
SOME FUNDAMENTAL GROUPS IN ARITHMETIC GEOMETRY

HÉLÈNE ESNAULT

Abstract. We report on Deligne’s finiteness theorem for `-adic representations on smooth
varieties defined over a finite field, on its crystalline version, and on how the geometric étale
fundamental group of a smooth projective variety defined over a field of positive characteristic
controls crystals on the infinitesimal site and should control those on the crystalline site.
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2. Deligne’s conjectures: `-adic theory

The classical Hermite-Minkowski theorem asserts that there are finitely many numbers fields
with bounded discriminant. In this section we present Deligne’s program aiming at showing
an analog finiteness theorem on complex varieties for variations of Hodge structures and on
varieties over finite fields for `-adic sheaves.

Theorem 2.1 (Deligne, [Del84], Thm. 0.5.). Let X be a complex smooth connected variety,
let r, w be natural numbers with r 6= 0. Then there are finitely many rank r Q-local systems
which are direct factors of a Q-variation of polarizable pure Hodge structure of weight w.

The inspiration for this finiteness theorem in Hodge theory comes from Faltings’s finiteness
theorem [Fal83, Cor. p.344] for abelian schemes, that is in weight w = 1. We refer e.g. to
[Cat14, Section 2] for the notion of a variation of Hodge structure. In particular, as it is regular
singular at infinity, the analog of the discriminant appearing in Hermite-Minkowski’s theorem
is just the reduced divisor at infinity in a good normal crossings compactification X ↪→ X̄.
This explains why it is enough to fix X and no multiplicities along the components of X̄ \X.

On the other hand, for varieties defined over finite fields Fq, in `-adic theory, ` prime to q,
one has the following finiteness theorem.

Theorem 2.2 (Deligne, [EK12], Thm. 2.1, [Esn16], Thm. 3.1). Let X be a normal separated
scheme of finite type defined over a finite field Fq, let 0 6= r be a natural number. Let D ⊂ X̄
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be an effective Cartier divisor of a normal compactification X̄ with support X̄ \X. Then there
are finitely many isomorphism classes of irreducible Weil (resp. étale) rank r lisse Q̄`-sheaves
with ramification bounded by D, up to twist with Weil (resp. étale) characters of Fq. The
number does not depend on the choice of `.

We refer to [Del80, Section 1.1] for `-adic sheaves and to [Del80, 1.1.7] for Weil sheaves,
also to [EK11, Notations]. Here ‘ramification bounded by D’ means that the Swan conductor
on the pull-back of the sheaf on any smooth curve mapping non-trivially to X is bounded by
the pull-back of D (see [EK12, Definition 3.6]). One could formulate the finiteness theorem
by replacing this notion by the one used by Drinfeld in [Dri12, Thm. 2.5 (ii)], counting the
isomorphism classes of the sheaves which become tame on a given finite étale cover X ′ → X.
That this assumption is stronger is proved in [EK12, Proof of Prop. 3.9].

Deligne’s proof relies on Lafforgue’s main theorem which in particular implies Theorem 2.2
over a smooth curve ([Laf02, Thm. VII.6]). The whole question, how to reduce to curves, is
geometric. Some of the key ideas of the proof go back to Wiesend ([Wie06] and [Wie07]).

The chronology is a bit intricate. First Deligne gave a direct proof of 2.3. This can be
understood as a corollary of Theorem 2.2 which itself was proved later (see [EK12, Thm. 8.2]
for the deduction).

Corollary 2.3 (Deligne, [Del12], Thm. 3.1, Deligne’s conjecture (ii) in [Del80], 1.2.10). Given
a lisse étale Q̄`-sheaf V with determinant of finite order, the subfield of Q̄` spanned by the
coefficients of the minimal polynomials of the Frobenii Fx at closed points x ∈ |X| acting on
Vx̄ is a number field.

Using this in an essential way, Drinfeld proved the existence of `-adic companions on smooth
quasi-projective varieties defined over a finite field [Dri12, Thm. 1.1], which is part (v) of the
conjecture [Del80, 1.2.10]. Then, using Drinfeld’s theorem in an essential way, Deligne proved
Theorem 2.2 under the additional assumption that X is smooth. Finally, a simple reduction
of the problem to the smooth locus of X enables one to extend the finiteness theorem to the
case where X is normal ([Esn16, Thm. 3.1]).

Fixing a good compactification X ↪→ X̄, with a strict normal crossings divisor at infinity,
then a curve C̄, complete intersection of ample divisors in X̄ in good position, fulfils the
Lefschetz theorem on topological fundamental groups, that is the homomorphism

πtop
1 (C := X ∩ C̄)→ πtop

1 (X)

is surjective. In particular, this reduces Theorem 2.1 to the case where X is of dimension 1.
However, for X of dimension ≥ 2 in characteristic p > 0, there is no Lefschetz theorem. Thus
Theorem 2.2 does not obviously reduce to dimension 1.

All one has at disposal are two kinds of Lefschetz theorems, one for reducing all tame cover-
ings of X to one well chosen curve, one for reducing one specific object (`-adic representation
or given Galois cover) to one curve adapted to this object.

Theorem 2.4 (Drinfeld, [Dri12], Prop. C.2, [EK15], Section 6). Let X̄ ⊃ X be a projective
normal geometrically connected compactification of a smooth scheme of finite type X defined
over a field k, let Σ ⊂ X̄ be a closed subset of codimension ≥ 2 such that (X̄ \ Σ) and
(X̄ \Σ)∩(X̄ \X) are smooth. Let C̄ ⊂ X̄ \Σ be a smooth projective curve, complete intersection
of ample divisors, meeting X̄ \ X transversally. Then the restriction to C = C̄ ∩ X of any
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finite étale connected cover of X \Σ, which is tame along (X̄ \Σ) ∩ (X̄ \X), is connected. In
particular, the homomorphism on the tame fundamental groups πt1(C)→ πt1(X) is surjective.

An important point is that one does not need a good compactification for Drinfeld’s theorem.
If one has one, one can enhance the theorem to a complete version of the Lefschetz theorems
under the Lefschetz conditions Lef(X,Y ) (formal sections along Y of vector bundles lift to an
open neighbourhood of Y ) and under the effective Lefschetz conditions Leff(X,Y ) (formal
bundles along Y lift to an open neighbourhood of Y ) (see [EK15, Thm 2.5], and [SGA2,
X.2,p.90] for Grothendieck’s Lefschetz and effective Lefschetz conditions). Using Theorem 2.4,
together with the existence alterations [dJ97], one can prove Theorem 2.2 with the stronger
assumption on the ramification being killed by one fixed finite étale cover X ′ → X purely
geometrically, without using the existence of `-adic companions (see [Esn16, Thm. 1.4]).

For non-tame `-adic sheaves or covers, only a much weaker version of the Lefschetz theorems
is available.

Theorem 2.5 (see e.g. [EK12], Prop. B.1, Lem. B.2). Let X be a smooth quasi-projective
variety defined over Fq, let S ⊂ |X| be a finite set of closed points.

1) Let V be an irreducible Q̄`-Weil or -étale lisse sheaf, then there is a smooth curve
C → X with S ⊂ |C|, such that V |C is irreducible.

2) Let H ⊂ π1(X) be an open normal subgroup, then there is a smooth curve C → X with
S ⊂ |C|, such that the homomorphism π1(C)→ π1(X)/H is surjective.

Nonetheless, it has the important following consequences.

Corollary 2.6 (Drinfeld [Dri12], Thm. 1.1, Deligne’s conjecture (v) [Del80] 1.2.10). 1) If
V is an irreducible Weil sheaf, such that det(V ) is of finite order, then V has weight
0.

2) If V is an irreducible Weil lisse Q̄`-sheaf with determinant of finite order, and σ ∈
Aut(Q̄`/Q), there is an irreducible Weil lisse Q̄`-sheaf Vσ, called the σ-companion of V ,
with determinant of finite order, such that the characteristic polynomials fV , fVσ ∈ Q̄`[t]
of the local Frobenii Fx satisfy fVσ = σ(fV ).

In 1) and 2), V and Vσ are in fact étale by [Del80, Thm. 1.3.1]. Deligne’s finiteness Theo-
rem 2.2 for rank 1 sheaves can be proven directly.

Theorem 2.7 (Kerz-Saito, [KS14], Thm. 1.1). Let X be a smooth quasi-projective variety over
a perfect field k, let X ⊂ X̄ be a projective compactification with simple normal crossings at
infinity, let D be an effective divisor with support in X̄ \X. Define πab

1 (X,D) by the condition
that a character χ : π1(X)→ Q/Z factors through πab

1 (X,D) if and only if the Artin conductor
of χ pulled-back to any curve C → X is bounded by the pull-back of D via C̄ → X̄, where C̄ is
a compactification of C, smooth along C̄ \ C. Then the full package of the Lefschetz theorems
holds:

for a sufficiently ample divisor i : Ȳ ⊂ X̄ in good position with respect to X̄ \ X, the homo-
morphism

i∗ : πab
1 (Y, Ȳ ∩D)→ πab

1 (X,D)

is an isomorphism if dim Y ≥ 2, and is surjective if dim Y = 1, where Y = Ȳ ∩ X. In
particular, if k = Fq, then

Ker
(
πab

1 (X,D)→ πab
1 (k)

)
is finite.
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Theorem 2.7 implies the rank 1 case of Deligne’s finiteness Theorem 2.2 in case one has a
good compactification. In fact, one does not need the full package, only that if C̄ is a complete
intersection curve of such hypersurfaces Ȳ as in the theorem, then

πab
1 (C, C̄ ∩D)→ πab

1 (X,D)

is surjective. So far, one does not have tools to understand a version of this for the whole
fundamental group, which would explain Theorem 2.2 in general.

3. Deligne’s conjectures: crystalline theory

Let X be a smooth geometrically connected scheme of finite type over a perfect field k of
characteristic p > 0, W := W (k) be the ring of Witt vectors, K = Frac(W ) be its field of
fractions. We refer to [ES15, Section 1] for the following presentation.

One defines the crystalline sites X/Wn as PD-thickenings (U ↪→ T/Wn, δ), where the cov-
erings come from U ⊂ X Zariski open. The crystalline site X/W is then the 2-inductive limit
of the X/Wn, see [BO78, Ch. 7,p. 7-22]. The category of crystals Crys(X/W ) is the category
of sheaves of OX/W -modules of finite presentation, with transition maps being isomorphisms.
It is W -linear. The category of isocrystals Crys(X/W )Q is its Q-linearisation. It is K-linear,
tannakian.

The absolute Frobenius F acts on Crys(X/W )Q. The largest full subcategory Conv(X/K) ⊂
Crys(X/W )Q on which every object is F∞-divisible is the K-tannakian subcategory of con-
vergent isocrystals (Berthelot-Ogus) (Ogus defines the site of enlargements from X/W , then
convergent isocrystals are crystals on it of OX/K-modules of finite presentation).

We introduce various categories of F -isocrystals. One defines the category F -Conv(X/K)

of convergent F -isocrystals as pairs (E ,Φ) where E ∈ Conv(X/K) and Φ : F ∗E
∼=−→ E is a

K-linear isomorphism. Its is a Qp-linear tannakian category. The category F -Overconv(X/K)
of overconvergent F -isocrystals, defined analytically by Berthelot in ([Ber96, 2.3.6, 2.3.7] (see
also [LeS07, p. 288]), has a more algebraic description due to Kedlaya. It consists of those
convergent F -isocrystals E which have unipotent local monodromy after alteration in the sense
of Kedlaya ([Ked04, Introduction], [Ked07, Introduction and Section 3.2]). It is a Qp-linear
category, fully embedded in F -Conv(X/K) ([Ked04, Thm. 1.1]). We shall just need that if X
is proper, then Kedlaya’s full embedding is an equivalence, and that the group of extensions
of the trivial object by itself in this category is H1

rig(X/K), the first rigid cohomology group.

When k is a finite field Fq, q = ps, one defines FFq = F s-Overconv(X/K) by the same
formulae as before, but now F s acts instead of F . It is a K-linear category. Fixing an algebraic
closure Q̄p of Qp, one defines F -Overconv(X/K)Q̄p as its Q̄p-linearization. It is called is the

category of overconvergent F -isocrystals over Q̄p. See [Abe13, 1.4.11, 4.1.2].

With those notations at hand, one can formulate the general hope. For smooth geometrically
irreducible schemes of finite type X defined over a finite field Fq, there should be an analogy
between

i) irreducible objects in F -Overconv(X/K)Q̄p with determinant of finite order;

ii) irreducible lisse Q̄`-sheaves with determinant of finite order.

Upon bounding ramification at infinity in i) and ii), the analogy should extend to irreducible
Q-variations of polarisable pure Hodge structures definable over Z over complex varieties. Of
course, since there are many categories of isocrystals, one may wonder why those particular
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ones are the right analogs. The best demonstration is clearly Abe’s Theorem 3.1. But already
before the theorem was known, one knew that isocrystals have slopes (a topic not discussed
here) and that those isocrystals which come from the variation of crystalline cohomology of the
fibers of a smooth projective family have pure slope parts which are convergent subisocrystals.
However, the lisse Q̄`-sheaves computing the variation of the `-adic cohomology of the fibers
tend to be irreducible if the geometric variation of the family is big, e.g. if the family is the
universal family on a moduli space.

Theorem 3.1 (Abe, [Abe13], Thm. 4.3.1). Let X be a smooth curve defined over a finite field
Fq. Then

1) an irreducible object in F -Overconv(X/K)Q̄p with determinant of finite order is ι-pure
of weight 0;

2) an irreducible lisse Q̄`- étale sheaf with determinant of finite order has a companion
which is an irreducible overconvergent F -isocrystal over Q̄p with determinant of finite
order; vice-versa, an irreducible overconvergent F -isocrystal over Q̄p with determinant
of finite order has a companion which is an irreducible lisse Q̄`- étale sheaf with deter-
minant of finite order.

Here ι is a fixed isomorphism ι : Q̄p → C, and ι-pure means that the Frobenii at all closed
points x of X act on the fiber Ex in

F−Overconv(x/Frac(W (k(x)))Q̄p = F−Conv(x/Frac(W (k(x)))Q̄p

of the object E in F -Overconv(X/K)Q̄p with eigenvalues of complex absolute value qw/2 for

a fixed real number w called the weight. (Similarly, ι-mixed means that E is filtered in F -
Overconv(X/K)Q̄p such that the associated graded grE in a sum of ι-pure objects. See [AC13,

Defn. 2.1.3].)

Deligne’s program [Del80, 1.2.10] in higher dimension on the crystalline side is not yet
achieved. However, a Lefschetz theorem such as Theorem 2.5 for overconvergent F -isocrystals
over Q̄p has been proven.

Theorem 3.2 (Abe-Esnault, [AE16], Thm. 0.1). Let X be a smooth connected quasi-projective
variety defined over Fq. Let M be an irreducible overconvergent F -isocrystal. Then there is a
open dense subscheme U ↪→ X such that for any finite set S ⊂ U of closed points, there is a
smooth irreducible curve C → X such that S ⊂ C and such that M |C is irreducible.

This implies the following.

1) M is ι-pure of weight 0 ([Abe13, Thm. 4.2.2]);
2) Corollary 2.3 remains true with V replaced by M , that is there is a number field

containing all the coefficients of all local eigenpolynomials ([AE16, 1.5]) at closed points
([AE16, Lem. 4.1]);

3) M has `-adic companions which are irreducible Q̄`-lisse sheaves ([AE16, Thm. 4.3]);
4) There is a crystalline version Theorem 2.2: Let X be a smooth connected quasi-

projective variety defined over Fq, (r,D) be as in Theorem 2.2, σ be a field isomorphism
from Q̄p to Q̄` for some prime number ` different from p. Then there are finitely many
isomorphism classes of irreducible overconvergent F -isocrystals, up to twist with rank
1 isocrystals on Fq, such that the σ-companion (which by 3) is an irreducible Q̄`-lisse
sheaf) has ramification bounded by D.
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We note that in an ‘unstable preprint’ posted on his webpage, unstable in the author’s
terminology, Kedlaya uses weights to deduce 1) and 2) as well as the part of 3) concerning
the existence of `-adic companions. The properties of being lisse and irreducible seems to be
inaccessible without the Lefschetz theorem 3.2.

We also mention [Kos15, Thm. 1.2] in which a weak analog to Theorem 2.2 is proven: if
X is a smooth geometrically connected variety defined over a finite field, then a semi-simple
unit-root overconvergent F -isocrystal in F -Overconv(X/K)Q̄p is isotrivial. The point is that
such an object necessarily is locally isotrivial at infinity, which reduces the problem to the case
of X smooth projective, thus by the standard Lefschetz theorem to the curve case. One then
applies Abe’s theorem [Abe13, Thm. 4.1] which reduces the statement to Lafforgue’s theorem
[Laf02, Thm. VII.6]).

4. Malčev-Grothendieck’s theorem, Gieseker’s conjecture, de Jong’s
conjecture

LetX be a smooth geometrically irreducible scheme of finite type over field k of characteristic
0. Grothendieck defined the infinitesimal site X∞ ([Gro68]) with objects U ↪→ T where T is
an infinitesimal thickening of a Zariski open subscheme U , and where coverings come from
the Us. Crystals are finitely presented crystals on X∞. The category is equivalent to the
category of bundles on X with an integrable connection (E,∇) or equivalently to the category
of OX -coherent DX -modules. It is a k-linear category, which is tannakian.

Theorem 4.1 (Malčev [Mal40], Grothendieck [Gro70], Thm. 4.2). Let X be a complex smooth
variety. If its étale fundamental group is trivial, then there are no non-trivial crystals in the
infinitesimal site (with regular singularities at infinity in case X is not projective).

Here one uses the Riemann-Hilbert correspondence to translate the assertion on represen-
tations of groups which are finitely generated, applied to the topological fundamental group,
to the assertion on crystals in the infinitesimal site. The proof then just uses that a GL(r,A)-
representation, where A is Z-algebra of finite type, is trivial if and only if it is by restriction
to the closed points of Spec(A).

Gieseker [Gie75, p. 8] conjectured that the analog theorem remains true in characteristic
p > 0. Let X be a smooth projective geometrically irreducible variety over a field k of
characteristic p > 0. One defines X∞ and crystals as in characteristic 0. By Katz’ theorem
[Gie75, Thm. 1.3], which relies on Cartier descent, it is also equivalent to the category of
Frobenius divisible OX -coherent sheaves, that is infinite sequences (E0, E1, · · · , σ0, σ1, · · · ) of

bundles En on the n-th Frobenius twist X(n) of X, together with isomorphisms σn between En
and the Frobenius pull-back of En+1. Then Gieseker’s conjecture predicts that Theorem 4.1
holds in characteristic p > 0. It has been proved in 2010.

Theorem 4.2 (Esnault-Mehta, [EM10], Thm. 1.1). Let X be a smooth projective geometrically
irreducible variety over a field k of characteristic p > 0. If its geometric étale fundamental
group is trivial, then there are no non-trivial crystals in the infinitesimal site.

What in the proof replaces the finite generation of the topological fundamental group is the
existence of quasi-projective moduli for stable bundles with vanishing Chern classes (Langer,
[Lan04, Thm. 4.1]). What then replaces the criterion for triviality is Hrushovski’s theorem
on the existence of preperiodic points on dominant correspondences over finite fields [Hru04].



SOME FUNDAMENTAL GROUPS IN ARITHMETIC GEOMETRY 7

Varshavsky in [Var14] gave a proof of it in the framework of arithmetic geometry, without
using model theory.

One can formulate variants of Gieseker’s conjecture. If X is not proper, then the theory
of regular singular crystals in the infinitesimal site has been developed by Kindler [Kin15], in
such a way that for those objects with a finite Tannaka group, it coincides with the notion of
tame quotient of the étale fundamental group. There is no good higher ramification theory
so far, nor does one have an analog of Theorem 4.2, except for the tame abelian quotient of
the geometric fundamental group (Kindler, [Kin13, Thm. 1.4]), and in the case where X is
the smooth locus of a normal projective variety defined over k = F̄q (Esnault-Srinivas [ESB15,
Thm 1.1]; the proof uses Bost’s improvement of Grothendieck’s LEF theorem, see [ESB15,
Appendix]).

In 2010, de Jong formulated the corresponding conjecture in the category of isocrystals. Let
X be a smooth projective geometrically irreducible variety over a perfect field k of characteristic
p > 0. If its geometric étale fundamental group is trivial, then the conjecture predicts that
there are no non-trivial isocrystals. As of today, there is no complete understanding of the
conjecture. We now list the known results concerning it.

One defines N(1) = ∞, N(2) = 2, N(3) = 1, N(r) = 1/M(r) where for any natural number
r ≥ 4, M(r) is the maximum of the lower common multiples of a and b for all choices of
natural numbers a, b ≥ 1 with a + b ≤ r. For any torsion-free coherent sheaf F , one denotes
by µmax(F) its maximal slope.

Theorem 4.3 (Esnault-Shiho). Let X be a smooth projective geometrically irreducible variety
over a perfect field k of characteristic p > 0.

1) If the abelian quotient of the geometric étale fundamental group of X is trivial, there are
no non-trivial isocrystals which are successive extensions of rank 1 isocrystals. ([ES15,
Prop. 2.9, Prop. 2.10]).

2) If the geometric étale fundamental group of X is trivial, µmax(Ω1
X) < N(r), the irre-

ducible constituents of the Jordan-Hölder filtration of E have rank ≤ r, and E itself is
either in Conv(X/K) or else each of its irreducible constituents has a locally free lattice
and has rank ≥ r, then E is trivial. ([ES15, Thm. 1.1] and [ES15b, Thm. 1.2]).

Let f : Y → X be a smooth proper morphism between smooth proper schemes of finite type.

3) If the geometric étale fundamental group of X is trivial, then all the Gauß-Manin
convergent isocrystals Rnf∗OY/K are trivial. If k is finite, f is projective and p ≥ 3,
one can drop the properness assumption on X ([ES15b, Thm. 1.3, Rmk. 1.4]).

We first discuss 3). Le us assume that k is a finite field. Then the statement relies on

Theorem 4.4 (Abe’s Čebotarev’s density theorem, [Abe13], A.3). Let X be a smooth scheme
of finite type defined over a finite field k. If E and E ′ are ι-mixed overconvergent F -isocrystals
over Q̄p with the same set of Frobenius eigenvalues on closed points of X, then the semi-
simplifications of E and E ′ are isomorphic.

When X is proper or f is projective, the convergent F -isocrystal Rnf∗OY/K is an over-

convergent F -isocrystal over Q̄p via the faithful embedding ([Laz15, Cor. 5.4]), thus obeys
Theorem 4.4. The Weil conjectures [KM74, Thm. 1.1], [CLS98, Cor. 1.3] in the proper case,
enable one to conclude that the semi-simplification of Rnf∗OY/K is constant. Forgetting the
F -structure, it is thus a successive extension of the trivial overconvergent isocrystal by itself,
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thus is trivial, as the first rigid cohomology of X is controlled by the first `-adic cohomology
of X ⊗k k̄ when X is proper or p ≥ 3. The latter is trivial if the geometric fundamental
group is trivial. Over a general field k, the properness assumption on X allows to compare the
statement to the one over finite fields by base change.

We discuss 2). Since the conjecture concerns isocrystals, it is not natural to try to argue
with lattices, that is p-torsion free crystals E in a given isocrystal class E . Unfortunately, there
is at present no other way to do, and indeed, basically 2) is proven by showing that under the
given assumptions, the value EX on X of a well chosen crystal E in the isocrystal class E is
trivial. Then one studies the possible liftings modulo p-powers. In order to show triviality of
EX , one applies Theorem 4.2. To do so, one has to show the existence of such an EX which is
semi-stable with vanishing numerical Chern classes, so as to be able to define its moduli point.
If EX was F∞-divisible, then one could apply Theorem 4.2 directly. This is not the case, even
if E ∈ Conv(X/K), that is even if E is F∞-divisible. Instead, one shows that F a-divisibility is
enough to trivialize a moduli point, for a large enough depending only on X and the rank of
E ([ES15, Prop. 3.2]). One applies this to the Frobenius pull-backs of EX . For this one needs
that they are semistable as well, and this is the reason for the assumption on µmax(Ω1

X). On
the other hand, a Langton type argument guarantees that one finds a crystal E such that EX
is semi-stable. The issue is then to show vanishing of the Chern classes of EX . It is easy to
show that all lattices EX of a given isocrystal E have the same crystalline Chern classes ccrys

n (E)
in H2n(X/W ), n ≥ 1, and thus ccrys

n (E) = 0 if E ∈ Conv(X/K) ([ES15, Prop. 3.1]). If EX is
locally free as a coherent sheaf, it is true, but by no means trivial, that ccrys

n (E) = 0, where E
is the isocrystal class of E (see [ES15b, Section 2/3]). However, we do not know whether or
not any isocrystal E admits a lattice E which is locally free. This explains the restriction on
the type of isocrystals considered in the theorem.
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