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1. Introduction

The aim of the lecture, which relies on [3], is to generalize to the quasi-projective
non-projective case the theorem described in the introduction and Theorem 5.4
of [2] stating that irreducible complex rigid local systems, while restricted to a
p-adic formal scheme with good reduction, for p large, underlie the structure of a
Fontaine-Lafaille module and define p-adic local systems.

2. Assumption and preliminary geometric facts

Assumption 1 (Throughout). X smooth quasi-projective /C; all irreducible com-
plex local systems L of rank r with unipotent monodromies at ∞ are strongly co-
homologically rigid i.e. H1(X, End(L)) = 0. (Verified for Shimura varieties of real
rank ≥ 2 by Margulis superrigidity.)

Facts 2 (Preliminary geometry). 1) For j : X ↪→ X̄ a good compactification, has

H1(X̄, j!∗End(L))
inj−→ H1(X, End(L))

so (strongly cohomologically rigid) =⇒ (cohomologically rigid) (fixing unipotent
conjugacy classes at ∞ and the determinant) =⇒ (rigid) (fixing unipotent conju-
gacy classes at ∞ and the determinant).

2) E Deligne’s extension of (L ⊗C Oan, 1 ⊗ d) with E → Ω1
X̄

(log∞) ⊗OX̄
E

with nilpotent residues. So

H1(X̄,Ω•(log∞)⊗ End(E,∇)) = H1(X, End(L)) = 0.

Atiyah class computation + Hodge theory ([4, Appendix B])=⇒
0 = ci(E) ∈ H2i(X̄,Q), i ≥ 1.

3) (E,∇) necessarily semi-stable as saturated sub (E′,∇′) ⊂ (E,∇) has also
nilpotent residues, so (E′,∇′) ⊂ (E,∇) locally split outside of a codimension 2
subset Σ ⊂ ∞ ⊂ X̄ in X̄, and for j : X̄ \ Σ ↪→ X̄, has (E′,∇′) = j∗j

∗(E′,∇′) ⊂
(E,∇) = j∗j

∗(E,∇). Thus (E′,∇′) is Deligne’s extension as it is determined
outside of codimension 2. Thus 0 = ci(E

′) ∈ H2i(X̄,Q), i ≥ 1.
4) Langer moduli ([9, Theorem 1.1]) MdR(r), MDol(r) of stable log-objects

to the Hilbert polynom P (E) = P (⊕r
1OX̄) are defined over some S smooth /Z,

MdR(r)S MDol(r)S → S flat and XS , X̄S → S relative NCD and base change for
H1(X̄S ,Ω

•(log∞)⊗ End(ES ,∇S)).
5) The characteristic polynomials of the residues ES → Ω1(log∞S)⊗ES at∞S

are regular functions on MdR(r)S , so the nilpotent residues condition defines closed
1
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subs M◦dR(X)(r)S ⊂MdR(r)S , which after shrinking are flat /S. M◦dR(X)(r)S(C)
consists precisely of the Deligne’s extensions of the underlying (strongly cohomo-
logically rigid) irreducible local systems. So it is 0-dimensional, say of cardinality
N . By taking an étale cover of S, we may assume that M◦dR(X)(r)S consists of
N -sections.

6)

Theorem 3 ([1], Theorem 1.1). All L are integral. (Finiteness of {L} implies all
L defined over one OL, L number field).

7) Mochizuki ([10, Theorem 10.5]): any (E,∇) with nilpotent residues deforms
real analytically to a polarized C-VHS, so rigidity implies all the (E,∇) underlie
a polarized C-VHS. So with 6)

Claim 4. Assumption 1 =⇒ all L underlie a polarized Z̄-VHS.

8) Boundedness of possible Hodge filtrations.

Definition 5 (Good model). S/Z smooth, condition 5), plus: all (E,∇, F il)
defined over S, Fil locally split /S. So (grFil(E),KS) stable Higgs, locally free
/S nilpotent. We assume also for any Spec(W (Fq))→ S, char Fq > 2r + 2.

Theorem 6 ([3], Theorem A.4). Assumption 1 =⇒ on a good model, for any

Spec(W ) → S, with W = W (Fq), the formal connection (ÊW , ∇̂W )/̂̄XW carries
the structure of a locally free Fontaine-Lafaille module.

(Standard definition of a Fontaine-Lafaille module right now irrelevant as we
shall work with an equivalent definition).

3. Sketch of Proof of Theorem 6

s closed point of Spec(W ). Has M◦dR(r)s =: (dR)◦s consisting of N s-points,
and (Dol)◦s defined as the set of stable rank r log Higgs bundles (V, θ) with the
residues of θ being nilpotent and Hilbert polynomial P (V ) = P (⊕r

1OX̄).

Claim 7. C−1 (Ogus-Vologodksy [11, Theorem 2.8]) : (Dol)◦s → (dR)◦s and is
injective (in particular (Dol)◦s is finite).

Proof. C−1 defined for p > r + 1 plus lift to W2, preserves stability, total Chern
classes and nilpotency of the residues at ∞. �

Claim 8. H1(X̄s, End(C−1(V, θ))) = H1(X̄s, End(V, θ)) = 0.

Proof. C−1 defined for 2r rank objects, preserves cohomology, LHS = 0 by 4). �

By Claim 7, |(Dol)◦s| = M ≤ N = |(dR)◦s|. Let M ′ ≤ M be the number of
objects in (Dol)◦s of the shape (V, θ) = (grFil(E),KS).

Corollary 9. Given (V, θ) ∈ (Dol)◦s there is at most one possible possible (E,∇, F il)
with (V, θ) = (grFil(E),KS).
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Proof. Given Fil on (E,∇), then Rees (⊕i∈Z(FiliE)t−i,∇t) on X[t, t−1] has fibre
(grFilE,KS) at t = 0 and (E,∇) at t = ∞. Deformation of (grFilE,KS) from
Fq[t]/(tn) to Fq[t]/(tn+1) is computed by H1(X̄s, End(V, θ)) = 0. As any (E,∇) is
endowed with at least one Fil (by 7) and good model), has N ≤M ′. �

Corollary 10. 1) M ′ = M = N ; C is bijective; the p-curvature of any
(E,∇) ∈ (dR)◦s is nilpotent;

2) any (E,∇) ∈ (dR)◦s carries precisely one Fil;
3) gr : (dR)◦s → (Dol)◦s, (E,∇) 7→ (grFilE,KS) is well defined and bijective.

Proof. Ad 1): N = M ′ ≤M ≤ N (first inequality from Corollay 9, last inequality
by Claim 7). Thus M ′ = M = N . C−1 sends nilpotent Higgs to nilpotent p-
curvature dR.

Ad 2): any (E,∇) ∈ (dR)◦s carries at least one Fil by the good model and more
would imply M > N by Corollary 9. 3) follows. �

Corollary 11. σ := C−1 ◦gr is a permutation of (dR)◦s and has finite order f |N !.

Definition 12. The chain

(E0,∇0, F il0, φ0 : C−1(grFil0E0,KS) ∼= (E1,∇1),

E1,∇1, F il1, . . . , Ef−1,∇f−1, F ilf−1, φf−1 : C−1(grFilf−1Ef−1,KS) ∼= (E0,∇0))

is called a f -periodic Higgs-de Rham flow. ([7], [8]).

Proposition 13. 1) The f -periodic Higgs-de Rham flow lifts to ̂̄XW in what is

still a f -’periodic Higgs-de Rham flow’ over ̂̄XW .
2) The operator σ becomes the Frobenius on the isocrystals (ÊW , ∇̂W )K .

Here W = W (Fq), K = Frac(W ) and recall that the p-curvatures of the mod
p-reduction are nilpotent so we have isocrystals with a Frobenius structure.

Proof. The (E,∇) in (dR)◦s lift by definition to ̂̄XW together with their Hodge

filtration. So gr is defined on ̂̄XW yielding some (V̂W , θ̂W ) so (VK , θK) which

in addition are stable. C−1 is defined on ̂̄XW by Ogus-Vologodsky. As the lift
(ÊW , ∇̂W ) is uniquely determined by its reduction to s =⇒ f -periodicity.

Remark 14. Claim 8 =⇒ (semi-continuity of coherent cohomology)

H1(X̄K , End(VK , θK)) = 0 =⇒ (VK , θK) ∈M◦Dol(r)S(K).

If we define M◦Dol(X)(r)S ⊂MdR(r)S , so (V, θ) ∈M◦Dol(C) if the residues at∞ are
nilpotent and H1(X̄, End(V, θ)) = 0, and we assume by étally shrinking S in the
good model that in addition M◦Dol(X)(r)S(S) consists of different (finitely many)
S-sections, we see that in fact we have N such and they all come from the Higgs-de
Rham flow. If we had a log-Simpson correspondence at the level of moduli /C, we
would know this and could shorten the argument.

�
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Proposition 15. Lan-Sheng-Zuo, Lan-Sheng-Yang-Zuo: 1) Fully faithful functor:
(f -periodic Higgs-de Rham flow with nilpotent residues level ≤ p − 1) → (log-
Fontaine-Lafaille modules with Frobf -structure, with nilpotent residues level ≤
p− 1).

2) Generalization of Fontaine-Lafaille-Faltings [5] Theorem 2.6* and p.43 i)

applied to ⊕f−1
i=0 Frob

i(object): fully faithful functor (log-Fontaine-Lafaille modules
with Frobf -structure, with nilpotent residues, level ≤ p − 1) → (crystalline local
systems on XK with values in GLr(Zpf )).

Remark 16. Crystalline here is defined by Fontaine on K, Faltings on ’small’
opens defined by a ring R, étale over the Tate algebra of Gd

m over W , then on
their rings by admissibility of a Bcrys(R), then gluing. Generalization by Tan-
Tong, and just a few days ago Du-Lu-Moon-Shimizu. All those concepts restricted
to Spec(W ) → XW yield the same definition, which is Fontaine’s one. Matti
Würthen told us that he can construct directly a prismatic F -crystal in the sense
of Bhatt-Scholze out of a Fontaine-Lafaille module. Granted this in the log-version,
one could enhance a bit Theorem 6 to

Theorem 17 (?). Assumption 1 =⇒ on a good model, for any Spec(W ) → S,

the formal connection (ÊW , ∇̂W )/(̂̄XW \∞W ) carries the structure of a prismatic
F -crystal.

4. Étale theorem

Has O(S) ⊂ C and choose W ⊂ C for Spec(W ) → S as in Theorem 6. This

defines K̄ ⊂ C with (Grothendieck) π1(XC)
∼=−→ π1(XK̄). By Theorem 3, under

Assumption 1, each L is integral. A p-place p of OL, p =char(Fq), defines Lp on
XC. Keep the same letter Lp for the ŌLp

local system on XK̄ .

Theorem 18 ([3], Theorem A.21). Assumption 1 =⇒ Lp defined on XK̄ descends
to a crystalline local system on XK with values in GLr(Zpf ) for some f |N !.

Proof. By the compatibitliy of Faltings p-adic Simpson correspondence on ̂̄XW [6,
Theorem 5] with his Fontaine-Lafaille functor [5] loc.cit, calling πi, i = 1, . . . , N
the GLr(Zpf ) local systems on XK defined Proposition 15, where f is a l.c.m. of
the periods, which divides N !, the πi/XK̄ correspond to the Higgs bundles (V, θ)K̄
which are stable, so in particular πi/XK̄ is irreducible. Likewise

dimCp
Hom(XCp

, π1, π2) ≤ dimCp
Hom(XCp

, (V1, θ1), (V2, θ2)) = 0

as Faltings functor from small p-adic local systems to Higgs bundles is faithful. So
the number of isomorphism classes of πi/XK̄ is the same as the one of πi/XK which
is N . But by the complex Riemann-Hilbert correspondence, there are precisely N
isomorphism classes of Lp.

�

Remark 19. Theorem 18 via Remark 16 is the way Pila-Ananth Shankar-Tsimerman
use our work for Shimura varieties of real rank ≥ 2 in their proof of the André-Oort
conjecture for those [12, Theorem 1.2].
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