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Abstract. If in a given rank r, there is an irreducible complex local system
with torsion determinant and quasi-unipotent monodromies at infinity on a

smooth quasi-projective variety, then for every prime number `, there is an

absolutely irreducible `-adic local system of the same rank, with the same de-
terminant and monodromies at infinity, up to semi-simplification. A finitely

presented group is said to be weakly integral with respect to a torsion character

and a rank r if once there is an irreducible rank r complex linear represen-
tation, then for any `, there is an absolutely irreducible one of rank r and

determinant this given character, which is defined over Z̄`. We prove that this

property is a new obstruction for a finitely presented group to be the funda-
mental group of a smooth qusi-projective complex variety. The proofs rely on

the arithmetic Langlands program via the existence of Deligne’s companions

(L. Lafforgue, Drinfeld) and the geometric Langlands program via de Jong’s
conjecture (Gaitsgory for ` ≥ 3). We also define weakly arithmetic complex

local systems and show they are Zariski dense in the Betti moduli. Finally we
show that our method gives an arithmetic proof of the Corlette-T. Mochizuki

theorem, proved using tame pure imaginary harmonic metrics, which shows

the pull-back by a morphism between two smooth complex algebraic varieties
of a semi-simple complex local system is semi-simple.

1. Introduction

Let X be a smooth quasi-projective variety defined over the field of complex
numbers. Let r be a positive natural number. Let L be a rank 1 complex local
system on X of finite order. We fix a smooth projective compactification X ↪→ X̄
with boundary divisor X̄ \ X being a strict normal crossings divisor, called in
the sequel “good compactification”. For each irreducible component Di of X̄ \X,
we fix a quasi-unipotent conjugacy class Ti ⊂ GLr(C). For any conjugacy class
T ⊂ GLr(K), where K is an algebraically closed field of characteristic 0, we denote
by T ss ⊂ GLr(K) the conjugacy class of its semi-simplification.

Theorem 1.1 (Weak integrality property with respect to (r,L, Ti)). Assume there
is an irreducible topological rank r complex local system LC with determinant L and
monodromies in Ti at infinity. Then for any prime number `, there is an `-adic
local system L` which

1) has rank r and is irreducible over Q̄`,
2) has determinant L,
3) has monodromies Ti,` at infinity such that T ssi = T ssi,`.

During the preparation of this work, the second named author was supported by the Samuel
Eilenberg Chair of Columbia University. The excellent working conditions and the friendly atmo-
sphere are gratefully acknowledged.
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For example, if X is smooth projective and LC is an irreducible rank r local
system with trivial determinant, then Theorem 1.1 says that for all `, there is an
irreducible rank r `-adic local system with trivial determinant.

Forgetting the conditions at infinity, if we fix a finitely presented group Γ, a
natural number r ≥ 1, and a rank 1 torsion complex character χ : Γ → C×, we
pose the

Definition 1.2. Γ has the weak integrality property with respect to (r, χ) if, as-
suming there is an irreducible representation ρ : Γ → GLr(C) with determinant
χ, then for any prime number `, there is a representation ρ` : Γ → GLr(Z̄`) with
determinant χ which is irreducible over Q̄`.

This property depends only on the isomorphism class of Γ. In [BBV22], the au-
thors study the SL(2,C)-character variety of irreducible representations of a resid-
ually finite group Γ0 defined in [DS05, Theorem 4], with 2 generators {a, b} and one
relation b2 = a2ba−2. They in particular show that it is 0-dimensional, defined over
Q, with only two conjugate points, which correspond to irreducible dense complex
representations, which are not integral at the prime 2. See Section 7.4. We conclude
that Γ0 does not have the weak integrality property with respect to (2, I) where I
is the trivial character.

Theorem 1.3 (Obstruction). If X is a smooth complex quasi-projective variety,
then Γ = π1(X(C)) satisfies the weak integrality property for any pair (r, χ). In
particular, the group Γ0 above cannot be the topological fundamental group of a
smooth complex quasi-projective variety.

Our obstruction for an abstract finitely presented group Γ to be the topological
fundamental group of a smooth complex quasi-projective seems to be of a new kind.
We do not have to specify a finite set of conjugacy classes in Γ which would be the
local monodromies at infinity. See Section 4.1 for the proof of Theorem 1.3.

Ultimately, as we shall see below, the proof of Theorem 1.1 relies on the arith-
metic Langlands program as proven by L. Lafforgue [Laf02], on the existence of
`-adic companions shown by him in dimension 1 and Drinfeld [Dri12] in higher di-
mension, and on de Jong’s conjecture [dJ01], proved for ` ≥ 3 by Gaitsgory [Gai07],
using the geometric Langlands program.

We now explain in which framework Theorem 1.1 is located and proven. Let
S be an affine scheme of finite type over Z with O(S) ⊂ C, such that a good
compactification X ↪→ X̄ and a given complex point x ∈ X have a model over S.
This means that we have a relative good compactification XS ↪→ X̄S over S such
that X̄S \XS is a relative normal crossings divisor, we have an S-point xS of XS

whose base change to Spec (C) recovers x ∈ X ↪→ X̄. We also assume the orders of
L and of the eigenvalues of the Ti are invertible on S. For any closed point s ∈ |S|
of residue field Fq of characteristic p > 0, with a F̄p-point s̄ above it, we denote by

spC,s̄ : π1(XC, xC)→ πt1(Xs̄, xs̄)

the continuous surjective specialization homomorphism to the tame fundamental
group [SGA1, Exposé XIII 2.10, Corollaire 2.12]. Precomposing with the profinite
completion homomorphism

π1(X(C), x(C))→ π1(XC, xC)
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from the topological fundamental group to the étale one over C yields the homo-
morphism

sptop
C,s̄ : π1(X(C), x(C))→ πt1(Xs̄, xs̄).

This enables us to consider the topological pull-back (sptop
C,s̄)
∗(L`,s̄) of any tame `-

adic local system L`,s̄ on Xs̄, in particular of those L`,s̄ which are arithmetic, that
is defined over XFq′ for a finite extension Fq → Fq′ ⊂ F̄p, as in [EG18, Section 3].

The topological pull-back (sptop
C,s̄)
∗(L`,s̄) is defined over Z̄`. We prove

Theorem 1.4. If there is one (resp. infinitely many pairwise non-isomorphic) irre-
ducible topological rank r complex local system (resp. systems) LC with determinant
L and monodromies in Ti at infinity, then there is a non-empty open subscheme
S◦ ⊂ S such that for any two closed points s, s′ ∈ |S| of residual characteristics
p 6= p′ it holds:

1) for any prime number ` 6= p there is one (resp. infinitely many pairwise
non-isomorphic) arithmetic local system (resp. systems) L`,s̄ on Xs̄;

2) which has (resp. have) determinant L, with quasi-unipotent monodromies
Ti,`,s̄ at infinity such that T ssi = T ssi,`,s̄;

3) which is (are) irreducible over Q̄`;
4) for ` = p there is one (resp. infinitely many pairwise non-isomorphic) arith-

metic local system (resp. systems) Lp,s̄′ on Xs̄′ with 2),3) where ` is replaced
by p;

5) for any prime number `, the topological pull-backs (sptop
C,s̄)
∗(L`,s̄) (which in

the resp. case are pairwise non-isomorphic) have properties 2) and 3) as
topological local systems.

Theorem 1.4 5) for the non-resp. case immediately implies Theorem 1.1 by con-

sidering the topological pull-backs (sptop
C,s̄)
∗(L`,s̄).

In Theorem 1.4 we can in addition single out specific extra properties for LC and
request that the (sptop

C,s̄)
∗(L`,s̄) keep the same properties.

Theorem 1.5. i) If in Theorem 1.4, we assume that LC is cohomologically

rigid, then we can choose L`,s̄ such that the topological pull-back (sptop
C,s̄)
∗(L`,s̄)

is cohomologically rigid.
ii) If in Theorem 1.4 we assume that the Zariski closure of the monodromy

of LC contains SLr(C), then we can choose L`,s̄ such that the topological

pull-back (sptop
C,s̄)
∗(L`,s̄) has the same property.

Theorem 1.5 i) follows from [EG18, Theorem 1.1] which is Simpson’s integrality
conjecture for cohomologically rigid local systems. Its method of proof, developed
with M. Groechenig, is the starting point of this article. We comment on this in
Remark 6.1. Theorem 1.5 ii) answers positively a question by A. Landesman asked
to us after the second named author lectured on Theorem 1.4 in Harvard in October
2022.

We now describe the method of proof of the non-resp. case of Theorem 1.4, see
Section 2. We make use of the fact that the Betti moduli space MB(X, r,L, Ti)
parametrizing irreducible local systems of rank r with prescribed torsion determi-
nant L and quasi-unipotent monodromies at infinity in Ti is of finite type over a
number ring OK , see Section 2.1. We denote by MB(X, r,L, T ssi ) the disjoint union
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of the finitely many MB(X, r,L, Ti) so the semi-simplification of Ti is T ssi for all
i. The existence of an irreducible rank r complex local system LC is equivalent to
MB(X, r,L, Ti) being dominant over OK . By generic smoothness, the underlying
reduced scheme MB(X, r,L, Ti)red ⊂ MB(X, r,L, Ti) is smooth over OK on some
non-trivial open subscheme. We pick a closed point z in this locus, with residue
field F`m for ` ≥ 3. This defines an F`m-local system on XC. By Grothendieck’s
theory of the specialization of the étale fundamental group of XC to the tame one
in characteristic p > 0, this F`m -local system descends to the mod p reduction XF̄p
for p large prime to `, and as the monodromy is finite, to XFq where q = ps for some
s ∈ N>0. The completion of MB(X, r,L, Ti) at z is identified with Mazur’s defor-
mation space of z keeping the same conditions (L, Ti). We can then apply de Jong’s
conjecture to the effect that z lifts to an `-adic local system L`,F̄p which is artihmetic
and is still absolutely irreducible. We now apply the existence of companions for
any `′ 6= p. This yields arithmetic `′-adic local systems L`′,F̄p on XF̄p with the same
determinant and monodromies at infinity, modulo semi-simplification. Pulling-back
those to X(C) yields a point in MB(X, r,L, T ssi )(Z̄`′). This proves the theorem for
` 6= p. At p we just choose a different specialization to XF̄p′ for p 6= p′.

In the resp. case we do the same replacing MB(X, r,L, Ti) by one component,
dominant over OK , which over C contains infinitely many of them.

For Theorem 1.5 ii), we use in addition to Theorem 1.4 the fact that the existence
of LC with Zariski dense monodromy implies that the locus in MB(X, r,L, Ti)(C)
of complex points with Zariski dense monodromy is Zariski dense, see Section 6.

The method of proof described above invites us to define the notion of a weakly
arithmetic complex local system LC: there is an identification of C with Q̄` such
that the resulting topological local system LQ̄` defined over Q̄` is in fact `-adic
and descends to an arithmetic `-adic local system on some reduction XF̄p mod

p (see Definition 3.1). The method of proof described above enables us to show
that the weakly arithmetic complex local systems with a fixed determinant L are
dense in the Betti moduli space parametrizing irreducible complex local systems
MB(X, r,L) of rank r and determinant L. In fact the proof does not use the
companions in characteristic p > 0, instead it uses the invariance of this locus by
complex conjugation over C, see Theorem 3.5.

To summarize, in Section 2 we prove Theorem 1.1 and Theorem 1.4, non-resp.
case. In Section 3 we define the notion of weakly arithmetic complex local systems
and prove their density in the Betti moduli. In Section 4 we prove Theorem 1.3.
In Section 5 we prove the resp. case of Theorem 1.4. In Section 6 we prove
Theorem 1.5 ii). Finally in Section 7 we make some comments, formulate some
questions, and, as a curiosity, we give a proof of the theorem by Corlette and
T. Mochizuki that a morphism between normal complex varieties respects semi-
simplicity of local systems. The original proof uses the harmonic theory. Our proof
uses de Jong’s conjecture (and not the companions).

Acknowledgements: The article makes use of the companions over a finite field for
a problem on complex local systems. This idea has been developed in [EG20].
We thank Michael Groechenig for the discussions we had at the time, which im-
pacted a whole development afterwards. We thank Alexander Petrov for general
enlightening discussions on his work and ours. We thank Mark Kisin, Aaron Lan-
desman and Will Sawin for interesting questions and answers to ours. We thank
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Emmanuel Breuillard for kindly writing down for us the example documented in
Section 7.4, which shows that our weak integrality property for a finitely presented
group is indeed an obstruction for this group to come from algebraic geometry. We
warmly thank the referee for a thorough, precise and helpful report which helped
us to improve the presentation of our article and correct a mistake in the proof of
Theorem 7.3.

2. Proof of Theorems 1.1 and 1.4, non-resp. case

2.1. The Betti moduli space. Let (X ↪→ X̄, r,Di, Ti,L) be the notation used
in Theorem 1.1. The datum (X, r,L, Ti) defines a number field K and its ring
of integers OK over which L and the eigenvalues of the Ti are defined. There
is an algebraic stack M(X, r,L, Ti) of finite type over Spec (OK) parametrizing
irreducible local systems on X of rank r, with determinant L, and monodromies at
infinity in Ti. See [Dri01, 2.1] where it is denoted by IrrXr , and in [EG18, Section 2]
where the determinant and the conditions at infinity are taken into account, it
is denoted by M . See also the footnote 1. We denote by MB(X, r,L, Ti) the
associated coarse moduli space, and call it the Betti moduli space. In the proof of
the following lemma we will see that it exists and is a separated scheme of finite
type over Spec (OK).

Lemma 2.1. The morphism M(X, r,L, Ti) → MB(X, r,L, Ti) exhibits the source
as a Gm-gerbe over the target.

Proof. Most of the steps in this proof are justified in [WE18] and [EG18]; we
only add arguments for the parts which are not shown there. Choose generators
γ1, . . . , γn for the topological fundamental group Γ = π1(X(C), x(C)). Then there
is a locally closed (closed if the conjugacy classes Ti are semi-simple) subscheme
M� ⊂ (GLr,OK )n with the following property: for any OK-algebra R, the R-points

of M� correspond bijectively to homomorphisms ρ : Γ→ GLr(R) whose associated
local system on X defines an R-point of the stack M(X, r,L, Ti). The correspon-
dence sends ρ to (ρ(γ1), . . . , ρ(γn)). We obtain a morphism M� →M(X, r,L, Ti).
There is an action of the group scheme G = GLr,OK on M� over Spec (OK), and
we have

M(X, r,L, Ti) = [M�/G]

as algebraic stacks. Since M� is of finite type over Spec (OK) the same is true
for M(X, r,L, Ti). The action of G on M� factors through an action of the group
scheme Ḡ = PGLr,OK on M� over Spec (OK). Since for every algebraically closed

field k, every representation ρ : Γ → GLr(k) corresponding to a k-point of M� is
by definition irreducible, we see that the action of Ḡ on M� is scheme theoretically
free. Hence the quotient

MB(X, r,L, Ti) = [M�/Ḡ]

is an algebraic space by [SP, Tag 06PH]. Since M� is of finite type over Spec (OK)
the same is true for MB(X, r,L, Ti). For any scheme T endowed with an action
of Ḡ the morphism [T/G] → [T/Ḡ] is a Gm-gerbe. Although in the rest of the
article we never use anything beyond the facts already proven (at the cost of work-
ing with algebraic spaces in addition to schemes), below we briefly indicate why

1There is a typo defining the irreducibility condition, which on p. 4282 should be tested not
only on geometric generic points but on all geometric points.

https://stacks.math.columbia.edu/tag/06PH
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MB(X, r,L, Ti) is separated and a scheme. This is standard but we have not been
able to find a reference in the literature.

To show that MB(X, r,L, Ti) is separated is equivalent to proving that the action
of Ḡ on M� is closed, i.e., that the morphism Ψ : Ḡ×M� →M�×M� is a closed
immersion. Freeness of the action means that Ψ is a monomorphism. By [SP, Tag
04XV] it suffices to show that Ψ is universally closed. To check this in turn by
[SP, Tag 04XV] it suffices to check the existence part of the valuative criterion for
discrete valuation rings. Unwinding the definitions this boils down to the following:
given a discrete valuation ring R with uniformizer π, residue field k, and fraction
field L, given two homomorphisms ρ1, ρ2 : Γ→ GLr(R) such that ρ̄1 : Γ→ GLr(k)
is irreducible, if ρ1 and ρ2 are isomorphic as representations over L, then ρ1 and ρ2

are isomorphic as representations over R. This follows from the fact that all Γ-ρ1-
invariant lattices in Lr are of the form πnRr, using irreducibility and integrality of
ρi.

By [SP, Tag 03XX] if we can construct a quasi-finite morphismMB(X, r,L, Ti)→ N
to a schemeN , thenMB(X, r,L, Ti) is a scheme. Let Ω ⊂ Γ be a finite subset. Given
γ ∈ Ω we can associate to a representation ρ of Γ the characteristic polynomial
of ρ(γ). This defines a G-invariant morphism M� →

∏
γ∈Ω ArOK and hence a

morphism

MB(X, r,L, Ti)→
∏

γ∈Ω
ArOK

We claim that if Ω is large enough, this morphism is quasi-finite onto its image
and the set of field value points of its fibres is either empty or consists of one
point. This then finishes the proof. Namely, by the Brauer-Nesbit theorem the
isomorphism class of an irreducible representation ρ over an algebraically closed
field k is determined by its character (see for example [Lam91, Theorem 7.20]). On
the other hand, since Γ is finitely generated, the pseudocharacter γ 7→ det(T−ρ(γ))
for any representation ρ of fixed rank r is determined by the values on finitely many
elements of Γ for example by [Che14, Proposition 2.38]. �

2.2. Proof of Theorem 1.4, non-resp. case. Let (S,XS ↪→ X̄S , xS) be as in the
introduction. The existence of a point LC in MB(X, r,L, Ti)(C) in the assumption
of Theorem 1.4 tells us that the structure morphism

ε : MB(X, r,L, Ti)→ Spec(OK)

is dominant. By generic smoothness, there is a non-empty open subscheme M◦ ⊂
MB(X, r,L, Ti)red of the reduced scheme such that

ε|M◦ : M◦ → Spec(OK)

is smooth, dominant, and has values in Spec(OK)◦ where Spec(OK)◦ → Spec(Z) is
smooth over its image. Let z ∈ |M◦| be a closed point, so of residue field F`m for a
prime number ` ≥ 3 and some m ∈ N>0. By Lemma 2.1 and the vanishing of the
Brauer group of a finite field, we see that z corresponds to an absolutely irreducible
local F`m-system Lz over X.

We define S◦ ⊂ S to be the non-empty open subscheme which is the complement
of closed points of residual characteristic dividing the order of GLr(F`m). We claim

https://stacks.math.columbia.edu/tag/04XV
https://stacks.math.columbia.edu/tag/04XV
https://stacks.math.columbia.edu/tag/04XV
https://stacks.math.columbia.edu/tag/03XX
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S◦ satisfies the assertions of Theorem 1.4. Pick s ∈ |S◦| of characteristic p and
consider the diagram

sptop
C,s̄ : π1(X(C), x(C))→ π1(XC, xC)

spC,s̄−−−→ πt1(Xs̄, xs̄)

from the introduction. Since spC,s̄ is an isomorphism on prime to p quotients, we
see that Lz gives rise to an absolutely irreducible local F`m-system Lz,s̄ over Xs̄.
Its determinant is L and its monodromies at infinity are in Ti by the compatibility
of spC,s̄ with the local fundamental groups, see [Del73, Section 1.1.10].

Let Dz,s̄ = Spf(Rz,s̄) where Rz,s̄ is Mazur’s formal deformation ring of the
rank r representation ρz,s̄ of πt1(Xs̄, xs̄) over F`m corresponding to Lz,s̄ ([Maz89,
Proposition 1]). Consider the formal closed subscheme Dz,s̄(r,L, Ti) ⊂ Dz,s̄ corre-
sponding to deformations where the universal deformation has determinant L and
monodromies at infinity in Ti (it is indeed a closed condition.) By construction we
obtain a morphism

Dz,s̄(r,L, Ti)→M(X, r,L, Ti)→MB(X, r,L, Ti)
Thus we obtain

Dz,s̄(r,L, Ti)
ι−→MB(X, r,L, Ti)∧z

where (−)∧z indicates the formal completion at z.

Proposition 2.2. The morphism ι is an isomorphism.

Proof. Let R be an Artinian local ring whose residue field is identified with the
residue field F`m of z. To construct the inverse to ι we will show that morphisms

m : Spec (R)→MB(X, r,L, Ti)
which send the closed point to z, are in one to one correspondence with deformations
of ρz,s̄ in Dz,s̄(r,L, Ti). There are two steps. First, by Lemma 2.1 the morphism
m lifts to a morphism m : Spec (R)→M(X, r,L, Ti) into the stack (as the Brauer
group of R is trivial) and moreover the isomorphism class of the lift is well defined.
This lift defines a local R-system Lm on X such that LR ⊗R F`m = Lz. Second,
by exactly the same arguments as above, this descends to a local R-system Lm,s̄
on Xs̄ (unique up to isomorphism) with determinant L and monodromies in Ti at
infinity. The corresponding continuous representation ρR,s̄ : πt1(Xs̄, xs̄)→ GLr(R)
is the desired deformation. �

Corollary 2.3. The reduced deformation space Dz,s̄(r,L, Ti)red is smooth over
Spf(W (F`m)).

Proof. This follows as by the choices made above the morphisms

M◦ → Spec(OK) and Spec(OK)◦ → Spec(Z)

are smooth and the scheme M◦ is an open subscheme of the MB(X, r,L, Ti)red. �

Recall that Dz,s̄(r,L, Ti) is a deformation space for the residual representation
ρz,s̄ of πt1(Xs̄, xs̄). We have the homotopy exact sequence

1→ πt1(Xs̄, xs̄)→ πt1(Xs, xs)→ Gal(s̄/s)→ 1

of profinite groups. Denote Φ ∈ Gal(s̄/s) the Frobenius of s. By the outer action
of Gal(s̄/s) on πt1(Xs̄, xs̄), we see that Φ acts on the set of isomorphism classes
of representations of πt1(Xs̄, xs̄). Since ρz,s̄ has finite image, a power Φn for some
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n ≥ 1 of Φ stabilizes it. Thus there is an action of Φn on Dz,s̄. On the other
hand, Φ(L) is another torsion local system of the same order. Since there are
finitely many of them, a power Φnm for some m ≥ 1 stabilizes L. By [SGA7.2,
XIV.1.1.10] (see also [EK22, Lemma 7.1]), the action of Φ on the conjugacy class
ti of the monodromies at infinity is via the cyclotomic character. So Φ acts on the
set of conjugacy classes of quasi-unipotent matrices in GLr(Q̄`) with eigenvalues
being powers of the eigenvalues of the Ti. Thus for some t ≥ 1, Φnmt stabilizes
(Dz,s̄,L, Ti) and thus the formal closed subscheme Dz,s̄(r,L, Ti) ↪→ Dz,s̄(r). We
abuse notation setting n = nmt. So, Φn acts on Dz,s̄(r,L, Ti).

We now apply de Jong’s conjecture [dJ01, Conjecture 2.3], proved by Gaitsgory
[Gai07] for ` ≥ 3, in the way Drinfeld did in [Dri01, Lemma 2.8]: Corollary 2.3
implies that there is a Z̄`-point of Dz,s̄(r,L, Ti)red which is invariant under Φn.
This corresponds to an irreducible `-adic local system Lz,s̄,` on Xs̄, which descends
to a Weil sheaf, thus by [Del80, Proposition 1.3.14] to an arithmetic étale (we just
say arithmetic in the sequel) local system with determinant L and monodromies Ti
at infinity. This yields Theorem 1.4 1), 2), 3) 5) for this one `.

We now use the method of [EG18, Section 3]. For any `′ 6= p and any algebraic
isomorphism σ : Q̄` ∼= Q̄`′ , we denote Lσz,s̄,` the restriction to Xs̄ of the compan-

ion of the arithmetic descent of Lz,s̄,`. It is an `′-adic local system on Xs̄ which is
irreducible over Q̄`′ ([EG18, Proof of Theorem 1.1]), has determinant L by compat-
ibility of companions and exterior powers, and monodromies at infinity Tz,s̄,`′,i such
that T ssi = T ssz,s̄,`′,i by [Del72, Théorème 9.8]. We set L`,s̄ = Lz,s̄,` and L`′,s̄ = Lσz,s̄,`
for all `′ 6= p, `. For ` = p we just choose another closed point s′ in S◦ of residual
characteristic p′ not equal to p, redo the same construction ane set Lp,s̄′ = Lz,p,s̄′ .
This finishes the proof.

2.3. Proof of Theorem 1.1. For any ` 6= p we set L` = (sptop
C,s̄)
∗L`,s̄ and for ` = p

we set Lp = (sptop
C,s̄′)

∗Lp,s̄′ . This finishes the proof.

3. Density of weakly arithmetic local systems

In this section we use the notation of Section 2. Our aim is to define a notion of
weakly arithmetic local systems and to show density of them in the Betti moduli
space.

3.1. Definitions. If τ : K1 → K2 is a homomorphism of fields, and L1 is a topo-
logical local system defined over K1 by the homomorphism ρ : π1(X(C), x(C)) →
GLr(K1), we denote by LτK1

the local system defined over K2 obtained by post-
composing ρ by the homomorphism GLr(K1)→ GLr(K2) defined by τ .

Choose a finitely generated subfield F ⊂ C such that X and x descend to XF

and xF over F . For example F could be the function field of the affine finite type
scheme S over which X has a model. Denote

sptop
C,F : π1(X(C), x(C))→ π1(XF , xF )

the comparison morphism. Recall that MB(X, r,L, Ti) is defined over the number
ring OK ⊂ C.

Definition 3.1. With notation as above:
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1) A point LC ∈ MB(X, r)(C) is said to be arithmetic if there exist a finite
extension F ′/F , an étale `-adic local system L`,F ′ on XF ′ , and a field

isomorphism2 τ : Q̄` → C such that LC and
(
(sptop

C,F ′)
−1(L`,F ′)

)τ
are iso-

morphic.
2) A point LC ∈ MB(X, r,L, Ti)(C) is said to be weakly arithmetic if there

exist
i) a prime number ` and a field isomorphism τ : Q̄` → C (so τ defines

an OK-algebra structure on Q̄` via OK ⊂ C);
ii) a finite type scheme S over Spec (OK) such that (X ↪→ X̄, x,L, Ti)

has a model over S (see introduction);
iii) a closed point s ∈ |S| of residual characteristic different from `;
iv) a tame arithmetic `-adic local system L`,s̄ on Xs̄ with determinant L

and monodromy at infinity in Ti;
such that LC and

(
(sptop

C,s̄)
−1(L`,s̄)

)τ
are isomorphic.

We can express the definition in an imprecise way by saying the following. As
π1(X(C), x(C)) is finitely generated, the topological local system LC is defined over
a ring A of finite type over Z, so LC = LA ⊗A C. For almost all prime numbers
`, there is a non-zero homomorphism A → Z̄`. For any such, LA ⊗A Z̄` defines
an `-adic local system. Then LC is weakly arithmetic if there is such a non-zero
A → Z̄` such that LA ⊗A Z̄` comes via the specialization homomorphism from a
tame arithmetic `-adic local system on Xs for some s of large characteristic.

Remark 3.2. The notion of an arithmetic local system does not depend on the
choice of F . As we could not find a reference, we give a short argument. Let
F1, F2 ⊂ C be two finitely generated subfields over which X and x can be defined.
Then the compositum is a third one. So we many assume that F1 ⊂ F2 ⊂ C. We
have the commutative diagram of homotopy exact sequences

1 // π1(XF̄2
, xF̄2

) //

∼=
��

π1(XF2
, xF̄2

) //

��

Gal(F̄2/F2) //

��

1

1 // π1(XF̄1
, xF̄1

) // π1(XF1 , xF̄1
) // Gal(F̄1/F1) // 1

Since F2/F1 is a finitely generated extension, the right vertical map is open. Let
L be a geometrically irreducible arithmetic `-adic local system over XF̄2

with un-
derlying representation ρ. Thinking of X as being defined over F2, by replac-
ing F2 by a finite extension, we may assume that ρ is defined over F2. Then
K := Ker(Gal(F̄2/F2) → Gal(F̄1/F1)) lifts to π1(XF2 , xF̄2

) and stabilizes L|XF̄2
,

which is irreducible. Thus ρ(K) ⊂ Q̄×` ⊂ GLr(Q̄`) and is torsion as the determinant
is torsion. This defines a finite (abelian) extension of F2. Replacing F2 by it, ρ
factors through π1(XF2

, xF̄2
)/K which is equal to π1(XF ′1

, xF̄1
) where F1 ⊂ F ′1 is

the finite Galois extension defined by the image of the right vertical map which is
open.

Remark 3.3. An arithmetic local system is weakly arithmetic. Namely, suppose
that LC is arithmetic. Let (S,XS ↪→ X̄S , xS) be as in the introduction. Denote by
F the function field of S. Then LC comes from an étale `-adic local system L`,F ′
on XF ′ for F ′/F finite. After replacing S by a finite cover, we may assume F ′ = F .

2It would be equivalent to say ”homomorphism of fields” here.
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A standard argument shows that after replacing S by a suitable Zariski open, we
may assume that L`,F comes from an étale `-adic local system L`,S on XS (see e.g.
[Pet20, Proposition 6.1] where the argument is performed for S the spectrum of a
number ring, and references therein). Then, for a closed point s ∈ S we see that
LC comes from L`,s̄ := L`,S |Xs̄ as desired. We omit the details.

Notations 3.4. 1) Fixing (X, r,L, Ti) as in Section 2, we denote by

W (X, r,L, Ti) ⊂MB(X, r,L, Ti)(C)

the locus of weakly arithmetic local systems.
2) Fixing (X, r,L), we denote by

W (X, r,L) = ∪{Ti}W (X, r,L, Ti) ⊂MB(X, r,L)(C)

the locus of all weakly arithmetic local systems of rank r and determinant L.

3.2. Density.

Theorem 3.5. 1) Fixing (X, r,L, Ti), W (X, r,L, Ti) is dense in MB(X, r,L, Ti)(C).
2) Fixing (X, r,L), W (X, r,L) is dense in MB(X, r,L)(C).

Proof. Ad 1): Let TC be the Zariski closure of W (X, r,L, Ti) in MB(X, r,L, Ti)(C)
and TOK be the Zariski closure of TC in MB(X, r,L, Ti). As TC is invariant under
the group AutOK (C) of field automorphisms of C over OK , TOK is the Zariski
closure of W (X, r,L, Ti) in MB(X, r,L, Ti).

If TC 6= MB(X, r,L, Ti)(C), one chooses a closed point z ∈ MB(X, r,L, Ti) in

Section 2.2 outside of TOK . Then (sptop
C,s̄)
−1(L`,s̄,z) constructed in Section 2.2,

with L`,s̄,z arithmetic on Xs̄, does not lie in TOK (Q̄`). By invariance, for any τ ,

((sptop
C,s̄)
−1(L`,s̄,z))τ does not lie on T (C), a contradiction to the definition of weak

arithmeticity.

Ad 2): By [EK23, Theorem 1.3], for a torsion rank 1 local system L given,

∪TiMB(X, r,L, Ti)

is dense in MB(X, r,L)(C). Combined with 1), this yields 2).
�

Remark 3.6. In [EK22, Weak Conjecture] it is predicted that arithmetic `-adic
local systems on a smooth quasi-projective variety XF defined over a finite field F
of characteristic different from ` are Zariski dense in a Mazur, or more generally,
in a Chenevier deformation space. In [EK23, Conjecture 1.1] it is predicted that
arithmetic local systems in MB(X, r,L)(C) are Zariski dense, where L is a torsion
rank one local system. 3 This is not correct, see [LL22, Theorem 8.1.2] in which
Landesman-Litt prove that over a very general genus ≥ 3 curve, for r small, arith-
metic local systems have finite monodromy, and [LL22a, Corollary 1.2.10] for the
consequence on non-density. Theorem 3.5 yields a replacement for this. However,
there may be uncountably many weakly arithmetic local systems due to the free
choice of τ .

3In fact in [EK23] is expressed for local systems of geometric origin.
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4. Proof of Theorem 1.3

4.1. Proof. [Proof of Theorem 1.3.] We have to prove that Γ = π1(X(C), x(C))
has the weak integrality property (Definition 1.2) with respect to any (r, χ) where
r ≥ 1 is a natural number and χ is a character of Γ.

Let ρ : Γ → GLr(C) be as in Definition 1.2. Then the density of weakly arith-
metic local systems in Theorem 3.5 shows that we may assume ρ corresponds to a
weakly arithmetic local system LC. Since such a system has quasi-unipotent local
monodromies at infinity by Grothendieck’s theorem [ST68, Appendix], we conclude
that LC is as in Theorem 1.1 for some choice of quasi-unipotent conjugacy classes Ti.
Thus by Theorem 1.1, we find a representation ρ` : Γ→ GLr(Z̄`) with determinant
χ which is irreducible over Q̄`.

Next, the discussion in the introduction shows that the group Γ0 presented after
Definition 1.2 does not have the weak integrality property for r = 2 and χ being
the trivial character. Thus the weak integrality property for Γ is a non-trivial
obstruction for it to be of the shape π1(X(C), x(C)). The proof of Theorem 1.3 is
finished.

4.2. Comments. 1) In [Kli19, Theorem 1.1], the main integrality theorem [EG20,
Theorem 1.1] for cohomologically rigid local systems is used as the criterion to
decide that certain p-adic lattices are not the fundamental group of a smooth pro-
jective variety (or are not Kähler groups). Recall that Theorem 1.1 of the present
article relies in part on the proof of [EG20, Theorem 1.1], but for the other part on
de Jong’s conjecture. The obstruction we obtain in Theorem 1.3 is of a new kind,
it enables one consider all quasi-projective varieties at once, with all boundary con-
ditions and not only smooth projective varieties.

2) In [dJEG22, Section 4] examples of local systems LC are constructed with
the following property: they lie in MB(X, r,L, Ti)(C) for some L and Ti, are in
this Betti moduli with boundary conditions cohomologically rigid, and viewed in
MB(X, r,L)(C), they are still rigid but no longer cohomologically rigid. So in a
way this is good to keep track of the conditions at infinity.

5. Proof of Theorem 1.4, resp. case

The goal of this section is to prove the resp. case of Theorem 1.4. That is
we have to show that we can construct infinitely many `-adic local systems as
Section 2 if we start with infinitely many LC. The existence of infinitely many
LC implies there is an irreducible component of MB(X, r,L, Ti) the base change
of which to K has dimension > 0. Thus, after replacing K by a finite extension
over which all components are defined, we may assume that there is an irreducible
component Z ⊂ MB(X, r,L, Ti) such that ZK is geometrically irreducible and of
dimension > 0. Then Z is an integral scheme and the morphism Z → Spec (OK)
is dominant and of relative dimension ≥ 1. Let Z◦ ⊂ Z be a nonempty open
subscheme which is smooth over Spec (OK) which maps into the open Spec (OK)◦

of absolutely unramified points. We also may and do assume that Z◦ does not
meet any irreducible component of MB(X, r,L, Ti) except Z. Finally, we may
further shrink Spec (OK)◦ such that all fibres of Z◦ → Spec (OK)◦ are geometrically
irreducible.
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We redo the argument of the proof 2.2 with Z◦ replacing M◦. Namely, we pick
z ∈ |Z◦| closed with residue field F`m . This determines an F`m local system Lz
on X. Denote t ∈ Spec (OK) be the image of z and recall that Z◦t is smooth and
geometrically irreducible of dimension ≥ 1. We let S◦ ⊂ S be the open where
the residue characteristics are prime to |GLr(F`m)|. Next, let s ∈ |S◦| of residue
characteristic p. Since, for any finite field F, |GLr(F)| is a polynomial in |F|, it
follows that |GLr(F`mpN )| is prime to p for all N ≥ 0. By the Lang-Weil estimates

Z =
⋃

N≥0
Z◦t (F`mpN )

is infinite. Thus we may choose an infinite sequence zα ∈ Z◦t of closed points such
that |GLr(κ(zα))| is prime to p. Here κ(zα) denotes the residue field. Hence, all the
local systems Lzα give rise to local systems Lzα,s̄ on Xs̄. Redoing the construction
of Section 2.2 we find irreducible `-adic systems Lzα,s̄,` on Xs̄, which have arith-
metic descent, with determinant L and monodromies Ti at infinity. These systems
are pairwise non-isomorphic, as their mod ` reductions Lzα,s̄ are pairwise non-
isomorphic and absolutely irreducible. For a prime `′ 6= p we fix an isomorphism
σ : Q̄` ∼= Q̄`′ . Then the companions Lσzα,s̄,` constructed in Section 2.2 are likewise
pairwise non-isomorphic. Indeed, assume Lσzα,s̄,` and Lσzβ ,s̄,` are isomorphic. Let us

choose a point s′ → s such that the residue field extension κ(s) ↪→ κ(s′)(↪→ κ(s̄)) is
finite, so the arithmetic descents Lσzα,s′,` and Lσzβ ,s′,` are defined. So they differ by

a character of κ(s′). Thus Lzα,s̄,` and Lzβ ,s̄,` descend to Xs′ over which they differ
by a character of κ(s′). So they are isomorphic. Furthermore, they have the same
determinant L and the same semi-simplification of the monodromies at infinity.

In the same manner we may deal with the case `′ = p; we omit the details. This
finishes the proof.

6. Proof of Theorem 1.5 i) ii)

The aim of this section is to prove Theorem 1.5 i) ii). The first part i), which
comes from one part of the proof of the integrality for cohomologically rigid lo-
cal systems, is entirely contained in [EG18] and is repeated here for the reader’s
convenience. We also insert a comment on Theorem 1.5 i), see Remark 6.1. The
second part ii) is new. It says that the monodromy of the `-adic local systems
constructed in Theorem 1.1 is large if the initial topological local system LC has
large monodromy.

6.1. Part i). If in Theorem 1.4, we assume that LC is cohomologically rigid, then

the topological local system (sptop
C,s̄)
∗(L`,s̄) of the statement of Theorem 1.5 i) is

constructed in this article exactly as in [EG18]. We give here a brief account: LC
is defined over a ring of finite type A, so LC = LA ⊗A C, and we first take a
non-zero homomorphism A → Z̄`0 , where `0 is a prime number. This defines an
`0-adic local system L`0 which descends, as all `-adic local systems do, to Xs̄ for

p = char(s) large. Call it L`,0s̄. By the very definition, (sptop
C,s̄)
∗(L`0,s̄) has an

A-model which via the embedding A ⊂ C gives back LC. Cohomological rigidity
implies that L`0,s̄ descends to L`0,s so we do not need de Jong’s conjecture to have

this arithmetic descent. Choose a field isomorphism σ : Q̄`0
∼=−→ Q̄` for some prime

` prime to p. Cohomological rigidity also implies that the companions Lσ`0,s =: L`,s
has the property that (sptop

C,s̄)
∗(L`,s̄) is cohomologically rigid. So for σ given and
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each such LC, we produce a topological local system (sptop
C,s̄)
∗(L`,s̄) which comes

from an étale local system, is cohomologically rigid (with all the extra conditions
preserved, determinant, monodromies at infinity). This finishes the proof.

Remark 6.1. The statement and the proof of Theorem 1.5 i) do not explain the

relation between the initial LC and (sptop
C,s̄)
∗(L`,s̄). To do this, in [EG18] we argued

that two non-isomorphic such LC yield two non-isomorphic (sptop
C,s̄)
∗(L`,s̄). So by

finiteness of the set of such LC, they are integral. As rigidity (alone) implies that
A could have been taken from the beginning to be the localization at finitely many
places of a number ring, we conclude that A can be taken to be a number ring. But
we can not conclude that LA⊗A Q̄` is the system (sptop

C,s̄)
∗(L`,s̄) constructed earlier.

6.2. Part ii). Consider the set

ZK ⊂MB(X, r,L, Ti)×Spec (OK) Spec (K)

of points parametrizing local systems such that the Zariski closure of the mon-
odromy does not contain SLr. This set is closed, because the complement WK is
open by [AB94, Theorem 8.2]. Let Z ⊂ MB(X, r,L, Ti) be the Zariski closure of
ZK . Then

W = MB(X, r,L, Ti) \ Z
is an open subscheme with WK = W ×Spec (OK) Spec (K), i.e., all of the points of
W in characteristic zero correspond to local systems such that the Zariski closure
of the monodromy contains SLr. So it is non-empty by assumption. Then in the
arguments of 2.2 if we pick z ∈ W we see that our arithmetic `-adic local system
Lz,s̄,` pulls back to a topological local system on X which corresponds to a point
of WK and hence has Zariski closure of the monodromy containing SLr.

Having constructed one arithmetic `-adic local system of rank r on Xs̄ with large
monodromy (in the sense that the Zariski closure of the image of monodromy con-
tains SLr) with determinant L and monodromies in Ti we can take the companions
and show they have large monodromy too. For this one can use known facts on com-
patible systems of Galois representations, see for example [D’Ad20, Theorem 1.2.1]
(where we disregard the crystalline statement) which guarantees that the compan-
ion of an `-adic local system with large monodromy also has large monodromy.

Remark 6.2. We can argue as above and as in Section 5 to prove a variant of
Theorem 1.5 ii) for infinite collections. We omit the detailed formulation and proof.

7. Remarks and Questions

7.1. The crystalline version. It is expected that there are ` to p companions in
the sense of Deligne, see [Del80, Conjecture 1.2.10] for the original formulation and
[AE19, Definition 1.4 5)] for a precise formulation. If so, Theorem 1.4 implies what
is as of today a conjecture.

Conjecture 7.1. If there is one (resp. infinitely many pairwise non-isomorphic)
irreducible topological rank r complex local system (resp. systems) LC with torsion
determinant L and quasi-unipotent monodromies in Ti at infinity, then there is a
non-empty open subscheme S◦ ⊂ S such that for any closed point s ∈ |S| it holds:
there is one (resp. infinitely many pairwise non-isomorphic ) Frobenius invariant
iscrystal Ms′ on Xs′ (resp. infinitely many pairwise non-isomorphic Frobenius in-
variant isocrystals Msα , each defined on some Xsα), where s′ → s and sα → s
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are closed points, with determinant L (as an F -isocrystal) and residues modulo Z
being along Di,s̄ the log of the eigenvalues of Ti.

7.2. Specific subloci. Recall that Simpson’s integrality conjecture [Sim92, p.9]
is proven only for cohomologically rigid local systems [EG18, Theorem 1.1] while
there are rigid non-cohomologically rigid local systems [dJEG22].

Question 7.2. Given a locally closed subset W ⊂ MB(X, r,L, T ssi ) does Theo-
rem 1.4 hold with the following modifications

a) LC is assumed to lie in W (C);

b) the resulting (sptop
C,s̄)
∗(L`,s̄)⊗Z̄` Q̄` should lie in W (Q̄`)?

The answer will not be positive for all W ; we should only consider suitably
natural loci in the moduli space. For example, Theorem 1.5 i) says that the answer
is “yes” if W is the union of the smooth isolated points of MdR(X, r,L, T ssi )(C),
i.e. the underlying LC are cohomologically rigid. Theorem 1.5 ii) says the answer
is “yes” if we take W to be the locus of points in MdR(X, r,L, T ssi )(C) such that
the Zariski closure of monodromy contains SLr.

On the other hand, Simpson conjecture says the answer is “yes” if W is the
union of the isolated points of MdR(X, r,L, T ssi )(C), i.e., the underlying LC are
rigid. As a tentative generalization of Simpson’s conjecture, we ask if the answer is
”yes” when W is the union of the irreducible components of MB(X, r,L, T ssi )(C)
of a given dimension.

7.3. Pullbacks of semisimple local systems. Using our methods we can reprove
the following theorem. Its only known proof, as far as we understand, uses the
existence of a tame pure imaginary harmonic metric.

Theorem 7.3. [Moc07, Theorem 25.30] 4 Let f : Y → X be a morphism of normal
quasi-projective complex varieties. The pullback by f of a semi-simple complex local
system LC is semi-simple.

We sketch a proof of the theorem using our techniques. The subtle part is
that “being semi-simple” is neither a closed nor an open condition in moduli of
representations, but it is constructible and this is enough for our arguments. We
briefly indicate the proof strategy.

Proof. Let us reduce to the case where X and Y are smooth. Let g : X ′ → X be a
resolution of singularities. Note that g∗LC is semi-simple as π1(X ′(C))→ π1(X(C))

is surjective due to the fact that X is normal. Since X ′ ×X Y
projection−−−−−−→ Y is

surjective, we can find a generically finite morphism of varieties h : Y ′ → Y with
Y ′ smooth and a morphism f ′ : Y ′ → X ′ such that g ◦ f ′ = f ◦ h. Here is the
corresponding picture

Y ′
f ′
//

h

��

X ′

g

��
Y

f // X

After replacing Y ′ by a generically finite cover, we may asume the function field
extension C(Y ′)/C(Y ) is Galois. Then there exists an open Y ◦ ⊂ Y which is

4There is a typo in loc.cit. where the condition of normality is dropped. The reduction to the
smooth case is explained in the proof of Theorem 7.3 .
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smooth and such that (Y ′)◦ = h−1(Y ◦)→ Y ◦ is finite étale and Galois. Since Y is
normal the map π1(Y ◦(C))→ π1(Y (C)) is surjective and hence it suffices to show
that f∗LC|Y ◦ is semi-simple. Since (Y ′)◦ → Y ◦ is Galois it is enough to show that
h∗f∗LC|(Y ′)◦ is semi-simple. Since h∗f∗LC = (f ′)∗g∗LC we see that it suffices to
prove the result for f ′|(Y ′)◦ .

From now on we assume X and Y smooth. To obtain a contradiction, we assume
that LC is irreducible and that we are given a subsystem L′ ⊂ f∗LC of rank 0 <
r′ < r which does not split off. Consider the morphisms of Betti moduli spaces

(?) Msplit
B (f, r′, r) −→MB(f, r′, r)

Here the moduli space MB(f, r′, r) parametrizes pairs (L,L′ ⊂ f∗L) consisting of
an irreducible local system L over X together with a rank r′ subsystem L′ over Y .

And the moduli space Msplit
B (f, r′, r) parametrizes triples (L,L′ ⊂ f∗L, τ) where

τ : f∗L→ L′ is a splitting of the inclusion map.

The moduli schemes in (?) are finite type schemes over Z; this follows from
arguments similar to those in Subsection 2.1. Hence, by Chevalley’s theorem the
image of (?) is a constructible set. Let W ⊂ MB(f, r′, r) be the complement of
the image; this is also a constructible subset. The assumption that we have LC
and L′ ⊂ f∗LC tells us that W has a characteristic zero point. Let W ′ ⊂ W be
a subset which is an irreducible, locally closed subset of MB(f, r′, r) containing a
generic point of W of characteristic zero. After replacing W ′ by an open subset, we
may and do assume that W ′ does not meet the closure of W \W ′. We view W ′ as
a reduced, irreducible, locally closed subscheme of MB(f, r′, r). As in Subsection
2.2 we choose a closed point z ∈ W ′ in the smooth locus of W ′ → Spec (Z). Say
κ(z) = F`m for a prime number ` ≥ 3 and some m ∈ N>0.

Next, as in the introduction, we choose a model for f , i.e., we choose an integral
affine scheme S of finite type over S, a morphism YS → XS of smooth schemes over
S such that YS and XS have a good compactifications over S, and such that there
is a dominant morphism Spec (C) → S such that the base change of YS → XS by
this morphism is isomorphic to f . Consider an open S◦ and a closed point s ∈ S◦
as in Subsection 2.2. We obtain an absolutely irreducible local F`m -system Lz,s̄
over Xs̄ which now comes endowed with a subsystem L′z,s̄ ⊂ f∗s̄Lz,s̄ of rank r′ over
Ys̄. Next, we consider the deformation space

Dz,s̄(f, r
′, r)

classifying deformations of Lz,s̄ endowed with a rank r′ subsystem of the pullback
to Ys̄ deforming L′z,s̄. The analogue of Proposition 2.2 holds in this situation: the
morphism

Dz,s̄(f, r
′, r)

ι−→MB(f, r′, r)∧z
to the formal completion of the moduli space is an isomorphism. (But this time we
do not know or claim formal smoothness for this deformation space or its reduced
structure.) Since the local system Lz,s̄ and the subsystem L′z,s̄ ⊂ f∗s̄Lz,s̄ can be
defined over a finite extension of κ(s), we obtain an action of Φn on Dz,s̄(f, r

′, r);
please compare with the discussion following Corollary 2.3.

To get a fixed point for the action of Φn, we restrict to deformations lying in W ′

as follows. Denote

W ′z,s̄ ⊂ Dz,s̄(f, r
′, r)



16 JOHAN DE JONG AND HÉLÈNE ESNAULT

the inverse image of the closed formal subscheme (W ′)∧z ⊂ MB(f, r′, r)∧z by the
isomorphism ι. Now we claim that W ′z,s̄ is invariant under the action of Φn. Namely,
W ′z,s̄

∼= (W ′)∧z is formally smooth over W (F`m) by our choice of z. Hence in order to

see that it is stabilized by Φn it suffices to see that its set of Z̄`-points is stabilized.
However, Z̄`-points of (W ′)∧z are those Z̄`-points of Dz,s̄(f, r

′, r) such that the
corresponding Q̄` pair (L,L′ ⊂ f∗L) does not split5. Pulling back by the Frobenius
automorphism does not change this property. So W ′z,s̄ is invariant under the action
of Φn.

We conclude as before that we obtain a Z̄`-point of W ′z,s̄ fixed by Φn. This point

corresponds to a pair (M,M′ ⊂ f∗s̄M) consisting of a Z̄`-local system on Xs̄ and a
subsystem of rank r′ over Ys̄. Since our fixed point lies in W ′, by definition of W ′,
the local system M is irreducible and the inclusion M′ ⊂ f∗s̄M does not split! Being
fixed by Φn exactly signifies that M descends to a Weil sheaf ([Del80, Definition
1.1.10]) M◦ on Xκ for a finite extension κ/κ(s) and that the inclusion M′ ⊂ f∗s̄M
comes from an inclusion (M′)◦ ⊂ f∗κM◦) of Weil sheaves. We will see that this leads
to a contradiction.

Namely, by [Del80, Proposition 1.3.14], we may assume that M◦ is arithmetic
(“par torsion”). While there is no condition on the determinant and the mon-
odromies at infinity in the definition of moduli in (?), we now conclude the deter-
minant of M is torsion (and the monodromies at infinity are quasi-unipotent). This
means we can further assume M◦ has finite order determinant (again “par torsion”).
By [Laf02, Théorème VII.6] in dimension 1, and [EK12, Theorem4.4], or [Del12,
Section 0.7] in higher dimension, M is pure of weight 0, and so is its pullback to Ys̄.
Thus [Del80, Lemme 3.4.3] implies that f∗M|Yκ̄ is semi-simple. This is the desired
contradiction. �

7.4. The example of Becker-Breuillard-Varjú. In [BBV22], the authors study
the SL(2,C)-character variety Ch(Γ0, 2, I) of irreducible representations of the resid-
ually finite group Γ0 defined in [DS05, Theorem 4], with two generators {a, b} and
one relation b2 = a2ba−2. They prove that Ch(Γ0, 2, I)(C) consists of two points.
The first one L1 has representation

ρ1(a) =
1√
2

(
1 1
−1 1

)
, ρ1(b) =

(
j 0
0 j2

)
,

where j is a primitive 3-rd root of unity. It is defined over Q(j). L2 is Gaois
conjugate to L1. The authors compute

ρ(ab) =
j√
2

(
1 j
−1 j

)
.

As Trace(ρ(ab)) = − 1√
2
, L1 is not integral at ` = 2, so L2 is not integral at ` = 2

either. Furthermore, ρ1(a) does not preserve the eigenvalues of ρ1(b), so L1 and
thus L2 are irreducible with dense monodromy in SL2(C). They also compute that
H1(Γ0, End0(Li)) = 0. That is, in Ch(Γ0, 2, I), those two points are cohomologically
rigid.

5Here we need to use the careful choice of the component W ′ and the fact that no other
component of the closure of W passes through z.
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