
A REMARK ON DELIGNE’S FINITENESS THEOREM

HÉLÈNE ESNAULT

Abstract. Over a connected geometrically unibranch scheme X of finite type over a finite
field, we show, with purely geometric arguments, finiteness of the number of irreducible Q̄`-
lisse sheaves, with bounded rank and bounded ramification in the sense of Drinfeld, up to twist
by a character of the finite field. On X smooth, with bounded ramification in the sense of
[EK12, Defn.3.6], this is Deligne’s theorem [EK12, Thm.1.1], the proof of which uses the whole
strength of [Del12] and [Dri12]. We also generalise Deligne’s theorem [EK12, Thm.1.1] from
X smooth to X normal, using Deligne’s theorem (not reproving it) and a few more geometric
arguments.

1. Introduction

Let X be a normal geometrically connected scheme of finite type defined over a finite field
Fq, let V be an irreducible Q̄`-lisse sheaf with finite determinant, where ` 6= p = char(Fq). In
Weil II [Del80, conj.1.2.10], Deligne conjectured the following.

(i) V has weight 0.
(ii) There is a number field E(V) ⊂ Q̄` such that for all closed points x ∈ X, the char-

acteristic polynomial fV(x)(t) = det(1 − Fxt,V) ∈ E(V)[t], where Fx is the geometric
Frobenius of x.

(iii) For any `′ 6= p and any embedding σ : E(V) ↪→ Q̄`′ , for any closed point x of X, all
eigenvalues of Fx are `′-adic units.

(iv) For any σ as in (iii), there is an irreducible Q̄`′-lisse sheaf Vσ, called the companion to
σ, such that σfV(x) = fVσ(x).

Deligne’s conjectures have been proved by Lafforgue [Laf02, Thm.VII.6] when X is a smooth
curve.

From this one deduces (i) and (iii) in higher dimension as follows. For any closed point x,
one finds a smooth curve C mapping to X such that x → X lifts to x → C, such that the
restriction of V to C remains irreducible. To this aim, Lafforgue in [Laf02, Prop.VII.7] uses
Bertini’s theorem, unfortunately in a wrong way. It has been corrected in [Dri12, Thm.2.15]
using the Hilbert irreducibility theorem (see also [EK12, App.B ]) and in [Del12, 1.5-1.9]
using the Bertini theorem. One first shows a group theoretic lemma saying that there is
a finite quotient of the monodromy group of V such that if the monodromy group of the
restriction of V to a subscheme still has this finite group as a quotient, then it has the same
monodromy group as on X. The construction of a curve ’doing’ this is then performed by
Bertini or Hilbert’s irreducibility.

Deligne proved (ii) in 2007 ([Del12, Thm.3.1]). Drinfeld, using (ii), proved (iv) in 2011
([Dri12, Thm.1.1]), assuming in addition X to be smooth.
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Let X be a geometrically connected scheme of finite type over a characteristic p > 0 field k,
β : Y → X be a proper dominant morphism. One says that a Q̄`-lisse sheaf V has ramification
bounded by β if β∗(V) is tame (see [Dri12, Thm.2.5]). This means that for any smooth curve
C mapping to Y , the pullback of V to C is tame in the usual sense ([GM71, Defn.2.1.2,p.30]).
If X is geometrically unibranch, V is defined by a representation ρ : π1(X)→ GL(r,R) of the
fundamental group π1(X) defined in [SGA1, V] (see [BS15, Intro., Lem.7.4.10], we omitted
the base point here), where R ⊃ Z` is a finite extension of discrete valuation rings. Then V
has ramification bounded by any finite étale Galois cover β such that π1(Y ) ↪→ π1(X) is an
open normal pro-`-subgroup, for example π1(Y ) = Ker

(
π1(X) → GL(r,R) → GL(r,R/2`)

)
.

We say such an β makes V tame. If Y is smooth, the tame fundamental group πt1(Y ) is well
defined as a quotient of π1(Y ) (see [KS10, Thm.1.1]) and the property that β∗(V) is tame is
equivalent to the property that the underlying representation of π1(Y ) factors through πt1(Y ).

Definition 1.1. Given a natural number r and given β, one defines S(X, r, β) to be the set
of rank r isomorphism classes of irreducible Q̄`-lisse sheaves, with ramification bounded by β,
modulo twist by a character of the Galois group of k.

Let X be a normal scheme of finite type over a characteristic p > 0 field k, X ↪→ X̄ be a
normal compactification, and D be an effective Cartier divisor with support X̄ \X. One says
that a Q̄`-lisse sheaf V has ramification bounded by D if for any smooth curve C mapping to
X, with compactification C̄ → X̄, where C̄ is smooth, the pullback VC of V to C has Swan
conductor bounded above by C̄ ×X̄ D ([EK12, Defn.3.6]).

Definition 1.2. Given a natural number r and given D, one defines S(X, r,D) to be the set of
isomorphism classes of rank r irreducible Q̄`-sheaves, with ramification bounded by D, modulo
twist by a character of the Galois group of k.

Recall that if k is a finite field, by class field theory [Del80, Thm. 1.3.1], any class in S(X, r, α)
(Definition 1.1) or S(X, r,D) (Definition 1.2) contains a V with finite order determinant.

If V has ramification bounded by a finite étale β, then it also has ramification bounded by
∆, where ∆ is the discriminant of β times the rank of V ([EK12, Prop.3.9]), that is

S(X, r, β) ⊂ S(X, r,∆).(1.1)

Given an effective Cartier divisor D with support X̄ \X, we do not know whether there is a
β : X ′ → X finite étale such that S(X, r,D) ⊂ S(X, r, β). See Section 3.2.

In 2011, Deligne proved the following finiteness theorem ([EK12, Thm.1.1]).

Theorem 1.3. Let X be a geometrically connected smooth scheme of finite type defined over
a finite field k, X ↪→ X̄ be a normal compactification, D be a Cartier divisor with support
X̄ \X, r be a natural number. Then S(X, r,D) is finite.

Of course in dimension 1, the theorem is a consequence of Lafforgue’s main theorem [Laf02,
Prop.VII.7]. Deligne’s proof uses the full strength of Drinfeld’s theorem on the existence of the
companions, which thus forces X to be smooth. This in turn uses the full strength of Deligne’s
theorem on the existence of the number field. One notices that abstractly, the finiteness
theorem together with the existence of the companions implies the existence of the number
field (see [EK12, Cor.8.3]).

In this short note we prove the following
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Theorem 1.4. Let X be a geometrically connected, geometrically unibranch scheme of finite
type defined over a finite field, α : X ′ → X be a finite étale cover, r be a natural number. Then
S(X, r, α) is finite.

Our proof does not use the existence of the companions, nor does it use the existence of
the number field. The main ingredient is the existence, on a good alteration [dJ97, Thm.4.1],
of a single curve on which all irreducible lisse tame Q̄`-sheaves remain irreducible ([EKin15,
Thm.1.1 (a)]).

We also prove in Theorem 3.1 that in Deligne’s Theorem 1.3, it is enough to assume X to
be normal. The proof uses the functoriality property of the notion of ramification bounded by
D. Unlike for Theorem 1.4, we don’t have a direct proof and have to use Theorem 1.3.

Acknowledgements: It is a pleasure to thank Moritz Kerz and Lars Kindler for earlier dis-
cussions, while writing [EK12] and [EKin15], on topics related to this note. We thank Pierre
Deligne for his comments and the questions he asked after we completed the proof of Theo-
rem 1.4. We thank the two referees for their careful reading and for their friendly comments
which helped us to improve the exposition of this note.

2. Proof of Theorem 1.4

By [StacksProject, Lem.9.8], for any non-trivial open subscheme U ↪→ X, the homomor-
phism π1(U)→ π1(X) is surjective (based at any geometric point of U). As X is geometrically
unibranch, any representative V of a class in S(X, r, α) is the isomorphism class of a represen-
tation of π1(X) (see introduction). Thus we may assume that X is quasi-projective.

We fix α : X ′ → X as in the theorem, and α′ : Y → X ′ an alteration such that α′ is
proper, generically étale, Y is smooth and has a compactification Y ↪→ Ȳ which is projective,
smooth, and such that Ȳ \Y is a strict normal crossings divisor ([dJ97, Thm.4.1]). We denote

by kY the field of constants of Y . Let β : Y
α′
−→ X ′

α−→ X be the composite morphism, and
U ↪→ X be a non-trivial open of X over which β is étale. We set V = β−1(U). Again by the
surjectivity π1(U)→ π1(X), V|U is irreducible as well. In addition, the restriction to U induces
an injective map S(X, r, α)→ S(U, r, α|U ) of sets. As β|U is étale and the coefficients Q̄` have
characteristic 0, β∗(V|U ) is then a sum of irreducible lisse Q̄`-sheaves β∗(V|U ) = ⊕iVUi .

As α∗(V) is tame, so is β∗(V). That is S(X, r, α) ⊂ S(X, r, β). The composite surjection
π1(V ) � π1(Y ) � πt1(Y ) factors through πt1(V ) → πt1(Y ), which is thus surjective. Thus for
every i, VUi is the restriction to V of a uniquely defined lisse irreducible tame Q̄`-sheaf Vi on Y
and β∗(V) = ⊕iVi. Let s ≥ 1 be any natural number. The restriction to V induces an injective
map S(Y, s, Id)→ S(V, s, Id) of sets.

Proposition 2.1. For any natural number s ≥ 1, the set S(Y, s, Id) is finite.

Proof. Let C̄ ↪→ Ȳ be a smooth curve, complete intersection of ample divisors of sufficiently
high degree, transversal to Ȳ \ Y , containing the geometric base point at which we centered
π1(Y ). By [EKin15, Thm.1.1 (a)], the homomorphism πt1(C) → πt1(Y ) is surjective, where
C = C̄ ∩ Y . Thus the restriction to C induces an injective map S(Y, s, Id) → S(C, s, Id) of
sets, and S(C, s, Id) is finite by Lafforgue’s theorem (see introduction).

�

For any natural number s such that 1 ≤ s ≤ r, and every class in the finite set S(Y, s, Id)
(Proposition 2.1), we fix an irreducible Q̄`-lisse étale sheaf W representing this class. We
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denote by T (Y, r, Id) the finite set of W so chosen, which is in bijection with
⋃r
s=1 S(Y, r, id).

Further, for each W ∈ T (Y, r, id), the Q̄`-lisse sheaf (β|V )∗(W|V ) on U contains only finitely
many irreducible Q̄`-lisse subsheaves U . We denote by C(U, r) the finite collection of U so
defined.

For any i, there is a character χ(Vi) of the Galois group of kY and a W(Vi) ∈ T (Y, r, id)
such that Vi =W(Vi)⊗ χ(Vi).

We first finish the proof under the assumption k = kY . For any i, the composite map

V|U ↪→ (β|V )∗(β|V )∗(V|U )
projection−−−−−−→ (β|V )∗(VUi ) = (β|V )∗(W(Vi)|V )⊗ χ(Vi)

is injective and has image U ⊗χ(Vi) for one of the U in C(U, r). Thus the image of S(X, r, β) in
S(U, r, β|V ) lies in the subset of classes of elements in C(U, r), thus is finite. Thus S(X, r, α) ⊂
S(X, r, β) is finite as well.

We now treat the general case. Let β : Y
γ−→ X ⊗ kY

ε−→ X be the factorization. We know
by the case k = kY that S(X ⊗ kY , s, γ) is finite for all 1 ≤ s ≤ r. The only remaining issue is
to compare the different notions of twist by a character.

For an irreducible Q̄`-lisse sheaf V of rank r on X, ε∗(V) = ⊕Ni=1Ai, where Ai is an irreducible
Q̄`-lisse sheaf Ai, and where the Galois group Z/m of kY ∼= Fqm over k ∼= Fq acts on the
set {Ai, i = 1, . . . , N}, transitively as V is irreducible, and via its quotient Z/N . Let σ
be the image of Frobenius of k in Z/N , then ε∗(V) = A ⊕ σ∗A ⊕ . . . ⊕ (σN−1)∗A, where
A can be chosen to be any of the Ai, and V = ε∗((σ

i)∗A) for any i = 0, . . . , N − 1. In
particular, r = a · N and N divides m, where a is the rank of A. As the Galois group of
k is abelian, the Galois group of kY over k acts trivially on the Galois group of kY , thus if
χ is a character of the Galois group of k, σ∗ε∗(χ) = ε∗(χ). We conclude that ε∗(V ⊗ χ) =
A⊗ ε∗(χ)⊕ σ∗(A⊗ ε∗(χ))⊕ . . .⊕ (σN−1)∗(A⊗ ε∗(χ)).

We now compare S(X, r, β) and S(X ⊗ kY , s, γ) for 1 ≤ s ≤ r. The Q̄`-lisse sheaf ε∗(V ⊗χ),
for a character χ of the Galois group of k, is uniquely determined by A⊗ ε∗(χ). A character
of the Galois group of kY is determined by the value of the Frobenius of kY , which is an
`-adic unit u ∈ Z̄×` ⊂ Q̄×` , thus is a m-th power, thus comes from a character of the Galois
group of k. Thus S(X ⊗ kY , a, γ) is equal to the set of irreducible Q̄`-lisse sheaves A of rank
a on X ⊗ kY , such that γ∗A is tame, modulo twists by the pull-back via ε of a character of
the Galois group of k. Finally, if the classes of V and V ′ in S(X, r, β) are such that, writing
ε∗(V) = ⊕(σi)∗A, ε∗(V ′) = ⊕(σi)∗(A′) as above, the classes of A and of A′ in S(X ⊗ kY , a, γ)
are the same, then there is a character χ of the Galois group of k such that A = A′ ⊗ ε∗(χ).
This implies that V = ε∗(A) = ε∗(A′)⊗ χ = V ′ ⊗ χ. Thus the classes of V and V ′ in S(X, r, β)
are the same. As 1 ≤ a ≤ r, thus a is bounded, we conclude that S(X, r, β) is finite, and so is
S(X, r, α) ⊂ S(X, r, β). This finishes the proof.

3. Remarks and Comments

3.1. Skeleton sheaves. In order to prove Theorem 1.3, Deligne introduces the notion of what
we called Q̄`-lisse 2-skeleton sheaves in [EK12, 2.2]. Those are collections {VC}C of Q̄`-étale
sheaves VC for any smooth curve C mapping to X, together with gluing conditions. On
C ×X C ′, with projections pC , pC′ to C and C ′, one has an isomorphism p∗CVC

∼= p∗C′VC′ which
satisfies the cocyle condition (the definition is expressed slightly differently in loc.cit. and is
trivially equivalent to this one). An irreducible 2-skeleton sheaf is one which does not contain
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any non-trivial sub (loc.cit.). With the assumptions as in Definition 1.1, for α : X ′ → X finite
étale, one defines Sk(X, r, α) to be the set of rank r irreducible Q̄`-lisse 2-skeleton sheaves,
with ramification bounded by α, modulo twist by a character of the Galois group of k. The
boundedness by α means that for any smooth curve C mapping to X ′, VC is tame. With the
assumptions as in Definition 1.2, one defines Sk(X, r,D) to be the set of rank r irreducible
Q̄`-lisse 2-skeleton sheaves, with ramification bounded by D, modulo twist by a character of
the Galois group of k. The boundedness by D means that for any smooth curve C mapping
to X, with normal compactification C̄, VC has ramification bounded by C̄ ×X̄ D. Pull-back
to curves induces maps of sets S(X, r, α) → Sk(X, r, α) and S(X, r,D) → Sk(X, r,D), which
are injective (loc. cit.). Furthermore, the proof of [EK12, Prop. 3.9] shows that for ∆ as in
(1.1), one has Sk(X, r, α) ⊂ Sk(X, r,∆). The proof of Theorem 1.4 works word by word to
show that under the assumptions of the theorem, Sk(X, r, α) is finite.

3.2. Two ways of bounding the ramification. As already mentioned, under the assump-
tions of (1.1), given an effective Cartier divisor D with support X̄ \ X, with X smooth of
finite type over a characteristic p > 0 field k, we do not know whether there is a finite étale
morphism α : X ′ → X such that S(X, r,D) ⊂ S(X, r, α).

If k is finite, then, using Deligne’s Theorem 1.3, the answer is positive. One takes an α
which makes the direct sum representation ⊕[V]∈S(X,r,D)V tame, where for each class [V] in
S(X, r,D), V is the choice of a representative.

However, the question can be posed geometrically, that is assuming k to be algebraically
closed. In general, Deligne [Del16] raises the following question. Given X smooth of finite type
over an algebraically closed field k, with a normal compactification X ↪→ X̄, given an effective
Cartier divisor D with support X̄ \X, and a natural number r, does there exist a smooth curve
C ↪→ X such that if V is a representative of a class in S(X, r,D), its restriction VC to C is still
irreducible? One can ask an even more optimistic question, dropping the boundedness of the
rank r. Can one expect the Lefschetz theorem [EKin15, Thm.1.1 (a)] to be true after replacing
the tame fundamental group πt1(X) by the Tannaka group of all Q̄`-lisse étale sheaves with
ramification bounded by D?

For X ↪→ X̄ a good compactification, there is a positive answer for the abelian quotient of
the fundamental group in characteristic ≥ 3 (see [KS15, Thm. 1.1]).

Deligne raises also in loc. cit. a sub-question. Consider all the finite Galois étale covers
α : X ′ → X which make rank r irreducible Q̄`-lisse sheaf V on X with ramification bounded
by D tame. For each of them, let X̄ ′ → X̄ be the normalisation of X̄ in the field of functions
of X ′. Can one bound the inseparable degree of the induced finite covers of the components
of X̄ \X?

3.3. Smooth versus normal. The set S(X, r,D) is defined under the assumption that X is
normal, in particular geometrically unibranch. The spirit of the proof of Theorem 1.4 enables
us to generalize Deligne’s finiteness theorem 1.3, from X smooth to X normal. Unfortunately,
contrary to Theorem 1.4, one has to use Theorem 1.3, so it does not really shed a new light
on it.

Theorem 3.1. Let X be a geometrically connected normal scheme of finite type defined over a
finite field, X ↪→ X̄ be a normal compactification, D be a Cartier divisor with support X̄ \X,
r be a natural number. Then S(X, r,D) is finite.
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Proof. Let j : U ↪→ X be the smooth locus, let I be the ideal sheaf defining the complement
in X̄ of the open embedding U ↪→ X ↪→ X̄. Let f̄ : Ȳ → X̄ be the normalization of the blow
up of I, with restriction f : Y = f̄−1(X)→ X to X. The open embedding j lifts to the open
embedding j′ : U → Y . Let OȲ (−E) = f̄∗I be the locally free ideal sheaf of the exceptional
locus, and define the effective Cartier divisor D′ = E + f̄∗D on Ȳ . It has support Ȳ \ U .

As X is normal, thus geometrically unibranch, a representative V of a class in S(X, r,D)
corresponds to a continuous representation ρ : π1(X)→ GL(r, Q̄`) ([BS15, Intro., Lem.7.4.10]).
If h : C → Y is a morphism from a smooth curve, with unique extension h̄ : C̄ → Ȳ , where C̄
is the normal compactification, (f ◦ h)∗V has ramification bounded by h̄∗f̄∗D, thus, a fortiori,
V|U = f∗V|U has ramification bounded by D′. As π1(U)→ π1(X) is surjective [StacksProject,
Lem.9.8], restriction to U induces an injective map S(X, r,D)→ S(U, r,D′). As S(U, r,D′) is
finite by Theorem 1.3, so is S(X, r,D).

�
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