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Abstract. We prove that an algebraic flat connection has Ran,exp-definable flat
sections if and only if it is regular singular with unitary monodromy eigenvalues
at infinity, refining previous work of Bakker–Mullane. This provides an o-minimal
characterization of classical properties of the Gauss-Manin connection.

1. Introduction

Let X be a smooth complex algebraic variety. Let E be an algebraic vector bundle
on X and ∇ : E → Ω1

X ⊗OX
E be a flat algebraic connection. We denote the ana-

lytic spaces underlying X and E by the same symbol and we endow them with their
canonical Ran,exp-definable structure, see [BBT23]. Roughly speaking, a function on
X is definable in this structure if it can be expressed in terms of the usual logical
operators (including quantifiers), algebraic functions, real analytic functions on com-
pact domains like [0, 1]n and the real exponential function. A fundamental property
of this structure is its o-minimality, which essentially means that definable functions
don’t exhibit oscillatory behavior.

We say that (E ,∇) has definable flat sections if any flat section σ : U → E is
definable for any definable open U ⊂ X.

Theorem 1.1. The algebraic flat bundle (E ,∇) has definable flat sections if and only
if it is regular singular with unitary monodromy eigenvalues at infinity.

Remarks 1.2. (1) The ‘if’ part is due to Bakker–Mullane [BM23] and the ‘only
if’ part refines their Example 3.3.

(2) One can easily show that the property of definable flat sections holds for all
definable open subsets if and only if it holds for a single finite covering by
simply connected open definable subsets (see the proof of Lemma 4.1). In
addition, all flat sections on a given definable U are definable if and only it is
true on a basis of such.

(3) The property of unitary monodromy eigenvalues at infinity can be defined in
two equivalent ways:
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(i) By considering a normal crossings compactification X of X and requiring
that the eigenvalues of the monodromy action of a small loop around
any irreducible component of X \X have absolute value one (see [BM23,
Def. 1.1]).

(ii) By requiring that for all non-singular complex curves C and all morphisms
ψ : C → X the flat connection ψ∗(E ,∇) has monodromy eigenvalues of
absolute value one at each point of the normal compactification C of C.

(4) For the definition of regular singular algebraic connections see [Del70, Def. 4.5].

The ‘only if’ part of Theorem 1.1 is shown by reducing to a local problem in one
variable in Section 4 and using the solution theory of irregular singular complex differ-
ential equations in Section 5. More precisely, we use the Multisummation Theorem,
recalled in Section 2, and an o-minimal expansion of Ran,exp by ‘multisums’ due to
van den Dries and Speissegger [vDS00], recalled in Section 3.

Our motivation for working out a proof of Theorem 1.1 comes from the study of
the Gauss-Manin connection. In fact, Theorem 1.1 allows us to reformulate Griffiths’
theorem that the Gauss-Manin connection is regular singular [Gri70, Thm. (4.3)],
together with the Griffiths–Landman–Grothendieck Monodromy Theorem [Gri70,
Thm. (3.1)]. Those two theorems can now be expressed equivalently in terms of [BM23,
Cor. 1.3]:

The algebraic de Rham cohomology together with the Gauss-Manin
connection (Hj

dR(Y/X),∇) of a smooth projective family Y → X of
complex algebraic varieties has definable flat sections.

Observe that the Gauss-Manin local system is defined over Z, so the eigenvalues of
the local monodromies are of absolute value one if and only if they are roots of unity
by Kronecker’s theorem.

In non-abelian Hodge theory, Simpson has suggested variants of these classical
results from Hodge theory in terms of a logarithmic extension of the moduli space of
vector bundles with relative flat connections MdR(Y/X) → X, see [Sim97, Sec. 8]. In
a forthcoming paper we plan to address the

Question 1.3. Which flat sections of MdR(Y/X) → X over open definable subsets
of X are definable?

In the non-linear setting of non-abelian Hodge theory it is not clear to us whether
the answer is always positive or whether there is any direct connection to Simpson’s
observations about the non-abelian Gauss-Manin connection in the spirit of Theo-
rem 1.1.

Acknowledgment. It is a pleasure to acknowledge discussions around the topic of
this note with Benjamin Bakker, Philip Engel, Bruno Klingler and Salim Tayou.
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2. Reminder on linear meromorphic differential equations

Let ρ > 0. We consider the meromorphic differential equation

(2.1) zY ′ = A(z)Y

on the open disc ∆(ρ) = {z ∈ C, |z| < ρ}. Here A is an r × r-matrix with entries
holomorphic functions on the punctured disc ∆(ρ)× = ∆(ρ) \ {0} which are mero-
morphic along 0. We assume that A is overconvergent, i.e. that all its entries extend
to holomorphic functions on ∆(ρ̃)× for some ρ̃ > ρ.
Recall that a gauge transformation by P changes A to the coefficient matrix

P−1AP − zP−1P ′ in (2.1). A pullback along the finite covering z 7→ zm for m ∈ Z≥1

replaces A(z) by mA(zm). We say that A is in split normal form if there exist
Q1(z), . . . , Qℓ(z) ∈ 1

z
C[1

z
] and constant square matrices B1, . . . , Bℓ of size r1, . . . , rℓ

with
∑ℓ

i=1 ri = r, such that A is block diagonal with blocks Q1Idr1 +B1, . . . , QℓIdrℓ +
Bℓ. Note that for such a split normal form A a fundamental matrix solution on a
sector has the shape

(2.2) Y(z) = Diag(zB1e
∫ Q1(z)

z
dz, . . . , zBℓe

∫ Qℓ(z)

z
dz).

Theorem 2.1 (Fabry-Hukuhara-Turrittin-Levelt). After pullback along a finite cov-
ering there exists a formal gauge transformation P ∈ GLr (C((z))) which transforms
the differential equation (2.1) into a split normal form.

By first performing a meromorphic gauge transformation on A, we can assume
without loss of generality that the formal gauge transformation P in Theorem 2.1 is
in GLr(CJzK) and that P (0) is the identity matrix. Note that the matrix P is itself
a solution of a meromorphic differential equation

(2.3) zP ′ = A(z)P − PÃ(z)

where Ã is in split normal form.
Let d ∈ S1 = {z ∈ C | |z| = 1} be a direction and

Dd(ρ) = {xd |x ∈ (0, ρ)} ⊂ ∆(ρ)

be its associated ray. By a solution of (2.1) on the ray Dd(ρ) we mean a function
Y : Dd(ρ) → Cr which extends to a holomorphic function on a sector in ∆(ρ) con-
taining Dd(ρ) which is a solution of (2.1) on that sector.

Definition 2.2. We call a function f : Dd(ρ) → C a ‘multisum’ if

• f is the restriction to Dg(ρ) of a real analytic function defined on Dd(ρ̃) for
some ρ̃ > ρ;

• for some 0 < ρ̃ ≤ ρ the function f |Dd(ρ̃) is of the form

f = f1|Dd(ρ̃) + · · ·+ fn|Dd(ρ̃),
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where fj is a holomorphic function on a sector {z ∈ ∆(ρ̃)× | |arg(z/d)| < κjϕj}
with κj ∈ (0, 1), ϕj ∈ (π

2
, π) for which there exists C > 0 such that∣∣∣∣ 1n!f (n)

j (z)

∣∣∣∣ ≤ Cn(n!)κj

for all n ≥ 0 and all z in this sectorial domain;

• the Taylor coefficients limz→0 f
(n)
j (z) exist for the above fj for all n ≥ 0.

The set of all ‘multisums’ is a C-algebra closed under d
dz

and a ‘multisum’ is uniquely
characterized by its asymptotic Taylor coefficients at z = 0. An important point is
that the Taylor series at z = 0 might be not convergent.

A formal power series in CJzK is multisummable in direction d if it is the Taylor
series at z = 0 of a ‘multisum’ on Dd(ρ) for some ρ > 0. A basic reference for
multisummable power series is [Bal94, Ch. 10].

Recall that the slopes of the differential equation (2.1) may be defined as

{ 1

m
degzQi(

1

z
), i = 1, . . . , ℓ}

where m is the degree of the necessary covering to achieve the split normal form in
Theorem 2.1. See [vPS03, Ch. 3].

Theorem 2.3 (Multisummation Theorem). Let Y ∈ (CJzK)r be a formal solution of
a differential equation (2.1) all of whose positive slopes are > 1

2
. Then for all but a

finite number of directions d, the components of Y are multisummable in the direction
d.

For a proof of the Multisummation Theorem see for instance [vPS03, Ch. 7].

Remarks 2.4. • The condition on the slopes in Theorem 2.3 is satisfied after
pullback along a finite covering z 7→ zm for m large.

• Note that the uniqueness of the ‘multisum’ with given aymptotic Taylor ex-
pansion implies that the associated ‘multisums’ in Theorem 2.3 automatically
satisfy the differential equation (2.1) and can be defined on Dd(ρ) for the given
ρ in (2.1).

Combining Theorem 2.1 for the differential equation (2.1) and Theorem 2.3 for the
differential equation (2.3) with the above remarks we deduce:

Corollary 2.5. After taking the pullback along a finite covering z 7→ zm for some m
and performing a meromorphic gauge transformation, there exist Q1(z), . . . , QL(z) ∈
1
z
C[1

z
] and constant Jordan blocks B1, . . . , BL with eigenvalues b1, . . . , bL such that,

except for a finite number of directions d, there exists Pd : Dd(ρ) → GLr(C) with
entries being ‘multisums’, with Pd(0) the identity matrix, such that

Y : Dd(ρ) → GLr(C), z 7→ Pd(z)Diag
(
zB1e

∫ Q1(z)
z

dz, . . . , zBLe
∫ QL(z)

z
dz
)
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is a fundamental matrix solution of the differential equation (2.1) on Dd.
The differential equation is regular singular if and only if Q1(z), . . . , QL(z) all van-

ish. In that case

exp(2πib1), . . . , exp(2πibL)

are the eigenvalues of the monodromy.

Note here there is a change of notation as compared to (2.2), ℓ becomes L. This
is because we request the Bi to be Jordan blocks, which is achieved after a constant
gauge transformation starting from the Bi, Qi(z) as in (2.2). So in fact L ≥ ℓ.

The last part of the corollary follows from [Del70, Thm. II.1.17].

3. Reminder on o-minimal structures

Recall that an o-minimal structure (An)n consists of a sets of subsets An of Rn

which satisfy certain properties, in particular they comprise the semi-algebraic sets
andA1 consists of the finite unions of intervals. In this note if not explicitly mentioned
otherwise we use the o-minimal structure Ran,exp which is the structure generated by
the semi-algebraic sets, the graphs of real analytic functions on [0, 1]n and the graph
of exp: R → R. The key property of o-minimal structures that we use is that a real
analytic definable function f : (0, 1) → R which is not identically zero has only a finite
number of zeros. A basic reference for o-minimal structures is [vD98].

Recall that a complex algebraic variety X has a canonical Ran,exp-structure (in fact
a semi-algebraic structure), see [BBT23].

By an overconvergent flat bundle (E ,∇) on U(ρ) = (∆(ρ)×)n ×∆(ρ)d−n meromor-
phic along D(ρ) = ∆(ρ)d \ U(ρ) we mean the restriction to U(ρ) of a flat bundle on
U(ρ̃) for some ρ̃ > ρ with a meromorphic structure along D(ρ̃) in the sense of [Del70,
II.2.13], i.e. it is provided with a prolongation to a coherent sheaf of MU(ρ̃),D(ρ̃)-
modules with flat connection, where MU(ρ̃),D(ρ̃) is the sheaf of rings of holomorphic
functions on U(ρ̃) which are meromorphic along D(ρ̃). Such a E has a canonical
definable structure.

In a key step in our argument we use an o-minimal expansion Rsum,exp of the struc-
ture Ran,exp to a structure comprising the graphs of the ‘multisums’ of Definition 2.2.
The o-minimality of this structure is shown in [vDS00], where also ‘multisums’ in
several variables are discussed.

The elementary technical observation about oscillating functions that we need in
the proof of our main theorem is the following. For a complex number z we write
z = Re(z) + iIm(z), Re(z), Im(z) ∈ R.

Lemma 3.1. Consider Q(z) = qkz
−k+ qk−1z

−k+1+ · · ·+ q1z−1 ∈ 1
z
C[1

z
], b ∈ C, ρ > 0

and d ∈ S1. If the function

f : Dd(ρ) → C, z 7→ exp(i Im(Q(z) + b log z))
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is definable, where log z is some branch of the logarithm, then Q(Dd(ρ)) ⊂ R and
b ∈ R. In particular, if qk ̸= 0 then Im(qkd

−k) = 0.

Proof. If Q(z) /∈ R for some z ∈ Dd(ρ) then

lim
z∈Dd(ρ)

z→0

|Im Q(z)| = ∞

and grows more rapidly than |log(z)|. Thus
lim

z∈Dd(ρ)

z→0

|Im(Q(z) + b log z)| = ∞.

As the real valued function Im(Q(z) + b log z) is continuous, by the intermediate
function theorem it must take all the values 2πM for M ≥ M0,M ∈ Z or M ≤
M0,M ∈ Z for some M0. We conclude that f(z) = 1 for infinitely many z ∈ Dd(ρ),
thus f oscillates. This contradicts definability.
Thus Q(z) ∈ R and in the formula for f we can then omit Q and the same argument

shows that in view of
lim

z∈Dd(ρ)

z→0

|Re(log z)| = ∞

and Im(log z) constant the imaginary part of b has to vanish. □

In the opposite direction we use the following simple observation.

Lemma 3.2. Let B be a complex n × n-matrix with real eigenvalues. Then on any
open sector S ⊂ C× any holomorphic branch of the function z 7→ zB is definable.

Proof. Up to replacing B by a conjugate matrix and correspondingly zB by the same
conjugate, the Jordan–Chevalley decomposition tells us that B = D + N , where
DN = ND, D is real and diagonal and N is nilpotent. Then

zB = exp(D log z) exp(N log z),

where the factor exp(N log z) has entries which are polynomials in log z = log |z| +
i arg(z) and where exp(D log z) can be expressed in terms of the real exponential and
logarithm functions and an analytic function in arg(z). Thus zB is definable. □

4. Reduction to sectors

In this section we reduce the proof of Theorem 1.1 to a local statement. Based on
this reduction we then recall the proof of the ‘if’ part due to Bakker–Mullane [BM23].
For the ‘only if’ part we reduce further to a local statement in one variable.

LetX be a smooth compactification ofX withX\X a normal crossings divisor. Let
ϕ : ∆(ρ)d → X be a holomorphic chart with ϕ−1(X) = (∆(ρ)×)n ×∆(ρ)d−n. Assume
that ϕ is overconvergent, i.e. extends to a holomorphic map defined on ∆(ρ+ ϵ)d for
some ϵ > 0. Let S = S1×· · ·×Sn×∆(ρ)n−d be an open, simply connected polysector
in ∆(ρ)d.
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Lemma 4.1. The algebraic flat bundle (E ,∇) has definable flat sections if and only
if for any polysector S as above, the flat sections of E|S are definable.

Proof. We only have to show “⇐”. Let U ⊂ X be an arbitrary definable open subset
and σ : U → E|U a flat section. Let U ⊂ X be the closure of U . Then there are
finitely many charts ϕ as above covering U and finitely many polysectors S in these
charts which cover U . By definability of U , for any such polysector S, the number of
connected components of U ∩S is finite [vD98, Sec. 2.2]. Let S◦ be such a connected
component. We can extend the flat section σ|S◦ to a flat section of E|S which is
definable by assumption. So also σ|S◦ is definable and therefore so is σU∩S. □

In the following (E ,∇) denotes an overconvergent flat bundle on U = (∆(ρ)×)n ×
∆(ρ)d−n which is meromorphic along D = ∆(ρ)d \ U with its canonical o-minimal
structure, see Section 3. Let S = S1 × · · · × Sn ×∆d−n be an open, simply connected
polysector in ∆(ρ)d and let Y = (Y1, . . . , Yr) be a basis of the flat sections over S.
Let YMj with 1 ≤ j ≤ n and with Mi ∈ GLr(C) be the analytic continuation of Y
along a simple loop around the j-th punctured disc. The M1, . . . ,Mn are commuting
monodromy matrices.

Theorem 4.2. The flat sections Y are definable for any S as above if and only if the
flat connection ∇ is regular singular and all eigenvalues of M1, . . . ,Mn are unitary.

Proof. “⇐” (Bakker–Mullane) By assumption the eigenvalues of M1, . . . ,Mn are uni-
tary. Let B1, . . . , Bn be commuting complex matrices with real eigenvalues and
Mj = e2πiBj . Then

Ỹ(z) = Y(z)z−B1
1 · · · z−Bn

n

are single valued holomorphic functions on (∆(ρ)×)n×∆(ρ)d−n with moderate growth,

so they are meromorphic, in particular definable. As also z
−Bj

j is definable by
Lemma 3.2, so is Y .

“⇒” regular singular is checked and monodromy is calculated locally around a
non-singular point of D, see [Del70, Thm. II.4.1], so we can assume without loss of
generality that n = 1. With Ỹ(z) = Y(z)z−B1

1 as above we have to check that

Ỹ(z) =
∑
j∈Z

zj1fj(z2, . . . , zd)

is meromorphic along D, i.e. fj ≡ 0 for j ≪ 0. For this define Ej = {fj = 0} ⊂
∆(ρ)d−1 if fi ̸≡ 0 and Ej = ∅ else. This is a meager subset of ∆(ρ)d−1. So the
countable union ∪jEj is a meagre subset of ∆(ρ)d−1 as well. Thus there exists

(z̃2, . . . , z̃d) ∈ ∆(ρ)d−1\E. Then if Ỹ(z) is not meromorphic along D, the one variable
function z1 7→ Ỹ(z1, z̃2, . . . , z̃d) is not meromorphic either. This reduces us to the case
d = 1 for checking regularity. The monodromy M1 is also calculated by restriction to
these one-dimensional discs. So the implication follows from Proposition 5.1 □
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5. Local one variable case

In this section (E ,∇) denotes an overconvergent flat bundle on ∆(ρ)× meromorphic
along 0. By d ∈ S1 we denote a direction and by Dd(ρ) := {xd |x ∈ (0, ρ)} ⊂ ∆(ρ)×

its associated ray.

Proposition 5.1. If there are infinitely many directions d such that all flat sections
of ∇ over Dd(ρ) are definable, then ∇ is regular singular with unitary monodromy
eigenvalues.

The key input in the proof is the formal and asymptotic solution theory for irregular
singular differential equations as summarized in Corollary 2.5.

Proof of Proposition 5.1. The coherent sheaf of M(∆(ρ)×,0)-modules E on ∆(ρ) is then
locally free around 0, so without loss of generality E is the free sheaf Mr

(∆(ρ),0). Then

(E ,∇) corresponds to an overconvergent meromorphic differential equation (2.1),
see [Del70, Sec. I.3].

Assume Proposition 5.1 is false, and say the connection is irregular singular. We
can take the pullback along z 7→ zm for m large and perform a meromorphic gauge
transformation so that we are in the situation of Corollary 2.5. Assume without loss
of generality that the Q1(z) in this corollary is non-zero, say

Q1(z) = qkz
−k + qk−1z

−k+1 + · · ·+ q1z
−1

with qk ̸= 0. Choose a direction d such that any solution of (2.1) is Ran,exp-definable
on Dd(ρ), such that we have Im(qkd

−k) ̸= 0 and such that the Pd(z) as in Corollary 2.5
exists.

Then the function Pd(z) on Dd(ρ) is definable in the o-minimal structure Rsum,exp,
see Section 3, and so is

z ∈ Dd(ρ) 7→ P−1
d (z)Y(z).

But multiplying the upper left entry of this matrix function with the Ran,exp-definable
function

Dd(ρ) → R, z 7→ exp(−Re(Q1(z) + b1 log(z)))

we obtain the the Rsum,exp-definable function

(5.1) Dd(ρ) → C, z 7→ exp(i Im(Q1(z) + b1 log(z))).

However, this function is not definable in any o-minimal structure by Lemma 3.1,
which is a contradiction. We conclude that all Q1(z), . . . , QL(z) vanish.

If the monodromy eigenvalues are not unitary, we have without loss of generality
that Im(b1) does not vanish by the final part of Corollary 2.5 and still the function (5.1)
would be non-definable by Lemma 3.1, which produces the same kind of contradiction.
We conclude that all b1, . . . , bL are real. □
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