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Abstract

We show a Lefschetz theorem for irreducible overconvergent F -isocrystals on
smooth varieties defined over a finite field. We derive several consequences from it.

Introduction

Let X0 be a normal geometrically connected scheme of finite type defined over a finite
field Fq, let F0 be an irreducible lisse Weil Q`-sheaf with finite determinant (thus in fact
F0 is an étale sheaf as well), where ` 6= p = char(Fq). In Weil II [Del80, Conj. 1.2.10],
Deligne conjectured the following.

(i) The sheaf F0 is of weight 0.

(ii) There is a number field E ⊂ Q` such that for any n > 0 and x ∈ X0(Fqn), the
characteristic polynomial fx(F0, t) := det(1 − tFx | F0,x) ∈ E[t], where Fx is the
geometric Frobenius of x.

(iii) For any `′ 6= p and any embedding σ : E ↪→ Q`′ , for any n > 0 and x ∈ X0(Fqn),
any root of σfx(F0, t) is an `′-adic unit.

(iv) For any σ as in (iii), there is an irreducible Q`′-lisse sheaf F0,σ, called the σ-
companion, such that σfx(F0, t) = fx(F0,σ, t).

(v) There is a crystalline version of (iv).

Deligne’s conjectures (i)–(iv) have been proved by Lafforgue [Laf02, Thm. VII.6] when
X0 is a smooth curve, as a corollary of the Langlands correspondence, which is proven
showing that automorphic forms are in some sense motivic.

When X0 has dimension at least 2, the automorphic side on which one could rely to
prove Deligne’s conjectures is not available: there is no theory of automorphic forms in
higher dimension. The problem then becomes how to reduce, by geometry, the statements
to dimension 1. For (i) and (iii), one proves a Lefschetz theorem (see [Dri12, Thm. 2.15],
[Del12, 1.5–1.9], [EK12, B1]):
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0.1 Theorem. — On X0 smooth, for any closed point x0, there a smooth curve C0 and
a morphism C0 → X0 such that x0 → X0 lifts to x0 → C0, and such that the restriction
of F0 to C0 remains irreducible.

Using Theorem 0.1, Deligne proved (ii) ([Del12, Thm. 3.1]), and Drinfeld, using (ii),
proved (iv) in ([Dri12, Thm. 1.1]), assuming in addition X0 to be smooth. In particular
Drinfeld proved in [Dri12, Thm. 2.5] the following key theorem.

0.2 Theorem. — If X0 is smooth, given a number field E ⊂ Q`, and a place λ of E
dividing `, a collection of polynomials fx(t) ∈ E[t] indexed by any n > 0 and x ∈ X0(Fqn),
such that the following two conditions are satisfied:

(i) for any smooth curve C0 with a morphism C0 → X0 and any n > 0 and x ∈ C0(Fqn),
there exists a lisse étale Q`-sheaf FC0

0 on C0 with monodromy in GL(r, Eλ) such that
fx(t) = fx(FC0

0 , t), where Eλ is the completion of E with respect to the place λ;

(ii) there exists a finite étale cover X ′0 → X0 such that FC0
0 is tame on all C0 factoring

through X ′0 → X0.

Then there exists a lisse Q`-sheaf F0 on X0 with monodromy in GL(r, Eλ), such that for
any n > 0 and x ∈ X0(Fqn), fx(t) = fx(F0, t) ∈ E[t].

Here the notation Eλ means the completion of E at the place λ. Further, to realize
the assumptions of Theorem 0.2 in order to show the existence of F0,σ, Drinfeld uses
Theorem 0.1 in [Dri12, 4.1]. He constructs step by step the residual representations with
monodromy in GL(r,OEλ/mn) for n growing, where OEλ is the ring of integers of Eλ and
m is its maximal ideal.

The formulation of (v) has been made explicit by Crew [Cre92, 4.13]. The conjecture is
that the crystalline category analogous to the category of Weil Q`-sheaves is the category
of overconvergent F -isocrystals (see Section 1.1 for the definitions). In order to emphasize
the analogy between ` and p, one slightly reformulates the definition of companions. One
replaces σ in (iii) by an isomorphism σ : Q` → Q`′ (see [EK12, Thm. 4.4]), and keeps
(iv) as it is. Here `, `′ are any two prime numbers. For `′ = p, ` 6= p, and F an
irreducible lisse Q`-sheaf, one requests the existence of an overconvergent F -isocrystal
M0 on X0 with eigenpolynomial fx(M0, t) such that fx(M0, t) = σfx(F , t) ∈ σ(E)[t]
for any n > 0 and x ∈ X0(Fqn), where fx(F , t) is the characteristic polynomial of the
geometric Frobenius at x on F (see Section 1.4 for the definitions). The isocrystal M0

is called a σ-companion to F . Given an irreducible overconvergent F -isocrystal M0 with
finite determinant on X0, and σ as above, a lisse `-adic Weil sheaf F on X0 is a σ−1-
companion if σ−1fx(M0, t) = fx(F , t) ∈ E[t] at x ∈ X0(Fqn) (see Definition 1.4). Similarly
we can assume p = ` = `′. This way we can talk on `-adic or p-adic companions of
either an M0 or an F . The companion correspondence should preserve the notions of
irreducibility, finiteness of the determinant, the eigenpolynomials at closed points of X0,
and the ramification.

The conjecture in the strong form has been proven by the first author when X0 is a
smooth curve ([Abe13, Intro. Thm.]). The aim of this article is to prove the following
analog of Theorem 0.1 on X smooth.

0.3 Theorem (Theorem 3.10). — Let X0 be a smooth geometrically connected scheme
over Fq. Let M0 be an irreducible overconvergent F -isocrystal with finite determinant.
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Then for every closed point x0 → X0, there exists a smooth irreducible curve C0 defined
over k, together with a morphism C0 → X0 and a factorization x0 → C0 → X0, such that
the pull-back of M0 to C0 is irreducible.

Theorem 0.3, together with [Del12, Rmk. 3.10], footnote 2, and [Abe13, Thm. 4.2.2]
enable one to conclude that there is a number field E ⊂ Qp such that for any n > 0 and
x ∈ X0(Fqn), fx(M0, t) ∈ E[t] (see Lemma 4.1). This yields the p-adic analog of (i) over
a smooth variety X0. (See Section 4.6 when X0 is normal). Then Theorem 0.2 implies
the existence of `-adic companions to a given irreducible overconvergent F -isocrystal M0

with finite determinant (see Theorem 4.2). We point out that the existence of `-adic
companions has already been proven by Kedlaya in [Ked16, Thm. 5.3] in a different way,
using weights (see [Ked16, §4, Intro.]), however not their irreducibility. The Lefschetz
theorem 3.10 implies that the companion correspondence preserves irreducibility.

Theorem 0.3 has other consequences (see Section 4), aside of the existence already men-
tioned of `-adic companions. Deligne’s finiteness theorem [EK12, Thm. 1.1] transposes
to the crystalline side (see Corollary 4.3): on X0 smooth, there are finitely many isomor-
phism classes of irreducible overconvergent F -isocrystals in bounded rank and bounded
ramification, up to twist by a character of the finite field. One can also kill the ramifi-
cation of an F -overconvergent isocrystal by a finite étale cover in Kedlaya’s semistability
reduction theorem (Remark 4.4).

We now explain the method of proof of Theorem 0.3. We replace M0 by the full
Tannakian subcategory 〈M〉 of the category of overconvergent F -isocrystals spanned by
M over the algebraic closure Fq (we drop the lower indices 0 to indicate this, see Section 1.1
for the definitions). We slightly improve the theorem ([DM82, Prop. 2.21 (a), Rmk. 2.29])
describing the surjectivity of an homomorphism of Tannaka groups in categorical terms
in Lemma 1.6: the restriction functor 〈M〉 → 〈M |C〉 to a curve C → X is an equivalence
when it is fully faithful and any F -overconvergent isocrystal of rank 1 on C is torsion. Class
field theory for F -overconvergent isocrystals ([Abe15, Lem. 6.1](1)) implies the torsion
property. As for full faithfulness, the problem is of cohomological nature, one has to
compute that the restriction homomorphism H0(X,N)→ H0(C,N |C) is an isomorphism
for all objects N in 〈M〉. In the tame case, this is performed in Section 2 using the
techniques developed in [AC13]. As a corollary, `-adic companions exist in the tame case
(see Proposition 2.8). In the wild case, Kedlaya’s semistability reduction theorem asserts
the existence of a good alteration h : X ′′0 → X0 such that h+M0 becomes tame. One
considers the `-adic companion F0 of h+M0 and a finite étale cover g : X ′0 → X ′′0 which is
such that curves C0 → X0 with non-disconnected pull-back C0 ×X0 X

′
0 have the property

that C0 ×X0 X
′′
0 preserves the irreducible constituents of F0 (see Lemma 3.9). It remains

then to show that the dimensions of H0 of M and of F , which are the pull backs of M0

and F0 over F̄q, are the same (see Lemma 3.2).
Acknowledgments: The first author thanks Kiran S. Kedlaya for various discussions

without which this article would not have existed. He thanks Atsushi Shiho for telling
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Lefschetz theorems for unit-root isocrystals, and Pierre Deligne who promptly answered
a question concerning [Del12, Rmk. 3.10] (see Remark 1.5). We also thank the referee
whose questions prompted us to write Section 4.6 and to make sure in Theorem 0.3 that
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Notations and conventions

Let q = ps, and let k be a field with q elements. We fix once for all an algebraic closure
Qp of Qp, the residue field k of Qp and an embedding k ↪→ k. For an integer n ≥ 0, let

kn be the finite extension of k in k of degree n + 1. By a curve we mean an irreducible
scheme of finite type over k which is of dimension 1.

1. Generalities

1.1. Let us start with recalling basic concepts of p-adic coefficients used in [Abe13]. To
be able to speak about the p-adic cohomology, we need to fix some data, called base tuple
(cf. [Abe13, 1.4.10]).

A geometric base tuple is a set T∅ := (κ,R,K,L) where R is a complete discrete
valuation ring, κ is the residue field, K is the field of fractions, and L is an algebraic
extension of K. An arithmetic base tuple is a set TF := (κ,R,K,L, a, σ) where a is
an integer and σ is an automorphism of L such that σ|K , which is assumed to be an
automorphism of K, is a lifting of the a-th absolute Frobenius automorphism on κ, and
there exists a sequence of finite extensions Kn of K in L such that σ(Kn) ⊂ Kn. Let Z
be a scheme of finite type over κ. Given these data, we defined the categories Isoc†(Z/T∅)
and Isoc†(Z/TF ) in [Abe13, 1.4.11, 2.4.14].

Now, let k′ be a finite extension of k in k of cardinality ps
′
. In this article, we only

consider particular base tuples Tk′,∅ := (k′, R = W (k′), K = Frac(R),Qp) and Tk′,F :=

(k′, R = W (k′), K = Frac(R),Qp, s
′, id). Let X0 be a smooth scheme of finite type over

k′. We recall now the definitions of Isoc†(X0/Tk′,∅) and Isoc†(X0/Tk′,F ).
In [Ber96, 2.3.6], Berthelot defined the category of overconvergent isocrystals, which we

denote by Isoc†Ber(X0/K). We extend the scalars from K to Qp in the following way anal-

ogous to [Abe13, 1.4] or [AM, 7.3]. Let L be a finite field extension of K in Qp. Then an

L-isocrystal is a pair (M,λ) where M ∈ Isoc†Ber(X0/K), and λ : L→ EndIsoc†Ber(X0/K)(M)

is a ring homomorphism which is called the L-structure. Homomorphisms between L-
isocrystals are homomorphisms of isocrystals which are compatible with the L-structure.
The category of L-isocrystals is denoted by Isoc†Ber(X0/K) ⊗ L. Finally, taking the 2-
inductive limit over all such L, we obtain Isoc†Ber(X0/K)⊗Qp. The “cohomology” of an
object of the category, called the rigid cohomology, does not have suitable finiteness prop-
erty in general. To be able to acquire this, we need, in addition, to define a “Frobenius
structure”.

Let F : X0 → X0 be the s′-th Frobenius endomorphism of X0, which is an endomor-
phism over k′. Recall(2) that we have the endofunctor F+ on Isoc†Ber(X0/K)⊗Qp, which

(2)The functor F+ is the same as the more familiar notation F ∗ in [Ber96] (cf. [Abe13, Rem 1.1.3]).
Since our treatment of isocrystals is from the viewpoint of D-modules, we borrow the notations from this
theory.
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is in fact an auto-equivalence by [Abe13, Lemma 1.1.3]. For an integer n > 0 and M ∈
Isoc†Ber(X0/K)⊗Qp, an n-th Frobenius structure is an isomorphism Φ: F n+M

∼−→M . The

category Isoc†(X0/Tk′,F ) is the category of pairs (M,Φ) where M ∈ Isoc†Ber(X0/K)⊗Qp,
Φ is the 1-st Frobenius structure, and the homomorphisms are the ones compatible with
Φ in an obvious manner.

We also consider the full subcategory Isoc†(X0/Tk′,∅) of Isoc†Ber(X0/K)⊗Qp consisting
of objects M such that for any constituent N of M , there exists i > 0 such that N can
be endowed with i-th Frobenius structure. We recall the following result. Note that
the objects of Isoc†(X0/Tk′,F ) are endowed with Frobenius structure as a part of data,
whereas the objects of Isoc†(X0/Tk′,∅) are not.

Lemma ([Abe13, Lem. 1.4.11, Cor. 1.4.11]). — Let k′ be a finite extension of k, X0 be
a smooth scheme over k′, and X0,k′ := X0 ⊗k k′, then we have canonical equivalences

Isoc†(X0/Tk,F ) ∼= Isoc†(X0/Tk′,F ), Isoc†(X0/Tk,∅) ∼= Isoc†(X0,k′/Tk′∅).

This lemma shows that the category Isoc†(X0/Tk′,F ) does not depend on the choice of
the base field, and allows us to denote it simply by Isoc†(X0). If X is a scheme of finite
type over k, there exists a scheme X0,k′ of finite type over k′ such that X0,k′ ⊗k′ k ∼= X.
Then the lemma also tells us that Isoc†(X0,k′/Tk′,∅) does not depend on auxiliary choices,
and may be denoted by Isoc†(X). We put Xn := X0 ⊗k kn and X := X0 ⊗k k. As a
convention, we put subscripts ·n for isocrystals on Xn. Let Mn ∈ Isoc†(Xn). Then the
pull-back of Mn to Xn′ for n′ ≥ n is denoted by Mn′ , and the pull-back to Isoc†(X) is
denoted by M .

For example, when X0 = Spec(k), then Isoc†Ber(X0/K) is the category of finite dimen-
sional K-vector spaces. This implies that Isoc†(Xn) is the category of finite dimensional
Qp-vector spaces with an automorphism, and Isoc†(X) is the category of finite dimensional

Qp-vector spaces. The pull-back functor Isoc†(X0)→ Isoc†(Xn) sends an object (V, φ) to
(V, φn), where V is a vector space and φ is its automorphism. This can be checked easily
from the definition.

Remark. — (i) The category Isoc†(Xn) has another description by [Abe13, Lem. 1.4.11
(ii)]: it is equivalent to the category of isocrystals with n-th Frobenius structure in
Isoc†Ber(X0/K)⊗Qp.

(ii) We caution that the notations Isoc†(Xn) and Isoc†(X) are not standard. Usually,
the notations Isoc†Ber(Xn/K) and Isoc†Ber(X/Frac(W (k))) are used. We also note that the
categories Isoc†(X) and Isoc†Ber(X/Frac(W (k))) differ; the former is actually the category
of isocrystals on X0 with some additional structures, but the latter is that on X.

(iii) Philosophically, the category Isoc†(Xn) is a p-adic analogue of the category of lisse
(Weil) Q`-sheaves on Xn. The category Isoc†(X) is an analogue of the category of lisse
Q`-sheaves on X which can be written as an extension of lisse sheaves which descends to
Xn for some n.

1.2. For later use, we fix the terminology of tameness.

Definition. — Let X0 be a smooth curve, and X0 be the smooth compactification of X0.
An isocrystal M ∈ Isoc†(X) is said to be tame if it is log-extendable along the boundary
X0 \X0, cf. [Shi10, §1]. For a general scheme X0 of finite type over k, M ∈ Isoc†(X) is
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said to be tame if for any smooth curve C0 and any morphism ϕ : C0 → X0, the pull-back
ϕ+(M) is tame. We say M0 ∈ Isoc†(X0) is tame if M is tame.

Remark. — Let X0 be a smooth scheme which admits a smooth compactification
whose divisor at infinity has strict normal crossings. Then one has the curve criterion:
M ∈ Isoc†(X) is tame if and only if M is log-extendable along the divisor at infinity. The
“if” part is easy to check, and the “only if” part is a consequence of [Shi11, Thm. 0.1].
We need to be careful as Shiho is assuming the base field to be uncountable. However,
in our situation, because of the presence of Frobenius structure, this assumption is not
needed as explained in [Abe13, footnote (4) of 2.4.13].

1.3. In this note, we freely use the formalism of arithmetic D-modules developed in
[Abe13]. For a separated scheme of finite type X0 over k, in ibid., the triangulated
category Db

hol(X0/Tk,∅) (resp. Db
hol(X0/Tk,F )) with t-structure is defined. Define X :=

X0 ⊗k k as usual. To harmonize with the notation of the category of isocrystals in this
article, this category is denoted by Db

hol(X) (resp. Db
hol(X0)). A justification for dropping

the base from the notation goes exactly in the same manner as for Isoc†. Its heart is
denoted by Hol(X) (resp. Hol(X0)), see [Abe13, 1.1]. The cohomology functor for this
t-structure is denoted by H ∗. When X (resp. X0) is smooth, Isoc†(X) (resp. Isoc†(X0))
is fully faithfully embedded into Hol(X)[−d] (resp. Hol(X0)[−d]) where d is the dimension
of X (resp. X0), and we identify Isoc†(X) (resp. Isoc†(X0)) with its essential image in
Hol(X)[−d] (resp. Hol(X0)[−d]). Let ε : X0 → Spec(k) be the structural morphism.
Recall the functor ε+ : Db

hol(X0/Tk,∅) → Db
hol(Spec(k)/Tk,∅) defined in [Abe13, 2.3.10].

For M ∈ Isoc†(X0/Tk,∅) (or more generally in Db
hol(X0/Tk,∅)), we set

H i(X0/Tk,∅,M) := H i(ε+M)

which is a finite dimensional Qp-vector space. Let X be a scheme of finite type over k and

M ∈ Isoc†(X). We may take a scheme of finite type Xn over kn such that Xn⊗kn k = X.
Then H i(Xn/Tkn,∅,M) only depends on X. Indeed, by [Abe13, Cor. 1.4.11], we have
an equivalence Db

hol(X0/Tk,∅) ∼= Db
hol(X0/Tk′,∅), which is compatible with push-forwards,

and the claim for X = Spec(k) is easy to check. Thus, we may denote H i(Xn/Tkn,∅,M)
simply by H i(X,M).

1.4. Let X0 be a smooth scheme over k. Let x ∈ X0(k′) for some finite extension k′ of
k in k, and ix : Spec(k′) → X0 be the corresponding morphism. We have the pull-back
functor i+x : Isoc†(X0) → Isoc†(Spec(k′)). The category Isoc†(Spec(k′)) is equivalent to
the category of finite dimensional Qp-vector spaces V endowed with an automorphism Φ

of V . Given M0 ∈ Isoc†(X0), we denote by fx(M0, t) ∈ Qp[t] the eigenpolynomial

fx(M0, t) = det
(
1− tΦx | i+x (M0)

)
∈ Qp[t]

of the automorphism Φx of i+x (M0). Similarly, for a lisse Weil Q`-sheaf `M0 on X0, we
denote the characteristic polynomial of the geometric Frobenius Fx at x by fx(`M0, t):

fx(`M0, t) = det
(
1− tFx | `M0,x

)
∈ Q`[t],

where x is a k-point above x.

Definition. — Let M0 ∈ Isoc†(X0).
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1. Let ι : Qp → C be a field isomorphism. The isocrystal M0 is said to be ι-pure of

weight w ∈ C if the absolute value of any root of fx(M0, t) ∈ Qp[t]
∼−→
ι

C[t] equals

to q
w/2
x for any x ∈ X0(k′) with residue field of cardinality qx. The isocrystal M0 is

said to be ι-pure if it is ι-pure of weight w for some w.

2. The isocrystal M0 is said to be algebraic if fx(M0, t) ∈ Q[t] ⊂ Qp[t] for any x ∈
X0(k′).

3. Given an isomorphism σ : Qp → Q` for a prime ` 6= p, the isocrystal M0 is said to
be σ-unit-root if any root of σfx(M0, t) is an `-adic unit for any x ∈ X0(k′).

4. Given an automorphism σ of Qp, a σ-companion to M0 is an Mσ
0 ∈ Isoc†(X0) such

that σfx(M0, t) = fx(M
σ
0 , t) for any x ∈ X0(k′). One says that Mσ

0 is a p-companion
of M0.

5. Given an isomorphism σ : Qp → Q` for a prime ` 6= p, a σ-companion of M0 is a

lisse Weil Q`-sheaf `M
σ
0 on X0 such that σfx(M0, t) = fx(`M

σ
0 , t) for any x ∈ X0(k′).

One says that `M
σ
0 is an `-companion of M0. Abusing notations, we also write `M0

for an `-companion.

1.5. We recall the following theorem by Deligne.

Theorem ([Del12, Prop. 1.9 + Rmk. 3.10]). — Let X0 be a connected scheme of finite
type over k. Assume given a function tn : X0(kn)→ Q`[t] for all n ≥ 0 such that

(*) for any morphism ϕ : C0 → X0 from a smooth curve C0, there exists a
lisse Weil Q`-sheaf `M [ϕ] on C0 such that for any n and x ∈ C0(kn), we have

fx(`M [ϕ], t) = tn(ϕ(x)).

(i) Assume there exists x ∈ X0(kn) such that tn(x) ∈ Q[t] ⊂ Q`[t] (resp. any root of
tn(x) = 0 is `-adic unit). Then tn(x) ∈ Q[t] ⊂ Q`[t] for any x ∈ X0(kn) (resp. any
root of tn(x) = 0 is `-adic unit for any x ∈ X0(kn)).

(ii) Assume that there exists a finite étale cover X ′ → X such that for any ϕ as in (*)
above, the pull-back of `M [ϕ] to C ′ = X ′ ×X C0 is tamely ramified. If in addition,
there exists x ∈ X0(kn) such that tn(x) ∈ Q[t] ⊂ Q`[t], namely the assumption of (i)
holds, then there exists a number field E in Q` such that tn takes value in E[t] for
any n.

Remark. — 1) Deligne assumes in (*) the Q`-sheaf to be lisse. However, in an email
to the authors, he pointed out that it is enough to assume the Q`-sheaf to be a Weil
sheaf, without changing a single word of his proof.

2) In [Del12, Prop. 1.9], the assertion is formulated slightly differently: if there exists
one closed point x ∈ X0(kn) such that any root of tn(x) is a Weil number of weight
0, then the same property holds for any point of X0. Deligne’s argument shows that
if tn(x) is algebraic (resp. any root of tn(x) = 0 is `-adic unit) at one closed point
x, then it is algebraic (resp. any root is `-adic unit) at all closed points.
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1.6. Let (T , ω) be a neutral Tannakian category where T is a Tannakian category, and
ω is a fiber functor. We denote by π1(T , ω) the associated fundamental group. We shall
use the following lemma on Tannakian categories to show our Lefschetz theorem 3.10.

Lemma. — Let Φ: (T , ω = ω′ ◦ Φ) → (T ′, ω′) be a tensor functor between neutral
Tannakian categories over Qp (or any field of characteristic 0). If

(?) for any rank 1 object L ∈ T ′, there exists an integer m > 0 such that L⊗m

is in the essential image of Φ,

then the induced functor Φ∗ : π1(T ′, ω′) → π1(T , ω) is faithfully flat if and only if Φ is
fully faithful.

Proof. By [DM82, Prop. 2.21 (a)], we just have to show the “if” part, which itself is a
slight refinement of [DM82, Rmk. 2.29]. The functor Φ is fully faithful if and only its
restriction to 〈M〉, for every object M ∈ T , induces an equivalence with 〈Φ(M)〉, where
〈M〉 is the full Tannakian subcategory spanned by M (i.e. the full subcategory consisting
of subquotient objects of M⊗m⊗M∨⊗m′ and their direct sums). By Tannaka duality, this
is equivalent to Φ∗ : π1(〈Φ(M)〉, ω′)→ π1(〈M〉, ω) being an isomorphism, which by [DM82,
Prop. 2.21 (b)] is a closed embedding of group schemes of finite type over Qp. Chevalley’s
theorem ([Bri09, Thm. 1.15], [Del82, Prop. 3.1.(b)]) asserts that π1(〈Φ(M)〉, ω′) is the
stabilizer of a line l in a finite dimensional representation V of π1(〈M〉, ω). In particular,
l is a one dimensional representation of π1(〈Φ(M)〉, ω′). LetNV (resp. L) be the Tannakian
dual of V in T (resp. l in T ′). Then the π1(〈Φ(M)〉, ω′)-equivariant inclusion l ⊂ V induces
the inclusion i : L ⊂ Φ(NV ) in T ′. By (?), there is an integer m > 0, and an object

L̃ ∈ T , such that L⊗m = Φ(L̃). By full faithfulness, there is a uniquely defined inclusion

j : L̃ ⊂ N⊗mV such that i⊗m = Φ(j) : L⊗m ⊂ Φ(N⊗mV ) = Φ(NV )⊗m. Thus the stabilizer of
l⊗m ⊂ V ⊗m is π1(〈M〉, ω). On the other hand, if g ∈ π1(〈M〉, ω)(Qp) acts on l⊗m ⊂ V ⊗m

with eigenvalue λ ∈ Qp, it acts on l ⊂ V with eigenvalue λ
m
∈ Qp. This implies that

π1(〈Φ(M)〉, ω′) is the stabilizer of l⊗m in V ⊗m, thus Φ∗
(
π1(〈Φ(M)〉, ω′)

)
= π1(〈M〉, ω).

This finishes the proof. �

1.7. Let X be a smooth connected scheme over k. Let x : Spec(k) → X be a geometric
point. The pull-back i+x functor induces a fiber functor Isoc†(X)→ VecQp , which endows

the Tannakian category Isoc†(X) with a neutralization. The Tannakian fundamental
group is denoted by πisoc

1 (X, x). This is also independent of the base field. The detailed
construction is written in [Abe13, 2.4.17]. For M ∈ Isoc†(X), we denote by 〈M〉 the
Tannakian subcategory of Isoc†(X) generated by M . Its fundamental group is denoted
by DGal(M,x), but as the base point chosen is irrelevant for the further discussion, we
just write DGal(M).

Remark. — The fundamental group πisoc
1 (X, x) is very close to the one defined by Crew

in [Cre92], but he used Isoc†Ber(X0/K) to define the group contrary to Isoc†(X) here.

1.8 Proposition. — Let f : Y0 → X0 be a morphism between smooth schemes, and
put X := X0 ⊗k k, Y := Y0 ⊗k k. Assume that X0 is geometrically connected. Let
M ∈ Isoc†(X), and assume that
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for any N ∈ 〈M〉, the induced homomorphism

(1.8.1) H0(X,N)→ H0(Y, f+N)

is an isomorphism.

Then Y0 is geometrically connected, and the homomorphism DGal(f+M)→ DGal(M) is
an isomorphism.

Proof. First of all, Y0 is geometrically connected since

dimQp H
0(Y,Qp,Y ) = dimQp H

0(X,Qp,X) = 1

by (1.8.1). By [DM82, Prop. 2.21 (b)], the homomorphism in question is a closed immer-
sion. Let N,N ′ ∈ 〈M〉. We have

Hom(N,N ′) ∼= H0
(
X,Hom(N,N ′)

) ∼−→ H0
(
X, f+Hom(N,N ′)

) ∼= Hom
(
f+N, f+N ′

)
,

where the second isomorphism holds by assumption since Hom(N,N ′) ∈ 〈M〉. This
implies that the functor f+ : 〈M〉 → 〈f+M〉 is fully faithful. By Lemma 1.6, it suffices
to show that for any rank 1 object N in Isoc†(X), there exists an integer m > 0 such
that N⊗m is trivial. By definition, there exists an integer n ≥ 0 such that N is the
pull-back of Nn ∈ Isoc†(Xn). Then by [Abe15, Lem. 6.1], there exists a rank 1 isocrystal
L0 ∈ Isoc†(Spec(k)) and an integer m > 0 such that (Nn⊗Ln)⊗m is trivial. As L is trivial
in Isoc†(X), N⊗m is trivial as well. �

Remark. — Since we use class field theory in the proof, our argument works only when
the base field is finite.

1.9 Corollary. — Let f : Y0 → X0 be a morphism between smooth schemes over k,
and put X := X0 ⊗k k, Y := Y0 ⊗k k. Assume that X0 is geometrically connected over
k. Let M0 ∈ Isoc†(X0) such that for any N ∈ 〈M〉, the homomorphism (1.8.1) is an
isomorphism. Then the functor f+ induces an equivalence of categories 〈M0〉

∼−→ 〈f+M0〉.

Proof. First, the proposition tells us that f∗ : DGal(f+M)
∼−→ DGal(M). Now, for any

isocrystal N on a smooth geometrically connected scheme Z over k, the pull-back functor
F+
Z : Db

hol(Z) → Db
hol(Z) is an auto-equivalence by [Abe13, Lem. 1.1.3], and induces an

auto-equivalence on Isoc†(Z). Thus, we have an isomorphism DGal(F+
Z N)

∼−→ DGal(N),
where FZ is the s-th Frobenius endomorphism on Z, defined by the functor F+

Z . If we have
a Frobenius structure N0 on N , it induces an automorphism ϕ of DGal(N). Using this
automorphism, let ϕ- 〈N〉 be the category of couples (ρ, α) such that ρ is a representation
of DGal(N) and α : ρ ◦ ϕ ∼= ρ. Then 〈N0〉 is equivalent to the Tannakian subcategory of
ϕ- 〈N〉 generated by N0.

Let us come back to the situation of the corollary. The Frobenius structure on M0

(resp. f+M0) induces an automorphism ϕX (resp. ϕY ) of the group DGal(M) (resp.
DGal(f+M)), and these automorphisms coincide via the isomorphism f∗. Thus, we have
the equivalence ϕX- 〈M〉 ∼−→ ϕY - 〈f+M〉. The categories 〈M0〉 and 〈f+M0〉 are the Tan-
nakian subcategories generated by M0 and f+M0 respectively, thus the claim follows. �
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2. Cohomological Lefschetz theorem

This section is devoted to showing the existence of `-adic companions for tame isocrystals.

2.1. Let X be a smooth variety defined over an algebraic closure of finite field k. Let
Z ⊂ X be a closed subscheme, we denote by j : X \ Z ↪→ X the open immersion, and
i : Z ↪→ X the closed immersion. We introduce the following four functors from Db

hol(X)
to itself:

(+Z) := j+ ◦ j+, (!Z) := j! ◦ j+, RΓ+
Z := i+ ◦ i+, RΓ!

Z := i+ ◦ i!.

Note that the pairs (j+, j+), (j!, j
+), (i+, i+), (i+, i

!) are adjoint pairs. For M ∈ Db
hol(X),

we sometimes denote j+(M) by M |X\Z . The properties of functors i+, i!, j+, j! are
summarized in [Abe13, 1.1.3].

2.2 Proposition. — Let X be a smooth variety of dimension ≥ 2, and Z be a smooth
divisor. Let a closed subscheme C ⊂ X be a smooth curve, intersecting with Z transver-
sally. Let M be in Db

hol(X) such that M |X\Z is in Isoc†(X \Z) and is tame along Z with
nilpotent residues. Then we have a canonical isomorphism in Db

hol(X):

(!C)(+Z)(M) ∼= (+Z)(!C)(M).

Proof. First, let us construct the homomorphism (!C)(+Z)(M) → (+Z)(!C)(M). Let
jC : X \ C → X, jZ : X \ Z → X and j′Z : X \ (Z ∪ C)→ X \ C be the open immersion.
We have

j+
C jZ+j

+
Z
∼= j′Z+j

′+
Z j

+
C
∼= j′Z+j

′+
Z j

+
C j!Cj

+
C
∼= j+

C jZ+j
+
Z j!Cj

+
C ,

where the first and the last isomorphisms hold since jC is an open immersion. Since
(jC!, j

+
C ) is an adjoint pair, we get the desired homomorphism.

It suffices to show the dual statement

ρ(X,Z,C)(M) : (!Z)(+C)(M)
∼−→ (+C)(!Z)(M).

By arguing componentwise, we may assume that X is connected. We use the induction
on the dimension of X. The base of the induction is the case where dim(X) = 1. This
case is excluded in the proposition, but we take Z to be any divisor in X, and C = X.
Then the proposition is obvious in this case since (+C) = 0 as functors. Assume that
the statement is known for dim(X) ≤ d. We show the lemma for dim(X) = d + 1.
Since to check that a homomorphism in Db

hol(X) is an isomorphism is local (which can
be seen easily from the definition or one can refer to [AC13, 1.3.11]), the claim is local
and we may assume that there exists a system of local coordinates {t0, t1, . . . , td} such
that Z = V (t0), C = V (t1, . . . , td). We put D := V (t1). To simplify the notation, we
denote the boundaries by ZC := Z ∩ C, ZD := Z ∩D. Moreover, we introduce notations
of morphisms as follows:

C
iC,D //

iC ,,

D

iD
��
X.

First, let us show that
α : (!ZD) ◦ i!D(M) −→ i!D ◦ (!Z)(M)
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is an isomorphism. The exact triangle (!D) → id → RΓ+
D → induces the following

commutative diagram of exact triangles in Db
hol(D):

(!ZD) ◦ i!D ◦ (!D)(M) //

α2

��

(!ZD) ◦ i!D(M) //

α
��

(!ZD) ◦ i!D ◦ RΓ+
D(M)

+ //

α1

��
i!D ◦ (!Z) ◦ (!D)(M) // i!D ◦ (!Z)(M) // i!D ◦ (!Z) ◦ RΓ+

D(M)
+ //

We claim that α1 is an isomorphism. Indeed, we have

(!ZD) ◦ i!D ◦ RΓ+
D = (!ZD) ◦ i!D ◦ iD+ ◦ i+D ∼= (!ZD) ◦ i+D,

i!D ◦ (!Z) ◦ RΓ+
D = i!D ◦ (!Z) ◦ iD+ ◦ i+D ∼= i!D ◦ iD+ ◦ (!ZD) ◦ i+D ∼= (!ZD) ◦ i+D.

Here we use the isomorphism i!D ◦ iD+
∼= id twice, and iD!

∼= iD+ in the second line. Since
α1 is the identity on D \ ZD, the claim is proven.

Thus, it remains to show that α2 is an isomorphism. It is obvious that α2|D\ZD is an
isomorphism. This implies that it is enough to check

RΓ+
ZD
◦ i!D ◦ (!Z) ◦ (!D)(M) ∼= RΓ+

ZD
◦ i!D ◦ (!D ∪ Z)(M) = 0.

Since M |X\Z is assumed to be tame with nilpotent residues, we use [AC13, (3.4.12.1)] to
conclude.

We now complete the proof. The exact triangle RΓ!
C → id → (+C)

+1−→ induces the
following commutative diagram of exact triangles:

(!Z) ◦ RΓ!
C(M) //

β
��

(!Z)(M) // (!Z) ◦ (+C)(M)
+ //

ρ(X,Z,C)(M)

��
RΓ!

C ◦ (!Z)(M) // (!Z)(M) // (+C) ◦ (!Z)(M)
+ // .

This implies that ρ(X,Z,C) is an isomorphism if and only if β is an isomorphism. We have
the following commutative diagram:

iC+ ◦ (!ZC) ◦ i!C(M) //

∼

iC+ ◦ i!C ◦ (!Z)(M)

(!Z) ◦ RΓ!
C(M)

β
// RΓ!

C ◦ (!Z)(M).

Since iC is a closed immersion, β is an isomorphism if and only if

ρ′(X,Z,C)(M) : (!ZC) ◦ i!C(M)→ i!C ◦ (!Z)(M)

is an isomorphism. Namely,

(?) ρ(X,Z,C)(M) is an isomorphism⇔ ρ′(X,Z,C)(M) is an isomorphism.

The homomorphism ρ′(X,Z,C)(M) can be computed as follows:

(!ZC) ◦ i!C(M) ∼= (!ZC) ◦ i!C,D ◦ i!D(M)
∼−→
ρ′
i!C,D ◦ (!ZD) ◦ i!D(M)

∼−→
α
i!C,D ◦ i!D ◦ (!Z)(M) ∼= i!C ◦ (!Z)(M),

where ρ′ := ρ′(D,ZD,C)

(
i!D(M)

)
, which is an isomorphism by the induction hypothesis (?)

applied to (D,ZD, C). �

11



2.3 Lemma. — Let X be a smooth projective variety of dimension d ≥ 2, let C be a curve
which is a smooth complete intersection of ample divisors. Then, for any M ∈ Db

hol(X)
such that H i(M) = 0 (cf. 1.3 for H ∗) for i < d, one has Hn

(
X, (!C)(M)

)
= 0 for

n = 0, 1.

Proof. We use induction on the dimension of X. When d = 2, the structural morphism
ε : X \C → Spec(k) is affine. By [AC13, Prop. 1.3.13], this implies that ε+ is left t-exact
(with respect to the t-structure introduced in 1.3). By the vanishing condition on the
cohomologies of M , the lemma follows in this case.

Assume d ≥ 3. Let H ⊂ X be an ample divisor containing C. The localization triangle
for H induces the exact triangle exact triangle

(!C) ◦ (!H)(M)→ (!C)(M)→ (!C) ◦ RΓ+
H(M)

+1−→

Using [AC13, Prop. 1.3.13] again and by the assumption on M , H i((!H)M) = H i(M) =
0 for i < d. Using the localization sequence, H iRΓ+

H(M) = 0 for i < d − 1, thus
H i(i+HM) = 0 for i < d− 1. This implies that

H i
(
X, (!C) ◦ RΓ+

H(M)
) ∼= H i

(
H, (!C)(i+HM)

)
= 0

for i = 0, 1 by induction hypothesis. Moreover, we have

H i
(
X, (!C) ◦ (!H)(M)

) ∼−→ H i
(
X, (!H)(M)

)
= 0

for i = 0, 1, where the first isomorphism holds since C ⊂ H, and the second since X \H
is affine (cf. ibid.). This finishes the proof. �

2.4 Corollary. — Let X be a smooth projective variety of dimension ≥ 2, Z be a simple
normal crossings divisor. Let C be a smooth curve which is a complete intersection of
ample divisors in good position with respect to Z, and iC : C \ ZC → X \ Z (where
ZC := C ∩ Z as before) be the closed embedding. Then, for any tame isocrystal M with
nilpotent residues of Isoc†(X \Z), the homomorphism H0(X \Z,M)→ H0(C \ZC , i+CM)
is an isomorphism.

Proof. Consider the long exact sequence

H0
(
X\Z, (!C\ZC)(M)

)
→ H0(X\Z,M)

i∗−→ H0(C\ZC , i+CM)→ H1
(
X\Z, (!C\ZC)(M)

)
.

In order to prove that i∗ is an isomorphism, it is sufficient to prove that the left and the
right terms are both zero. Now, let j : X \ Z ↪→ X be the open immersion. We have

H i
(
X \ Z, (!C \ ZC)(M)

) ∼= H i
(
X, (+Z) ◦ (!C)(j+M)

) ∼= H i
(
X, (!C) ◦ (+Z)(j+M)

)
,

where the last isomorphism holds by Proposition 2.2. To finish the proof, we note that j is
an affine immersion, which implies that H i(j+M) = 0 for i 6= d by [AC13, Prop. 1.3.13].
This enables us to apply Lemma 2.3. �

2.5 Remark. — In Proposition 2.2, Lemma 2.3, and Corollary 2.4, we do not need k
to be a finite field. The argument holds for any base tuple.
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2.6 Theorem. — Let X0 be a smooth projective variety over k, Z0 be a simple normal
crossings divisor, and x0 be a closed point of X0 \ Z0. Let C0 be a smooth curve in X0

passing through x0, which is a complete intersection of ample divisors in good position
with respect to Z0, and let iC : C0 \ ZC,0 → X0 \ Z0 (where ZC,0 := C0 ∩ Z0) be the closed
immersion. Then, for any irreducible M0 ∈ Isoc†(X0 \ Z0), which is tame with nilpotent
residues along the boundary, i+CM0 is irreducible.

Proof. We may assume X0 is connected by arguing componentwise. Let k′ be the field
of constants of X0, namely the algebraic closure of k in Γ(X0,OX0). Since the category
Isoc†(X0 \Z0) does not depend on the base, we may replace k by k′, and thus assume that
X0 is geometrically connected. Then, the theorem follows from Corollary 2.4, combined
with Corollary 1.9. �

Remark. — The existence of the curve C0 follows from [Poo04, Thm. 1.3].

2.7 Theorem. — Let X0 be a scheme of finite type over k, then any object in Db
hol(X0)

(cf. 1.3 for the notation) is ι-mixed (cf. [AC13, 2.2.2]).

Proof. By a dévissage argument, it suffices to show the theorem when X0 is smooth and
for objects M0 in Isoc†(X0).

We first assume that X0 admits a smooth compactification with a simple normal
crossings boundary divisor, and that M0 is tame. To check that M0 is ι-mixed, it suffices
to check that any constituent is ι-pure, thus we may assume that M0 is irreducible.
Twisting by a character, we may further assume that the determinant of M0 is of finite
order ([Abe15, Thm. 6.1]). Let x0 ∈ X0 be a closed point, i : C0 ↪→ X0 be a smooth curve
passing through x0 as in Remark 2.6. Since i+M0 is irreducible by Theorem 2.6, it is
ι-pure of weight 0 by [Abe13, Thm. 4.2.2]. Thus, M0 is ι-pure of weight 0.

We now treat the general case. Let h : X ′0 → X0 be a semistable reduction with respect
to M0 ([Ked11, Thm. 2.4.4]). Then h+M0 is ι-mixed. As M0 is a direct factor of h+h

+M0

by the trace formalism [Abe13, Thm. 1.5.1], we conclude that M0 is ι-mixed by [AC13,
Thm. 4.2.3]. �

2.8 Proposition. — Let X0 be a smooth projective variety over k, Z0 be a simple normal
crossings divisor, and M0 be an isocrystal in Isoc†(X0 \ Z0), which is tame along Z0 with
nilpotent residues. Then `-adic companions of M0 exist, and they are tame along Z0.

Proof. We may assume that M0 is irreducible. Let us fix σ : Qp → Q`. Arguing compo-
nentwise, we may assume that X0 is connected. Twisting by a character, we may assume
that the determinant of M0 is of finite order. Let us show that M0 is algebraic and σ-unit
root. Let x0 ∈ X0 \ Z0 be a closed point, and C0 be as in Theorem 2.6 (see Remark 2.6).
Using the notation of ibid., i+CM0 is irreducible with determinant of finite order. This
implies that i+CM0 is algebraic and σ-unit-root by [Abe13, Thm. 4.2.2], thus the claim
follows.

Now, we wish to apply Drinfeld’s theorem 0.2 to construct the companions. Deligne’s
theorem 1.5 (ii) shows that there exists a number field E in Qp such that fx(M0, t) ∈ E[t]
for any finite extension k′ of k and x ∈ X0(k′). Let λ be the place of σ(E) over `
corresponding the embedding σ(E) ⊂ Q`. Put fx(t) := fx(M0, t), and let us show that
this collection of functions satisfies the assumptions of Theorem 0.2. Since M0 is σ-unit-
root, for any smooth curve C0 and a morphism ϕ : C0 → X0, we have a σ-companion
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`(ϕ
+M0) of ϕ+M0 which is a lisse étale Q`-sheaf by [Abe13, Thm. 4.2.2]. By using [Dri12,

Lem. 2.7] and [Dri12, §2.3], there is a finite extension F of σ(E)λ such that the monodromy
of `(ϕ

+M0) is in GL(r, F ) for any C0 and ϕ, thus the assumption of Theorem 0.2 (i) is
satisfied.

Let us check (ii). We put X ′0 := X0. Take a smooth curve ϕ : C0 → X0, then since
M0 is assumed to be tame, the pull-back ϕ+M0 is tame. This implies that a companion

`(ϕ
+M0) is tame as well by the same argument as [Del12, Lem. 2.3]. (Alternatively, we may

also argue that since the local epsilon factors coincide by the Langlands correspondence,
and since local epsilon factors detect the irregularity, the irregularity and Swan conductor
coincide at each point.) In conclusion, the assumption of Theorem 0.2 (ii) is satisfied as
well, and we may apply Drinfeld’s theorem to construct the desired companion. �

3. Wildly ramified case

In this section, we show the Lefschetz type theorem for isocrystals by reduction to the
tame case. We keep the same notations as in the previous section, notably X0, k ⊂ kn ⊂ k,
Xn, X. If M0 ∈ Isoc†(X0), we denote by M ss

0 the semisimplification in Isoc†(X0), and
likewise for M ∈ Isoc†(X) and M ss.

3.1. First, we recall the following well-known consequences of the Weil conjectures (see
[Laf02, Cor. VI.3] and [Del80, Thm. 3.4.1 (iii)] for an `-adic counterpart of the theorem).

Theorem ([Abe13, Prop. 4.3.3], [AC13, Thm. 4.3.1]). — (i) Let X0 be a geometrically
connected smooth scheme over k. Let M0,M

′
0 ∈ Isoc†(X0) be ι-pure F -isocrystals on

X0. Assume that M ′
0 is irreducible. Then, the multiplicity of M ′

0 in M0, in other words
dim Hom(M ′

0,M
ss
0 ), is equal to the order of pole of L(X,M0 ⊗M ′∨

0 , t) at t = q−dim(X0).
(ii) Let M0 ∈ Isoc†(X0) be ι-pure. Then M , the pull-back of M0 to Isoc†(X), is

semisimple.

3.2 Lemma. — Let X0 be a geometrically connected smooth scheme over k. Let M0 be
an ι-pure isocrystal, and `M0 be an `-adic companion. Then

dimH0(X,M) = dimH0(X, `M).

Proof. First of all let us recall notations. We fix isomorphisms Qp
∼= C ∼= Q` which

gives the companion `M0. We regard numbers in C as numbers in Qp or Q` via this

fixed isomorphisms if there is nothing to confuse. For t ∈ C, we denote by Qp,Xn(t)

the isocrystal in Isoc†(Xn) whose underlying object is Qp and the Frobenius structure is
defined by

F n+Qp
∼= Qp

q−tn−−→
∼

Qp

where the first isomorphism is the canonical isomorphism, and q−tn denotes the homo-
morphism sending 1 to q−tn ∈ C ∼= Qp. For n′ ≥ n, the functor Isoc†(Xn) → Isoc†(Xn′)

sends Qp,Xn(t) to Qp,Xn′
(t). We denote Qp,Xn(t) by Qp(t) for simplicity. We also denote

Qp(0) by Qp.
There exists an integer n such that the number of constituents of Mn and M coincide.

Let αn ⊂ C be the kernel of the homomorphism of groups C→ C× sending t to q−nt, thus
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C/αn ∼= C×. One has

dimH0(X,M) = dimH0(X,M ss) = dim Hom(Qp,M
ss)

=
∑

s∈C/αn

dim
(
Hom(Qp(s), (Mn)ss)

)
,

where the first equality holds since M is semisimple by Theorem 3.1 (ii), the middle one is
by definition, and the last one since for any isocrystal Nn in Isoc†(Xn) such that N ∼= Qp,

there exists s ∈ C such that Nn
∼= Qp(s). Indeed, fix an isomorphism N ∼= Qp. With this

identification, Nn yields an isomorphism Φ: F n+Qp
∼−→ Qp. Let can: F n+Qp

∼−→ Qp be

canonical isomorphism, or in other words the Frobenius structure of Qp ∈ Isoc†(Xn). Giv-
ing Φ is equivalent to giving Φ◦can−1(1), which uniquely determines s up to multiplication
by elements of αn such that Nn

∼= Qp(s).

By Theorem 3.1 (i), the dimension of Hom(Qp(s),M
ss
n ) is equal to the order of pole of

L(Xn,Mn(−s), t) at t = q−dn, where d denotes the dimension of X0. The similar result
holds for `Mn, by increasing n if needed, so the lemma holds since Mn(s) and `Mn(s) have
the same L-function. �

3.3. Let X0 be a smooth scheme over k. Let M (resp. `M) be in Isoc†(X) (resp. lisse
Weil `-adic sheaf on X). We say M (resp. `M) satisfies (C) with respect to an alteration
X ′ → X if it satisfies the following condition:

(*) Let U ⊂ X be the biggest open dense subscheme over which X ′ is finite
étale, and put U ′ := U ×X X ′. For any connected smooth curve i : C0 → X0

such that
#π0(C0 ×X0 U

′) = #π0(U ′),

the pull-back homomorphism H0(X,M)→ H0(C, i+M) (resp. H0(X, `M)→
H0(C, i∗`M)) is an isomorphism, where C = C0 ×X0 X.

3.4 Lemma. — Let X0 be a geometrically connected smooth scheme, and Mn be an
ι-pure isocrystal. Let `Mn be an `-adic companion. Then if `Mn satisfies (C) with respect
to X ′ → X, so does Mn.

Proof. Take C0 as in (*). Since X0 is assumed to be geometrically connected, C0 is
geometrically connected as well. By definition, i∗`M is an `-adic companion of i+M , and
these are ι-pure. Thus, we have

dimH0(X,M) = dimH0(X, `M) = dimH0(C, i∗`M) = dimH0(C, i+M),

where the first and the last equality hold by Lemma 3.2, and the middle one by assump-
tion. �

3.5 Lemma. — Assume X0 is smooth and geometrically connected over k. Let `M0 be
a lisse Weil Q`-sheaf on X0. Then there exists a connected finite étale cover g : X ′ → X
such that any `N ∈ 〈`M〉 satisfies (C) with respect to g.

Proof. Let ρ : π1(X) → GL(r,Q`) be the representation corresponding to `M , and set
G := Im(ρ). The argument of [EK12, B.2] holds also for schemes over k, since only
the finiteness of H1

ét(−,Z/`) is used. Thus, there exists a connected finite Galois cover
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g : X ′ → X such that for any profinite group K mapping continuously to π1(X), such that
the composite K → π1(X) → Gal(X ′/X) is surjective, the composite K → π1(X) → G
is surjective as well. Now, `N is a representation of G, and the geometric condition on C
asserts that the continuous composite homomorphism π1(C) → π1(X) → Gal(X ′/X) is
surjective, so so is the continuous composite homomorphism π1(C)→ π1(X)→ G. Thus
for any `N ∈ 〈`M〉, H0(X, `N) = `N

π1(X) = `N
π1(C) = H0(C, `N), that is, any `N in

〈`M〉 satisfies (C) with respect to g. �

3.6 Lemma. — Assume X0 is smooth and geometrically connected over k. Let Nn be
an ι-pure isocrystal on Xn, and `Nn be an `-adic companion. Then if Nn is geometrically
irreducible (i.e. N is irreducible), so is `Nn.

Proof. We may assume Nn 6= 0. An ι-pure lisse Weil Q`-sheaf Ln on Xn is geometrically
irreducible if and only if End(L) is of dimension 1. Indeed, it suffices to show the if
part. As Ln is assumed to be ι-pure, L is semisimple ([Del80, Thm. 3.4.1 (iii)]), thus
dim End(L) = dim End(Lss). If Ln were not geometrically irreducible, we would have
dim End(Lss) > 1, contradicting with the assumption that End(L) = 1. To conclude the
proof, we have dim End(`N) = dim End(N) by Lemma 3.2, and the latter is equal to 1
since N is assumed to be irreducible. �

3.7 Corollary. — Let X0 be a smooth and geometrically connected scheme over k. Let
M0 be an ι-pure isocrystal on X0. Assume that for any n ∈ N>0, any Nn ∈ 〈Mn〉 has an
`-adic companion. Then there exists a connected finite étale cover g : X ′ → X such that
any N ∈ 〈M〉 satisfies (C) with respect to g.

Proof. Let X ′ → X be a finite étale cover as in Lemma 3.5 for the `-adic sheaf `M . Our
goal is to show that this cover satisfies the required condition.

Take N ∈ 〈M〉. Since the category 〈M〉 is semisimple, it is enough to check (C)
for any irreducible N . Then we can find Nn ∈ 〈Mn〉 which induces N for some n ≥ 0.
Take integers m, m′ such that Nn is a subquotient of Mm,m′

n := M⊗m
n ⊗ M∨⊗m′

n . By
Lemma 3.4, it remains to show that its `-adic companion `Nn is in 〈`Mn〉. By Lemma 3.6,
we know that `Nn is irreducible as well. Since Nn is assumed to be a subquotient of
Mm,m′

n , L(Xn,M
m,m′
n ⊗ N∨n , t) has a pole at t = q−nd by Theorem 3.1 (i). This implies

that L(Xn, `M
m,m′
n ⊗`N

∨
n , t) has a pole at t = q−nd as well. It follows again by Theorem 3.1

(i) that `Nn is a subquotient of `M
m,m′
n , as `M

m,m′
n is ι-pure, and finishes the proof. �

3.8 Theorem. — Let X0 be a smooth geometrically connected scheme over k. Let
M0 ∈ Isoc†(X0) be ι-pure. There exists a generically étale alteration g : X ′ → X such that
any N ∈ 〈M〉 satisfies (C) with respect to g.

Proof. By [Ked11, Thm. 2.4.4], there exists a generically étale alteration h : X ′′0 → X0

such that X ′′0 is smooth geometrically connected and admits a smooth compactification
such that the divisor at infinity has strict normal crossings, and such that h+(M0) is
log-extendable with nilpotent residues. Then h+(M0) possesses an `-adic companion by
Proposition 2.8. Thus, we may take a connected finite étale cover g : X ′ → X ′′ := X ′′0 ⊗k k
which satisfies (C) for any object in 〈h+M0〉 by Corollary 3.7. Now, take U0 ⊂ X0 over
which h is a finite étale cover. Then h+(M0|U0) satisfies (C) with respect to g|h−1(U).

Namely, we are in the following situation: we have a generically étale alteration X ′′0
h−→ X0,
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and a connected étale cover X ′
g−→ X ′′ such that any object in 〈h+M0|U0〉 satisfies (C) with

respect to g|h−1(U).
We check now that any object in 〈M〉 satisfies (C) with respect to h ◦ g. Let U ⊂ X

be the biggest dense open subscheme over which X ′′ is finite étale, and let U ′ and U ′′ are
pull-backs to X ′ and X ′′. Let C0 be a curve such that #π0(C0 ×X0 U

′) = #π0(U ′). Take
N ∈ 〈M〉. Then h+N ∈ 〈h+M〉. We have the following diagram:

H0(U ′′, h+N) α //

tr
��

H0(C ×X U ′′, h+N)

tr
��

H0(X,N) ?
// H0(U,N)

OO

α′
//

OO

H0(C ×X U,N)

OO

H0(C,N),?
oo

where tr denotes the trace map [Abe13, Thm. 1.5.1]. The homomorphism α is an isomor-
phism by construction. Since the trace is functorial, it makes α′ a direct summand of α.
Thus α′ is an isomorphism as well. The homomorphisms marked ? are also isomorphisms.
Indeed, if Y0 is a smooth scheme over k and N is an isocrystal in Isoc†(Y ), then for any
open dense subscheme U0 ⊂ Y0, the restriction H0(Y,N)→ H0(U,N) is an isomorphism
(in fact, the restriction homomorphism πisoc

1 (U) → πisoc
1 (Y ) is surjective: see the proof

of [Abe13, 2.4.20]). This implies that the homomorphism H0(X,N) → H0(C,N) is an
isomorphism, and finishes the proof. �

3.9. Finally, the existence of the curve C0 is guaranteed by the following lemma.

Lemma. — Let X0 be a smooth geometrically connected scheme over k. Let U0 ⊂ X0

be a non-empty open subscheme, and let h : U ′ → U be a connected finite étale morphism.
For any finite set of closed points x(j) → X0, there is a smooth connected curve C0 → X0

with a factorization x(j) → C0 → X0 such that U ′ ×X0 C0 is non-empty and irreducible.

Proof. By the Hasse-Weil bounds, we know that U0 has rational points for any large
enough degree extension of k. So by possibly adding more points x(j) to our collection, we
may assume that the g.c.d. of the degrees of the points x(j) in U0 is 1. The morphism h is
defined over a finite extension kn/k in k̄. Let hn : U ′n → Un be the descended morphism,

so that h = hn ⊗kn k̄. Let λn : U ′n
hn−→ Un → U0 be the composition with the base change

Un = U0 ⊗k kn → U0. Let µn : Vn → U0 be the Galois closure of λn. It defines an open
finite index subgroup H of π1(U0). The field of constants of Vn is still kn. By [Dri12,

Thm. 2.15 (i)] applied to (H,U0 ⊂ X0, {x(j)
0 }), there is a smooth curve C0 ↪→ X0, such

that x
(j)
0 ∈ C0 and such that Vn ×X0 C0 is irreducible. By the degree assumption on the

points x(j), C0 is geometrically irreducible, thus the field of constants of Vn ×X0 C0 is kn.
Thus a fortiori, U ′n ×X0 C0 is irreducible with field of constants equal to kn. This finally
implies that (U ′n ×X0 C0)⊗kn k̄ = U ′ ×X0 C0 is irreducible. �

3.10 Theorem (Lefschetz theorem for isocrystals). — Let X0 be a smooth scheme over
k, and M0 ∈ Isoc†(X0) be irreducible. Then for any finite set of closed points x(j) → X0,
there is a smooth curve C0 → X0 with a factorization x(j) → C0 → X0 such that the
pull-back of M0 to C0 is irreducible.

Proof. Arguing componentwise, we may assume X0 to be connected, and moreover, geo-
metrically connected by changing k if needed. By Theorem 2.7, M0 is ι-pure. By Theo-
rem 3.8, there is an alteration g : X ′ → X such that N ∈ 〈M〉 satisfies (C) with respect to
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g. Let U0 ⊂ X0 be the maximum open dense subscheme such that U ′ := X ′ ×X0 U0 → U
is finite étale. One takes C0 as in Lemma 3.9, so with factorization x(j) → C0 → X0 for
all j, and such that the dominant component of C0×X0U

′ is irreducible. Since M satisfies
(C) with respect to g, by Corollary 1.9, this implies that the pull-back of M0 to C0 is
irreducible as required. �

4. Remarks and applications

4.1 Lemma. — Let X0 be a smooth scheme over k, and M0 ∈ Isoc†(X0). Assume that
M0 is algebraic. Then there is a number field E ⊂ Qp such that fx(M0, t) ∈ E[t] for any
finite extension k′ and x ∈ X0(k′).

Proof. We argue by induction on the dimension of X0. The curve case has already been
treated. We assume the lemma is known for smooth schemes of dimension less than
dim(X0). By [Ked11, Thm. 2.4.4], there exists an alteration h : X ′0 → X0 such that X ′0
is smooth and admits a smooth compactification such that the divisor at infinity has
strict normal crossings, and such that h+(M0) is log-extendable. Let U0 ⊂ X0 be a dense
open subscheme such that h|h−1(U0) is finite étale. Using Theorem 1.5 (ii), there exists a
number field EU such that fx(M0, t) ∈ EU [t] for any x ∈ U0(k′). Now, there exists a finite
stratification {Xi,0}i∈I of X0 \ U0 by smooth schemes. Since algebraicity is an absolute
notion, the restriction M0|Xi,0 is algebraic as well. Thus, by induction hypothesis, there
exists a number field Ei such that fx(M0, t) ∈ Ei[t] for any x ∈ Xi,0(k′). Take E to be a
number field which contain EU and Ei for i ∈ I. Then E is a desired number field. �

We now formulate the existence of `-adic companions in general. This has been proven
by Kedlaya in [Ked16, Thm. 5.3]. However, two additional properties follow from our
method: `-adic companions of irreducible overconvergent isocrystals with finite determi-
nant are irreducible, and they are `-adic étale sheaves, not only Weil sheaves.

4.2 Theorem. — Let X0 be a smooth geometrically connected scheme over k, and
M0 ∈ Isoc†(X0) be irreducible with finite determinant. Then `-adic companions exist and
they are irreducible lisse étale Q`-sheaves.

Proof. Using Theorem 3.10, there is a smooth curve ϕ : C0 → X0 such that ϕ+(M0)
is irreducible. This implies that ϕ+(M0) is irreducible with finite determinant, so it is
algebraic and σ-unit-root by [Abe13, Thm. 4.2.2]. Thus there exists a closed point x such
that fx(M0, t) is algebraic and any root is `-adic unit. By Theorem 1.5 (i), M0 is algebraic
and σ-unit-root at any point of X0 and we can apply Lemma 4.1 to conclude the existence
of E. Further, the existence of the companions follows from Theorem 0.2 and from the
semistable reduction theorem as the proof of Proposition 2.8. As for irreducibility, since
ϕ+(M0) is irreducible, the pull-back of an `-adic companion to C0 is irreducible as well,
else a strict subobject would produce a strict subobject of ϕ+(M0). This finishes the
proof. �

4.3 Corollary. — Let X0 be a smooth scheme over k. Let X0 ↪→ X0 be a normal
compactification, D be an effective Cartier divisor with support X0 \X0, σ : Qp → Q` is
an isomorphism for a prime ` 6= p. Then there are finitely many isomorphism classes of
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irreducible M0 ∈ Isoc†(X0) of rank r, such that `M
σ
0 has ramification bounded by D, up

to twist by rank 1 objects in Isoc†(Spec(k)).

Proof. This is a direct application of Theorem 4.2 and Deligne’s finiteness theorem [EK12,
Thm. 1.1], once one knows that the correspondence M0 → `M

σ
0 is injective, which follows

from Lemma 3.2. �

We end with two remarks.

4.4 Remark. — Kedlaya’s semistable reduction can be made finite étale, at least in the
case where the base field is finite, as asked in [Ked09, Rmk. A.1.2]. Let X0 be a smooth
scheme over k, and M0 ∈ Isoc†(X0). Then there exists a finite étale cover g : X ′0 → X0 such
that g+(M0) is tamely ramified. Indeed, let `M0 be an `-adic companion. We take a finite
étale cover g : X ′0 → X0 such that g∗`M0 is tamely ramified on X ′. Then we claim that
g+M0 is tame. Indeed, it suffices to check that for any smooth curve C0 and a morphism
i : C0 → X0, the restriction i+(g+M0) is tame by Definition 1.2. Now, i+(g+M0) and
i∗(g∗`M0) are companion, and the local epsilon factors coincide, thus i+(g+M0) is tame
since i∗(g∗`M0) is tame by construction.

4.5 Remark. — If M ∈ Isoc†(X) is irreducible, it is coming from an irreducible Mn ∈
Isoc†(Xn). An `-adic companion `Mn has to be irreducible as well by Lemma 3.6. If
in addition π1(X) = {1}, then `Mn comes from kn. This implies that Mn comes from
kn as well. As Isoc†(X) is semisimple, this shows a (very) weak version of de Jong’s
conjecture ([ES15, Conj. 2.1]): π1(X) = {1} implies that objects in Isoc†(X) come from
Isoc†(Spec(k)). Here “very weak” refers to the fact that we restrict de Jong’s conjecture
to the case where the ground field is finite and the isocrystals considered have a Frobenius
structure.

4.6. So far, we have treated overconvergent isocrystals on smooth varieties, even though
they are defined in a more general context. This is partly because, for the moment, we
do not have an embedding Isoc†(X)→ Db

hol(X) at disposal when X is not smooth. This
sometimes causes technical difficulties. However, we check purity for normal varieties in
Corollary 4.6 using Tsuzuki’s work.

The definitions in 1.1 can be carried out without any changes for separated schemes
X0 of finite type over k, and in particular, the category Isoc†(X0) makes sense. Given a
morphism f : Y0 → X0 between separated schemes of finite type, Berthelot constructed
the pull-back functor f ∗ : Isoc†Ber(X0/K)→ Isoc†Ber(Y0/K) in [Ber96, 2.3.6]. This induces
a functor f ∗ : Isoc†(X0)→ Isoc†(Y0). When X0 and Y0 are smooth, this functor coincides
with f+ (cf. [Abe13, 2.4.15]). With this pull-back, the notion of purity can be defined
exactly in the same way as in 1.4 except that we replace i+x by i∗x. This purity is the
Qp-coefficient variant of Crew’s purity notion in [Cre92, just before 5.6].

Corollary. — Let X0 be normal, and M0 be an irreducible object in Isoc†(X0) such that
the determinant is finite. Then M0 is pure of weight 0.

Remark. — There is a mistake in [Abe15, Lem. 6.1]. Let us use the notation of ibid..
In fact, we believe that it is false for arbitrary scheme of finite type X, but we need to
assume that X is geometrically unibranch (e.g. normal). Let U ⊂ X be a smooth open
dense subscheme. Without assuming X to be geometrically unibranch, it can happen that
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an `-adic smooth sheaf L is non-trivial even though if L|U is. In fact, the homomorphism
πét

1 (U) → πét
1 (X) is not in general surjective if U is the smooth open subscheme of X,

as easily seen for example on a rational nodal curve, where the map is zero. We think a
similar phenomenon occurs also in the p-adic situation. However [Abe15, Lem. 6.1] holds
under the assumption by [Tsu12, Cor. 1.2] since the restriction functor is fully faithful.

Proof. Let U0 ⊂ X0 be a non-trivial smooth dense subscheme. First, we show that
πisoc

1 (U0) → πisoc
1 (X0) is faithfully flat. The functor Isoc†(X) → Isoc†(U) is fully faithful

by the result of Tsuzuki cited in Remark 4.6. Arguing as in Proposition 1.8, the homo-
morphism πisoc

1 (U) → πisoc
1 (X) is faithfully flat. Again, similarly to Corollary 1.9, this

implies that M0|U0 is irreducible. Thus, Theorem 4.2 implies that M0|U0 is pure of weight
0.

Now, let ix : x → X0 be a closed point. It suffices to show that i∗x(M0) is of weight
0. By Theorem 0.3, there exists a morphism ϕ : C0 → X0 from a smooth curve such that
x ∈ ϕ(C0), ϕ(C0) ∩ U0 6= ∅ and ϕ∗(M0) is irreducible. This implies that ϕ∗(M0) is pure
of weight 0. Thus, i∗xM0 is of weight 0 as required. �
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