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Abstract. An irreducible integrable connection (E,∇) on a smooth projective complex
variety X is called rigid if it gives rise to an isolated point of the corresponding moduli space
MdR(X). According to Simpson’s motivicity conjecture, irreducible rigid flat connections
are of geometric origin, that is, arise as subquotients of a Gauß-Manin connection of a
family of smooth projective varieties defined on an open dense subvariety of X. In this
article we study mod p reductions of irreducible rigid connections and establish results
which confirm Simpson’s prediction. In particular, for large p, we prove that p-curvatures
of mod p reductions of irreducible rigid flat connections are nilpotent, and building on this
result, we construct an F -isocrystalline realization for irreducible rigid flat connections.
More precisely, we prove that there exist smooth models XR and (ER,∇R) of X and
(E,∇), over a finite type ring R, such that for every Witt ring W (k) of a finite field k and

every homomorphism R → W (k), the p-adic completion of the base change (ÊW (k), ∇̂W (k))

on X̂W (k) represents an F -isocrystal. Subsequently we show that irreducible rigid flat
connections with vanishing p-curvatures are unitary. This allows us to prove new cases of
the Grothendieck–Katz p-curvature conjecture. We also prove the existence of a complete
companion correspondence for F -isocrystals stemming from irreducible cohomologically
rigid connections.
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1. Introduction

This article is concerned with a conjecture of Simpson about irreducible flat connections
(E,∇) on a smooth projective variety X/C. In [Sim94, Theorem 4.7], Simpson constructed
a quasi-projective moduli space MdR(X, r) of irreducible flat connections (E,∇) of rank
r on X. It follows that for a rank one flat connection L = (L,∇L) one has a moduli
spaceMdR(X,L, r) of irreducible flat connections (E,∇) of rank r on X, together with an
isomorphism det(E,∇) ' L.

Definition 1.1. An irreducible rank r flat connection (E,∇) with determinant line bundle
L is rigid if the corresponding point of the moduli space [(E,∇)] ∈MdR(X,L, r) is isolated.

Remark 1.2. Henceforth the term rigid connection refers to a stable flat connection which
satisfies the assumptions of Definition 1.1. For the field of complex numbers, stability is
equivalent to irreducibility. Furthermore, we shall assume that L is torsion on X.

Amongst the irreducible flat connections on X there are specimens which stand out with
particularly interesting properties: flat connections of geometric origin. The latter are
precisely subquotients of Gauß-Manin connections, that is, with underlying local system a
summand of Rif∗C, where f : Y → U is a smooth projective morphism, with a dense open
subvariety U ⊂ X as target. According to a conjecture by Simpson (see [Sim92, p. 9]) rigid
flat connections are expected to possess this property.

Conjecture 1.3 (Simpson’s Motivicity Conjecture). A rigid flat connection (E,∇) on X
with torsion determinant line bundle is of geometric origin.

For now this remains out of reach, yet there is a lot of supporting evidence:

(1) Non-abelian Hodge theory implies that rigid flat connections give rise to complex
variations of Hodge structure on X. This was observed by Simpson in [Sim92,
Section 4]. We refer the reader to Section 3, where we give a short summary of
Simpson’s argument and also explain the connection with the present work.
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(2) Non-abelian Hodge theory methods were used by Corlette–Simpson [CS08] and more
recently Simpson–Langer [LS16], to establish the Motivicity Conjecture for rigid flat
connections with topological monodromy defined over the ring of algebraic integers
Z̄ of rank 2, respectively 3.

(3) For the case of rigid flat connections on P1 minus finitely many points, there is a
complete classification due to Katz [Kat96] which implies Simpson’s conjecture in
this case.

It was shown by Katz (see [Kat70, Theorem 10.0] and [Kat72, 3.1]) that Gauß-Manin
connections in characteristic p have nilpotent p-curvatures. This implies that their sub-
quotients, which are by definition flat connections of geometric origin, also have nilpotent
p-curvatures. We will recall the basics on p-curvature in Subsection 2.2, and in particular
explain Katz’s theorem in the discussion above Theorem 2.7.

Simpson’s conjecture therefore predicts that mod p reductions of rigid flat connections
have nilpotent p-curvatures, at least for p sufficiently large. Our first main result confirms
this expectation.

Theorem 1.4 (Nilpotent p-curvature). Let X be a smooth connected projective complex
variety and (E,∇) be a rigid flat connection with torsion determinant L. Then there is a
scheme S of finite type over Z over which (X, (E,∇)) has a model (XS , (ES ,∇S)) such that
for all closed points s ∈ S, (Es,∇s) has nilpotent p-curvature.

After replacing S by an open dense subscheme, we may assume that XS → S is smooth.
For every Witt ring W (k) of a finite field k, and every morphism SpecW (k) → S one

obtains a formal flat connection (ÊW (k), ∇̂W (k)) on the p-adic completion

X̂W (k) = ((X ×S SpecW (k))̂ .

Furthermore, by the theorem above, the p-curvature of the restriction of this formal con-
nection to Xk = X×S Spec k is nilpotent. A formal connection with this property gives rise
to a crystal on Xk. We refer the reader to Subsection 2.6 for more details and references.

Corollary 1.5. Let (E,∇) and (ES ,∇S) be as in Theorem 1.4, k and let SpecW (k)→ S
be a morphism which factors through the smooth locus of S, and where k is a finite field.
Then the pullback to the formal scheme (obtained by p-adic completion)

(ÊW (k), ∇̂W (k))

defines a crystal on Xk/W (k).

The result above is a direct corollary of Theorem 1.4 (nilpotency of p-curvature). Our
second main result generalizes a result of Crew for rigid flat connections on P1 minus
finitely many points [Cre17, Theorem 3]. We show that the crystals associated to rigid
flat connections in Corollary 1.5 do in fact give rise to F -isocrystals. We recall that for
Spec k → S as above, the category of isocrystals Isoc(Xk) on Xk is defined as the Q-
linearization of the category of crystals on Xk/W (k). The Frobenius F : Xk → Xk allows
one to define an endofunctor F ∗ : Isoc(Xk) → Isoc(Xk) (see [Ber74, Corollaire 1.2.4] for
details). We say that a crystal E has a Frobenius structure, if there exists a positive integer
f such that (F ∗)f (E) ' E .
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Theorem 1.6 (F -isocrystals). Let X and (E,∇) be as in Corollary 1.5. Then there is a
scheme S of finite type over Z over which (X, (E,∇)) has a model (XS , (ES ,∇S)) such that

for all W (k)-points of S, the isocrystal (ÊW (k), ∇̂W (k))⊗Q has a Frobenius structure after
base change to a finite field extension k′/k.

The theorem above formally implies Theorem 1.4 and Corollary 1.5, but we do not know
how to prove it directly without passing through the aforementioned results.

Remark 1.7. The terms isocrystal with Frobenius structure and F -isocrystal will be used
interchangeably. Furthermore, we remark that the notion considered here differs slightly
from the one found in some of the standard texts. What we call an F -isocrystal other
authors would refer to as F f -isocrystal, where f > 0 is a positive integer. The category of
F -isocrystals considered here is the union of the categories of F f -isocrystals for all positive
integers f . Our usage of the term is consistent with recent advances on companions (see for
example [Abe18]) putting these more general F -isocrystals in relation with Q̄`-adic sheaves.

In fact, our statement is slightly stronger than Theorem 1.6. The isocrystal above is in-
duced by a filtered Frobenius crystal (with a W (Fpf )-endomorphism structure). This shows
that the isocrystals with Frobenius structure stemming from Theorem 1.6 are associated
to a crystalline representation π1(XKv) → GL(W (Fpf )) for some positive integer f ≥ 1
called the period. These statements are consequences of the theory of Lan–Sheng–Zuo, see
Remark 4.18. By comparing their construction with Faltings’s p-adic Simpson correspon-
dence, one shows that this representation is rigid over π1(XK̄v

), see Theorem 5.4. This
enables one to prove that the induced projective connection is defined over Fp for infinitely
many primes p (see also Corollary 5.12). The proof of the third main theorem is based on
this observation. This is the content of Section 6.

Theorem 1.8. Let X be a smooth connected projective complex variety, and let (E,∇) be
a rigid flat connection on X. Assume that we have a scheme S as in Theorem 1.6 such
that the p-curvature for all closed points s of S is 0. Then (E,∇) has unitary monodromy.

We consider this result to be a first step towards an understanding of the Grothendieck–
Katz p-curvature conjecture for rigid flat connections.

An irreducible flat connection (E,∇) with torsion determinant L is called cohomologically
rigid, if [(E,∇)] is a reduced isolated point ofMdR(X,L, r). This is equivalent to vanishing
of

H1
dR(X, (End(E),∇)) = 0,

and hence explains the nomenclature.
A remark is in order concerning the rationale behind the inclusion of Section 7. In

a preliminary version of this article circulated as a preprint, we used Theorem 1.6, in
combination with the theory of p-to-`-companions, to prove Simpson’s integrality conjecture
[Sim92] for cohomologically rigid flat connections. In the meantime we found a purely Betti
to `-adic argument which can be found in the short companion note [EG18]. Our original
strategy was based on the observation that a cohomologically rigid flat connections brings
forth an F -isocrystal (by means of Theorem 1.6) having a complete set of companions.
Since it is unknown if this property holds for arbitrary F -isocrystals, we decided to record
this result in Section 7 as Theorem 7.3.
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Conventions. For a scheme S, we denote by |S| the underlying topological space or set
of points. The terminology arithmetic scheme refers to a scheme of finite type over Spec Z.
The term variety refers to a separated and reduced scheme of finite type over a field.
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2. Preliminaries

We begin by giving an overview of the theory of Higgs bundles and non-abelian Hodge
theory in Subsection 2.1. Subsection 2.2 aims to give an introduction to the theory of
flat connections over perfect fields of positive characteristic, with a particular focus on the
concept of p-curvature. A result of Ogus–Vologodsky relates flat connections with nilpotent
p-curvature and nilpotent Higgs bundles. Subsection 2.4 summarises this correspondence.
A useful tool in the study of Higgs bundles and flat connections in positive characteristic is
the BNR correspondence which we recall in Subsection 2.5. We conclude this section with
a brief overview of crystals.

2.1. Recollection on Higgs bundles and non-abelian Hodge theory. Let Z/k be a
smooth projective variety where k is an algebraically closed field. A Higgs bundle on Z is
a pair (V, θ) where V is a vector bundle and θ : V → V ⊗Ω1

X is an O-linear map satisfying
the integrality condition θ ∧ θ = 0. This definition is reminiscent of a flat connection, that
is, a pair (E,∇), where E is a vector bundle with a connection ∇ satisfying the integrality
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condition ∇2 = 0. A flat connection satisfies the Leibniz rule ∇(fs) = f∇s+ sdf , while a
Higgs field θ is O-linear.

If k is the field of complex numbers, non-abelian Hodge theory [Sim97] relates the so-
called Betti, de Rham and Dolbeault moduli spaces by real-analytic isomorphisms:

MDol(Z, r) oo
R−analytic

//

gg

R−analytic ''

MdR(Z, r)
77

C−
an
aly
tic

ww

MB(Z, r).

The subscript B refers to the Betti space, the moduli space of irreducible representations
of the topological fundamental group πtop

1 (Z) of Z. The construction of this quasi-affine

moduli space is an application of geometric invariant theory, relying on the fact that πtop
1

is a finitely presented group. Details of the construction can be found in [Sim94b, Section
6].

The existence of a quasi-projective moduli space of stable Higgs bundles MDol(Z, r),
as well as a quasi-projective moduli space MdR(Z, r) of stable flat connections, are the-
orems: for k of characteristic 0 this is a consequence of Simpson’s [Sim94, Theorem 4.7],
for positive characteristic fields we refer the reader to [Lan14, Theorem 1.1]. In fact the
latter also applies to base schemes of mixed characteristic (which are of finite type over a
universally Japanese ring). Later on (Subsection 3.1) we will exploit this added generality
when producing arithmetic models for the moduli spaces MDol and MdR.

The moduli space of Higgs bundles MDol is particularly rich in structure. It carries a
Gm-action, which on the level of the moduli problem corresponds to scaling the Higgs field:

λ · (V, θ) = (V, λθ), (λ ∈ Gm).

There is a natural morphism (the Hitchin morphism)

MDol(X)→ A

to an affine space A called the Hitchin base (see [Sim94b, p. 17]). On the level of the
moduli problem it is given by computing (the coefficients of) the characteristic polynomial
of θ which are symmetric forms on X, that is, global sections of Symi Ω1

X .
A rigid stable Higgs bundle (V, θ) is a Higgs bundle with torsion determinant L = det(V )

and trace(θ) = 0, which induces an isolated point of the moduli space MDol(X, (L, 0), r).
The following lemma is due to Simpson (see [Sim97, Section 5]) and can be seen as the first
step in the proof of Simpson’s result that rigid representations of the fundamental group
give rise to complex variations of Hodge structure [Sim97, Lemma 4.5].

Lemma 2.1. If (V, θ) is a rigid stable Higgs bundle, then θ is nilpotent.

Proof. Assume that θ is not nilpotent. Then the corresponding value of the Hitchin map,
that is, the characteristic polynomial a = χ(θ) of θ, is non-zero.

We consider the Gm-family of stable Higgs bundles, given by (V, λθ). Since the Gm-
action on the space of characteristic polynomials has positive weights, and a = χ(θ) is
non-zero, we obtain a non-trivial deformation of characteristic polynomials. Therefore, the
Gm-family (V, λθ) is a non-trivial deformation. This contradicts rigidity of (V, θ). �
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Recall that theorem 1.4 asserts that mod p reductions of rigid flat connections have
nilpotent p-curvature, for p sufficiently large. A possible approach to proving this result is
to apply similar ideas to flat connections. This is complicated by the fact that a multiple
λ · ∇ of a flat connection does not satisfy the Leibniz rule. However, there is still a way to
make sense of the Hitchin map, and to construct deformations (non-canonically, and only
of finite order) above the Gm-action on the Hitchin base A (which has positive weights).
This approach is the content of the appendix to this paper. The proof given in Subsection
3.3 is based on a slightly different strategy.

2.2. Flat connections in positive characteristic and p-curvature. In the following
we denote by k a perfect field of characteristic p > 0 and by Z/k a smooth k-scheme. Recall
that Ωi

Z refers to the i-th exterior power of the sheaf of Kähler differentials Ω1
Z/k.

A connection on a vector bundle E/Z is given by a k-linear map of sheaves

∇ : E → E ⊗ Ω1
Z ,

satisfying the Leibniz rule

∇(fs) = f∇(s) + s⊗ df,
for locally defined sections s ∈ E(U), f ∈ OZ(U), where U ⊂ Z is an open subset. We say
that ∇ is flat or integrable, if

∇2 = 0: E → E ⊗ Ω2
Z .

The concept of p-curvature, which we will describe in the following, marks the crossroads
where flat connections over fields of vanishing and positive characteristic diverge. At first
we need to introduce some notation essential to the definition of p-curvature.

Let U ⊂ Z be a open subscheme, and ∂ ∈ ΘZ(U) a section of k-derivations of OX (that

is, a tangent vector field on Z). We denote by ∂[p] the k-derivation of OU which sends a
local section f ∈ O(V ) for V ⊂ U a Zariski open to

∂[p](f) = ∂p(f) = (∂ · · · ∂)(f).

The proof of the lemma below is based on an elementary computation involving the general
Leibniz rule. We omit the details.

Lemma 2.2. The k-linear endomorphism ∂[p] of OU is a derivation. That is, it gives rise
to a tangent vector field ∂[p] ∈ ΘZ(U).

The operation ∂ 7→ ∂[p] defines on the Lie algebroid ΘZ a so-called p-restricted structure.
Just like usual curvature measures the discrepancy of a connection ∇ : ΘZ → Endk(E) to be
a map of sheaves of Lie algebras, p-curvature captures the extent to which a flat connection
is compatible with the p-restricted structure.

Definition 2.3. The p-curvature of a flat connection ∇ on a quasi-coherent sheaf F on Z
is defined to be the k-linear map of sheaves

ψ(∇) : ΘZ → Endk(F)

sending a local section ∇ ∈ ΘZ(U) to the k-linear endomorphism of F given by

(∇∂)p −∇∂[p] .
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A priori the p-curvature ψ(∇)(∂) of a flat connection is a k-linear endomorphism of E.
A result of Katz describes the dependence of this endomorphism on the tangent vector field
∂ (see [Kat70, Proposition 5.2]).

Proposition 2.4 (Katz). The map of sheaves ψ(∇) : ΘZ → Endk(E) is p-linear. That is,
for a Zariski open subset U ⊂ X and local sections ∂1, ∂2 ∈ ΘZ(U) and f ∈ OZ(U) we have

ψ(∇)(∂1 + f∂2) = ψ(∇)(∂1) + fpψ(∇)(∂2).

Furthermore, for every local section ∂ ∈ ΘX(U), the induced map of sheaves ψ(∇)(∂) : E|U →
E|U is OU -linear.

We now recall the definition of Frobenius twists and the relative Frobenius morphism.
Let us denote by w : k → k the arithmetic Frobenius, that is, the field endomorphism given
by the map λ 7→ λp (for λ ∈ k).

Definition 2.5. The Frobenius twist of a k-scheme Z is defined to be the base change

Z ′ = Z ×Spec k,w Spec k.

We denote the projection Z ′ = Z ×Spec k,w Spec k → Z by wZ .

For every scheme Z of characteristic p (that is, the natural map Z → Spec Z factors
through Spec Fp) one defines the absolute Frobenius as the morphism fZ : Z → Z which
is given by the identity map on the underlying topological space |Z|, and by the map of
sheaves of rings g 7→ gp, where g ∈ OZ(U), and U ⊂ Z is open.

For every k-scheme Z there exists a unique morphism of k-schemes FZ : Z → Z ′ such
that

(2.1) fZ = wZ ◦ FZ
We refer to it as the relative Frobenius of Z. If there is no risk of confusion, we will denote
FZ by F .

Lemma-Definition 2.6. The p-curvature of a flat connection (E,∇)/Z gives rise to an
OZ′-linear map

ψ(∇) : FZ,∗E → FZ,∗E ⊗OZ′ Ω1
Z′ .

Proof. By base change we have w∗ZΘZ = ΘZ′ . Thus, Proposition 2.4 implies that ψ(∇)
factors as ΘZ′ → Endk(E) and further as F ∗ZΘZ′ → EndOZ

(E). The latter is rewritten

as a OZ-linear map E → E ⊗OZ
F ∗ZΩ1

Z′ which by the projection formula is equivalent to
Lemma-Definition 2.6. �

The p-curvature of a flat connection (E,∇) is said to be nilpotent, if there exists a positive
integer N such that

ψ(∇)N : F∗E → F∗E ⊗ (Ω1
Z′)
⊗N

is the zero map. According to a theorem of Katz (see [Kat70, Theorem 5.10]), Gauß-Manin
connections have nilpotent p-curvature.

Theorem 2.7 (Katz). Let f : Y → Z be a smooth projective morphism between smooth
k-varieties. Then the flat connection given by the Gauß-Manin connection on Rif∗(OY , d)
has nilpotent p-curvature.
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Katz’s result therefore turns ψ(∇) into an invariant which can be used to disprove that
a given connection (E,∇) on Z is of geometric origin (that is, a subquotient of a Gauß-
Manin connection). If ψ(∇) is not nilpotent, then (E,∇) does not stand a chance of being
of geometric origin.

The constructions reviewed in this subsection are also defined in a relative set-up. We
briefly summarise the main points.

We denote by T a k-scheme and let Z → T be a smooth morphism. Recall that the
absolute Frobenius morphism of T is denoted by fT : T → T . One defines the relative
Frobenius twist to be the base change Z ′ = Z ×T,fT T . By virtue of definition it is a T -
scheme. There is a unique morphism of T -schemes FZ/T : Z → Z ′, called relative Frobenius
morphism which satisfies

fZ = wZ ◦ FZ/T .
If there is no risk of confusion, we will denote FZ/T by F .

A de Rham sheaf on Z/T is a pair (E,∇) where E is a quasi-coherent sheaf on Z and
∇ : E → E ⊗ Ω1

Z/T is an integrable connection, that is, an OT -linear morphism which

satisfies the Leibniz rule and the flatness condition ∇2 = 0. The p-curvature of a flat
connection ∇ as defined in [Kat70, 5.0.4] will be referred to as ψ(∇) : E → E⊗F ∗Z/TΩ1

Z′/T .

2.3. PD differential operators and Azumaya algebras. A flat connection ∇ on a
quasi-coherent sheaf E on a smooth k-variety Z induces the structure of a DZ-module on
E, where DZ denotes the sheaf of rings of PD differential operators defined below. This
is analogous to the fact that a representation of a Lie algebra g amounts to a Ug-module,
where Ug denotes the universal enveloping algebra. In positive characteristic, the sheaf of
rings DZ has a large centre, over which it defines an Azumaya algebra. In the following we
will describe this observation, which appeared first in Bezrukavnikov–Mirkovic–Rumynin
[BMR08], in more detail.

For a quasi-coherent sheaf M on Z we use the notation T •M to denote the sheaf of
tensor algebras

T •M =
⊕
n≥0

M⊗n,

we write ΘZ for the sheaf of tangent vectors.

Definition 2.8. The sheaf of algebras DZ is defined to be the sheafification of T •ΘZ

modulo the relations

(2.2) ∂ · f − f · ∂ = ∂(f)

(2.3) ∂ ⊗ ∂′ − ∂′ ⊗ ∂ = [∂, ∂′]

for local sections ∂, ∂′ of ΘZ and f of OZ .

The same ideas underlying the p-curvature give rise to a map ψ : ΘZ′ → F∗DZ , which
sends ∂ to ∂p − ∂[p].

Proposition 2.9 (Bezrukavnikov–Mirkovic–Rumynin). If k is a perfect field of positive
characteristic, then the map of sheaves of algebras ψ : Sym•ΘZ′ → F∗DZ is an injection
whose image agrees with the centre of F∗DZ .
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Recall that the total space of a vector bundle V on a scheme Y is the scheme given by
the relative spectrum

Tot V = Spec Z Sym• V ∨.

The sheaf of symmetric algebras Sym•ΘZ′ , arising in the proposition above, is therefore
isomorphic to π∗OT ∗Z′ , where π denotes the canonical projection T ∗Z ′ → Z ′.

Lemma-Definition 2.10. There exists a quasi-coherent sheaf of algebras DZ on T ∗Z ′ such
that π∗DZ ' F∗DZ .

Proof. For every affine morphism of schemes f : W → Y one has an equivalence of categories

f∗ : QCohW (OW ) ∼= QCohY (f∗OW )

between quasi-coherent sheaves ofOW -modules and quasi-coherent sheaves of f∗OW -modules.
We apply this observation to π : T ∗Z ′ → Z ′ and the quasi-coherent sheaf of algebras F∗DZ .
Since it is a Z(F∗DZ)-module, and the centre Z(F∗DZ) can be identified with the quasi-
coherent sheaf of algebras π∗OT ∗Z′ = Sym•ΘZ′ by virtue of Proposition 2.9, we conclude
that there exists a quasi-coherent sheaf DZ on T ∗Z ′, such that

(2.4) π∗D ' F∗DZ .

Furthermore, F∗DZ is a sheaf of Z(F∗DZ)-algebras. We infer that DZ inherits a canonical
structure of a sheaf of algebras such that (2.4) is in fact an isomorphism of quasi-coherent
sheaves of algebras. �

The relative Frobenius morphism F : Z → Z ′ is also affine. For the same reasons as in
the proof of Lemma-Definition 2.10, we have an equivalence of categories

F∗ : QCoh(DZ) ∼= QCoh(F∗DZ).

Applying Lemma-Definition 2.10, we see that the right hand side is equivalent to the cate-
gory QCoh(π∗DZ). Since π is an affine morphism, we obtain the following

Lemma 2.11. There is an equivalence of categories

QCoh(DZ) ∼= QCoh(DZ).

This lemma allows us to describe quasi-coherent sheaves with flat connections on Z in
terms of quasi-coherent D-modules on T ∗Z ′. According to a result of [BMR08], the algebra
D is Azumaya.

Theorem 2.12 (Bezrukavnikov–Mirkovic–Rumynin). Assume that Z is pure dimensional
of dimension d. The sheaf of algebras D of Lemma-Definition 2.10 is an Azumaya algebra

of rank p2d, that is, there exists an étale covering {Ui
fi−→ T ∗Z ′}i∈I such that we have

f∗i D ' End(Op
d

Ui
).
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2.4. The Ogus–Vologodsky correspondence. As before we denote by k a perfect field
of positive characteristic p and by Z/k a smooth k-scheme. The pullback of a quasi-coherent
sheaf V along the relative Frobenius F : Z → Z ′ is endowed with a canonical connection
∇can. It is uniquely characterised by the property that a local section s ∈ F ∗V (U) is ∇can-
horizontal (that is, satisfies ∇can(s) = 0) if and only if s ∈ F−1V (U). We refer the reader
to [Kat70, Theorem 5.1] for a proof of the following

Theorem 2.13 (Cartier descent). The functor V 7→ (F ∗V,∇can) embeds the category
QCoh(Z ′) into MIC(Z). A de Rham sheaf (E,∇) is isomorphic to (F ∗V,∇can) if and only
if ∇ has zero p-curvature.

An important result of Ogus–Vologodsky extends this embedding to certain nilpotent
Higgs bundles on Z ′. At first we need to introduce some notation.

Definition 2.14. (a) We say that θ is nilpotent of level ≤ N if the induced morphism
θN : V → V ⊗ (Ω1

Z)⊗N is the zero morphism. We denote the resulting category by
HiggsN (Z).

(b) For a positive integer N we denote by MICN (Z) the category of de Rham sheaves
(E,∇), where ψ(∇) is nilpotent of level ≤ N , that is, the map ψN : E → E ⊗
(F ∗ZΩ1

Z′)
⊗N is zero.

We refer the reader to [OV07, Theorem 2.8] for a proof of the theorem below and a more
detailed overview of this result. We remark that the Ogus–Vologodsky-correspondence is
deduced by producing splittings of the Azumaya algebra D over infinitesimal thickenings
of the zero section Z ′ ↪→ T ∗Z ′.

Theorem 2.15 (Ogus–Vologodsky). We use the terminology introduced in Definition 2.14.
A lifting Z → SpecW2(k) of Z → Spec k gives rise to an equivalence of categories

C−1
Z/W2(k) : Higgsp−1(Z ′) ∼= MICp−1(Z),

such that C−1
Z/W2(k)(V, 0) ' (F ∗V,∇can).

2.5. The Beauville–Narasimhan–Ramanan correspondence. In the following we fix
a line bundle L′ on Z ′ of finite order invertible in k. Its pullback F ∗ZL

′ along the rela-
tive Frobenius map is isomorphic to Lp. The notion of Gieseker stability (also known as
P -stability) allows one to construct a quasi-projective coarse moduli space of P -stable in-
tegrable connectionsMdR(Z/k, Lp, r) with determinant Lp. We refer the reader to [Lan14,
Theorem 1.1] for the notion of P -stability and for details on the construction of the moduli
space.

The p-curvature ψ(∇) ∈ H0(Z,F ∗ZΩ1
Z′ ⊗End(E)) of any integrable connection (E,∇) on

Z is flat under the tensor product of the canonical connection on F ∗Ω1
Z′ and of End(∇)

on End(E) ([Kat70, Proposition 5.2.3]). In particular its characteristic polynomial has
coefficients in global symmetric forms on Z ′:

(2.5) χ(ψ(∇)) = det(−ψ(∇) + λId) = λr − a1λ
r−1 + . . .+ (−1)rar,

ai ∈ H0(Z ′,Symi(Ω1
Z′)).
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It was observed by Laszlo–Pauly [LP01, Proposition 3.2] that χ(ψ(∇)) gives rise to a
morphism, called Hitchin map

χdR :MdR(Z/k, r)→ AZ′,r,(2.6)

where the affine space AZ′,r is given by

AZ′,r(T ) =
r⊕
i=2

H0(Z ′, Symi(Ω1
Z′))⊗k T(2.7)

for any k-algebra T . See also the work of Bezrukavnikov–Braverman [BB07, Section 4],
the second author [Gro16, Definitions 3.12 & 3.16] and Chen–Zhu [CZ15, Section 2.1].
Properness of this map was established in [Lan14, Theorem 3.8].

Note that the definition above omits the i = 1 term, since our Higgs fields are tracefree
by assumption.

It follows from the definitions that ψ(∇) is nilpotent if and only if χdR([(E,∇)]) = 0,
where [(E,∇)] is the moduli point of the connection (E,∇).

Before recalling the Beauville–Narasimhan–Ramanan (BNR) correspondence for flat con-
nections proven in [Gro16, Proposition 3.15] we need to define spectral covers. For any
k-scheme S and a : S → AZ′,r one has a finite cover

Z ′a

π′
$$

� � // T ∗Z ′ × S

π′

��

Z

defined by the equation (2.5) = 0. This cover will be referred to as the spectral cover.

Remark 2.16. Since it is central to our approach, we give a more detailed description of
the definition of the spectral cover. Consider the quasi-coherent sheaf of algebras given by
symmetric forms Sym•Ω1

Z′ with its natural grading. We adjoin a formal variable λ of degree
1 and obtain the quasi-coherent sheaf of algebras Sym•Ω1

Z′ [λ]. Recall that the points of the
Hitchin base AZ′,r are defined by (2.7). The following more detailed description is useful.

(a) The vector space of degree r sections inH0(Z ′,Sym•Ω1
Z′ [λ]) is isomorphic to AZ′,r(k).

The tautological section θ ∈ H0(Z ′, π
′∗Ω1

Z′) is defined by the OZ′-linear homomorphism
OZ′ → π′∗π

′∗Ω1
Z′ = Sym• TZ′⊗OZ′ Ω

1
Z′ which is equal to the identity on the factor T ∗Z′⊗OZ′

Ω1
Z′ = End(Ω1

Z′) and equal to zero on the other factors. Pullback along π′ for S = Spec k
postcomposed with the specialization λ 7→ θ defines a morphism of algebras

H0(Z ′, Sym•Ω1
Z′ [λ])→ H0(T ∗Z ′, π′∗ Sym•Ω1

Z′).

Similarly, one obtains for a k-scheme S a morphism

H0(Z ′ ×k S, Sym•Ω1
Z′×kS/S

[λ])→ H0(T ∗Z ′ ×k S, π′∗ Sym•Ω1
Z′×kS/S

).

(b) For a ∈ AZ′,r(S) we define the spectral cover Z ′a to be the closed subscheme of
T ∗Z ′×k S defined by the sheaf of ideals generated by the section θr +a2θ

r−2 + · · ·+
(−1)rar in (π′×k Id)∗OT ∗Z′×kS = (Sym• TZ′)⊗k OS . Then Z ′a → Z ′×k S is a finite
morphism.
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It is called the spectral cover Z ′ to a. We can now state the BNR correspondence for flat
connections. In the following denote by S a k-scheme and let a ∈ AZ′,r(S). An S-family
of integrable connections on Z refers to a pair (E,∇) where E is vector bundle on Z ×k S
and

∇ : E → E ⊗ pr∗ZΩ1
Z

is an OS-linear map satisfying the Leibniz rule and ∇2 = 0.

Theorem 2.17 (BNR correspondence). The groupoid of S-families of rank r integrable
connections (E,∇) (with E being a vector bundle) on Z ×k S satisfying ψ(∇) = a, is
equivalent to the groupoid of DZ′-modules M on Z ′a ⊂ T ∗Z ′×k S such that π′∗M is a locally

free Higgs sheaf on Z ′ of rank pdr and characteristic polynomial ap
d
.

Remark 2.18. Recall that we have a quasi-coherent sheaf of OT ∗Z′-algebras DZ′ . We say
that on T ∗Z′×kS a quasi-coherent p∗T ∗

Z′
DZ′-module M is scheme-theoretically supported on a

closed subscheme i : X ↪→ T ∗Z ′×kS, if M is annihilated by the sheaf of ideals IX ⊂ OT ∗
Z′×kS

of X. The scheme-theoretic support of M as a p∗T ∗
Z′
DZ′-module only depends on M as a

quasi-coherent sheaf on T ∗Z ′×kS. The main part of the proof below is devoted to improving
an a priori bound for the scheme-theoretic support.

In order for our article to remain as self-contained as possible, we recall the proof from
[Gro16, Proposition 3.15].

Proof of Theorem 2.17. The connection ∇ defines the structure of a p∗ZDZ-module on
E over Z ×k S. Therefore we obtain a F∗p

∗
ZDZ-module F∗E, which can be written

as pushforward of a p∗T ∗
Z′
DZ′-module M on T ∗Z ′ ×k S along the canonical projection

π′ : T ∗Z ′ ×k S → Z ′ ×k S (see Lemma 2.11). As remarked above, the scheme-theoretic
support of M depends only on its OT ∗Z′×kS-module structure, which is induced by the
p-curvature ψ(∇) : F∗E → p∗Z′Ω

1
Z′ ⊗OZ′×kS

F∗E.

The pair F∗(E,ψ(∇)) is a Higgs bundle of rank rpd on Z ′×k S → S, where d = dim(Z).
Let b ∈ AZ′,rpd(S) be the characteristic polynomial of the Higgs field ψ(∇). Then the Higgs
bundle F∗(E,ψ(∇)) is scheme-theoretically supported on the closed subscheme

Z ′b ⊂ T ∗Z ′ ×k S.
However this “upper bound” for the scheme-theoretic support is far from being optimal.

We construct a degree r polynomial a ∈ AZ′,r(S) such that b = ap
d

(for the multiplication
as polynomials), and such that M is scheme-theoretically supported on Z ′a. It suffices to
show that M is scheme-theoretically supported on Z ′a ↪→ Z ′b ↪→ T ∗Z ′ ×k S.

It is clear that there is at most one such a ∈ AZ′,r(S) with this property since a and b
are monic polynomials. By virtue of étale descent for symmetric forms on Z ′, it suffices to
construct a étale locally. For the same reasons, one only has to prove étale locally that M
is scheme-theoretically supported on Z ′a.

Let x ∈ Z ′×kS(ksep) be a geometric point. We denote by Ohx the corresponding henselian
local ring. Pulling back the finite morphism Z ′b → Z ′ ×k S along Spec Ohx → Z ′ ×k S we

obtain the spectrum of a product of henselian local rings SpecR = Spec
∏N
i=1Ri. Since

DZ′ is an Azumaya algebra, the pullback DZ′ |SpecR splits, that is, is isomorphic to the sheaf
of matrix algebras Mpd(OSpecR).
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Classical Morita theory (see [Lam99, Theorems 18.11 & 18.2]) implies that every quasi-
coherent Mpd(OSpecR)-module is isomorphic to a unique (up to a unique isomorphism)

Mpd(OSpecR)-module of the shape F⊗OSpec R
Op

d

SpecR = F⊕p
d

with the canonicalMpd(OSpecR)-
action.

Applying the pushforward functor π′∗ we obtain that the Higgs bundle

(F∗(E,ψ(∇))|Spec Oh
x

splits as a direct sum π′∗F
⊕pd . Let a be the characteristic polynomial of the Higgs bundle

π′∗F on Spec Ohx. We have b|Spec Oh
x

= ap
d

(as polynomials), and F is scheme-theoretically

supported on Z ′a. Since F p
d

= M the same also holds for M .
The affine scheme Spec Ohx is an inverse limit of étale neighbourhoods of x. From a finite

presentation argument we obtain an étale morphism U
h−→ Z ′ ×k S such that the Azumaya

algebra DZ′ splits already when pulled back to U×Z′×kSZ
′
b. Repeating the argument above

we obtain a degree n section of h∗ Sym•ΩZ′×S/S [λ] (where λ is a formal variable of weight
1)

a = λr + a2λ
r−2 + . . .+ ar

such that ap
d

= h∗b.
By uniqueness of solutions to the equation ap

d
= b in Sym•Ω1

Z′×S/S [λ] we obtain a ∈
AZ′,r(S) with the required property. We conclude from the local strict henselian support
property that M is scheme-theoretically supported on Z ′a. This finishes the proof. �

2.6. Crystals and p-curvature. In this short subsection we collect the necessary refer-
ences and facts from the theory of crystals which we use in the core of our article. We do
not claim any originality for the results presented here. The main purpose is only to gather
the references needed for (the well-known) Theorem 2.19 and Corollary 2.20 below. We
warmly thank Pierre Berthelot, Luc Illusie, Arthur Ogus, and Atsushi Shiho for their kind
and efficient answers to our questions on references.

Let k be a perfect field, Z be a smooth k-variety. Let W = W (k) be the ring of Witt
vectors on k, Wn = W/pn be the ring of Witt vectors of length n. One defines the crystalline
sites Z/Wn as in [Ber74, III, Definition 1.1], then the crystalline site Z/W as the union (or
colimit) of the crystalline sites for n ∈ N>0 ([BBM82, 1.1.3]) along the embeddings

(Z/Wn)crys ↪→ (Z/Wn+1)crys.

By definition, the objects of (Z/Wn)crys are relative PD-thickenings over Wn. That is, they
are triples (U, T, δ), where U ↪→ Z is a Zariski open subset, U → T is a closed immersion
of Wn-schemes defined by a sheaf of ideals I, and δ is a divided power structure on I
compatible with the one on pWn.

One defines the category Crys(Z/Wn) of crystals as the category of sheaves of O-modules
F on Z/Wn, of finite type (it is also possible to work with crystals in quasi-coherent
sheaves, we restrict ourselves to O-modules of finite type), which are crystals, that is, for
every morphism f : (U, T1, δa)→ (U, T2, δ2) in the crystalline site of Z/Wn one assumes that
the transition map

f∗FT2 → FT1
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is an isomorphism. The resulting category of crystals Crys(Z/Wn) is abelian and Wn-linear
[Ber74, IV 1.7.6] (in loc. cit. it is shown that the bigger category of crystals in quasi-
coherent sheaves is abelian, this implies the assertion with the finite type assumption, since
Z is assumed to be smooth). The W -linear category Crys(Z/W ) is defined in [BM90, 1.3.3]
(for the big crystalline site, here we consider only the small one). Its Q-linearization

Isoc(Z/W ) = Crys(Z/W )Q

is the category of isocrystals (see [Ogu90, Definition 0.7.1]).

We now assume that we have a smooth formal lift ẐW at disposal, defining Zn =
ẐW ⊗W Wn. By [Ber74, II Theorem 4.3.10, IV Theorem1.6.5], the category Crys(Z/Wn) is
equivalent to MIC(Zn)qn, where MIC(Zn) is the category of modules (En,∇n) of finite type
with an integrable connection, and the superscript qn refers to quasi-nilpotency defined in
[Ber74, II, Definitions 4.3.5 & 4.3.6]. By [BO78, Exercise 4.14], (En,∇n) is quasi-nilpotent
if and only (E1,∇1) = (En,∇n) ⊗Wn k is. Indeed, as the differential operators commute
with the tensor product ⊗WnWm for m ≤ n, one direction is trivial. Vice-versa, if (E1,∇1)
is quasi-nilpotent, and sn is a local section of En, then some differential operator P of a
certain order annihilates sn ⊗Wn W1 (see [dJ, 07JE] for the precise definition), or equiva-
lently P (sn) = ps̃n−1 where sn−1 is a section of En−1 and s̃n−1 any lift in En. One iterates
to conclude the proof.

Finally, by virtue of [Kat70, Cor.5.5], on Z = Z1, a module (E1,∇1) of finite type with
an integrable connection is quasi-nilpotent if and only if its p-curvature is nilpotent. This
implies the following result.

Theorem 2.19. The category Crys(Z/Wn) is equivalent to the full subcategory of MIC(Zn)
consisting of the modules (En,∇n) of finite type with an integrable connection, and such
that the p-curvature of (E1,∇1) is nilpotent.

The equivalence Crys(Z/Wn) with MIC(Zn)qn induces the equivalence between Crys(Z/W )
and the subcategory of modules (E,∇) of finite type with an integrable connection on

ẐW which are separated and complete, that is (E,∇) = lim←−n(En,∇n) where (En,∇n) =

(E,∇)⊗W Wn lies in MIC(Zn)qn, see [BM90, 1.3.3].

Corollary 2.20. The category Crys(Z/W ) is equivalent to the full subcategory of MIC(ẐW )
consisting of the modules (E,∇) = lim←−n(En,∇n) of finite type with an integrable connection,

which are separated and complete such that the p-curvature of (E1,∇1) is nilpotent.

LetX → SpecW (k) be a smooth morphism. We denote by Z the base changeX×SpecW (k)

Spec k, and by i : Z → X the projection to the first factor. Given an object (E,∇) of
MIC(X/W ), the above criterion allows us to associate to it a crystal, as long as the p-
curvature of ∇ is nilpotent.

Corollary 2.21. Assume that i∗(E,∇) has nilpotent p-curvature on X. Then the formal

flat connection (Ê, ∇̂) on X̂W gives rise to an object of Crys(Z/W ).

3. p-curvature and rigid flat connections

This section is devoted to the study of mod p reductions of rigid flat connections and
culminates in a proof of our first main result, Theorem 1.4 in Subsection 3.3. The earlier
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parts of this section lay the foundation for this argument. In Subsection 3.1 we discuss
models of X and rigid flat connections (E,∇) over a scheme S of finite type. These models
will then be used in Subsection 3.2 to study the interplay of the Ogus–Vologodsky transform
and rigidity. We recall our standing assumption that a rigid flat connection is stable (see
Remark 1.2).

3.1. Arithmetic models. Let X be a smooth complex projective variety and L ∈ Pic(X)
a line bundle of finite order. We define

Mrig
dR(X/C, L, r) ⊂MdR(X/C, L, r)(3.1)

to be the closed subscheme of isolated points of the quasi-projective moduli of P -stable inte-
grable connections (an isolated point is not assumed to be reduced). AsMdR(X/C, L, r) is

quasi-projective, Mrig
dR(X/C, L, r) is a 0-dimensional quasi-projective C-variety, and there-

fore projective. Furthermore, by definitionMdR(X/C, L, r) is a disjoint union ofMrig
dR(X/C, L, r)

and of its open and closed complement

MdR(X/C, L, r) \Mrig
dR(X/C, L, r),

which does not contain isolated points. The same remarks apply mutatis mutandis to the
moduli space of P -stable Higgs bundles

Mrig
Dol(X/C, L, r) ⊂MDol(X/C, L, r).

Lemma 3.1 (Arithmetic models). There exists a morphism of schemes XS → S satisfying
the following conditions:

(a) S is of finite type and smooth over SpecZ;
(b) S has a unique generic point η, and there is an embedding of fields k(η) ⊂ C;
(c) the base change along the map Spec C→ S of (b) satisfies SpecC×S XS ' X;
(d) the map XS → S is smooth and projective;
(e) there is a line bundle LS ∈ Pic(XS) such that LS pulls back to a line bundle iso-

morphic to L on X.

Proof. We denote by R the set of subrings R ⊂ C which are of finite type over Z. Since X
is a projective C-scheme there exists R ∈ R such that there is a projective R-scheme XR

together with an isomorphism

XR ×SpecR C ' X.

Indeed, it suffices to choose an explicit presentation of X ⊂ PNC by a system of homogeneous
equations, and to consider the smallest subring R ⊂ C containing the coefficients of these
homogeneous polynomials. It follows from [EGAIV, Théorème 8.8.2(ii) & 8.10.5(xiii)] that
we can even choose XR → SpecR to be a smooth and projective R-scheme. Similarly, the
results [EGAIV, Théorème 8.5.2(i) & Proposition 8.5.5] show that XR can be assumed to
possess a line bundle LR which pulls back to L on X (up to isomorphism).

If SpecR → Spec Z is not already smooth, then it suffices to invert a finite number of
elements f1, . . . , fm of R such that R̃ = R[f−1

1 , . . . , f−1
m ] ⊂ C is smooth over Z. We set

S = Spec R̃ and define XS = XR×SpecRS. By construction, it satisfies all of the conditions
above. �
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A pair (XS , LS) as above will also be referred to as an arithmetic model of (X,L). The
proofs of our main results are based on a careful choice of arithmetic models.

By [Lan14, Theorem 1.1], there are quasi-projective moduli S-schemes

MdR(XS/S, LS , r)→ S, MDol(XS/S, LS , r)→ S.

For any locally noetherian S-scheme T , one has a morphism ϕT : MdR(XS/S, LS , r)×ST →
MdR(XT /T, LT , r). If T is a geometric point, ϕT induces an isomorphism on geometric
points on both sides, and likewise forMDol(XS/S, LS , r). In order to simplify notation, we
will denote the disjoint union ⊔

r′≤r
MdR(XS/S, LS , r

′)

by the shorthandMdR(XS/S, LS ,≤ r). The same remark and notational convention applies
to MDol(XS/S, LS , r) mutatis mutandis.

Definition 3.2. For an S-scheme X → S we denote by X rig the maximal open subscheme
such that X rig → S is quasi-finite at all points of X rig (see [dJ, 01TI] for a proof of openness).

We apply this definition to the moduli S-schemesMdR(XS/S, LS , r) andMDol(XS/S, LS , r).

The corresponding open subschemes will be denoted by Mrig
dR(XS/S, LS , r), respectively

Mrig
Dol(XS/S, LS , r).

Proposition 3.3 (Nice models). For every positive integer r there exists an affine arith-
metic scheme S and a model (XS , LS) of (X,L) such that the following conditions hold:

(a) For every rigid flat connection (EC,∇C) over X with determinant L and rank ≤ r
there exists a spreading out to a relative flat connection (ES ,∇S) on XS/S which
is P -stable over geometric points.

(b) For every rigid Higgs bundle (VC, θ) over X with determinant L and rank ≤ r there
exists a relative Higgs bundle (VS , θS) on XS/S which is P -stable over geometric
points.

(c) Furthermore, in (b) we may assume the Higgs field θS to be nilpotent.
(d) The sections

[ES ,∇S ] : S →MdR(XS/S, LS ,≤ r)
and

[VS , θS ] : S →MDol(XS/S, LS ,≤ r)
induced by (ES ,∇S) of (a), respectively (VS , θS) of (b) and (c) factor through

Mrig
dR(XS/S, LS ,≤ r), respectively Mrig

Dol(XS/S, LS ,≤ r).
(e) For every point y ∈ |Mrig

dR(XS/S, LS ,≤ r)| there exists a family (ES ,∇S) as in
(a) such that y belongs to the set-theoretic image [ES ,∇S ](|S|), and similarly for

Mrig
Dol(XS/S, LS ,≤ r)

Proof. Lemma 3.1 implies the existence of an irreducible affine arithmetic scheme S̃ such
that there is a model (XS̃ , LS̃) satisfying the conditions outlined there. We let R̃ be its
ring of functions. By virtue of assumption it is embedded into C.

Let R denote the set of finite type subrings R̃ ⊂ R ⊂ C such that there is an arithmetic
model (XR, LR) satisfying the conditions of Lemma 3.1.
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Since the scheme X is an inverse limit of the schemes XR where R ∈ R, it follows from
repeated application of [EGAIV, Théorème 8.5.2(i) & Proposition 8.5.5] that there exists
R ∈ R such that conditions (a) and (b) are satisfied. Here we use that there are only
finitely many rigid flat connections and Higgs bundles of rank ≤ r and determinant L.

Furthermore, we have seen in 2.1 that a rigid Higgs bundle (V, θ) on the complex scheme
X has nilpotent Higgs field. In particular we have θrC = 0. It follows from [EGAIV,
Théorème 8.5.2(i)] that there exists R ∈ R such that θrR = 0. Therefore, conditions (a-c)
hold.

Let {(Ei,∇i)}i=1,...,N be a list of representatives of isomorphism classes of rigid flat
connections on the complex projective variety X of rank ≤ r and determinant L. By virtue
of (a) there exist relative flat connections {(Ei,S ,∇i,S)}i=1,...,N over XS/S, extending these
representatives. By openness of P -stability we may assume that these families are P -stable
over geometric points. We denote by

si = [(Ei,S ,∇i,S)] : S →MdR(XS/S, LS ,≤ r) for i = 1, . . . , N

the associated S-points of the moduli space MdR(XS/S, LS ,≤ r). Let η be the unique
generic point of S. Since k(η) ⊂ C, and by virtue of assumption we have (Ei,∇i) ∈
Mrig

dR(X,L,≤ r), it follows si(η) ∈Mrig
dR(XS/S, LS ,≤ r) for i = 1, . . . , N . The subset

U =
N⋂
i=1

s−1
i (|Mrig

dR(XS/S, LS ,≤ r)|)

is therefore non-empty and open, since Mrig
dR(XS/S, LS ,≤ r) ⊂ MdR(XS/S, LS ,≤ r) is

open. Replacing S by U we have verified the first half of (d). The second half is treated
the same way by replacing rigid flat connections by Higgs bundles.

It remains to prove (e). We assume that there is a model (XS , LS) satisfying conditions

(a-f). By construction, Mrig
dR(XS/S, LS ,≤ r) → S is quasi-finite. Furthermore, using the

notation introduced above, there are finitely many sections

si : S →Mrig
dR(XS/S, LS ,≤ r) for i = 1, . . . , N,

such that

(3.2)

N⋃
i=1

{si(η)} =Mrig
dR(XS/S, LS ,≤ r)×S η

We now apply Zariski’s main theorem for quasi-finite maps [EGAIV, Théorème 8.12.6] and
choose a factorization

Mrig
dR(XS/S, LS ,≤ r) ↪→ M̃

h−→ S,

where the first morphism is an open immersion and the second is finite. Furthermore, we

may assume without loss of generality thatMrig
dR(XS/S, LS ,≤ r) is dense in M̃ . We define

Z =

(
|M̃ | \

N⋃
i=1

si(|S|)

)
.
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Since M̃ is finite over S, the image h(Z) ⊂ S is closed, and does not contain η by virtue of
(3.2). It follows that after replacing S by S \ h(Z) one obtains

|Mrig
dR(XS/S, LS ,≤ r)| =

N⋃
i=1

si(|S|).

This concludes the proof of (e) for flat connections. The case of Higgs bundles is dealt with
mutatis mutandis. �

3.2. Cartier transform and rigidity. Henceforth we let S and (XS , LS) be nice models
as in Proposition 3.3. Smoothness of S over SpecZ implies for a closed point s ∈ S with
residue field k(s) the existence of a lift SpecW2(k(s))→ S. By base change one obtains a
lift XW2(k(s)) of Xs to W2(k(s)).

Lemma 3.4. Let k be a perfect field of positive characteristic p, and let Z/k be a smooth
projective k-variety. Then a stable Higgs bundle (V, θ) on Z is rigid if and only if the stable
Higgs bundle w∗(V, θ) is rigid, and a stable integrable connection (E,∇) is rigid if and only
if the stable integrable connection w∗(E,∇) is rigid.

Proof. Recall that (V, θ) is not rigid if and only if there exists a geometrically irreducible
k-scheme C of finite type, with dimC > 0 and a C-family of Higgs bundles (VC , θC),
θC : VC → VC ⊗ Ω1

Z×kC/C
, and two closed points c0, c1 ∈ C(k′) defined over a finite field

extension k′/k, such that (VC , θC)c0 is isomorphic to (V, θ)k′ , and (VC , θC)c0 and (VC , θC)c1
are not isomorphic over the algebraic closure k. We have a canonical isomorphism of
schemes

(Z ×k C)′ = Z ′ ×k C ′,
where the k structure on the right is the one from the left in Spec(k)

w−→ Spec(k). And the
functor wZ×kC induces an equivalence between C-families of stable Higgs bundles on Z and
C ′-families of stable Higgs bundles on Z ′. This concludes the proof in the Higgs case. A
similar strategy applies to the de Rham case. �

Subsequently, we simplify the notation of (2.7) and use the notation A′ instead of AZ′,r.
The role of the variety Z in (2.7) will be played by Xs where s ∈ S is a closed point and
XS/S a nice model of X.

Let T be a k(s)-scheme. We say that a T -point a : T → A′ is OV-admissible, if the
spectral cover X ′s,a ⊂ T ∗X ′s ×k(s) T (see Remark 2.16) factors through the (p− 1)-st order
infinitesimal neighbourhood of the zero section X ′s ↪→ T ∗X ′s. We assume that the char-
acteristic p of k(s) is ≥ r + 2. This assumption guarantees that the level of nilpotency
of the Higgs field lies in the range that is needed in order to apply the Ogus–Vologodsky
correspondence recalled in Subsection 2.4.

Proposition 3.5. Let (XS , LS) be a nice model of X as in Proposition 3.3. There exists
a positive integer D, depending only on XS/S such that for any closed point s ∈ S with
char k(s) > D, and any rigid stable Higgs bundle (Vs, θs), the inverse Cartier transform
C−1(V ′s , θ

′
s) is a stable rigid integrable connection.

Proof. Stability is proven by following the argument of [Lan14, Cor. 5.10], which shows
semistability. The main point is the rigidity assertion, which we prove now. Let T be a
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k(s)-scheme. By the BNR correspondence (Theorem 2.17) we may describe a T -family of
flat connections (ET ,∇T ) in terms of a pair (a : T → A′,M) where M is a DX′s |X′s,a-module

on the spectral cover X ′s,a ↪→ T ∗X ′s ×k(s) T .
If a ∈ A′(T ) is OV-admissibble, we may apply Ogus–Vologodsky’s result that D splits on

the (p−1)-st order neighbourhood of X ′s ↪→ T ∗X ′s (see [OV07, Cor. 2.9]), and hence obtain
for every OV-admissible a ∈ A′(T ) that the stack of stable flat connections (E,∇) on Xs

with χdR((E,∇)) = a (defined in (2.6)) is equivalent to the stack of stable Higgs bundles
(V ′, θ′) on X ′s with χ((V ′, θ′)) = a. We denote this equivalence by Ca, respectively C−1

a .
There exists a polynomial function R(r,m) (linear in m and quadratic in r), with the

following property: let m be a positive integer, and let A′(m) be the m-th order neighbour-
hood of 0 ∈ A′. If we have p−1 > R(r,m), then every scheme theoretic point a : T → A′(m)

is OV-admissible.
Let D′ be a positive integer such that D′ is bigger than the degrees of the finite morphisms

Mrig
Dol(XS/S, LS)→ S and Mrig

dR(XS/S, LS)→ S. Let k(s)→ B → k(s) be an augmented
Artinian local algebra such that we have a B-deformation (VB, θB). The characteristic
polynomial of θB defines a point χ : SpecB → A′. Then χ factors through the (D′ −
1)-st order infinitesimal neighbourhood A′(D′−1). To see this we observe that we have a
commutative diagram

SpecB
φ
//

χ
((

Mrig
Dol(X

′
s/k(s), L′s)

��

A′.
The morphism φ factors through the connected component of the moduli space correspond-
ing to the isolated point [(Vs, θs)]. This shows that χ factors through the (D′ − 1)-st order
infinitesimal neighbourhood.

Let m be a positive integer such that m > D′, and assume p − 1 > R(r,m), such that

every scheme theoretic point a : T → A′(m) is OV-admissible.
We assume by contradiction that (E,∇) = C−1(V ′s , θ

′
s) is not rigid as a local system.

This implies that there exists a deformation (ET ,∇T ), parametrized by an augmented
k(s)-scheme Spec k(s) → T → Spec k(s), so that the corresponding Hitchin invariant

χdR((ET ,∇T )) does not factor through A′(m−1).

We denote by T
(m−1)
t be the (m−1)-st order neighbourhood of t = Im(Spec k(s)) in T . By

construction the family (E
T

(m−1)
t

,∇
T

(m−1)
t

) has the property that χdR((E
T

(m−1)
t

,∇
T

(m−1)
t

))

is a morphism T
(m−1)
t → A′, and therefore it factors through A′(m−1), but not through

A(k−1) for k < m.
For every p − 1 > R(r,m), we can apply the equivalence of categories Ca to construct

a T
(m−1)
t -deformation (V ′

T
(m−1)
t

, θ′
T

(m−1)
t

) of (V ′s , θ
′
s) such that χ(θ′

T
(m−1)
t

) does not factor

through A′(D′−1). This is a contradiction. �

We introduce new notation before turning to the consequences of the result proved above.

Definition 3.6. Let Z/k be a smooth projective variety, L be a line bundle of finite order,
invertible in k. Let ndR(Z,L, r) denote the number of isomorphism classes of stable rigid
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flat connections of rank r with determinant isomorphic to L on Z. Let nDol(Z,L, r) the
number of isomorphism classes of stable rigid Higgs bundles of rank r with determinant
isomorphic to L on Z.

If L is a line bundle on Z and Z ′ is the Frobenius twist of Z, we denote by L′ the
Frobenius twist of L, that is the pullback of L under the map Z ′ → Z.

Corollary 3.7. Let D be the positive integer of Proposition 3.5. Let s ∈ S be a closed
point such that char(s) > D. If ndR(Xs, Ls, r) = nDol(X

′
s, L
′
s, r) then every stable rigid flat

connection (E,∇) of rank r and determinant line L on Xs has nilpotent p-curvature.

Proof. Let nnilpdR (Xs, Ls, r) be the number of isomorphism classes of stable rigid flat connec-
tions (E,∇) of rank r with determinant Ls on Xs which have nilpotent p-curvature. By

definition we have nnilpdR (Xs, Ls, r) ≤ ndR(Xs, Ls, r) and equality holds if and only if every
stable rigid (E,∇) of rank r with determinant Ls has nilpotent p-curvature. By Proposition
3.5, for char(s) > D, the functor C−1 sends a rigid Higgs bundle to a rigid flat connec-
tion. By definition of C−1 the latter has nilpotent p-curvature. We therefore conclude that

nnilpdR (Xs, Ls, r) ≥ ndR(Xs, Ls, r) which shows nnilpdR (Xs, Ls, r) = ndR(Xs, Ls, r). �

3.3. Proof of Theorem 1.4. As in Corollary 3.7 we denote by ndR(Z,L, r) the number
of stable rigid rank r flat connections of determinant L on Z/k. We use the notation
nDol(Z,L, r) to refer to the number of stable rigid rank r Higgs bundles on Z/k of deter-
minant L.

Proof. Recall that we have a smooth complex projective variety X/C and a torsion line
bundle L as well as an appropriately chosen model (XS/S, LS) as in Proposition 3.3. The
numbers ndR(X,L, r) and nDol(X,L, r) are equal by virtue of the Simpson correspondence
(see [Sim92, Section 4]) between stable Higgs bundles and irreducible flat connections on
X/C. Furthermore, we know from Simpson’s observation (see Lemma 2.1) that a rigid
Higgs bundle has nilpotent Higgs field.

For every closed point s ∈ S one has ndR(X,L, r) = ndR(Xs, Ls, r) and nDol(X,L, r) =
nDol(X

′
s, L
′
s, r) (using Lemma 3.4). In particular, we have ndR(Xs, Ls, r) = nDol(X

′
s, L
′
s, r)

and therefore Corollary 3.7 implies for char(s) > D that every stable rigid flat connection
(E,∇) on Xs has nilpotent p-curvature. �

4. Frobenius structure

This section is devoted to proving Theorem 1.6. Our proof is based on the theory of
Higgs-de Rham flows as developed by Lan–Sheng–Zuo in [LSZ13]. We begin by recalling
their results.

4.1. Recollection on Lan–Sheng–Zuo’s Higgs-de Rham flows. As before we denote
by k a perfect field of positive characteristic p and by Z/k a smooth k-variety that admits
a lift to W2(k). We denote by w = wZ : Z ′ → Z the isomorphism of schemes induced by
the arithmetic Frobenius k → k by base change. We have seen Ogus–Vologodsky’s Cartier
transform C : Higgs(Z)p−1 → MIC(Z)p−1 in Theorem 2.15.

Definition 4.1. (a) Let ι : Higgs(Z) → Higgs(Z) be the autoequivalence given by
(E, θ) 7→ (E,−θ).



22 HÉLÈNE ESNAULT AND MICHAEL GROECHENIG

(b) We denote by C1 : Higgs(Z)p−1 → MIC(Z)p−1 the composition C−1 ◦ (w−1)∗ ◦ ι.
(c) A Higgs-de Rham fixed point is a quadruple (H,∇, F, φ), where (H,∇) is a vector

bundle with a flat connection of level ≤ p − 1, F is a descending filtration on
H satisfying the Griffiths transversality condition, and φ : C−1

1 (grF (H), grF (∇)) '
(H,∇) is an isomorphism in MIC(Z)p−1.

Subsection 4.6 of [OV07] shows that the category of Higgs-de Rham fixed points is
equivalent to the category of p-torsion Fontaine–Lafaille modules as defined in [FL82]. If
Z admits a lift to W (k), then the category of Fontaine–Lafaille modules admits a fully
faithful functor to the category of étale local systems of Fp-vector spaces on ZK , where
K = Frac(W ) (see [FL82, Theorem 3.3] for a special case and Faltings [Fal88, Theorem
2.6*]).

Lan–Sheng–Zuo generalize this by replacing fixed points by periodic orbits with respect
to the so-called Higgs-de Rham flow. This variant gives rise to étale local systems of Fq-
vector spaces instead. We recall their definition below.

Definition 4.2 (Lan–Sheng–Zuo). An f -periodic flat connection on Z is a tuple

(E0,∇0, F0, φ0, E1,∇1, F1, . . . , Ef−1,∇f−1, Ff−1, φf−1),

where for all i ∈ Z/fZ we have that (Ei,∇i, Fi) is a nilpotent flat connection on Z of level ≤
p− 1 with a Griffiths-transversal filtration Fi, and φi : C

−1
1 (grFEi, gr(∇i)) ' (Ei+1,∇i+1).

The direct sum
⊕f−1

i=0 (Ei,∇i, Fi) is by definition a Higgs-de Rham fixed point. Cyclic per-
mutation of the summands induces an automorphism of order f . Using the aforementioned
connection between Higgs-de Rham fixed points and p-torsion Fontaine–Lafaille modules
one obtains the following result (see [LSZ13, Corollary 3.10]). In loc. cit. the authors
assume that k be algebraically closed. However, this assumption is not needed, see Lemma
1.2 in [SYZ17] for a more general version.

Proposition 4.3 (Lan–Sheng–Zuo, Sun–Yang–Zuo). Assume that Z can be lifted to a
smooth W -scheme ZW /W , and that k ⊃ Fpf . The category of f -periodic flat connections
on Z admits a fully faithful functor to the category of étale local systems of Fpf -vector spaces
on ZK , where K = Frac(W ).

So far we have only been considering flat connections (E,∇) on the special fibre Z/k,
and étale local systems of vector spaces over finite fields. The theory of [LSZ13] also works
in a mixed characteristic setting. Let W = W (k) and ZW /W be a smooth W -scheme. We
denote by Zn the fibre product ZW ×SpecW SpecWn.

In the following definition it is necessary to work with nilpotent connections of level
≤ p− 2 rather than p− 1.

Definition 4.4. For every natural number n we define the category H(Zn/Wn) to be the
category of tuples (V, θ, Ē, ∇̄, F̄ , φ), where (V, θ) is a graded Higgs bundle on Zn, (Ē, ∇̄, F̄ )
is a flat connection on Zn−1 with a Griffiths-transversal filtration F̄ , and φ : grF (Ē,∇) '
(V, θ)×Wn Wn−1 is an isomorphism of graded Higgs bundles. Furthermore, we assume that
the p-curvature of (Ē, ∇̄)×Wn−1 k is nilpotent of level ≤ p− 2.

Similarly we denote by MIC(Zn/Wn) the category of quasi-coherent sheaves with Wn-
linear flat connections on Zn. We have the following result [LSZ13, Theorem 4.1] (for k
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algebraically closed and [SYZ17, 1.2.1] for the case of finite fields). Closely related results
were obtained by Xu in [Xu19].

Theorem 4.5 (Lan–Sheng–Zuo, Sun–Yang–Zuo). For a positive integer n there exists a
functor

C−1
n : H(Zn/Wn)→ MIC(Zn/Wn)

which extends the one of Definition 4.1(b) over the special fibre.

For a Wn-linear flat connection with a Griffiths-transversal filtration (E,∇, F ) we write
gr(E,∇, F ) to denote the tuple (grF (E), grF (∇), (E,∇, F )Wn−1 , id). This allows one to
extend the notion of periodic flat connections.

Definition 4.6 (Lan–Sheng–Zuo). We assume k ⊃ Fpf . An f -periodic flat connection on
ZW /W is a tuple

(E0,∇0, F0, φ0, E1,∇1, F1, . . . , Ef−1,∇f−1, Ff−1, φf−1),

where for all i we have that (Ei,∇i, Fi) is a flat connection on ZW (nilpotent of level ≤ p−2
on the special fibre) with a Griffiths-transversal filtration Fi, such that for all integers n we
have that grF (Ei,∇i) belongs to HZn/Wn

and φi : C
−1
1 (grFEi, gr(∇i)) ' (Ei+1,∇i+1).

By taking an inverse limit (of pn-torsion Fontaine–Lafaille modules) of Proposition 5.4
[LSZ13] we obtain a mixed characteristic version of Proposition 4.3. We refer the reader
to [LSZ13, Theorem 1.4] (for k algebraically closed) and [SYZ17, Lemma 1.2] for k being
finite.

Theorem 4.7 (Lan–Sheng–Zuo, Sun–Yang–Zuo). Assume k ⊃ Fpf .

(a) There exists an equivalence between the category of 1-periodic flat connections on
ZW /W and the category of torsion-free Fontaine–Lafaille modules on ZW .

(b) There exists a fully faithful functor from the category of f -periodic flat connections
on ZW /W to the category of crystalline étale local systems of free W (Fpf )-modules
on ZK .

Torsion-free Fontaine–Lafaille modules are also known as strongly p-divisible lattices of
an F -isocrystal. In light of this, we obtain a criterion for a W -family of flat connections
(EW ,∇W ) to give rise to an F -isocrystal.

Corollary 4.8. Assume k ⊃ Fpf and let (EW ,∇W ) be a flat connection on ZW /W which

is f -periodic. Then the formal flat connection (Ê, ∇̂) obtained by pullback to the formal
completion of XW is an isocrystal with Frobenius structure.

4.2. Higgs-de Rham flows for rigid flat connections. Let T be a smooth scheme over
C and λ : T → A1

C a regular function. A λ-connection on a vector bundle N is a C-linear
map of sheaves

D : N → N ⊗ Ω1
T ,

such that for every open subset U ⊂ T and sections s ∈ N(U) and f ∈ OT (U) we have

D(fs) = fD(s) + λs⊗ df.
We say that D is integrable (or flat), if it satisfies D2 = 0.
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There are two special cases which are of particular interest to us: for λ = 0 a flat λ-
connection amounts to a Higgs field, and for λ = 1, a flat λ-connection is a flat connection
in the classical sense.

For a smooth and projective scheme X/C and a torsion line bundle L ∈ Pic(X) we
denote by MHod(X/C, L, r) the moduli space of P -stable pairs (N,D), where N is a rank
r vector bundle on X and D a λ-connection for λ ∈ C. We refer the reader to [Sim94, p.
87] for more details. By definition, there is a morphism

(4.1) MHod(X/C, L, r)→ A1
C,

such that we have isomorphisms

MHod(X/C, L, r)×A1
C
{0} ' MDol(X/C, L, r) and MHod(X/C, L, r)×A1

C
{1} ' MdR(X/C, L, r).

We define Mrig
Hod(X/C, L, r) ⊂ MHod(X/C, L, r) to be the maximal open subset where

(4.1) is quasi-finite (see Definition 3.2).
As before, we use the notation [(N,D)] to denote the point of the moduli spaceMHod(X/C, L, r)

induced by a λ-connection (N,D) on X.

Lemma 4.9. The morphismMrig
Hod(X/C, L, r)→ A1 is finite, flat, and splits Gm-equivariantly

as

Mrig
Hod(X/C, L, r) ∼=Mrig

Dol(X/C, L, r)×C A1 ((V,θ),λ) 7→λ−−−−−−−−→ A1.

For [(N,D)] a section, then [(N,D)]1 ∈ MdR(X/C, L, r) is the moduli point of a complex
variation of Hodge structure, with F -filtration F i ⊂ F i−1 ⊂ . . . F 0 = N with Griffiths
transversality ∇ : F i → Ω1

X⊗OX
F i−1, and [(N,D)]0 ∈MDol(X/C, L, r) is the moduli point

of the associated Higgs bundle(
V = grFE, grF∇ :

⊕
i

(griFE → Ω1
X ⊗OX

gri−1
F E)

)
.

Proof. By construction MHod(X/C, L, r)×A1 Gm → Gm splits as

MHod(X/C, L, r)×A1 Gm

∼= ((E,∇),λ) 7→(E,λ∇)←−−−−−−−−−−−−−MdR(X/C, L, r)×k Gm
((E,∇),λ)7→λ−−−−−−−−→ Gm,

where MdR(X/C, L, r) is the fibre at λ = 1. On the other hand, by [Sim97, Theorem 9.1],
at a complex point x ∈ MDol(X/C, L, r), the fibre at λ = 0, MHod(X/C, L, r) is étale
locally isomorphic to the product of MDol(X/C, L, r) with A1. This finishes the proof of
the first part. As for the second part, this is an application of [Sim97, Lemma 7.2]. �

Consider an arithmetic scheme S and a smooth model (XS , LS) as in Lemma 3.1. For
every λ : S → A1, Langer’s construction [Lan14, Theorem 1.1] yields a coarse moduli space
of semistable λ-connections Mλ(XS/S) defined over S. In particular we can apply this to
the case

λ = pA1 : S × A1 → A1

and obtain an S-model of Simpson’s Hodge moduli space MHod(XS/S, LS)→ S × A1. In
the following proposition we denote by d the order of the torsion line bundle L on X.

Proposition 4.10 (Nice models 2). For every positive integer r there exists an affine
arithmetic scheme S and a model (XS , LS) of (X,L), such that the following properties are
satisfied:
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(a) all properties of Proposition 3.3,
(b) there are finitely many λ-connections (N i

S , D
i
S)i=1,...,M on XS ×S A1

S with respect to
λ = pr2, and furthermore we assume that (N i

S , D
i
S) is geometrically P -stable,

(c) the λ-connections of (b) give rise to a bijection

M⊔
i=1

[(N i
S , D

i
S)](|S|) =

d−1⊔
a=0

|Mrig
Hod(X,L,≤ r)|.

Proof. This can be shown using the same techniques as for the proof of Proposition 3.3. �

Henceforth we choose an arithmetic model (XS , LS) as in Proposition 4.10. For every
closed point s ∈ S we apply the theory of Higgs-de Rham flows as recalled in Subsection
4.1.

We fix a closed point s of the scheme S, and also choose a lift to a W2(k(s))-point of S
(using that S is smooth over Spec Z). We denote by nL the number of rank r rigid flat
connections on X with determinant isomorphic to La for a = 0, . . . , d − 1, and choose a

bijection {1, . . . , nL} '
⊔d
a=0M

rig
dR(X/C, La, R)(C) and define a map

σ : {1, . . . , nL} → {1, . . . , nL}(4.2)

as follows: For i ∈ {1, . . . , nL}, we set (N i
S , D

i
S)0S ×S 0 = (V i

s , θ
i
s) ∈ td−1

a=0M
rig
Dol(X/C, L, r).

One first defines

(V
′i
s , θ

′i
s ) = w∗(V i

s , θ
i
s),(4.3)

which by Lemma 3.4 is rigid stable, then one defines C−1(V
′i, θ

′i) which by Proposition 3.5
is a stable rigid integrable connection. Thus, there is a uniquely defined σ(i) ∈ {1, . . . , nL}
such that

C−1(V
′i
s , θ

′i
s ) = (Eσ(i)

s ,∇σ(i)
s ).(4.4)

Lemma 4.11. The map σ is a bijection.

Proof. Clearly, we can reverse the argument: starting with (Ejs ,∇js), then C(Ejs ,∇js) again

is stable and rigid by Lemma 3.4, and thus w−1∗C(Ejs ,∇js) as well. �

Fixing i ∈ N, 1 ≤ i ≤ nL, we define a Higgs-de Rham flow (for the definition, see [LSZ13,
Definition 1.1]) using σ as follows:

(E
σ(i)
s ,∇σ(i)

s )

''

(E
σ2(i)
s ,∇σ

2(i)
s )

%%(V i
s , θ

i
s)

88

(V
σ(i)
s , θ

σ(i)
s )

77

. . .

(4.5)

The downwards arrows are obtained by taking the graded associated to the restriction to
Xs of the Hodge filtration on the rigid connections.

Lemma 4.12. 1) The Higgs-de Rham flow (4.5) is periodic of period fi which is the
order of the σ-orbit of i.

2) It does not depend on the choice of the W2(k(s))-point of S chosen.
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Proof. The point 1) holds by definition, since the map σ is shown to be a bijection in
Lemma 4.11. The second assertion can be seen to be true as follows. We fix a W2(k(s))-lift
of Xs. Its Kodaira–Spencer class endows the set of equivalence classes of W2(k(s))-lifts of
Xs with k(s)-points of an affine space A. Combining Proposition 3.5 with the operator
C−1, one obtains an A-family of isomorphisms of moduli spaces

Mrig
dR(Xs/s, L

p
s, r)×k(s) A 'M

rig
Dol(X

′
s/s, L

′
s, r)×k(s) A.

Since the moduli spaces are 0-dimensional, the resulting bijection of closed points is inde-
pendent of the chosen W2-lift. �

We fix now a W (k(s))-point of S, yielding XW (k(s)). For an irreducible rigid (ES ,∇S) we
show that (EW (k(s)),∇W (k(s))) is f -periodic (see Definition 4.6) and therefore we conclude
using Corollary 4.8 that the isocrystal (E,∇) has a Frobenius structure (after) an unramified
field extension of K(s) = FracW (k(s)).

Proof of Theorem 1.6. For the duration of this proof we introduce the shorthand Mrig
dR =

td−1
a=0M

rig
dR(Xs/s, L

a
s , r). We will also use Mrig

Dol and Mrig
Hod to denote disjoint unions as the

one above. Recall that we have chosen a finite type scheme S over Z such that every rigid
connection has an S-model. We choose S as in Proposition 4.10. In particular, we may
assume that for every s ∈ S, every rigid connection (Es,∇s) over Xs is the restriction of a

unique S-model of a rigid connection. In particular we have thatMrig
dR(XS/S, LS)red → S is

an isomorphism of schemes on every connected component. Using that W (k(s)) is reduced,
we obtain:

Claim 4.13. For every s ∈ S with residue field k(s) the closed embedding s→ SpecW (k(s))
induces a bijection

Mrig
dR(k(s)) =Mrig

dR(W (k(s))).

Furthermore, recall from Lemma 4.9 that we have a Gm-equivariant isomorphism

Mrig
Hod
∼=Mrig

Dol×A1 .

For a positive integer i we denote by Wi = Wi(k(s)) the i-truncated Witt ring. The

isomorphism above implies the assertion: for every y ∈Mrig
dR(Wi(k(s))) there exists a unique

Gm-equivariant section A1
Wi(k(s)) →M

rig
Hod, sending 1 ∈ A1

W (k(s)) to y. Similarly, every Gm-

fixpoint z ∈ Mrig
Dol(Wi)

Gm extends to a unique Gm-equivariant section A1
Wi(k(s)) → M

rig
Hod

sending 0 to z. This yields:

Claim 4.14. A rigid Wi(k(s))-family of stable flat connections (E,∇) ∈Mrig
dR has a unique

Griffiths-transversal filtration F (up to shifting the filtration). And, a rigid Wi(k(s))-family
of stable Higgs bundles (V, θ) is isomorphic to the associated graded of a Hodge bundle
(E,∇, F ), which is unique up to isomorphism.

For a positive integer i > 1 we let Hi be the set of isomorphism classes of tuples
(V, θ, Ē, ∇̄, F̄ , φ̄) over Xi/Wi as in Definition 4.4, with the additional assumption that the
underlying (ungraded) Higgs bundle (V, θ) is rigid and stable, that is, represents a Wi-point

of Mrig
Dol.
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Claim 4.15. The forgetful map Hi →Mrig
Dol(XS/S)(Wi) is a bijection.

Proof. Given (V̄ , θ̄) = (V, θ)×Wi Wi−1, we apply Claim 4.14 to deduce that there is a (up
to isomorphism) unique (Ē, ∇̄, F̄ ) such that we have an isomorphism φ̄ between (Ē, θ̄) and
the associated graded of (Ē, ∇̄, F̄ ). �

We therefore see that Lan–Sheng–Zuo’s functor C−1
i (see Theorem 4.5 above) gives rise

to a map

C−1
i : Mrig

Dol(Wi)→Mrig
dR(Wi).

Furthermore, Claim 4.13 yields a map gr : Mrig
dR(Wi)→Mrig

Dol(Wi) which corresponds to
the construction gr(E,∇, F ) recalled below Theorem 4.5. This is simply the case, because
we have a unique Griffiths-transversal filtration F for every rigid Wi-family (E,∇).

This shows that the Higgs-de Rham flow for rigid flat connections actually corresponds
to a self-map of sets

fli : Mrig
dR(Wi)→Mrig

dR(Wi).

We have

Mrig
dR(XS/S)(W (k(s))) = lim←−

i

Mrig
dR(XS/S)(W (k(s))/mi).

We introduce the notation Mi =Mrig
dR(XS/S)(W (k(s))/mi), MW =Mrig

dR(XS/S)(W (k(s)))
and Mi,0 =

⋂
j>i im(Mj →Mi).

An elementary argument for inverse limits shows that

MW = lim←−
i

Mi,0.

Claim 4.16. The map of sets Mi+1,0 →Mi,0 is a bijection for all i > 0. For all i > 0, the
subset Mi,0 is preserved by the self-map fli : Mi →Mi.

Proof. We have a commutative diagram

MW
// //

'
""

Mi,0

��

M1.

Recall that M1 = Mrig
dR(XS/S)(k) = MW (see Claim 4.13). Since the map MW → Mi,0

is surjective by construction, and injective by commutativity of the diagram, we see that
MW →Mi,0 is a bijection for all i > 0. The commutative diagram

MW
' //

'
##

Mi+1,0

��

Mi,0

shows that Mi+1,0 →Mi,0 is bijective.
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We turn to the proof of the second assertion: the inductive nature of fli reveals that

Mi+1
fli+1

//

��

Mi+1

��

Mi
fli // // Mi

commutes. This shows that for every j > i, the image of Mj → Mi is preserved by fli.
Since Mi,0 =

⋂
j>i im(Mj →Mi) we see that Mi,0 is preserved by fli. �

This shows that length f orbits under fli inMi,0 are in bijection with the f -periodic Higgs-
de Rham flows over k(s) constructed in Lemma 4.12. Furthermore, since MW →Mi,0 is a
bijection, we deduce that every W -family of stable rigid flat connections (E,∇) of rank r
gives rise to a periodic Higgs-de Rham flow. Since there are only finitely many rigid flat
connections of rank r there exists a positive integer fr such that the period length f of every
rigid rank r connection divides fr. An unramified field extension of K(s) = Frac W (k(s))
of degree fr satisfies the conclusion of Theorem 1.6 by virtue of Corollary 4.8. �

Corollary 4.17. Let X be a smooth projective variety over C and let C ↪→ X be a complete
intersection of ample divisors of dimension one. We denote by XS an arithmetic model as
in Proposition 4.10 such that also CS has a model over S. Then there is a non-empty open
subscheme S′ ↪→ S such that for all closed points s ∈ S, all W (k(s))-points of S′, there is a
projective morphism fs : Ys → C0

s on a dense open C0
s ↪→ Cs such that the F -overconvergent

isocrystal (EK(s),∇K(s))|CK(s)
is, over a finite extension of k(s), a subquotient of the Gauß-

Manin F -overconvergent isocrystal Rifs∗(OYs/Q̄p) for some i.

Proof. Let (E,∇) be an irreducible rigid connection. Recall from the introduction that
its determinant is finite. Then by the classical Lefschetz theorem [Lef50], (E,∇)|C is irre-
ducible, and of course has finite determinant. By Theorem 1.6, Ms := (EK(s),∇K(s))|CK(s)

is an irreducible isocrystal with Frobenius structure with finite determinant. By [Abe18,
Theorem 4.2.2], p∗1M

∨
s ⊗ p∗2Ms on Cs ×s Cs is a subquotient of Rigs!(OCht/Q̄p) where

gs : Chts → Cs ×s Cs is the Shtuka stack. According to [Abe18, Corollary 2.3.4], which
states that an admissible stack admits a proper surjective and generically finite cover by
a smooth and projective scheme, we can realize p∗1M

∨
s ⊗ p∗2Ms as a subquotient of some

Rnhs∗(OCht/Q̄p) for some projective morphism hs : Ys → Cs×sCs, with Ys smooth projec-

tive. Thus there is an inseparable cover C τ−→ Cs ×s Cs and a factorization hs : Ys
ϕ−→ C →

Cs ×s Cs such that ϕ is generically smooth course projective. There is then a dense open
U ⊂ C such that Rnϕ∗(Oϕ−1(U)/Q̄p) satisfies base change. Fixing a point (xs, ys) ∈ U , one

defines a dense open C0
s ⊂ Cs such that τ−1(xs×C0

s ) ⊂ U . Set ψ : V = h−1
s (xs×C0

s )→ C0
s .

Then base change implies that Ms is a subquotient of Riψ∗(OV /Q̄p). �

Remark 4.18. As we recalled in Theorem 4.7 (see [LSZ13, p. 3, Theorem 3.2, Variant
2] for the original reference), one can associate to an f -periodic flat connection an étale
W (Fpf )-local system on XK(s). Thus starting with (Ei,∇i) rigid over X/C, for i = 1, . . . , N ,
choosing s, one constructs a p-adic representation

ρi,s : π1(XK(s))→ GL(r,W (Fpf )).(4.6)

These representations will be studied in the following subsection.
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5. The p-adic representation associated to a rigid connection

The aim of this section is to prove that the representations ρi,s defined in (4.6) are rigid
as representation of the geometric fundamental group (see Theorem 5.4).

Definition 5.1. (a) If A is a field, a representation of an abstract group G in GL(r,A)
is said to be absolutely irreducible if the representation G → GL(r,A) → GL(r,Ω)
is irreducible, where Ω is any algebraically closed field containing A.

(b) Let G and A be as in (a). A projective representation G→ PGL(r,A) is said to be
absolutely irreducible if for every embedding of A into an algebraically closed field
Ω the composition G→ PGL(r,Ω) is irreducible as a projective representation.

(c) IfG is finitely generated, one defines the moduli schemeMB(G,PGL(r)) of PGL(r)-
representations of G, which is also a coarse moduli scheme of finite type defined over
Z. An isolated point is called rigid.

The definition above refers to abstract representations. Below we explain how to deal
with continuous representations.

Definition 5.2. Let Γ be a profinite group, and ρ : Γ → GL(r, F ) a continuous and ab-
solutely irreducible representation, where F is a topological field. Every finite-dimensional
F -algebra A inherits a canonical topology from F . One denotes by

Defρ : ArtF → Sets

the functor sending a finite-dimensional commutative local F -algebra A to the set of iso-
morphism classes of continuous representations ρ′ : Γ→ GL(r,A), such that there exists a
finite field extension F ′/F , an F -morphism A→ F ′, and an isomorphism (ρ′)F ′ ' ρF ′ . We
say that ρ is rigid, if Defρ is corepresented by B ∈ ArtF .

Definition 5.3. For a local field F , and its ring of integers OF , we say that a continu-
ous representation ρ : Γ → GL(r,OF ) is rigid and absolutely irreducible, if the associated
residual representation Γ→ GL(r, kF ) is rigid and absolutely irreducible.

We freely use the notation of the preceding sections. Recall that we choose a model
XS of X over which all rigid connections are defined (see Proposition 4.10). The field of

functions Q(S) is by definition embedded in C. We denote by Q(S) its algebraic closure in
C.

The following theorem is the main result of this section. We denote by K(s) the local
field given by the fraction field of the Witt ring W (k(s)) where s is a closed point of S.

Theorem 5.4. For s ∈ S a closed point and SpecW (k(s)) → S we have that ρi,s|π1(XKs
)

is absolutely irreducible and rigid.

We start with general facts. We emphasize that the following lemma is based on Defini-
tion 1.1 of rigidity.

Lemma 5.5. Let Γ be a finitely generated abstract group, and K be an algebraically closed
field of characteristic 0. We denote by ρ : Γ→ GL(r,K) an irreducible representation. Then
ρ is rigid, if and only if the corresponding projective representation ρproj : Γ→ PGL(r,K)
is rigid.
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Proof. We show first that rigidity of ρproj implies rigidity of ρ. We assume by contradiction
that ρ is not rigid. Then there exists a discrete valuation ring R over K, with residue field

K, thus K
ι−→ R

q−→ K, and a representation ρ̃ : Γ→ GL(r,R) such that the diagram

Γ //

##

GL(r,R)

q

��

GL(r,K)

commutes. This amounts to a non-trivial deformation. Since ρproj is rigid, the associated
projective representation ρ̃proj has to be constant. In particular we conclude that ρ̃proj ⊗
Frac(R) is equivalent to ρproj after base change. This implies that there exists a character

χ : Γ→ (Frac(R))×,

such that

ι ◦ ρ⊗ Frac(R) ' (ρ̃⊗ Frac(R))⊗ χ.
Taking determinants, we see that χr is trivial, which implies that χ is already defined over
K. By irreducibility of ρ over R, there is an isomorphism

ι ◦ ρ ' (ρ̃⊗ Frac(R))⊗ χ
defined over Frac(R). We conclude the proof by observing that ι ◦ ρ ' ρ̃ ⊗ χ implies
Tr(ρ(g)) = χ(g)Tr(ρ̃(g)) for all g ∈ Γ. Thus we have χ(g) = 1.

Vice versa, let us assume that ρ is rigid. Let χ = det ρ : Γ → K× be the determinant
of ρ. As above we consider a non-trivial deformation ρ̃proj : Γ → PGLn(R) of ρproj. The
obstruction of lifting ρ̃proj to a homomorphism ρ̃ : Γ → GLn(R) with det ρ̃ ' χ lies in
H2(Γ, µn(R)). Since µn(R) = µn(K), and the obstruction vanishes over the residue field
(indeed, ρproj is the projectivization of ρ), we see that the obstruction vanishes also over R.
This shows the existence of an R-deformation of ρ, which is non-trivial, since the associated
projective representation is non-trivial. �

Recall that for a profinite ring A, an abstract representation ρ : πtop
1 (X) → GL(r,A)

factors through a continuous profinite representation ρ̂ : π1(X)→ GL(r,A), similarly for a
PGL(r,A) representation. The next lemma gives a criterion for rigidity.

Lemma 5.6. Let ρ : πtop
1 (X) → GL(r,Fq) be an absolutely irreducible representation. Let

[ρ] ∈MB(X/C, det(ρ), r)(Fq) be its moduli point. Then [ρ] lies inMrig
B (X/C, det(ρ), r)(Fq)

if and only if the continuous representation ρ̂ is rigid. The analogous assertion holds for
projective representations.

Proof. We deduce this from the fact that for a finite-dimensional Fq-algebra A, one has
a canonical bijection between continuous morphisms π1(X) → GL(r,A) and morphisms

πtop
1 (X)→ GL(r,A). This shows that Def ρ̂(Fq) is represented by the formal scheme which is

the formal completion ofMB(X/C, det(ρ), r)⊗ZFp at the point [ρ]. The latter is equivalent
to the spectrum of an artinian Fq-algebra if and only if [ρ] is an isolated point. That is, if
and only if ρ is rigid. Definition 5.2 of rigidity for continuous representations of profinite
groups allows us to conclude the proof. �
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Let Kp−mon be a number field such that the topological monodromy of every rank r
irreducible rigid projective representation has values in PGL(r,Kp−mon), and Kmon be a
number field such that the topological monodromy of every rank r irreducible rigid repre-
sentation has values in GL(r,Kmon). Since there are only finitely many irreducible rigid

representations, and πtop
1 (X) is finitely presented, there exists M ∈ OKp−mon such that

every such representation is defined over PGL(r,OKp−mon [M−1]). We write Op−mon,M =∏
ν OKp−mon,ν , where ν ranges over the places of Kp−mon such that ν(M) = 1. As a topo-

logical group, Op−mon,M is profinite.

Proposition 5.7 (Simpson, [Sim92], Theorem 4). Let ρ : πtop
1 (X) → PGL(r,OKp−mon)

be an absolutely irreducible rigid PGL(r)-representation. Then there is a finite Galois
extension L/Q(S) such that ρ⊗Op−mon,M extends to a projective representation

πtop
1 (X) //

ρ
((

π1(XL)

��

PGL(r,Op−mon,M).

Proof. Let ρ̂ : π1(X) → PGL(r,Op−mon,M) be the profinite representation associated to ρ.
We apply Simpson’s theorem loc. cit., with the slight difference that we use here directly
a projective representation in the assumption. For the reader’s convenience, we sketch
Simpson’s argument in this context. We choose finitely many generators A1, . . . , AN of
πtop

1 (X) and use them to embed

R(πtop
1 (X))(Op−mon,M) ↪→ PGL(r,Op−mon,M))N ,

whereR(πtop
1 (X))(Op−mon,M) is the set of Op−mon,M-points of the scheme of representations

defined by the image of the Ai satisfying the relations of the topological fundamental group.
Thus R(πtop

1 (X)) is endowed with the profinite topology. To γ ∈ Γ = Gal(Q(S)/Q(S)) one
assigns the representation ργ : π1(X) → PGL(r,Op−mon,M), c 7→ ρ(γcγ−1). Continuity is
checked as in loc. cit. As ρ is rigid, there is an open subgroup U ⊂ Γ such that for γ ∈ U ,

the representation ργ is isomorphic to ρ̂. We set L = Q(S)
U

. This yields the factorization

π1(X) //

ρ̂ ((

π1(XL)

��

PGL(r,Op−mon,M).

�

The Lan–Sheng–Zuo correspondence only relates periodic Higgs bundles with crystalline
representations. In particular we do not know that the representation thereby assigned to
a rigid Higgs bundle is again rigid. This problem is solved in the sequel by relating the
Lan–Sheng–Zuo correspondence to Faltings’s Simpson correspondence established in [Fal05,
Theorem 5]. Recall that Faltings defines a category of generalized representations (of the
geometric étale fundamental group) of a p-adic scheme, see [Fal05, Section 2], and defines
the notions of small generalized representations and small Higgs bundles (see loc. cit.).
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Theorem 5.8 (Faltings). Let K be a local field with ring of integers V , let X be a proper V -
scheme with toroidal singularities. There exists an equivalence of categories between small
Higgs bundles on XK̄ and small generalized K-representations of πét

1 (XK̄).

We fix a closed point s ∈ S and consider a morphism SpecW (k(s)) → S. The fraction
field of W (k(s)) will be denoted by K(s). As in Remark 4.18 we list the representations
ρi,s : π1(XQp) → GL(r,W (F

pfi,s
)) corresponding to rank r irreducible rigid Higgs bundles

(Ei, θi) on XW (k(s)). We let σm(Ei, θi) denote the periodic Higgs bundle corresponding to
σm(ρi,s) by the Lan–Sheng–Zuo correspondence. That is, σ is the shift operator defined
in (4.2) on Higgs bundles, which corresponds to the Frobenius action on the coefficients
W (F

pfi,s
) for ρi,s.

We recall that σ denotes Lan–Sheng–Zuo’s shift functor for periodic Higgs bundles. On
the level of crystalline representations it corresponds to the Frobenius-twist of a represen-
tation. Recall that we denote by fi,s the smallest positive integer such that σfi,s(Ei,∇i) '
(Ei,∇i).

Lemma 5.9. There exists an mi,s such that under Faltings’s p-adic Simpson correspon-
dence the representation of the geometric fundamental group ρi,s|π1(XKs

) is isomorphic to

σmi,s(Ei, θi) as representations defined over Frac(W (F
pfi,s

)).

Proof. We fix a ρi,s which we for short denote by ρ. We define the Zp-representation

ρbig =

fi,s−1⊕
i=0

σiρ

of π1(CQp). It corresponds to the Higgs bundle (Ebig, θbig) of period 1 by means of Lan–
Sheng–Zuo’s correspondence.

We compare this correspondence with Faltings’s one. First we remark that Faltings’s cor-
respondence relates small generalized representations of π1(XKs

) and small Higgs bundles

on XKs
(see Theorem 5.8). The class of representations is preserved by deformations inside

generalized representations, which allows us to test rigidity. Furthermore, every Higgs bun-
dle with nilpotent Higgs field is small (smallness is defined via the characteristic polynomial
in the Qp-theory), and every Zp-representation induces a small Qp-representation.

By definition, ρbig corresponds to a Frobenius crystal, and therefore, by [Fal05, Section
5, Ex.], Faltings’s correspondence associates to ρbig ⊗Q the Higgs bundle (Ebig, θbig). This
example is thus compatible with the Lan–Sheng–Zuo correspondence.

Furthermore, we have an isomorphism

ρbig|Qp
⊗Z Q =

fi,s−1⊕
i=0

σiρ|Qp

⊗Z Q '
fi,s−1⊕
m=0

ρFm.

This implies that each factor on the left hand side is isomorphic to a unique factor on the
right hand side. In particular, we obtain the requested isomorphism ρi,s ⊗Qq ' ρFmi,s

. �

Corollary 5.10. The representation ρgeom
i,s = ρi,s|π1(XQ̄p

) is absolutely irreducible and rigid.
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Proof. It follows from Proposition 3.5 that σm(Ei, θi) is again rigid. By virtue of Lemma
5.9 we see that the representation ρgeom

i,s = ρi,s|π1(XQ̄p
) is associated to a stable rigid Higgs

bundle under Faltings’s correspondence, and hence is rigid and absolutely irreducible. �

Proof of Theorem 5.4. In Corollary 5.10 we have shown that the representation ρgeom
i,s =

ρi,s|π1(XQ̄p
) is absolutely irreducible and rigid. This concludes the proof of Theorem 5.4. �

In the following we denote by q a power of a prime p. We use the shorthand Zq for
W (Fq).

Lemma 5.11. There exist infinitely many prime numbers p, such that

(a) every rigid and absolutely irreducible Zq-representation of πtop
1 (X) of rank r and

determinant L is defined over Zp, and similarly for rigid absolutely irreducible pro-
jective representations (in particular every place ν over p in Kmon and Kp−mon splits
completely);

(b) every rigid and absolutely irreducible representation ρ : πtop
1 (X)→ GL(r,Fp) is ob-

tained as reduction modulo p of a representation πtop
1 (X) → GL(r,OKmon [M−1]),

and similarly for projective representations;
(c) there exists a closed point s ∈ S with k(s) = Fp, which is the specialization of a

morphism Q(S)→ Qp;
(d) for every s as in (b), a rigid and absolutely irreducible projective representation of

π1(XQp
)→ PGLn(Zp) descends to π1(XQp).

We call such a closed point s good, if in addition the order of L is prime to p.

Proof. We write S = SpecR. We denote by R1 = Z[α1, . . . , αm] a finitely generated
subalgebra of C containing R, OKmon and OKp−mon [M−1], as well as the normalization of S
inside all of the (finitely many) field extensions L/Q(S) constructed in Proposition 5.7. By
Cassels’s embedding theorem [C76, Theorem I], there are infinitely many prime numbers p
such that the fraction field Q(α1, . . . , αm) can be embedded in Qp, and the generators αi
are sent to p-adic units. For such a p, the induced morphism OKmon → Zp is well-defined
and injective. This shows (a).

Claim (b) is automatic by choosing very large prime numbers: since the variety of

πtop
1 (X)-representations is of finite type over Z, the subscheme of rigid representations

is finite over a dense open of SpecZ, thus there can only be finitely many primes where
isolated points exist that do not have a Kmon-model.

Moreover we have a non-trivial morphism R → Zp, hence the composition R → Fp
defines the required Fp-rational point s in (b).

Claim (c) follows from (b) and Proposition 5.7. At first we choose an abstract isomor-
phism of fields C ' Qp, and view a rigid and absolutely irreducible projective representation
ρ of π1(XQp

) as one of π1(X).

We know that ρ is obtained from a rigid absolutely irreducible representation defined
over Op−mon[M−1]. By Proposition 5.7 the associated projective Op−mon,M-representation
descends to XL. By tensoring along Op−mon,M → Zp (using that p splits completely in
Kp−mon by (a)), we see that the projective representation ρ itself descends to XL. However,
by construction our p also splits in L and therefore we see that ρ descends to XQp . �
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Corollary 5.12. For every good closed point s ∈ S with char(k(s)) = p we have for every
rigid stable Higgs bundle (V, θ) defined over Xs that σ(V, θ) and (V, θ) are isomorphic as
PGL(r)-Higgs bundles.

Proof. Recall that Z
pfi,s

is the ring of definition of ρi,s. We have seen in the proof of

Theorem 5.4 that ρproj
i,s is isomorphic to a projective representation defined over Zp. This

implies the assertion. �

6. Rigid connections with vanishing p-curvature have unitary monodromy

The aim of this section is to prove Theorem 1.8, which asserts that a rigid flat connection
(E,∇) satisfying the assumptions of the p-curvature conjecture has unitary monodromy.

We use that a rigid flat connection has the structure of a complex variation of Hodge
structure (E,Fm,∇) (by [Sim92, Lemma 4.5]). A complex variation of Hodge structure has
unitary monodromy if and only if its Kodaira–Spencer class gr(∇) : gr(E) → gr(E) ⊗ Ω1

X
vanishes.

Theorem 6.1. Let (ES ,∇S) be an S-model of a rigid connection such that for all closed
points s ∈ S, the connections (Es,∇s) have vanishing p-curvatures. Then (EC,∇C) is a
unitary connection.

Proof. We choose a good closed point s ∈ S (see Lemma 5.11). By virtue of Corollary 5.12

we have fproji,s = 1 for all i. By Corollary 5.12, we know that σ(Vs, 0) and (gr(Es), gr(∇s))
are equivalent as projective Higgs bundles (this follows from the definition of the Higgs-de
Rham flow). This shows that gr(∇s) = ω · idgr(Es), where ω is a 1-form on Xs. However, we
also know that gr(∇s) is nilpotent, hence we must have gr(∇s) = 0 for every good s ∈ S.

Since there are infinitely many prime numbers p such that there exists a good closed point
s ∈ S (Lemma 5.11), we conclude that the Kodaira–Spencer class vanishes everywhere on
XS . Vanishing of the Kodaira–Spencer class implies that ∇ is a unitary connection. �

Under certain circumstances the result above can be used to deduce finiteness of the
monodromy. This is the case if the monodromy of the flat connection is known to be
strongly integral (defined below).

Remark 6.2. According to Simpson’s integrality conjecture, a rigid connection is expected
to have integral monodromy, that is, the monodromy representation is isomorphic to a
representation ρ : πtop

1 (X,x)→ GLn(Z̄). Here, Z̄ denotes the ring of algebraic integers. We
emphasize that this is not the same as strong integrality, which amounts to the existence
of an isomorphism with a representation πtop

1 (X,x)→ GLn(Z). While it is true that

strong integrality & unitary⇒ finite monodromy,

it does not hold that “integrality and unitary” implies finite monodromy. We give a coun-
terexample below.

Example 6.3. Let α ∈ Z̄ \ µ∞ be an algebraic integer which is not a root of unity such
that |α| = 1 (see for instance [Dai06, Theorem 2] for a proof of existence).
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Let Σ be an orientable Riemann surface of genus g ≥ 1, and x ∈ Σ. We define a
representation ρ : πtop

1 (Σ, x) = 〈a1, . . . , a2g|[a1, a2] · · · [a2g−1, a2g]〉 → GL1(Z̄) as follows:

ρ : a1 7→ α, ai 7→ 1 ∀i > 1.

This representation is integral and unitary by construction. However, it cannot be of finite
monodromy, since otherwise α would be a root of unity.

7. A remark on cohomologically rigid connections and companions

Recent years saw various breakthroughs on Deligne’s companion conjecture ([Del80, Con-
jecture 1.2.10]), see [AE16, Dri16] and the brief overview given below. While the `-adic
theory can now be considered to be complete, the existence of les petits camarades cristallins
is open, except for dimension 1 (see Abe’s [Abe18]). This section serves as an extended re-
mark establishing the existence of these p-adic companions for F -isocrystals stemming from
cohomologically rigid flat connections. This result provides further evidence for Simpson’s
Conjecture 1.3. In line with the main narrative of this article, this observation follows from
a counting argument.

We use the standard notations. We choose a closed point s ∈ S. Given a rigid connec-
tion (E,∇) with finite order determinant L, we constructed the isocrystal with Frobenius
structure on XKv in Theorem 1.6. For notational convenience, in this section, we denote it
by F .

For the reader’s convenience, we summarise the defining properties of `-adic companions.
Let E be an irreducible isocrystal with Frobenius structure on a smooth variety Y of finite
type over Fq of characteristic p > 0. To every closed point y ∈ Y , one attaches the
characteristic polynomial PE,y(t) = det(1 − tFry|Ey) ∈ Q̄p[t], where Fry is the absolute
Frobenius at y acting on Ey := i∗yE , and where iy : y → Y is the closed embedding. Similarly

for a lisse Q̄`-sheaf V on Y , for every closed point y ∈ Y , one attaches the characteristic
polynomial PV,y[t] = det(1− tFy|Vȳ) ∈ Q̄`[t], where Fy is the geometric Frobenius Fy acting
on Vȳ, where ȳ → y an F̄p-point above y.

Definition 7.1 (See [AE16], Definition 1.5, [Dri16], Section 7.4.). (1) Let τ : Q̄p
'−→ Q̄`

be an abstract isomorphism of fields. We say that an irreducible lisse Q̄`-sheaf V is a
τ -companion of an irreducible isocrystal E with Frobenius structure, or equivalently
that an irreducible isocrystal E with Frobenius structure is a τ−1-companion of an
irreducible lisse Q̄`-sheaf V if for every closed point y ∈ Y , one has an equality of
characteristic polynomials

τ(PE,y(t)) = PV,y[t] ∈ Q̄`[t].

(2) Let τ : Q̄p
'−→ Q̄p be an abstract field isomorphism. We say that an irreducible

isocrystal E ′ with Frobenius structure is a τ -companion of an irreducible isocrystal
E with Frobenius structure if for every closed point y ∈ Y , one has an equality of
characteristic polynomials

τ(PE,y(t)) = PE ′,y[t] ∈ Q̄`[t].
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(3) Let τ : Q̄`
'−→ Q̄`′ be an abstract field isomorphism. We say that an irreducible lisse

Q̄`′-sheaf V ′ is a τ -companion of an irreducible lisse Q̄`-sheaf V if for every closed
point y ∈ Y , one has an equality of characteristic polynomials

τ(PV,y(t)) = PV ′,y[t] ∈ Q̄`[t].

We shall use in the sequel that τ -companions exist by [AE16, Theorem 4.2] (see [Dri16,

Theorem 7.4.1] for a summary, and [Ked17] for later work in progress) for τ : Q̄p
'−→ Q̄`′ , for

irreducible objects with finite determinant. They also exist by Drinfeld’s theorem [Dri12,

Theorem 1.1] for τ : Q̄`
'−→ Q̄`′ for irreducible objects with finite determinant. We shall

not use Drinfeld’s `-to-`′ existence theorem. By Čebotarev’s density theorem and Abe’s
Čebotarev’s theorem [Abe18, Proposition A.3.1], companions are unique up to isomorphism,
and companions of two non-isomorphic objects are non-isomorphic, and the companion of
an order d rank 1 object is an order d rank 1 object. The general conjecture is that
companions exist for all τ . The remaining cases are for τ : Q̄p → Q̄p and τ : Q̄` → Q̄p. We
will see that for the cohomologically rigid case, existence of p-to-p and `-to-p companions
can be shown.

Recall that an irreducible connection (E,∇) with determinant L on X over C is called
cohomologically rigid if H1(X,End0(E,∇)) = 0, that is (E,∇) is rigid and in addition its
moduli point [(E,∇)] ∈ MdR(X/C, L, r) is smooth. Here L is torsion of order d. See
[EG18, Section 2] for a general discussion of the notion even in the non-proper case. In
our situation, where X is proper, it is straightforward to see that H1(X,End0(E,∇)) = 0
is the Zariski tangent space of MdR(X/C, L, r) at the moduli point. By base change for
de Rham cohomology one has H1(XQ̄p

,End0((E,∇))) = 0, and this last group is equal to

crystalline cohomology over Q̄p of the isocrystal F (see Corollary 1.5), thus

H1
crys(Xs̄,End

0(F))⊗W (F̄p) Q̄p = 0.

Definition 7.2. For s a closed point of S in Theorem 1.6 we denote by k̃(s) ⊃ k(s) a
finite extension such that every rigid stable rank r flat connection (E,∇) gives rise to an
F -isocrystal (see Theorem 1.6).

Let S(s, p, r, d) be the finite set of isomorphism classes of isocrystals F of rank r and
determinant of order d obtained this way, with d prime to the characteristic p of s, such
H1

crys(Xs̄,End
0(F))⊗W (F̄p) Q̄p = 0. For a prime ` 6= p, we denote by S(s, `, r, d) the finite set

of isomorphism classes of irreducible Q̄`-adic sheaves V of rank r and order d determinant
such that H1(Xs̄,End

0(V)) = 0. We denote by S(r, d) the finite set of isomorphism classes
of irreducible rank r cohomologically rigid connections with order d determinant on X.

Theorem 7.3. 0) Theorem 1.6 defines a bijection between S(r, d) and S(s, p, r.d).
1) Let τ : Q̄p → Q̄` be an isomorphism. The companion correspondence for τ estab-

lishes a bijection between S(s, p, r, d) and S(s, `, r, d), defining for τ−1 the compan-
ions of the elements in S(s, `, r, d).

2) Let σ : Q̄p → Q̄p be an isomorphism. Then σ-companions of elements in S(s, p, r, d)
exist and the companion correspondence for σ establishes a permutation of S(s, p, r, d).
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The proof occupies the rest of this section. We fix a prime ` 6= p and write

σ : Q̄p
τ−→ Q̄`

τ
′−1

−−−→ Q̄p

for a choice of τ . Thus 2) follows directly from 1) by applying 1) to τ and τ ′.
We denote by V the τ -companion of F ∈ S(s, p, r, d). It corresponds to an irreducible

continuous representation Vs : π1(Xs) → GL(r, Q̄`) with finite determinant, thus precom-
posing by the (surjective) specialization homomorphism sp : π1(XK(s))→ π1(Xs), it defines

an irreducible `-adic lisse sheaf VK(s) : π1(XK(s))→ GL(r, Q̄`) on XK(s), and the underlying

geometric representation VQ̄p
: π1(XQ̄p

)→ GL(r, Q̄`) on XK(s).

Proposition 7.4. 1) The representation VQ̄p
is irreducible.

2) We have the vanishing result

H1(XQ̄p
,End0(VQ̄p

)) = 0.

3) The order of det(VQ̄p
) is d.

Proof. We prove 1). Since sp restricts to the specialization π1(XQ̄p
)→ π1(Xs̄), where s̄→ s

is a geometric point with residue field F̄p, and is still surjective, we just have to show that
Vs is geometrically irreducible. Theorem 5.4 together with the construction of Theorem 1.6
shows that the isocrystal is compatible with finite base change s′ → s. Since an irreducible
`-adic sheaf which is not geometrically irreducible splits over a finite base change s′ → s
(see e.g. [Del12, (1.3.1)]), this shows that Vs is geometrically irreducible.

We turn to the proof of 2). Let us consider the L- functions L(Xs,End
0(Vs̄)) and

L(Xs,End
0(F)) for the lisse Q̄`-sheaf End0(Vs) and for the isocrystal with Frobenius struc-

ture End0(F) ([Del73, 5.2.3] and [Abe18, 4.3.2]). The product formula for these L-functions
implies that they are equal. On the other hand, as Vs̄ and F , thus a fortiori End0(Vs̄) and
End0(F) have weight 0 (see [Laf02, Proposition VII.7 (i)], corrected in [EK12, Cor. 4.5]), the
dimension of H1(Xs̄,End

0(Vs̄)) over Q̄` and of H1
crys(Xs̄,End

0(F))⊗Qp Q̄p over Q̄p are com-
puted as the number of weight 1 eigenvalues counted with multiplicities in the L-function
(see [EG18, Lemma 3.4] for a more general purity argument). This shows that both are the
same. On the other hand, one has H1

crys(Xs̄,End
0(F)) = 0. By [Kat70, Theorem 8.0], there

is a dense open S′ ↪→ S on which one has base change for de Rham cohomology. Thus we
conclude that

0 = dimQpH
1
dR(XQp ,End

0(E,∇)) = dimCH
1
dR(X,End0(E,∇)).

Therefore, we have dimQ̄`
H1(Xs̄,End

0(Vs̄)) = 0.

It remains to see that the specialization homomorphism

H1(Xs̄,End
0(Vs̄))→ H1(XK̄(s),End

0(VK̄(s)))

is an isomorphism, which is true by local acyclicity and proper base change [Art73, Cor.
1.2].

We now turn to the proof of 3). By definition, the order of det(VQ̄p
) is the same as the

order of det(Vs̄). Since the order d of det(F) does not change after replacing s by a finite
extension, its companion det(Vs) is of order d. Thus det(Vs̄) is of order d. �
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Corollary 7.5. The composite representation

ρ : πtop
1 (X)→ π1(X) = π1(XQ̄p

)
VQ̄p−−→ GL(r, Q̄`)

defines a cohomologically rigid Q̄`-point of Mrig
B (X/C, L, r), for some L of order d, and

any cohomologically rigid Q̄`-point of Mrig
B (X/C, L, r) with determinant of order d, arises

in this way.

Proof. Let A ⊂ Z` be a subring of finite type such that ρ factors though ρA : πtop
1 (X) →

GL(r,A), and ι : A ↪→ C be a complex embedding. Set ρC = ι ◦ ρA. Then

H1
an(X,End0(ρC)) = H1

an(X,End0(ρA))⊗A C.

Here the subscript an stands for the analytic topology. On the other hand, by comparison
between analytic and étale cohomology, one has

H1
an(X,End0(ρA))⊗A Q` = H1

ét(X,End
0(ρ)) = H1(XQ̄p

,End0(VQ̄p
)) = 0.

This proves the first part. It also shows that for every closed s ∈ S, the number of the Vs̄
is at most the number of cohomologically rigid connections over the complex variety X.

Vice versa, given all cohomologically rigid points of MdR(X/C, L, r), their restrictions
to XK(s) for a closed point s ∈ S define isocrystals with Frobenius structure (Theorem 1.6),
which are cohomologically rigid (proof of Proposition 7.4), and pairwise different. Thus
the `-companions Vs are pairwise different as well. This implies that the number of Vs is
precisely the number of cohomologically rigid connections and finishes the proof. �

Proof of Theorem 7.3. As in Corollary 7.5 we have a companion assignement Φ(τ) : F 7→
V which is injective on isomorphism classes (by Čebotarev density). By Corollary 7.5
this assignement is a bijection between the set of isomorphism classes of F constructed
in Theorem 1.6 and the set of isomorphism classes of irreducible Q̄`-lisse sheaves with
determinant Ls with the condition H1(XQ̄p

,End0(VQ̄p
)) = 0. This shows 1). We perform

the construction for τ ′, yielding Φ(τ ′) : F 7→ V ′. Thus Φ(τ ′)−1 ◦Φ(τ)(F) is a σ-companion
to F . This shows 2). As for 0), by Theorem 1.6, the cardinality of S(r, d) is at most the one
of S(s, p, r, d) while by Corollary 7.5 S(s, `, r, d) has at most as many elements as S(r, d).
This shows 0) and thus finishes the proof. �

8. Concluding observations

8.1. SL(3)-rigid connections. In [EG18] the authors prove Simpson’s integrality conjec-
ture for cohomologically rigid flat connections. It was shown in Langer–Simpson’s [LS16]
that rigid SL(3)-connections with integral monodromy are of geometric origin. Combin-
ing the two aforementioned results, one sees that cohomologically rigid SL(3)-connections
on smooth projective varieties are of geometric origin. There is more that can be said in
connection to the p-curvature conjecture.

Proposition 8.1. The p-curvature conjecture holds for cohomologically rigid connections
of rank 3 and trivial determinant on smooth projective schemes.
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Proof. In [And04, Theorem 16.2.1], André proved that an irreducible subquotient of a Gauß-
Manin connection f : Y → X satisfies the p-curvature conjecture if f has one complex fibre
with connected motivic Galois group. The result [LS16, Theorem 4.1] together with the
remarks above imply that cohomologically rigid SL(3)-connections all are subquotients of
Gauß-Manin connections coming from families of abelian varieties. Those have a connected
motivic Galois group (see [Sch11, Proposition 2]). We conclude that the p-curvature con-
jecture is true for cohomologically rigid SL(3)-connections. �

8.2. Vanishing of global symmetric forms. A smooth projective variety X without
global non-trivial i-th symmetric differential for all i, has the property that all integrable
connections are rigid and have finite monodromy, see [BKT13, Theorem 0.1]. The proof
uses p-adic methods to show integrality, and also positivity theorems, ultimately stemming
from complex Hodge theory, as well as L2-methods. It would be nice to understand at least
part of the theorem in terms of characteristic p methods.

8.3. Motivicity of the isocrystal from good curves to the whole variety. The
existence of Frobenius structure implies that the isocrystal defined by an irreducible rigid
(E,∇) on XKv is motivic on curves C0

s ↪→ Xs where C ↪→ X is a dimension 1 smooth
complete intersection of ample divisors and C0

s ↪→ Cs is a dense open. See Corollary
4.17. This raises the problem of extending the motivicity from Cs to Xs. That is, can
one find a morphism fs : Ys → Us over a dense open Us ↪→ Xs, which has the property
that an irreducible isocrystal with Frobenius structure and finite determinant on Xs is a
subquotient of the Gauß-Manin isocrystal Rifs∗OYs/Q̄p

for some i ≥ 0? Beyond the study
of rigid connections, it would enable one to make progress on the construction of `-to
p-companions (see Section 7).

8.4. Rigid connections and the p-curvature conjecture.

Proposition 8.2. Let X/C be a smooth projective variety. Then if any cohomologically
rigid connection (E,∇) on X has a model (XS , (ES ,∇S)) over a scheme S of finite type
over Z with p-curvature 0 at all closed points s ∈ S, the monodromy of all cohomologically
rigid connections (E,∇) is finite.

Proof. Let ρ : πtop
1 (X) → GL(r,C) be a cohomologically rigid representation. By [EG18]

the monodromy lies in GL(r,OL) for some number field L ⊂ C. If σ : L → C is another
complex embedding, then the groups H1

an(X,End0(ρ)) and H1
an(X,End0(σ ◦ ρ)) are equal

and thus vanish. Therefore, σ ◦ ρ is cohomologically rigid. This implies that
⊕

σ σ ◦ ρ,
where σ runs through the Galois group G of L has monodromy in GL(r|G|,Z) and is
unitary by Theorems 1.8. Thus, applying [Kat72, Proposition 4.2.1.3], one concludes that
the monodromy of

⊕
σ∈G σ ◦ ρ is finite. In particular, ρ has finite monodromy. �

Appendix A. Deformations of flat connections in positive characteristic

In this appendix we describe an alternative approach to Theorem 1.4 which does not rely
on the classical Simpson correspondence. Furthermore, it allows one to deduce stronger
statements in the case of cohomological rigidity (see Corollary A.7).

Let Z be a smooth projective variety defined over a perfect field k of characteristic p. We
denote by Z ′ is Frobenius twist, by F : Z → Z ′ the relative Frobenius. In the applications,
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Z is the fibre Xs at a closed point s of a scheme S of finite type over Z over which a smooth
complex projective variety X is defined, and k is the residue field of s (which is finite).

Remark A.1. By construction, for (E,∇) a rank r integrable connection on Z, the point
a ∈ AZ′(k) from Theorem 2.17 has coordinates ai ∈ H0(Z ′,Symi(Ω1

Z′)) from (2.5).

We consider the Gm-action

T ∗Z ′ ×k Gm

&&

m // T ∗Z ′

π′

��

Z ′

(A.1)

defined by the conic structure on T ∗Z ′. We use the notation m : V ×k Gm
m−→ T ∗Z ′ for the

restriction of m to any subscheme V ⊂ T ∗Z ′. For any natural number n ≥ 1, we define
Vn = V ×kSpec k[t]/(t−1)n → V ×kGm where Gm = Spec k[t, t−1]. There is a commutative
diagram

Vn

""

m // T ∗Z ′

π′

��

Z ′.

(A.2)

We also denote by r : Vn → V the retraction obtained via base change from

Spec k[t]/(t− 1)n → Spec k.

Proposition A.2. Let Z be a smooth projective variety defined over a perfect characteristic
p > 0 field. Let (E,∇) be an integrable connection on Z with Hitchin invariant a =
χdR((E,∇)). If Z lifts to W2(k) we have an equality of Brauer classes

[m∗DZ′ ] = [r∗DZ′ ] on (Z ′a)p.

Proof. By [OV07, Proposition 4.4], the Brauer class [DZ′ ] ∈ H2
ét(T

∗Z ′,O×T ∗Z′) of the Azu-
maya algebra DZ′ is the image φ(θ) of the tautological one-form

θ ∈ H0(T ∗Z ′, π∗Ω1
Z′) ⊂ H0(T ∗Z ′,Ω1

T ∗Z′)

(see Remark 2.16) by the connecting homomorphism of the étale exact sequence

0→ O×T ∗Z′ → F∗O×T ∗Z′
d log−−−→ F∗Z

1(Ω1
T ∗Z′)

w∗−C−−−−→ Ω1
T ∗Z′ → 0(A.3)

on T ∗Z ′, where we use that T ∗Z ′ is the Frobenius twist of T ∗Z via w : T ∗Z ′ → T ∗Z. Recall
that C denotes the Cartier operator, F : T ∗Z → T ∗Z ′ the relative Frobenius homomor-
phism, and Z1(Ω1

T ∗Z′) is the sheaf of closed 1-forms. We now replace T ∗Z ′ and T ∗Z in
(A.3) by their product with Gm over k, and the differential forms over k by the ones over
Gm of the product varieties. This yields on (Z ′a)p

m∗DZ′ = φ(m∗θ), r∗DZ′ = φ(r∗θ).

On the other hand,

m∗θ − r∗θ ∈ Ker
(
H0((Z ′a)p,Ω

1
(Z′a)p/Spec k[t]/(t−1)p)→ H0(Z ′a,Ω

1
Z′a

)
)
.
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Thus, m∗θ − r∗θ has support in Z ′p ↪→ T ∗Z ×k G′m, where Z ′ ↪→ T ∗Z ′ is the zero-section.
We conclude

φ(m∗θ − r∗θ) ∈ H2
ét(Z

′
p,O×Z′p).

Hence we have

φ(m∗θ − r∗θ) = φ(m∗θ|Z′p − r
∗θ|Z′p) = m∗φ(θ|Z′p)− r∗φ∗(θ|Z′p) ∈ H2

ét(Z
′
p,O×Z′p).

As k is perfect, a lifting of Z to W2(k) is equivalent to a lifting of Z ′ to W2(k). By [OV07,
Cor. 2.9], one has the vanishing

φ(θ|Z′p) = 0.

This finishes the proof. �

Remark A.3. One can show that the choice of a W2-lift in Proposition A.2 above, induces
a canonical equivalence of categories

(A.4) QCoh(Z′a)p(m∗DZ′) ∼= QCoh(Z′a)p(DZ′).
To see this one applies [BB07, Proposition 3.11] instead of [OV07, Proposition 4.4] in the
argument above (note that the authors of loc. cit. call two Azumaya algebras equivalent,
if their categories of modules are equivalent). Applying [BB07, Cor 3.12] to the special
case of a diagonal morphism, we obtain that for 1-forms θ1, θ2 on Z ′ we have a canonical
equivalence of categories QCoh(Dθ1+θ2) ∼= QCoh(Dθ1 ⊗ Dθ2). Putting these two refined
assertions together, and evoking the splitting associated by Ogus–Vologodsky to a W2-lift
[OV07, Cor. 2.9] we obtain a canonical equivalence of categories as in (A.4).

We denote by µ : AZ′ ×k Gm → AZ′ the action defined for t ∈ Gm by multiplication by
ti on H0(Z ′, SymiΩ1

Z′).

Theorem A.4. Let Z be a smooth projective variety defined over a perfect characteristic
p > 0 field k. Let (E,∇) be an integrable connection on Z with Hitchin invariant a =
χdR((E,∇)). Then assuming that Z lifts to W2(k), there exists an integrable connection on

Z ×k T , for T = Spec k[t]/(t − 1)p, with spectral cover (Z ′a)p
m−→ T ∗Z ′ ×k T , with Hitchin

invariant µ(a×k T ), and which restricts to (E,∇) on Z ′a ↪→ T ∗Z ′.

Proof. Let M be the pT ∗Z′DZ′×kT |Z′a-module associated to (E,∇) via the correspondence
of Theorem 2.17. Then r∗M is a p∗T ∗Z′r

∗DZ′-module, thus by Proposition A.2, r∗M can
be viewed as a p∗T ∗Z′m

∗DZ′-module on (Z ′a)p (non-canonically). We apply again Theorem
2.17 to conclude to the existence of an integrable connection on Z×k T with the properties
of the theorem. This finishes the proof. �

Remark A.5. Theorem A.4 gives an alternative proof of Theorem 1.4 which states that
a complex irreducible flat connection (EC,∇C), has a model XS over a finite type scheme
S such that the p-curvatures at all closed points s ∈ S are nilpotent. Indeed, by virtue
of Theorem A.4, every flat connection defined over a characteristic p variety with non-
nilpotent p-curvature, has a non-trivial deformation of an order which grows linearly with
p. For p >> 0 this exceeds the bound D exhibited Corollary 3.7.

We are grateful to one of the anonymous referees for pointing out the following interesting
perspective on the material contained in this appendix:
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Remark A.6. Using the methods of [OV07] one can show that the W2-lift of Xs yields a

canonical action of G]
m, the PD hull of the neutral element of Gm, on the category MIC(X).

This G]
m-action can be viewed as a de Rham analogue of the Gm-action on the moduli

space of Higgs bundles.

We remark that the viewpoint on Theorem 1.4 described above still leaves it open whether
rigid flat connections have nilpotent p-curvature in the case of small primes p. For cohomo-
logically rigid flat connections more can be said. The following corollary has been pointed
out to us by Y. Brunebarbe.

Corollary A.7. Let k be a perfect field of positive characteristic p and Z/k a smooth
projective k-variety with lifts to W2(k). Let (E,∇) be a stable cohomologically rigid flat
connection on Z. Then ∇ has nilpotent p-curvature.

An interesting aspect of this corollary is that we only have to assume liftability of Z to
W2(k), and it even applies to small primes p. This begs the question whether the same
property holds true for all rigid flat connections in positive characteristic, without the
cohomological assumption, and even without the liftability assumption.

Question A.8. Let k be a perfect field of positive characteristic p and Z/k a smooth
projective k-variety. Let (E,∇) be an irreducible stable rigid flat connection of rank r on
Z. Is the p-curvature of ∇ nilpotent?
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Sup. 15 (1982), 547-608.

[Gro16] Groechenig, M.: Moduli of flat connections in positive characteristic, Math. Res. Let. 23 (2016)
4, 989–1047.
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phismes de schémas. III, Inst. Hautes Études Sci. Publ. Math. (1966).
[Kat70] Katz, N.: Nilpotent connections and the monodromy theorem: applications of the result of Turrit-

tin, Publ. math. Inst. Hautes Études Sci. 39 (1970), 175–232.
[Kat72] Katz, N.: Algebraic Solutions of Differential Equations (p-curvature and the Hodge Filtration),

Invent. math. 18 (1972), 1–118.
[Kat96] Katz, N.: Rigid local systems, Princeton University Press (1996).

[Ked17] Kedlaya, K.: Étale and crystalline companions, http://kskedlaya.org/papers/companions.pdf
(2017), in progress.

[Laf02] Lafforgue, L.: Chtoucas de Drinfeld et correspondance de Langlands, Invent. math. 346 (2010) 3,
641–668.

[Lam99] Lam, T. Y.: Lectures on modules and rings, Graduate Texts in Mathematics, vol.189, Springer-
Verlag, New York (1999).

[LSZ13] Lan, G., Sheng, M., Zuo, K.: Semistable Higgs bundles, periodic Higgs bundles and representations
of algebraic fundamental groups, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 10, 3053–3112.

[LSZ15] Lan, G., Sheng, M., Zuo, K.: Non-abelian Hodge theory in positive characteristic via exponential
twisting, Math. Res. Let. 22 (2015) 3, 859–879.

[Lan14] Langer, A.: Semistable modules over Lie algebroids in positive characteristic, Doc. Math. 19
(2014), 509–540.
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