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Abstract. We show that complex local systems with quasi-unipotent
monodromy at infinity over a normal complex variety are Zariski
dense in their moduli.

1. Introduction

Let G be a linear algebraic group over the complex numbers. In this
short note we study G-representations of the topological fundamental
group π := π1(X(C), x) of a normal complex variety X which are quasi-
unipotent with respect to the monodromy at infinity. As π is finitely
generated, the set of group homomorphisms (called G-representations)
ρ : π → G(C) is in a canonical way the set of complex points of an affine
complex variety Ch�

G,C(π), the so called framed character variety, see
Section 3.

Our main result is motivated by the following conjecture about the
density of representations of geometric origin. We fix an embedding of
linear algebraic groups

G
ι
↪→ GLr,C .

We say that a G-representation ρ : π → G(C) is of geometric origin
if there is a smooth projective morphism f : Y → U , where j : U ↪→
X is a dense open subvariety such that the semi-simplification of the
representation

ι ◦ ρ ◦ j∗ : π1(U(C))→ GLr,C

gives rise to a linear local system which is a direct summand of the
local system ⊕iRif∗C on U . As linear systems of geometric origin
are compatible with tensor products, direct sums and duals, [Mil17,
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Thm.4.14] implies that the notion of ρ being of geometric origin does
not depend on the choice of the embedding ι.

Conjecture 1.1 (Density). The set of G-representations of geometric
origin is Zariski dense in Ch�

G,C(π). 1

This density conjecture is in accordance with the one stated in [EK19,
Qu. 9.1] and can be generalized to special loci, see Conjecture 5.3. It is
not difficult to show that Conjecture 1.1 holds for G abelian. Indeed,
then G is a product of a unipotent group, a torus and a finite group,
so one only has to study the case that G is a torus. However, the torus
case follows from [EK19, Thm. 1.2].

A complex analytic analog of the density conjecture involving the
Riemann-Hilbert correspondence is formulated in [BW20, Conj. 10.4.1].

Another way to formulate Conjecture 1.1 is to say that the image of

Ch�
G,C(π)→ ChGLr,C(π)

contains a dense set of points corresponding to semi-simple represen-
tations π → GLr,C(C) of geometric origin. Here

ChGLr,C(π) = Ch�
GLr,C

(π) � GLr,C

is the character variety.

We say that ρ has quasi-unipotent monodromy at infinity if for one
(equivalently for all, see Proposition 3.1) normal compactifications X ⊂
X the eigenvalues of ι ◦ ρ(TD) are roots of unity. Here D ↪→ X \ X
runs over the irreducible components which are of codimension one in
X and TD is the canonical conjugacy class TD ⊂ π corresponding to a
“small loop around D”, see Section 2.

Theorem 1.2 (Monodromy theorem). A G-representation ρ : π →
G(C) which is of geometric origin has quasi-unipotent monodromy at
infinity.

The monodromy theorem is due to Clemens and Landman, see [Gri70,
Thm. 3.1]. Proofs which are based on the study of local systems were
given by Brieskorn [Del70, III,2] and Grothendieck [SGA7.1, Thm 1.2].
The proof of our main result, Theorem 1.3 below, is motivated by
Grothendieck’s proof of the monodromy theorem. In fact, in view of
the monodromy theorem it can also be seen as a tiny bit of evidence
for the density conjecture.

1Aaron Landesman and Daniel Litt just made available a preprint showing that
there is a lower bound for the rank of geometric local systems with infinite mon-
odromy on certain curves, and consequently the conjecture can not be true in this
generality.
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Theorem 1.3. [Theorem 3.2] The set of G-representations which have
quasi-unipotent monodromy at infinity is Zariski dense in Ch�

G,C(π).

After we lectured on Theorem 1.3, an alternative proof for G =
GLr,C based on the Riemann-Hilbert correspondence and the Gelfond-
Schneider theorem was given by B. Bakker and Y. Brunebarbe. In-
dependently a similar density theorem involving the Riemann-Hilbert
correspondence was obtained by Budur, Lerer and Wang [BLW21,
Thm. 1.2].

Our proof of Theorem 1.3 is based on the action of an arithmetic Ga-
lois group on certain completions of the character variety. This action
is induced by a comparison of the topological fundamental group with
the étale fundamental group. On the monodromy at infinity the Galois
action is given in terms of the cyclotomic character (see Lemma 2.1).

In Sections 2 we recall some properties of fundamental groups. In
Section 3 we introduce G-representations of the fundamental group of
a variety with quasi-unipotent monodromy at infinity and formulate
our main theorem. The proof of the main theorem is contained in
Section 4. In the final Section 5 we explain how our proof can be
applied more generally to certain special loci in Ch�

GLr,C
(π) and how

the density conjecture relates to the Fontaine-Mazur conjecture.

Acknowledgments: We thank Pierre Deligne for a helpful discussion
on the notion of quasi-unipotent monodromy at infinity, Ofer Gabber
for mentioning the independence of ι for ρ of geometric origin and
Michel Brion for kindly supplying the reference [Mil17] to us.

2. The monodromy at infinity

The setup. The proof of our main result relies on arithmetic Galois
groups, so we introduce a setting in which we can later apply arith-
metic arguments, even though the formulation of Theorem 3.2 is purely
complex. Let F ⊂ C be a finitely generated field. Let X0 be a normal,
geometrically irreducible variety over F and let X0 be a normal com-
pactification of X0. Let X ⊂ X be the base change of theses varieties
to C. We assume that there exists a rational point x0 ∈ X0(F ) and let
x be the associated complex point. We consider the following objects:

• F̄ is the algebraic closure of F in C, Γ = Gal(F̄ /F ) the Galois
group of F .
• π = π1(X(C), x) is the topological fundamental group of X(C)

based at x.
• πét = πét

1 (X, x)
∼−→ πét

1 (X0,F̄ , x) is the geometric étale funda-
mental group of X based at x, which by the Riemann existence
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theorem [SGA1, Cor. XII.5.2] can be identified with the pro-
finite completion of π.
• πét

1 (X0, x) is the arithmetic fundamental group of X0 based at
x.
• The conjugation action induced by the splitting of the homo-

topy exact sequence [SGA1, Thm. IX.6.1]

1 // πét // πét
1 (X0, x) // Γ //

{{
1

given by the point Spec(F )
x0−→ X → Spec(F ) defines an action

of Γ on πét.
• The family Di ↪→ X0 (1 ≤ i ≤ s) of irreducible components of
X0 \X0 which are of codimension one in X0. We assume that
all Di are geometrically irreducible. By abuse of notation we
denote the base change of Di to C by the same symbol.

Complex monodromy. To each Di one associates a canonical conjugacy
class Ti ⊂ π as follows. Consider the dense open subvariety

X
◦

= X \ (X
sing ∪ (X \X)sing)

of X. Set D◦i = Di ∩X
◦

and X◦ = X
◦ ∩X. Let us assume x ∈ X◦(C).

Then a “small loop” around D◦i (C) ↪→ X◦(C) defines a canonical con-
jugation class T ◦i in π1(X◦(C), x), see [Kas81, 1.4]. We define Ti to
be the image of T ◦i via the surjective homomorphism π1(X◦(C), x) →
π1(X(C), x).

Étale monodromy. We denote by T ét
i ⊂ πét the conjugacy class induced

by the image of Ti ⊂ π in πét. It can be described purely algebraically in
terms of ramification theory, see [SGA7.2, XIV.1.1.10] for an exposition
in the one-dimensional case. This implies the following well-known
lemma, see also [EK20, Claim 7.1].

Lemma 2.1. For each 1 ≤ i ≤ s the action of γ ∈ Γ on πét maps T ét
i

to (T ét
i )χ(γ). Here χ : Γ→ Ẑ× is the cyclotomic character.

3. G-representations and quasi-unipotent monodromy

Quasi-unipotent elements and G-representations. Let G/C be a linear
algebraic group. Recall that an element g ∈ G(C) is called quasi-
unipotent, if for one (or equivalently for any) embedding of algebraic
groups ι : G ↪→ GLr,C the eigenvalues of ι(g) are roots of unity. Let π be
a finitely generated group. A G-representation of π is a homomorphism
ρ : π → G(C).
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Character varieties. Let R be a noetherian ring and let G be an affine
group scheme of finite type R. There exists an affine scheme Ch�

G,R(π)
of finite type over R such that for an R-algebra R′ there is a functorial
bijection

Hom(π,G(R′)) ∼= Ch�
G,R(π)(R′).

The R-scheme Ch�
G,R(π) is called the framed character variety. If π has

a presentation 〈w1, . . . , wσ|r1, . . . , rτ 〉 then

Ch�
G,R(π) = {g ∈ Gσ | r1(g) = · · · = rτ (g) = 1}.(1)

Quasi-unipotent monodromy at infinity. Let the notation be as in
Section 2, in particular X is a normal complex variety, x ∈ X(C),
π = π1(X(C), x) and X ⊂ X is a normal compactification. Let G/C be
a linear algebraic group. We say that a G-representation ρ : π → G(C)
has quasi-unipotent monodromy at infinity if for all 1 ≤ i ≤ s the
image of the monodromy ρ(Ti) ⊂ G(C) consists of quasi-unipotent ele-
ments. The following important theorem is shown in [Kas81, Thm.3.1].
In fact Kashiwara’s result is about constructible sheaves and one can
easily translate it into our setting of local systems.

Proposition 3.1 (Kashiwara). The property of ρ : π → G(C) to have
quasi-unipotent monodromy at infinity does not depend on the choice
of the normal compactification X of X.

Our main theorem says:

Theorem 3.2. The set of representations ρ ∈ Ch�
G,C(π)(C) with quasi-

unipotent monodromy at infinity is Zariski dense in Ch�
G,C(π).

In Theorem 5.2 we formulate a strengthening of Theorem 3.2 involv-
ing an arithmetic Galois action. Theorem 3.2 is shown in Section 4.

Remark 3.3. One can also show by the same technique that the set
of representations ρ ∈ Ch�

G,C(π)(C) with finite determinant and with
quasi-unipotent monodromy at infinity is Zariski dense.

If G is reductive we can form the categorical quotient of ChG,K(π)
with respect to the conjugation action of G to obtain the character
variety

ChG,C(π) = Ch�
G,C(π) �G.

The points ChG,K(π)(C) correspond to isomorphism classes of com-
pletely reducible representations ρ : π → G(C) [Sik12, Sec. 11]. Theo-
rem 3.2 then immediately implies:
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Corollary 3.4. The set of isomorphism classes of completely reducible
representations π → G(C) with quasi-unipotent monodromy at infinity
is Zariski dense in ChG,C(π).

Example 3.5. For X = A1 \ (s points) the topological fundamental
group π = π1(X(C), x) is a free group with s generators w1, . . . , ws
(suitable loops around the s points based at a common point x ∈
X(C)). The monodoromy at infinity for the canonical compactification
X ⊂ P1 consists of the conjugacy classes of w1, . . . , ws, (w1 · · ·ws)−1

which correspond to loops around the s points A1 \ X and the point
∞ ∈ P1. In this case Theorem 3.2 says: The set of g = (g1, . . . , gs) ∈
Gs(C) such that g1, . . . , gs, g1 · · · gs are quasi-unipotent is Zariski dense
in Gs.

This example is related to [EK20, Thm. B] in the arithmetic situa-
tion.

4. Proof of Theorem 3.2

Γ-action and Ch�
G(π). We use the notation of Section 2, so X is the

base change to C of a variety X0 over a finitely generated field F ⊂ C.
Recall that G ↪→ GLr,C is a linear algebraic group.

Let Q ⊂ Ch�
G,C(π) be the Zariski closure of the set of quasi-unipotent

representations ρ : π → G(C). We argue by contradiction and assume
that Q 6= Ch�

G,C(π). In particular, Ch�
G,C(π) is non-empty.

Choose a subring R ⊂ C which is of finite type over Z, such that G
is induced by a group scheme G ↪→ GLr,R over R and such that Q is
induced by a closed subscheme Q of Ch�

G,R(π). Set W = Spec (R) and
let K ⊂ C be the field of fractions of R.

For a scheme X of finite type over R, let us denote by |X | the set
of closed points of X . For x ∈ X we let X ∧x be the local scheme
Spec (O∧X ,x), where O∧X ,x is the completed local ring.

The Γ-action on πét induces a continuous Γ-action on the discrete
set of closed points |Ch�

G,R(π)|. Similarly, we get an induced Γx-action

on Ch�
G,R(π)∧x for x ∈ |Ch�

G,R(π)| and for Γx ⊂ Γ the open stabilizer
subgroup of x.

Characteristic polynomial of monodromy. For each local monodromy
at infinity Ti ⊂ π, choose gi ∈ Ti. We have a morphism

ψ : Ch�
G,R → N =

s∏
i=1

(Ar−1 ×Gm)

of affine schemes of finite type over R defined for each i = 1, . . . , s by
the coefficients (σ1(ρ(gi)), . . . , σr(ρ(gi))) ∈ N (R′) of the characteristic
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polynomials

det(T · Ir − ρ(gi)) = T r − σ1(ρ(gi))T
r−1 + . . .+ (−1)rσr(ρ(gi))

of a G-representation ρ : π → G(R′), where R′ is an R-algebra.
Furthermore, we have the finite flat morphism

ϕ : M = (Gr
m)s → N

of affine schemes over R given by

Gr
m → Ar−1 ×Gm, (µ1, . . . , µr) 7→ (s1(µ1, . . . , µr), . . . , sr(µ1, . . . , µr)),

where si(µ1, . . . , µr) is the i-th elementary symmetric function in the
µj.

The cyclotomic character χ induces an action of Γ on |M| and a
compatible action on |N | such that |ϕ| : |M| → |N | is Γ-equivariant.
For each point x ∈ |M| the stabilizer Γx ⊂ Γ acts on M∧

x and on N ∧x
such that ϕ∧x is Γx-equivariant.

Certain closed points.
Let T be the reduced closure of the image of ψ. Let S be ϕ−1(T )red.

Note that the generic fibre SK of S over W is non-empty as Ch�
G,C(π)

is non-empty, so the smooth locus Ssm of S over R is non-empty. By
the generic flatness of ψ we can fix a closed point z ∈ Ch�

G,R(π) \ Q
such that

• ψ is flat at z,
• y = ψ(z) ∈ ϕ(Ssm).

We also fix a closed point x ∈ Ssm∩ϕ−1(y). Let Γ′ be the intersection of
stabilizers Γx ∩Γz, which is thus open in Γ, and let w ∈ W = Spec (R)
be the image of the points x, y, z.

Claim 4.1. The closed subscheme S∧x ↪→M∧
x is Γ′-stable.

Proof. As ψ is flat at the point z the closed subscheme T ∧y ↪→ N ∧y is

the schematic image of ψ∧x : Ch�
G,R(π)∧z → N ∧y . As the latter mor-

phism is Γ′-equivariant, it follows that T ∧y is stabilized by Γ′. As

S∧x = ϕ−1(T ∧y )red we deduce that S∧x is stabilized by Γ′. �

De Jong’s trick. For simplicity of notation we can assume that Γ = Γ′.
Choose a normal integral ring A of finite type over Z with field of frac-
tions F such the characteristic of the residue field k(x) of x is invertible
inA. Then the action of Γ onM∧

x via the cyclotomic character χ factors
through πét

1 (Spec (A)) and for an Fq-point a : Spec (Fq)→ Spec (A) the
associated Frobenius Fr = Fra ∈ πét

1 (Spec (A)), which is well-defined
up to conjugation, acts by multiplication by q on the group schemeM
and on M∧

x .
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Claim 4.2 (De Jong’s trick). The morphism of local schemes

(S∧x )Fr →W∧w
is finite, flat and surjective.

Proof. The following argument is copied from [deJ01, 3.14], see also [Dri01,
Lem. 2.8], [EK19, Sec. 10] and [EK20, Sec. 8]. We can assume without
loss of generality that k(x) = k(w). By smoothness of S/W at x

S∧x ∼= Spec (O∧W,wJX1, . . . , XjK).

Then

(S∧x )Fr ∼= Spec (O∧W,wJX1, . . . , XjK/(1− Fr(X1), . . . , 1− Fr(Xj))

has fibre dimension zero over w as this fibre is a closed subscheme of
the (q − 1)-torsion subscheme of the torus Mw over w. As in [deJ01,
3.14] basic commutative algebra shows that (S∧x )Fr is a local complete
intersection, finite and flat over W∧w . �

Conclusion. By Claim 4.2 there exists a point x̃ ∈M which is (q− 1)-
torsion, which maps to the generic point ofW and which specializes to
x. In fact any point x̃ in the image of the non-empty set (S∧x )Fr

K satisfies
these properties. Then ỹ = ϕ(x̃) specializes to y. By going-down for
flat morphisms there exists a point z̃ ∈ Ch�

G,R(π) with ϕ(z̃) = ỹ which
specializes to z. By construction z̃ corresponds to a representation
of π which has quasi-unipotent monodromy at infinity, so z̃ ∈ Q and
therefore z ∈ Q. Contradiction!

5. Special loci

The aim of this section is to extend Conjecture 5.3 and Theorem 3.2
to certain subloci of the character variety ChGLr,C(π). We also relate
our density conjectures to other classical conjectures. We use the no-
tation of Sections 2, 3 and 4. Let ℘ : Ch�

GLr,C(π) → ChGLr,C(π) be
the canonical quotient map. For a locally closed subscheme Z ↪→
ChGLr,C(π), we denote by Z ↪→ Ch�

GLr,R(π) a suitable locally closed
subscheme such that ℘(ZC) ⊂ Z is dense. Here R ⊂ C is a suitable
subring of finite type over Z as above.

Definition 5.1. A subscheme Z ↪→ ChGLr,C(π) as above is special or
arithmetic if there exist R and Z as above such that for each closed
point z ∈ Z, there is an open subgroup of Γ which stabilizes the com-
pletion Z∧z . A point in s ∈ ChGLr,C(π)(C) is special or arithmetic if
the subscheme Z = {s} is special.
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Theorem 5.2. For a special subscheme Z ↪→ ChGLr,C(π) the set of
quasi-unipotent points in Z is Zariski dense in Z.

Proof. The proof is analogous to the one of Theorem 3.2. One just
replaces Ch�

G,C(π) by ℘−1(Z) and Q by ℘−1(Z) ∩Q. �

Here is another natural density conjecture in this context:

Conjecture 5.3 (Density). Let Z ↪→ ChGLr,C(π) be a special sub-
scheme. Then the set of complex points of Z corresponding of to rep-
resentations of geometric origin ρ : π → GLr(C) is dense.

In particular the special points are then dense on Z. 2.

Note that a point of ChGLr,C(π)(C) which corresponds to a repre-
sentation of geometric origin is special by the comparison isomorphism
between Betti cohomology and `-adic cohomology.

The following observations are easy to check.

Remark 5.4.

(1) Conjecture 5.3 ⇒ Conjecture 1.1. Indeed for G
ι
↪→ GLr,C

given, the image of Ch�
G,C(π)→ ChGLr,C(π) is construcible and

we take Z to be a suitable dense subscheme in this image.
(2) Conjecture 5.3 comprises the density conjecture formulated in [EK19,

Qu. 9.1] 1), 2), except 3). For 1) and 2) this is by definition.
(3) Conjecture 5.3 for dim(Z) = 0 implies Simpson’s “rigid ⇒ mo-

tivic” conjecture [Sim90, Conj. 4] as rigid representations are
arithmetic [Sim92, Thm. 4].

(4) Recent work of Petrov [Pet20] implies that the relative Fontaine–
Mazur conjecture of Liu–Zhu [LZ17] implies Conjecture 5.3 for
dim(Z) = 0.

In fact (4) is a direct consequence of [Pet20, Lem. 6.2] over a number
field F . For a general finitely generated field F ⊂ C one has to use a
spreading argument similar to [Pet20, Prop. 6.1] in order to reduce to
the number field case.

So (3) and (4) of Remark 5.4 together say that

relative F-M conj. ⇒ Simpson’s “rigid ⇒ motivic” conj.
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de Géométrie Algébrique Du Bois Marie, Lecture Notes in Mathematics
224 (1971), Springer Verlag.
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