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Abstract. We prove that Chern classes in continuous `-adic co-
homology of automorphic bundles associated to representations of
G on a projective Shimura variety with data (G,X) are trivial ra-
tionally. It is a consequence of Beilinson’s conjectures which pre-
dict that the Chern classes in the Chow groups vanish rationally.

Introduction

Let X be a smooth projective variety defined over a number field
k. Beilinson [Bei85, Conj. 2.4.2.1] conjectures that the rational Chow
ring CH(X)Q injects into Deligne cohomology of X ⊗k C. Concretely,
if a class in CHn(X)Q vanishes in H2n

D (X,Q(n)), it is expected to be 0.
There is not a single example with dimension X ≥ 2 with large Chow
ring CH(X ⊗k C) for which this conjecture has been verified.

On the other hand, there are Chern classes reflecting the fact that
X is defined over a number field. On proper models XU over a non-
trivial open U of Spec(Z), one has Chern classes in `-adic cohomology
H2n(XU ,Q`(n)). By taking the inductive limit over such XU , these
yield the Chern classes in continuous `-adic cohomology H2n

cont(X,Q(n))
([Jan87, Section 2]). Each space H2n

cont(X,Q(n)) is filtered by the abut-
ment of the Hochshild-Serre spectral sequence, which, by Deligne’s ar-
gument [Del68, Thm. 1.5] using the strong Lefschetz theorem [Del80,
Thm. 4.4.1], degenerates at E2. Given that H1(k,H2n−1(Xk̄,Q`(n))),
the first graded piece of the filtration, can be interpreted as the ex-
tension group of Q`(0) by H2n−1(Xk̄,Q`(n)) in the category of Galois
modules – just as H2n−1

D (XC,Q(n)) can be interpreted as the extension
group of Q(0) by H2n−1(XC,Q(n)) in the category of Hodge structures
over Q – Beilinson’s conjecture predicts that
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2 HÉLÈNE ESNAULT AND MICHAEL HARRIS

Conjecture 0.1. With notation as above, if a class in CHn(X)Q van-
ishes in H i(k,H2n−i(Xk̄,Q`(n)) for i = 0, 1, then it does for i = 2.

This conjecture seems to be more modest than the general motivic
one above. It is a fascinating problem in Galois cohomology, and it
hasn’t been studied at all. An analogous question for function fields
over finite fields has been considered and proved to be true for 0-cycles
in [Ras95, Thm. 0.1].

On the other hand, the Chern classes of flat bundles on a smooth
projective variety X defined over C vanish in Deligne cohomology
H2n
D (X,Q(n)) for n ≥ 2, due to Reznikov’s theorem [Rez94, Thm. 1.1],

giving a positive answer to Bloch’s conjecture [Blo77, Intro.]. In par-
ticular, Beilinson’s conjecture implies that the Chern classes of flat
bundles on a smooth projective variety X defined over a number field
vanish in the Chow groups CHn(X)Q for n ≥ 2.

In addition, in [Esn96, 4.7] (in a vague form) and in [EV02, Intro.]
(in a more precise form) the problem is posed whether Chern classes
of Gauß-Manin bundles on a smooth variety X defined over a field of
characteristic 0 vanish in the Chow groups CHn(X)Q for n ≥ 2. It is
proved to be the case for those of weight 1; that is, for the Gauß-Manin
bundles of relative first de Rham cohomology of an abelian scheme over
X ([vdG99, Thm. 1.1], [EV02, Thm. 1.1]). In fact the weight 1 Gauß-
Manin bundle is defined on Ag, which is defined over Q, and in [EV02,
loc. cit.] it is proved that the Chern classes in the Chow groups of the
Deligne extension on the toroidal compactification of Ag vanish. Thus
this example confirms (in a weak sense) Beilinson’s conjecture as well.

The moduli space Ag is a quasi-projective Shimura variety and the
weight 1 Gauß-Manin bundle on it is an automorphic bundle associ-
ated to the tautological representation of Sp(2g). A Shimura variety

KS(G,X) (notation explained below) has a canonical model over its
reflex field E(G,X), which is a number field [Mil05, Section 14]. It car-
ries a natural family of automorphic vector bundles that are defined on
this model and themselves have models over explicit finite extensions
of E(G,X) [Har85, Thm. 4.8] (for unexplained notation see Section 1.1
below). An automorphic vector bundle [E ]K that comes from a repre-
sentation of G is endowed canonically with a flat connection, and its
Chern classes in Deligne cohomology H2n

D (KS(G,X),Q(n)) vanish for
n ≥ 1 (Theorem 2.3, Remark 2.5 1)). Thus, at least when KS(G,X) is
projective, Beilinson’s conjecture implies that the Chern classes vanish
even in CHn(KS(G,X))Q for n ≥ 1. Unfortunately, we can not prove
this. Instead we prove
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Theorem 0.2. If KS(G,X) is projective, the Chern classes of an auto-
morphic bundle attached to a representation of G vanish in continuous
`-adic cohomology H2n

cont(KS(G,X),Q`(n)) for n ≥ 1.

Stated differently, we prove Conjecture 0.1 in this particular case.
The proof relies strongly on the purely algebraic definition of the au-
tomorphic bundles, as being associated to a representation of G. In-
deed, all automorphic bundles, seen in the category of vector bun-
dles on the Shimura variety, are eigenvectors for the so-called volume
character of the Hecke algebra. The Hecke algebra acts semi-simply
on (continuous) `-adic cohomology, and the corresponding eigenspace
Hj(KS(G,X)Q̄,Q`)v in `-adic cohomology identifies with `-adic coho-

mology Hj(X̂Q̄,Q`) of the compact dual X̂ of X, which itself is gen-
erated by algebraic cycles. This allows us to compute the invariant in
i-th Galois cohomology of H2n−i(KS(X,G)Q̄,Q`(n)) (Theorem 3.3).

Finally we remark that if every Q-simple factor of G has real rank at
least 2, then the super-rigidity theorem of Margulis, applied to the con-
nected components of KS(G,X), implies that every flat vector bundle
over KS(G,X) becomes isomorphic to an automorphic vector bundle
after replacing K by an appropriate subgroup of finite index. Since the
non-vanishing of Chern classes in the cohomology theories considered
here is stable under finite coverings, this implies that for most Shimura
varieties the vanishing holds for all flat vector bundles.

Acknowledgements: It is a pleasure to thank Alexander Beilinson
for email exchanges on his conjecture [Bei85, Conj. 2.4.2.1], most par-
ticularly on the much weaker version Conjecture 0.1. This has been
a guiding line for formulating the problem on automorphic bundles.
We thank Spencer Bloch for discussions on Conjecture 0.1. We thank
Ben Moonen for enlightening exchanges on Conjecture 1.10, which is
a particular instance of Beilinson’s conjecture, and Bruno Klingler for
Lemma 2.2. Finally, we thank the referees for helpful observations and
suggestions.

Conventions. If G is a reductive algebraic group over Q, by an ad-
missible irreducible representation of G(A) we will mean an irreducible
admissible (g, K) × G(Af )-module, where g is the complexified Lie
algebra of G, K ⊂ G(R) is a connected subgroup generated by the
center of G(R) and a maximal compact connected subgroup, G(Af ) is
the group of finite adèles of G. If π is such a representation then we
will write

π ' π∞ ⊗ πf
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where π∞ is an irreducible admissible (g, K)-module and πf is an irre-
ducible admissible representation of G(Af ).

1. Automorphic vector bundles and flag varieties

1.1. Review of automorphic vector bundles. Let (G,X) be a
Shimura datum, in other words a datum defining a Shimura variety.
We recall that this means that G is a connected reductive group over
Q and that X is a G(R)-conjugacy class of homomorphisms h : S → GR
of real groups, where S = RC/RGm,C is C× viewed as an algebraic group
over R. The pair (G,X) must satisfy a list of familiar axioms that guar-
antee that X is a G(R)-equivariant finite union of hermitian symmetric
spaces for the identity component of the derived subgroup of G(R); see
[Mil05]. In particular, we include the axiom that guarantees that the
maximal R-split torus in the center of G is also split over Q; without
this hypothesis the construction of automorphic vector bundles, as in
(1.5), is not strictly true as stated, although there are ways to fix this.
Then for any open compact subgroup K ⊂ G(Af ), the double coset
space

KS(G,X) = G(Q)\X ×G(Af )/K

is canonically the set of complex points of a quasiprojective algebraic
variety that has a canonical model over a number field, usually denoted
E(G,X) and called the reflex field of (G,K). If K ′ ⊂ K is a subgroup
of finite index then the natural map

πK,K′ :K′ S(G,X) → KS(G,X)

is finite; if K ′ is a normal subgroup of K then πK,K′ is the quotient
map for the action of the group K/K ′ on the right. Moreover, if K is
sufficiently small (neat, in the sense of [Pin90]), then the map πK,K′ is
finite étale.

The precise nature of the canonical model will not be considered in
this paper; we will be concerned with KS(G,X) as a complex algebraic
variety, and our aim is to study the Chern classes of a class of vector
bundles on KS(G,X) that are defined canonically by reference to the
origin of the variety in linear algebra. To this end, choose a base point
h ∈ X and let Kh ⊂ G(R) be its stabilizer. Then Kh is the group
of real points of a reductive subgroup of G, which we also denote Kh.
We make the useful assumption that Kh is defined over a number field
Eh; this is always possible, and we may even assume that Eh is a CM
field and that every irreducible representation of Kh is defined over a
CM field. In any case, Kh is reductive and there is a natural maximal
parabolic subgroup Ph ⊂ GC that contains Kh,C as a Levi factor. Let
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X̂ = G/Ph be the corresponding flag variety. We view X as an analytic

open subset of X̂ by means of the Borel embedding β (this determines
the choice of Ph among the two maximal parabolics containing Kh). In
particular, the complex dimension of this analytic variety is the same
as that of X̂, which is the same as that of KS(G,X). Moreover, h may

be viewed as a point of X̂.
Let E ′h ⊃ Eh denote a finite extension over which Kh becomes a split

reductive group. Then every representation of Kh has a model over E ′h.
For any variety Z over C, let Vect(Z) denote the exact category

of complex vector bundles on Z. Let VectG(X̂) be the category of

G-equivariant vector bundles on X̂ with coefficients in C; let

f : VectG(X̂) → Vect(X̂)

be the forgetful functor. Let VectssG (X̂) ⊂ VectX̂G denote the subcate-
gory of semisimple G-equivariant bundles. If H is an algebraic group
over a ring R and k ⊃ R is another ring, let Repk(H) denote the cate-
gory of algebraic representations (of finite type) of H on free modules
over k. There is an equivalence of symmetric monoidal categories

rP : VectG(X̂) ' RepQ̄(Ph)(1.1)

given by taking a vector bundle B/X̂ to its fiber Bh at h, with the

isotropy representation of the stabilizer Ph. Similarly, let VectssG (X̂) ⊂
VectX̂G denote the subcategory of semisimple G-equivariant vector bun-

dles on X̂. Then (1.1) restricts to an equivalence of symmetric monoidal
categories

r : VectssG (X̂) ' RepQ̄(Kh)(1.2)

Evidently we have canonical isomorphisms
(1.3)

K0(VectssG (X̂))
∼−→ K0(VectG(X̂)); K0(RepQ̄(Kh))

∼−→ K0(RepQ̄(Ph))

compatible with the isomorphisms (1.1) and (1.2).

Lemma 1.4. Every simple object in VectG(X̂) has a model over E ′h.

Proof. The fiber functor (1.2) at h is evidently rational over the number
field Eh, so the claim comes down to the assertion that every irreducible
representation of Kh has a model over E ′h, which we have already noted.

�

On the other hand, for any K ⊂ G(Af ) as above, there is a functor

(1.5) E 7→ [E ] : VectG(X̂) → Vect(KS(G,X))
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defined algebraically in [Har85, Thm. 4.8]. As a functor on complex
vector bundles we have the explicit construction:

[E ] = [E ]K = G(Q)\E ×G(Af )/K.

This is a monoidal functor and it satisfies the following property with
respect to change of group: if K ′ ⊂ K then there are canonical isomor-
phisms

(1.6) π∗K,K′([E ]K)
∼−→ [E ]K′ ; πK,K′,∗([E ]K′)

∼−→ [E ]K ⊗ IKK′1,
where IKK′1 is the representation of K induced from the trivial repre-
sentation of K ′. On the left, this is by definition, and on the right, this
is the projection formula. In particular,

(1.7) πK,K′,∗([E ]K′)
∼−→ ([E ]K)[K:K′]

as vector bundles.
In this paper we work systematically with Chow groups CH and the

Grothendieck group K0 of locally free sheaves with rational coefficients.
For H and k as above, we let K0(Repk(H)) denote the Grothendieck
group of Repk(H), tensored with Q.

chX̂ : Vect(X̂) → CH(X̂)Q, chK : Vect(KS(G,X)) → CH(KS(G,X))Q

denote the respective Chern characters. We shall use the following
proposition:

Proposition 1.8. 1) The map

chX̂ ◦ ◦f ◦ r
−1 : RepQ̄(Kh)→ Vect(X̂)Q → CH(X̂)Q

factors through the composite homomorphism

K0(RepQ(Kh))Q → K0(X̂)Q → CH(X̂)Q.

2) The restriction of chX̂ to VectG(X̂) generates CH(X̂)Q.
3) If we let RepQ(G) → RepQ(Kh) denote the restriction functor,

then chX̂ ◦ r−1 induces an isomorphism

(1.9) KQ(RepQ(Kh))⊗KQ(RepQ(G)) Q
∼−→ CH(X̂)Q.

Here the map KQ(RepQ(G)) → Q is given by the augmentation,
that is by the rank of a representation.

Proof. Point 1) is essentially a tautology: the Chern character obvi-

ously factors through K0(X̂) and r is an exact tensor functor. Point 2)
is the main theorem of [Mar76]. Suppose V is a representation of G;

then the corresponding homogeneous bundle on X̂ is just V ×X̂, with G
acting diagonally. In particular, as a vector bundle it is a sum of dimV
copies of the trivial bundle, hence the restriction to KQ(RepQ(G)) of
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the Chern character factors through the augmentation map. Thus the
surjection chX̂ ◦ r−1 factors through the left-hand side of (1.9). Now
it follows from the main theorem of [Mar76] that this left hand side is
of dimension [WG : WKh

], where WG (resp. WKh
) is the absolute Weyl

group of G (resp. Kh) relative to a common maximal torus. On the
other hand, the Schubert cells form a basis for the right-hand side, and
there are [WG : WKh

] of them (cf. [Bri05, 3.4.2 (2)]. So the surjection
is an isomorphism by comparing dimensions. �

The purpose of the present note is to provide some evidence for
the following conjecture, which is an analogue of Proposition 1.8 for
Shimura varieties.

Conjecture 1.10. The map cK : RepQ̄(Kh) → CH(KS(G,X))Q de-
fined by

cK(W ) = chK([r−1(W )])

induces an injective ring homomorphism

KQ(RepQ(Kh))⊗KQ(RepQ(G)) Q ↪→ CH(KS(G,X))Q.

We denote by c>0
K the composite of cK with the projection

CH(KS(G,X))Q = ⊕n≥0CH
n(KS(G,X))Q → ⊕n>0CH

n(KS(G,X))Q.

Claim 1.11. Conjecture 1.10 is equivalent to

c>0
K |RepQ̄(G) = 0.

Proof. Indeed this condition is equivalent to saying that cK induces a
homomorphism

KQ(RepQ(Kh))⊗KQ(RepQ(G)) Q→ CH(KS(G,X))Q.

On the other hand, given the Grothendieck-Riemann-Roch theorem, to
say that it is injective is equivalent to saying that the ring homomor-
phism

K0(RepQ̄(Kh))Q ⊗KQ(RepQ(G)) Q→ K0(KS(G,X))Q

induced by the functor K0(r−1) is injective. This is true, as follows
from Proposition 1.20 and point 3) of Proposition 1.8. �

Remarks 1.12. 1) The only instance for which one knows that Con-
jecture 1.10 is true is when KS(G,X) is the Siegel domain Ag and
the representation of G = Sp(2g) is the tautological one (see [EV02,
Thm. 1.1], [vdG99, Thm. 1.1]). Then the flat vector bundle [E ] on Ag
is the Gauß-Manin bundle of the relative de Rham cohomology H1 of
the universal abelian scheme. The family is defined only over a level
structure, but the Gauß-Manin bundle, together with its Gauß-Manin
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connection, descends to Ag. In this case the vanishing is even stronger:
on the finite cover over which the local monodromies are unipotent,
the Deligne extension of the Gauß-Manin bundle has vanishing Chern
classes in the rational Chow groups.

2) To tie up with the conjecture on flat bundles alluded to in the
introduction, we remark that the automorphic vector bundles [E ]K in
the conjecture are those coming from RepQ̄(G) which have a G(Af )-
equivariant integrable connection [Har85, Lemma 3.6].

3) Let cD : CH∗(KS(G,X))Q → H2∗
D (KS(G,X), ∗) be the cycle ho-

momorphism into Deligne cohomology [EV88, Section 7]. We prove in
Theorem 2.3 that

cD ◦ c>0
K |RepQ̄(G) = 0.

Using Claim 1.11 in addition, one sees that Conjecture 1.10 when

KS(G,X) is projective is a special case of Beilinson’s motivic con-
jecture discussed in the introduction.

4) We are not able to prove Conjecture 1.10. In fact, apart from the
example mentioned in 1), we can not prove vanishing in any other
example.

Let us denote by KS(G,X)E(G,X) the model of the Shimura variety
over its reflex field. If

c` : CH∗(KS(G,X)E(G,X))Q → H2∗
cont(KS(G,X)E(G,X),Q`(∗))

denotes the cycle homomorphism to continuous `-adic cohomology [Jan87,
Section 2], we prove

c` ◦ c>0
K |RepQ̄(G) = 0.

in Theorem 3.3. (More precisely, we prove this after replacing E(G,X)
by the finite extension E ′h of Lemma 1.4.) In particular, we verify
Conjecture 0.1 in this case. To our knowledge, the examples treated in
this note are the first that confirm this prediction for cycle classes of
flat bundles that do not depend on knowing in advance that the Chow
class itself vanishes.

1.2. Hecke operators. Fix K ⊂ G(Af ). Let g ∈ G(Af ) and consider
Kg = K ∩ gKg−1 ⊂ K. Let

π1,g = πK,Kg :Kg S(G,X) → KS(G,X),

defined as above. Right multiplication by g defines an isomorphism

rg :gKg−1 S(G,X)
∼−→ KS(G,X).

Let
π2,g = rg ◦ πgKg−1,Kg

:Kg S(G,X) → KS(G,X).
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We first observe that

T (g)[E ]K ∼= ⊕[K:Kg ]
1 [E ]K(1.13)

as vector bundles, where T (g) = π2,g∗ ◦ π∗1,g. Indeed, the definition
implies r∗g [E ]K ∼= [E ]g−1Kg, and formula (1.6) implies formula (1.13).

Both π1,g an π2,g are finite étale morphisms. So for any contravariant
cohomology theory H which has push-downs for proper (or even only
finite étale) morphisms, one can define the Hecke operator

T (g) : H(KS(G,X))
π2,g∗◦π∗1,g−−−−−→ H(KS(G,X)).(1.14)

We shall use the Hecke operators on Chow groups, on continuous
`-adic cohomology, on Deligne cohomology, on syntomic cohomology.
All of them are considered rationally. In particular, they are (possibly
infinite) dimensional vector spaces over Q, and the Hecke algebra splits
those cohomologies as a sum of generalized eigenspaces.

A rational prime number q is unramified for K if there exists a Kq ⊂
K with Kq ⊂ ∩G(Qq) a hyperspecial compact open subgroup, and
ramified otherwise. There is a finite set S(K) of ramified primes. We
letHK denote the Q-subalgebra of the ring tensor Q of correspondences
generated by the T (g), where g runs through elements of G(Qq) with
q /∈ S(K); this is well-known to be a commutative algebra.

The following is obvious:

Lemma 1.15. Let R be a ring, a ∈ R, and let [a] :K S(G,X) → R
be the constant function with value a. Then [a] is an eigenfunction for
every T (g), with eigenvalue v(K, g) = [K : Kg].

We thus define the volume character T (g) 7→ v(K, g) of HK by the
formula

T (g) · [1] = v(K, g) · [1]

where [1] is the constant function with value 1 on KS(G,X), as above.
For any cohomology theory H∗(KS(G,X)), including the Chow groups,
let H∗(KS(G,X))v ⊂ H∗(KS(G,X)) be the eigenspace for the volume
character. As H∗(KS(G,X)) is a possibly infinite dimensional Q-vector
space, so is H∗(KS(G,X))v.

Lemma 1.16. Let E ∈ VectG(X̂). Then for any open compact sub-
group K ⊂ G(Af ), ch([E ]K) ∈ CH(KS(G,X))v.

Proof. As π2,g is finite étale, its Todd class is equal to 1, thus the
Grothendieck-Riemann-Roch theorem implies

ch(π2,g∗π
∗
1,g[E ]K) = π2,g∗(ch(π∗1,g[E ]K) · 1),
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from which we conclude using formula (1.13)

ch(T (g)[E ]K) = π2,g∗(ch(π∗1,g[E ]K)·1) = π2,g∗π
∗
1,gch([E ]K) = T (g)ch([E ]K).

Applying (1.6) and (1.7) one concludes

[K : Kg]ch([E ]K) = T (g)ch([E ]K).(1.17)

�

Corollary 1.18. Let H∗ be a cohomology theory which, for any open
compact subgroup K ⊂ G(Af ), admits a cycle map

cKH : CH(KS(G,X))→ H(KS(G,X))

which commutes with the action of HK. Then for any E ∈ VectG(X̂),

cKH ◦ ch([E ]K) ∈ H∗(KS(G,X))v.

The cohomology theories H i(−, j) with coefficients in a characteristic
0 field F considered in this note are all functorial. Thus to check that
the cycle map commutes with the action of HK , it suffices to verify
compatibility with the push-down via π2,g∗. In all those cohomology
theories, the cycle map can be defined via purity: for Z =

∑
imiZi a

codimension n cycle on a smooth Y , where mi ∈ Z and the codimension
n cycles Zi are prime, the Gysin morphism exists and is an isomorphism

γ : ⊕K · [Zi]
∼=−→ H2n

Z (Y, n).

See [EV88, Section 7] for Betti, de Rham and Deligne cohomology,
[Jan88, Thm. 3.23] for continuous `-adic cohomology. Thus compati-
bility reduces to showing

γ(π∗[Zi]) = γ(deg(k(Zi)/k(π(Zi))) · [π(Zi)]) =

π∗γ([Zi]) ∈ H2n
p(Zi)

(Y ′, n)

for a finite surjective morphism p : Y → Y ′. In Deligne cohomology,
it follows as the cohomology verifies the Bloch-Ogus axioms. In `-
adic cohomology, for lack of reference, we restrict ourselves to the case
where Y is defined over a number field k. Let Y be a flat smooth model
over a non-trivial open U in the spectrum of the ring of integers of k.
Then the cycle class in H2n(Y , n) is just the standard cycle class from
[SGA4.5], for which the trace properties are known [SGA4.5, 2.3].

Corollary 1.19. Corollary 1.18 holds true for Deligne cohomology and
continuous `-adic cohomology.

In the next section we study H∗(KS(G,X))v for Betti and `-adic
cohomology.
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1.3. Chern classes in cohomology. Henceforward we assume the
Shimura variety KS(G,X) to be projective; equivalently, the derived
subgroup Gder of G is anisotropic over Q. In the non-compact case the
automorphic theory naturally gives information about Chern classes of
canonical extensions on toroidal compactifications on the one hand; on
the other hand, the v-eigenspace most naturally appears in intersection
cohomology of the minimal compactification. This has been worked out
in detail by Goresky and Pardon in [GP02], and we expect to study
the analogous questions for Chow groups in a second paper.

Although the point of the Goresky-Pardon paper is to study non-
compact Shimura varieties, it still contains a convenient reference for
our purposes. The following statement is well known.

Proposition 1.20. Assume the derived subgroup Gder of G is anisotropic,
so that KS(G,X) is projective. There is a canonical isomorphism of
algebras

H∗(X̂,Q)
∼−→ H∗(KS(G,X),Q)v.

Proof. We first show the corresponding statement over C; thus we can
compute H∗(KS(G,X),C) using automorphic forms and Matsushima’s
formula. Say the space A(G) of automorphic forms on G(Q)\G(A)
decomposes as the direct sum

A(G) = ⊕πm(π)π

where π runs over irreducible admissible representations of G(A) and
m(π) is a non-negative integer, which is positive for a countable set of
π. Then

H i(KS(G,X),C)
∼−→ ⊕π m(π)H i(g, Kh; π∞)⊗ πKf .

Then

H i(KS(G,X),C)v
∼−→ ⊕π m(π)H i(g, Kh; π∞)⊗ (πKf )v,

where (πKf )v is the eigenspace in πKf for the volume character of HK .
Write πf = ⊗′qπq, where q runs over rational primes. Now if q is un-

ramified for K then πKf = 0 unless πq is spherical; but the only spheri-
cal representation of G(Qq) whose spherical subspace is an eigenspace
for the (local) volume character is the trivial representation of G(Qq).
Thus (πKf )v = 0 implies πq is trivial representation for all q that are
unramified for K. It then follows from weak approximation that π is
in fact the trivial representation. Thus for all i,

(1.21) H i(KS(G,X),C)v
∼−→ H i(g, Kh;C).

But this is equal to H i(X̂,C) by a standard calculation; see [GP02,
Rmk. 16.6].
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In particular, H i(KS(G,X),Q)v = 0 if i is odd. Now to prove that
there is an isomorphism over Q, it suffices to show that, for each m,

(1.22) H2m(X̂,Q)(m)
∼−→ H2m(KS(G,X),Q)(m)v,

where we write

H2m(X̂,Q)(m) = H2m(X̂, (2πi)m ·Q) ⊂ H2m(X̂,C).

But composing the isomorphism of Proposition 1.8 with the Chern class
in cohomology, we obtain an isomorphism [Mar76], [GP02]

(1.23) KQ(RepQ(Kh))⊗KQ(RepQ(G)) Q
∼−→ H2m(X̂,Q)(m).

Then (1.22) follows from the diagram in [GP02, Rmk. 16.6], where of
course we are replacing intersection cohomology with ordinary coho-
mology. �

Remark 1.24. As the referee pointed out, the homomorphism

H∗(X̂,Q)→ H∗(KS(G,X),Q)v

can be constructed without reference to Lie algebra cohomology. More
precisely, it can be described as the composition of quasiisomorphisms

RΓdR(X̂)→ RΓdR(GC/Kh,C)← Γ(GC/Kh,C,Ω
•)← Γ(GC/Kh,C,Ω

•)GC

and the restriction map

Γ(GC/Kh,C,Ω
•)GC → Γ(X,Ω•C∞)G(Q)∩Kh(R)

using the identification of X with G(R)/Kh(R) ⊂ GC/Kh,C. Here the
notation is meant to be self-explanatory. The fact that this defines an
isomorphism, as stated in Proposition 1.20, seems to require reference
to Matsushima’s formula.

The proof of Proposition 1.20 gives additional information on the Ga-
lois action on `-adic cohomology. The Shimura variety KS(G,X) and

the flag variety X̂ have canonical models over the reflex field E(G,X).
Theorem [Har85, Thm. 4.8] asserts, among other things, that the func-
tor of (1.5) commutes with the action of Gal(Q/E(G,X)). In addition,
the Hecke correspondences T (g) are all rational over E(G,X). It fol-

lows that, for any prime `, the `-adic cohomology spaces H∗(X̂Q̄,Q`)

and H∗(KS(G,X)Q̄,Q`)v carry an action of Gal(Q/E(G,X)), where
we denote by Q̄ the base change of the models of the Shimura variety
and of the flag variety over the reflex field E(G,X).

Moreover, for any E ∈ VectG(X̂), the i-th Chern class

ci`(E) ∈ H2i(X̂Q̄,Q`(i)), resp. ci`([E ]K) ∈ H2i(KS(G,X)Q̄,Q`(i))v
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generates a Gal(Q/E(G,X))-subspace that is isotypic for the i-th power
of the cyclotomic character.

Proposition 1.25. Under the hypotheses of Proposition 1.20, the al-
gebra isomorphism induces an algebra isomorphism

H2∗(X̂Q̄,Q`(∗))
∼−→ H2∗(KS(G,X)Q̄,Q`(∗))v

ci`(E) 7→ ci`([E ]K)

in `-adic cohomology over Q̄, which is equivariant for the action of the
Galois group Gal(Q/E(G,X)) on both sides.

Proof. Both sides are generated by Chern classes ci`(E) and ci`([E ]K),
and the isomorphism is defined on those Chern classes. �

2. Chern classes in Deligne cohomology

We use the notations from Remarks 1.12 2). First we recall some
of the basic properties of automorphic vector bundles in the image of
RepQ(G).

Proposition 2.1. Let i : RepQ(G) → VectG(X̂) be the composition
of the natural inclusion RepQ(G) → RepQ(Kh) with the inverse of the
equivalence (1.2). Let ρ : G → GL(V ) be a finite-dimensional repre-
sentation. Then

(a) The vector bundle [i(ρ)] on KS(G,X) has a canonical flat con-
nection.

(b) Let [i(ρ)]∇ denote the local system on KS(G,X) that corre-
sponds to the flat connection of (a). Let Z ⊂K S(G,X) be
a connected component, let z ∈ Z be a base point, and let
rz : π1(Z, z) → V be the monodromy representation attached to
[i(ρ)]∇. Then V has a model over the integers OF of a number
field F that is preserved by the image of rz.

(c) If ρ is defined over Q and then [i(ρ)] is endowed with a canonical
variation of Hodge structure, which is a direct sum of variations
of pure Hodge structures.

Proof. These points are all well-known. For (a), one can cite [Har85,
Lem. 3.6]; for (c) see of [Del79, Section 1.1], especially 1.1.13-1.1.17.
For (b) we use Lemma 2.2, the proof of which was provided by Bruno
Klingler. Indeed, the complex variety Z in (b) is the quotient of a
connected component X0 of X, which is contractible, by a congruence
subgroup Γ ⊂ G(Q), and the topological fundamental group π1(Z, z)
can be identified with Γ. It suffices to assume (rz, V ) is irreducible.
The reductive group G splits over a number field F , and by the theory
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of Chevalley groups, every irreducible representation of G has a model
over F . Then RF/Q(rz, V ) is a representation defined over Q, to which
Lemma 2.2 applies. The lattice L of Lemma 2.2 generates an OF lattice
in V which is invariant under Γ. �

Lemma 2.2. Let G be a linear algebraic group over Q and Γ ⊂ G(Q)
an arithmetic subgroup. Let W be a vector space over Q and let r :
G → GL(W ) be a representation defined over Q. Then there exists a
lattice L in W such that r(Γ) ⊂ GL(L).

Proof. Let H = rz(G) ⊂ GL(W ). By [PR94, Thm. 1.4], rz(Γ) is
an arithmetic subgroup of H. The Lemma then follows from [PR94,
Prop. 4.2], which is the special case where r is injective. �

Theorem 2.3. Let KS(G,X) be a Shimura variety. Then

cD ◦ c>0
K |RepC(G) = 0.

Proof. Given Proposition 2.1, the theorem is a direct consequence of
[CE05, Thm. 0.2], which in fact says more: the Chern-Simons invariants
of the flat connection on [E ] are torsion, for E coming from RepC(G).

�

However, for projective Shimura varieties, the theorem is a conse-
quence of Lemma 1.19 and of the following proposition.

We denote by HdR de Rham cohomology.

Proposition 2.4. Let KS(G,X) be a projective Shimura variety. Then

H2n
D (KS(G,X),Q(n))v ⊂ H2n

dR(KS(G,X)).

Proof. Proposition 1.20 implies that H2n−1(KS(G,X),Q)v = 0. On
the other hand, the action of HK on H2n

D (KS(G,X),Q(n)) is via cor-
respondences, is semi-simple. Thus it respects the exact sequence

0→ H2n−1(KS(G,X),C)/
(
H2n−1(KS(G,X),Q(n)) + F n

)
→ H2n

D (KS(G,X),Q(n))→ H2n
dR(KS(G,X))

and on the left each of the three terms of the quotient. This finishes
the proof. �

Remarks 2.5. 1) We have assumed KS(G,X) projective in order to
apply Proposition 1.20 as stated above. For general Shimura varieties
the map in Proposition 1.20 is in any case surjective – cf. [GP02] – and
this suffices for the above proposition.

2) Theorem [CE05, Thm. 0.2] used in the proof of Theorem 2.3 is a
variant of Reznikov main theorem [Rez94] which also rests on the fact
that some oddly weighted forms do not exist.
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3. Chern classes in continuous `-adic cohomology

Recall the field E ′h introduced in §1. It follows from Lemma 1.4 that
every `-adic Chern class cK(W ) belongs to CH∗(KS(G,X)E′h). Thus

we can define the class c` ◦ cK(W ) ∈ H2∗
cont(KS(G,X)E′h ,Q`(∗)).

Remark 3.1. The discussion of the present section seems to depend
on the choice of a CM point h. In fact, it is not difficult to see that,
if we let E(G) denote the extension of Q over which G splits, we can
replace E ′h by E(G)E(G,X), and Lemma 1.4 remains true. The point

is that, up to twisting by a power of the canonical bundle of X̂, every
irreducible G-equivariant vector bundle on X̂ can be obtained, by a
construction that is defined over E(G,X), as a canonical quotient of a
G-equivariant vector bundle attached to an irreducible representation
of G. This is a simple application of the theory of the highest weight,
applied to Kh for variable h ∈ X̂, and to G. Since for our purposes it
suffices to prove the vanishing in rational continuous `-adic cohomology
after restriction to some finite extension, the choice of number field is
immaterial.

We use the notation of Remarks 1.12 3), 4). The action of the Hecke
algebra HK commutes with the Galois action of Gal(Q̄/E(G,X)). The
Hecke algebra splits étale cohomology H i(KS(G,X)Q,Q`) into a sum
of generalized eigenspaces which are Galois invariant. Thus HK splits
the filtration stemming from the Hochshild-Serre spectral sequence. In
particular one has a filtration on H2n

cont(KS(G,X)E′h ,Q`(n)))v with 0-th

graded quotient equal to H0(E ′h, H
2n(KS(G,X)Q̄,Q`(n))v), first graded

quotient equal to H1(E ′h, H
2n−1(KS(G,X)Q̄,Q`(n))v) and last graded

quotient being the subspace

H2(E ′h, H
2n−2(KS(G,X)Q̄,Q`(n))v) ⊂ H2n

cont(KS(G,X)E′h ,Q`(n)))v.

The pendant on the `-adic side of Proposition 2.4 is

Proposition 3.2. Let KS(G,X) be a projective Shimura variety. Then(
H2n

cont(KS(G,X)E′h ,Q`(n)))/H2(E ′h, H
2n−2(KS(G,X)Q̄,Q`(n)))

)
v

⊂ H2n(KS(G,X)Q̄,Q`(n)).

Proof. Proposition 1.25 implies that H2n−1(KS(G,X)Q̄,Q`(n))v = 0.
�

Theorem 3.3. Let KS(G,X) be a projective Shimura variety. Then

c` ◦ c>0
K |RepQ(G) = 0.
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Proof. By Proposition 3.2, together with Corollary 1.19, c` ◦c>0
K |RepQ(G)

has values in

H2(E ′h, H
2n−2(KS(G,X)Q̄,Q`(n))v).

We now apply a variant of the proof of [Ras95, Prop. 2.3]. Let us denote
by d the dimension of KS(G,X). Then Proposition 1.25 implies that
the non-degenerate E ′h- equivariant cup-product

H2n−2(KS(G,X)Q̄,Q`(n))×H2d−2n+2(KS(G,X)Q̄,Q`(d− n+ 1))

→ H2d(KS(G,X)Q̄,Q`(d+ 1)) = Q`(1)

restricts to a non-degenerate E ′h-equivariant cup-product

(3.4)

H2n−2(KS(G,X)Q̄,Q`(n))v ×H2d−2n+2(KS(G,X)Q̄,Q`(d− n+ 1))v

→ H2d(KS(G,X)Q̄,Q`(d+1))v = H2d(KS(G,X)Q̄,Q`(d+1))v = Q`(1).

Write

h = dimQ`
H2n−2(KS(G,X)Q̄,Q`)v =

dimQ`
H2d−2n+2(KS(G,X)Q̄,Q`)v.

Then (3.4) is written as

⊕h1Q(1)×⊕h1Q`(0)→ Q`(1)

as a non-degenerate E ′h-equivariant pairing. Indeed, by Proposition 1.25,
for all i ∈ N, H2i(KS(G,X)Q̄,Q`(i))v is spanned as a Q`-vector space
by the classes

ci`([E ]K,Q̄) ∈ H0(E ′h, H
2i(KS(G,X)Q̄,Q`(i))),

where E comes from a Kh-representation, so is algebraic. This implies
that the pairing of Q`-vector spaces

H2(E ′h,⊕h1Q`(1))×H0(E ′h,⊕h1Q`(0))→ H2(E ′h,Q`(1))(3.5)

is non-degenerate.

On the other hand, for W ∈ RepQ̄(G), and E ∈ Rep(Kh) defining
[E ]K , one has

cnK(W ) ∪ chd−n+1([E ]K) ∈ CHd+1(KS(G,X))Q = 0.

(Recall here cK is defined in Conjecture 1.10.) Thus

0 = cd+1
` (cnK(W ) ∪ chd−n+1([E ]K)) =

cn` (cnK(W )) ∪ cd−n+1
` ([E ]K,Q̄) ∈ H2(E ′h,Q`(1)).

Applying (3.5) we conclude cnK(W ) = 0. This finishes the proof. �
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Remark 3.6 (Syntomic cohomology). In addition to Deligne and con-
tinuous `-adic cohomology, it is natural to consider syntomic coho-
mology as defined by Fontaine, Kato and Messing. Let us denote
by E ′p the p-adic completion of the number field E ′h at a place p.
We assume that KS(G,X)E′p is proper and has a semi-stable model.
Then with p-power torsion coefficients, the syntomic cohomology group
H2n

synt(KS(G,X)E′p ,Z/p
nZ(n)) is defined as the étale cohomology group

of the τ≤n-truncation of the vanishing cycle complex [KM92, Thm. 2.2].
This isomorphism lifts to continuous p-adic coefficients [NN16, Proof of Cor. 4.5]
yielding a Hochshild-Serre spectral sequence

Est
2 = Hs

st(E
′
p, H

t(KS(G,X)Q̄p
,Qp(n)) =⇒

Hs+t
synt(KS(G,X)E′p ,Q(n))

where st stands for ‘stable’, compatible with the one on continuous
p-adic cohomology [NN16, Thm. 4.8]. Thus the same proof as in Theo-
rem 3.3 yields the same result, with c` replaced by the syntomic Chern
classes ([NN16, Section 5]).

Remark 3.7 (Construction of torsion classes in cohomology). One
motivation for studying the Chern classes of automorphic vector bun-
dles is the hope that they might provide a way to construct interesting
torsion classes in the Chow group, or that their `-adic Abel-Jacobi
classes in H1(E ′h, H

2n−1(KS(G,X)Q̄,Q`(n))v) might be torsion. It fol-

lows easily from (1.21) and (1.23) that any class in K0(VectG(X̂)) '
K0(RepQ(Kh)) whose image in the Chow group CH(KS(G,X)) un-
der all Chern classes of positive degree is torsion, must necessarily
belong to the ideal generated by the kernel of the augmentation map
K0(RepQ(G)) → Z. Any torsion classes arising in this way would nat-
urally be eigenvectors for the volume character of the Hecke algebra;
in particular, the associated cohomology classes are Eisenstein classes,
in the usual sense.
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