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Abstract. It is a short report on recent results concerning special loci
of the Betti moduli space of irreducible complex local systems on com-
plex varieties.

1. Introduction

On a smooth complex connected quasi-projective variety X, with under-
lying complex analytic manifold Xan, one has the category LocSys(Xan)
of complex local systems V on Xan. A complex point a ∈ X(C) yields the
structure of a Tannakian category where the neutral fiber functor is given by
restriction V|a. The Riemann-Hilbert correspondence establishes an equiv-
alence of Tannakian categories between LocSys(Xan) and Connreg(X), the
categories of integrable connections (E,∇) on X which are regular singular
at infinity, where the neutral fibre functor is given by restriction E|a. The
correspondence is defined by (E,∇) 7→ E∇, V 7→ (V⊗COXan , 1⊗d) on Xan.
One has then to descend the analytic integrable connection to an algebraic
one on X. This is the content of Deligne’s Riemann-Hilbert correspondence
[Del70, Thm.5.9].

On the other hand, in a given rank r ∈ N>0, in case X is projective, Simp-
son [Sim94] defines coarse moduli spaces MB(X, r) for rank r complex local
systems and MdR(X, r) for rank r integrable connections. The Riemann-
Hilbert correspondence establishes a complex analytic isomorphism between
MB(X, r)(C) and MdR(X, r)(C).

Simpson considers 0-dimensional subloci in MB(X, r)irr ⊂MB(X, r), the
open of irreducible local systems. The underlying complex points are called
rigid local systems. He conjectures [Sim92, Conjecture p.9] that they are mo-
tivic, that is direct factors of Gauß-Manin local systems of smooth projective
families over some dense open of X, as is the case when X has dimension
one ([Kat96]). He remarks [Sim92], loc. cit. that his motivicity conjecture
in particular implies the integrality conjecture predicting that rigid local
systems are integral, that is all the traces of the underlying representation
of π1(Xan) of a rigid local system lie in Z̄. He extends his motivicity and
integrality conjectures to the case when X is quasi-projective.
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In Section 2 we report on our solution with Michael Groechenig of the
integrality conjecture for the 0-dimensional components which have a re-
duced scheme structure. The corresponding rigid local systems are called
cohomologically rigid as the condition is equivalent to saying that the Zariski
tangent space, which is a cohomology group, is equal to zero. If X has di-
mension one, all rigid systems are cohomologically rigid [Kat96, Thm.1.1.2,
Cor.1.2.4]. As of today, we do not know of a single example of a rigid local
system which is not cohomologically rigid, while experts believe they should
exist. The general references are [EG18] for a Betti to `-adic proof in the
general quasi-projective case, and [EG18a] for de Rham-crysalline aspects
of rigid local systems in the projective case.

When r = 1 and X is projective, Simpson considers Zariski closed subloci
S ⊂ MB(X, 1)(C) (so MB(X, 1)irr = MB(X, 1)) which have the property
that viewed in MdR(X, 1)(C), they are still Zariski closed. He calls them
bialgebraic subloci. He proves [Sim93, Thm.3.1 (c)] that they necessarily
are a finite union over the components of subtori Ti translated by points si.
As MB(X, r) is defined over Z and MdR(X, r) over the field of definition of
X, it makes sense to request that X, then S and its image in MdR(X, 1)
are all defined over Q̄. If this is the case, then the si may be chosen to
be torsion [Sim93, Thm.3.3], in particular the torsion points are Zariski
dense on S. Note however that in the real topology, torsion points are
located in the closed subspace defined by the radius equal to one, thus are
not dense. Simpson’s theorem has been generalized to the case when X is
quasi-projective in [BW17].

In Section 3 we report on our work with Moritz Kerz on arithmetic subloci
of MB(X, 1) [EK19]. We fix a prime number `. As integral `-adic points of
MB(X, 1) are étale, that is

MB(X, 1)(Z̄`) = Homcts(π1(X)ét, Q̄×` ),

where π1(X)ét is the étale fundamental group, this set is acted on by the
Galois group G of the field of definition of X. In addition, it carries the
topology which is the restriction of the Zariski topology on MB(X, 1)(Q̄`),
which we call Zariski topology. The theorem, in the spirit of Tate’s con-
jecture, then says that arithmetic subloci, that is Zariski closed subloci of
MB(X, 1)(Z̄`) which are G-invariant, are a finite union over the components
of subtori Ti translated by torsion points si. In addition, the Ti are motivic.
This in particular applies to jumping loci. The geometric condition on X
for the theorem to be true is very weak, one just assumes that the weights
on H1(X) in the sense of Hodge theory are strictly negative. For example
normal varieties fulfil this condition, but also many non-normal varieties as
well. One easily constructs weight zero examples with non-dense torsion
points. So the theorem is sharp.

We extract from the theorem a formulation of consequences in Corol-
lary 3.3 which enables us to formulate in Section 4 wished analogs for higher
rank arithmetic subloci.
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2. Simpson’s integrality conjecture

Let X be a smooth connected quasiprojective complex variety, j : X ↪→ X̄
be a good compactification, D = X̄rX be the normal crossings divisor at in-
finity. We write D = ∪Ni=1Di where the Di are the irreducible components.
Fixing quasi-unipotent conjugacy classes Ki ⊂ GLr(C) for each i, and a
rank one complex local system L of order d on X, there is an algebraic stack
MB(Ki,L) of finite type defined over a number field K which represents
the functor from affine connected algebraic varieties T to groupoids, which
assigns geometrically irreducible representations of the topological funda-
mental group of Xan of rank r with values in the linear automorphisms of
a vector bundle on T , with monodromy at infinity falling in the conjugacy
classes Ki and with determinant L ([EG18, Prop.2.1]). In particular there
are finitely many 0-dimensional components. They are defined over a finite
extension of K. The associated complex points are call complex rigid local
systems with local monodromies Ki at infinity and prescribed isomorphism
class of determinant L. The Zariski tangent space at V ∈MB(Ki,L) is the
intersection cohomology H1(X̄, j!∗End0(V)) where 0 indicates the trace-free
part ([EG18, Prop.2.3]). Among the complex rigid local systems there are
those which are smooth on MB(Ki,L) which is equivalent to saying that
H1(X̄, j!∗End0(V)) = 0. They are called cohomologically rigid local systems.

If X has dimension one, as already mentioned in the introduction, all
rigid local systems are cohomologically rigid. As of today we do not know
of a single example in higher dimension where this is not the case. Our
theorem [EG18, Thm.1.1] yields a positive answer to Simpson’s integrality
conjecture for cohomologically rigid local systems.

Theorem 2.1. Let X be a smooth connected quasiprojective complex va-
riety. Then cohomologically rigid complex local systems with finite deter-
minant and quasi-unipotent local monodromies around the components at
infinity of a good compactification are integral.

Sketch of the proof. The proof is a Betti to `-adic proof. It uses the existence
of `′-adic companions of irreducible `-adic local systems on smooth varieties
defined over finite fields, a deep theorem conjectured by Deligne [Del80,
Conj.1.2.10], proven by L. Lafforgue in dimension one [Laf02, Chap.VII] as
a consequence of the Langlands correspondence, and in higher dimension on
a smooth variety by Drinfeld [Dri12, Thm.1.1] by reduction to the dimension
one case using geometry and representation theory. We do not know a pure
characteristic zero proof of Theorem 2.1.
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A key ingredient of the proof is that there are finitely many local systems
to consider (the rank is fixed), they are all defined over a number field, K say,
and the possibly non-integral places are in finite number. So one can choose
one place λ of K dividing the prime number ` which is integral for all of
them. For p large, all those local systems are integral at the places dividing
p. Grothendieck’s specialization theorem on the tame fundamental group
enables us to descend those local systems to Q̄`-adic local systems VF̄p

onXF̄p

with the same determinant, monodromy conditions at infinity and vanish-
ing of H1(X̄F̄p

, j!∗End0VF̄p
). An argument essentially due to Simpson [EG18,

Prop.3.1] shows that the Q̄`-adic local systems on XF̄p
then descend to XFq

for some q = ps. Thus they have companions. Since H1(X̄F̄p
, j!∗End0VF̄p

) is

precisely the pure weight one part of ⊕jHj(XF̄p
, End0VF̄p

), it is preserved by
the companion association. Since geometric irreducibility, the local monon-
odromy at infinity and the finite determinants are preserved by the compan-
ion association, those companion `′-adic local systems, viewed as Z̄`′-points
of MB(Ki,L), are cohomogically rigid, thus the λ to λ′ game induces a bi-
jection of the finite set of cohomologically rigid local systems, thus they are
integral at the place λ′. This finishes the proof. �

In fact, we understand more facts on the de Rham-crystalline side towards
Simpson’s geometricity conjecture, if X is projective. We have the following
theorem [EG18a, Thm.1.6].

Theorem 2.2. Let X be a smooth projective variety over C, V be a rigid
local system and (E,∇) be its underlying connection. The connection (E,∇),
first spread out over a ring of finite type over Z, then restricted to the formal
scheme X̂W (F̄p), where Spec(F̄p) → Spec(R) is a place of good reduction

for (R,X, (E,∇)), has the structure of a crystal, which, tensor Q, is an
isocrystal with a Frobenius structure.

It is interesting to note that we do not need the cohomological condition
in the theorem. By definition, the bundle E on X̂W (Fp) is respected by
the connection. If (E,∇) is motivic, by [Kat72, 3.1] the p-curvature of the

mod p reduction is nilpotent, which is to say that (E,∇) on X̂W (Fp) is a
crystal (see [EG18a, Thm.2.20 2.6]). The Frobenius structure comes from
the conjugate filtration.

Sketch of Proof. One way to see the nilpotency of the p-curvature is to count.
We have finitely many (E,∇) which come from rigid local systems of rank r.
Then one introduces the other side of the Simpson correspondence, the mod-
uli MDol(X, r)

st of stable Higgs bundles. Since the correspondence yields
a real analytic isomorphism between MdR(X, r)st(C) and MB(X, r)irr(C),
the number of isolated Higgs bundles is the same. On the other hand,
going to characteristic p, which for p large preserves this number, the Ogus-
Vologodsky correspondence [OV07] assigns via the Cartier inverse operator
C−1 to a stable Higgs bundle with nilpotent curvature a connection. Thus
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it is enough to show that this connection is rigid as well, which may be
extracted from the splitting to order (p − 1) along the zero-section of the
cotangent bundle of the Azumaya algebra which is the center of the sheaf
of differential operators [OV07, Cor.2.9]. As for the Frobenius structure,
one applies the theory of Lan-Sheng-Zuo of Higgs to de Rham flows [LSZ13]
produced by a rigid connection, which, given the finitely many rigid objects
in a given rank, has to be cyclic, see [EG18a, Section 4]. �

3. Arithmetic subloci in rank one

Our main theorem [EK19, Thm.1.2] yields an `-adic analog of Simpson’s
theorem.

Theorem 3.1. Let X be a complex quasi-projective variety defined over
C. Let F ⊂ C be a field of finite type over which X is defined, and G
be the Galois group Aut(F̄ /F ) where F̄ is the closure of F in C. Fix a
prime number `. Let S ⊂ MB(X, 1)(Z̄`) be an arithmetic sublocus. Then
if the Hodge weights of H1(X,Z) are strictly negative, S is the finite union
over its irreducible components of subtori Ti translated by torsion points si.
Moreover, the Ti are motivic.

Here a subtorus T ⊂ MB(X, 1) is called motivic if there is a torsion
free quotient Hodge structure H1(X,Z) � π′ such that T = Hom(π′,C×),
or equivalenty if there is a morphism f : X → Y of algebraic varieties
such that T = f∗MB(Y, 1)1 where the subscript 1 indicates the connected
component of 1 (see [EK19, Prop.7.3].)

Sketch of proof. The proof uses the `-adic topology. We reduce to the case
where S is irreducible. We fix a residual representation ξ̄ of a point of ξ ∈ S.
If its Teichmüller lift [ξ̄] in Homcts(π1(X)ét, Q̄×` ) lies on S, we found a torsion
point. If not, we replace S by [ξ̄]−1 · S so we may assume that [ξ̄] is the
trivial representation. Then translating S by a high power of `, we may
assume that S intersects a polydisk

Homcts(π1(X)ét, Q̄×` )(ρ) ⊂ Homcts(π1(X)ét, Q̄×` )

of radius ρ where ρ lies in the valued group of Q̄×` on which the `-adic
logarithm log is defined. It equates this analytic polydisc with the polydisc

Homcts(π1(X)ét, Q̄`)(ρ) = H1(X, Q̄`)(ρ) ⊂ H1(X, Q̄`).

Let us assume for simplicity that H1(X,Z) is pure, thus of strictly nega-
tive weight given our assumption. The goal is then to show that log(S ∩
Homcts(π1(X)ét, Q̄×` )(ρ)) is homogeneous, thus in particular contains 0, which

implies that S ∩ Homcts(π1(X)ét, Q̄×` ) contains the trivial character, so the
initial S we started with contains a torsion point with given residual rep-
resentation [ξ̄] ([EK19, Prop.4.3]). In particular the torsion points of S are
Zariski dense, and we can choose one which in addition is smooth on S. After
translation, 1 ∈ S is a smooth point. To prove the linearity, one considers
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the weights of G, see [EK19, Prop.6.2]. It uses a theorem of Bogomolov
[Bog80], according to which for α ∈ Z×` close to 1 and not a root of unity,
there is an element in G which acts semi-simply on H1(X,Z`) with eigen-
values α−1. As 0 is smooth, S ∩ Homcts(π1(X)ét, Q̄×` ) is linear. Analytic
linearlity implies algebraic linearity [EK19, Lem.4.2]. This concludes the
proof if H1(X,Z) is pure. In the mixed case, one uses Litt’s generalization
[Lit18, Lem.2.10] of Bogomolov’s theorem instead.

Motivicity is proved using Faltings’ theorem [Fal86, Thm.1].
�

Example 3.2. Theorem 3.1 is sharp. Let X be the union of two rational
curves defined over Q meeting in two points which are rational over Q. Then
H1(X) = Z has weight 0, π1(X) = Ẑ with trivial G-action. The character

ξ : Ẑ→ Z̄×` which assigns to 1 a element in Z̄×` which is not a root of unity
is thus not torsion. So S = MB(X, 1)(Z̄`) does not fulfil the conclusion of
the theorem.

We can draw from Theorem 3.1 obvious corollaries. Let us remark that
a point ξ ∈MB(X, 1)(Z̄`) is torsion if and only if its G-orbit is finite.

Corollary 3.3. In the situation of Theorem 3.1

1) the points in S with finite G-orbit are Zariski dense;
2) given S1, S2 ⊂ MB(X, 1)(Z̄`) irreducible arithmetic subloci, a point

ξ ∈ S1 ∩ S2 which is smooth on both Si, such that TξS1 = TξS2 ⊂
TξMB(X, 1), then S1 = S2;

3) given a prime `′, an algebraic isomorphism ι : Q̄`

∼=−→ Q̄`′, and an
arithmetic sublocus S ⊂MB(X, 1)(Z̄`), then ι(S) ⊂MB(X, 1)(Q̄`′)
lies in MB(X, 1)(Z̄`′) and is arithmetic.

Remark 3.4. 1) 1) is a direct consequence of the structure of commu-
tative algebraic group schemes over an algebraically closed charac-
teristic zero field which are extensions of a finite group scheme by a
torus: its torsion points are dense. We remark that the converse to
1) is not true. For example, if X is an elliptic curve, then MB(X, 1)
is a two dimensional torus, but no dimension one subtorus is motivic.
However any torus is the Zariski closure of its torsion points.

2) 2) comes from the fact that a subtorus is determined by its Zariski
tangent space at 1. The condition that ξ is smooth on either Si is
superfluous as it follows from the theorem, but we keep this formu-
lation in view of Section 4.

3) 3) comes from the motivicity part of the theorem.

4. Comments and questions

4.1. Integrality. To bypass the cohomological argument in Section 2, and
therefore to prove the integrality conjecture completely (should there really
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exist rigid local systems which are not cohomologically rigid), one has to
understand how the formal neighbourhood of 0 in

{x ∈ H1(X̄F̄p
, j!∗End0(V)), 0 = x ∪ x ∈ H2(X̄F̄p

, j!∗End0(V))}
varies in the companion correspondence. Indeed, interpreted in Betti coho-
mology over C, this is the equation of the formal ring of MB(X, r)irr at V
[Sim92, Cor.2.4]. We do not know how to do this.

4.2. Higher rank arithmetic subloci. In higher rank, given a prime num-
ber `, we define similarly arithmetic subloci of MB(X, r)irr as Zariski closed
subloci of MB(X, r)irr(Z̄`) which are G-invariant. Here again the Zariski
topology on MB(X, r)irr(Z̄`) is by definition the restriction of the Zariski
topology on MB(X, r)irr(Q̄`). Then we ask at least for X smooth projec-
tive over C whether Corollary 3.3 is true, where we replace MB(X, 1) by
MB(X, r)irr, or by MB(X, r,L)irr fixing the determinant L. In the non-
proper case, we ask the same question replacing MB(X, r)irr which is only
locally of finite type by the moduli MB(Ki,L) as in Section 2 or by the
moduli MB(Ki) which is defined similarly without fixing the determinant.
As we know very little on the topological fundamental group of a smooth
quasi-projective complex variety, we are very far from understanding 1). For
example, even if S is the whole moduli space, we do not even know the ex-
istence of a single point with finite Galois orbit. 2) is accessible, but useless
as we do not have 1). As for 3), a positive answer would prove Theorem 2.1
without cohomological assumption.
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math. de l’I.H.É.S. 106 (2007), 1–138.

[Sim92] Simpson, C.: Higgs bundles and local systems, Publ. math. de l’I.H.É.S 75
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