Lokale Systeme in der Geometrie und der Arithmetik

Hélène Esnault

Greifswald, Felix-Hausdorff-Vorlesung, 07.01.2021

Évariste Galois 1811-1832

Artikel über Gleichungsauflösung bei der Akademie abgelehnt; 2mal abgelehnt bei der École Polytechnique;

Republikaner, 2mal inhaftiert; im Duell ?wg. Stéphanie-Félicie Poterin du Motel? gestorben

Évariste Galois 1811-1832

Artikel über Gleichungsauflösung bei der Akademie abgelehnt; 2mal abgelehnt bei der École Polytechnique;

Republikaner, 2mal inhaftiert; im Duell ?wg. Stéphanie-Félicie Poterin du Motel? gestorben

entwarf vor seinem dramatischen Tod im Duell die Theorie der endlichen Körper und deren Erweiterungen:

Galois' tiefer Ansatz

kompakt ausgedrückt:

Galois Gruppe F=Permutationen aller Nullstellen polynomialer Gleichungen mit Koeffizienten in $F \leadsto$ proendliche Gruppe; $F \hookrightarrow F' \subset \bar{F}$ (separabler Abschluß) \leftrightsquigarrow (abgeschlossene) Unterguppe $H \subset \operatorname{Gal}(\bar{F}/F)$ der (proendichen) Galois Gruppe $\operatorname{Gal}(\bar{F}/F) = \operatorname{Aut}(\bar{F}/F)$.

Bernhard Riemann 1826-1866

hätte Theologe werden sollen, hat Latein, Griechisch, Hebräisch studiert, erst dann Mathematik

Bernhard Riemann 1826-1866

hätte Theologe werden sollen, hat Latein, Griechisch, Hebräisch studiert, erst dann Mathematik

entwickelte den Begriff der riemannschen Flächen (RF), der Moduli der RF, der mehrdeutigen Funktionen (z.B. der Logarithmus)

Riemann: zwei tiefe Sätze

Riemannscher Abbildungssatz + Uniformisierungstheorem:

einfach zusammenhängende RF sind: die riemannsche Sphere \mathbb{P}^1,\mathbb{C} oder die Kreisscheibe $\Delta=\{z\in\mathbb{C},|z|<1\}\leadsto$ spätere Klassifikation für kompakte RF in Geschlecht $0,1,\geq 2$.

Riemann: zwei tiefe Sätze

Riemannscher Abbildungssatz + Uniformisierungstheorem:

einfach zusammenhängende RF sind: die riemannsche Sphere \mathbb{P}^1, \mathbb{C} oder die Kreisscheibe $\Delta = \{z \in \mathbb{C}, |z| < 1\} \leadsto$ spätere Klassifikation für kompakte RF in Geschlecht $0, 1, \geq 2$.

Riemannscher Existenztheorem (RET):

 $X' \to X$ Überlagerung einer RF X trägt eine eindeutige Struktur als RF \leadsto Grothendiecks Theorie (siehe unten)

Henri Poincaré 1854-1912

Grosse Familie von Wissenschaftlern und Politikern; selbst hat eine 0 (disqualfiizierend) beim Abitur in der

Mathematik erhalten (zu spät angekommen...und Thema falsch verstanden..)

Henri Poincaré 1854-1912

Grosse Familie von Wissenschaftlern und Politikern; selbst hat eine 0 (disqualfiizierend) beim Abitur in der

Mathematik erhalten (zu spät angekommen...und Thema falsch verstanden..)

Begründer der algebraischen Topologie: Begriff der Mannigfaltigkeiten X, der Fundamentalgruppe $\pi_1(X,x)$ eingeführt:

Poincaré Fundamentalgruppe

kompakt ausgedrückt:

 $x \in X$, $\pi_1(X, x) = \{$ Homotopieklassen stetiger Schleifen, basiert in $x \}$; Multip. durch Zusammensetzung; abstrakte Gruppe.

Poincaré Fundamentalgruppe

kompakt ausgedrückt:

 $x \in X$, $\pi_1(X, x) = \{$ Homotopieklassen stetiger Schleifen, basiert in $x \}$; Multip. durch Zusammensetzung; abstrakte Gruppe.

 $\leadsto \bar{X} \to X' \to X$ universelle Überlagerung basiert in x und Zwischenüberlagerung \longleftrightarrow Untergrupe $H \subset \pi_1(X,x) = \operatorname{Aut}(\bar{X}/X)$.

Poincaré Fundamentalgruppe

kompakt ausgedrückt:

 $x \in X$, $\pi_1(X, x) = \{$ Homotopieklassen stetiger Schleifen, basiert in $x \}$; Multip. durch Zusammensetzung; abstrakte Gruppe.

 $\rightsquigarrow \bar{X} \to X' \to X$ universelle Überlagerung basiert in x und Zwischenüberlagerung \leftrightsquigarrow Untergrupe $H \subset \pi_1(X,x) = \operatorname{Aut}(\bar{X}/X)$.

Riemanns Beispiele:

$$\bar{X}=\mathbb{P}^1\xrightarrow{=}X=\mathbb{P}^1$$

$$\bar{X} = \mathbb{C} \to X = \text{torus}$$

 $\bar{X} = \Delta \rightarrow X$ Kurve des Geschlechts ≥ 2

Alexander Grothendieck 1928-2014

Mutter Hamburger protestantische Bourgeoisie, Vater jüdischer ukrainischer Anarchist; Zuflucht Berlin, dann

Frankreich;

im KZ von der fr. Vichy Regierung

interniert; Zuflucht Le Chambon-sur-Lignon

Alexander Grothendieck 1928-2014

Mutter Hamburger protestantische Bourgeoisie, Vater jüdischer ukrainischer Anarchist; Zuflucht Berlin, dann

Frankreich:

im KZ von der fr. Vichy Regierung

interniert; Zuflucht Le Chambon-sur-Lignon

!!Galois /Arithmetik == Riemann-Poincaré /Geometrie!!

Alexander Grothendieck 1928-2014

Mutter Hamburger protestantische Bourgeoisie, Vater jüdischer ukrainischer Anarchist; Zuflucht Berlin, dann

Frankreich:

im KZ von der fr. Vichy Regierung

interniert; Zuflucht Le Chambon-sur-Lignon

!!Galois /Arithmetik == Riemann-Poincaré /Geometrie!!

kompakt ausgedrückt:

$$F \longleftrightarrow X; F' \longleftrightarrow X'; \bar{F} \longleftrightarrow \bar{X}$$
$$F \subset F' \subset \bar{F} \longleftrightarrow \bar{X} \to X' \to X$$
$$F \subset \bar{F} \longleftrightarrow x \in X$$

Grothendieck's étale fundamental group

```
X zsh. Sch., x \in X geom. Punkt, definiere étale endl Überl. (Y,y) \to (X,x); Limit (\bar{X},\bar{x}) \to (X,x): étale universelle Überl; \pi_1^{\text{\'et}}(X,x) = \operatorname{Aut}(\bar{X}/X) proendlich; Bsp: X = \operatorname{Spec}(F), x = \operatorname{Spec}(\bar{F}), dann \pi_1^{\text{\'et}}(X,x) = \operatorname{Gal}(\bar{F}/F);
```

Grothendieck's étale fundamental group

X zsh. Sch., $x \in X$ geom. Punkt, definiere étale endl Überl. $(Y,y) \to (X,x)$; Limit $(\bar{X},\bar{x}) \to (X,x)$: étale universelle Überl; $\pi_1^{\text{\'et}}(X,x) = \operatorname{Aut}(\bar{X}/X)$ proendlich; Bsp: $X = \operatorname{Spec}(F), x = \operatorname{Spec}(\bar{F})$, dann $\pi_1^{\text{\'et}}(X,x) = \operatorname{Gal}(\bar{F}/F)$;

$RET \Rightarrow$

 X/\mathbb{C} Riemannsche Fläche oder allgemeiner komplexe Mannigfaltigkeit $\Rightarrow \pi_1^{\text{\'et}}(X,x) =$ proendliche Komplettierung von $\pi_1(X,x)$.

Grothendieck's étale fundamental group

X zsh. Sch., $x \in X$ geom. Punkt, definiere étale endl Überl. $(Y,y) \to (X,x)$; Limit $(\bar{X},\bar{x}) \to (X,x)$: étale universelle Überl; $\pi_1^{\text{\'et}}(X,x) = \operatorname{Aut}(\bar{X}/X)$ proendlich; Bsp: $X = \operatorname{Spec}(F), x = \operatorname{Spec}(\bar{F})$, dann $\pi_1^{\text{\'et}}(X,x) = \operatorname{Gal}(\bar{F}/F)$;

$RET \Rightarrow$

 X/\mathbb{C} Riemannsche Fläche oder allgemeiner komplexe Mannigfaltigkeit $\Rightarrow \pi_1^{\text{\'et}}(X,x) =$ proendliche Komplettierung von $\pi_1(X,x)$.

Homotopie (topologische) exakte Sequenz für X/F, '60

$$1 \to \pi_1^{\text{\'et}}(X_{\bar{F}}, x) \to \pi_1^{\text{\'et}}(X, x) \to \operatorname{Gal}(\bar{F}/F) \to 1 \leadsto \operatorname{Aktion} \operatorname{Gal}(\bar{F}/F) \text{ auf } \pi_1^{\text{\'et}}(X_{\bar{F}}, x).$$

Lokale Systeme

Definition

topologisch: Darstellung $\rho: \pi_1(X, x) \to GL_r(\mathbb{C})$ modulo Konjugation;

étale: stetige Darstellung $ho^{\mathrm{\acute{e}t}}:\pi_1^{\mathrm{\acute{e}t}}(X,x) o \mathit{GL}(ar{\mathbb{Q}}_\ell)$ modulo

Konjugation, $\bar{\mathbb{Q}}_\ell$ algebraischer Abschluß des Körpers der ℓ -adischen

Zahlen, $\ell \neq \text{char. } F$.

Lokale Systeme

Definition

topologisch: Darstellung $\rho:\pi_1(X,x)\to GL_r(\mathbb{C})$ modulo Konjugation; étale: stetige Darstellung $\rho^{\text{\'et}}:\pi_1^{\text{\'et}}(X,x)\to GL(\bar{\mathbb{Q}}_\ell)$ modulo Konjugation, $\bar{\mathbb{Q}}_\ell$ algebraischer Abschluß des Körpers der ℓ -adischen Zahlen, $\ell\neq$ char. F.

Wo findet man sie?

Geometrische: $Y \to X$ Morphismus \leadsto $/\mathbb{C}$: $\rho: \pi_1(X,x) \to GL(H^i(Y_x,\mathbb{Z}));$ $/F: \rho^{\text{\'et}}: \pi_1^{\text{\'et}}(X_{\bar{F}},x) \to GL(H^i(Y_x,\mathbb{Z}_\ell)),$ invariant durch $\operatorname{Gal}(\bar{F}/F)$ (man sagt arithmetisch).

Lokale Systeme

Definition

topologisch: Darstellung $\rho:\pi_1(X,x)\to GL_r(\mathbb{C})$ modulo Konjugation;

étale: stetige Darstellung $ho^{\mathrm{\acute{e}t}}:\pi_1^{\mathrm{\acute{e}t}}(X,x)\to GL(\bar{\mathbb{Q}}_\ell)$ modulo Konjugation, $\bar{\mathbb{Q}}_\ell$ algebraischer Abschluß des Körpers der ℓ -adischen Zahlen, $\ell\neq$ char. F.

Wo findet man sie?

Geometrische: $Y \to X$ Morphismus \leadsto $/\mathbb{C}$: $\rho: \pi_1(X,x) \to GL(H^i(Y_x,\mathbb{Z}));$ $/F: \rho^{\text{\'et}}: \pi_1^{\text{\'et}}(X_{\bar{F}},x) \to GL(H^i(Y_x,\mathbb{Z}_\ell)),$ invariant durch $\operatorname{Gal}(\bar{F}/F)$ (man sagt $\operatorname{arithmetisch}$).

Verträglichkeit (Grothendiecks Schule)

$$F \subset \mathbb{C}$$
: $H^i(Y_x, \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{Z}_{\ell} = H^i(Y_x, \mathbb{Z}_{\ell})$, $\pi_1^{\text{\'et}}(X_{\mathbb{C}}, x) = \pi_1^{\text{\'et}}(X_{\bar{F}}, x)$, $\rho^{\text{\'et}}$, ρ verträglich.

Andere?

Moduli

 \exists Parameterraum (Moduli) $\operatorname{Hom}(\pi_1(X,x), GL_r(\mathbb{C}))$. Affine algebraische Varietät \rightsquigarrow Zariski Topologie (schwächer als $\operatorname{\underline{Hausdorff}}$ Topologie!).

Andere?

Moduli

 \exists Parameterraum (Moduli) $\operatorname{Hom}(\pi_1(X,x), GL_r(\mathbb{C}))$. Affine algebraische Varietät \leadsto Zariski Topologie (schwächer als <u>Hausdorff</u> Topologie!).

Vermutung (E-Kerz '19)

Arithmetische Darstellungen sind Zariski dicht.

Andere?

Moduli

 \exists Parameterraum (Moduli) $\operatorname{Hom}(\pi_1(X,x), GL_r(\mathbb{C}))$. Affine algebraische Varietät \leadsto Zariski Topologie (schwächer als <u>Hausdorff</u> Topologie!).

Vermutung (E-Kerz '19)

Arithmetische Darstellungen sind Zariski dicht.

Moritz Kerz: 2te Hälfte des Fotos der Ankündigung des Vortrags!

Hoffnung

Alexandr Petrov '20

fantastisches Ergebnis: Fontaine-Mazur Vermutung \Rightarrow [arithmetisch \Rightarrow Unterquotient von geometrisch].

Hoffnung

Alexandr Petrov '20

fantastisches Ergebnis: Fontaine-Mazur Vermutung \Rightarrow [arithmetisch \Rightarrow Unterquotient von geometrisch].

Alexandr Petrov: Doktorand, Harvard

Hoffnung

Alexandr Petrov '20

fantastisches Ergebnis: Fontaine-Mazur Vermutung \Rightarrow [arithmetisch \Rightarrow Unterquotient von geometrisch].

Alexandr Petrov: Doktorand, Harvard

Zusammengefasst:

Dichtheit der arithmetischen Darstellungen (Fontaine-Mazur Vermutung + Petrov's theorem) = Dichtheit der geometrischen Darstellungen.

Jean-Marc Fontaine 1944-2919

Barry Mazur 1937-

Simpson

```
rigid: GL_r-Bahn isoliert; so Vermutung \Rightarrow [rigid \Rightarrow geometrisch] (was Simpson bereits '90 vermutet hat) 

Theorem (Simpson '92): rigid \Rightarrow arithmetisch. Aber hat: geometrisch \Rightarrow integral i.e. \rho: \pi_1(X,x) \to GL_r(\bar{\mathbb{Z}}) \Rightarrow Vermutung (Simpson '90): rigid \Rightarrow integral.
```

Simpson

rigid: GL_r -Bahn isoliert; so Vermutung \Rightarrow [rigid \Rightarrow geometrisch] (was Simpson bereits '90 vermutet hat)

 $\underline{ \mbox{Theorem}} \mbox{ (Simpson '92): rigid} \Rightarrow \mbox{arithmetisch}.$

Aber hat: geometrisch \Rightarrow integral i.e. $\rho:\pi_1(X,x)\to GL_r(\bar{\mathbb{Z}})\Rightarrow$

 $\underline{\text{Vermutung (Simpson '90)}}: \textit{ rigid} \Rightarrow \textit{integral}.$

Carlos Simpson

Integralität: 1te kleine Evidenz für die Vermutung

Theorem (E-Groechenig) '18

rigid + GL_r Bahn im glatten Locus von $\operatorname{Hom}(\pi_1(X,x),GL_r(\mathbb{C})) \Rightarrow$ integral.

Integralität: 1te kleine Evidenz für die Vermutung

Theorem (E-Groechenig) '18

rigid + GL_r Bahn im glatten Locus von $\operatorname{Hom}(\pi_1(X,x),GL_r(\mathbb{C})) \Rightarrow$ integral.

Michael Groechenig

Rang 1: 2te kleine Evidenz für die Vermutung

Theorem (E-Kerz) '19

Dichtheit richtig für r=1.

<u>Theorem</u> (Grothendieck '70 + Clemens ..Brieskorn): geometrische lokale Systeme sind quasi-unipotent im unendlichen.

<u>Theorem</u> (Grothendieck '70 + Clemens ..Brieskorn): geometrische lokale Systeme sind quasi-unipotent im unendlichen.

Theorem (E-Kerz '20)

Quasi-unipotente lokale Systeme sind Zariski dicht.

 $\underline{\text{Theorem}}$ (Grothendieck '70 + Clemens ..Brieskorn): geometrische lokale Systeme sind quasi-unipotent im unendlichen.

Theorem (E-Kerz '20)

Quasi-unipotente lokale Systeme sind Zariski dicht.

Alle Aussagen sind in der komplexen Geometrie. Alle Beweise sind arithmetisch und benutzen stark die Aktion von $\operatorname{Gal}(\bar{F}/F)$.

<u>Theorem</u> (Grothendieck '70 + Clemens ..Brieskorn): geometrische lokale Systeme sind quasi-unipotent im unendlichen.

Theorem (E-Kerz '20)

Quasi-unipotente lokale Systeme sind Zariski dicht.

Alle Aussagen sind in der komplexen Geometrie. Alle Beweise sind arithmetisch und benutzen stark die Aktion von $\operatorname{Gal}(\bar{F}/F)$.

