a codimension 2
subset ¥ C co C X in X, and for j : X \ ¥ < X, has (E', V') = j.j*(E', V') C
(E,V) = j«j*(E,V). Thus (E’,V’) is Deligne’s extension as it is determined
outside of codimension 2. Thus 0 = ¢;(E’) € H*(X,Q), i > 1.

4) Langer moduli (]9, Theorem 1.1]) Mgyr(r), Mpo(r) of stable log-objects
to the Hilbert polynom P(E) = P(®7Ox) are defined over some S smooth /Z,
Mar(r)s Mpe(r)s — S flat and Xg, X5 — S relative NCD and base change for
H'(Xg,0%(log o) ® End(Es,Vs)).

5) The characteristic polynomials of the residues Es — Q!(log cog)® Es at cog
are regular functions on Myr(r)g, so the nilpotent residues condition defines closed
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subs M3,(X)(r)s C Mar(r)s, which after shrinking are flat /S. MJ,(X)(r)s(C)
consists precisely of the Deligne’s extensions of the underlying (strongly cohomo-
logically rigid) irreducible local systems. So it is O-dimensional, say of cardinality
N. By taking an étale cover of S, we may assume that MJ,(X)(r)s consists of
N-sections.

6)

Theorem 3 ([1], Theorem 1.1). AllL are integral. (Finiteness of {IL} implies all
L defined over one O, L number field).

7) Mochizuki ([10, Theorem 10.5]): any (E, V) with nilpotent residues deforms
real analytically to a polarized C-VHS, so rigidity implies all the (F, V) underlie
a polarized C-VHS. So with 6)

Claim 4. Assumption 1 == all L underlie a polarized Z-VHS.
8) Boundedness of possible Hodge filtrations.

Definition 5 (Good model). S/Z smooth, condition 5), plus: all (E,V, Fil)
defined over S, Fil locally split /S. So (grf*(E), KS) stable Higgs, locally free
/S nilpotent. We assume also for any Spec(W (F,)) — S, char F, > 2r + 2.

Theorem 6 ([3], Theorem A.4). Assumption 1 = on a good model, for any

Spec(W) — S, with W = W (F,), the formal connection (Ew,Vw)/Xw carries
the structure of a locally free Fontaine-Lafaille module.

(Standard definition of a Fontaine-Lafaille module right now irrelevant as we
shall work with an equivalent definition).
3. SKETCH OF PROOF OF THEOREM 6

s closed point of Spec(W). Has M3,(r)s =: (dR)S consisting of N s-points,
and (Dol)S defined as the set of stable rank r log Higgs bundles (V,6) with the
residues of 0 being nilpotent and Hilbert polynomial P(V) = P(®70%).

Claim 7. C~! (Ogus-Vologodksy [11, Theorem 2.8]) : (Dol)? — (dR)S and is
injective (in particular (Dol)? is finite).

Proof. C~' defined for p > r + 1 plus lift to Wy, preserves stability, total Chern
classes and nilpotency of the residues at oo. O

Claim 8. H'(X,,End(C~1(V,0))) = HY(Xs, End(V,0)) = 0.
Proof. C~! defined for 27 rank objects, preserves cohomology, LHS = 0 by 4). O

By Claim 7, |(Dol);| = M < N = |(dR)?|. Let M’ < M be the number of
objects in (Dol)® of the shape (V,0) = (grf(E), KS).

Corollary 9. Given (V,0) € (Dol)S there is at most one possible possible (E,V, Fil)
with (V,0) = (grf(E),KS).
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Proof. Given Fil on (E,V), then Rees (®;ez(Fil'E)t~%,V,) on X[t,t!] has fibre
(grf"E,KS) at t = 0 and (E,V) at t = co. Deformation of (grfE, KS) from
F,[t]/(t") to Fy[t]/(t"*1) is computed by H'(Xs, End(V,0)) = 0. As any (E, V) is
endowed with at least one Fil (by 7) and good model), has N < M’. O
Corollary 10. 1) M' = M = N; C is bijective; the p-curvature of any
(E,V) € (dR)? is nilpotent;
2) any (E,V) € (dR) carries precisely one Fil;
3) gr:(dR)° — (Dol)°, (E,V) s (grFE, KS) is well defined and bijective.
):

Proof. Ad1): N=M'< M < N (first inequality from Corollay 9, last inequality
by Claim 7). Thus M’ = M = N. C~! sends nilpotent Higgs to nilpotent p-
curvature dR.

Ad 2): any (E,V) € (dR)? carries at least one F'il by the good model and more
would imply M > N by Corollary 9. 3) follows. O

Corollary 11. o := C~Yogr is a permutation of (dR)S and has finite order f|N!.
Definition 12. The chain

(Eo, Vo, Filo, ¢o : C~*(gr" " Ey, KS) = (Ey, V),
B\, V1, Fily,...,E; 1,Vy_1,Fily_y,¢5_1: C ' (grF" " Ey_1, KS) = (Ey, Vo))
is called a f-periodic Higgs-de Rham flow. ([7], [8]).

Proposition 13. 1) The f-periodic Higgs-de Rham flow lifts to Xw in what is
still a f-’periodic Higgs-de Rham flow’ over Xyy.
2) The operator o becomes the Frobenius on the isocrystals (Ew,Vw )k -

Here W = W(F,), K = Frac(WW) and recall that the p-curvatures of the mod
p-reduction are nilpotent so we have isocrystals with a Frobenius structure.

Proof. The (E,V) in (dR)? lift by definition to ){(—V\V together with their Hodge
filtration. So gr is defined on Xy, yielding some (Viy,fw) so (Vi,0x) which
in addition are stable. C~1 is defined on Xy by Ogus-Vologodsky. As the lift
(Ew, Vw) is uniquely determined by its reduction to s = f-periodicity.
Remark 14. Claim 8 = (semi-continuity of coherent cohomology)
HY(Xk,End(Vk,0k)) = 0= (Vk,0k) € Mp,,(r)s(K).

If we define M3y, ,(X)(r)s C Mgr(r)s, so (V,0) € My ,(C) if the residues at oo are
nilpotent and H'(X,End(V,#)) = 0, and we assume by étally shrinking S in the
good model that in addition M7, ;(X)(r)s(S) consists of different (finitely many)
S-sections, we see that in fact we have IV such and they all come from the Higgs-de
Rham flow. If we had a log-Simpson correspondence at the level of moduli /C, we
would know this and could shorten the argument.

O



4 Oberwolfach Report 5/2022

Proposition 15. Lan-Sheng-Zuo, Lan-Sheng-Yang-Zuo: 1) Fully faithful functor:
(f-periodic Higgs-de Rham flow with nilpotent residues level < p — 1) — (log-
Fontaine-Lafaille modules with Frob! -structure, with nilpotent residues level <
p—1).

2) Generalization of Fontaine-Lafaille-Faltings [5] Theorem 2.6* and p.43 i)
applied to EB{;OlFTobi(object) : fully faithful functor (log-Fontaine-Lafaille modules
with Frob -structure, with nilpotent residues, level < p — 1) — (crystalline local
systems on Xg with values in GLy(Z,r)).

Remark 16. Crystalline here is defined by Fontaine on K, Faltings on ’small’
opens defined by a ring R, étale over the Tate algebra of GZ, over W, then on
their rings by admissibility of a Berys(R), then gluing. Generalization by Tan-
Tong, and just a few days ago Du-Lu-Moon-Shimizu. All those concepts restricted
to Spec(W) — Xy yield the same definition, which is Fontaine’s one. Matti
Wiirthen told us that he can construct directly a prismatic F-crystal in the sense
of Bhatt-Scholze out of a Fontaine-Lafaille module. Granted this in the log-version,
one could enhance a bit Theorem 6 to

Theorem 17 (7). Assumption 1 = on a good model, for any Spec(W) — S,

the formal conmection (Eyw,Vw)/(Xw \ cow) carries the structure of a prismatic
F-crystal.

4. ETALE THEOREM

Has O(S) C C and choose W C C for Spec(W) — S as in Theorem 6. This

defines K C C with (Grothendieck) 71 (Xc) = m1(Xg). By Theorem 3, under
Assumption 1, each L is integral. A p-place p of Of, p =char(F,), defines L, on
Xc. Keep the same letter L, for the O, local system on Xg.

Theorem 18 ([3], Theorem A.21). Assumption 1 = L, defined on X descends
to a crystalline local system on Xy with values in GL,(Z,s) for some f|N!.

Proof. By the compatibitliy of Faltings p-adic Simpson correspondence on Xy [6,
Theorem 5] with his Fontaine-Lafaille functor [5] loc.cit, calling m;, i = 1,..., N
the GL,(Z,s) local systems on X defined Proposition 15, where f is a l.c.m. of
the periods, which divides N!, the m; /X g correspond to the Higgs bundles (V, 0) ¢
which are stable, so in particular 7;/X 5 is irreducible. Likewise

dimc, Hom(Xc,,m1,m2) < dime, Hom(Xc,, (V1,601), (V2,602)) =0

as Faltings functor from small p-adic local systems to Higgs bundles is faithful. So
the number of isomorphism classes of 7; / X  is the same as the one of 7; / X which
is N. But by the complex Riemann-Hilbert correspondence, there are precisely N
isomorphism classes of Ly.

O

Remark 19. Theorem 18 via Remark 16 is the way Pila- Ananth Shankar-Tsimerman
use our work for Shimura varieties of real rank > 2 in their proof of the André-Oort
conjecture for those [12, Theorem 1.2].
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