APPENDIX A. FROBENIUS STRUCTURES AND UNIPOTENT MONODROMY AT INFINITY
BY HELENE ESNAULT AND MICHAEL GROECHENIG

We fix an irreducible affine base scheme S which is of finite type over a universally Japanese ring.
For the purpose of this appendix, S will either be Spec C, SpecF, or Spec R, where R is a finite
type algebra. Let us denote by Xg a smooth and projective S-scheme with a relatively very ample
line bundle Ox_(1). Let Xg C Xg be an open subscheme such that Xg \ Xg is a strict normal
crossings divisor (snc) Dg = |JS_, D%. The sheaf of degree n Kihler differentials with log-poles

pn=1
along D will be denoted by Q% (D). For p = 1,...,c we write res,: Q D) — Opus for

1
XS/S Xs/s<

the residue map.

Definition A.1. (a) A log-dR local system on Xg is a pair (Es,Vs) where Eg is a vector
bundle of rank r on Xg and
V: Bs = Es ® Qx_ 5(D)
is a flat logarithmic connection such that res, (V) € H°(D%, End(Es|pz)) is nilpotent for
all u=1,...,c
(b) We say that (Eg, V) is strongly cohomologically rigid, if

End(Vs)

(1) H'(Xs, [End(Es) ——= End(Es) ® Q'(D) End(Vs), |

.. ]) =0.

(c) A log-Higgs bundle on Xg is a pair (Vs,0s), where Vg is a vector bundle of rank » on Xg
and fg is an O-linear morphism V -V ® Q}( (D) satisfying 6s A s = 0.

(d) A log-Higgs bundle (Vg,0s) is called strongly cohomologically rigid, if

--]) =0.

Remark A.2. (a) If S = SpecC, the underlying vector bundle E of a log-dR local sys-
tem has vanishing Chern classes. This follows from the formula for the Atiyah class
of E given in [EV86, Proposition B.1]. In addition, the left-hand side of computes
HY(X(C),End(Ec an)E"(Ve)). Indeed, as res,(Vc) is nilpotent for u = 1,...,¢, so is
res, (End(V¢)), thus End(Ec) is Deligne’s extension the cohomology of which computes
analytically Rj,. where j : X¢ an — Xc an, see [Del70, 11, Proposition 3.13, Corollaire 3.14].

(b) The notion of strong cohomological rigidity is more restrictive than the one of cohomological
rigidity used in [Kat96, [EG18]. A cohomological rigid local system, in the traditional sense,
does not have any non-trivial infinitesimal deformations which leave the monodromies at
infinity invariant. A strongly cohomologically rigid log-dR local system does not have any
non-trivial infinitesimal deformations, independently of any constraints at the boundary.

End(6s)

@) H (X5, [End(Ve) 22 End(vg) @ 1Dy £2208), .

Definition A.3 (Arithmetic models). Let (Xc¢,Dc,Ox(1)) be a triple consisting of a smooth
projective complex variety Xc, an snc divisor D¢, and a very ample line bundle O (1).

(a) An arithmetic model for (X¢, D¢, O (1)) is given by an affine scheme S where I'(S, Og) is
a finite type subring R C C, a smooth projective S-scheme Xg together with an snc divisor
Dg such that

Xc = Xg xgSpecC and D¢ = Dg xg SpecC,

and a relatively very ample line bundle O % (1) pulling back to Ox_(1).
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(b) Let {(E¢, V) Yier be a family of log-dR local systems on Xc¢. An arithmetic model for
Xc,De,0x ., {EL, Vitier) is given by an arithmetic model for (X¢, D¢, Ox (1)) as in

(a), and log-dR local systems {(E%, V%) }ier on X/S satisfying
(EL,VE) = (B4, V)|, foralli € I.

Theorem A.4. Suppose that every stable log-dR local system (Ec,V¢) of rank v on (Xc, Dc) is
strongly cohomologically rigid. Then, there exists a finite type subalgebra R C C and a model of
(Xc¢, Xc, Dc) over S = Spec R such that every stable log-dR local system of rank r on (X¢, Dc) has
an S-model (Es,Vg) such that for every finite field k and every morphism R — W (k) the formal
flat connection

(Ew,Vw)
is endowed with the structure of a torsionfree Fontaine-Lafaille module on Xy = Xy \ Dy .

Remark A.5. In [EG20] we prove a stronger result for the case where D¢ = ). The assumptions
of loc. cit. are less stringent, as they apply more generally to arbitrary rigid dR local system, i.e.
isolated points of the moduli space Myr. The additional assumptions above allow one to simplify
the argument significantly.

A.1. Construction of a suitable arithmetic model. Moduli spaces of logarithmic flat connec-
tions on complex varieties were constructed by Nitsure in [Nit93]. Using Langer’s boundedness (see
[Lan14]), this construction was extended to more general base schemes ([LanI4, Theorem 1.1]):

Theorem A.6 (Langer). For a fized polynomial P there exists a quasi-projective S-scheme Mgar(Xs, Ds)
of stable flat logarithmic connections on Xg with Hilbert polynomial P.

More generally, Langer constructs moduli spaces for semistable A-modules, where A is a ring
of operators in the sense of [Sim94]. It is explained on p. 87 of loc. cit. that flat logarithmic
connections are special case of the general theory of A-modules. We are interested in moduli spaces
of flat logarithmic connections with vanishing Chern classes (see Remark . The corresponding
Hilbert polynomial satisfies

Py(n) = /r -tdg.ch(Ox,(n)) for all n € N.

Corollary A.7. There exists a closed subscheme Miog-ar(Xs, Ds) C Mar(Xs, Ds), which is the
moduli space of stable log-dR local systems with Hilbert polynomial Py.

Proof. There is an étale covering (Ui — Mar(Xs, DS))iel such that we have a universal family
(Ev,, Vu,) on U; x s X 5. By stability, such a universal log-dR U;-family is well-defined up to tensoring
by a line bundle on U;. By construction, the characteristic polynomial x; ,(T) of res,(Vy,) is a
section of a locally free sheaf on U;. We let Z; — U, be the closed immersion corresponding to the
vanishing locus of (x; ,(T) —T"),pu =1,...,c. This closed immersion is independent of the choice
of a U;-universal family, since tensoring by a line bundle on U; leaves x; , invariant. We may thus
apply faithfully flat descent theory to glue those closed immersions to a closed embedding

7 MdR(Xs, Ds).
The scheme Z is the sought-for moduli space Mlog—dR()_(s, Dg). a

We record the following consequence of non-abelian Hodge theory for later reference.
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Theorem A.8. For every strongly cohomologically rigid log-dR local system (Ec,V¢) on Xc there
exists an F-filtration --- C F* Cc Fi-1 c ...FY = E satisfying Griffiths transversality V: Fi —
F=l @0, Q% (D) and with the associated graded sheaves gr'n E = F'/F™ being locally free. The
associated Higgs bundle is denoted by
(ngE, KS)7
where KS stands for Kodaira-Spencer and is defined by the linear maps
grpV: grn B — gr'o 'E @0, Q% (D).

Proof. Mochizuki proved in [Mo06, Theorem 10.5] that every log-dR local system on X¢ can be
complex analytically deformed to a polarised variation of Hodge structures, which implies the
existence of the requisite F-filtration on the rigid (Ec, V¢). In loc. cit., this is stated in terms of
Betti local systems on X¢ = X¢ \ Dc. This is an equivalent perspective, by virtue of the Riemann-
Hilbert correspondence which is complex analytic. Due to strong cohomological rigidity, (E¢, V)
cannot be deformed in a non-trivial manner. We conclude that (Eg¢, V¢) underlies a polarised
variation of Hodge structures. O

Remark A.9. Stability of the log-Higgs bundle (EB gr E(DKS(Vz )) is implied by Mochizuki’s

parabolic Simpson correspondence [Mo06]. We remark that the parabolic structure is trivial in the
case at hand, since we assume that the monodromies around the divisor at infinity are unipotent
and therefore in this case, parabolic stability amounts to stability in the usual sense of log-Higgs
bundles. See [Sim90, p. 722] where the triviality of the parabolic structure is justified for the curve
case. The argument given there generalises directly to higher dimensional varieties.

Subsequently, for every strongly cohomologically rigid log-dR local system (Ec, V) on X¢ we
fix the F-filtration constructed in Theorem

Proposition A.10. We keep the assumptions of Theorem[A.]] There exists an arithmetic model
(8, Xs,Ds,0x4(1)) of (X¢, Dc,Ox.(1)) such that
(a) all rank r log-dR local systems (E&, VE)icr have a locally free model (E%,V&)ier over S,
(b) the models (E%, VY)icr are also strongly cohomologically rigid,
(c) the filtrations (FY C EL) are defined over S such that the S-relative filtrations F§ C Ei
satisfy the Griffiths-transversality condition,
(d) for every i € I the associated graded

@gr EL, KS(V)

s a stable logarithmic Higgs bundle which is also locally free.
Furthermore, if s: Speck — S is a geometric point of S, then
(e) (E,,V,) is a log-dR local system on X, = Xg x5 Speck, then there exists i € I such that
(Esa vs) = (EfS" Vis)|Xs’
(f) p = char(k) > 2r + 2, and
(g) S — SpecZ is smooth.

Proof. The proof is analogous to the one of [EG20, Proposition 3.3] and will therefore only be
sketched. Consider the set R of all finite type subrings R C C. Since C = |Jzcr R and (X, Dc)

are defined in terms of finitely many homogenous equations, there exists R € R such that (Xc, D)
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are obtained by base change from a pair of projective schemes (X 5 D3) C ]P’g , where we write S

for Spec R. We may assume that Dgz is an snc divisor and that X g is smooth.
We now consider the moduli space Mog-ar(Xg/S). Since

Mlog—dR(X(C/ (C) = Mlog-dR(Xg/g) Xg SpecC

is finite and flat over Spec C, there exists a finite type algebra R C R, such that the base change
(we denote Spec R by 5)

Mlog-dR(XS/S) = Mlog-dR(Xg/g) X3 S

is finite and flat over S.

Since there are only finitely many log-dR local systems (Eé, V&)ier over C, we may assume that
they have stable and locally free models (E%, V%);c; over S. This amounts to property (a) above.
By further enlarging R we obtain strong cohomological rigidity (property (b)), and properties (c,d)
about the F-filtrations and the associated graded log-Higgs bundles.

The S-models above give rise to sections

3) (%, V)ier: St Miog-ar(Xg/S).

Since the structural morphism Mj,g-qr(X 3/ 5) — S is finite and flat, we infer that the sections of
(3) are jointly surjective. This implies (e). By inverting (2r + 2)! we can achieve (f). And, property
(g) can be arranged by passing to the maximal open subset of S which is smooth over SpecZ. O

A.2. Applications of the Higgs-de Rham flow. In this subsection, we apply the logarithmic
Higgs-de Rham flow from [LSYZ19] (the smooth and proper case is due to [LSZ13]).

We fix an arithmetic model as in Proposition Let k be an algebraic closure of a finite field
and let s: Speck — S be a geometric point of S.

Definition A.11 (|LSZ13, [LSYZ19]). An f-periodic Higgs-de Rham flow on X is a tuple
(Eo, Vo, Fo, @0, E1, Vi, Fr,.o. Ep 1, Vi1, Fro1,d5-1),

where for all i € Z/fZ we have a log-dR local system (E;,V;, F;) with nilpotent p-curvature of
level < p — 1, a Griffiths-transversal filtration F;, and an isomorphism ¢;: C| 1(ngEi,KS¢) ~
(Eit1, Vit1).

We denote the set of isomorphism classes of stable rank r logarithmic Higgs bundles on X with
Hilbert polynomial Py by Mp,(s). Likewise, we write Myg(s) for the set of isomorphism classes
of stable rank 7 log-dR local systems on X with Hilbert polynomial Py. For the purpose of this
subsection, it will not matter that those sets are k-rational points of moduli spaces, which could be
constructed with Langer’s methods (see Theorem |A.6)).

We informally refer to the following diagram as the Higgs-de Rham flow:

ot

Mpoi(s) g — — — — 7 Mag(s).

gr

The dashed arrows represent merely correspondences, rather than actual maps. The reason is that
gr(E, V) could be not stable, and C~! can only be defined if the p-curvature is nilpotent of level
< p—1 and the residues at infinity are nilpotent.

Using this viewpoint, one calls an element [(E, V)] of Myr(s) periodic, if there exists f € N with

[(B,V)] = (C"  ogn)/ ((E,V))).
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We let Rpei(s) C Mpei(s) denote the subset of stable rank r log Higgs bundles with nilpotent
Higgs field 6 and nilpotent res,, 6 for all p = 1,..., c of level < p—1. We denote by Rir(s) C Mar(s)
the subset of stable log-dR local systems with nilpotent residues or level < p — 1. Restricting the
Higgs-de Rham flow to these subsets has the added advantage of turning the correspondences above
into maps of sets:

071
—_—
(4) Rpa(s) 7 Rar(s).
gr
It is not immediately obvious that the above maps are well-defined, since one has to justify that
strong cohomological rigidity and stability is preserved by gr and C~1.

Lemma A.12. The maps in are well-defined.

Proof. Proposition c) allows us to fix for every (E,, V) € Ryr(s) an F-filtration. It follows
from Proposition ) that gr(Fs, V) = (grpFEs, KS) is stable. This shows that gr: Ryr(s) —
Rpoi(s) is a well-defined map, which a priori depends on the chosen filtration (but see the end of
the proof of Lemma . Arguing as in [Lanl4l Corollary 5.10] one shows that C'~! preserves
stability. O

Lemma A.13. Fvery element of Rpoi(s) is strongly cohomologically rigid.

Proof. There is an equivalence of categories (see [LSYZ19, Theorem 6.1])
071 : Higgsp—l(X37 DS) = Mlcp—l(st D3)7

where the left-hand side denotes a subcategory of logarithmic Higgs bundles (V, 0) satisfying several
technical assumptions, and similarly, the right-hand side denotes a subcategory of log-dR local
systems with nilpotent p-Higgs bundles which are required to satisfy various assumptions. We
refer the reader to [LSYZI19 Section 6] for more details. This is an equivalence of categories, and
therefore
EXt(Cil(VSv 0s), Cil(st 0s)) = Ext((Vs, 05), (Vs, 05)) = 0.

Here, we implicitly use Proposition [A-10[e) to guarantee that all self-extensions of (Vj,0s) (re-
spectively C~1(V;, 05)) belong to Higgs, ;(X,Ds) (respectively MIC,_1 (X, Dy)). Indeed, since
p > 2r +2 by Proposition (f), the Higgs field of such a self-extension is automatically nilpotent
of level < p — 1. Thus, C~! preserves strong cohomological rigidity. The same assertion holds for
its inverse functor C.

We conclude the proof of the lemma by applying assertion (e) of Proposition according
to which every log-dR local system with Hilbert polynomial Py on X, is strongly cohomologically
rigid. Therefore, for every [(V,0)] € Rpei(s) we have that C~1(V,0) is strongly cohomologically
rigid. This implies that (V,0) = gr o C~(V,0) is strongly cohomologically rigid. O

Lemma A.14. The set Rqr(s) is finite.

Proof. Let (E,V) be a strongly cohomologically rigid log-dR local system which is stable and has
Hilbert polynomial Py. The hypercohomology group computes the tangent space of Mgz (X, D)
in [(E,V)]. By the vanishing assumption, the point [(E, V)] is isolated. We conclude the proof by
recalling that the number of isolated points of a Noetherian scheme is finite. |

Lemma A.15. The maps gr and C~' are bijections.
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Proof. Tt suffices to prove that gr and C~! are injective. Indeed, it then follows from Lemma
they must be of equal cardinality if both maps are injective. The pigeonhole principle is used to
conclude that gr and C~! are bijections.

Since C~! is defined using an equivalence of categories (see [LSYZ19, Theorem 6.1]), it is clear
that C~1: Rpoi(s) — Rar(s) is injective.

The associated graded gr is injective for different reasons. In particular, we will use strong
cohomological rigidity to prove this. The Artin-Rees construction applied to the F-filtration on
(E, V) yields a G,,-equivariant Al-family of vector bundles (V, V;), endowed with a log-t-connection
Vi, where t: Al — Al denotes the identity map. Furthermore, we have

(V, Vi)lt=0 =~ (grp E, KS).

Recall from Proposition d) that the right-hand side is a strongly cohomologically rigid log-
Higgs bundle. There is therefore a unique way to lift it to a t-connection over Speck[t]/(t?), and
likewise for Spec k[t]/(t"). We infer from the Grothendieck existence theorem that there is a unique
way to lift it to a t-connection on Spec k[[¢]]. This implies that there cannot be a pair of distinct
elements
(BEL V), (E2,V?) € Ryr(s) such that (grpEl KS) ~ (grpmE? KS).
Otherwise, we would have
(E5, V) @ k(1) ~ (B, V7)) @ k((t),

which implies the existence of an isomorphism over k (by stability). This concludes the proof of
injectivity, and furthermore proves that the map gr doesn’t depend on the chosen F-filtration. [

Proposition A.16. The p-curvature of [(E, V)] € Rqr(s) is nilpotent.

Proof. By virtue of definition of C !, every log-dR local system in the image of C~! has nilpotent
p-curvature. According to Lemma the map C~! is bijective. This concludes the proof. (]

Proposition A.17. Every [(E, V)] € Rar(s) is periodic.

Proof. Let 0 = C~1 o gr. By definition, it is a permutation of the finite set Ryr(s). Let f’ be the
order of 0. We then have that o/ ([(E,V)]) = [(E, V)], and thus [(E, V)] is f-periodic for some
fLf O

A.3. Higgs-de Rham flow over truncated Witt rings. As before, we denote by k the algebraic
closure of a finite field of characteristic p, and let s: Speck — S be a k-point of S. Furthermore,
we write W = W (k) for the associated Witt ring, and K for its fraction field. Hensel’s lemma and
Proposition g) implies that s can be extended to a morphism

sw: SpecW — 8.

For n € N we denote by W,, the ring of n-th Witt vectors and by X,, the base change Xg xg W,,.

We define H(X,,/W,,) to be the category of tuples (V,0, E,V,F,¢), where (V,0) is a graded
log-Higgs bundle on X,, of level < p — 1, (E,V,F) is a log-dR local system on X, ; with a
Griffiths-transversal filtration F of level < p — 2, and ¢: grp(E,V) ~ (V,0) xw, W, _1 is an
isomorphism of graded log-Higgs bundles.

Similarly, we denote by MIC(X,,/W,,) the category of quasi-coherent sheaves with W,,-linear flat
connections on X,,. There is a functor

Col H(X, /W, — MIC(X,, /W)
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which extends the logarithmic inverse Cartier transform. In the proper non-logarithmic case this
is due to |[LSZ13| Theorem 4.1]. Closely related results were obtained by Xu in [Xul9]. The
logarithmic version is covered in [LSYZ19, Section 5] immediately before the proof of Proposition
5.2.

Let (Ew,,Vw,,F,) be an W,-linear log-dR local system endowed with an F-filtration. We
denote by gr(E, V, F') the tuple (grp(F),KS, (E,V, F)w,_,,id).

n

Definition A.18 (Lan-Sheng-Zuo & Lan-Shen-Yang-Zuo). An f-periodic log-dR local system
on X, /W, is a tuple

—1 —1 —1
(E{(}VnaV(I)/VnaFi(/)Vn7¢07EI1/VnaVII/Vn7F&an'"7E{{Vn av&/n aFlilc/n a¢f—1)a

where for all i we have that (E?, V¢, F') is a log-dR local system on Xyy, (nilpotent of level < p— 2
on the special fibre) with a Griffiths-transversal filtration F‘iVn, such that for all integers n we have

that grp(Ejy, , Vi ) belongs to H(X,/W,) and ¢;: Cy ' (grp By, KS;) ~ (Eyf, ViFh.

By taking the inverse limit with respect to n, we obtain a notion of periodicity relative to W.
Using |[LSZ13l, p.3, Theorem 3.2, Variant 2], [LSYZ19, Theorem 1.1] together with [Fal88, Theorem
2.6*,p.43 1)] one obtains:

Theorem A.19 (Lan-Sheng-Zuo & Lan—-Sheng—Yang-Zuo). A 1-periodic log-dR local system on
Xw /W gives rise to a torsion-free Fontaine—Lafaille module on Xw = Xw \ Dw. Furthermore,
we can associate to an f-periodic log-dR local system on Xy /W a crystalline étale local system of
free W (I, )-modules on Xg. This is a fully faithful functor.

We remark that Faltings only treats the case f = 1, in which he constructs a fully faithful
functor from Fontaine-Lafaille modules to étale local systems of Z,-modules. The general case can
be reduced to this one using a categorical construction, as explained in [LSZ13, Variant 2]. It is
clear that this formal procedure preserves fully faithfulness of the functor. In combination with the
above, the following result concludes the proof of Theorem [A4]

Theorem A.20. Every element [(Es, V)] € Rar(s) can be lifted to a periodic Higgs-de Rham flow
over W, on X,,.

Proof. Recall from Lemmal[A.14]that there is a finite number of non-isomorphic log-dR local systems
(Ei,Vi)icr in Ryr(s). For every i € I there exists an extension to an S-family of log-dR local
systems (E%, Vi) (see Proposition a,b)). By pulling back along sy : Spec W — S we therefore
obtain a lift to a W-family (Ej;,, Vi), and hence also a W-lift (Ejy, , Vi ).

Since (E%,V!) is strongly cohomologically rigid, deformation theory implies that such a W-lift
is unique up to isomorphism.

We have seen in Proposition that every (E¢, V%) is periodic over s (this corresponds to the
case n = 0) since the map

o=C"togr: Ryr(s) = Ryr(s)

is a permutation (Lemmalm . The W,-relative log-dR local system (EIi/Vn’ V%/Vn) is endowed with
an F-filtration by Proposition ﬂl(c) We can therefore evaluate ﬁ(E%/Vn, V%Vn).

Since the functor C;; ! extends C~! on the special fibre, we see that we have

(Cot o 8)(Biy,, Viv,) = (B Viy,).
In particular, for (E?, V%) being f-periodic, we have o/ (i) = 4, and thus
(Cot o8 (Biy,, Viv,) =~ (B, . Viv,)-
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This equation establishes periodicity of (E{/Vn7 V%,Vn) relative to W,. ]

We will now state a Betti version of Theorem For this purpose, let us recall that the Betti
moduli space M g (X) of irreducible rank r complex local systems of is zero-dimensional, since every
such local system is assumed to be strongly cohomologically rigid. Furthermore, M g(X) is defined
over QQ, and therefore the irreducible rank r local systems p1,...,pn, are defined over a number
field F. By finite generation of 7T§°p(X ) we have that the representations p1, ..., p,, can be defined

over Op[M~1], for a sufficiently big positive integer M.

Remark A.21. As by Remark (a), H'(X(C),End(Ec an)E"(Ve)) computes the left-hand side
of , so is equal to zero, we can apply [EG18, Theorem 1.1] to conclude that Simpson’s integrality
conjecture holds. Therefore, M can be chosen to be 1. In fact, under the assumption that all log-dR
bundles in a given rank are rigid, the proof of loc. cit. applies without verifying this vanishing
assumption. We do not use this remark in the sequel.

For every prime p { M, and every choice of an embedding Op — W(IF‘p) we can therefore consider

the induced W (F),)-representations
W (F F o =
o’ P (Xe) = GL(W ().

The étale fundamental group 71 (Xc) is the profinite completion of 7{°?(X¢). Thus, we obtain
continuous representations

W (F, 7 =
pr ) pWE) Ly (X ) — GL, (W (F,).

Theorem A.22. Let (Xc, Xc, D) and (Xs, Xs, Ds) be as in Theorem . Suppose that p is a
prime, which belongs to the image of S — SpecZ. Let k be a finite field of characteristic p and

fixz a morphism Spec W (k) — S. Then, the representations {py(ﬁp)}izlw,nr descend to crystalline

representations {p$™*}iz1 . n, t M (Xk) = GL.(W(F},)), where K = Frac(W (k)).

K2

Proof. By combining Theorem and Theorem [A-4] we obtain crystalline representations
{miti=1,.n, s m(XK) = GL.(W(F,))

associated to the corresponding log-dR systems (E;, V;)i=1,.. » on Xk Restricting these represen-

tations further to the geometric fundamental group 1 (X %), we obtain

(7T~geom)i=1,...,nT5 7T1(Xf() - GLT(W(]FP))

3

geom

Claim A.23. The geometric representations (s

) i=1,.n,. are trreducible.

Proof of the claim. Assume by contradiction that there exists 75°”™ which is reducible. Then, the
residual representation 7™ @ F, : m1(Xgz) — GL.(F,) is reducible as well. The continuous
representation m; ® F,, : 71 (X ) — GL,(F,) factors through the finite group GL,.(F,) for a p-power
q. By Proposition (g) we may assume that X has a rational point, which yields a section
Gal(K/K) — m(Xk). The kernel of the restriction TilGal(k /) Yields a finite extension K'/K such
that m; ® Fp\ﬂl(XK,) is reducible.

Let a be a subrepresentation of m; ® IF‘p|,T1( X)) We will now use work by Sun—Yang—Zuo. It
develops a version of the Higgs-de Rham flow over ramified extensions of W. Theorem 5.15 in
[SYZ22] implies that the subrepresentation « gives rise to a sub-log-dR local system of (E;, V),
which is furthermore periodic and thus of slope 0. This contradicts stability. Note that loc. cit.
deals with the more general setting of twisted Higgs-de Rham flows and projective representations.



When applying their result we may therefore assume that the twisting line bundle £ is trivial, since
our representations are not projective. O

geom
i

Claim A.24. The geometric representations are pairwise non-isomorphic.

Proof of the claim. As before, it suffices to show that the residual F,-representations are pairwise

non-isomorphic. We will use the same strategy as before. An isomorphism between 7™ ® pr

and w*°™ @ F,, therefore implies the existence of a finite extension K’/K such that there exists an

isomorphism

TN Q@ F, ~ 5" @ Fp: m1(Xkr) = GL-(Fp).
According to [SYZ22, Theorem 5.15] (which relies on [SYZ22 Theorem 5.8(ii)]), the functor from
periodic Higgs-de Rham flows to Fp—linear representations of 71 (Xg-) is fully faithful. Thus, we
obtain an isomorphism of the associated Higgs-de Rham flows, and in particular we have that
(B, Vi) ~ (Ej,Vj)K/. This implies ¢ = j since the associated complex log-dR local systems
(E;,Vi)c and (Ej, V)¢ are non-isomorphic, and hence concludes the proof. O

Applying these two claims we see that the geometric representations
Tilmy (xg) : M1 (Xg) = GLr (W (Fy))

for i = 1,...,n, remain irreducible since the set {m;|;, (x.)}i=1,..,n, defines n, pairwise non-
isomorphic W (IF),-local systems on Xz, which by the pigeonhole principle has to be the set of

W (F,)-local systems defined by {pr(Fp)}i:Lm,nr, and thus each single one of them descends to a
crystalline representation. O
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