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Abstract We prove that the monodromy of an irreducible cohomologically complex
rigid local system with finite determinant and quasi-unipotent local monodromies at
infinity on a smooth quasiprojective complex variety X is integral. This answers posi-
tively a special case of a conjecture byCarlos Simpson. On a smooth projective variety,
the argument relies on Drinfeld’s theorem on the existence of �-adic companions over
a finite field. When the variety is quasiprojective, one has in addition to control the
weights and the monodromy at infinity.

Mathematics Subject Classification 14D07 · 14G15 · 14F35

1 Introduction

Let X be a smooth connected quasiprojective complex variety, j : X ↪→ X̄ be a good
compactification, that is a smooth compactification such that D = X̄\X is a normal
crossings divisor. An irreducible complex local system V is said to be cohomologi-
cally rigid if H1(X̄ , j!∗End0(V)) = 0. The finite dimensional complex vector space
H

1(X̄ , j!∗End0(V)) is the Zariski tangent space at the moduli point of V of the Betti
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moduli stack of complex local systems of rank r with prescribed determinant and
prescribed local monodromies along the components of D (see Sect. 2). So a coho-
mologically rigid complex local system is rigid, that is its moduli point is isolated,
and in addition it is smooth.

Simpson conjectures that rigid irreducible complex local systems with torsion
determinant and quasi-unipotent monodromies around the components of D are of
geometric origin. In particular, they should be integral, where a complex local system
is said to be integral if it is coming by extension of scalars from a local system of
projective OL -modules of finite type, where OL is the ring of integers of a number
field L ⊂ C. See [15, Conj. 0.1, 0.2] for the formulation of the conjectures in the
projective case. We prove:

Theorem 1.1 Let X be a smooth connected quasiprojective complex variety. Then
irreducible cohomologically rigid complex local systems with finite determinant and
quasi-unipotent local monodromies around the components at infinity of a good com-
pactification are integral.

When X is projective, a first proof of Theorem 1.1 using F-isocrystals and p to
�-companions [1] has been given in [10]. The short proof presented in this note only
uses the � to �′ companions, the existence of which has been proved by Drinfeld [9,
Thm. 1.1]. We outline it in the projective case.

We use the following criterion for integrality. Let V be rigid complex local system
which comes by extension of scalars from a local system VOK ,�

of projective OK ,�-
modules where K ⊂ C is a number field, � is a finite set of places of K and OK ,� is
the ring of �-integers of K . For any place λ of K , let Kλ be the completion of K at λ,
Kλ ⊂ K̄λ be an algebraic closure,OKλ ⊂ ŌKλ be the underlying extension of rings of
integers. Then V is integral if and only if for any λ in �, VK̄λ

= VK ⊗K K̄λ comes by

extension of scalars from a local system VŌKλ
of free ŌKλ -modules. The local system

of projectiveOK -modules is defined as the inverse image of
∏

λ∈� VŌKλ
⊂ ∏

λ∈� VK̄λ

via the localization map VOK ,�
→ ∏

λ∈� VK̄λ
. (See [3, Cor. 2.3, Cor. 2.5] for the same

criterion expressed in term of traces of representations).
We fix natural numbers r and d. The moduli stack of irreducible complex local sys-

tems of rank r and determinant of order d is of finite type. Thus the set of isomorphism
classes of such local systems which are cohomologically rigid has finite cardinality
N (r, d). For any algebraic closed fieldC of characteristic 0, N (r, d) is also the number
of isomorphism classes of irreducible C-local systems of rank r and determinant of
order d.

The N (r, d) complex local systems come by extension of scalars of local systems
VK defined over a number field K ⊂ C. As the topological fundamental group is
finitely generated, the N (r, d) local systems VK come by extension of scalars from
local systems VOK ,�

of freeOK ,�-modules, where � is a finite set of places of K and
OK ,� is the ring of�-integers of K . We want to show that VK̄λ

= VKλ ⊗Kλ K̄λ comes
from a local system defined over OK̄λ

for all λ in �.
One chooses a place λ of K which is not in �. It divides a prime number �. We

complete the finitely many VOK ,�
considered at λ so as to obtain λ-adic lisse sheaves

on X . We take a model XS of X over a scheme S of finite type over Z such that XS/S
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Cohomologically rigid local systems and integrality 4281

is smooth, and take a closed point s of S of characteristic p prime to the order of the
residual representations, to �, to d, and to the residual characteristics of the places in
�. Then the λ-adic sheaves descend to lisse sheaves on Xs̄ , where k(s) ↪→ k(s̄) � F̄p

is an algebraic closure of the residue field of s.
By a variant of an argument of Simpson (see Proposition 3.1), after finite base

change on s, the lisse sheaves descend to arithmetic lisse sheaves. They are irreducible
on Xs̄ and can be taken to have finite determinant. By Drinfeld’s existence theorem,
for all places λ′ of K not dividing p, in particular for all λ′ in �, they have λ′-
companions, which are K̄λ′ -lisse sheaves, thus by definition, come from ŌKλ′ -lisse
sheaves. Using purity, the L-function of the trace 0 endomorphisms of the companions,
base change, local acyclicity, andBetti to étale comparison, one shows that viewedback
as representations of the topological fundamental group with values in GL(r, ŌKλ′ ),
the λ′-companions define on X the required number N (r, d) of cohomologically rigid
non-isomorphic K̄λ′ -local systems of the type we want, all coming from ŌKλ′ -local
systems.

To generalize the argument to the quasiprojective case and quasi-unipotent mon-
odromies around the components at infinity, one needs that specializiation, purity, base
change, local acyclicity are applicable in the non-proper case. This being acquired,
we bound the problem by bounding the rank r , and fixing two natural numbers d and
h such that the order of the determinant divides d and the order of the eigenvalues of
the monodromies around the components at infinity divides h. There are finitely many
isomorphism classes of cohomologically rigid local systems with those invariants, say
N (r, d, h). Deligne’s theorem on compatible systems on curves [6, Thm. 9.8] implies
that those data are preserved by passing to companions, which enables us to make the
counting argument with N (r, d) replaced by N (r, d, h).

2 Cohomologically rigid local systems with prescribed monodromy
around the components of the divisor at infinity

Let X be a smooth connected quasiprojective complex variety, j : X ↪→ X̄ be a good
compactification, D = X̄\X be the normal crossings divisor at infinity. We write
D = ∪N

i=1Di where the Di are the irreducible components. In this section we clarify
the notion of rigid irreducible complex local systems with torsion determinant and
quasi-unipotent monodromies around the components of D.

Let U = X̄\Dsing, where Dsing is the singular locus of D, and j : X a−→ U
b−→ X̄

be the open embeddings. We choose a complex point x ∈ X and r ∈ N≥1. For each
i = 1, . . . , N , we fix a conjugacy classKi ⊂ GL(r,C). It is the set of complex points
of a subvariety of GL(r) which we denote by the same letter Ki . If �i ⊂ U is a ball
around yi ∈ Di ∩ U and xi ∈ �×

i with �×
i = �i\Di ∩ �i , the fundamental group

π1(�
×
i , xi ) is freely generated by the local monodromy Ti , determined uniquely up

to sign, around Di ∩ �i , so π1(�
×
i , xi ) = Z · Ti . Any complex linear local system V

defines by restriction a complex linear local system V|�×
i
on �×

i . We say that V|�×
i

is defined by Ki if the image of Ti lies in Ki in its monodromy representation. We
say that V is defined by Ki along Di if V|�×

i
is for all points yi ∈ Di ∩ U . As Di is

Author's personal copy



4282 H. Esnault, M. Groechenig

irreducible, Di ∩ U is smooth and connected, so the condition that V be defined by
Ki along Di is equivalent to the condition that V|�×

i
is defined by Ki for the choice

of one single yi ∈ Di ∩ U . For each i = 1, . . . , N , we fix one such yi ∈ Di ∩ U , �i

and xi ∈ �×
i as above. We also fix a rank 1 local system L of order d defined by a

character χL : π
top
1 (X, x) → μd(C) ⊂ C

×.
Let T = Spec(B) be a complex connected affine variety of finite type. A T -local

system VT over X is a local system of locally free T -modules, or equivalently a locally
free T -sheaf W together with a representation ρ : π

top
1 (X, x) → Aut(W ). The rank

of VT is the rank ofW . A geometrically irreducible T -local system is a T -local system
VT such that V ×T η̄ is an irreducible local system over η̄ for all geometric generic
points η̄ of T . We define a stack from the category of affine varieties of finite type over
K to the category of groupoids, sending T to the groupoid of isomorphism classes of
geometrically irreducible T -local systems VT of rank r together with an isomorphism
∧rVT ∼= L ⊗C T . We denote it by IrrLoc(X, r,L). For each i = 1, . . . , N , we
choose a basis of (VT )xi . We then define the substack M of IrrLoc(X, r,L) by the
condition that the image of Ti by the monodromy representation of VT |�×

i
is a section

of Ki ×K T ⊂ GL(r) ×K T . As Ki ⊂ GL(r) is locally closed, M ⊂ IrrLoc(X, r,L)

is a locally closed substack.
If for any i = 1, . . . , N , theKi is the conjugacy class of a quasi-unipotentmatrix,we

say that a point [V] ∈ M(K ) has quasi-unipotent monodromies along the components
of D. This implies in particular that the varieties Ki are defined over a number field
K , and consequently M is defined over the same number field. We shall need two
properties of M .

Proposition 2.1 Assume that for any i = 1, . . . , N, the Ki is the conjugacy class of
a quasi-unipotent matrix. Then M is an algebraic stack of finite type defined over the
number field K . In particular, it has finitely many 0-dimensional irreducible compo-
nents.

Proof As M is a locally closed substack of IrrLoc(X, r,L), it suffices to show that
the stack IrrLoc(X, r,L) is an algebraic stack of finite type.

We recall the classical argument for this fact. First the automorphism group of any
VT isμr (T ), which defines the finite constant group schemeμr . Since the topological
fundamental group of X is a finitely presented group, we equivalently consider a
finitely presented group � and the stack IrrRep(�,L) of geometrically irreducible
families of �-representations of rank r given with an isomorphism of its determinant
to a fixed L. At first we remark that this stack admits a fully faithful morphism to the
stack of rank r �-representations Rep(�,L) with an isomorphism of its r -th exterior
power with L := OT on which � acts by χL. We claim that this morphism is an open
immersion. To see this we have to prove that for a T -family of �-representations, that
is, a rank r -representation ρ : � → Aut(W ), where W is a locally free B-module of
rank r , together with the determinant condition, there exists an open subset T0 ⊂ T ,
such that the �-representation over a geometric point x of T is irreducible, if and only
if x is a geometric point of T0.

The �-representation ρ induces an action of � on the fibre bundle
π : ⊔r

k=0 Gr(W, k) → T , where Gr(W, k) is the Grassmann bundle of k-planes
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inW . We define T0 as the complement of π(
⊔r

k=0 Gr(W, k)�). Since π is proper, and
the fixed point set is closed, we see that T0 is an open subscheme of T . It is clear that
for a geometric point x of T , the induced representation ρx is irreducible if and only
if there does not exist an integer k, and a k-dimensional subspace fixed by �.

Since an open substack of a stack of finite type is also of finite type, we are now
reduced to proving that Rep(�,L) is an algebraic stack of finite type. To see this we
choose a presentation � � 〈r1, . . . , re|s1, . . . , s f 〉 and L1, . . . , Le ∈ μr (K ), where
K is a number field, such that ri �→ Li defines the character χL. Let R(�,L) be the
affine K -variety of finite type, which represents the functor

T �→ (A1, . . . , Ae) ∈ GL(r)eK

such that the relations det(A j ) = Li for j = 1, . . . , e and si (A1, . . . , Ae) = 1 for
i = 1, . . . , f hold. This is by definition an affine variety of finite type over K . To such
a tuple (A1, . . . , Ae) one attaches the representation of � on O⊕r

T given by the Ai ,
and the isomorphism e1 ∧ . . . ∧ er −→ 1 of the determinant of this representation with
L. This construction induces an equivalence of the quotient stack [R(�,L)/SL(r)]
with Rep(�,L). Hence Rep(�,L) is an algebraic stack of finite type over K . ��
Remark 2.2 It follows from general theory that the stackM has a coarsemoduli space.
Indeed, according to [2, Thm. 5.1.5], there exists an algebraic stack Mμr , such that
for any z ∈ Mμr (T ) we have Aut(z) = {1}, and a morphism M → Mμr which
is the universal morphism to an algebraic stack with this property. This implies that
for a K -scheme T , the groupoid Mμr (T ) is equivalent to a set. Hence the algebraic
stack Mμr is actually (equivalent to) an algebraic space. The universal property of the
morphism M → Mμr shows that Mμr is a coarse moduli space.

The C-points corresponding to 0-dimensional components are isolated points of
the moduli space (so-called rigid local systems). Thus they are all defined over a finite
extension of Q.

Proposition 2.3 The Zariski tangent space T[V] at a point [V] ∈ M associated to
V defined over K is the finite dimensional K -vector space H1(U, a∗End0(V)). In
particular, if H1(U, a∗End0(V)) = 0, the geometrically irreducible K -local system
is rigid, and there are finitely many such.

Proof We follow Deligne’s line of proof. Set K [e] = K [e]/(e2). By definition
T[V] = M(Spec(K [e])where [V] = M(Spec(K [e]⊗K [e] K )). So we want to identify
H1(U, a∗End0(V)) with the set of isomorphism classes of K [e]-local systems VK [e]
of rank r , with an isomorphism∧rVT ∼= ∧rV⊗K T andwith the following conditions:

0) VK [e] ⊗K [e] K ∼= V;
1) for any complex point yi ∈ Di ∩U , and�i a ball around yi , VK [e]|�×

i

∼= V|�×
i

⊗K

K [e].
We have to show that the K [e]-local systems with a fixed isomorphism ∧rVT ∼=
∧rV ⊗K T and fulfilling the conditions 0), 1) form a non-empty torsor under
a∗End0(V). So we choose a cover X = ∪αXα by balls Xα . On each Xα , VK [e]|Xα
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4284 H. Esnault, M. Groechenig

and V|Xα
are trivialized, thus one has an isomorphism VK [e]|Xα

∼= V|Xα
⊗K K [e].

The constraint 0) implies that on V|Xα∩Xβ
the composition of one such isomorphism

by the inverse of the other one yields an isomorphism in (End0(Xα ∩ Xβ,V),+) =
(1 + End0(Xα ∩ Xβ,V),×) ⊂ AutK [e](Xα ∩ Xβ,V ⊗K K [e]). This defines a cocy-
cle, thus a cohomology class in H1(X, End0(V)). The constraint 1) implies that on
Xα ∩Xβ ∩�×

i the cohomology class defined by the cocycle is trivial. This shows that
the cohomology class has values in

H1(U, a∗End0(V)) = Ker
(
H1(X, End0(V)) → ⊕N

i=1 ⊕ ji
j=1 H1(�×

i j , End0(V))
)
,

where for each i = 1, . . . , N , we covered Di by ∪ ji
j=1�i j ⊃ Di with �i j ⊂ U . One

trivially checks that the change of isomorphisms VK [e]|Xα
∼= V|Xα

⊗K K [e] changes
the cocycle with values in a∗End0(V) by a coboundary. This finishes the proof of the
cohomological part. The rest follows directly from Proposition 2.1.

Remark 2.4 Let j!∗V be the intermediate extension on X̄ of a K -local system V on X .
From [4, Prop. 2.1.11] one derives that there is an exact triangle j!∗V → Rb∗a∗V →
C in the bounded derived category of X̄ such that C is supported on Dsing and is
concentrated in degrees≥ 2. Thus it induces an isomorphismonH1. SoProposition 2.3
says T[V] = H

1(X̄ , j!∗End0(V)). We also remark that if the local monodromies of V
along the components of D are finite, then j!∗V = j∗V, j!∗End0V = j∗End0V . ��

3 Proof of Theorem 1.1

Let X be a smooth connected quasiprojective complex variety, x ∈ X be a geometric
point, j : X ↪→ X̄ be a good compactification, thus D = X̄\X is a strict normal

crossings divisor. We write j : X
a−→ U = X̄\Dsing

b−→ X̄ . Let ρ : π
top
1 (X, x) →

GL(r,C) be a complex linear representation, defining the local system V .
We fix a natural number h and define the set S(r, d, h) consisting of isomorphism

classes of rank r irreducible cohomologically rigid complex local systemsV on X with
determinant of order dividing d, such that the local monodromies at infinity, which are
quasi-unipotent, have eigenvalues of order dividing h. There are finitely many local
systems of rank 1 of order dividing d and once the Jordan type of the unipotent part of
the monodromy representation along Di is fixed, there are finitely many possibilities
for Ki ⊂ GL(r,C) (see notations of Sect. 2). As there are finitely many such Jordan
types, Proposition 2.3 implies that S(r, d, h) is finite, of cardinality N = N (r, d, h).
In addition, one has finitely many possibilities for Ki and the determinant L, defining
finitely many stacks Mm . Let K0 be a number field over which they are all defined are
defined. The disjoint union N = �mMm is a stack of finite type defined over K0.

There is a connected regular scheme S of finite type over Zwith a complex generic
point Spec(C) → S such that ( j : X ↪→ X̄ , x, D, DJ ) is the base change from S
to Spec(C) of ( jS : XS ↪→ X̄ S, xS, DS = X̄ S\XS, DJ,S = ∩ j∈J D j,S) with the
following properties. The scheme X̄ S is smooth projective over S, DS is a relative
normal crossings divisor with strata DJ,S , XS = X̄ S\DS , xS is a S-point of XS . This
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also defines XS
aS−→ US

bS−→ X̄ S . We say for short that the objects with lower index S
are models over S of the objects without lower index S (which means that the latter
ones are defined over C).

As the Vi ∈ S(r, d, h) are cohomologically rigid, they are in particular rigid. As
in addition the local monodromies at infinity are quasi-unipotent, there is a number
field K ⊂ C containing K0 such that up to conjugacy the underlying complex linear
representations factor as ρi : π

top
1 (X, x) → GL(r, K ) → GL(r,C), and such that the

rank 1 local systems det(ρi ) factor through π
top
1 (X, x) → μd(K ). As π

top
1 (X, x) is

finitely generated, there is a finite set� of places of K such that one has a factorization

ρi : π
top
1 (X, x)

ρ0
i−→ GL(r,OK ,�) → GL(r, K ) → GL(r,C),

where OK ,� ⊂ K is the ring of �-integers of K .
We fix a finite place λ ∈ Spec(OK ,�), dividing � ∈ Spec(Z). We denote by Kλ the

completion of K at λ and byOKλ its ring of integers. This defines the representations

ρ
top
i,λ : π

top
1 (X, x)

ρ
0,top
i−−−→ GL(r,OK ,�) → GL(r,OKλ)

with factorization

ρi,λ : πét
1 (X, x)

ρ0
i,λ−−→ GL(r,OKλ) → GL(r, Kλ).

By extension of the ring of coefficients for Betti cohomology, one has

0 = H1(U, a∗End0(ρi )) = H1(U, a∗End0(ρ0,top
i )) ⊗OK ,�

C,

thus H1(U, a∗End0(ρ0,top
i )) is torsion, while by comparison between Betti and étale

cohomology one has

0 = H1(U, a∗End0(ρ0,top
i )) ⊗OK ,�

Kλ = H1(U, a∗End0(ρi,λ)).

Let mKλ ⊂ OKλ be the maximal ideal, and

ρ0
i,λ : πét

1 (X, x) → GL(r,OKλ/mKλ)

be the residual representations.
We choose a closed point s ∈ S such that its characteristic p is prime to

the cardinality of the residual monodromy groups ρ0
i,λ(π

ét
1 (X, x)),

to d,
to �,
to the residual characteristics of the places in �,
and to h.
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There is a specialization homomorphism

sp : πét
1 (X, x) → π

ét,t
1 (Xs̄, xs̄)

defined by Grothendieck, with target the tame quotient π
ét,t
1 (Xs̄, xs̄) of πét

1 (Xs̄, xs̄),

which is surjective, and induces an isomorphism π
ét,p′
1 (X, x)

∼=−→ π
ét,p′
1 (Xs̄, xs̄) on the

prime to p quotients [11, X, Cor. 2.4], [11, XIII,4.7]), [11, XIII, 2.10]). The complex
point Spec(C) → S factors through the choice of a complex point Spec(C) → T
where T = Spec(ŌS,s) and ŌS,s is the strict henselization of S at s. The tame étale
coverings of Xs̄ lift to XT , defining a faithful functor from the category of tame lisse
sheaves on Xs̄ to lisse sheaves on X (C). This functor is an equivalence when restricted
to “monodromy prime to p” part of the fundamental group. That is, omitting the base

points, sp comes from the induced map X → XT and base change π
ét,p′
1 (Xs̄)

∼=−→
π
ét,p′
1 (XT ).
The push-out by sp of the homotopy exact sequence [11, IX, Thm. 6.1]

1 → πét
1 (Xs̄, xs̄) → πét

1 (Xs, xs) → πét
1 (s, s̄) → 1

yields the “prime to p homotopy exact sequence”

1 → π
ét,p′
1 (Xs̄, xs̄) → π

ét,p′
1 (Xs, xs) → πét

1 (s, s̄) → 1

defining π
ét,p′
1 (Xs, xs). As Ker(ρ0

i,λ(π
ét
1 (X, x)) → ρ0

i,λ(π
ét
1 (X, x))) is a pro-�-group,

by the choice of s, one has a factorization

ρ0
i,λ : πét

1 (X, x)
sp−→ π

ét,p′
1 (Xs̄, xs̄)

ρ0
i,λ,s̄−−−→ GL(r,OKλ),

where and s̄ is an F̄p-point of Xs above xs .
This defines the diagram

Xs

js

as
Us

bs
X̄s

and above it the diagram

Xs̄

js̄

as̄
Us̄

bs̄
X̄ s̄

Finally, still by the choice of s, one has a factorization

det(ρi ) : π
top
1 (X, x) → πét

1 (X, x)
sp−→ π

ét,p′
1 (Xs̄, xs̄) → μd(K ).

Author's personal copy



Cohomologically rigid local systems and integrality 4287

We define the representation ρi,λ,s̄ : π
ét,p′
1 (Xs̄, xs̄)

ρ0
i,λ,s̄−−−→ GL(r,OKλ) → GL(r, Kλ).

The next proposition is a variant Simpson’s Theorem [17, Thm. 4].

Proposition 3.1 After replacing s ∈ S by any point s′ ∈ S(k′), with k(s) ⊂ k′ ⊂ k(s̄)
with degree s′/s sufficiently divisible, one has a factorization

π
ét,p′
1 (Xs̄, xs̄)

ρi,λ,s̄

π
ét,p′
1 (Xs, xs)

ρi,λ,s

GL(r, Kλ)

such that det(ρi,λ,s) is finite.

Proof The representation ρi,λ, or equivalently the representation ρi,λ,s̄ , defines a Kλ-
point [ρi,λ] ∈ M(Kλ). The point xs ∈ Xs is rational, thus splits the prime to p
homotopy exact sequence. We still denote by g the lift to πét

1 (Xs, xs) of an element
in πét

1 (s, s̄). For such a g, we define the representation

ρ
g
i,λ : πét

1 (X, x) → GL(r, Kλ)

γ �→ ρi,λ,s̄(g · sp(γ ) · g−1).

Lemma 3.2 ρ
g
i,λ ∈ N (Kλ).

Proof We have to prove that the determinant of ρ
g
i,λ has order dividing d, and that the

monodromies along the components of D at infinity are quasi-unipotent with order of
the eigenvalues dividing h.

We first show we may assume that X is a curve. We take in X̄ a smooth projective
curve C̄ which is a complete intersection of ample divisors, all of which containing x
and all the yι, in good position with respect to D. In particular, the curve C contains x
and the points yι. One may assume that C̄ is defined over S, and that yι,S is a S-point
of Dι,S . Let C = C̄ ∩ X . Via the surjections π

top
1 (C, x) → π

top
1 (X, x), πét

1 (C, x) →
πét
1 (X, x) inducing via the specialization the surjection πét

1 (Cs̄, xs̄) → πét
1 (Xs̄, xs̄),

one reduces the statement to the case where X has dimension 1.
Let kyι,s be the local field which is the field of fractions of the complete ringOX̄s ,yι,s

of X̄s at yι,s . A uniformizer t of OX̄s ,yι,s yields an identification of the category of
finite étale prime to p extensions of kyι,s with the category of finite étale prime to p
covers ofGm (see [12, Thm. 1.41] and [8, Section 15] for the theory of tangential base
points at infinity). The rational point 1 ofGm defines a fiber functor 1t , thus yields the
prime to p homotopy exact exact sequence

1 → π
ét,p′
1 (kyι,s̄ , 1t ) → π

ét,p′
1 (kyι,s , 1t ) → πét

1 (s, s̄) → 1
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for kyι,s , together with a splitting of πét
1 (s, s̄) in π

ét,p′
1 (kyι,s , 1t ). It maps to the prime

to p homotopy exact exact sequence

1 → π
ét,p′
1 (Xs̄, 1t ) → π

ét,p′
1 (Xs, 1t ) → πét

1 (s, s̄) → 1

for Xs based at 1t , where 1t is viewed as a tangential base point on Xs . An equivalence
θs of fiber functors between 1t and xs̄ for the category of finite étale prime to p covers
of Xs yields a isomorphism of exact sequences from the prime to p homotopy exact
sequence for Xs based at 1t with the one based at xs̄ , compatibly with the section.

Thus conjugacy by g stabilizes the image of π
ét,p′
1 (kyι,s̄ , 1t ) → π

ét,p′
1 (Xs̄, 1t )

θs−→
π
ét,p′
1 (Xs̄, xs̄). Let OX̄ ,yι be the complete ring OX̄ ,yι of X̄ at yι, and kyι be its field

of fractions. The specialization homomorphism for the fundamental groups based at

1t sends πét
1 (kyι , 1t ) to π

ét,p′
1 (kyι,s̄ , 1t ), and the profinite completion of π1(�

×
ι , 1t ) is

πét
1 (kyι , 1t ). Here we abused notations: Gm over s lifts to Gm over T then over C, as

well as the uniformizer t . We used the same notation 1t for the base point on those lifts,
and used that the category of finite étale extensions (resp. topological covers) of kyι
(resp. �×

ι ) is equivalent to the corresponding one on Gm . Finally, identifying Gm(C)

with �×
ι identifies 1t and xι with two points in �×

ι . We choose a path θι between
the two in �×

ι , and a path θ between 1t and x on X . This defines isomorphisms

π1(�
×
ι , 1t )

θι−→ π1(�
×
ι , xι) and π1(X, 1t )

θ−→ π1(X, x). Set U = θ−1
ι (Tι). Then

by assumption ρi ◦ θ(U ) ∈ Kι. Let Û be its image via the profinite completion
π1(�

×
ι , 1t ) → πét

1 (kyι , 1t ). Summarizing the information we have

ρ
g
i,λ ◦ θ(Û ) = ρi,λ,s̄(g · sp(θ(Û )) · g−1) = ρi,λ,s̄ ◦ θs(g · sp(Û ) · g−1)

and

g · sp(Û ) · g−1 ∈ π
ét,p′
1 (kyι,s̄ , 1t ).

As sp(Û ) is a topological generator of π
ét,p′
1 (kyι,s̄ , 1t ) ∼= Ẑ

(p′), there is an element

(cn) ∈ Ẑ
(p′), with cn ∈ Z/n, such that g · sp(Û ) · g−1 = sp(Û )cn ∈ π

ét,p′
1 (kyι,s̄ , 1t ) ∈

Z/n. As the subset A of matrices in GL(r, Kλ) of quasi-unipotent matrices with order
of the eigenvalues dividing h and the order of the determinant dividing d is closed,
and ρi,λ,s̄ ◦ θs(sp(Û )cn ) ∈ A, one has ρ

g
i,λ ◦ θ(Û ) ∈ A. Thus the representation ρ

g
i,λ

defines a point [ρg
i,λ] ∈ N (Kλ). ��

The map

πét
1 (s, s̄) → N (Kλ), g �→ [ρg

i,λ]

is continuous for the profinite topology onπét
1 (s, s̄) and the λ-adic topology on N (Kλ).

As [ρi,λ] ∈ N (Kλ) is isolated, there is an open subgroup of πét
1 (s, s̄) on which the map

is constant with image [ρi,λ]. This defines a point s′ with s̄ → s′ → s with πét
1 (s′, s̄)

being this open subgroup. We abuse notations and set s = s′.
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Let Kλ ⊂ K̄λ be an algebraic closure. The representation ρi,λ ⊗ K̄λ is irreducible as
ρi is irreducible overC. Thus the equation [ρg

i,λ] = [ρi,λ] ∈ N (Kλ) implies that there is

a T (g) ∈ GL(r, Kλ) such that ρi,λ,s̄(gγ g−1) = T (g)ρi,λ,s̄(γ )T (g)−1 ∈ GL(r, Kλ)

for all γ ∈ πét
1 (Xs̄, xs̄), and moreover T (g) is uniquely defined up to multiplication

by a scalar in K×
λ . The so defined map πét

1 (s, s̄) → PGL(r, Kλ), g �→ T̄ (g), where
T̄ (g) is the image of T (g), is continuous for the profinite topology on πét

1 (s, s̄) and the

λ-adic topology on PGL(r, Kλ). Writing π
ét,p′
1 (Xs, xs) as a semi-direct product of

πét
1 (s, s̄) by π

ét,p′
1 (Xs̄, xs̄), we define pρi,λ,s : π1(Xs, xs) → PGL(r, Kλ) by sending

(γ · g) to ρi,λ,s̄(γ ) · T̄ (g). It remains to lift pρi,λ,s to ρi,λ,s as in the proposition. Our
initial argument consisted in saying that the Brauer obstruction to the lift dies as k(s)
is finite, and in then using class field theory [7, Prop. 1.3.4] to ensure that the so
constructed representation has finite determinant after twist by a character of k(s). We
present here Deligne’s argument which has the advantage to work on all base fields,
but necessitates a new change of s. The representation ρi,λ,s̄ has values in the subgroup
G ⊂ GL(r, Kλ) consisting of the elements with order d ′ determinant, where d ′ is any
divisor of d. The composite homomorphism G → GL(r, Kλ) → PGL(r, Kλ) is
finite étale onto its image. Thus again base changing s to s′ → s finite with s̄ → s′,
the pull-back � of πét

1 (s′, s̄) in πét
1 (Xs, xs) is open and the restriction of pρi,λ,s to �

lifts to G in a unique way so that on πét
1 (Xs̄, xs̄), it is precisely ρi,λ,s̄ . ��

We denote the lisse sheaves associated to ρi,λ resp. ρi,λ,s̄ resp. ρi,λ,s by Vi,λ resp.
Vi,λ,s̄ resp. Vi,λ,s .

Lemma 3.3 The lisse sheaves Vi,λ,s̄ , resp. Vi,λ,s are tame, have quasi-unipotent mon-
odromies at infinity, and the order of the eigenvalues of the local monodromies at
infinity divides h.

Proof Since Vi,λ,s̄ is defined by a representation of π
ét,p′
1 (Xs̄, xs̄) it is tame, so so is

Vi,λ,s . We denote by �i,λ ⊂ GL(r,OKλ) the monodromy group of Vi,λ, which is the
one of Vi,λ,s̄ . The rest of the statement is proven in the proof of Proposition 3.1. ��

Fix any prime number �′ �= p and denote by n the dimension of X .

Lemma 3.4 Let A be a pure tame Q̄�′-lisse sheaf of weight 0 on Xs. Then

H1(X̄ s̄, js̄!∗A) = H1(Us̄, as̄∗A)

and is the Q̄�′ -sub vector space of ⊕ j∈NH j (Xs̄,A) consisting of all the elements of
weight precisely 1.

Proof The proof of Remark 2.4 yields over Xs the relation H1(X̄ s̄, js̄!∗A) =
H1(Us̄, as̄∗A). The weight of H0(Xs̄,A) is 0, and for any j , the weight of H j (Xs̄,A)

is ≥ j (see [7, Thm. 3.3.1]). Thus the weight 1 part of ⊕ j∈NH j (Xs̄,A) lies in
H1(Xs̄,A). One has a short πét

1 (s, s̄) equivariant exact sequence

0 → H1(X̄ s̄, js̄!∗A) → H1(Xs̄,A) → H0(Us̄, R
1as̄∗A).
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The group H1(X̄ s̄, js̄!∗A) is pure of weight 1 while R1as̄∗A has weights ≥ 2 at
closed points, which is seen on curves, and on them A is tame [13, Thm. 1.1], thus
the local inertia Z�(1) acts at the punctures at infinity. Thus a fortiori the weight of
H0(Us̄, R1as̄∗A) is ≥ 2. This finishes the proof. ��
Proof of Theorem 1.1 We fix an embedding Kλ ⊂ Q̄�. Let σ : Q̄� → Q̄�′ be a
field isomorphism, where �′ �= p. By Drinfeld’s theorem [9, Thm. 1.1], there is
a σ -companion Vσ

i,λ,s to Vi,λ,s . By definition of the indexing, for i ∈ {1, . . . ,N},
the complex local systems Vi are irreducible and pairwise non-isomorphic. Thus by
definition, the Q̄� lisse sheaves Vi,λ,s are irreducible and pairwise non-isomorphic.
If Vσ

i,λ,s̄ was not irreducible, it would split after a finite base change s′ → s with

s̄ → s′ → s, thus on Xs′ , thus the σ−1-companion of Vσ
i,λ,s′ , which is Vi,λ,s′ ,

would split as well, a contradiction. Likewise, if Vσ
i,λ,s̄ is isomorphic to Vσ

j,λ,s̄ , since

H0(Xs̄, (Vσ
i,λ,s̄)

∨ ⊗Vσ
j,λ,s̄) has weight 0 [14, Prop. VII.7], the isomorphism is defined

over Xs , thus i = j . Thus the Q̄� lisse sheaves Vi,λ,s̄ are irreducible and pairwise
non-isomorphic. In addition, since det(Vi,λ,s̄)

σ = det(Vσ
i,λ,s̄) is constructed by post-

composing the K×
λ character by σ , it has order precisely d.

As Vi,λ,s is tame by Lemma 3.3, it is tame in restriction to all curves [13, Thm. 1.1].
Taking a smooth curve C̄ ⊂ X̄ which is a complete intersection of smooth ample
divisors in good position with respect to X̄\X, and denoting by C its intersection with
X , the restriction Vi,λ,s̄ |Cs̄ has the same monodromy group as the one of Vi,λ,s̄ , thus
has quasi-unipotent monodromies at the points Cs̄ ∩ Ds̄ , and their eigenvalues have
order dividing h. By [6, Thm. 9.8], Vσ

i,λ,s̄ has the same property.

As Vi,λ,s and Vσ
i,λ,s are pure of weight 0, so are Ais = End0(Vi,λ,s) and Aσ

is =
End0(Vσ

i,λ,s). By local acyclicity [16, Lem. 3.14] applied to XT → T used to define
the specialization,

H1(Us̄, as̄∗Ai,s̄) → H1(U, a∗Ai )

is an isomorphism. Thus H1(X̄ s̄, j!∗Ai s̄) = 0. The L- functions L(Xs̄,Ai,s) and
L(Xs̄,Aσ

i,s) defined by a product formula are equal [5, 5.2.3]. In particular, for
any natural number w, d( j, �) = d( j, �′) where d(i, �) (resp. d(i, �′)) denotes the
dimension over Q̄� (resp. Q̄�′) of the pure weight w summand of H j

c (Xs̄,Ai,s̄) (resp.
H j
c (Xs̄,Aσ

i,s̄).) By duality, the same it true replacing the cohomologies H j
c (Xs̄,Ai,s̄)

and H j
c (Xs̄,Aσ

i,s̄)by the cohomologies H j (Xs̄,Ai,s̄) and H j (Xs̄,Aσ
i,s̄). Applying this

for w = 1, from Lemma 3.4, we conclude H1(X̄ s̄, js̄!∗Aσ
i s̄) = H1(Us̄, as̄∗Aσ

i,s̄) = 0.

Pulling back along the specialization homomorphism sp : πét
1 (X, x) →

π
ét,t
1 (Xs̄, xs̄) defines the Q̄�′-lisse sheaves Vσ

iλ and Aσ
i on X , together with the spe-

cialization homomorphism

H1(Us̄, as̄∗Aσ
i,s̄) → H1(U, a∗Aσ

i ).

By local acyclicity again, it is an isomorphism thus H1(U, a∗Aσ
i ) = 0.
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We now define Vσ top
i to be the Q̄�′ -local system on X which is defined by com-

posing the representation with the homomorphism π
top
1 (X, x) → πét

1 (X, x). By the

comparison between Betti and étale cohomology one has H1(U, a∗End(Vσ top
i )) = 0.

Furthermore, the Vσ top
i on X are irreducible and pairwise non-isomorphic, and

det(Vσ top
i ) has order d. Since Vσ

i,λ,s̄ has quasi-unipotent monodromies with eigenval-

ues of order dividing h,Vσ top
i has quasi-unipotentmonodromies along the components

of X̄\X , with eigenvalues of order dividing h. (There is a slight abuse of notations
here, the curve C̄ chosen is perhaps not defined over the same S, we just take a s in
the construction on which C is defined).

As π
top
1 (X, x) is a finitely generated group, there is a subring A ⊂ Q̄�′ of finite type

such that the monodromy representations of the Vσi top factor through π
top
1 (X, x) →

GL(r, A). We fix a complex embedding A ↪→ C. This defines the complex local
systemsVσ C

i . By definition, there are irreducible, pairwise different, have determinant
of order precisely d and the eigenvalues of the monodromies at infinity have order at
most h. By comparison betweenBetti and étale cohomology, they are cohomologically
rigid. Thus the set of isomorphism classes of the Vσ C

i is precisely S(r, d, h). On the
other hand, they are integral at all places of number rings in Z̄�′ which divide �′. We
conclude the proof by doing the construction for all �′ divided by places in �. ��

Remark 3.5 This remark is due to Pierre Deligne. If in Theorem 1.1, the irreducible
complex local systemV withquasi-unipotentmonodromies along the components of D
is assumed to be orthogonal, then it is integral under the assumptionH1(X̄ , j!∗∧2V) =
0. This assumption is weaker than the assumption H

1(X̄ , j!∗End0(V)) = 0 of Theo-
rem 1.1, as, as V is self-dual,∧2V is a summand of End0(V), and thusH1(X̄ , j!∗∧2V)

is a summand ofH1(X̄ , j!∗End0(V)). Likewise, if V is assumed to be symplectic, then
it is integral under the assumption H

1(X̄ , j!∗Sym2V) = 0. Again Sym2V is a sum-
mand End0(V). We do not detail the proof. One has to perform the stack construction
in Sect. 2 for the corresponding category of orthogonal, resp. symplectic local systems,
and eventually see that the companion construction in Sect. 3 preserves this category.
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