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Abstract. We use the notion of universal extension in a linear abelian category to study extensions

of variations of mixed Hodge structure and convergent and overconvergent isocrystals. The results

we obtain apply, for example, to prove the exactness of some homotopy sequences for these categories

and to study F -able isocrystals.
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1. Introduction

In this note we define and construct universal extensions (Definition 3.1) of objects belonging to
a linear abelian category. This construction is convenient to study all the possible extensions of
two objects of the category at the same time. On the one hand, a universal extension enjoys more
properties than single extensions. On the other hand, every non-trivial extension between two
objects embeds into a universal extension (Proposition 3.4). Some examples of universal extensions
appeared already in the literature. For example, in [EH06, §4], universal extensions are used to
study the category of flat connections over a smooth variety in characteristic 0. In our article, we
use universal extensions to solve some open problems on variations of mixed Hodge structure and
convergent and overconvergent isocrystals.

Let us present our first application. Let X be a smooth connected complex variety. Write MHS
for the category of graded-polarisable finite-dimensional mixed Q-Hodge structures, LS(X) for the
category of finite-rank Q-local systems over X, and M(X) for the category of (graded-polarisable)
admissible variations of mixed Q-Hodge structure. Consider the functor Ψ : M(X)→ LS(X) which
associates to a variation its underlying local system.

Theorem 1.1 (Theorem 4.4). For an object V ∈ LS(X) the following conditions are equivalent.

1) V is a subquotient of a local system of the form Ψ(M) for some M∈M(X).
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2) The irreducible subquotients of V are subquotients of local systems underlying variations of
polarisable pure Q-Hodge structure.

3) V is a subobject of a local system of the form Ψ(M) for some M∈M(X).

Besides Deligne’s semi-simplicity theorem, the main step in the proof of Theorem 1.1 is to show
that for every M,N ∈M(X) a universal extension

0→ Ψ(M)→ ELS(X)(Ψ(N ),Ψ(M))→ Ext1
LS(X)(Ψ(N ),Ψ(M))⊗Ψ(N )→ 0

in LS(X), constructed in Proposition 3.3, comes from an extension

(1.1) 0→M→ E → V ⊗N → 0

in M(X), where V is M. Saito’s mixed Hodge structure on Ext1
LS(X)(Ψ(N ),Ψ(M)) given by [Sai90,

Thm. 4.3]. We deduce this result from Beilinson’s vanishing of the higher extensions of mixed Hodge
structures in Lemma 4.3. The existence of (1.1) is a natural enhancement of M. Saito’s existence
theorem. When M and N are isomorphic to Q(0), the existence of (1.1) was already known, as it

follows from [HZ87].

As a consequence of Theorem 1.1, we deduce an exact sequence for the Tannaka fundamental groups
of the categories involved.

Corollary 1.2 (Corollary 4.7). Let x be a complex point of X. The sequence

π1(LS(X), x)
Ψ∗−−→ π1(M(X), x)

pX∗−−→ π1(MHS)→ 1

is exact.

A variant of Corollary 1.2 for local systems which can be endowed with a Z-structure is also proved
in [And20, Thm. C.11].

Our second main result is about overconvergent isocrystals, introduced in [Ber96] by Berthelot,
which are the non-trivial constant-rank coefficients of rigid cohomology. Let K be a complete
discretely valued field of mixed characteristic (0, p) and perfect residue field k, and let X be a
variety over k. Write Isoc†(X/K) for the category of K-linear overconvergent isocrystals over X.
The rigid cohomology groups of X with coefficients in an overconvergent isocrystal might be, in
general, infinite-dimensional (see [Cre98]). On the other hand, if the overconvergent isocrystal can be
endowed with a Frobenius structure, the cohomology groups are always finite-dimensional, as proven
in [Ked06]. Kedlaya’s result naturally extends to the full subcategory of F -able overconvergent

isocrystals (Definition 5.2), denoted by Isoc†F (X/K). This subcategory is large enough for most of
the geometric applications (see for example [Abe18] and [Laz18]). Using universal extensions and
Kedlaya’s finiteness theorem, we provide a new characterisation of F -able overconvergent isocrystals,
solving the problem presented in [D’Ad20, Rmk. 3.1.9].

Theorem 1.3 (Theorem 5.4). An overconvergent isocrystal over X is F -able if and only if it can
be embedded into an F -invariant overconvergent isocrystal (Definition 5.2).

The proof of Theorem 1.3 can be adapted easily in other situations (see Remark 5.5). In particular,
using universal extensions, one can also obtain similar results for the categories of `-adic lisse sheaves,
`-adic perverse sheaves, and arithmetic holonomic D-modules.
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The category of overconvergent isocrystals admits a natural functor α : Isoc†(X/K)→ Isoc(X/K)
to the category of convergent isocrystals. This functor fails to be fully faithful in general, as proven in
[Abe11, §4]. Combining Theorem 1.3 and Kedlaya’s full faithfulness theorem, proven in [Ked04], we
show that α is fully faithful when restricted to the subcategory of F -able overconvergent isocrystals.

Corollary 1.4 (Corollary 5.7). The natural functor α : Isoc†F (X/K)→ Isoc(X/K) is fully faithful.

Subsequently, in Proposition 5.8, we show that Theorem 1.3 is false already on the affine line if
one replaces overconvergent isocrystals with convergent isocrystals. Using universal extensions, we
prove instead a weaker form of Theorem 1.3 for convergent isocrystals.

Theorem 1.5 (Theorem 5.10). If X is a variety over k and M is a subquotient of an F -invariant

convergent isocrystal M̃, thenM embeds into an F -invariant convergent isocrystal in 〈M̃〉⊗, where

〈M̃〉⊗ denotes the Tannakian category ⊗-generated by M̃ (see Section 2.4).

Finally, thanks to Theorem 1.3 and Theorem 1.5, we recover [AD18, Proposition 2.2.4] (see Sec-
tion 5.11 for the notation).

Corollary 1.6 (Corollary 5.12). Let X be a geometrically connected variety over a finite field Fps,
let x be an Fps-point of X, and let K be a characteristic 0 complete discretely valued field with
residue field Fps. There exists a functorial commutative diagram

1 π1(Isoc(X/K)geo, x) π1(Fs-Isoc(X/K), x) π1(Fs-Isoc(Fps/K)) 1

1 π1(Isoc†(X/K)geo, x) π1(Fs-Isoc†(X/K), x) π1(Fs-Isoc(Fps/K)) 1

Ψ∗ pX∗

=

Ψ∗ pX∗

with exact rows.

We now discuss the method used to prove the exactness of the sequences of Tannaka groups. Let k

be a field, and H
β−→ G

α−→ K be functors between three Tannakian categories which are compatibly

neutralized. By Tannaka duality, this datum is equivalent to homorphisms K
f−→ G

g−→ H of affine
group schemes. As is well know, it is easy to translate in categorial terms that f is a closed immersion
or that g is faithfully flat. It is equivalent to saying in the former case that every object of K is
a subquotient of an object coming from G, in the latter case that β(H) ⊆ G is a full subcategory
stable under the operation of taking subobjects, see [DM82, Proposition 2.21]. Exactness in the
middle is a more subtle property, and has been analysed in [EHS07, Theorem A.1] (also in [EH06,
Theorem 5.11]). The most important condition in [EHS07, Theorem A.1] is condition (iii)(c), saying
that every object of K should be a subobject of an object coming from G. For semi-simple objects
of K, being a subobject or a subquotient of an object coming from G is the same property. In our
article, using universal extensions, we are able to go outside the semi-simple range in the situations
we consider.

Condition (iii)(c) can also be replaced with an equivalent condition on rank 1 objects, as explained in
Proposition A.13. This variant is mainly due to the work of Bialynicki–Birula–Hochschild–Mostow,
[BBHM63]. In Appendix A, we take the opportunity to analyse how their notion of observable
subgroup interacts with other properties of morphisms of Tannaka groups.
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2. Notation

2.1. Let C be a locally small category (i.e. Hom(A,B) is a set for any objects A,B ∈ C). We
write PSh(C) for the category of presheaves of C, namely the category of contravariant functors
from C to Set. As in [KS06, §6], we write Ind(C) ⊆ Psh(C) for the full subcategory of ind-objects
of C and ιC : C ↪→ Ind(C) for the fully faithful functor induced by the Yoneda embedding. By
a slight abuse of notation, we denote with the same symbol both an object in C and the presheaf
it represents in Ind(C). If C is an abelian category, for a pair of objects A,B ∈ C, we define
Ext1

C(B,A) as the first extension group of B by A. If b : B → B′ is a morphism in C, we write
b∗ : Ext1

C(B′, A)→ Ext1
C(B,A) for the group homomorphism induced by the pull-back of extensions

along b.

2.2. Let k be a field and let C be a k-linear abelian category. For every pair of objects A,B ∈ C,
the group Ext1

C(B,A) is naturally a k-vector space. If λ ∈ k and ε ∈ Ext1
C(B,A), the extension

class λ.ε is defined as the push-out of ε along λ.id : A → A. The category Ind(C) is naturally a
k-linear abelian category and ιC : C ↪→ Ind(C) is a k-linear fully faithful exact functor. By [KS06,

Proposition 8.6.11], it induces an isomorphism ιC∗ : Ext1
C(B,A)

∼−→ Ext1
Ind(C)(B,A).

2.3. We denote by Veck the category of (not necessarily finite-dimensional) k-vector spaces. For
an object A ∈ C and a k-vector space V we define V ⊗k A as the presheaf which sends T ∈ C
to the set V ⊗k HomC(T,A). Such a presheaf is in Ind(C) because V is a filtered colimit of finite
dimensional vector spaces. For a vector v ∈ V , we denote by iv : B → V ⊗k B the morphism in
Ind(C) which, when evaluated at T ∈ C, sends f ∈ HomC(T,B) to v ⊗ f ∈ V ⊗HomC(T,B).
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2.4. Let C be a k-linear Tannakian category. For every object A ∈ C we write 〈A〉⊗ for the
subcategory ⊗-generated in C by A, namely the smallest strictly full abelian ⊗-subcategory of C
containing A and closed under duals and the operation of taking subquotients. We write H0

C(A)
for the k-vector space HomC(1C, A), where 1C is the unit-object of C. Further, a trivial object of
C, for us, is an object of C which is isomorphic to 1

⊕n
C for some n ∈ Z≥0.

2.5. Let C and D be k-linear Tannakian categories. A functor α : C → D, for us, is a functor
of Tannakian categories if it is an exact k-linear ⊗-functor. Note that by [Del90, Corollaire 2.10],
this functor is faithful as well. We denote by α(C) the essential image of α. Finally, if r is a
positive integer and V is an object of a Tannakian category C, we write ∧rV for the image of
Σσ∈Sr(−1)sgn(σ)σ : V ⊗r → V ⊗r. Note that α(∧rV ) = ∧rα(V ) because α is exact.

3. Universal extensions

Definition 3.1 (Universal extension class). Let C be a k-linear abelian category and let A and
B be objects in C. We say that a class εC(B,A) ∈ Ext1

Ind(C)(Ext1
C(B,A) ⊗ B,A) is a universal

extension class of B by A if for every v ∈ Ext1
C(B,A), the class i∗v(εC(B,A)) ∈ Ext1

C(B,A) is equal
to v. If

0→ A→ EC(B,A)→ Ext1
C(B,A)⊗B → 0

is an exact sequence representing εC(B,A), we say that EC(B,A) is a universal extension of B by
A.

We want to prove first that for every pair of objects there exists a unique universal extension up to
non-canonical isomorphism. For this, we first need the following elementary lemma.

Lemma 3.2. Let A and B be objects of C and let V be a k-vector space. There exists an iso-
morphism of k-vector spaces Φ : Ext1

Ind(C)(V ⊗ B,A)
∼−→ HomVeck(V,Ext1

C(B,A)) defined by

Φ(ε)(v) := i∗v(ε) for every ε ∈ Ext1
Ind(C)(V ⊗B,A) and v ∈ V .

Proof. Given ε ∈ Ext1
Ind(C)(V ⊗B,A), the map

V → Ext1
C(B,A), v 7→ i∗v(ε)

is k-linear. This shows that Φ is well-defined. To prove that Φ is a k-linear isomorphism, we choose
a basis I ⊆ V . In coordinates, Φ becomes the natural isomorphism

Ext1
Ind(C)(

⊕
i∈I

B,A)
∼−→

∏
i∈I

Ext1
C(B,A).

�

Proposition 3.3. Let C be a k-linear abelian category. For every A,B ∈ C there exists a unique
universal extension of B by A up to (non-canonical) isomorphism.

Proof. We apply Lemma 3.2 to V = Ext1
C(B,A), obtaining an isomorphism

Φ : Ext1
Ind(C)(Ext1

C(B,A)⊗B,A)
∼−→ EndVeck(Ext1

C(B,A))

such that Φ(ε)(v) = i∗v(ε) for every ε ∈ Ext1
Ind(C)(V ⊗ B,A) and v ∈ V . By construction, ε is a

universal extension class if and only if Φ(ε) = id. Since Φ is an isomorphism, Φ−1(id) is the unique
universal extension class of B by A. This concludes the proof. �
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The next proposition is the main result on universal extensions we shall use in the rest of the article.

Proposition 3.4. Let C be a k-linear abelian category and 0 → A
a−→ E

b−→ B → 0 be an exact
sequence in C. If A is a subobject of A′ ∈ C and B is a direct summand of B′ ∈ C, then E is a
subobject of EC(B′, A′)⊕B′, where EC(B′, A′) is any universal extension of B′ by A′.

Proof. Let c be a section of the quotient B′ � B′/B. We push-out the exact sequence 0→ A
(a,0)−−−→

E ⊕ (B′/B)
b⊕c−−→ B′ → 0 along A ⊆ A′, obtaining the following commutative diagram with exact

rows

0 A E ⊕ (B′/B) B′ 0

0 A′ E′ B′ 0.

(a,0)

�

b⊕c

=

As E is a subobject of E′, it is enough to prove the final result for the lower exact sequence. Let
v′ ∈ Ext1

C(B′, A′) be the class of the extension E′ and let EC(B′, A′) be a universal extension of B′ by
A′. If v′ = 0, then E′ = A′⊕B′ is trivially a subobject of EC(B′, A′)⊕B′. If v′ 6= 0, the extension E′ is
obtained from EC(B′, A′) via a pull-back along the injective morphism iv′ : B′ ↪→ Ext1

C(B′, A′)⊗B′.
This shows that E′ is a subobject of EC(B′, A′), as we wanted. �

We end this section with some results assuring that the universal extensions are in C, rather than
in Ind(C).

Lemma 3.5. Let C be a k-linear abelian category such that each object is noetherian. For all
A,B ∈ C, the Ext group Ext1

C(B,A) is a finite-dimensional k-vector space if and only if one (or
equivalently any) universal extension of B by A is in the essential image of ιC : C ↪→ Ind(C).

Proof. We want to prove first that C ⊆ Ind(C) is the Serre subcategory of noetherian objects. For
this purpose it is enough to show that every noetherian object A ∈ Ind(C) is in C. By [Del87,
Lemme 4.2.1.(ii)], we can write A as a filtered colimit lim−→i∈I Ai with Ai ∈ C such that the transition

morphisms are monomorphisms. Since A is noetherian, there exists i ∈ I such that Ai → Aj is
an isomorphism for every j > i. This implies that A ' Ai ∈ C. Thanks to this fact, a universal
extension of B by A is in C if and only if Ext1

C(B,A) ⊗ B is in C. In turn, the last condition is
equivalent to Ext1

C(B,A) being finite-dimensional. �

Lemma 3.6. Let k be a characteristic 0 field and let C be a k-linear Tannakian category ⊗-generated
by one object. For every A,B ∈ C, any universal extension of B by A is in the essential image of
ιC : C ↪→ Ind(C).

Proof. Thanks to Lemma 3.5, it is enough to prove that the Ext groups of C are finite-dimensional.
By [Del90, Lemme 6.17], the category C is neutralised over a finite field extension k′/k. Write Ck′ for
the scalar extension of C from k to k′. The category Ck′ is endowed with an exact faithful ⊗-functor
C→ Ck′ mapping A 7→ k′⊗kA and HomC(B,A) to HomC(B,A)⊗k k′

∼−→ HomCk′ (k
′⊗kB, k′⊗kA)

(see the discussion before Proposition 3.11 in [DM82]). We claim that for every A,B ∈ C there

is a natural isomorphism Ext1
C(B,A)⊗ k′ ∼−→ Ext1

Ck′
(k′ ⊗k B, k′ ⊗k A). This follows from the fact

that the functor Ext1
Ind(C)(−,1C) : Ind(C)op → Veck can be computed as the right derived functor
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of HomInd(C)(−,1C) : Ind(C)op → Veck and the scalar extension functor Ind(C)op → Ind(Ck′)
op

sends injective objects to injective objects. Thanks to this, it is enough to prove the final result for
Ck′ . Since Ck′ is generated by one object, its Tannaka group is of finite type. Thus we can apply
Lemma 3.7. �

Lemma 3.7. Let k be a characteristic 0 field. If V is a finite-dimensional representation of an
affine group G of finite type over k, the k-vector space H1(G,V ) is finite-dimensional.

Proof. Let N ⊆ G is the unipotent radical of G. By the Lyndon–Hochschild–Serre spectral sequence,
the sequence

0→ H1(G/N, V N )→ H1(G,V )→ H1(N,V )G/N

is exact. The algebraic group G/N is reductive and k has characteristic 0, thus the inclusion

WG/N ↪→ W splits for every finite-dimensional representation W of G/N . This implies that
H1(G/N, V N ) = 0. We are reduced to proving that H1(G,V ) is finite-dimensional when G is
a unipotent algebraic group. In this case, V is a finite successive extension of rank 1 trivial repre-
sentations, thus we may further assume that V is trivial. We argue by induction on the dimension
d of G. If d = 1, the algebraic group G is isomorphic to Ga and H1(Ga, k) = Homk-grp(Ga,Ga) = k,
[Jan07, Lemma 4.21]. In general, if d ≥ 1, there is an exact sequence 1 → N → G → Ga → 1
where N is a unipotent group of dimension (d − 1). Thanks to Lyndon–Hochschild–Serre spectral
sequence, we obtain an exact sequence

0→ H1(Ga, k)→ H1(G, k)→ H1(N, k)G/N .

The induction hypothesis concludes the proof.
�

Remark 3.8. Lemma 3.7 is probably well-known to experts, but we did not find a proof in the
literature. We discussed the proof presented here with Michel Brion. See also the argument after
Corollary 35 in [dS11] for a finiteness result in positive characteristic.

4. Variations of mixed Hodge structure

4.1. The main goal of this section is to prove Theorem 4.4. Let us first introduce our setting. For
a smooth connected complex variety pX : X → SpecC, we denote by MHS the category of graded-
polarisable mixed Q-Hodge structures, by M(X) the category of (graded-polarisable) admissible
variations of mixed Q-Hodge structure (cf. [Kas86, §1.9]) over X, and by LS(X) the category of
Q-local systems over X. These categories are Q-linear neutral Tannakian categories. We denote
by Q(0), Q(0), and Q the unit objects of MHS, M(X), and LS(X) respectively. There exists a

natural exact ⊗-functor Ψ : M(X)→ LS(X) which associates to an object of M(X) its underlying
Q-local system. Also, we have an inverse image functor p∗X : MHS → M(X) which identifies
the category of graded-polarisable mixed Q-Hodge structure with the full subcategory of M(X) of
objects with trivial underlying local system. For M ∈M(X), the maximal trivial sublocal system
H0

Betti(X,Ψ(M)) ⊗ Q ⊂ Ψ(M) carries a graded-polarisable mixed Q-Hodge structure by [SZ85,
Proposition 4.19]. This generalizes Deligne’s fixed part theorem [Del71, §4.1]. Even in degree i ≥ 1,
the group H i

Betti(X,Ψ(M)) carries a graded-polarisable mixed Hodge structure ([Zuc79] over curves
and for Gauß-Manin M and [Sai90, Theorem 4.3] in general).
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4.2. We shall use M. Saito’s construction, which we recall now. The category M(X) admits
a Q-linear fully faithful exact functor to the category of (graded-polarisable) mixed Hodge mod-
ules MHM(X). The category of mixed Hodge modules is endowed with a natural functor Ψ :
MHM(X)→ Perv(X), where Perv(X) is the category of perverse sheaves over X. The essential
image of M(X) in MHM(X) is the full subcategory of smooth mixed Hodge modules, i.e. of those
modules the underlying perverse sheaf of which is a (shifted) local system. M. Saito constructed
a direct image functor pX∗ : Db(MHM(X)) → Db(MHS) which is compatible with the direct
image functor for perverse sheaves, [Sai90, Theorem 4.3]. Following M. Saito, we write HipX∗(−)
for H i(pX∗(−)). By the aforementioned compatibility, we have that for M ∈ M(X), the vector
space underlying the mixed Hodge structure of HipX∗(M) is H i

Betti(X,Ψ(M)). We shall need the
following lemma.

Lemma 4.3. For every M∈M(X), the image of the morphism

Ext1
M(X)(Q(0),M)→ Ext1

LS(X)(Q,Ψ(M)) = H1
Betti(X,Ψ(M))

induced by Ψ is H0
MHS(H1pX∗(M)).

Proof. We have a commutative diagram of functors

Ind(MHS)

Ind(MHM(X)) VecQ

H̃0pX∗ H0
Ind(MHS)

(−)

H0
Ind(MHM(X))

(−)

where H̃0pX∗ : Ind(MHM(X)) → Ind(MHS) is the left Kan extension of the functor H0pX∗ of
Section 4.2. Note that

H0
Ind(MHM(X))(−) = HomInd(MHM(X))(Q(0),−) and H0

Ind(MHS)(−) = HomInd(MHS)(Q(0),−).

The categories Ind(MHM(X)) and Ind(MHS) have enough injectives by [Hub93, Proposition 1.7]
and, by [ibid., Theorem 2.6], the restriction of the right derived functor

Ri(H̃0pX∗) : Ind(MHM(X))→ Ind(MHS)

to MHM(X) coincides with HipX∗ for every i. Since H̃0pX∗ admits a left-adjoint which is exact,

we can construct the Grothendieck spectral sequence associated to the composition of H̃0pX∗ and
H0

Ind(MHS)(−). We get for every M∈MHM(X) an exact sequence of Q-vector spaces

Ext1
Ind(MHM(X))(Q(0),M)→ H0

Ind(MHS)(H
1pX∗(M))→ Ext2

Ind(MHS)(H
0pX∗(M)).

By [ibid., Prop. 2.2], the previous exact sequence can be rewritten as

Ext1
MHM(X)(Q(0),M)→ H0

MHS(H1pX∗(M))→ Ext2
MHS(Q(0),H0pX∗(M)).

Thanks to [Bei86, §1.10], Ext2
MHS(Q(0),H0pX∗(M)) = 0,which implies that the morphism

Ext1
MHM(X)(Q(0),M)→ H0

MHS(H1pX∗(M))

is surjective.
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To prove that Ext1
M(X)(Q(0),M) → H0

MHS(H1pX∗(M)) is surjective as well, we note that in

Perv(X), an extension of two (shifted) local systems is again a (shifted) local system. Therefore,
every extension of Q(0) by M in MHM(X) is realised in M(X). This finishes the proof.

�

We are ready now to prove our main result on local systems.

Theorem 4.4. For an object V ∈ LS(X) the following properties are equivalent.

1) V is a subquotient of a local system of the form Ψ(M) for some M∈M(X).
2) The irreducible subquotients of V are subquotients of local systems underlying variations of

polarisable pure Q-Hodge structure.
3) V is a subobject of a local system of the form Ψ(M) for some M∈M(X).

Proof. It is clear that 1) implies 2) and 3) implies 1). It remains to prove that 2) implies 3). To
prove this implication we argue by induction on the length of a Jordan–Hölder filtration for V.
If V is irreducible, by Deligne’s semi-simplicity theorem, [Del71, §4.2], V is a direct summand of
a local system underlying a variation of polarisable pure Q-Hodge structure, that by [Sch73] is
admissible. Suppose now that V admits a non-trivial irreducible quotient V � W. By 2) and the
previous step, W is a direct summand of Ψ(M) where M ∈M(X) is a variation of pure Q-Hodge
structure. Also, by induction, there exists N ∈ M(X) such that Ker(V � W) is a subobject of
Ψ(N ). By Proposition 3.4, the local system V is a subobject of ELS(X)(Ψ(N ),Ψ(M))⊕Ψ(N ) where
ELS(X)(Ψ(N ),Ψ(M)) is a universal extension of Ψ(N ) by Ψ(M). As LS(X) is a Tannakian category
with finite-dimensional Ext groups, ELS(X)(Ψ(N ),Ψ(M)) is an object of LS(X) by Lemma 3.5. It
remains to show that ELS(X)(Ψ(N ),Ψ(M)) is in the essential image of Ψ : M(X) → LS(X). To
this aim we use Lemma 4.3.

We write E for the mixed Hodge structure H1pX∗(N∨ ⊗M) on the Q-vector space

H1
Betti(X,Ψ(N )∨ ⊗Ψ(M)) = Ext1

LS(X)(Ψ(N ),Ψ(M)).

If Φ : Ext1
LS(X)(Ψ(E) ⊗ Ψ(N ),Ψ(M))

∼−→ EndVeck(Ψ(E)) is the isomorphism of Lemma 3.2, the

universal extension class ε of Ψ(N ) by Ψ(M) is such that Φ(ε) = id. On the other hand, applying
Lemma 4.3 to p∗X(E)∨ ⊗N∨ ⊗M ∈M(X), we deduce that the morphism

Ψ∗ : Ext1
M(X)(Q(0), p∗X(E)∨ ⊗N∨ ⊗M)→ H0

MHS(E∨ ⊗ E) = EndMHS(E)

induced by Ψ is surjective. In particular, the identity id ∈ EndVecQ(Ψ(E)) is in the image of Ψ∗.
Combining these two facts, and exploiting the natural isomorphism

Ext1
M(X)(p

∗
X(E)⊗N ,M)

∼−→ Ext1
M(X)(Q(0), p∗X(E)∨ ⊗N∨ ⊗M),

we deduce that the universal extension

0→ Ψ(M)→ ELS(X)(Ψ(N ),Ψ(M))→ Ext1
LS(X)(Ψ(N ),Ψ(M))⊗Ψ(N )→ 0

comes from an extension

0→M→ E → p∗X(E)⊗N → 0

in M(X). This concludes the proof.
�
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Remark 4.5. Similarly, in Theorem 4.4 one may replace the category LS(X) with Perv(X) and
M(X) with MHM(X) and obtain a variant for perverse sheaves.

4.6. Let x ∈ X(C) be a complex point. It neutralises the categories introduced in Section 4.7.
This defines fundamental groups π1(M(X), x) and π1(LS(X), x). Recall that the category MHS
is also naturally neutralised by sending a mixed Q-Hodge structure to its underlying vector space.
This defines a fundamental group π1(MHS). All these fundamental groups are affine group schemes
over Q. One has a complex of such

π1(LS(X), x)
Ψ∗−−→ π1(M(X), x)

pX∗−−→ π1(MHS).

As there are Q-local systems which are not subquotients of variations of mixed Q-Hodge structure,
Ψ∗ is not injective in general. Let LS(X)hdg be the full subcategory of LS(X) consisting of the
objects which are Q-local systems which are subquotients as local systems of admissible variations
of mixed Q-Hodge structure. The affine group scheme π1(LS(X)hdg, x) is the image of π1(LS(X), x)
in π1(M(X), x).

Corollary 4.7. The sequence

1→ π1(LS(X)hdg, x)
Ψ∗−−→ π1(M(X), x)

pX∗−−→ π1(MHS)→ 1

is exact.

Proof. The functor M(X) → MHS which sends an object M ∈ M(X) to its fibre at x induces
a splitting of the morphism pX∗, thus pX∗ is faithfully flat. To prove the exactness in the middle
we apply Proposition A.13. By Theorem 4.4, every object in LS(X)hdg is in fact a subobject of a
local system underlying an admissible variation of mixed Q-Hodge structure. This shows that Ψ is
observable. To conclude, it is enough to note that, as recalled in Section 4.1, the maximal trivial
subobject H0

Betti(X,Ψ(M)) ⊗ Q ⊂ Ψ(M) carries a graded-polarisable mixed Q-Hodge structure.
Alternatively, one can prove that Ψ is observable by combining Deligne’s semi-simplicity theorem
and Lemma A.4.

�

Remark 4.8. In Section 2 of The Hodge theoretic fundamental group and its cohomology in The
geometry of algebraic cycles 9 (2010), 3–22, D. Arapura defines the Tannakian category of enriched
local systems by the axioms (E1)–(E4) and claims in Theorem 2.6 of loc. cit. an exact sequence
like the one in Corollary 4.7. Unfortunately, the proof is not correct (the statement “An element
of im...” is wrong), thus the Hodge theoretic consequences of it (Theorem 3.8 and Theorem 5.2)
are not proved. One way to remedy this is to add “Deligne’s semi-simplicity theorem” to the list of
axioms, say

(E5): φ preserves semi-simplicity.

Thanks to Lemma A.4, (E5) assures that φ is observable and then one can apply Proposition A.13.

5. Isocrystals

5.1. Let K be a complete discretely valued field of mixed characteristic (0, p) and perfect residue
field k and let X be a variety over k. In this section we study the categories Isoc(X/K) and
Isoc†(X/K) of K-linear convergent and overconvergent isocrystals over X (cf. [Ogu84] and [Ber96]).
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We write F for the absolute Frobenius of X. This defines, via pullback, autoequivalences F ∗ on the
two categories of isocrystals (see [Ogu84, Cor. 4.10] and [Laz17, Cor. 6.2]).

Definition 5.2. We say that a convergent (resp. overconvergent) isocrystal M over X is F -able
if for every irreducible subquotient N of M there exists n > 0 such that (F ∗)nN ' N . We

write Isoc
(†)
F (X/K) for the full subcategory of Isoc(†)(X/K) of K-linear F -able (over)convergent

isocrystals. Also, we say that a K-linear convergent or overconvergent isocrystal M is F -invariant
if F ∗M'M.

Every subobject of an F -invariant convergent or overconvergent isocrystal is F -able (see for example
[D’Ad20, Corollary 3.1.8]). In this section, we want to prove that the converse is also true for F -able
overconvergent isocrystals. We start with the next lemma.

Lemma 5.3. Every semi-simple F -able convergent (resp. overconvergent) isocrystalM is the direct
summand of an F -invariant semi-simple convergent (resp. overconvergent) isocrystal N .

Proof. We may assume that M irreducible. By the assumption, there exists n > 0 such that
(F ∗)nM ' M. The isocrystal M is then a direct summand of N :=

⊕n−1
i=0 (F ∗)iM, which is

F -invariant. Since F ∗ is an autoequivalence of the category of convergent (resp. overconvergent)
isocrystals, every summand (F ∗)iM is irreducible. Therefore N is semi-simple. �

We are now ready to prove the main theorem of this section.

Theorem 5.4. An overconvergent isocrystal over a variety X over k is F -able if and only if it can
be embedded into an F -invariant overconvergent isocrystal.

Proof. We have already seen that the second condition implies the first one, thus we have to prove
the converse. LetM† be an F -able overconvergent isocrystal. We prove the statement by induction
on the length of a Jordan–Hölder filtration of M†. If M† is irreducible, thanks to Lemma 5.3, it
is the direct summand of an F -invariant overconvergent isocrystal. Suppose now that M† is an

extension of an irreducible overconvergent isocrystal M†1 by an overconvergent isocrystal M†2. By

the previous step, M†1 is a direct summand of an F -invariant overconvergent isocrystal N †1 , while,

by the induction assumption, M†2 embeds into an F -invariant overconvergent isocrystal N †2 .

By Proposition 3.4, the overconvergent isocrystalM† is then a subobject of E
Isoc†F (X/K)

(N †2 ,N
†
1 )⊕

N †2 , where E
Isoc†F (X/K)

(N †2 ,N
†
1 ) is a universal extension of N †2 by N †1 . By [Ked06], the Ext

groups of Isoc†F (X/K) are finite-dimensional K-vector spaces. Thus, by Lemma 3.5, the ind-

object E
Isoc†F (X/K)

(N †2 ,N
†
1 ) is actually an object of Isoc†F (X/K). It remains to show that it is

F -invariant. This follows from the fact that the Frobenius pull-back F ∗ induces an autoequivalence

on Isoc†F (X/K), thus

F ∗(E
Isoc†F (X/K)

(N †2 ,N
†
1 )) = E

Isoc†F (X/K)
(F ∗N †2 , F

∗N †1 ) ' E
Isoc†F (X/K)

(N †2 ,N
†
1 ),

as we wanted. �

Remark 5.5. We preferred to present Theorem 5.4 for F -able overconvergent isocrystals, but
the proof works unchanged in various other cases. Indeed, we have simply used the fact that

Isoc†F (X/K) is a K-linear abelian category with noetherian objects and finite-dimensional Ext
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groups and F ∗ : Isoc†F (X/K) → Isoc†F (X/K) is an autoequivalence. These conditions are satis-
fied, for example, by the categories of `-adic lisse sheaves, `-adic perverse sheaves, and arithmetic
holonomic D-modules.

To prove one of the consequences of Theorem 5.4, namely Corollary 5.7 we need another general
lemma on Tannakian categories.

Lemma 5.6. Let α : C → D be a functor of Tannakian categories. For every A,B ∈ C such that
A ⊆ B, the inclusion

α∗(H
0
C(A)) ⊆ H0

D(α(A)) ∩ α∗(H0
C(B))

is an equality. In particular, if α∗ : H0
C(B) → H0

D(α(B)) is surjective, then α∗ : H0
C(A) →

H0
D(α(A)) is surjective as well.

Proof. It is enough to prove the result after extending the scalars of C (see Section 2.4). In particu-
lar, we may assume that D admits a fibre functor ωD. The functor ωC := ωD◦α is a fibre functor for
C because α is exact and faithful by assumption (note that the convention in Section 2.5 is in force).
We write π1(C, ωC) and π1(D, ωD) for the automorphism groups of ωC and ωD respectively. Let
V and W be the tautological representations of π1(C, ωC) on ωC(A) and ωC(B) respectively. The
functor α induces a morphism α∗ : π1(D, ωD)→ π1(C, ωC), which, in turn, induces representations
of π1(D, ωD) on the vector spaces V and W . The final result then follows from the identity

H0(π1(C, ωC), V ) = H0(π1(D, ωD), V ) ∩H0(π1(C, ωC),W )

in H0(π1(D, ωD),W ). �

Corollary 5.7. The natural functor α : Isoc†F (X/K)→ IsocF (X/K) is fully faithful.

Proof. Since both Isoc†F (X/K) and IsocF (X/K) satisfy h-descent by [Car11, Theorem 2.2], we
may assume that X is a smooth connected variety. In this case, we want to prove that for every

M† ∈ Isoc†F (X/K), the morphism

α∗ : H0
Isoc†(X/K)

(M†)→ H0
Isoc(X/K)(α(M†))

induced by α is an isomorphism. Note that α∗ is injective because α is exact, so that it is enough
to prove that α∗ is surjective.

By Theorem 5.4, the F -able overconvergent isocrystal M† embeds into an F -invariant overconver-
gent isocrystal N † and, by Lemma 5.6, it is enough to show that

α∗ : H0
Isoc†(X/K)

(N †)→ H0
Isoc(X/K)(α(N †))

is surjective. Note that the maximal trivial subobject T ⊆ α(N †) is equal to H0
Isoc(X/K)(α(N †))⊗

OX/K . Write T † for H0
Isoc(X/K)(α(N †)) ⊗ O†X/K , so that α(T †) = T . In order to prove that

α∗ is surjective we have to prove that T † is a subobject of N †. Let Φ be a Frobenius structure
for α(N †). By the maximality of T , the Frobenius structure Φ preserves T so that it induces a
Frobenius structure on T as well. Since T † is trivial, this induces in turn a Frobenius structure on
T †. Thanks to [Ked04, Theorem 1.1], we have the following identity

α∗(H
0
Isoc†(X/K)

((T †)∨ ⊗N †)F=id) = H0
Isoc(X/K)(T

∨ ⊗ α(N †))F=id .
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In particular, the natural Frobenius-equivariant inclusion of convergent isocrystals T ⊆ α(N †) is
induced by a Frobenius-equivariant inclusion of overconvergent isocrystals T † ⊆ N †, as we wanted.

�

We want to explain now an elementary example where Theorem 5.4 fails if we replace overconvergent
isocrystals with convergent isocrystals.

Proposition 5.8. There exists an extension

0→ OX/Qp
→M→ OX/Qp

→ 0

of convergent isocrystals over A1
Fp

, such that M is not a subquotient of any F -invariant convergent

isocrystal.

Proof. Let Â1
Zp

be the formal affine line over Zp, endowed with the Frobenius lift F : Â1
Zp
→

Â1
Zp

mapping a coordinate x to xp. The convergent cohomology groups of A1
Fp

are equal to the

(continuous) de Rham cohomology groups of Â1
Zp

. In particular,

H1
conv(A1

Fp
,OX/Qp

) = H1
dR(Â1

Zp
/Zp)⊗Qp.

Let ε ∈ H1
dR(Â1

Zp
/Zp)⊗Qp be the class represented by the differential form

∑∞
i=0 p

ixp
i2 dx

x .

Lemma 5.9. The classes εj := (F ∗)jε are all Qp-linearly independent when j varies in N.

Proof. Suppose that there exist c0, . . . , cn ∈ Qp such that
∑n

j=0 cjεj = 0. This implies that

n∑
j=0

cj

∞∑
i=0

pi+jxp
i2+j dx

x =
∞∑
i=0

n∑
j=0

cjp
i+jxp

i2+j dx
x = df

where f =
∑∞

`=0 a`x
` is a series in Qp[[t]] with lim`→+∞ vp(a`) = +∞. Unravelling this condition,

we deduce that

lim
i→+∞

(vp(cj) + i− i2) = lim
i→+∞

vp(
cjp

i+j

pi2+j
) = lim

`→+∞
vp(a`) = +∞

for every 0 ≤ j ≤ n. This shows that each cj is equal to 0, as we wanted. �

Let
0→ OX/Qp

→Mε → OX/Qp
→ 0

be the extension of convergent isocrystals over A1
Fp

induced by ε. Suppose, by contradiction, that

Mε is a subquotient of an F -invariant convergent isocrystal N . Write C for the category 〈N〉⊗.
Since N is F -invariant, F ∗ restricts to an autoequivalence on C. This implies that F ∗ preserves
the subspace

V := Ext1
C(OA1

Fp/Qp
,OA1

Fp/Qp
) ⊆ H1

conv(A1
Fp
,OX/Qp

).

The classes ε0, ε1, ... form an infinite sequence of linearly independent vectors of V . This contradicts
Lemma 3.6. �

There is a variant of Theorem 5.4 which works for general convergent isocrystals.

Theorem 5.10. If X is a variety over k and M is a subquotient of an F -invariant convergent

isocrystal M̃, then M is a subobject of an F -invariant convergent isocrystal in 〈M̃〉⊗.
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Proof. Write C for the category 〈M̃〉⊗. Since M̃ is F -invariant, F ∗ : C → C is a well-defined
autoequivalence. Even in this case, to prove the theorem we make an induction on the length
of a Jordan–Hölder filtration of M. Suppose first that M is irreducible. Since F ∗ permutes the

finite set of isomorphims classes of the irreducible subquotients of M̃, there exists n > 0 such that
(F ∗)nM'M. As in Lemma 5.3, we can then embedM in the semi-simple F -invariant convergent

isocrystal
⊕n−1

i=0 (F ∗)iM∈ 〈M̃〉⊗.

If M is instead an extension of an irreducible convergent isocrystal M1 by a convergent isocrystal
M2, thanks to the previous step, M1 is a direct summand of a semi-simple F -invariant isocrystal
N1 ∈ C and, by the inductive hypothesis,M2 is a subobject of some F -invariant isocrystal N2 ∈ C.
By Proposition 3.4, the isocrystal M is then a subobject of EC(N2,N1)⊕N2, where EC(N2,N1) is
a universal extenion of N2 by N1. Thanks to Lemma 3.6, the ind-object EC(N2,N1) is actually in
C. As the Frobenius pull-back F ∗ induces an autoequivalence of C, the isocrystal EC(N2,N1) is
F -invariant. �

5.11. Thanks to the previous results, we are able to recover [AD18, Proposition 2.2.4]. Fix a char-
acteristic 0 complete discretely valued field K with residue field Fps . Let X be a geometrically con-

nected variety over Fps and let x be an Fps-point of X. Write Fs-Isoc(X/K) (resp. Fs-Isoc†(X/K))
for the K-linear category of convergent (resp. overconvergent) isocrystals endowed with an s-th
Frobenius structure. When X = Spec (Fps), we simply denote this category by Fs-Isoc(Fps/K). We

have forgetful functors Ψ : Fs-Isoc(X/K)→ Isoc(X/K) and Ψ : Fs-Isoc†(X/K)→ Isoc†(X/K).
Write Isoc(X/K)geo (resp. Isoc†(X/K)geo) for the subcategory of Isoc(X/K) (resp. Isoc†(X/K))
⊗-generated by the essential image of Ψ. All the aforementioned categories are Tannakian categories
neutralised by the point x. We denote by π1(−, x) the respective Tannaka groups.

Corollary 5.12. There exists a functorial commutative diagram

1 π1(Isoc(X/K)geo, x) π1(Fs-Isoc(X/K), x) π1(Fs-Isoc(Fps/K)) 1

1 π1(Isoc†(X/K)geo, x) π1(Fs-Isoc†(X/K), x) π1(Fs-Isoc(Fps/K)) 1

Ψ∗ pX∗

=

Ψ∗ pX∗

with exact rows.

Proof. The vertical arrows of the diagram are constructed using the functor α : Isoc†(X) →
Isoc(X). To prove that the right horizontal morphisms pX∗ are faithfully flat, we note that they ad-
mit a section induced by the Fps-point x. For the exactness in the middle we want to apply instead
Proposition A.13. Thanks to Theorem 5.4 and Theorem 5.10, the functor Ψ is observable both for
convergent and overconvergent isocrystals. To conclude, it is enough to note that if (M,Φ) is an
F -isocrystal (both convergent or overconvergent) the maximal trivial subobject of M is preserved
by Φ, thus it admits a Frobenius structure compatible with Φ. �

Appendix A. Observable functors

A.1. In [BBHM63], the authors introduce the notion of observable subgroup, which turns out to
be useful to study Tannaka groups. Indeed, it appeared implicitly and in various forms in some
works on Tannakian categories (e.g. [EHS07], [dS15], and [AE19]). Recently in [And20], André
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studied the interaction of this notion with other standard results on Tannaka groups. We propose
in the sequel a self-contained variant of André’s approach. We introduce the more general notion of
observable functor and use it to provide new criteria for the surjectivity and exactness of morphisms
between Tannaka groups, and to give new proofs of previous results.

Definition A.2. Let k be a field. We say that a functor α : C→ D of k-linear Tannakian categories
is observable if for every rank 1 object L ∈ D which embeds into an object of α(C), there exists
n > 0 such that (L⊗n)∨ embeds into an object of α(C).

Proposition A.3 (Bialynicki-Birula–Hochschild–Mostow). A functor α : C → D of Tannakian
categories is observable if and only if every quotient in D of an object in α(C) embeds into an
object of α(C).

Proof. A stronger version of this theorem is proven in [BBHM63, Theorem 9]. We give here a
shorter proof of this weaker version. It is clear that the second condition implies the first one, thus
it is enough to prove the converse. Suppose given an exact sequence

0→W → V → Q→ 0

in D with V ∈ α(C). Write r for the rank of W and L for ∧r(W ). Since L embeds into ∧r(V ) ∈
α(C), there exists n > 0 and N ∈ α(C) such that (L⊗n)∨ is a subobject of N . At the same time,
the natural morphism V ⊗L→ ∧r+1(V ) factors through Q⊗L. Combining these two observations,
we deduce that there exists an embedding

Q = (Q⊗ L)⊗ L⊗(n−1) ⊗ (L⊗n)∨ ↪→ ∧r+1(V )⊗ (∧r(V ))⊗(n−1) ⊗N.
This shows that Q embeds into an object of α(C), as we wanted. �

Lemma A.4. The functor α is observable if one of the following conditions is satisfied.

1) If a rank 1 object L ∈ D embeds into an object of α(C), then it is the direct summand of a
semi-simple object of α(C).

2) The functor α sends semi-simple objects to semi-simple objects.

Proof. Suppose that α satisfies 1). If L ∈ D is a rank 1 subobject of V ∈ α(C), then there exists
a semi-simple object W ∈ α(C) such that L is a direct summand of W . Therefore, L∨ is a direct
summand of W∨ ∈ α(C). This shows that α is observable.

We prove now that 2) implies 1). Let M be an object of C and L be a rank 1 subobject of α(M).
Choose an ascending filtration F• of M such that the associated graded object GrF•(M) is semi-
simple. Since L is of rank 1, there exists i such that L embeds into α(Fi(M))/α(Fi−1(M)). Note
that α(Fi(M))/α(Fi−1(M)) = α(Fi(M)/Fi−1(M)) because α is exact and α(Fi(M)/Fi−1(M)) is
semi-simple by 2). We deduce that L embeds into a semi-simple object, as we wanted. �

A.5. We are now ready to see how the notion of observable functor interacts with various properties
of morphisms of Tannaka groups. Let

K
f−→ G

g−→ H

be morphisms of affine groups schemes over k. We denote by

H
g∗−→ G

f∗−→ K
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the induced functors between the representation categories with values in the category of finite-
dimensional k-vector spaces. If V is a representation in H, we write P(V ) for the projectivisation
of V , endowed with the natural action of H.

Proposition A.6 (Faithful flatness). The following conditions are equivalent.

1) g is faithfully flat.
2) g∗(H) ⊆ G is a full subcategory stable under the operation of taking subobjects.
3) g∗ is fully faithful and observable.
4) For every V ∈ H, the inclusion P(V )H(k) ⊆ P(V )G(k) is an equality.

Proof. The equivalence 1) ⇔ 2) is [DM82, Proposition 2.21 (a)] and the implications 1) ⇒ 4) and
2) ⇒ 3) are immediate. We prove 3) ⇒ 2). Let us assume that g∗ is fully faithful and observable.
For every V ∈ G which is a subobject of some M ∈ g∗(H), there exists, by Proposition A.3,
an N ∈ g∗(H) which has V ∨ as a subobject. Dualising we deduce that there exists a surjective
morphism N∨ � V . This implies that there exists a morphism a : N∨ → M in G such that
Im(a) = V . Since g∗ is fully faithful, a = g∗(ã) for some morphism ã ∈ HomH(N∨,M). We deduce
that V = g∗(Im(ã)), as we wanted.

Finally, we prove 4)⇒ 3). Suppose that g∗ satisfies 4). This implies that g∗ is observable because
every rank 1 subobject in G which embeds into an object of g∗(H) is itself in g∗(H). The next step
is to prove that g∗ induces an injective morphism on the groups of characters g∗ : X∗(H)→ X∗(G).
To do this we observe that if L1 and L2 are two rank 1 objects in H, then L1 ' L2 if and only
if |P(V )H(k)| > 2, where V := L1 ⊕ L2. Of course, the same criterion works also for the rank 1
objects of G. This shows that L1 ' L2 if and only if g∗L1 ' g∗L2, because, by condition 4), the
sets P(V )H(k) and P(g∗V )H(k) are equal. Using this we can finally prove that g∗ is fully faithful.
Indeed, thanks to 4), for every V ∈ H, the maximal trivial subobject T ⊆ g∗(V ) comes from some
L⊕r ⊆ V . By the injectivity of the morphism on the groups of characters, we deduce that L is
isomorphic to the unit object. This yields the desired result. �

Remark A.7. The equivalence 1) ⇔ 4) appears in [dS15, Lemma 4.2 and Lemma 4.3]. Also, a
variant of 3) is considered in [AE19, Lemma 1.6]. We correct a typo in loc. cit.: λ/m ∈ Q̄p should

read m
√
λ ∈ Q̄p.

Proposition A.8 (Closed immersion). The following conditions are equivalent.

1) f is a closed immersion.
2) Every object of K is a subquotient of an object coming from G.

Proof. This is [DM82, Proposition 2.21 (b)]. �

Definition A.9. We say that a closed subgroup f : K ↪→ G such that f∗ is an observable functor
is an observable subgroup.

Corollary A.10. The following conditions are equivalent.

1) f : K ↪→ G is an observable subgroup.
2) Every object of K embeds into an object coming from G.

Proof. The implication 1) ⇒ 2) follows from Proposition A.8 and from Proposition A.3 while the
converse follows from Proposition A.8. �
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Lemma A.11. Suppose that f : K → G decomposes as K
f1−→ K ′

f2−→ G with K ′ an affine group
scheme and f2 a closed immersion. If f∗ is observable, then f∗1 is observable.

Proof. Write K′ for the category of representations of K ′. Suppose that V ∈ K embeds into some
representation coming from K′, we want to show that the same is true for V ∨. Since f2 is a closed
immersion, by Proposition A.8 every representation in K′ is a subquotient of a representation coming
from G. Thus V ∨ is a subquotient of a representation coming from G. Since f∗ is observable, by
Proposition A.3, the representation V ∨ embeds then into a representation coming from G. This
shows that f∗1 is observable. �

Proposition A.12 (Normality). The following conditions are equivalent.

1) f(K) ⊆ G is a closed normal subgroup.
2) f∗ is observable and for every M ∈ G, the maximal trivial subobject of f∗M comes from a

subobject of M in G.

Proof. If 1) is satisfied then by [BBHM63, Theorem 10] the functor f∗ is observable. At the same
time, since f(K) is normal in G, the maximal trivial subobject of f∗M is stable under the action
of G. Thus 1)⇒ 2).

We prove now 2)⇒ 1). Let K ′ be the smallest closed normal subgroup of G containing the image
of f and K′ the induced category of representations. Then f decomposes as

K
f1−→ K ′

f2−→ G,

with f2 a closed immersion. Since f∗ is observable, thanks to Lemma A.11, the same is true for f∗1 .
By Proposition A.6, in order to prove that f1 is faithfully flat, and thus that K ′ = f(K), it remains
to prove that f∗1 is fully faithful.

We want to apply Lemma 5.6. Since K ′ is an observable subgroup of G, we know that every V ∈ K′

embeds into an object W = f∗2M with M ∈ G. By Condition 2), there exists a subobject N ⊆ M
which is sent by f∗ to the maximal trivial subobject T ⊆ f∗M = f∗1W . By the construction of K ′,
the subobject f∗2N ⊆ f∗2M = W , which is sent to T ⊆ f∗M , is trivial in K′. This shows that the
map f∗1 : H0

K′(W )→ H0
K(f∗1 (W )) is an isomorphism. We end the proof thanks to Lemma 5.6. �

Proposition A.13 (Exact sequence). Assume that f is a closed immersion, g is faithfully flat and
g ◦ f is trivial. The following conditions are equivalent.

1) 1→ K
f−→ G

g−→ H → 1 is an exact sequence.
2) f∗ is observable and for every M ∈ G, there exists U ∈ H such that the maximal trivial

subobject of f∗M comes from g∗(U) ⊆M .

Proof. This can be proven combining [EHS07, Theorem. A.1] and Corollary A.10. We present here
a variant of this proof. The implication 1) ⇒ 2) follows from Proposition A.12. For the converse,
we know by Proposition A.12 that the closed subgroup f : K ↪→ G is normal, thus it remains
to prove that the quotient morphism G/K � H is a closed immersion. By Proposition A.8, this
amounts to showing that every representation of G which is trivial when restricted to K comes from
a representation of H. This is guaranteed by Condition 2).

�
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Remark A.14. Proposition A.12 corresponds to [And20, Proposition C.3], while combining Lemma
A.4 and Proposition A.13 one recovers [LP17, Proposition 2.6].
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