
A NON-ABELIAN VERSION OF DELIGNE’S FIXED PART THEOREM

HÉLÈNE ESNAULT AND MORITZ KERZ

Abstract. We formulate and prove a non-abelian analog of Deligne’s Fixed Part the-
orem on Hodge classes, revisiting previous work of Jost–Zuo, Katzarkov–Pantev and
Landesman–Litt. To this aim we study algebraically isomonodromic extensions of local
systems and we relate them to variations of Hodge structures, for example we show that the
Mumford-Tate group at a generic point stays constant in an algebraically isomonodromic
extension of a variation of Hodge structure.

1. Introduction

On a quasi-projective complex manifold, a rational Betti class is called Hodge if it is
integral and lies as a de Rham class in the right levels of the Hodge and the weight filtrations.
Let f : X → S be a projective morphism between quasi-projective complex manifolds.
Deligne’s Fixed Part Theorem asserts that a Hodge class on a fibre Xs has finite orbit
under the fundamental group of S based at s if and only if it extends to a Hodge class
on X after base change to a finite étale cover of S. Here we have to make the technical
assumption that S topologically has the properties of Artin’s elementary neighborboods,
see Theorem 3.1 for a precise formulation.

Replacing above the Hodge class with a rational polarized variation of Hodge structure
which admits an integral structure, Deligne’s Fixed Part Theorem has a perfect non-abelian
analog, which is the topic of our note.

We introduce some notation in order to give a precise formulation of the main theorem.
On a complex manifold X, there is the notion of a polarized variation of K-Hodge structure
(K-PVHS), for K ∈ {Q,R,C}, see Subsection 5.1. It consists of a triple (L,F, Q), where L
is a K-local system on X, F is a finite filtration by holomorphic subbundles of L ⊗K OX

and Q : L⊗L → K is a sesquilinear perfect pairing of local systems. This triple is asked to
satisfy the Hodge-Riemann relations and Griffiths transversality.

If R ⊂ K is a subring we denote by (R)K-PVHS those polarized variations of K-Hodge
structure (L,F, Q) such that the local system L can be defined over R.

Let f : X → S be a projective holomorphic submersion of connected complex manifolds
with connected fibres. Let X ⊂ X be the complement of a relative simple normal crossings
divisor D ⊂ X over S. We call f = f |X a good holomorphic map. Throughout the
introduction we assume that S is quasi-projective and that one of the following properties
holds for f .

I) S is an Artin Kπ1, i.e. its fundamental group is a successive extension of finitely
generated free groups and πi(S) = 0 for i > 1,

The second author by the SFB 1085 Higher Invariants, Universität Regensburg.

1



A NON-ABELIAN VERSION OF DELIGNE’S FIXED PART THEOREM 2

II) Xs is a hyperbolic Riemann surface,
III) f has a continuous section S → X.

For the precise notion of an Artin Kπ1 see Subsection 2.2. A hyperbolic Riemann surface
Y for us is the complement of finitely many points in a compact connected Riemann surface
Y such that the Euler characteristic χ(Y ) is negative.

Our main theorem is the following non-abelian Fixed Part Theorem, see Section 6 for
the proof.

Theorem 1.1. Let f : X → S be a good holomorphic map, s be a point in S. Let (Ls,Fs, Qs)
be a (Z)K-PVHS on the fibre Xs, where K ∈ {Q,R,C}. Then the following conditions are
equivalent:

1) the orbit π1(S, s) · [Ls] in the set of isomorphism classes of K-local systems on Xs

is finite;
2) Ls essentially extends to a K-local system L on X;
3) (Ls,Fs, Qs) essentially extends to a (Z)K-PVHS (L,F, Q) on X;
4) (Ls,Fs, Qs) extends to a K-PVHS on X∆ = f−1(∆) for some contractible open

neighborhood ∆ ⊂ S of s.

If we furthermore assume f to be proper then these conditions are also equivalent to:

5) the filtration Fs extends to a (relative) Griffiths transversal filtration by subbundles

F̂ of the formal isomonodromic extension (Ê , ∇̂ : Ê → Ω̂1
X̂/Ŝ

(Ê)).

Here “essentially extends” means that it extends after base change with respect to a
finite, étale, surjective covering of S, see Subsection 3.1 for a precise formulation. In 5)

Ŝ is the formal scheme of S along s and X̂ the formal scheme of X along Xs. The for-
mal isomonodromic deformation (Ê , ∇̂) is the formal completion of the flat bundle on X∆

associated to the local system on X∆ which canonically extends Ls.
The idea of the proof is to show the implication 1) ⇒ 3) by constructing an algebraically

isomonodromic extension of Ls to X, see Theorem 1.4, and to use T. Mochizuki’s non-
abelian Hodge correspondence, see Subsection 5.2, which enables one to relate the action
of the C× flow on the Higgs bundle associated to Ls to the one on an algebraically isomon-
odromic extension L.

In order to show the implication 4) ⇒ 1) we use Simpson’s non-abelian Hodge loci. In
fact he considers only the case f projective and we generalize his theory to the case of a
good holomorphic map f in Appendix A. The analogous implication 5) ⇒ 1) was suggested
to us by D. Litt, see also [Lit24, Cor. 4.4.3].

Remark 1.2. Theorem 1.1 has a well-known “Lefschetz hyperplane version”, which is
deduced from T. Mochizuki’s work in the same way. Let us assume X is a projective
compactification ofX with a simple normal crossings divisorD = X\X at infinity. Consider
a hyperplane section Y ⊂ X for a projective embedding X ↪→ PN

C which is transversal to

the stratification induced by D, i.e. such that the intersection of Y and of irreducible
components of D is smooth of the right dimension. Assume that dimX ≥ 2 and recall
that then the map π1(Y ) → π1(X) is surjective [GM88, II.1.1], where Y = Y ∩X. Let L
be a K-local system on X such that L|Y underlies a (Z)K-PVHS (L|Y ,FY , QY ). Then the
filtration FY and the polarization QY uniquely extend to a (Z)K-PVHS (L,F, Q).
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Remark 1.3. For K = Q one can choose the extension in 3) such that the Hodge-generic
locus of (L,F, Q) meets Xs, or stated differently such that the Mumford-Tate groups of
(Ls,Fs, Qs) and of (L,F, Q) are the same, see Section 6.

The same argument implies that in Remark 1.2 the Hodge-generic locus of (L,F, Q) meets
Y .

As mentioned above our new method is to study algebraically isomonodromic extensions
and to relate them to rigidity properties of the Hodge data on local systems. The notion
of an isomonodromic extension of a bundle with a flat connection on a fibre Xs of a good
holomorphic map f : X → S to a relative flat bundle over a neighborhood of s ∈ S is
well-established in the theory of non-linear differential equations; its connection to Hodge
theory has beed studied in particular in [LL24a].

It turns out that the right notion for our global study of local systems is not the discrete
monodromy group itself, but the identity component of its Zariski closure. For a K-local
system L on X and x ∈ X we denote by Mo(L, x) the Zariski closure in GL(Lx) of the
image of the monodromy representation π1(X,x) → GL(Lx) and by Mo(L, x)0 its identity
component. One calls Mo(L, x)0 the algebraic monodromy group.

We say that an extension of a local system to a bigger manifold is algebraically isomon-
odromic if the two algebraic monodromy groups are the same. We first prove by group
theoretic means, developed in Sections 2 and 4 and Appendix B, the following theorem,
which is shown in Section 6. We fix a field K of characteristic zero.

Theorem 1.4. Let f : X → S be a good holomorphic map as above. Let Ls be a K-local
system on Xs with semi-simple algebraic monodromy group. Then the following conditions
are equivalent:

a) the orbit π1(S, s) · [Ls] in the set of isomorphism classes of K-local systems on Xs

is finite;
b) Ls essentially extends to a local system L on X;
c) Ls essentially extends to an algebraically isomonodromic local system L relative to
Xs.

Moreover, the following holds:

i) if L as in c) exists it is essentially unique;
ii) if K is a number field and Ls has an integral lattice Ls,OK

, then L as in c) essentially
has an integral lattice LOK

;
iii) if Ls is absolutely simple, then an extension L to X which has finite determinant is

algebraically isomonodromic relative to Xs.

Recall that if Ls underlies a (Z)C-PVHS then by [Del71, Sec. 4.2] its algebraic monodromy
group is semi-simple, see Theorem 5.1(v). We do not know whether the lattice LOK

in ii)
can be chosen as an extension of Ls,OK

.
It is a classical observation due to Clifford that in the setting of Theorem 1.4 one can

canonically extend the representation of the fundamental group associated to an absolutely
simple local system Ls to a projective representation of π1(X). The problem is to lift the
latter to a proper representation. Our observation is that this lifting process, which a priori
has an obstruction in H2(Γ,K×), is more manageable in the world of pro-finite groups.
Our proof of Theorem 1.4 in fact relies on passing to continuous representations over the
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ℓ-adic numbers of the profinite completion of fundamental groups. In the profinite world
the continuous H2-obstruction can be killed by passing to an open subgroup.

We can formulate an application of Theorem 1.4 to representations of mapping class
groups which refines [LL24b, Prop. 2.3.4], see Section 6 for a proof.

Corollary 1.5. Let S be a finite étale covering of the moduli stack of hyperbolic punctured
compact Riemann surfaces with universal curve f : X → S. Fix s ∈ S. Then a semi-simple
local system Ls on Xs such that the orbit π1(S, s) · [Ls] is finite, essentially extends to X.

Many of the results of our note are known to the experts in one form or another. In
particular we refer to the previous work by Jost–Zuo [JZ01] and Katzarkov–Pantev [KP02].
Our motivation to write down a complete account of their theory stems from our ongoing
work on the arithmetic of ℓ-adic local systems over p-adic local fields. In that work we for
example study an arithmetic variant of non-abelian Hodge loci for ℓ-adic local systems.

Acknowledgment. It is a pleasure to thank Alexander Petrov for numerous enlightening
discussions and for sharing his insights into isomonodromic deformations of Hodge struc-
tures. We thank Claude Sabbah for kindly helping us with references on variations of Hodge
structure. We thank Daniel Litt for various helpful discussions on local systems in particu-
lar on the condition 5) in Theorem 1.1. We are grateful to Takuro Mochizuki for explaining
to us what is known and what can be expected about families of pluri-harmonic metrics.
We thank Xiwen Zhu for an enlightening discussion on the analogy between Theorem 1.1
and his own theorem on the preservation of the de Rham property of a p-adic local system,
see [LZ17].

2. Profinite completion of groups and Artin Kπ1 spaces

In this section we recall some classical properties of profinite group completion in the
context of fundamental groups of quasi-projective complex manifolds.

2.1. Group theory. We recall after Anderson [And74] some criteria when a finitely gener-
ated normal subgroup H ⊂ G of a finitely generated abstract group G induces an injective

homomorphism Ĥ → Ĝ after profinite completion.

Note first that

Ĥ → Ĝ is injective if and only if for any normal subgroup of finite index
H ′ ⊂ H there exists a subgroup of finite index G′ ⊂ G such that G′∩H ⊂ H ′.

We remark that we could equally request the existence of a normal subgroup of finite index
G′ ⊂ G as any subgroup of finite index contains a normal such. We denote by Γ the quotient
group G/H.

We say that Γ is a successive extension of finitely generated free groups if there is a
filtration

(⋆) {1} = Γ0 ⊂ Γ1 ⊂ Γ2 ⊂ · · · ⊂ Γs = Γ

by finitely generated subgroups Γi such that Γi−1 is normal in Γi and such that Γi/Γi−1 is
a free group for all 1 ≤ i ≤ s. Note that if Γ is a successive extension of finitely generated
free groups and Γ′ ⊂ Γ is a subgroup of finite index, then Γ′ is itself a successive extension
of finitely generated free groups.



A NON-ABELIAN VERSION OF DELIGNE’S FIXED PART THEOREM 5

Lemma 2.1. If Γ is a successive extension of finitely generated free groups, N > 0 and
i > 0 are integers, there exists a subgroup of finite index Γ′ such that the restriction map

H i(Γ,Z/NZ) → H i(Γ′,Z/NZ)
vanishes.

Proof. This is Exercise 2)(d) in [Ser94, I.2.6]. □

Proposition 2.2. If the surjective homomorphism G → Γ has a section or if Γ is a suc-

cessive extension of finitely generated free groups, then Ĥ → Ĝ is injective.

Proof. The first part is [And74, Prop. 4]. For the second part let us assume that Γ is an
extension of s > 0 finitely generated free groups as above. We first assume that s = 1 that
is that Γ is free. Then the surjection G → Γ has a section and we can conclude as before.
For s ≥ 2, we define Gs−1 as the inverse image in G of Γs−1. By induction on s we can

assume that Ĥ → Ĝs−1 is injective. By the case s = 1, Ĝs−1 → Ĝs is injective. Thus the

composite Ĥ → Ĝs−1 → Ĝs is injective as well. □

The next proposition is [And74, Prop. 3].

Proposition 2.3. If Ĥ has trivial center then Ĥ → Ĝ is injective.

2.2. Geometric examples. Let X and S be connected complex manifolds and let f : X →
S be a good holomorphic map as defined in Section 1. Fix a point x ∈ X and set s = f(x).
By Thom’s first isotopy lemma [GM88, Thm. I.1.5] or Ehresmann’s theorem in the proper
case, f is a topological fibration. We obtain an exact sequence of homotopy groups

(2.1) . . .→ π2(X,x) → π2(S, x) → π1(Xs, x) → π1(X,x) → π1(S, s) → 1

We say that S is an Artin Kπ1 if πi(S) = 0 for i > 1 and π1(S) is a successive extension
of finitely generated free groups. Recall that Artin showed [Art72, 4.6] that if S underlies
a smooth algebraic variety, Artin Kπ1’s form a base of the Zariski topology.

Proposition 2.4. Let L be a local system on S with finite fibres. If S is an Artin Kπ1 and
i > 0 is an integer, there exists a finite étale cover S′ → S such that the pull-back map

H i(S,L) → H i(S′,L)
vanishes.

Proof. As S is an Artin Kπ1 the morphism H i(π1(S, s),Ls)
∼−→ H i(S,L) stemming from

the Hochschild-Serre spectral sequence is an isomorphism. We apply Lemma 2.1 to the left
term. □

Proposition 2.5. If S is an Artin Kπ1, then π1(Xs, x) → π1(X,x) is injective and remains
injective after profinite completion.

Proof. By definition π2(S, s) = 0 so π1(Xs, x) → π1(X,x) is injective in view of (2.1). We
apply Proposition 2.2.

□

Proposition 2.6. If Xs is a hyperbolic Riemann surface, the map π1(Xs, x) → π1(X,x) is
injective and remains injective after profinite completion.
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Proof. By [And74, Prop. 18], the centers of π1(Xs, x) and of ̂π1(Xs, x) are trivial. Thus
by Proposition 2.3 it is sufficient to see that the homomorphism π2(S, s) → π1(Xs, x) is
trivial, which follows as by hyperbolic geometry one shows that π1(Xs, s) does not contain
any normal non-trivial abelian subgroup.

□

3. An integral version of Deligne’s Fixed Part Theorem

3.1. Integral Fixed Part Theorem. In this section we recall the integral version of
Deligne’s Fixed Part Theorem in order to motivate our non-abelian version, Theorem 1.1.
The reason why we discuss the integral version of this classical result here is that while
in the abelian case we can always make a rational class integral by multiplication with a
positive integer, this is not possible in the non-abelian case. So one has to understand the
integral results in the abelian world in order to see what one can hope for in the non-abelian
world.

Let X and S be quasi-projective complex manifolds and let f : X → S be a projective
holomorphic submersive map with connected fibres. Fix a point s̃ in the universal cover S̃
of S and let s ∈ S be its image. We say that a property essentially holds if the property
holds after replacing S by a finite quotient cover S′ → S of S̃ → S, s by the image of s̃ in
S′ and X by X ×S S

′. We denote by Xs the fibre over s.

Let Z be a quasi-projective complex manifold. A class ξ ∈ H2i(Z,Q) is said to be a
Hodge class if

ξ ∈ imH2i(Z,Z) ∩ imF iH2i(Z,C) ⊂ H2i(Z,C)

where F is the Hodge filtration and Z is a good compactification of Z, i.e. a complex man-
ifold which is projective and contains Z as a Zariski open submanifold [Del74, Thm. 3.2.5].

As f is a topological fibration, π1(S, s) acts on the cohomology H i(Xs,Q). We denote

by Ŝ the formal completion of S along s and by X̂ the formal completion of X along Xs.

Theorem 3.1 (Deligne’s Fixed Part Theorem). Let f : X → S be a proper good holomor-
phic map with S as in I) in Section 1. Let s be a complex point of S. Let ξ ∈ H2i(Xs,Q)
be a Hodge class on Xs. Then the following conditions are equivalent:

1) the orbit π1(S, s) · ξ is finite;
2) ξ essentially extends to a class in H2i(X,C);
3) ξ essentially extends to a Hodge class in H2i(X,Q);

4) ξ extends to H2i(X∆,Ω
≥i
X∆

), where ∆ is a contractible open neighborhood of s;

5) the Gauß-Manin flat deformation of ξ in H2i
dR(X̂/Ŝ) lies in the subbundle

F iH2i(X̂/Ŝ) := H2i(X̂/Ŝ,Ω≥i

X̂/Ŝ
) ⊂ H2i

dR(X̂/Ŝ).

Proof. The implications 3) ⇒ 2) ⇒ 1) and 3) ⇒ 4) ⇒ 5) are clear.

1) ⇒ 3) holds rationally by Deligne’s Fixed Part Theorem [Del71, Thm. 4.1.1], that is
for any good compactification X of X there exists an element in F iH2i(X,C) ∩H2i(X,Q)
extending ξ; let ζ be its image in H2i(X,Q).
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We have to check that after replacing S by a finite quotient covering S′ of S̃ the class ζ
becomes integral. The obstruction for integrality is the image of ζ in H2i(X,Q/Z). There
exists an N > 0 such that this image is induced by an element of

(3.1) ker[H2i(X,
1

N
Z/Z) → H2i(Xs,

1

N
Z/Z)]

We claim that there exists a finite étale covering S′ → S such that the pullback along
X ×S S

′ → X kills the group (3.1). By the Leray spectral sequence it is sufficient to show
that we can kill the groups Hp(S,Rqf∗(

1
NZ/Z)) for p + q = 2i and p = 1, then for p = 2

etc. by a finite étale covering of S. This is Proposition 2.4.

We now address 5) ⇒ 1). Recall that the Hodge or Noether-Lefschetz locus NL is the
closed analytic subset of the étale space associated to R2if∗Q consisting of Hodge cycles,
see [CDK95, Intro.]. Restricted to any irreducible component of NL the morphism NL → S
is finite and unramified. The assumption 5) implies that there exists only one irreducible
component W of NL containing the given Hodge cycle ξ and that W → S is étale at ξ.
Then W → S is a finite, surjective, unramified holomorphic map of reduced, irreducible
analytic spaces of the same dimension with a complex manifold as codomain, so it is a
finite étale covering of complex manifolds. We conclude that the orbit π1(S, s) · ξ consists
of the finitely many elements of the fibre of W → S over s. See also [BEK14, Intro.] and
references therein. □

4. Extensions of representations of discrete groups

This section contains the main group theoretic results of our note, which are related to
Clifford theory [Cli37]. Let G and H be finitely generated groups such that H ⊂ G is a
normal subgroup. We write Γ for the group G/H. Let K be a field of characteristic zero
and V be a finite dimensional K-vector space.

4.1. Main group theoretic result. We say that a property holds essentially for a repre-
sentation ρ : G → GL(V ) if it holds after restriction to a subgroup G′ of finite index in G
with H ⊂ G′. We say that a representation ρH : H → GL(V ) essentially extends to G if it
extends to a representation of such a G′.

For a representation ρ : G→ GL(V ) we denote by Mo(ρ) the Zariski closure of the image
of ρ as an algebraic group over K. Its identity component Mo(ρ)0 is called the algebraic
monodromy group of ρ. We call ρ algebraically isomonodromic relative to H if the embedding

Mo(ρ|H)0 → Mo(ρ)0

defined by H → G is an isomorphism.
We denote by [ρH ] ∈ Rep(H) the isomorphism class of a representation ρH : H → GL(V ).

There is a natural action of Γ on the set of isomorphism classes of representations Rep(H)
by conjugation by lifts to G of elements in Γ.

Theorem 4.1. Assume that the map of profinite completions Ĥ → Ĝ is injective. Let
ρH : H → GL(V ) be a representation with semi-simple algebraic monodromy group. The
following condition are equivalent.

a) the orbit Γ · [ρH ] is finite;
b) ρH essentially extends to a representation ρ : G→ GL(V );
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c) ρH essentially extends to an algebraically isomonodromic representation ρ : G →
GL(V ).

Moreover,

i) if a representation ρ as in c) exists it is essentially unique;
ii) if K is a number field and ρH is integral then a representation ρ as in c) is integral;
iii) if ρH is absolutely simple, then an extension ρ : G → GL(V ) of ρH is algebraically

isomonodromic relative to H if and only if ρ has finite determinant.

The proof of Theorem 4.1 is given in Subsection 4.3.

4.2. Admissible representations. In this subsection we assume that K is algebraically
closed of characteristic zero. A representation ρH : H → GL(V ) is called admissible if it
is semi-simple and all simple constituents of ρH have finite determinant. A representation
ρ : G→ GL(V ) is called admissible relative to H (or an admissible extension of ρ|H) if ρ is
admissible and all its simple constituents stay simple when restricted to H.

The two following lemmata ought to be well known, but we could not find a precise
reference.

Lemma 4.2. The algebraic monodromy group Mo(ρ)0 of ρ is semi-simple if and only if
ρ|G′ is admissible for all subgroups of finite index G′ ⊂ G.

Proof. Assume the algebraic monodromy group Mo(ρ)0 is semi-simple. Then for all finite
index subgroups G′ ⊂ G, ρ(G′) ⊂ ρ(G) has finite index, thus Mo(ρ|G′) ⊂ Mo(ρ) has finite
index as well. This implies the equality Mo(ρ|G′)0 = Mo(ρ)0.

In particular Mo(ρ|G′)0 is reductive, thus by Weyl’s theorem, ρ|G′ as a representation of
the algebraic group Mo(ρ|G′)0 is semi-simple, thus ρ|G′ itself is semi-simple. As Mo(ρ)0 =
[Mo(ρ)0,Mo(ρ)0], all rank one algebraic representations of Mo(ρ|G′) are finite. Thus ρ|G′ is
admissible.

Assume conversely that ρ|G′ is admissible for all subgroups of finite index G′ ⊂ G. Upon
replacing G by the preimage of Mo(ρ)0(K), which is a finite index subgroup in G (recall K
is algebraically closed), we may assume that Mo(ρ) is connected. As the unipotent radical
U of Mo(ρ) is normal, by Clifford’s theorem ρ|U is still semi-simple. So by Engel’s theorem,
we conclude that U is trivial. The radical R of Mo(ρ) is then a central torus, so by Schur’s
lemma it acts by a character λ : R → Gm on each simple G-subrepresentation Vi ⊂ V . As
the action on det(Vi) is finite, a power of λ is trivial, so λ is trivial. As the action of R on
V is faithful, R is trivial and Mo(ρ)0 is semi-simple. □

We draw the following consequence of Lemma 4.2 which ought to be well known, but we
could not find a reference.

Lemma 4.3. Finite direct sums of representations with semi-simple algebraic monodromy
groups have semi-simple algebraic monodromy groups. Direct summands of representa-
tions with semi-simple algebraic monodromy group have a semi-simple algebraic monodromy
group.

Proof. By Lemma 4.2 it is sufficient to prove this for “semi-simple algebraic monodromy
group” replaced by “admissible in restriction to all finite index subgroups”, for which it is
trivial. □
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Lemma 4.4. Let ρ : G → GL(V ) be an admissible representation relative to H, then the
restriction homomorphism

Endρ(V )
∼−→ Endρ|H (V ).

is an isomorphism.

Proof. Let V =
⊕

i Vi ⊗Wi be the canonical decomposition with Vi non-isomorphic simple
representations of G and Wi K-vector spaces as trivial representations. By Schur’s lemma

Endρ(V ) =
∏
i

End(Wi).

As Vi as a representation of H is simple as well, the same formula holds for Endρ|H (V ). □

Remark 4.5. In Lemma 4.4 we do not need the condition on the determinants of the
constituents being torsion. We won’t need this fact.

Proposition 4.6. Let ρ, ρ̃ : G → GL(V ) be two admissible representations relative to H
with ρ|H = ρ̃|H . Then ρ is essentially isomorphic to ρ̃.

Proof. A vector subspace V ′ ⊂ V is a simple ρ-subrepresentation if and only if it is the
image of V by a minimal right ideal of Endρ and the same for ρ replaced with ρ̃. So by
Lemma 4.4 the simple ρ-subrepresentations are exactly the simple ρ̃-subrepresentations. We
can therefore assume that ρ and ρ̃ are simple.

Set τ(g) = ρ̃(g)ρ(g)−1 for g ∈ G. As

τ(g)ρ(h)τ(g)−1 = ρ̃(g)ρ(g−1hg)ρ̃(g−1) = ρ̃(g)ρ̃(g−1hg)ρ̃(g−1) = ρ(h)

for all h ∈ H and g ∈ G, and as ρ|H is simple, Schur’s lemma implies that τ(g) ∈ K× for
all g ∈ G. In fact τ(g) ∈ µN (K) for some N > 0 as the determinants of ρ and ρ̃ are finite.
This implies that τ : G → µN (K) ⊂ GL(V ) is a homomorphism. Thus ρ = ρ̃ in restriction
to the kernel G′ ⊂ G of τ , which is a finite index subgroup. □

The next proposition is the reason why we have to pass to profinite completions.

Proposition 4.7. Assume that the map of profinite completions Ĥ → Ĝ is injective. For
an admissible representation ρH : H → GL(V ) the following are equivalent:

1) the orbit Γ · [ρH ] is finite;
2) ρH essentially extends to a representation of G;
3) ρH essentially extends to an admissible representation ρ of G (relative to H).

Proof. 3) ⇒ 2) ⇒ 1) is obvious. We have to show 1) ⇒ 3). After replacing G by a
subgroup G′ of finite index with H ⊂ G′ the orbit Γ · [ρH ] is trivial. As Γ permutes
the finitely many isomorphism classes of simple constituents of ρH , after replacing G by
a subgroup G′ of finite index with H ⊂ G′, we may assume that this permutation action
is trivial. Then we may and do assume that ρH is simple. Choose a basis of V and
identify GLr(K) with GL(V ). As H is finitely generated there exists a finitely generated
Z-subalgebra R ⊂ K with im(ρH) ⊂ GLr(R). Choose an injective ring homomorphism
R→ OE where OE ⊂ E is the ring of integer of an ℓ-adic field E for some prime number ℓ.
The induced representation ρH : H → GLr(E) factors through a continuous representation

of Ĥ, which is simple as well. By Proposition B.2 we can essentially extend it to a continuous
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representation ρ̂ : Ĝ → GLr(E) with finite determinant. As G is finitely generated the
image of ρ̂|G has values in GLr(A), where A is a finitely generated Frac(R)-subalgebra of
E. Choose a K-point of Spec (A) over Frac(R) (recall that K is assumed to be algebraically
closed). It induces an extension ρ : G→ GLr(K) of ρH with finite determinant. □

4.3. Algebraically isomonodromic representations. In this subsection we collect some
facts about algebraically isomonodromic representations relative to H.

Lemma 4.8. If ρ is algebraically isomonodromic relative to H, then Mo(ρ|H) → Mo(ρ) is

essentially an isomorphism. In particular Endρ(V )
∼−→ Endρ|H (V ) is essentially an isomor-

phism.

Proof. Under the isomonodromic assumption, Mo(ρ|H) ⊂ Mo(ρ) is a (normal) finite in-
dex algebraic subgroup, which induces a finite index (normal) embedding π0(Mo(ρ|H)) ⊂
π0(Mo(ρ)) of finite groups. After replacing G by the preimage of π0(Mo(ρ|H)) the map
Mo(ρ|H) → Mo(ρ) is an isomorphism. □

Lemma 4.9. Assume K is algebraically closed. If ρ : G→ GL(V ) is algebraically isomon-
odromic relative to H and Mo(ρ)0 semi-simple, then ρ is essentially admissible relative to
H.

Proof. By Lemma 4.8 we may assume that Mo(ρ|H) → Mo(ρ) is an isomorphism. In that
case the lemma is clear. □

Proposition 4.10. Assume K is algebraically closed. Let ρ : G → GL(V ) be a represe-
nation such that Mo(ρ|H) is connected and semi-simple. Then ρ is essentially admissible
relative to H if and only if ρ is algebraically isomonodromic relative to H.

Proof. The implication “⇐” follows from Lemma 4.9.

For “⇒” we first observe that by replacing G by the preimage of Mo(ρ)0, which is a
subgroup of finite index containing H, we may assume that Mo(ρ) is connected. The
argument in the proof of Lemma 4.2 shows that Mo(ρ) is semi-simple. If the embedding
Mo(ρ|H) → Mo(ρ) is not an isomorphism then there exists a non-trivial normal connected
algebraic subgroup W ⊂ Mo(ρ) centralizing Mo(ρ|H) such that

W ×Mo(ρ|H) → Mo(ρ)

is surjective with finite kernel, see e.g. [Hum75, 14.2]. The W action stabilizes every simple
ρ-subrepresentation V ′ ⊂ V and commutes with the action of H on V ′, which is simple.
So by Schur’s lemma W acts by a character on V ′, but all characters are trivial as W is
semi-simple. So W has to be trivial as it acts faithfully on V . □

Proposition 4.11. Assume that K is algebraically closed. Let ρH : H → GL(V ) be a rep-
resentation with semi-simple algebraic monodromy group. Let G′ ⊂ G be a subgroup of
finite index, H ′ = H ∩ G′. If Mo(ρ|H′) is connected and ρ|H′ has an admissible exten-
sion ρ′ : G′ → GL(V ) relative to H ′, then ρ essentially has an algebraically isomonodromic
extension ρ : G→ GL(V ) relative to H.
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Proof. After replacing G′ by a subgroup of finite index we may assume that G′ ⊂ G is
normal, thus H ′ ⊂ H is normal as well. Replace G by the preimage of H/H ′ ⊂ G/G′ via
G→ G/G′. Then by definition [G : G′] = [H : H ′]. We set

ρ̃ = IndGG′(ρ′).

We show in the sequel that there is a direct summand of ρ̃ which extends ρH . First observe
that ρ̃ is algebraically isomonodromic relative to H. Indeed, it suffices to check that ρ̃|G′

is algebraically isomonodromic relative to H ′. Noting that ρ̃|H′ is a direct sum of copies of
ρH |H′ , so Mo(ρ̃|H′) is connected and semi-simple, by Proposition 4.10 we have to show that
ρ̃|G′ is admissible relative to H ′. This holds as ρ̃|G′ it is a direct sum of H-conjugates of ρ′

and ρ′ is admissible relative to H ′. On the other hand,

ρ̃|H ∼= IndHH′(ρH |H′)

contains ρH as a direct summand. So by Lemma 4.8 after replacing G by a subgroup of
finite index containing H we find a direct summand of ρ̃ which extends ρH . □

Proof of Theorem 4.1. Essential uniqueness in i) follows from Lemma 4.9 and Proposi-
tion 4.6.

We clearly have c) ⇒ b) ⇒ a). We now reduce the proof of the implication a) ⇒ c) to
the case where K is algebraically closed. Let K be an algebraic closure of K. Consider
an algebraically isomonodromic representation ρ : G → GL(V ⊗K K) relative to H with
ρ|H stabilizing V (thus defined over K). Then, as G is finitely generated, there exists a

finite Galois subextension K̃ ⊂ K of K such that ρ stabilizes V ⊗K K̃. The Galois group
Gal(K̃/K) acts on V ⊗K K̃ via its action on K̃, thus on GL(V ⊗K K̃). For γ ∈ Gal(K̃/K)
we define γ ·ρ by the formula γ ·ρ(g) = γ · (ρ(g)). Then Mo(γ ·ρ) = γ ·Mo(ρ) thus both γ ·ρ
and ρ are algebraically isomonodromic extensions relative to H of ρ|H = γ · ρ|H . Then i)
implies that there is a finite index subgroup Gγ ⊂ G containing H such that ρ|Gγ = γ ·ρ|Gγ .
We define G′ = ∩γ∈Gal(K̃/K)G

γ which contains H and is a subgroup of finite index in G.

Then ρ|G′ is Gal(K/K) invariant thus descends to K.

Now we prove a) ⇒ c) for K = K. The condition Ĥ → Ĝ injective allows us to find a
subgroup of finite index G′ ⊂ G, H ′ = H ∩ G′, such that Mo(ρH |H′) is connected. After
replacing G′ by a subgroup of finite index containing H ′, Proposition 4.7 implies that there
exists an admissible extension ρ′ : G′ → GL(V ) of ρH |H′ relative to H ′. Proposition 4.11
shows then the essential existence of an algebraically isomonodromic extension ρ : G →
GL(V ) of ρH .

We now prove ii). After replacing K by a finite extension, we may assume that all simple
constituents of ρH are absolutely simple. By Lemma 4.8 we can replace G by a subgroup
of finite index containing H such that Endρ(V )

∼−→ EndρH (V ) is an isomorphism. Then we
have to show ii) only for the simple subrepresentations V ′ ⊂ V . So we assume now that ρ
is absolutely simple and that V ⊂ V is a ρH -stable lattice.

For g ∈ G the lattice ρ(g)V is stabilized by the action of H via ρH as ρ(h)ρ(g)V =
ρ(g)ρ(g−1hg)V = ρ(g)V. By the the Jordan-Zassenhaus theorem [CR62, Sec. 79] there are
only finitely many such lattices up to isomorphism, which by Schur’s lemma means up to
homothety. So after replacing G by a subgroup of finite index containing H we can assume



A NON-ABELIAN VERSION OF DELIGNE’S FIXED PART THEOREM 12

that for all g ∈ G there is λg ∈ K× with ρ(g)V = λgV. As ρ has finite determinant, λg ∈ O×
K

and V is stabilized by the ρ-action of G.

We now prove iii). Without loss of generality K = K. By assumption ρH is absolutely
simple and has finite determinant, thus is admissible and the extension ρ : G → GL(V )
of ρH with finite determinant is admissible relative to H. Such an extension is essentially
unique by Proposition 4.6. But an algebraically isomonodromic extension of ρH , which
essentially exists by the above argument, has finite determinant, so has to essentially agree
with ρ. □

Proposition 4.12. Assume that Ĥ → Ĝ is injective. Then finite direct sums of alge-
braically isomonodromic representations with semi-simple algebraic monodromy are alge-
braically isomonodromic. Direct summands of algebraically isomonodromic representations
with semi-simple algebraic monodromy are algebraically isomonodromic.

Sketch of proof. The second part is easy. For the first part we can assume without loss of
generality that K is algebraically closed and we can argue as in the proof of Theorem 4.1
reducing to the observation that direct sums of admissible representations relative to H are
admissible relative to H. □

5. Reminder on variations of Hodge structure

In this section we summarize what we need about variations of Hodge structure. We
could not find some of the formulations in the literature, so we provide a few details.

5.1. Polarized variations of C-Hodge structure. For our purpose it is useful to define
polarized C-Hodge structure in a form without fixing a weight. Let V be a finite dimensional
C-vector space, F a finite decreasing filtration of V and Q : V ×V → C a perfect Hermitian
pairing. We call the triple (V,F, Q) a polarized C-Hodge structure (C-PHS) if the Hodge-
Riemann relations hold for all a ∈ Z:

• V = Fa ⊕ (Fa)⊥ and
• (−1)aQ|Fa∩(Fa+1)⊥ is positive definite.

If N : V → V is a nilpotent endomorphism with Q(Nv,w) = Q(v,Nw) for all v, w ∈ V
then we call (V,F, Q,N) a polarized mixed C-Hodge structure if N(Fa) ⊂ Fa−1 and if the
filtrations induced by F on the monodromy graded pieces grMi V are compatible with the

Lefschetz decomposition of ⊕igr
M
i V with respect to N : grMi V → grMi−2V and furthermore

for i > 0 the primitive part

ker(grMi V
N

i+1

−−−→ grM−i−2V )

endowed with the pairing

grMi V × grMi V → C, (v, w) 7→ Q(v,N
i
w)

and the induced filtration is a C-PHS .
Let us recall how this notion of a C-PHS is related to the more common version of a

R-PHS. Let V be a finite dimensional K-vector space with K ∈ {Q,R}, F a finite decreasing
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filtration on VC = V ⊗K C and Q◦ : V × V → K a (−1)w-symmetric perfect pairing with
w ∈ Z. We call the triple (V,F, Q) a polarized K-Hodge structure (K-PHS) of weight w if

(VC,F, (v, w)
Q7→

√
−1

−w
Q◦(v, w))

is a C-PHS and (Fa)⊥ = F
w+1−a

for all a ∈ Z, where the orthogonal complement is with
respect to the Hermitian pairing Q.

A polarized variation of C-Hodge structure (C-PVHS) on a complex manifold X is given
by a triple (L,F, Q), where L is a complex local system on X, F ⊂ L ⊗C OX is a finite
filtration by holomorphic subbundles and Q : L × L → C is a Hermitian perfect pairing,
where we assume that the Hodge-Riemann relations at each point of X are statisfied and
Griffiths transversality ∇(Fa) ⊂ Ω1

X(Fa−1) holds.

Theorem 5.1. Let X be a quasi-projective connected complex manifold. Let (L,F, Q) and
(L′,F′, Q′) be C-PVHS. The following properties hold:

i) if ϕ : L ∼−→ L′ is an isomorphism of local systems such that for one point x ∈ X
the Hodge filtrations are preserved, i.e. ϕx(F

a
x) = (F′)ax for all a ∈ Z, and such that

ϕ∗(Q′) = Q, then ϕ is an isomorphism of C-PVHS;
ii) if L is simple then Q is unique up to a factor in R>0 and F is unique up to shift.

Moreover, there are no gaps in F, i.e. we cannot have grFi = 0 and grFj , gr
F
k ̸= 0 for

j < i < k;
iii) there is a canonical structure of a C-PHS on H0(X,L) such that H0(X,L) → Lx is

a polarized Hodge substructure for all x ∈ X;
iv) there are C-PVHS (Li,Fi, Qi) for 1 ≤ i ≤ s with Li simple local systems such that

the canonical map⊕
i

(Li,Fi, Qi)⊗C H
0(X,L∨

i ⊗ L) ∼−→ (L,F, Q)

is an isomorphim in C-PVHS. Here H0 is endowed with the C-PHS from iii);
v) if L underlies a Z-local system then the algebraic monodromy group Mo(L, x)0 is

semi-simple and the monodromy at infinity of L is quasi-unipotent.

The theorem is classical [Del87].

Proposition 5.2. Let f : Y → X be either a finite étale covering or a Zariski open embeding
(both with dense image) of quasi-projective complex manifolds. Let L be a C-local system
on X. Then L underlies a C-PVHS if and only if f∗L underlies a C-PVHS.

Proof. The case of a finite étale covering is a consequence of Theorem 5.1(iv) which implies
that for L1 ⊂ L2 an inclusion of complex local systems such that L2 underlies a C-PVHS
then L1 underlies a C-PVHS.

The case of a Zariski open embeding follows from the nilpotent orbit theorem [CK89,
(2.1)]. □

Let us recall for later reference one of the main results about degeneration of pure C-
Hodge structure. Let L be a unipotent complex local system on ∆× = ∆\{0} with ∆ = {z ∈
C | |z| < 1}. Let Q : L× L → C be a Hermitian perfect pairing. Let E be the holomorphic
bundle on ∆ which is the Deligne extension of the flat bundle L⊗O∆× [Del70, Prop. II.5.2].
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Let N : E0 → E0 be the residue of the flat logarithmic connection ∇ : E → 1
zΩ

1
X(E) on ∆.

By continuous extension, Q induces a pairing E × E → C∞ which restricts over the point
0 ∈ ∆ to the canonical Hermitian pairing Q0 : E0 × E0 → C. Note that our N differs from
the one in [SS22] by a sign.

Proposition 5.3. Let F ⊂ E|∆× be a Griffiths transversal finite filtration by holomorphic
subbundles. Then the following are equivalent:

1) for 0 < |z| ≪ 1 the filtration Fz is a pure Hodge structure polarized by Qz;
2) F continuously extends to E and its fibre over 0 is a mixed Hodge structure polarized

by N and Q0.

Proof. 1) ⇒ 2) is due to Schmid, see [CK89, (2.1)].
2) ⇒ 1) is shown in [CK89, Thm. 2.8] even in the several variable case. □

Remark 5.4. There is a version of Proposition 5.3 with continuous dependence on param-
eters. We later need 2) ⇒ 1) with parameters, i.e. if the family of holomorphic filtrations
(F(s))s∈V of E depends continuously on parameters s ∈ V with V ⊂ Rm open, 0 ∈ V , and
for every s ∈ V the filtration F0(s) is a mixed Hodge structure on E0 polarized by N and
Q0, then there exists ϵ > 0 and a neighborhood U ⊂ V of 0 such Fz(s) is a pure Hodge
structure polarized by Qz for 0 < |z| < ϵ and s ∈ U , see the argument in [CK89, Sec. 4]
which extends immediately to the parametrized situation.

Remark 5.5. Note that the classical literature, see [CK89], the degeneration of Hodge
structure, and as a consequence Deligne’s semi-simplicity theorem, are studied for R-PVHS
with quasi-unipotent monodromy at infinity. Deligne remarked that the theory generalizes
to arbitrary C-PVHS [Del87, 1.11]. Recently, this was documented in the one variable case
in [SS22].

5.2. Characterization of a polarized variation of C-Hodge structure via the non-
abelian Hodge correspondence. Let X be a projective complex manifolds (with fixed
ample line bundle). Let D ⊂ X be a simple normal crossings divisor with complement X.
We recall following Simpson [Sim92, Lem. 4.1] and T. Mochizuki [Moc06, 10.1] a citerion
for a simple complex local system L on X to underly a C-PVHS. Let E be the C∞-bundle
underlying L with its flat connection ∇.

T. Mochizuki and Jost–Zuo construct a tame, purely imaginary pluri-harmonic metric h
on E which is unique up to a factor in R>0, see [Moc07, Part 5] and [Moc09]. This allows
us to write ∇ = ∂E+∂E+θ+θ†. Here θ is a (1, 0)-form with values in End(E) with adjoint
θ† with respect to h and ∂E + ∂E is a connection compatible with h. The associated Higgs
bundle (E, ∂E , θ) has a canonical parabolic structure at infinity such that θ has only simple
poles and purely imaginary eigenvalues of its residues.

For λ ∈ S1 = {z ∈ C | |z| = 1} one considers the flat bundle (E,∇λ) with associated local
system Lλ, where ∇λ = ∂E + ∂E + λθ + λθ†, see [Moc09, 2.2.1].

Proposition 5.6. Fix λ ∈ S1 which is not a root of unity. Then L ∼= Lλ if and only if L
underlies a C-PVHS.
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Proof. The Higgs bundle of Lλ is (E, ∂E , λθ) with the same parabolic structure as the Higgs
bundle of L. So L ∼= Lλ if and only if there is an isomorphism of Higgs bundles

ϕ : (E, ∂E , θ)
∼−→ (E, ∂E , λθ)

compatible with the parabolic structure. Decomposing E according to generalized eigenspaces
of ϕ induces an h-orthogonal bundle decomposition E = E1 ⊕ · · · ⊕ Er with θ(Ei) ⊂
Ω1
X(Ei−1), which itself corresponds to a C-PVHS as in [Sim92, Lem. 4.1]. □

5.3. The Mumford-Tate group of a polarizable variation of Q-Hodge structure.
To a polarizable Q-Hodge structure (V,F) of weight w one associates the Mumford-Tate
group MT(V,F). It can be characterized as the smallest linear algebraic subgroup of GL(V )

over Q the complex points of which comprise the maps ϕλ : VC → VC defined by λiλ
j
on

Fi ∩ F
j
, where i+ j = w. In particular MT(V,F) is connected.

Let nowX be a quasi-projective complex manifold and let (L,F) be a polarizable variation
of Q-Hodge structure on X. We also assume that L underlies a Z-local system, which
however should not be necessary for most arguments in view of Remark 5.5.

Proposition 5.7. The Mumford-Tate group MT(Lx, Fx) normalizes the Zariski closure of
the monodromy group Mo(L, x) in GL(Lx).

A slightly weaker result has been observed in [And92, Sec. 5]. We argue in terms of
Tannaka groups.

Remark 5.8. The Mumford-Tate group MT(V,F) and the group Mo(L, x) are Tannaka
groups in view of the following observation. Let V be a Q-vector space and G ⊂ GL(VC) a
abstract subgroup. There is an associated Tannaka category T. Its objects are all subquo-
tients of V ⊗n ⊗ (V ∨)⊗m preserved over C by the G-action and its morphisms are Q-linear
maps compatible with the G-action over C. Then the Tannaka group Tann(T) with respect
to the obvious fibre funtor over Q is the same as the smallest linear algebraic subgroup of
GL(V ) over Q such that its complexification contains G.

Proof of Proposition 5.7. Recall that polarizable variations of mixed Q-Hodge structure
form a Tannaka category for which every point x ∈ X induces a fibre functor. We think of
any polarizable pure variation of Q-Hodge structure as an object of this Tannaka category.
We denote by Tann((L,F), x) ⊂ GL(Lx) its Tannaka group with respect to the fibre functor
at x. Note that Mo(L, x) is the Tannaka group of L in the Tannaka category of Q-local
systems, and that by Remark 5.8 the Tannaka group of a polarizable Q-Hodge structure is
its Mumford-Tate group. The inclusion of Tannaka groups

Mo(L, x) ⊂ Tann((L,F), x)

which corresponds to the functor of Tannaka categories defined by forgetting the Hodge
filtration is normal by [dAE22, Cor. 1.2] and [EHS07, Thm. A.1]. The restriction to x of a
variation of Hodge structure induces an inclusion of Tannaka groups

MT(Lx,Fx) ⊂ Tann((L,F), x).(5.1)

This finishes the proof.
□
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We define theMumford-Tate group of the polarizable variation of Q-Hodge structure (L,F)
at x ∈ X as the product

MT((L,F), x) = Mo(L, x)0 ·MT(Lx,Fx) ⊂ GL(Lx),

which is a connected subgroup as by Proposition 5.7 the second factor normalizes the first
factor.

For two polarizable variations of Q-Hodge structure (L1,F1) and (L2,F2) a Q-linear map
ψ : L1,x → L2,x induces a morphism of variations of Hodge structure if and only if ψ is
a morphism of Hodge structures at x and if ψ commutes with the action of π1(X,x), see
Theorem 5.1(i). So by Remark 5.8 we deduce that MT((L,F), x) is the neutral component
of

Tann((L,F), x) = Mo(L, x) ·MT(Lx,Fx) ⊂ GL(Lx).

As an isomorphism of two fibre functors induces an isomorphism of Tannaka groups this
shows that the isomorphism GL(Lx) ∼= GL(Ly), induced by a path between x, y ∈ X, gives
us an isomorphism MT((L,F), x) ∼= MT((L,F), y). In this sense the Mumford-Tate groups
at different points of X of a variation of Hodge structure on X form a local system, i.e. up
to isomorphism it is independent of the choice of the base point.

Remark 5.9. Assume that L underlies a Z-local system. The set Σ of points x ∈ X with
MT(Lx,Fx) ̸= MT((L,F), x), or equivalently with Mo(L, x)0 ̸⊂ MT(Lx,Fx), is called the
Hodge-exceptional locus. Its complement is called the Hodge-generic locus. By [CDK95]
and [Del72, Prop. 7.5], Σ is a countable union of proper closed algebraic subsets of X; for
an o-minimal proof see [BKT20].

5.4. Reminder on Simpson’s non-abelian Hodge locus. In this section we formulate a
generalization of Simpson’s results in [Sim97, Sec. 12] to good holomorphic maps f : X → S
in the sense of Section 1. In contrast to Simpson we formulate the result only “on the Betti
side” of the non-abelian Hodge correspondence.

Let f : X → S be a good holomorphic map. As recalled in Subsection 2.2, f is a
topological fibration, so the sheaf of pointed sets R1f∗GLr(C) is a local system on S, with
fibre H1(Xs,GLr(C)), the set of isomorphism classes of rank r complex local systems on
Xs. Its associated étale space is a covering ϵ : T → S ([Bou16, I.86 Prop. 9]). We endow T
with the usual complex manifold structure. As a topolocial space T can be constructed as

T =
(
S̃ ×H1(Xs0 ,GLr(C))

)
/π1(S, s0)

where S̃ → S is a universal covering and the π1(S, s0)-action is diagonal, for a fixed base
point s0 ∈ S.

We write [Ls] ∈ H1(Xs,GLr(C)) for the isomorphism class of a local system Ls on Xs.
Simpson defines the non-abelian Hodge locus or Noether-Lefschetz locus NL = NL(f, r) of
rank r as the subset of T consisting of those [Ls] such that Ls underlies a (Z)C-PVHS on
Xs.

Simpson [Sim97, Thm. 12.1] proved the following theorem for f proper. The extension
to non-proper f is explained in Appendix A.

Theorem 5.10. For a good holomorphic map f : X → S the non-abelian Hodge locus
NL(f, r) is a closed analytic subset of T which is finite over S.
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In fact the finiteness part of Theorem 5.10 is due to Deligne [Del87].

6. Proof of the main results

6.1. Setting. Let f : X → S be a good holomorphic map which satisfies one of the condi-
tions I) - III) from Section 1.

In case III) the existence of a continuous section implies that π2(X, s) → π2(S, s) is
surjective, so by the exact sequence (2.1) the map π1(Xs, x) → π1(X,x) is injective. From
Propositions 2.5 and 2.6 it follows that under the assumptions I) or II) the map π1(Xs, x) →
π1(X,x) is injective as well. Furthermore, the map of profinite completions ̂π1(Xs, x) →
̂π1(X,x) is injective by using Proposition 2.2 in case III) and Propositions 2.5 and 2.6 in

cases I) and II).

6.2. Proof of Theorem 1.4 and Corollary 1.5. Theorem 1.4 is a direct consequence of
Theorem 4.1 by using the equivalence between representations of the fundamental group
and local systems.

In order to deduce Corollary 1.5 one only has to observe that semi-simple representations
of surface groups which have finite orbit under the mapping class group, or what is the
same finite orbit under the fundamental of the moduli of those Riemann surfaces, have
semi-simple algebraic monodromy groups. This follows from Lemma 4.2 and the fact that
in rank one such a representation has finite monodromy, see e.g. [BKMS18, Thm. 1.1].

6.3. Proof of Theorem 1.1. The implications 3) ⇒ 2) ⇒ 1), 3) ⇒ 4) and 4) ⇒ 5) are
clear.

We prove 1) ⇒ 3). By Theorem 5.1(v) the algebraic monodromy group of Ls is semi-
simple, so we can apply Theorem 1.4 to deduce the existence of an algebraically isomon-
odromic extension L of Ls, which can be defined over Z. The polarization Qs essentially
extends uniquely to a perfect pairing Q : L ⊗ L → K. In order to show that the Hodge
filtration Fs extends uniquely to a filtration of L⊗COX by holomorphic subbundles Fi which
make (L,F, Q) a K-PVHS we may assume without loss of generality that K = C. Let

(6.1) L ∼=
⊕
i

Li ⊗C Vi

be the canonical decomposition, where Li are non-isomorphic simple local systems. By
Lemma 4.9 we obtain that Li|Xs is simple for all indices i, after replacing S by a finite
étale covering. Then by Theorem 5.1(iv) there are C-PVHS (Li|Xs , F(i),s, Q(i),s) and C-PHS
(Vi, F(i),V , Q(i),V ) such that (Ls, Fs, Qs) is the direct sum of their tensor products via the
isomorphism (6.1).

With the notation of Proposition 5.6 for any λ ∈ S1 we essentially obtain that Lλ
i
∼= Li as

such an isomorphism exists after restricting to Xs and as admissible extensions are essen-
tially unique by Proposition 4.6. So by Proposition 5.6 we see that Li underlies a C-PVHS
(Li, F(i), Q(i)) which by Theorem 5.1(ii) can be chosen to extend (Li|Xs , F(i),s, Q(i),s). We
can finally endow L with the C-PVHS induced via the isomorphism (6.1).

We finally prove 5) ⇒ 1), the implication 4) ⇒ 1) is analogous and we omit the details.

Using Artin approximation [Art69] we can approximate the formal filtration F̂ by a formal
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filtration with the same fibre over s but which extends to a (relative) Griffiths transversal
filtration by subbundles F of the isomonodromic extension

(E∆,∇ : E∆ → Ω1
X∆/∆(E∆))

over X∆, where ∆ ⊂ S is a suitable contractible open neighborhood of s. Let L∆ be
the extension of the local system L to X∆, let similarly Q∆ denote the extension of the
polarization. As in Appendix B the set of t ∈ ∆ such that (L∆|Xt ,F|Xt , Q∆|Xt) is a C-PVHS
is open in ∆, here we need the properness of f . By the same reasoning as in the proof of
Theorem 3.1 the connected component of the non-abelian Hodge locus NL(f, r) containing
[Ls], see Subsection 5.4, is a finite étale covering of S. So the monodromy orbit of [Ls] is
finite.

6.4. Proof of Remark 1.3. By the argument in Subsection 6.3 one can find an extension
of variations of Hodge structure as in Theorem 1.1(3) which is algebraically isomonodromic,
i.e. such that

Mo(Ls, x)
0 ∼−→ Mo(L, x)0

is an isomorphism. Then by Subsection 5.3 we deduce an isomorphism of Mumford-Tate
groups of variations

MT((Ls, Fs), x)
∼−→ MT((L, F ), x).

This shows that the Hodge-generic locus of (L, F ) intersected with Xs coincides with the
Hodge-generic locus of (Ls, Fs). But the latter is non-empty by Remark 5.9. This finishes
the proof.

Appendix A. Non-abelian Hodge loci (after Simpson)

In this appendix we explain how to generalize Simpson’s proof of Theorem 5.10 from
the proper case to good holomophic maps f . We assume in the following that f : X → S
is good holomorphic, where S can be an arbitrary complex manifold. As the statement is
local on S, we can fix s0 ∈ S and allow ourselves to replace S by an open neighborhood of
s0. We assume without loss of generality that S is contractible.

Simpson observes that Deligne’s proof of his finiteness theorem [Del87] immediately gen-
eralizes to the following proposition.

Proposition A.1. After possibly shrinking S around s0 there are only finitely many leaves
of the (trivial) fibration T → S which meet NL(f, r).

In view of Proposition A.1 we can fix a C-local system L on X of rank r which underlies
a Z-local system. Then to prove Theorem 5.10 it is sufficient to show that the set of s ∈ S
such that Ls underlies a C-PVHS is closed analytic in S.

A reduction.
We reduce to f of relative dimension one and L unipotent alongX\X. The first condition

can be achieved by choosing a sufficiently generic relative hyperplane section Y ↪→ X after
shrinking S around s0. By Bertini, Y → S is then good holomorphic and Remark 1.2 tells
us that for dim(Xs) > 1

Ls underlies a C-PVHS ⇔ Ls|Y underlies a C-PVHS
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for any s ∈ S. After performing this Bertini argument successively we can assume without
loss of generality that f is of relative dimension one.

By Theorem 5.1(v) the monodromy of L along X \ X is quasi-unipotent. By pullback
along a finite ramified covering of X we can reduce to the case in which this monodromy
is unipotent and then conclude for the original X using Proposition 5.2. This argument
also allows us to assume that X \X consists of images of finitely many disjoint sections of
X → S.

Fixing Hodge numbers.
By Theorem 5.1(iv) we have to show that for each simple constituent M of L the set of

s ∈ S such that Ms underlies a C-PVHS is closed analytic in S.
We fix such a simple constituent M and a Hermitian perfect pairing Q : M × M → C,

which is unique up to a factor in R×. In view of Theorem 5.1(ii) there are only finitely
many numbers hi ≥ 0 (i ∈ Z) which can occur up to shift as Hodge numbers of a C-PVHS
on Ms for some s ∈ S. In the following we fix such numbers hi. For each component E of
X \X we also fix numbers hiE,j ≥ 0 for |j| ≤ r such that hi =

∑
j h

i
E,j for all i ∈ Z. Clearly,

also here there are only finitely many choices. Let NLM be the set of s ∈ S such that Ms

underlies a C-PVHS with Hodge numbers hi and polarization Q|Xs and such that the j-th
monodromy graded piece grMj of Ms[E] has Hodge numbers hiE,j for all components E of

X \X and j ∈ Z. Here we use the notation for the monodromy filtration as in [?, 1.7.8].
We have now reduced the proof of Theorem 5.10 to the construction of a proper holomor-

phic map of analytic spaces ψ◦ : G◦ → S such that NLM = im(ψ◦), since then we conclude
by Remmert’s proper mapping theorem. Let E be the Deligne extension of M⊗C OX to a
holomorphic bundle on X.

Let Gr → S be the projective map of analytic spaces, where Gr is the Grassmannian a
point of which consists of s ∈ S together with a filtration by holomorphic subbundles Fi ⊂ Es
with rank(Fi/Fi+1) = hi for all i ∈ Z. Let G ↪→ Gr be the closed analytic subset consisting
of those filtrations on fibres of f which satisfy Griffiths transversality ∇Fi ⊂ Ω1

Xs
(Fi−1) and

such that for each point {x} = Es at infinity and for each j ∈ Z the Hodge numbers of the
filtrations induced on the monodromy graded pieces satisfy rank(griFgr

M
j Ex) = hiE,j for all i

and j.

Claim A.2. The set G◦ consisting of pairs (s,F) ∈ G which define a polarizable variation
of C-Hodge structure on Xs is open in G.

Proof of Claim A.2. Note that the points (s,F) of G in the claim correspond to those filtra-
tions F such that there exists a perfect Hermitian pairing Qs for which the Hodge-Riemann
relations are satisfied at every point of Xs, see Subsection 5.1. For a variation of complex
Hodge structure the Hodge-Riemann relations are an open condition at every point of X,
so the claim is easy in case f is proper as then an open neighborhood of a fibre Xs of f
contains the preimage of an open neighborhood of s in S.

When f is not proper the argument is more complicated. Consider a sequence (s(n),F(n)) ∈
G converging to (s,F) ∈ G◦. In the sequel we fix local coordinates for the divisors at infinity
on X in order to be able to speak about the limiting Hodge structure. Then by Proposi-
tion 5.3 we see that Fx for {x} = Es is the limiting mixed Hodge structure polarized by the
induced pairing Qx : Ex × Ex → C and the nilpotent endomorphism Nx on Ex.
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So by the openness of the mixed Hodge locus in the Grassmannian for n ≫ 0 also
F(n)Es(n)

is a polarized mixed Hodge structure with respect to the polarization induced by

N and Q. Then by Proposition 5.3 and Remark 5.4 there is an open neighborhood Ux of
x ∈ X such that F(n) is a polarizable pure variation of Hodge structure on Ux ∩Xs(n) for
n≫ 0.

A similar open neighborhood Ux of x ∈ X exists for each x ∈ Xs as explained at the
beginning of the proof. By compactness of Xs there is finite union U of such Ux with
Xs ⊂ U . Then for n ≫ 0 we obtain that Xs(n) ⊂ U and that F(n) is a polarizable pure
Hodge structure at each point of Xs(n). □

Claim A.3. The map G◦ → S is proper.

In the proof of Claim A.3 we need the following continuity result for a fibrewise pluri-
harmonic metric due to T. Mochizuki [Moc09, Prop. 4.2]. We note that detM is finite
by Theorem 5.1(v), so we can fix a positive flat Hermitian metric hdet on detM, which is
automatically pluri-harmonic.

Proposition A.4. Let h : (M ⊗ C∞
X ) × (M⊗ C∞

X ) → C∞
X be the unique fibrewise pluri-

harmonic, tame and purely imaginary metric with determinant hdet. Then h is continuous.

Proof of Claim A.3. Consider a sequence (s(n),F(n)) ∈ G◦ such that s(n) converges to
s ∈ S. We have to show that a subsequence converges in G◦. By the properness of the
Grassmannian we can assume that (s(n),F(n)) converges to (s,F) ∈ G. We have to prove
that (s,F) ∈ G◦, i.e. we have to check the Hodge-Riemann relations at all points x ∈ Xs.
Note that the orthogonal complement (Fix)

⊥ of Fix in Lx with respect to Qx and with respect
to the fibrewise pluri-harmonic metric h from Proposition A.4 coincide by continuity since
they coincide for F(n)i by the description of the metric h as a Hodge metric in terms of Q
on the fibre over s(n). As h is positive definite we deduce that Lx = Fix ⊕ (Fix)

⊥. In other
words Qx restricted to Fi is a perfect pairing. For the same reason (−1)iQx restricted to
Fix ∩ (Fi+1

x )⊥ is positive definite as by continuity it agrees with hx there up to a positive
factor. □

Appendix B. Extensions of representations of profinite groups (after
Simpson)

Let E be a finite field extension of Qℓ. Let H ⊂ G be a closed normal subgroup of a
profinite group G. Set Γ = G/H. Let ρH : H → GLr(E) be a continuous representation
and denote by [ρH ] the isomorphism class of ρH . Then Γ acts on the set of isomorphism
classes of continuous representations H → GLr(E) by conjugation.

Lemma B.1. If ρH is semi-simple then the stabilizer group Γ[ρH ] is closed in Γ.

For a proof of the lemma see for example [Zoc24, Sect. 5] in which the author endows
the space of isomorphism classes of ℓ-adic representations of rank r with a uniform ℓ-adic
topology on which the action of Γ is continuous.

We say that a property related to G holds essentially if it holds after replacing G by an
open subgroup G′ with H ⊂ G′.
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Proposition B.2. If ρH is absolutely simple, det(ρH) is finite and Γ fixes [ρH ], there
essentially exists a unique extension of ρH to a continuous representation ρ : G → GLr(E)
with finite determinant.

This result originates in the work of Simpson [Sim92, Proof of Thm. 4]. Variants of it
can be found in [EG18, Proof of Prop. 3.1] and [Lit21, Prop. 3.1.1]. We are not aware of
a reference for Proposition B.2 in the literature, so we sketch an argument the details of
which can be found in Hugo Zock’s master thesis [Zoc24].

Proof sketch. For M ∈ gln(E) and P = [W ] ∈ PGLr(E) we denote the conjugation action
by PM = WMW−1. For each g ∈ G there exists a unique Pg ∈ PGLr(E) with PgρH(h) =
ρH(ghg−1). We claim that the map g 7→ Pg is continuous. In order to check this we have to
show that for anyM ∈ gln(E), the map g 7→ PgM is continuous. As ρH is absolutely simple,
every such matrix M is an E-linear combination of matrices ρH(h) for varying h ∈ H, so it
is sufficient to observe that for any h ∈ H the map

g 7→ PgρH(h) = ρH(ghg−1)

is continuous. So we see that we obtain a continuous extension

Pρ : G→ PGLr(E) of PρH : H → PGLr(E).

In order to prove essential uniqueness in Proposition B.2 let ρ and ρ̃ be two lifts of Pρ
to two continuous representations of G with finite determinants and which agree on H.
Then τ(g) = ρ(g)ρ̃(g)−1 ∈ K× defines a continuous homomorphism τ : Γ → K× with finite
image. We deduce ρ = ρ̃ after restricting to the kernel of τ . This proves the unicity part.
See Proposition 4.6 for a similar method.

For the existence part in Proposition B.2 we first check that it is sufficient to construct
ρ with values in GLr(Ẽ), where Ẽ is a finite Galois extension of E. Indeed, then for any

η ∈ Gal(Ẽ/E) the extensions η ·ρ and ρ are essentially equal by the uniqueness part. So, as

Gal(Ẽ/E) is finite, we can replace G by an open subgroup containing H so they are equal
for all η, i.e. ρ takes values in GLr(E).

Consider a finite extension Ẽ of E in which every element of E× is an r-power of an
element of Ẽ×. Replace E by Ẽ. Then Pρ has values in the closed subgroup PSLr(E) of
PGLr(E). Consider the strict exact sequence of topological groups

1 → µr(E) → SLr(E) → PSLr(E) → 1

in which the surjection on the right has a continuous splitting in topological spaces. So the
standard cocycle argument, see [Zoc24, App. B], gives an exact sequence

H1
cont(G, SLr(E)) → H1

cont(G,PSLr(E))
Ob−−→ H2

cont(G,µr(E)).

As the restriction of Ob(Pρ) to H vanishes, the Hochschild-Serre spectral sequence implies
that Ob(Pρ) lies in a subgroup of H2

cont(G,µr(E)) involving Ha(Γ, H2−a(H,µr(E))) for
a = 1, 2 only. Those two groups die on a finite index subgrouop of Γ. So we can assume
that Ob(Pρ) = 0.

So we can lift Pρ to a continuous representation ρ̌ : G→ SLr(E). Now

τ : H → E×, τ(h) = ρH(h)ρ̌(h)−1 ∈ E×
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is a continuous homomorphism with values in µN (E) for some N > 0 by the condition on
finite determinants. Note that τ is fixed by the G-action by conjugation. Using the exact
inflation-restriction sequence

H1
cont(G,µN (E)) → H1

cont(H,µN (E))G → H2
cont(Γ, µN (E))

we see that after replacing again G by an open subgroup G′ with H ⊂ G′ we can lift τ to a
continuous homomorphism τ̌ : G → µN (E). Finally, we deduce that ρ = τ̌ ρ̌ : G → GLr(E)
is the requested continuous extension of ρH . □
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Verlag, 1–498 +i–xv.

[CK89] Cattani, E., Kaplan, A.: Degenerating variations of Hodge structure, Astérisque 179–180 (1989),
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[Sim97] Simpson, C.: The Hodge filtration on nonabelian cohomology, Algebraic geometry–Santa Cruz

1995, 217–281. Proc. Sympos. Pure Math., 62, Part 2 American Mathematical Society, Provi-
dence, RI, 1997.

[Zoc24] Zock, H.: A local version of Kashiwara’s conjecture, Master thesis, University of Regensburg,
2024.

Freie Universität Berlin, Berlin, Germany; Harvard University, Cambridge, USA
Email address: esnault@math.fu-berlin.de

Fakultät für Mathematik, Universität Regensburg, 93040 Regensburg, Germany
Email address: moritz.kerz@mathematik.uni-regensburg.de

https://arxiv.org/pdf/2409.02234
https://arxiv.org/abs/2206.08166

	1. Introduction
	2. Profinite completion of groups and Artin K1 spaces
	2.1. Group theory
	2.2. Geometric examples

	3. An integral version of Deligne's Fixed Part Theorem
	3.1. Integral Fixed Part Theorem

	4. Extensions of representations of discrete groups
	4.1. Main group theoretic result
	4.2. Admissible representations
	4.3. Algebraically isomonodromic representations

	5. Reminder on variations of Hodge structure
	5.1. Polarized variations of C-Hodge structure
	5.2.  Characterization of a polarized variation of C-Hodge structure via the non-abelian Hodge correspondence
	5.3. The Mumford-Tate group of a polarizable variation of Q-Hodge structure
	5.4. Reminder on Simpson's non-abelian Hodge locus

	6. Proof of the main results
	6.1. Setting
	6.2. Proof of Theorem 1.4 and Corollary 1.5
	6.3. Proof of Theorem 1.1
	6.4. Proof of Remark 1.3

	Appendix A. Non-abelian Hodge loci (after Simpson)
	Appendix B. Extensions of representations of profinite groups (after Simpson)
	References

