
Appendix A. Frobenius structures and unipotent monodromy at infinity
by Hélène Esnault and Michael Groechenig

We fix an irreducible affine base scheme S which is of finite type over a universally Japanese ring.
For the purpose of this appendix, S will either be SpecC, SpecFq or SpecR, where R is a finite
type algebra. Let us denote by X̄S a smooth and projective S-scheme with a relatively very ample
line bundle OX̄S (1). Let XS ⊂ X̄S be an open subscheme such that X̄S \ XS is a strict normal
crossings divisor (snc) DS =

⋃c
µ=1D

µ
S . The sheaf of degree n Kähler differentials with log-poles

along D will be denoted by Ωn
X̄S/S

〈D〉. For µ = 1, . . . , c we write resµ : Ω1
X̄S/S

〈D〉 → ODµS/S for

the residue map.

Definition A.1. (a) A log-dR local system on X̄S is a pair (ES ,∇S) where ES is a vector
bundle of rank r on X̄S and

∇ : ES → ES ⊗ Ω1
X̄S/S

〈D〉

is a flat logarithmic connection such that resµ(∇) ∈ H0(Dµ
S ,End(ES |DµS )) is nilpotent for

all µ = 1, . . . , c.
(b) We say that (ES ,∇S) is strongly cohomologically rigid, if

(1) H1
(
X̄S , [End(ES)

End(∇S)−−−−−→ End(ES)⊗ Ω1〈D〉 End(∇S)−−−−−→ · · · ]
)

= 0.

(c) A log-Higgs bundle on X̄S is a pair (VS , θS), where VS is a vector bundle of rank r on X̄S

and θS is an O-linear morphism V → V ⊗ Ω1
X̄
〈D〉 satisfying θS ∧ θS = 0.

(d) A log-Higgs bundle (VS , θS) is called strongly cohomologically rigid, if

(2) H1
(
X̄S , [End(VS)

End(θS)−−−−−→ End(VS)⊗ Ω1〈D〉 End(θS)−−−−−→ · · · ]
)

= 0.

Remark A.2. (a) If S = SpecC, the underlying vector bundle E of a log-dR local sys-
tem has vanishing Chern classes. This follows from the formula for the Atiyah class
of E given in [EV86, Proposition B.1]. In addition, the left-hand side of (1) computes
H1(X(C),End(EC,an)End(∇C)). Indeed, as resµ(∇C) is nilpotent for µ = 1, . . . , c, so is
resµ(End(∇C)), thus End(EC) is Deligne’s extension the cohomology of which computes
analytically Rj∗ where j : XC,an → X̄C,an, see [Del70, II, Proposition 3.13, Corollaire 3.14].

(b) The notion of strong cohomological rigidity is more restrictive than the one of cohomological
rigidity used in [Kat96, EG18]. A cohomological rigid local system, in the traditional sense,
does not have any non-trivial infinitesimal deformations which leave the monodromies at
infinity invariant. A strongly cohomologically rigid log-dR local system does not have any
non-trivial infinitesimal deformations, independently of any constraints at the boundary.

Definition A.3 (Arithmetic models). Let (X̄C, DC,OX̄(1)) be a triple consisting of a smooth
projective complex variety X̄C, an snc divisor DC, and a very ample line bundle OX̄C(1).

(a) An arithmetic model for (X̄C, DC,OX̄C(1)) is given by an affine scheme S where Γ(S,OS) is

a finite type subring R ⊂ C, a smooth projective S-scheme X̄S together with an snc divisor
DS such that

X̄C = X̄S ×S SpecC and DC = DS ×S SpecC,

and a relatively very ample line bundle OX̄S (1) pulling back to OX̄C(1).
1
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(b) Let {(EiC,∇iC)}i∈I be a family of log-dR local systems on XC. An arithmetic model for
(X̄C, DC,OX̄C , {E

i
C,∇iC}i∈I) is given by an arithmetic model for (X̄C, DC,OX̄C(1)) as in

(a), and log-dR local systems {(EiS ,∇iS)}i∈I on X/S satisfying

(EiC,∇iC) = (EiS ,∇iS)|X̄C for all i ∈ I.

Theorem A.4. Suppose that every stable log-dR local system (EC,∇C) of rank r on (X̄C, DC) is
strongly cohomologically rigid. Then, there exists a finite type subalgebra R ⊂ C and a model of
(X̄C, XC, DC) over S = SpecR such that every stable log-dR local system of rank r on (X̄C, DC) has
an S-model (ES ,∇S) such that for every finite field k and every morphism R → W (k) the formal
flat connection

(ÊW , ∇̂W )

is endowed with the structure of a torsionfree Fontaine-Lafaille module on XW = X̄W \DW .

Remark A.5. In [EG20] we prove a stronger result for the case where DC = ∅. The assumptions
of loc. cit. are less stringent, as they apply more generally to arbitrary rigid dR local system, i.e.
isolated points of the moduli space MdR. The additional assumptions above allow one to simplify
the argument significantly.

A.1. Construction of a suitable arithmetic model. Moduli spaces of logarithmic flat connec-
tions on complex varieties were constructed by Nitsure in [Nit93]. Using Langer’s boundedness (see
[Lan14]), this construction was extended to more general base schemes ([Lan14, Theorem 1.1]):

Theorem A.6 (Langer). For a fixed polynomial P there exists a quasi-projective S-schemeMdR(X̄S , DS)
of stable flat logarithmic connections on X̄S with Hilbert polynomial P .

More generally, Langer constructs moduli spaces for semistable Λ-modules, where Λ is a ring
of operators in the sense of [Sim94]. It is explained on p. 87 of loc. cit. that flat logarithmic
connections are special case of the general theory of Λ-modules. We are interested in moduli spaces
of flat logarithmic connections with vanishing Chern classes (see Remark A.2). The corresponding
Hilbert polynomial satisfies

P0(n) =

∫
r · tdX̄Cch(OX̄C(n)) for all n ∈ N.

Corollary A.7. There exists a closed subscheme Mlog-dR(X̄S , DS) ⊂MdR(X̄S , DS), which is the
moduli space of stable log-dR local systems with Hilbert polynomial P0.

Proof. There is an étale covering
(
Ui → MdR(X̄S , DS)

)
i∈I such that we have a universal family

(EUi ,∇Ui) on Ui×SX̄S . By stability, such a universal log-dR Ui-family is well-defined up to tensoring
by a line bundle on Ui. By construction, the characteristic polynomial χi,µ(T ) of resµ(∇Ui) is a
section of a locally free sheaf on Ui. We let Zi ↪→ Ui be the closed immersion corresponding to the
vanishing locus of (χi,µ(T )− T r), µ = 1, . . . , c. This closed immersion is independent of the choice
of a Ui-universal family, since tensoring by a line bundle on Ui leaves χi,µ invariant. We may thus
apply faithfully flat descent theory to glue those closed immersions to a closed embedding

Z ↪→MdR(X̄S , DS).

The scheme Z is the sought-for moduli space Mlog-dR(X̄S , DS). �

We record the following consequence of non-abelian Hodge theory for later reference.
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Theorem A.8. For every strongly cohomologically rigid log-dR local system (EC,∇C) on X̄C there
exists an F -filtration · · · ⊂ F i ⊂ F i−1 ⊂ · · ·F 0 = E satisfying Griffiths transversality ∇ : F i →
F i−1 ⊗OX Ω1

X〈D〉 and with the associated graded sheaves griFE = F i/F i+1 being locally free. The
associated Higgs bundle is denoted by (

grFE,KS
)
,

where KS stands for Kodaira-Spencer and is defined by the linear maps

grF∇ : griFE → gri−1
F E ⊗OX Ω1

X〈D〉.

Proof. Mochizuki proved in [Mo06, Theorem 10.5] that every log-dR local system on X̄C can be
complex analytically deformed to a polarised variation of Hodge structures, which implies the
existence of the requisite F -filtration on the rigid (EC,∇C). In loc. cit., this is stated in terms of
Betti local systems on XC = X̄C \DC. This is an equivalent perspective, by virtue of the Riemann-
Hilbert correspondence which is complex analytic. Due to strong cohomological rigidity, (EC,∇C)
cannot be deformed in a non-trivial manner. We conclude that (EC,∇C) underlies a polarised
variation of Hodge structures. �

Remark A.9. Stability of the log-Higgs bundle
(⊕

j grijFE
i
C,KS(∇iC)

)
is implied by Mochizuki’s

parabolic Simpson correspondence [Mo06]. We remark that the parabolic structure is trivial in the
case at hand, since we assume that the monodromies around the divisor at infinity are unipotent
and therefore in this case, parabolic stability amounts to stability in the usual sense of log-Higgs
bundles. See [Sim90, p. 722] where the triviality of the parabolic structure is justified for the curve
case. The argument given there generalises directly to higher dimensional varieties.

Subsequently, for every strongly cohomologically rigid log-dR local system (EC,∇C) on X̄C we
fix the F -filtration constructed in Theorem A.8.

Proposition A.10. We keep the assumptions of Theorem A.4. There exists an arithmetic model
(S, X̄S , DS ,OXS (1)) of (XC, DC,OXC(1)) such that

(a) all rank r log-dR local systems (EiC,∇iC)i∈I have a locally free model (EiS ,∇iS)i∈I over S,
(b) the models (EiS ,∇iS)i∈I are also strongly cohomologically rigid,

(c) the filtrations (F ijC ⊂ EiC) are defined over S such that the S-relative filtrations F ijS ⊂ EiS
satisfy the Griffiths-transversality condition,

(d) for every i ∈ I the associated graded⊕
j

grijFE
i
S ,KS(∇iS)


is a stable logarithmic Higgs bundle which is also locally free.

Furthermore, if s : Spec k̄ → S is a geometric point of S, then

(e) (Es,∇s) is a log-dR local system on X̄s = X̄S ×S Spec k̄, then there exists i ∈ I such that
(Es,∇s) = (EiS ,∇iS)|Xs ,

(f) p = char(k̄) > 2r + 2, and
(g) S → SpecZ is smooth.

Proof. The proof is analogous to the one of [EG20, Proposition 3.3] and will therefore only be
sketched. Consider the set R of all finite type subrings R ⊂ C. Since C =

⋃
R∈RR and (X̄,DC)

are defined in terms of finitely many homogenous equations, there exists R̃ ∈ R such that (X̄C, DC)
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are obtained by base change from a pair of projective schemes (X̄S̃ , DS̃) ⊂ PN
S̃

, where we write S̃

for Spec R̃. We may assume that DS̃ is an snc divisor and that X̄S̃ is smooth.

We now consider the moduli space Mlog-dR(X̄S̃/S̃). Since

Mlog-dR(X̄C/C) 'Mlog-dR(X̄S̃/S̃)×S̃ SpecC

is finite and flat over SpecC, there exists a finite type algebra R̃ ⊂ R, such that the base change
(we denote SpecR by S)

Mlog-dR(X̄S/S) =Mlog-dR(X̄S̃/S̃)×S̃ S
is finite and flat over S.

Since there are only finitely many log-dR local systems (EiC,∇iC)i∈I over C, we may assume that
they have stable and locally free models (EiS ,∇iS)i∈I over S. This amounts to property (a) above.
By further enlarging R we obtain strong cohomological rigidity (property (b)), and properties (c,d)
about the F -filtrations and the associated graded log-Higgs bundles.

The S-models above give rise to sections

(3) [(EiS ,∇iS)]i∈I : S : Mlog-dR(X̄S̃/S̃).

Since the structural morphism Mlog-dR(X̄S̃/S̃)→ S is finite and flat, we infer that the sections of
(3) are jointly surjective. This implies (e). By inverting (2r+ 2)! we can achieve (f). And, property
(g) can be arranged by passing to the maximal open subset of S which is smooth over SpecZ. �

A.2. Applications of the Higgs-de Rham flow. In this subsection, we apply the logarithmic
Higgs-de Rham flow from [LSYZ19] (the smooth and proper case is due to [LSZ13]).

We fix an arithmetic model as in Proposition A.10. Let k̄ be an algebraic closure of a finite field
and let s : Spec k̄ → S be a geometric point of S.

Definition A.11 ([LSZ13, LSYZ19]). An f -periodic Higgs-de Rham flow on Xs is a tuple

(E0,∇0, F0, φ0, E1,∇1, F1, . . . , Ef−1,∇f−1, Ff−1, φf−1),

where for all i ∈ Z/fZ we have a log-dR local system (Ei,∇i, Fi) with nilpotent p-curvature of
level ≤ p − 1, a Griffiths-transversal filtration Fi, and an isomorphism φi : C

−1
1 (grFEi,KSi) '

(Ei+1,∇i+1).

We denote the set of isomorphism classes of stable rank r logarithmic Higgs bundles on Xs with
Hilbert polynomial P0 by MDol(s). Likewise, we write MdR(s) for the set of isomorphism classes
of stable rank r log-dR local systems on Xs with Hilbert polynomial P0. For the purpose of this
subsection, it will not matter that those sets are k̄-rational points of moduli spaces, which could be
constructed with Langer’s methods (see Theorem A.6).

We informally refer to the following diagram as the Higgs-de Rham flow :

MDol(s)
C−1

--
MdR(s).

gr
mm

The dashed arrows represent merely correspondences, rather than actual maps. The reason is that
gr(E,∇) could be not stable, and C−1 can only be defined if the p-curvature is nilpotent of level
≤ p− 1 and the residues at infinity are nilpotent.

Using this viewpoint, one calls an element [(E,∇)] of MdR(s) periodic, if there exists f ∈ N with

[(E,∇)] = (C−1 ◦ gr)f ([(E,∇)]).
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We let RDol(s) ⊂ MDol(s) denote the subset of stable rank r log Higgs bundles with nilpotent
Higgs field θ and nilpotent resµ θ for all µ = 1, . . . , c of level ≤ p−1. We denote by RdR(s) ⊂MdR(s)
the subset of stable log-dR local systems with nilpotent residues or level ≤ p − 1. Restricting the
Higgs-de Rham flow to these subsets has the added advantage of turning the correspondences above
into maps of sets:

(4) RDol(s)
C−1

--
RdR(s).

gr
mm

It is not immediately obvious that the above maps are well-defined, since one has to justify that
strong cohomological rigidity and stability is preserved by gr and C−1.

Lemma A.12. The maps in (4) are well-defined.

Proof. Proposition A.10(c) allows us to fix for every (Es,∇s) ∈ RdR(s) an F -filtration. It follows
from Proposition A.10(d) that gr(Es,∇s) = (grFEs,KS) is stable. This shows that gr : RdR(s) →
RDol(s) is a well-defined map, which a priori depends on the chosen filtration (but see the end of
the proof of Lemma A.15). Arguing as in [Lan14, Corollary 5.10] one shows that C−1 preserves
stability. �

Lemma A.13. Every element of RDol(s) is strongly cohomologically rigid.

Proof. There is an equivalence of categories (see [LSYZ19, Theorem 6.1])

C−1 : Higgsp−1(X̄s, Ds) ∼= MICp−1(X̄s, Ds),

where the left-hand side denotes a subcategory of logarithmic Higgs bundles (V, θ) satisfying several
technical assumptions, and similarly, the right-hand side denotes a subcategory of log-dR local
systems with nilpotent p-Higgs bundles which are required to satisfy various assumptions. We
refer the reader to [LSYZ19, Section 6] for more details. This is an equivalence of categories, and
therefore

Ext(C−1(Vs, θs), C
−1(Vs, θs)) = Ext((Vs, θs), (Vs, θs)) = 0.

Here, we implicitly use Proposition A.10(e) to guarantee that all self-extensions of (Vs, θs) (re-
spectively C−1(Vs, θs)) belong to Higgsp−1(X̄s, Ds) (respectively MICp−1(X̄s, Ds)). Indeed, since
p > 2r+2 by Proposition A.10(f), the Higgs field of such a self-extension is automatically nilpotent
of level ≤ p − 1. Thus, C−1 preserves strong cohomological rigidity. The same assertion holds for
its inverse functor C.

We conclude the proof of the lemma by applying assertion (e) of Proposition A.10, according
to which every log-dR local system with Hilbert polynomial P0 on X̄s is strongly cohomologically
rigid. Therefore, for every [(V, θ)] ∈ RDol(s) we have that C−1(V, θ) is strongly cohomologically
rigid. This implies that (V, θ) = gr ◦ C−1(V, θ) is strongly cohomologically rigid. �

Lemma A.14. The set RdR(s) is finite.

Proof. Let (E,∇) be a strongly cohomologically rigid log-dR local system which is stable and has
Hilbert polynomial P0. The hypercohomology group (1) computes the tangent space ofMdR(X̄,D)
in [(E,∇)]. By the vanishing assumption, the point [(E,∇)] is isolated. We conclude the proof by
recalling that the number of isolated points of a Noetherian scheme is finite. �

Lemma A.15. The maps gr and C−1 are bijections.
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Proof. It suffices to prove that gr and C−1 are injective. Indeed, it then follows from Lemma A.14,
they must be of equal cardinality if both maps are injective. The pigeonhole principle is used to
conclude that gr and C−1 are bijections.

Since C−1 is defined using an equivalence of categories (see [LSYZ19, Theorem 6.1]), it is clear
that C−1 : RDol(s)→ RdR(s) is injective.

The associated graded gr is injective for different reasons. In particular, we will use strong
cohomological rigidity to prove this. The Artin-Rees construction applied to the F -filtration on
(E,∇) yields a Gm-equivariant A1

s-family of vector bundles (V,∇t), endowed with a log-t-connection
∇t, where t : A1

s → A1
s denotes the identity map. Furthermore, we have

(V,∇t)|t=0 ' (grFE,KS).

Recall from Proposition A.10(d) that the right-hand side is a strongly cohomologically rigid log-
Higgs bundle. There is therefore a unique way to lift it to a t-connection over Spec k̄[t]/(t2), and
likewise for Spec k̄[t]/(tn). We infer from the Grothendieck existence theorem that there is a unique
way to lift it to a t-connection on Spec k̄[[t]]. This implies that there cannot be a pair of distinct
elements

(E1
s ,∇1

s), (E
2
s ,∇2

s) ∈ RdR(s) such that (grFE
1
s ,KS) ' (grFE

2
s ,KS).

Otherwise, we would have

(E1
s ,∇1

s)⊗ k̄((t)) ' (E2
s ,∇2

s)⊗ k̄((t)),

which implies the existence of an isomorphism over k̄ (by stability). This concludes the proof of
injectivity, and furthermore proves that the map gr doesn’t depend on the chosen F -filtration. �

Proposition A.16. The p-curvature of [(E,∇)] ∈ RdR(s) is nilpotent.

Proof. By virtue of definition of C−1, every log-dR local system in the image of C−1 has nilpotent
p-curvature. According to Lemma A.15 the map C−1 is bijective. This concludes the proof. �

Proposition A.17. Every [(E,∇)] ∈ RdR(s) is periodic.

Proof. Let σ = C−1 ◦ gr. By definition, it is a permutation of the finite set RdR(s). Let f ′ be the

order of σ. We then have that σf
′
([(E,∇)]) = [(E,∇)], and thus [(E,∇)] is f -periodic for some

f |f ′. �

A.3. Higgs-de Rham flow over truncated Witt rings. As before, we denote by k̄ the algebraic
closure of a finite field of characteristic p, and let s : Spec k̄ → S be a k̄-point of S. Furthermore,
we write W = W (k̄) for the associated Witt ring, and K for its fraction field. Hensel’s lemma and
Proposition A.10(g) implies that s can be extended to a morphism

sW : SpecW → S.

For n ∈ N we denote by Wn the ring of n-th Witt vectors and by X̄n the base change X̄S ×S Wn.
We define H(X̄n/Wn) to be the category of tuples (V, θ, Ē, ∇̄, F̄ , φ), where (V, θ) is a graded

log-Higgs bundle on X̄n of level ≤ p − 1, (Ē, ∇̄, F̄ ) is a log-dR local system on X̄n−1 with a
Griffiths-transversal filtration F̄ of level ≤ p − 2, and φ : grF̄ (Ē, ∇̄) ' (V, θ) ×Wn

Wn−1 is an
isomorphism of graded log-Higgs bundles.

Similarly, we denote by MIC(X̄n/Wn) the category of quasi-coherent sheaves with Wn-linear flat
connections on X̄n. There is a functor

C−1
n : H(X̄n/Wn)→ MIC(X̄n/Wn)
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which extends the logarithmic inverse Cartier transform. In the proper non-logarithmic case this
is due to [LSZ13, Theorem 4.1]. Closely related results were obtained by Xu in [Xu19]. The
logarithmic version is covered in [LSYZ19, Section 5] immediately before the proof of Proposition
5.2.

Let (EWn
,∇Wn

, Fn) be an Wn-linear log-dR local system endowed with an F -filtration. We
denote by gr(E,∇, F ) the tuple (grF (E),KS, (E,∇, F )Wn−1

, id).

Definition A.18 (Lan–Sheng–Zuo & Lan–Shen–Yang–Zuo). An f -periodic log-dR local system
on X̄n/Wn is a tuple

(E0
Wn
,∇0

Wn
, F 0

Wn
, φ0, E

1
Wn
,∇1

Wn
, F 1

Wn
, . . . , Ef−1

Wn
,∇f−1

Wn
, F f−1

Wn
, φf−1),

where for all i we have that (Ei,∇i, F i) is a log-dR local system on X̄Wn
(nilpotent of level ≤ p−2

on the special fibre) with a Griffiths-transversal filtration F iWn
, such that for all integers n we have

that grF (EiWn
,∇iWn

) belongs to H(X̄n/Wn) and φi : C
−1
1 (grFE

i
Wn
,KSi) ' (Ei+1

Wn
,∇i+1

Wn
).

By taking the inverse limit with respect to n, we obtain a notion of periodicity relative to W .
Using [LSZ13, p.3, Theorem 3.2, Variant 2], [LSYZ19, Theorem 1.1] together with [Fal88, Theorem
2.6*,p.43 i)] one obtains:

Theorem A.19 (Lan–Sheng–Zuo & Lan–Sheng–Yang–Zuo). A 1-periodic log-dR local system on
X̄W /W gives rise to a torsion-free Fontaine–Lafaille module on XW = X̄W \ DW . Furthermore,
we can associate to an f -periodic log-dR local system on X̄W /W a crystalline étale local system of
free W (Fpf )-modules on XK . This is a fully faithful functor.

We remark that Faltings only treats the case f = 1, in which he constructs a fully faithful
functor from Fontaine-Lafaille modules to étale local systems of Zp-modules. The general case can
be reduced to this one using a categorical construction, as explained in [LSZ13, Variant 2]. It is
clear that this formal procedure preserves fully faithfulness of the functor. In combination with the
above, the following result concludes the proof of Theorem A.4.

Theorem A.20. Every element [(Es,∇s)] ∈ RdR(s) can be lifted to a periodic Higgs-de Rham flow
over Wn on X̄n.

Proof. Recall from Lemma A.14 that there is a finite number of non-isomorphic log-dR local systems
(Eis,∇is)i∈I in RdR(s). For every i ∈ I there exists an extension to an S-family of log-dR local
systems (EiS ,∇iS) (see Proposition A.10(a,b)). By pulling back along sW : SpecW → S we therefore
obtain a lift to a W -family (EiW ,∇iW ), and hence also a Wn-lift (EiWn

,∇iWn
).

Since (Eis,∇is) is strongly cohomologically rigid, deformation theory implies that such a W -lift
is unique up to isomorphism.

We have seen in Proposition A.17 that every (Eis,∇is) is periodic over s (this corresponds to the
case n = 0) since the map

σ = C−1 ◦ gr : RdR(s)→ RdR(s)

is a permutation (Lemma A.15). The Wn-relative log-dR local system (EiWn
,∇iWn

) is endowed with

an F -filtration by Proposition A.10(c). We can therefore evaluate gr(EiWn
,∇iWn

).

Since the functor C−1
n extends C−1 on the special fibre, we see that we have

(C−1
n ◦ gr)(EiWn

,∇iWn
) ' (E

σ(i)
Wn

,∇iWn
).

In particular, for (Eis,∇is) being f -periodic, we have σf (i) = i, and thus

(C−1
n ◦ gr)(EiWn

,∇iWn
) ' (EiWn

,∇iWn
).
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This equation establishes periodicity of (EiWn
,∇iWn

) relative to Wn. �

We will now state a Betti version of Theorem A.4. For this purpose, let us recall that the Betti
moduli spaceMB(X) of irreducible rank r complex local systems of is zero-dimensional, since every
such local system is assumed to be strongly cohomologically rigid. Furthermore,MB(X) is defined
over Q, and therefore the irreducible rank r local systems ρ1, . . . , ρnr are defined over a number

field F . By finite generation of πtop
1 (X) we have that the representations ρ1, . . . , ρnr can be defined

over OF [M−1], for a sufficiently big positive integer M .

Remark A.21. As by Remark A.2 (a), H1(X(C),End(EC,an)End(∇C)) computes the left-hand side
of (1), so is equal to zero, we can apply [EG18, Theorem 1.1] to conclude that Simpson’s integrality
conjecture holds. Therefore, M can be chosen to be 1. In fact, under the assumption that all log-dR
bundles in a given rank are rigid, the proof of loc. cit. applies without verifying this vanishing
assumption. We do not use this remark in the sequel.

For every prime p -M , and every choice of an embedding OF →W (F̄p) we can therefore consider
the induced W (F̄p)-representations

ρ
W (F̄p)
1 , . . . , ρW (F̄p)

nr : πtop
1 (XC)→ GLr(W (F̄p)).

The étale fundamental group π1(XC) is the profinite completion of πtop
1 (XC). Thus, we obtain

continuous representations

ρ
W (F̄p)
1 , . . . , ρW (F̄p)

nr : π1(XC)→ GLr(W (F̄p)).

Theorem A.22. Let (X̄C, XC, DC) and (X̄S , XS , DS) be as in Theorem A.4. Suppose that p is a
prime, which belongs to the image of S → SpecZ. Let k be a finite field of characteristic p and

fix a morphism SpecW (k)→ S. Then, the representations {ρW (F̄p)
i }i=1,...,nr descend to crystalline

representations {ρcris
i }i=1,...,nr : π1(XK)→ GLr(W (F̄p)), where K = Frac(W (k)).

Proof. By combining Theorem A.19 and Theorem A.4, we obtain crystalline representations

{πi}i=1,...,nr : π1(XK)→ GLr(W (F̄p))

associated to the corresponding log-dR systems (Ei,∇i)i=1,...,r on X̄K Restricting these represen-
tations further to the geometric fundamental group π1(XK̄), we obtain

(πgeom
i )i=1,...,nr : π1(XK̄)→ GLr(W (F̄p)).

Claim A.23. The geometric representations (πgeom
i )i=1,...,nr are irreducible.

Proof of the claim. Assume by contradiction that there exists πgeom
i which is reducible. Then, the

residual representation πgeom
i ⊗ F̄p : π1(XK̄) → GLr(F̄p) is reducible as well. The continuous

representation πi⊗ F̄p : π1(XK)→ GLr(F̄p) factors through the finite group GLr(Fq) for a p-power
q. By Proposition A.10 (g) we may assume that XK has a rational point, which yields a section
Gal(K̄/K)→ π1(XK). The kernel of the restriction πi|Gal(K̄/K) yields a finite extension K ′/K such

that πi ⊗ F̄p|π1(XK′ )
is reducible.

Let α be a subrepresentation of πi ⊗ F̄p|π1(XK′ )
. We will now use work by Sun–Yang–Zuo. It

develops a version of the Higgs-de Rham flow over ramified extensions of W . Theorem 5.15 in
[SYZ22] implies that the subrepresentation α gives rise to a sub-log-dR local system of (Ei,∇),
which is furthermore periodic and thus of slope 0. This contradicts stability. Note that loc. cit.
deals with the more general setting of twisted Higgs-de Rham flows and projective representations.
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When applying their result we may therefore assume that the twisting line bundle L is trivial, since
our representations are not projective. �

Claim A.24. The geometric representations πgeom
i are pairwise non-isomorphic.

Proof of the claim. As before, it suffices to show that the residual F̄p-representations are pairwise
non-isomorphic. We will use the same strategy as before. An isomorphism between πgeom

i ⊗ F̄p
and πgeom

j ⊗ F̄p therefore implies the existence of a finite extension K ′/K such that there exists an
isomorphism

πgeom
i ⊗ F̄p ' πgeom

j ⊗ F̄p : π1(XK′)→ GLr(F̄p).
According to [SYZ22, Theorem 5.15] (which relies on [SYZ22, Theorem 5.8(ii)]), the functor from
periodic Higgs-de Rham flows to F̄p-linear representations of π1(XK′) is fully faithful. Thus, we
obtain an isomorphism of the associated Higgs-de Rham flows, and in particular we have that
(Ei,∇i)K′ ' (Ej ,∇j)K′ . This implies i = j since the associated complex log-dR local systems
(Ei,∇i)C and (Ej ,∇j)C are non-isomorphic, and hence concludes the proof. �

Applying these two claims we see that the geometric representations

πi|π1(XK̄) : π1(XK̄)→ GLr(W (F̄p))

for i = 1, . . . , nr remain irreducible since the set {πi|π1(XK̄)}i=1,...,nr defines nr pairwise non-

isomorphic W (F̄)p-local systems on XK̄ , which by the pigeonhole principle has to be the set of

W (F̄p)-local systems defined by {ρW (F̄p)
i }i=1,...,nr , and thus each single one of them descends to a

crystalline representation. �
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