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Abstract. For any even natural number r ≥ 2, we construct an irreducible

rigid non-cohomologically rigid complex local system of rank r on a smooth

projective variety depending on r. For r = 2, we construct an irreducible rigid
non-cohomogically rigid local system of rank 2 on a quasi-projective variety

which becomes cohomologically rigid after fixing the conjugacy classes of the

monodromies at infinity.

1. Introduction

In [EG18, Theorem 1.1] it is proven that on a smooth complex quasi-projective
variety X, irreducible cohomologically rigid local systems with a fixed torsion deter-
minant and fixed quasi-unipotent conjugacy classes of the monodromies at infinity
are integral. This answers positively a conjecture of Simpson [Sim92, p.9] (for-
mulated in the projective case) under the cohomological rigidity condition, which
simply means that the Zariski tangent space of the considered moduli space at the
point corresponding to the local system is 0. This property is used in a crucial
way in the proof loc. cit. However, Simpson’s conjecture concerns irreducible rigid
local systems, that is those for which the corresponding moduli point is isolated,
but perhaps fat. In dimension 1, Katz proved that all irreducible rigid local sys-
tems are cohomologically rigid [Kat96, Cor. 1.2.5]. The irreducible local systems
on a Shimura variety of real rank ≥ 2 are also cohomologically rigid, see [EG21,
Remark A.2]. In this short note we prove that

i) for any even natural number r ≥ 2, there exists a smooth complex projec-
tive variety depending on r with an irreducible rigid non-cohomologically
rigid complex local system of rank r on it,

ii) and there exists a smooth complex quasi-projective variety with an irre-
ducible rigid non-cohomogically rigid local system of rank 2 which becomes
cohomologically rigid after fixing the conjugacy classes of the monodromies
at infinity.

The examples are an adaptation to algebraic geometry of [LM85, (2.10.4)] in
which Lubotzky and Magid define the semi-direct product Γ2 coming from the
standard representation of the symmetric group in 3 variables and show that the
so defined rank 2 representation Λ2 of Γ2 is rigid, see loc.cit (2.10.2), and has
dim H1(Γ2, End(Λ0)) = 1.

In our initial construction, the monodromy was finite, in particular the Zariski
closure of the monodromy group is equal to itself, the determinant is finite, and the
monodromies at infinity are finite as well. Alexander Petrov noticed that we could
apply Künneth formula to the exterior product of our examples with a standard
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cohomologically rigid local system with infinite monodromy to obtain examples as
in (i) and (ii) (with different ranks) with infinite monodromy, see Remark 4.3.

Acknowledgements: We thank Vasily Rogov for bringing the example of Lubotszky
and Magid loc. cit. to our attention. Furthermore, it is a pleasure to acknowledge
helpful comments by Piotr Achinger, Adrian Langer, Aaron Landesman, and Daniel
Litt. We are grateful to Alexander Petrov for his interest and for contributing to
this note in the form of Remark 4.3.

2. The standard representation of the symmetric group

We fix once and for all an even natural number r ≥ 2. For Sr+1 the symmetric
group on (r + 1) elements, we define the standard representation

Λr = Ker(Zr+1 Σ−→ Z), a = (a1, . . . , ar+1) 7→
r+1∑

1

ai = Σ(a)

ρr : Sr+1 → GL(Λr)

by permuting the elements. This rank r representation has among others two
properties:

(?) Λr is absolutely irreducible, i.e. Λe ⊗Z C is irreducible;
(??) Λr ⊗Z C is a direct summand of End0(Λr ⊗Z C).

The property (?) is very classical and is straightforward to check: the basis vectors
(ei − er+1)i=1,...,r of Λ0 are permuted by the permutations (i, r + 1)i=1,...,r,where
(ei)i=1,...,r+1 is the standard basis of Zr+1. The property (??) is verified for r = 2
by the character table in [LM85, (2.10.4)] and in [BDO15, Ex.1.2] in general. Here
End0 denotes the trace-free endomorphisms. This defines the semi-direct product

Γr := Λr o Sr+1

0→ Λr → Γr → Sr+1 → 1.

3. A rigid non-cohomologically rigid complex system on a smooth
projective variety

Let E be an elliptic curve. We define the abelian variety

Ar = E ⊗Z Zr = E × . . .× E︸ ︷︷ ︸
r−times

of dimension r. Via the basis (εi = ei − er+1)i=1,...,r of Section 2, we define Sr+1

as the subgroup of Aut(Ar) defined by

Sr+1 = IE ⊗ Sr+1
I⊗ρr injective−−−−−−−−−→ Aut(E)⊗Z GL(Λr) ⊂ Aut(Ar).

For example, setting σ = (12 . . . (r + 1))

(1) σ
(
x1, . . . , xr

)
=
(
− (x1 + x2 + . . .+ xr), x1, x2, . . . , xr−1

)
for (x1, . . . , xr) ∈ E ⊗Z Zr.

In particular, the origin 0A of the abelian variety is a fixpoint for this action.
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We now do Serre’s construction as in [Ser58, Sect. 15]. Let Pr be a smooth
projective simply connected variety over C on which Sr+1 acts without fixpoint
([Ser58, Prop. 15]). We define

Yr = Ar ×C Pr, Xr = Yr/Sr+1

where Sr+1 acts diagonally. This yields the Sr+1-Galois cover

πr : Yr → Xr

and the associated Galois exact sequence

0→ π1(Yr, yr) = H1(Ar) = H1(E)⊗Z Λ0 → π1(Xr, xr)→ Sr+1 → 1

where yr = (0A, pr) is a C-point of Yr and xr = πr(yr). The Galois exact sequence
is the same as the homotopy exact sequence of the smooth projective morphism

fr : Xr → Pr/Sr+1

with fibres isomorphic to A and with section

Pr/Sr+1

∼=−→ (0A ×C Pr)/Sr+1 ⊂ X.

Thus

π1(Xr, xr) = π1(Yr, yr) o Sr+1

where the action of Sr+1 on π1(Yr, yr) = H1(E)⊗Z Zr is equal t to IH1(E) ⊗Z ρr.
We denote by Lr the local system defined by the composite

π1(Xr, xr)→ Sr+1
ρr−→ GL(Λr).

We denote by MB(Xr, 2,det(Lr)) the Betti moduli space of rank r irreducible local
systems on Xr with fixed determinant det(Lr), by MB(Xr, r) the Betti moduli
space of rank r irreducible local systems on Xr ([EG18, Prop. 2.1]) and by

φr : MB(Xr, r,det(Lr))→MB(Xr, r)

the closed immersion induced by omitting the restriction on the determinant. We
have

Lr ∈MB(Xr, r,det(Lr)).

Proposition 3.1. When r is even, Lr is rigid in MB(Xr, r,det(Lr)) and φr(Lr)
is rigid in MB(Xr, r).

Proof. It suffices to prove this for φr(Lr) ∈MB(Xr, r) since φ is a closed immersion.
Let T be an irreducible complex affine curve, together with a morphism τ : T →
MB(Xr, r) and a complex point t0 ∈ T such that τ(t0) = Lr. We fix a complex point
t ∈ T , and denote by Lr(t) the irreducible complex local system corresponding to
τ(t). As H1(Ar) is normal in π1(X,x), Clifford theory implies that Lr(t)|H1(Ar) is a
sum of r characters χt,1⊕ . . .⊕χt,r, with χt,i ∈ Hom(H1(Ar),C∗). As Lr(t)|H1(Ar)

is Sr+1-invariant, the subset {χt,1, . . . , χt,r} ∈ Hom(H1(Ar),C∗) consists of a union
of Sr+1-orbits.

Claim 3.2. If r is even, the characters χt,i for i = 1, . . . , r are torsion characters,
that is they lie in

Hom(H1(E)⊗Z Zr, 2πiQ/2πiZ) ⊂ Hom(H1(Ar),C∗).
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Proof. Each single orbit of Sr+1 in the set {χt,1, . . . , χt,r} has length s ≤ r < r+ 1
and defines a quotient Sr+1 → Ss, where s = 1 or 2 if r = 2. For r ≥ 4, the only
non-trivial normal subgroup of Sr+1 is the alternate group. Thus the image of Sr+1

in Ss has order 1 or 2 in all cases. This implies that σ, which has odd order, must
map to the identity in Ss, that is

σ(χt,i) = χt,i for i = 1, . . . , r.(2)

Pick 0 6= γ ∈ H1(E) and some i ∈ {1, . . . , r}. Write for (x1, . . . xr) ∈ Zr

χt,i(γ ⊗ x1, . . . γ ⊗ xr) = exp(2πi(a1x1 + . . .+ arxr))

for some a1, . . . , ar ∈ C. Then (1) and (2) yield

exp(2πi(a1x1 + . . .+ arxr)) = exp(2πi(−a1(x1 + . . .+ xr) + a2x1 + . . .+ arxr−1)).

As this is true for all xj ∈ Z we derive

aj ∈ 1

(r + 1)
Z for all j = 1, . . . , r,

thus χt,i has order dividing (r + 1). This finishes the proof.
�

The scheme map T → Hom(H1(Ar),C∗)/Sr+1 which sends t to (χt,1, . . . , χt,r)
up to ordering, has by Claim 3.2 values in (Hom(H1(Ar), 2πiQ/2πiZ))r/Sr. This is
a countable subset of complex points, thus has to be finite. As T is connected, it is
constant, thus equal to its value at t = t0, thus is the image of the trivial character of
rank r. Thus Lr(t) factors through Sr+1. Since there are only finitely many complex
points in MB(X, 2) the monodromy representation of which factors through Sr+1,
Lr is rigid. This concludes the proof for φ(Lr). For Lr, we assume that τ factors
through τ0 : T → MB(X, r,det(Lr)) and we argue with Lr(t) ∈ MB(X, r,det(Lr))
corresponding to τ0(t) in place of L(t), which does not change the argument. This
concludes the proof. �

Proposition 3.3. Under the assumption of Proposition 3.1, Lr is not cohomo-
logically rigid in MB(Xr, r,det(Lr)), and φ(Lr) is not cohomologically rigid in
MB(Xr, r).

Proof. The Hochschild-Serre spectral sequence for π1(Xr, xr) reads

H1(Xr, End(0Lr)) = H1(H1(Ar), End0(Lr))Sr+1 =

HomSr+1
(H1(Ar), End0(Lr)) = HomSr+1

(Λr ⊕ . . .⊕ Λr︸ ︷︷ ︸
r−times

, End0(Lr)) 6= 0.

The non-vanishing on the right comes from Property (??). The Zariski tangent
space to MB(Xr, r,det(Lr)) at Lr is precisely H1(Xr, End0(Lr)), which is a direct
summandH1(Xr, End(Lr)), which in turn is the Zariski tangent space toMB(Xr, r)
at φ(Lr). This concludes the proof. �

Remark 3.4. In Proposition 3.3, Lr by definition is of the shape f∗rL′r, for an
irreducible local system L′r on Pr/Sr, which is uniquely defined. But

H1(Pr/Sr, End0(L′r)) = H1(Sr, End0(L′r)) = 0
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as Sr is finite, thus L′r is cohomologically rigid on Pr/Sr. Given an irreducible local
system L defined by the representation ρ : π1(X,x)→ GLr(C) on X smooth projec-

tive, we could dream of the existence of a factorization ρ : π1(X,x)→ π1(Y, y)
ρ′−→

GLr(C) where Y is smooth projective, defining L′ on Y , with the property that
L′ is cohomologically rigid. Even without requesting π1(X,x) → π1(Y, y) to come
from geometry, we have no access to it. Together with [EG18, Theorem 1.1] it
would prove Simpson’s integrality conjecture in general on X smooth projective.

4. The quasi-projective case

We now assume r = 2. We replace A2 in the previous section with the 2-
dimensional torus

T = G3
m/(diagonal Gm)

which is the Jacobian of P1 \ {0, 1,∞}. We take the same P2 as in Section 3 and
define V = T ×C P2, U = V/S3 with the S3-Galois cover q : V → U . This yields
the Galois exact sequence

0→ π1(V, v) = π1(T ) = Z2 → π1(U, u)→ S3 → 1

based at a point (1, 1, 1) × p = v with u = q(v), which is identified with the
homotopy exact sequence of V → P2/S3 with fibre T . This fibration has a section
{1, 1, 1} × P/S3, thus

π1(U, x) = Γ2.

Thus ρ2 defines a local system M on U . Again we introduce the moduli spaces
MB(U, 2,det(M)) and MB(U, 2) with the forgetful map

ϕ : MB(U, 2,det(M))→MB(U, 2).

Lemma 4.1. M is rigid and not cohomologically rigid in MB(U, 2,det(M)), ϕ(M)
is rigid and not cohomologically rigid in MB(U, 2).

Proof. For ϕ(M) the rigidity is proved in [LM85, Lemma 2.11] and is in fact a
consequence of MB(U, 2) being 0-dimensional ([LM85, (2.10.1)]), which also shows
that M is rigid. The cohomological statement H1(Γ2, End0(M)) = C is proved in
[LM85, 2.10.4], which is a special case of Property (??). Hence, M and ϕ(M) are
not cohomologically rigid. �

We now fix the monodromies at infinity to be those of M. As the global mon-
odromy of M is finite, so are the monodromies at ∞, in particular they are quasi-
unipotent. We defineMB(U, 2,det(M),mon(M)) as in [EG18, Section 2]. By [EG18,
Remark 2.4], the Zariski tangent space at M of MB(U, 2,det(M),mon(M)) is equal
to

Ker
(
H1(U, End0(M))

restriction−−−−−−→ ⊕γH1(〈γ〉, End0(M))
)
,(3)

where the γ are small loops around the components at ∞ of a smooth projective
compactification U ↪→ Ū with strict normal crossings at infinity, and 〈γ〉 is the free
commutative group spanned by it. We denote by M0 the local system M viewed in
MB(U, 2,det(M),mon(M)).

Lemma 4.2. M0 is cohomologically rigid.
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Proof. By (3), it is enough to find one loop γ at infinity such that the restriction
map

H1(π1(U, x), End0(M))→ H1(〈γ〉, End0(M))

is injective. The action of S3 on on P2 \ T , which is a union of the 3 coordinate
lines, permutes them. This defines a S3-equivariant compactification

V = T ×C P ↪→ V̄ = P2 ×C P,

thus a compactification

j : U ↪→ Ū = V̄ /S3

where S3 acts on V̄ diagonally. This yields the commutative diagram

P2/S3

=

$$

// U

��

// Ū

��
P2/S3

= // P/S3

with fibres T ↪→ P2 above the image p̄ of p ∈ P2 in P2/S3. We take γ in the fibre
P2 which winds around one of the irreducible components of P2 \ T . Thus, it maps
to 1 in π1(P2/S3, p̄) = S3, that is γ ∈ Z2 = π1(T ) ⊂ π1(U, x). Thus M restricted
to 〈γ〉 is trivial. The restriction map

H1(π1(U, u), End0(M))
rest−−→ H1(〈γ〉, End(0M))

is then identified with

HomS3(M, End0(M))→ Hom(Z, End0(M))

via the inclusion Z〈γ〉 → Z2 of Z-modules. Therefore, the map rest is injective.
This concludes the proof. �

Remark 4.3. This remark is due to Alexander Petrov. Let S be a smooth complex
projective variety, LS be an irreducible rigid local system on S. We denote by L′r
the exterior product Lr � LS on Xr ×C S in Proposition 3.1, by L′, resp. L′0 the
exterior product L � LS on U ×C S viewed in MB(U ×C S, 2 · rank(LS),det(L′)),
resp. MB(U ×C S, 2 · rank(LS),det(L′)),mon(L′)) in Lemma 4.1, resp. Lemma 4.2.
Then

Claim 4.4. Proposition 3.3 remains true with Lr replaced with L′r and Lemma 4.1
and Lemma 4.2 remain true with L replaced with L′.

Proof. We applied Künneth formula to H1 of End(L′r) = End(Lr)�End(LS). This
yields the cohomological part of the statement. Similarly for L′. As for rigidity: In
a T -deformation (L′r)t of L′r as in Proposition 3.1, the restriction of (L′r)t to x× S
for any complex point x ∈ Xr is isomorphic to the restriction of (L′r)t0 to x× S by
rigidity of LS , and similarly the restriction of (L′)t to Xr×s for any complex point
s ∈ S is isomorphic to the restriction of (L′)t0 to Xr × s by rigidity of Lr. The
Künneth property for π1(Xr ×C S) implies that (L′r)t ∼= (L′r)t0 . Similary for L′.

�
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In particular, we can take S to be a positive projective Shimura variety of real
rank ≥ 2, on which all the irreducible local systems are rigid, even cohomologically
rigid, and take LS to be a rank ≥ 2 irreducible local system. In this way, we obtain
examples as in (i) and (ii) (with different ranks) with infinite monodromy.

References

[BDO15] Bowman, C., De Visscher, M., Orellana, R.: The partition algebra and the Kronecker

coefficients, Trans. Amer. Math. Soc. 367 (2015), 3647–3667.
[EG18] Esnault, H., Groechenig, M.: Cohomologically rigid connections and integrality, Se-

lecta Mathematica 24 (5) (2018), 4279–4292.

[EG21] Esnault, H., Groechenig, M.: Frobenius structures and unipotent monodromy at infin-
ity, preprint 2021, 8 pages. Appendix to ‘André-Oort for Shimura varieties’ by J. Pila,
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