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CHERN CLASSES OF CRYSTALS

HÉLÈNE ESNAULT AND ATSUSHI SHIHO

Abstract. The crystalline Chern classes of the value of a locally free crystal
vanish on a smooth variety defined over a perfect field. Out of this we conclude
new cases of de Jong’s conjecture relating the geometric étale fundamental
group of a smooth projective variety defined over an algebraically closed field
and the constancy of its category of isocrystals. We also discuss the case of
the Gauß–Manin convergent isocrystal.

1. Introduction

On a smooth algebraic variety X defined over the field C of complex numbers,
a vector bundle E endowed with an integrable connection ∇ : E → Ω1

X ⊗OX E has
vanishing Chern classes cdR

i (E) in de Rham cohomology H2i
dR(X/C) for i ≥ 1.

The standard way to see this is applying Chern–Weil theory: the classes in
H2i

dR(X) of the successive traces of the iterates of the curvature ∇2 ∈ Hom(E,Ω2
X ⊗

E) are identified with the Newton classes Ni(E), and the Q-vector spaces spanned
by cdR

i (E), 1 ≤ i ≤ n, and the Ni(E), 1 ≤ i ≤ n, are the same in H2i
dR(X) [10]. In

particular, the method loses torsion information, and, for example, a torsion class
in integral ℓ-adic cohomology H2(Xk̄, Zℓ(1)) for some ℓ is the first ℓ-adic Chern
class of some line bundle which carries an integrable connection.

If (X, E) is defined over a field k of characteristic 0 and E admits an integrable
connection after base changing to C for a complex embedding k ↪→ C, one still
has vanishing 0 = cdR

i (E) ∈ H2i
dR(X/k) for i ≥ 1 because Chern classes in de

Rham cohomology are functorial and de Rham cohomology satisfies the base change
property.

The first purpose of this article is to present a similar vanishing statement where
k is now a perfect field of characteristic p > 0, X is projective, E is replaced by the
value EX on X of a p-torsion free crystal E, and de Rham cohomology is replaced
by crystalline cohomology. Let W = W (k) be the ring of Witt vectors on k. We
denote by Hi

crys(X/W ) the integral crystalline cohomology of X and by ccrys
i (EX)

the crystalline Chern classes of EX in H2i
crys(X/W ).

Recall (see [19, Sec. 1] for an overview of the concepts) that a crystal is a
sheaf of OX/W -modules of finite presentation on the crystalline site of X/W such
that the transition maps are isomorphisms. Crystals build a W -linear category

Crys(X/W ), of which the Q-linearization Crys(X/W )
Q⊗−−→ Crys(X/W )Q is the

category of isocrystals. Then Crys(X/W )Q is a Tannakian category over K, the
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fraction field of W . Any E ∈ Crys(X/W )Q is of the shape Q ⊗ E where E is a
lattice, that is, a p-torsion free crystal. However it is an open question whether one
can choose E to be locally free.

Theorem 1.1. Let X be a smooth variety defined over a perfect field k of charac-
teristic p > 0. If E ∈ Crys(X/W ) is a locally free crystal, then ccrys

i (EX) = 0 for
i ≥ 1.

It is proved in [19, Prop. 3.1] that given an isocrystal Q ⊗ E ∈ Crys(X/W )Q,
ccrys
i (EX) does not depend on the choice of the lattice E. In particular, if it were

true that any isocrystal carries a locally free lattice, then Theorem 1.1 would imply
that ccrys

i (EX) = 0 for i ≥ 1 for any p-torsion free crystal E ∈ Crys(X/W ).
The proofs of Theorem 1.1 imply also the following variant for Chern classes in

torsion crystalline cohomology: Let Wn := W/pnW . Then, if X is as in Theorem
1.1 and if E is a locally free crystal on X/Wn, then ccrys

i (EX) is zero in the torsion
crystalline cohomology group H2i

crys(X/Wn) for i ≥ 1. See Remarks 2.1 and 3.4.
Recall that the Frobenius acts on Crys(X/W ) and Crys(X/W )Q. Locally on X,

Crys(X/W ) is equivalent to the category of quasi-nilpotent integrable connections
on a formal lift of X over W , and the action is just given by the Frobenius pull-back
of a connection. The category Conv(X/K) of convergent isocrystals is the largest
full subcategory of Crys(X/W )Q which is stabilized by the Frobenius action. It
is proved in [19, Prop. 3.1] that ccrys

i (EX) = 0 for any lattice E of a convergent
isocrystal, regardless of the existence of a locally free lattice.

For a natural number r, set N(r) to be the maximum of the lower common
multiples of a and b for all choices a, b ≥ 1, a + b ≤ r. As in [19], Theorem 1.1
enables one to prove the following case of de Jong’s conjecture ([19, Conj. 2.1]).

Theorem 1.2. Let X be a smooth projective variety over a perfect field k of char-
acteristic p > 0. If the étale fundamental group of X ⊗k k is trivial and the max-
imal Mumford slope of the sheaf of 1-forms is bounded above by N(r)−1, then any
isocrystal E which is an iterated extension of irreducible isocrystals of rank ≤ r

having locally free lattices is isomorphic to O⊕rank(E)
X/K , where OX/K := Q ⊗ OX/W .

Given Theorem 1.1, the proof is nearly the same as the one of the main Theo-
rem [19, Thm. 1.1], with some differences which we explain in Section 4.

The second main theorem is de Jong’s conjecture for convergent isocrystals com-
ing from geometry. Recall that for a smooth proper morphism f : Y → X of
varieties over a perfect field k of characteristic p > 0, the Gauß–Manin convergent
isocrystal Rif∗OY/K is defined by Ogus [32].

Theorem 1.3. Let f : Y → X be a smooth proper morphism between smooth proper
varieties over a perfect field k of characteristic p > 0. If the étale fundamental
group of X ⊗k k is trivial, then the Gauß–Manin convergent isocrystal Rif∗OY/K

is isomorphic to O⊕r
X/K , where r is its rank.

Remark 1.4. 1 For a smooth projective morphism f : Y → X between varieties
defined over a perfect field k of characteristic p > 0, Lazda [29, Cor. 5.4] proved
recently that the Gauß–Manin convergent isocrystal Rif∗OY/K canonically lifts to

1Added in proof: The authors are informed that there is an error in the proof of [29, Lem. 5.1]
and so the proof of [29, Cor. 5.4] is incomplete. In this article, we assume the existence of the

Gauß-Manin overconvergent isocrystal Rif∗O†
Y/K

when X is not proper.
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an overconvergent isocrystal on X, which we denote by Rif∗O†
Y/K and call the

Gauß–Manin overconvergent isocrystal. When X is smooth, geometrically simply
connected, k is a finite field, and p ≥ 3, we prove that Rif∗O†

Y/K is constant as an
overconvergent isocrystal on X. See Section 5.

We now explain the methods used in order to prove Theorem 1.1.
There are two ways to prove the vanishing of cdR

i (E) ∈ H2i
dR(X/k) (i > 0) for

a locally free sheaf E equipped with an integrable connection which does not use
Chern–Weil theory.

One method uses a modified splitting principle as developed in [16] and [18]. On
the projective bundle P(E)

π−→ X, the integrable connection induces a differential
graded algebra Ω•

τ , which is a quotient Ω•
P(E) → Ω•

τ of the de Rham complex and

which cohomologically splits Hi
dR(X/k) in Hi(P(E),Ω•

τ ). Then one shows that the
Ω1

τ -connection on π∗E induced by ∇ stabilizes OP(E)(1). Hence, when the rank of
E is two, π∗E is an extension of Ω1

τ -connections of rank 1, and so one can prove
the vanishing of the classes in H2i(P(E),Ω•

τ ), thus in H2i
dR(X/k). In the case of

rank r, one repeats the above argument (r − 1)-times to obtain a filtration by
Ω1

τ -connections of rank 1.
We adapt this construction to the crystalline case as follows. (In the introduction,

we assume the existence of a closed embedding X ↪→ P of X into a smooth p-adic
formal scheme P over W to ease the explanation.) One considers the projective
bundle π : P(ED) → D of the value ED of a locally free crystal E on the PD-
hull X ↪→ D → PW of the embedding X ↪→ P . One shows that the connection
on ED induces a quotient differential graded algebra Ω̄•

P(ED) → Ω̄•
τ of the PD-

de Rham complex Ω̄•
P(ED). Then one shows that the Ω̄1

τ -connection on π∗(ED)

respects OP(ED)(1). Thus we can argue as in the de Rham case and obtain the
required vanishing. See Section 2.

Another way on the de Rham side is to say that local trivializations of E yield a
simplicial scheme X• augmenting to X together with a morphism e : X• → BGL(r),
defined by the transition functions, to the simplicial classifying scheme BGL(r),
where r is the rank of E. This induces the maps H2i(BGL(r),Ω•) → H2i

dR(X•/k) ∼=
H2i

dR(X/k). If k = C and E carries an integrable connection, we have a sim-

ilar map H2i(BGL(r),Ω•) → H2i
dR(Xan,•/k)

∼=← H2i
dR(Xan/k) which is identified

with the previous one and factors through the cohomology H2i(BGL(r)disc,Ω•) =
H2i(BGL(r)disc, O) of the discrete classifying simplicial space BGL(r)disc. Thus
cdR
i (E) is in the image of the composite map H2i(BGL(r),Ω≥i)→H2i(BGL(r),Ω•)
→ H2i(BGL(r), O) → H2i(BGL(r)disc, O), which is zero for i ≥ 1.

We adapt this construction to the crystalline case as follows. Given a closed
emdedding X ⊂ P into a smooth p-adic formal scheme over W , one defines D• to
be the simplicial scheme such that Dn is the PD-hull of the diagonal in P×n+1.
Then the crystalline Poincaré lemma and the Čech–Alexander resolution equate
Hi

crys(X/W ) both with Hi(D•, Ω̄•) and with Hi(D•, O) (see Proposition 3.3).
Thus, defining a certain simplicial version D• of D•, to which X• maps, E has the
free value ED• , and this induces the map H2i

crys(BGL(r)/W ) = H2i(BGL(r),Ω•) →
H2i(D•, Ω̄D•)

∼=→ H2n(D•, O) ∼= H2i
crys(X/W ). Thus ccrys

i (EX) is in the image of
the composite map H2i(BGL(r),Ω≥i) → H2i(BGL(r),Ω•) → H2i(BGL(r), O) →
H2i(D•, O) ∼= H2i

crys(X/W ), which is zero for i ≥ 1. See Section 3.
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We now explain the methods used in order to prove Theorem 1.3, assuming k is
a finite field.

Let us assume first that f : Y → X is an abelian scheme and present then an
ℓ-adic argument due to G. Faltings. The arithmetic fundamental group of X acts
on Rif∗Qℓ via Gal(F̄q/Fq). Thus by Tate’s theorem [38], all fibers of f over F̄p-
points of X are isogeneous; thus the Gauß–Manin convergent isocrystal Rif∗OY/K

is constant.
In general, one has to replace Tate’s motivic theorem by a result of Chiarellotto-

Le Stum [11] (generalizing the Katz–Messing theorem [25]) and Abe’s Čebotarev
density theorem [1, Prop. A.3.1], which yields the constancy of the semi-simplifi-
cation of Rif∗O†

Y/K (see Remark 1.4 for notation) in the category Conv†(X/K) of
overconvergent isocrystals on X. Finally one has to go from the semi-simplifcation
to the original Gauß–Manin isocrystal by showing that there are no extensions of
the constant overconvergent isocrystal by itself on X when X is proper or p ≥ 3
(Theorem 5.1).

Over a non-finite field (when X is proper), one reduces the proof to the case of
a finite ground field by a specialization argument. See Section 5.

Finally, in Section 6 we prove a very weak form of a Lefschetz theorem for
isocrystals.

2. Crystalline modified splitting principle

The aim of this section is to prove Theorem 1.1 using a crystalline modified
splitting principle.

Let X be a smooth variety over a perfect field k of characteristic p > 0 and let
X(•) → X be a simplicial scheme augmented to X defined as the Čech hypercovering
associated to an open covering X =

⋃
i∈I Xi which admits a closed embedding

ι(•) : X(•) → D(•) into a simplicial p-adic formal scheme D(•) over W such that,
for any n ∈ N and Zariski locally on X(n), ι(n) : X(n) → D(n) is the PD-envelope
of a closed immersion X(n) → Y of X(n) into some smooth p-adic formal scheme Y
over W which may depend on n.

Note that, for any smooth variety X over k, there exists such a system: Indeed,
if we take X(•) → X to be the Čech hypercovering associated to an affine open
covering X =

⋃
i∈I Xi, take a closed immersion Xi → Yi into a p-adic formal scheme

Yi over W , and define Y(n) to be the fiber product of (n+1) copies of
∐

i∈I Yi over W ,
we naturally obtain a simplicial formal scheme Y(•) and an immersion X(•) → Y(•).
If we define the morphism ι(•) : X(•) → D(•) to be the PD-envelope of X(•) in Y(•),
it satisfies the above assumption.

2.1. Generalities on the first crystalline Chern class and variants of it.
One denotes by (X/W )crys, (X(•)/W )crys the crystalline topos of X/W , X(•)/W
respectively. (See [9, p. 5.3] for the former one. The latter one is the topos as-
sociated to the diagram of topoi {(X(n)/W )crys}n∈N, whose definition is given in
[35, 1.2.8]. See also [35, 1.2.12]. It also appears, for example, in [4, p. 344].) One
denotes by (X(•)/W )crys|D(•)

the localization of (X(•)/W )crys at D(•) ([9, p. 5.23])
and by (−)Zar the Zariski topos. In particular the canonical morphism of topöı
X(•)Zar → D(•)Zar is an equivalence. On D(•)Zar one defines the PD-de Rham com-
plex Ω̄•

D(•)
, which is a quotient differential graded algebra of the de Rham complex
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Ω•
D(•)

of D(•). The submodule K ⊂ Ω1
D(•)

, topologically spanned by

da[m] − a[m−1]da (a ∈ I = Ker(OD(n)
→ ι(n)∗OX(n)

), n, m ∈ N),

spans all relations, that is,

Ω̄•
D(•)

= Ω•
D(•)

/K ∧ Ω•−1
D(•)

,(2.1)

and in addition, each Ω̄i
D(n)

is locally free over OD(n)
with the relation

Ω̄i
D(•)

=
i∧

OD(•)

Ω̄1
D(•)

(2.2)

([24, Prop. 3.1.6]).
One has the following commutative diagram of topöı [9, p. 6.12]:

(X(•)/W )crys|D(•)

j

!!

ϕ
"" D(•)Zar = X(•)Zar

(X(•)/W )crys

u

##❦❦❦❦❦❦❦❦❦❦❦❦❦❦

(2.3)

The complex

L(Ω̄•
D(•)

) := j∗ϕ
∗(Ω̄•

D(•)
)(2.4)

in (X(•)/W )crys is defined in [9, p. 6.13], and it is proved in [9, Thm. 6.12] that the
natural map

OX(•)/W → L(Ω̄•
D(•)

)(2.5)

is a quasi-isomorphism in (X(•)/W )crys. For each n and an object (U → T, δ) in
the crystalline site on X(n)/W , this quasi-isomorphism is locally written as

(2.6) OT
∼=→ (OT ⟨x1, . . . , xd⟩ →

⊕

1≤i≤d

OT ⟨x1, . . . , xd⟩dxi

→
⊕

1≤i<j≤d

OT ⟨x1, . . . , xd⟩dxi ∧ dxj → · · · )

for some d, where OT ⟨x1, . . . , xd⟩ denotes the p-adically completed PD-polynomial
algebra. The map (2.6) induces the quasi-isomorphism

(2.7) O×
T

∼=→ (OT ⟨x1, . . . , xd⟩×
d log−−−→

⊕

1≤i≤d

OT ⟨x1, . . . , xd⟩dxi

→
⊕

1≤i<j≤d

OT ⟨x1, . . . , xd⟩dxi ∧ dxj → · · · ),

and if we denote the sheaf j∗(ϕ∗(OD(•)
))× by L(OD(•)

)×, the quasi-isomorphisms
(2.7) for (U → T, δ)’s induce the quasi-isomorphism

O×
X(•)/W

∼=→ (L(OD(•)
)×

d log−−−→ L(Ω̄1
D(•)

) → L(Ω̄1
D(•)

) → · · · ).

By applying Ru∗ and using [9, 5.27.2], we obtain a quasi-isomorphism in X(•)Zar,

Ru∗O×
X(•)/W

∼=−→ (O×
D(•)

d log−−−→ Ω̄1
D(•)

d−→ Ω̄2
D(•)

→ . . .),(2.8)
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which is stated in [21, I, (5.1.12)]. The exact sequence

0 → IX(•)/W → OX(•)/W → ι∗OX(•)
→ 0(2.9)

in (X(•)/W )crys, defining IX(•)/W , yields an exact sequence

1 → (1 + IX(•)/W ) → O×
X(•)/W → ι∗O×

X(•)
→ 1(2.10)

in (X(•)/W )crys. By [8, 2.1] and the functoriality of the construction there, the
connecting homomorphism

H1(X, O×
X) → H1(X(•), O×

X(•)
) → H2((X(•)/W )crys, 1 + IX(•)/W ),

followed by the logarithm

H2((X(•)/W )crys, 1 + IX(•)/W ) → H2((X(•)/W )crys, IX(•)/W )

and the natural map

H2((X(•)/W )crys, IX(•)/W ) → H2
crys(X(•)/W ) ∼= H2

crys(X/W ),

precisely computes ccrys
1 . Thus applying Ru∗ to (2.10) and using (2.8), we conclude

that the connecting homomorphism

H1(X, O×
X) → H1(X(•), O×

X(•)
) → H2(D(•), (1 + I(•))

d log−−−→ Ω̄≥1
D(•)

)

of the exact sequence in D(•)Zar,

1 → ((1 + I(•))
d log−−−→ Ω̄≥1

D(•)
) → (O×

D(•)

d log−−−→ Ω̄≥1
D(•)

) → O×
X → 1,(2.11)

followed by the logarithm H2(D(•), (1+I(•))
d log−−−→ Ω̄≥1

D(•)
) → H2(D(•), I(•)

d−→ Ω̄≥1
D(•)

)

and the natural map H2(D(•), I(•)
d−→ Ω̄≥1

D(•)
)→H2(D(•), Ω̄

•
D(•)

)=H2
crys(X(•)/W )=

H2
crys(X/W ), precisely computes ccrys

1 . In particular, if E is a locally free sheaf of
rank 1 on X, then by (2.8), ccrys

1 (EX) = 0 where EX is the value of E at X.
More generally, let τ : Ω̄•

D(•)
! A•

(•) be a surjection of sheaves of differential

graded algebras on D(•)Zar such that, for any n ∈ N, A1
(n) is locally free over OD(n)

,

A0
(n) = OD(n)

, Am
(n) =

∧m
OD(n)

A1
(n). A τ -connection (see [16, (2.1)]) on a locally

free sheaf ED(•)
on D(•) is an additive map ∇τ : ED(•)

→ A1
(•) ⊗OD(•)

ED(•)
which

fulfills the τ -Leibniz rule ∇τ (λe) = τd(λ)⊗ e+λ⊗∇τ (e). Then ∇τ ◦∇τ : ED(•)
→

A2
(•) ⊗ ED(•)

, where ∇τ (ω ⊗ e) = (−1)iτd(ω) + ω ⊗ ∇τ (e) for ω ∈ Ai
(n), is OD(•)

-

linear. The τ -connection is integrable if ∇τ ◦∇τ = 0. One pushes down (2.11) along
τ and obtains the exact sequence in D(•)Zar:

1 → ((1 + I(•))
d log−−−→ A≥1

(•)) → (O×
D(•)

d log−−−→ A≥1
(•)) → O×

X(•)
→ 1.(2.12)

Then, for a locally free sheaf EX of rank 1 on X, 0 = τ (ccrys
1 (EX)) ∈ H2(D(•), A

•
(•))

if EX |X(•)
is the restriction to X(•) of a line bundle ED(•)

on D(•) which is endowed
with an integrable τ -connection.
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2.2. Modified splitting principle. Let τ : Ω̄•
D(•)

! A•
(•) be a surjection of

sheaves of differential graded algebras on D(•)Zar such that, for any n ∈ N, A1
(n) is

locally free over OD(n)
, A0

(n) = OD(n)
, and Am

(n) =
∧m

OD(n)
A1

(n). Also, let EX be a

locally free sheaf on X such that its restriction EX |X(•)
to X(•) extends to a locally

free sheaf ED(•)
on D(•) endowed with an integrable τ -connection. One defines

X ′ = P(EX), X ′
(•) = P(EX |X(•)

), D′
(•) = P(ED(•)

), together with the augumenta-

tion X ′
(•) → X ′ and the closed embedding ι′ : X ′

(•) → D′
(•). One has cartesian

squares of (simplicial formal) schemes (over W )

X ′

π

!!

X ′
(•)

$$

π

!!

ι′ "" D′
(•)

π

!!

X X(•)
$$

ι
"" D(•).

(2.13)

The PD-structure on I(•) extends uniquely to a PD-structure on

I ′(•) = Ker(OD′
(•)

→ OX′
(•)

)

as π is flat ([9, Prop. 3.21]), and ι′ is again the PD-envelope of a closed immersion
from X ′

(n) to a smooth p-adic formal scheme over W Zariski locally on X ′
(n) for

each n. Thus one can define Ω̄•
D′

(•)
and one has an exact sequence

0 → π∗Ω̄1
D(•)

→ Ω̄1
D′

(•)
→ Ω1

D′
(•)

/D(•)
→ 0(2.14)

on X ′
(•)Zar. Setting Kτ = Ker(Ω̄1

D(•)
→ A1

(•)), one defines Ω̄1
D′

(•),τ
= Ω̄1

D′
(•)

/π∗Kτ .

By definition, (2.14) pushes down to an exact sequence

0 → π∗A1
(•)

i−→ Ω̄1
D′

(•)
,τ

p−→ Ω1
D′

(•)
/D(•)

→ 0(2.15)

on X ′
(•)Zar. One defines Ω̄n

D′
(•)

,τ =
∧n

OD′
(•)

Ω̄1
D′

(•)
,τ . By [16, Claim, p. 332], the

quotient homomorphism r : Ω̄1
D′

(•)
→ Ω̄1

D′
(•)

,τ extends to a quotient

r : Ω̄•
D′

(•)
→ Ω̄•

D′
(•)

,τ(2.16)

of differential graded algebras on X ′
(•)Zar, where the differential on Ω̄•

D′
(•)

,τ is denoted

by rd.
The τ -connection ∇τ on ED(•)

induces a pull-back connection π∗∇τ : π∗ED(•)
→

Ω̄1
D′

(•)
,τ ⊗OD′

(•)
π∗ED(•)

. Its restriction to Ω1
D′

(•)
/D(•)

(1) via the exact sequence

0 → Ω1
D′

(•)
/D(•)

(1) → π∗ED(•)
→ OD′

(•)
(1) → 0,(2.17)

followed by the projection Ω̄1
D′

(•)
,τ ⊗OD′

(•)
π∗ED(•)

→ Ω̄1
D′

(•)
,τ ⊗OD′

(•)
⊗OD′

(•)
(1)

defines a section
σ : Ω1

D′
(•)

/D(•)
→ Ω̄1

D′
(•)

,τ

of −p ([16, (2.4)]). Thus τ ′ = 1 + p ◦ σ : Ω̄1
D′

(•),τ
→ π∗A1

(•) is a section of i. By

[16, (2.5)], τ ′ induces a surjective homomorphism

τ ′ : Ω̄•
D′

(•),τ
! π∗A•

(•)(2.18)
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of differential graded algebras, where the differential on the right is induced by
τ ′ ◦ rd.

The main point is then that the π∗A1
(•)-valued connection ∇′ : π∗ED(•)

→
π∗A1

(•) ⊗OD′
(•)

π∗ED(•)
, which is π∗∇τ followed by τ ′, is integrable and respects

the flag (2.17), thus induces τ ′-integrable connections

∇′ : OD′
(•)

(1) → π∗A1
(•) ⊗ OD′

(•)
(1),(2.19)

∇′ : Ω1
D′

(•)
/D(•)

(1) → π∗A1
(•) ⊗ Ω1

D′
(•)

/D(•)
(1).

Consequently we can iterate the construction, replacing X by X ′, X(•) by X ′
(•), D(•)

by D′
(•), EX by the descent of Ω1

D′
(•)

/D(•)
(1)|X′

(•)
to X ′, ED(•)

by Ω1
D′

(•)
/D(•)

(1), and

τ by τ ′ ◦ r.

2.3. Proof of Theorem 1.1. Further iterating, after (r − 1)-steps, one obtains a
diagram as (2.13), where now X ′ is the complete flag bundle over X, with (2.18)
becoming a surjective homomorphism

τ : Ω̄•
D′

(•)
→ π∗Ω̄•

D(•)
(2.20)

of differential graded algebras and with a filtration on π∗EX with graded sheaf
being a sum of locally free sheaves Lj of rank 1 such that the restriction Lj |X′

(•)

of Lj to X ′
(•) extends to a locally free sheaf on D′

(•) endowed with an integrable

τ -connection (thus with values in π∗Ω̄1
D(•)

). In addition, from [16, Lemma in (1.3),

(2.7)], the composite

Ω̄•
D(•)

→ Rπ∗Ω̄
•
D′

(•)

Rπ∗τ−−−→ Rπ∗π
∗Ω̄•

D(•)

∼=←− Ω̄•
D(•)

(2.21)

is the identity on X(•)Zar. By the standard Whitney product formula for crys-
talline Chern classes [21, III, Thm. 1.1.1] for i ≥ 1, ccrys

i (π∗EX) is a sum of prod-
ucts of ccrys

1 (Lj), which by Subsection 2.1 maps to 0 in H2(D′
(•),π

∗Ω̄•
D(•)

). Thus

ccrys
i (EX) ∈ H2i(D(•), Ω̄

•
D(•)

) maps to 0 in H2i(D(•), Ω̄
•
D(•)

) via the composite map

in (2.21), which is the identity. This shows Theorem 1.1.

Remark 2.1. Let Wn := W/pnW . Then, by replacing W by Wn and D(•) by
its mod pn reduction, we see that the proof above gives the following variant of
Theorem 1.1: If X is as in Theorem 1.1 and E is a locally free crystal on X/Wn,
then ccrys

i (EX) is zero in the torsion crystalline cohomology group H2i
crys(X/Wn) for

i ≥ 1. Because H2i
crys(X/W ) ⊗W Wn → H2i

crys(X/Wn) is injective, it implies that
the Chern classes ccrys

i (EX) in H2i
crys(X/W ) (i ≥ 1) are divisible by pn in this case.

2.4. Remark on Chern–Simons theory. In [17] and [18], a version of the mod-
ified splitting principle which is slightly more elaborate than the one used in Sub-

section 2.2 was performed in order to construct classes ci(E,∇) ∈ Hi(X, KM
i

d log−−−→
Ωi

X
d−→ . . .) of a bundle with an integrable connection (E,∇), depending on ∇,

where KM
i is the Zariski sheaf of Milnor K-theory. Those classes lift both the

Chow classes in CHi(X) = Hi(X, KM
i ) via the obvious forgetful map and the

Chern–Simons classes in H2i−1(Xan, C/Z(i)), if k = C. We hope to be able to
define a crystalline version of Chern–Simons theory, yielding classes lifting both
Chow classes and classes in syntomic cohomology.
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3. The crystalline version of the discrete classifying space BGL(r)

The aim of this section is to prove Theorem 1.1 using a crystalline version of the
discrete classifying space BGL(r).

Let X be a smooth variety defined over a perfect field k of characteristic p > 0.

3.1. Čech–Alexander resolutions of OX/W . Fix a closed embedding X ↪→ Y
into a p-adic smooth formal scheme Y over W , and define D(n) as the PD-envelope
of X in the diagonal embedding Y n+1, where n+1 means the product over W . Then
one has the canonical morphism of topöı

jn : (X/W )crys|D(n) −→ (X/W )crys(3.1)

and the Čech–Alexander resolution [9, 5.29] of the abelian sheaf OX/W ,

OX/W
∼=−→ (j0∗j

∗
0OX/W → j1∗j

∗
1OX/W → . . .).(3.2)

We also use the following variant of (3.2). Fix two closed embeddings X ↪→ Y
and X ↪→ Z, where both Y/W and Z/W are p-adic formal schemes and Y/W is
smooth. One defines D(n) as the PD-envelope of X in the diagonal embedding
Y n+1 ×W Z. Then one has the canonical morphisms of topöı

jn : (X/W )crys|D(n)
ℓn−→ (X/W )crys|D(−1)

j−1−−→ (X/W )crys.(3.3)

On (X/W )crys|D(−1), one has the Čech–Alexander resolution [9, 5.29] of the abelian
sheaf j∗−1OX/W ,

j∗−1OX/W
∼=−→ (ℓ0∗j

∗
0OX/W → ℓ1∗j

∗
1OX/W → . . .).(3.4)

Hence, applying the exact functor j−1∗ ([9, Cor. 5.27.1]), one obtains the resolution
of the abelian sheaf j−1∗j∗−1OX/W :

j−1∗j
∗
−1OX/W

∼=−→ (j0∗j
∗
0OX/W → j1∗j

∗
1OX/W → . . .).(3.5)

3.2. Various simplicial constructions to compute crystalline cohomology.
Let X =

⋃
i∈I Xi be a finite covering of X by affine open subvarieties. We assign to

it the standard Mayer–Vietoris simplicial scheme, the definition of which we recall
now.

We choose a total order on I, define the set of tuples In
≤ := {(i0, . . . , in) ; i0 ≤

i1 ≤ · · · ≤ in)}, and set I≤ to be the disjoint union of the In
≤. For J = (i0, . . . , in) ∈

I≤, one sets XJ =
⋂

ij∈J Xij . One upgrades I≤ to a category. The Hom-set

HomI≤(J, J ′), for J = (i0, . . . , in) and J ′ = (i′0, . . . , i
′
n′), consists of those non-

decreasing maps ϕ : [n] → [n′], where [n] = {0, 1, . . . , n}, with the property that
ia = i′ϕ(a) for all a ∈ {0, . . . , n}. Thus to ϕ ∈ HomI≤(J, J ′), one assigns the open
embedding XJ′ ↪→ XJ , which one denotes by ϕ∗.

If ϕ ∈ HomI≤(J, J ′) with J ′ = (i′0, . . . , i
′
n′), J is necessarily equal to the tuple

(i′ϕ(0), . . . , i
′
ϕ(n)). Thus, given any non-decreasing map ϕ : [n] → [n′] and J ′ ∈ In′

≤ ,

there is one and only one J ∈ In
≤ such that ϕ ∈ HomI≤(J, J ′), in particular the open

embedding ϕ∗ : XJ′ → XJ is determined as well. Denoting by X(n) =
⊔

J∈In
≤

XJ

the disjoint union of the XJ over all the J ∈ In
≤, one defines the map

ϕ∗ : X(n′) → X(n)(3.6)
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for a non-decreasing map ϕ : [n] → [n′] as the disjoint union of the maps XJ′
ϕ∗

−−→
XJ ↪→ X(n) for J ′ ∈ In′

≤ . Using the definition in [15, Section 5], (3.6) defines the
simplicial scheme X(•) which augments to X:

X(•)
ϵ−→ X.(3.7)

Remark 3.1. The simplicial scheme X(•) here differs from the simplicial scheme
X(•) which appeared in Section 2.

The aim of this subsection is to prove the following.

Proposition 3.2. The augmentation map induces a quasi-isomorphism

ϵ∗ : RΓ((X/W )crys, OX/W ) → RΓ((X(•)/W )crys, OX(•)/W )(3.8)

in the derived category D(Ab) of abelian groups.

Proof. The proof goes by induction on the cardinality |I| of I. If |I| = 1, one sets
G = RΓ((X/W )crys, OX/W ) ∈ D(Ab). Then the right hand side of (3.8) reads

G
α0−→ G → · · · αn−−→ G → · · ·(3.9)

where αn = id for n even, and αn = 0 for n odd.
For |I| > 1, we subdivide the simplicial construction X(•) as follows. Let 0 be

the minimal element of I. One sets = I ′ 0 I ′′, with I ′ = {0} and I ′′ = I \ I ′. Then
one has

I≤ = I ′≤ 0 (
⊔

(n,m)∈N
I

′n
≤ × I

′′m
≤ ) 0 I ′′≤.(3.10)

Setting XJ′,J′′ = XJ′ ∩ XJ′′ for J ′ ∈ I ′≤ and J ′′ ∈ I ′′≤, one sets X(n,m) =⊔
J′∈I

′n
≤ ,J′′∈I

′′m
≤

XJ′,J′′ . Then X(•,•) forms a bisimplicial scheme ([20, p. 17]), and

one has the commutative diagram

X ′
(•)

ϵ′

!!

X(•,•)
$$ "" X ′′

(•)

ϵ′′

!!

X ′ X ′′

(3.11)

with X ′ = X0 and X ′′ =
⋃

i∈I\{0} Xi. By induction, Proposition 3.2 applies to ϵ′

and ϵ′′. On the other hand, X(•,m) is the constant simplicial scheme on X ′ ∩X ′′
(m).

So by the case |I| = 1, one has

RΓ((X ′ ∩ X ′′
(m)/W )crys, OX′∩X′′

(m)
/W )

∼=−→ RΓ((X(•,m)/W )crys, OX(•,m)/W ).(3.12)

From this and the induction hypothesis one deduces the isomorphism

ϵ∗1 : RΓ((X ′ ∩ X ′′/W )crys, OX′∩X′′/W )
∼=−→ RΓ((X ′ ∩ X ′′

(•)/W )crys, OX′∩X′′
(•)

/W )

(3.13)

∼=−→ RΓ((X(•,•)/W )crys, OX(•,•)/W ).
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One now extends (3.8) to a diagram

RΓ((X/W )crys, OX/W )

!!

ϵ∗ "" RΓ((X(•)/W )crys, OX′′
(•)

/W )

!!

RΓ((X′/W )crys, OX′/W )

⊕ RΓ((X′′/W )crys, OX′′/W )

!!

ϵ′∗⊕ϵ′′∗
""

RΓ((X′
(•)/W )crys, OX′

(•)
/W )

⊕ RΓ((X′′
(•)/W )crys, OX′′

(•)
/W )

!!
RΓ((X′ ∩ X′′/W )crys, OX′∩X′′/W )

ϵ∗1 "" RΓ((X(•,•)/W )crys, OX(•,•)/W )

(3.14)

where the left vertical triangle is induced by the quasi-isomorphism in [4, V, (3.5.4)],
and the right one exists by construction. As ϵ′∗, ϵ′′∗, ϵ∗1 are isomorphisms, so is ϵ∗.

"

3.3. Lifting the simplicial construction to PD-envelopes. Keeping the same
notation, we choose for each affine Xi a closed embedding Xi ↪→ Yi into a smooth
p-adic formal scheme Yi over W . One defines the PD-envelope αJ : XJ ↪→ DJ of
XJ ↪→ Yi0 ×W · · · ×W Yin for J = (i0, . . . , in) ∈ In

≤. As in (3.7) and (3.11) one has
the simplicial formal scheme D(•) and the diagram of simplicial formal schemes

D′
(•) D(•,•)

$$ "" D′′
(•),(3.15)

this time without augmentation. On the other hand, for each J ∈ I≤, one has as
in (2.3) the diagram of topöı

(XJ/W )crys|DJ

jJ

!!

ϕJ
"" DJ,Zar = XJ,Zar

(XJ/W )crys

uJ

%%❧❧❧❧❧❧❧❧❧❧❧❧❧

(3.16)

to which one applies (2.4) and the quasi-isomorphism (2.5), which in addition is
functorial. Thus, combined with (3.8), this yields quasi-isomorphisms

RΓ((X/W )crys, OX/W )
∼=−→ RΓ((X(•)/W )crys, OX(•)/W )
∼=−→ RΓ((X(•)/W )crys, L(Ω̄•

D(•)
))

∼=←− RΓ(D(•), Ω̄
•
D(•)

).

(3.17)

(The last isomorphism follows from [9, Cor. 5.27.2].)

Proposition 3.3. The forgetful morphism

RΓ(D(•), Ω̄
•
D(•)

) → RΓ(D(•), OD(•)
)(3.18)

is a quasi-isomorphism.

Proof. It is enough to show that the map

RΓ((X/W )crys, OX/W ) → RΓ((X(•)/W )crys, L(OD(•)
))(3.19)

is a quasi-isomorphism. As in the proof of Proposition 3.2, we argue by induction
in |I|. For |I| = 1, the right hand side is RΓ((X/W )crys, (−)) of the right hand side
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of (3.2), thus computes RΓ((X/W )crys, OX/W ). For general I, we argue as in the
proof of Proposition 3.2. We have the isomorphism

RΓ((X ′ ∩ X ′′
(m)/W )crys, L(OD′′

(m)
))

∼=−→ RΓ((X(•,m)/W )crys, L(OD(•,m)
)),(3.20)

which is RΓ((X ′∩X ′′
(m)/W )crys, (−)) of the resolution (3.5) (with X there replaced

by X ′∩X ′′
(m).) From this and the induction hypothesis one deduces the isomorphism

ϵ∗1 : RΓ((X ′ ∩ X ′′/W )crys, OX′∩X′′/W )
∼=−→ RΓ((X ′ ∩ X ′′

(•)/W )crys, L(OD′′
(•)

))

(3.21)

∼=−→ RΓ((X(•,•)/W )crys, L(OD(•,•)
)).

Then one has the diagram as in (3.14), with the triangle in the right column replaced
by the triangle

RΓ((X(•)/W )crys, L(OD(•)
))(3.22)

→RΓ((X ′
(•)/W )crys, L(OD′

(•)
)) ⊕ RΓ((X ′′

(•)/W )crys, L(OD′′
(•)

))

→RΓ((X(•,•)/W )crys, L(OD(•,•)
)),

which exists by construction. Thus one concludes by induction.

3.4. Proof of Theorem 1.1. One defines G to be the group scheme GL(r) over
Z, and for any scheme S, one writes GS for the induced group scheme over S or, by
abuse of notation, GR for S = Spec(R). So one has Gk, GW , and its p-adic com-
pletion ĜW . One has the classifying (formal) simplicial schemes BGk, BGW , BĜW

[15, 6.1.2]: The degree n part BGk,(n) of BGk is defined by BGk,(n) := G[n]
k /Gk

with the action of Gk on G[n]
k given by g(g0, . . . , gn) := (g0g−1, . . . , gng−1) (where

[n] := {0, . . . , n}), and the transition morphism BGk,(n′) → BGk,(n) associated to a

non-decreasing map ϕ : [n] → [n′] is defined as the one induced by ϕ∗ : G[n′] → G[n].
If we use the identification

Gn
k
∼= G[n]

k /Gk = BGk,(n); (g1, . . . , gn) 3→ (g1g2 · · · gn, g2 · · · gn, . . . , gn, 1),

the face maps σ∗
i and degeneracy maps δ∗i are described respectively as

σ∗
i : (g1, . . . , gn) 3→

⎧
⎪⎨

⎪⎩

(g2, . . . , gn) (i = 0),

(g1, . . . , gi−1, gigi+1, gi+2, . . . , gn) (1 ≤ i ≤ n − 1),

(g1, . . . , gn−1) (i = n),

δ∗i : (g1, . . . , gn) 3→ (g1, . . . , gi, 1, gi+1, . . . , gn) (0 ≤ i ≤ n).

BGW and BĜW are defined in a similar way. The datum of a locally free crystal
E of rank r, together with a trivialization of EX |Xi = EXi , where X =

⋃
i∈I Xi is

a finite affine covering, and a lift of the trivialization to a trivialization of ED|Di ,
yields, via the transition functions, a commutative diagram

X(•)

f

!!

α "" D(•)

g

!!

h

&&●
●●

●●
●●

●●

BGk
β̂

"" BĜW
ι "" BGW

(3.23)

where α, β̂, and ι are the canonical morphisms.
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Let

Ci ∈ FiliH2i(BGW ,Ω•
BGW

) := Im(H2i(BGW ,Ω≥i
BGW

) → H2i(BGW ,Ω•
BGW

))

be the universal de Rham Chern class and let Ccrys
i ∈ H2i((BGk/W )crys, OBGk/W )

be its image by the map

H2i(BGW ,Ω•
BGW

)
ι∗−→ H2i(BĜW ,Ω•

BĜW
) ∼= H2i((BGk/W )crys, OBGk/W ).

Then we can define the crystalline Chern classes of E also as the pull-back of Ccrys
i

by

f∗ : H2i((BGk/W )crys, OBGk/W ) → H2i((X(•)/W )crys, OX(•)/W ).(3.24)

Indeed, the crystalline Chern class is characterized by functoriality, normalization,
and the Whitney sum formula (additivity) [8, Théorème 2.4], and the definition
as the pull-back of Ccrys

i also satisfies these properties by [3, Thm. 4.2]. So, by
Proposition 3.3, the crystalline Chern class of E is computed as the image of Ci by

(3.25) h∗ : H2i(BGW ,Ω•
BGW

)
ι∗−→ H2i(BĜW ,Ω•

BĜW
)

g∗

−→ H2i(D(•), Ω̄
•
D(•)/W )

∼=−→ H2i(D(•), O•
D(•)/W ).

Because the map h∗ factors through the forgetful map

H2i(BGW ,Ω•
BGW

) → H2i(BGW , OBGW )

and Ci belongs to FiliH2i(BGW ,Ω•
BGW

), it is enough to prove that the composition

H2i(BGW ,Ω≥i
BGW

) → H2i(BGW ,Ω•
BGW

) → H2i(BGW , OBGW )

is zero for i > 0, which is obvious. So the proof of Theorem 1.1 is finished. "
Remark 3.4. By replacing W with Wn = W/pnW , we see that the proof above
also gives the following variant of Theorem 1.1: If X is as in Theorem 1.1 and E
is a locally free crystal on X/Wn, then ccrys

i (EX) is zero in the torsion crystalline
cohomology group H2i

crys(X/Wn) for i ≥ 1. In the final step, we need the surjectivity

of the map H2i(BGWn ,Ω≥i
BGWn

) → H2i(BGWn ,Ω•
BGWn

), but it follows from the
isomorphism

H2i(BGW ,Ω•
BGW

) ⊗W Wn = H2i(BGWn ,Ω•
BGWn

),

which is true because Hn(BGW ,Ω•
BGW

) (n ∈ N) are free over W ([22, II, Thm. 1.1]).

4. Generalization of the main theorem [19, Thm. 1.1] from convergent
isocrystals to isocrystals possessing a locally free lattice

The aim of this section is to prove Theorem 1.2. The proof is the same as the
one of [19, Thm. 1.1] except for some points which we explain now.

First assume that k is algebraically closed. We have H1
crys(X/W ) = 0 by [19,

Prop. 2.9(2)]. (See also Theorem 5.1.) So we may assume that E is irreducible (of
rank s ≤ r) to prove the theorem. Also, there exists N ∈ N such that the restriction
H1

crys(X/Wn) → H1
crys(X/k) is zero for any n ≥ N . By using Theorem 1.1 (and

the remark after it) in place of [19, Prop. 3.1], we see that E admits a lattice E
with EX strongly µ-stable as an OX -module by [19, Prop. 4.2]. Because EX has
vanishing Chern classes, we can argue as in Section 3 in [19], and by [19, Cor. 3.8]
we see that there exists a ∈ N such that (F a)∗EN ∈ Crys(X/WN ) is trivial.
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Let Dn,m be the category of pairs (G,ϕ), where G ∈ Crys(X/Wn+m) and ϕ is
an isomorphism between the restriction of G to Crys(X/Wn) and Os

X/Wn
. Then

the same computation as [19, Prop. 3.6] implies the isomorphism as pointed sets

Dn,m
∼= M(s × s, H1

crys(X/Wm))(4.1)

for 1 ≤ m ≤ n, which is compatible with respect to m.
Applying (4.1) to the pairs (n, m) = (N, N), (N, 1), we conclude that (F a)∗EN+1

∈ Crys(X/WN+1), which is the image of (F a)∗E2N ∈ Crys(X/W2N ) via the restric-
tion

DN,N
∼= M(s × s, H1

crys(X/WN )) → M(s × s, H1
crys(X/W1)) ∼= DN,1

is constant. We continue similarly to show that (F a)∗En ∈ Crys(X/Wn) is con-
stant for all n ≥ N . Hence (F a)∗E is constant. Because the endofunctor F ∗ :
Crys(X/W ) → Crys(X/W ) is fully faithful at least when restricted to locally free
crystals ([33, Ex. 7.3.4]), we see that E itself is constant. Hence E is also constant.

Now we prove the theorem for general k. If we take a locally free lattice E of
E and denote the pull-back of E to (X ⊗k k/W (k))crys by E, we see by the base
change theorem that

Q ⊗Z (W (k) ⊗W H0((X/W )crys, E)) ∼= Q ⊗Z H0((X ⊗k k/W (k))crys, E),

and the latter is s-dimensional over the fraction field of W (k). So

Q ⊗Z H0((X/W )crys, E)

is s-dimensional over K, and hence E is constant.

5. Gauß–Manin convergent isocrystal

The aim of this section is to prove Theorem 1.3. The proof is inspired by the
discussion with G. Faltings related in the introduction.

5.1. First rigid cohomology of a smooth simply connected variety is triv-
ial. We shall prove the following theorem, which is used in order to pass from the
constancy of the semi-simplification of the Gauß–Manin overconvergent isocrystal
to the constancy of the Gauß–Manin overconvergent isocrystal itself.

As usual, if k is a perfect field, then one denotes by W = W (k) its ring of Witt
vectors and by K the field of fractions of W .

Theorem 5.1. Let X be a smooth connected variety defined over a perfect field k of
characteristic p > 0, and assume that X is proper or p ≥ 3. If πét,ab

1 (X ⊗k k) = 0,
then H1

rig(X/K) = 0.

Proof. We can reduce to the case where k is algebraically closed, because H1
rig(X/K)

is compatible with base extension of K [6, Remarque, p. 498]. Let ℓ be a prime
not equal to p. When X is proper, the assumption πét,ab

1 (X) = 0 implies that 0 =
H1

ét(X, Qℓ) = H1
ét(Pic0

red(X), Qℓ), and so Pic0
red(X) = 0. Hence H1

crys(X/W ) = 0

because it is the Dieudonné crystal associated to Pic0
red(X), and so H1

rig(X/K) is
also equal to 0.

In case X is not proper, we use the Picard 1-motive M := Pic+(X) defined in
[2]. Put M = [L → G], where L is a Z-module and G is a semi-abelian variety.
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Because the ℓ-adic realization VℓM of M is equal to H1
ét(X, Qℓ) by [30] and fits into

the exact sequence

0 −→ VℓG −→ VℓM −→ VℓL −→ 0,

we have G = 0, L = 0, hence M = 0. So the crystalline realization of M , which is
equal to H1

rig(X/K) by [2] when p ≥ 3, vanishes. "

Remark 5.2. We need the assumption p ≥ 3 in the theorem (when X is not proper)
because it is imposed in [2] (see [2, 7.4] for details). We expect that the theorem
should be true without this assumption, but we don’t know how to prove it.

5.2. Gauß–Manin convergent isocrystal. In this subsection, we give some pre-
liminaries on convergent F -isocrystals and then recall Ogus’s definition of Gauß–
Manin convergent F -isocrystal Rif∗OY/K for a smooth proper morphism f : Y →
X with X smooth over a perfect field k (see [32, Sec. 3]).

Recall that objects in the convergent site on X over K are enlargements, which
are the diagrams of the form (X ←− (T ⊗W k)red ↪→ T ) over W , where T is a
p-adic formal scheme of finite type and flat over W . One defines a convergent
isocrystal on X/K as a crystal of Q⊗ZOT -modules on enlargements. Crystal means
a sheaf of coherent Q ⊗Z OT -modules with transition maps being isomorphisms.
We denote the category of convergent isocrystals on X/K by Conv(X/K). The
convergent site is functorial for X/W , and so we can define the pull-back functor
F ∗ : Conv(X/K) → Conv(X/K) induced by the Frobenius (FX , FW ) on X and W .
Then we define the category F -Conv(X/K) of convergent F -isocrystals on X/K
as the category of pairs (E,Φ), where E ∈ Conv(X/K) and Φ is an isomorphism
F ∗E → E. Φ is called a Frobenius structure on E.

We define the p-adic convergent site on X over K as a variant of the convergent
site: The objects in it are the p-adic enlargements, which are the diagrams of
the form (X ←− T ⊗W k ↪→ T ) over W , where T is as before. As in the case
of the convergent site, we can define the category of p-adic convergent isocrystals
and that of p-adic convergent F -isocrystals, which we denote by pConv(X/K),
F -pConv(X/K) respectively.

Then we have the sequence of functors

F -Conv(X/K) → F -Crys(X/W )Q → F -pConv(X/K),(5.1)

in which the first one is the inverse of the functor M 3→ Man in [5, Thm. 2.4.2].

For any p-adic enlargement T := (X
h←− T ⊗W k ↪→ T ), Tn := (T ⊗W k ↪→

T ⊗ W/pnW ) (n ∈ N) are objects in the crystalline site (T ⊗ k/W )crys. Then, for
any E ∈ Crys(X/W ), T 3→ lim←−n

(h∗E)Tn defines an object in pConv(X/K), and
this induces the second functor in (5.1). The functors in (5.1) are known to be
equivalences by [5, Thm. 2.4.2] and [32, Prop. 2.18].

We recall the definition of the Gauß–Manin convergent F -isocrystal

Rif∗OY/K ∈ F -Conv(X/K)

for a smooth proper morphism f : Y → X (see [32, Sec. 3]). It is defined as the
unique object such that, for any p-adic enlargement T := (X ←− T ⊗W k ↪→ T ),
the value (Rif∗OY/K)T at T of Rif∗OY/K as an object in F -pConv(X/K) is given
by Q ⊗ Rn(fT )crys∗OYT /T , where (fT )crys : (YT /T )crys → TZar is the morphism of
topöı induced by the pull-back fT : YT → T ⊗ k of f by T ⊗ k → X.
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Assume now that X admits a closed embedding ι : X ↪→ P into a p-adic
smooth formal scheme P over Spf W and give another description of convergent
F -isocrystals and the Gauß–Manin convergent isocrystals. For n = 0, 1, 2, let
X ← X(n) ↪→ Z(n) be the universal p-adic enlargement [32, Prop. 2.3] of X ↪→
P ×W · · · ×W P︸ ︷︷ ︸

n+1

, and let F -Str(X ↪→ P/W ) be the category of triples (E, ϵ,Φ)

consisting of a coherent Q ⊗Z OZ(0)-module E, an isomorphism ϵ : p∗2E
∼=→ p∗1E

(pi : Z(1) → Z(0) are the projections) satisfying the cocycle condition, and an

isomorphism Φ : F ∗(E, ϵ)
∼=→ (E, ϵ) (where F is the pull-back by Frobenius on

X(n) ↪→ Z(n)). Then we have an equivalence of categories [32, (2.11)]

F -pConv(X/K) ∼= F -Str(X ↪→ P/W ).(5.2)

Via the equivalences (5.1) and (5.2), the Gauß–Manin convergent isocrystal
Rif∗OY/K is described as the triple (Q ⊗ Rnf(0)crys∗OY (0)/Z(0), ϵ,Φ) ∈
F -Str(X ↪→ P/W ), where f(0)crys : (Y (0)/Z(0))crys → Z(0)Zar is the morphism of
topöı induced by the pull-back f(0) : Y (0) → X(0) of f by X(0) → X and ϵ,Φ are
defined by the functoriality of crystalline cohomology sheaves.

Let us denote the category of overconvergent F -isocrystals on X/K [5, (2.3.7)] by
F -Conv†(X/K), and the structure of overconvergent isocrystals by O†

X/K to distin-

guish it from OX/K . There exists a natural restriction functor F -Conv†(X/K) →
F -Conv(X/K) which is fully faithful ([26]). When f : Y → X is smooth projec-
tive, Lazda [29, Cor. 5.4]2 proved that the convergent F -isocrystal Rif∗OY/K lifts

to an overconvergent F -isocrystal on X, which we denote by Rif∗O†
Y/K . When X

is proper, the categories F -Conv(X/K) and F -Conv†(X/K) are the same, and so
one can equate Rif∗O†

Y/K and Rif∗OY/K .

Remark 5.3. In this subsection, the Frobenius structure on a(n) (over)convergent
isocrystal is defined with respect to the pull-back functor induced by the Frobenius
(FX , FW ) on X and W . For any d ≥ 1, we can also define the Frobenius structure
with respect to the pull-back functor induced by (F d

X , F d
W ), and the Frobenius

structure in the former case induces the one in the latter case. Such a Frobenius
structure will appear in the next subsection.

5.3. Case where the ground field k is finite. In this subsection, we prove
Theorem 1.3 in the case where k is a finite field and the statement in Remark 1.4.
In order to prove them, we may replace k by a finite extension k′ and K by a finite
possibly ramified extension of the field of fractions of the ring of Witt vectors over
k′, such that the following hold:

(1) X has a k-rational point x.
(2) The eigenvalues of the action of Frobenius Fx on Lℓ := Hi

ét(Y ×X x̄, Qℓ)
belong to a number field K0 contained in K.

(3) There exists a K0-vector space L with linear action F and an inclusion of
fields K0 ↪→ Qℓ such that L ⊗K0 Qℓ is isomorphic to Lℓ as vector spaces
with an action.

(Note that overconvergent isocrystals and rigid cohomologies are defined even when
the base complete discrete valuation ring OK is ramified over W (k) ([5], [37]) and

2Added in proof: See the footnote for Remark 1.4.
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the rigid cohomology satisfies the base change property for finite extension of the
base ([12, Cor. 11.8.2]).)

Until the end of this subsection, we consider the Frobenius structure with respect
to the pull-back induced by (F d

X , id), where d = logp |k|. (See Remark 5.3.) For
any closed point y in X, one has the base change isomorphism

y∗Rif∗O†
Y/K = y∗Rif∗OY/K = Hi

rig(Y ×X y/K)(5.3)

by [32, Rmk. 3.7.1] and [7, Props. 1.8 and 1.9], and the set of Frobenius eigenvalues
on it is the same as that on ℓ-adic cohomology Hi(Y ×X ȳ, Qℓ) by [25, Thm. 1],
[11, Cor. 1.3]. The assumption πét

1 (X⊗k) = {1} implies that the action of Frobenius

Fy on Hi(Y ×X ȳ, Qℓ) is identified with the action of F
dy
x (where dy = deg(y/k))

on Lℓ, hence the action of F ⊗ id on L ⊗K0 Qℓ.
Let E0 be the overconvergent F -isocrystal on X defined by ((L ⊗K0 K) ⊗K

O†
X/K , F ⊗ id). Then, by construction, Rif∗O†

Y/K and E0 have the same eigenval-

ues of Frobenius action on any closed point of X. Then Abe’s Čebotarev’s density
theorem [1, A.3] implies that the semi-simplification of Rif∗O†

Y/K is the same as

that of E0. Hence the semi-simplification of Rif∗O†
Y/K is constant as an overcon-

vergent isocrystal on X. By Theorem 5.1, extensions of Q ⊗ O†
X/W by itself are

constant when X is proper or p ≥ 3. This finishes the proof.

5.4. General case. In this subsection, we prove Theorem 1.3 by a spreading out
argument allowing k to be a perfect field, but assuming X to be proper. Let
f : Y → X be as in the statement of Theorem 1.3 and let g : X → Spec k be
the structure morphism. Also, let X =

⋃
i∈I Xi be an affine open covering of

X and take a closed embedding Xi → Pi into a smooth p-adic formal scheme
Pi over W for each i ∈ I. We prove that the Gauß–Manin convergent isocrystal
Econv := Rif∗OY/K ∈ F -Conv(X/K) is constant as an object in Conv(X/K).
Denote by Ecrys, Epconv the image of Econv in F -Crys(X/W )Q, F -pConv(X/K) via
(5.1).

We can find a connected affine scheme T = SpecA1 smooth of finite type over
Fp, a p-adic formal lift T := Spf A of T which is smooth over Spf Zp and endowed

with a lift of Frobenius, and proper smooth morphisms YT
fT→ XT

gT→ T which fit
into the commutative diagram

(5.4) Y

f

!!

""

!

YT

fT

!!

YT

fT

!!

X

g

!!

α
""

!

XT

gT

!!

XT

!!

Spec k

!!

""

!

T

!!

""

!

Spec Fp

!!

Spf W "" T "" Spf Zp,

where the squares with symbol " are cartesian squares. Also, we may assume the
existence of an open covering XT =

⋃
i∈I Xi,T which induces X =

⋃
i∈I Xi and
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closed immersions Xi,T ↪→ Pi,T (i ∈ I) into a p-adic formal scheme Pi,T smooth
over T with Pi,T ×T Spf W = Pi.

Let ẼT,conv := RnfT,conv,∗OYT /Qp
∈ F -Conv(XT /Qp) be the Gauß–Manin con-

vergent F -isocrystal defined by the right column of (5.4), and let ẼT,crys, ẼT,pconv

be its images in the categories F -Crys(XT /Zp)Q, F -pConv(XT /Qp). Then the mor-
phism α in (5.4) induces the pull-back functor

F -Crys(XT /Zp)Q → F -Crys(XT /T )Q
α∗
→ F -Crys(X/Zp)Q.(5.5)

We denote this functor by α̃∗. Then we have the map

α̃∗ẼT,crys → Ecrys(5.6)

defined by functoriality.
To prove that the map (5.6) is an isomorphism, we may work locally on each

Xi. So we may assume that XT admits a closed embedding XT → PT into a p-adic
formal scheme PT smooth over T . Put P := PT ×T W . Then the functor (5.5) is
identified with the composite

(5.7) F -pConv(XT /Qp) ∼= F -Str(XT ↪→ PT /Zp)

α∗
→ F -Str(X ↪→ P/W ) ∼= F -pConv(X/Qp)

via the second equivalence in (5.1). It suffices to prove that the map

α̃∗ẼT,pconv → Epconv(5.8)

induced by (5.6) via the second equivalence in (5.1) is an isomorphism, and to see
this, it suffices to prove that the base change map

α∗
Z(n)(Q ⊗ Rig(n)T,crys,∗OYT (n)/ZT (n)) → Q ⊗ Rig(n)crys,∗OY (n)/Z(n)

induced by diagrams

(5.9) Y (n)

g(n)

!!

""

!

YT (n)

g(n)T

!!

X(n)

!!

"" XT (n)

!!

Z(n) αZ(n)

"" ZT (n)

is an isomorphism, where XT ← XT (n) ↪→ ZT (n) is the universal p-adic enlarge-
ment of XT ↪→ PT ×Zp · · · ×Zp PT︸ ︷︷ ︸

n+1

and X ← X(n) ↪→ Z(n) is the universal p-adic

enlargement of X ↪→ P ×W · · · ×W P︸ ︷︷ ︸
n+1

. This follows from the base change theorem

of crystalline cohomology

Lα∗
Z(n)Rg(n)T,crys,∗OYT (n)/ZT (n)

∼=→ Rg(n)crys,∗OY (n)/Z(n)

([9, Thm. 7.8], [32, Cor. 3.2]) and the flatness of Q⊗Rjg(n)T,crys,∗OYT (n)/ZT (n) for
j ≥ 0 [32, Cor. 2.9]. Hence the map (5.6) is an isomorphism.
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Let ET,crys be the image of ẼT,crys by F -Crys(XT /Zp)Q → F -Crys(XT /T )Q.
Then the map (5.6) can be rewritten as

(5.10) α∗ET,crys → Ecrys.

Hence the map (5.10) is also an isomorphism.
Next, let s = Spec Fq be a closed point of T and put S = Spf W (Fq) =:

Spf Zq, Qq := Q ⊗ Zq. Then, by taking the fiber at s, we obtain the following
diagram:

(5.11) Y

f

!!

""

!

YT

fT

!!

!

Ys
$$

fs

!!

X

g

!!

α
""

!

XT

gT

!!

!

Xs
β

$$

gs

!!
Spec k

!!

""

!

T

!!

!

s$$

!!

Spf W "" T S.$$

Let Es,conv := Rifs,conv,∗OYs/Qq
∈ F -Conv(Xs/Qq) be the Gauß–Manin conver-

gent F -isocrystal defined by the right column of (5.11), and denote its image in
F -Crys(Xs/Zq)Q by Es,crys. By the same method as above, one can prove the
isomorphism

(5.12) β∗ET,crys → Es,crys,

where β∗ is the pull-back F -Crys(XT /T )Q → F -Crys(Xs/Zq)Q by β.
We consider the crystalline cohomology Hj((XT /A)crys, ET,crys) (j ≥ 0). This is

a finitely generated Q⊗A-module as we will prove below. Since ApA is a discrete val-
uation ring, we may assume that Hj((XT /A)crys, ET,crys)’s are free Q⊗A-modules,
by shrinking T = Spf A. Then we have the base change isomorphisms

Qq ⊗Q⊗A Hj((XT /A)crys, ET,crys) ∼= Hj((Xs/Zq)crys, Es,crys),(5.13)

K ⊗Q⊗A Hj((XT /A)crys, ET,crys) ∼= Hj((X/W )crys, Ecrys),(5.14)

which we will prove below.
Let r be the rank of ET,crys. (As we will explain below, ET,crys is locally free

as an isocrystal and so its rank is well-defined. Note that r is equal to the rank
of Es,crys, Ecrys.) By the constancy of the Gauß–Manin convergent isocrystal in the
finite field case, Es,crys is constant as a convergent isocrystal. (Note that πét

1 (Xs)
is constant by [23, X, Théorème 3.8].) Hence, by (5.13), H0((XT /A)crys, ET,crys)
∼= (Q ⊗ A)r, and by (5.14), H0((X/W )crys, Ecrys) ∼= Kr. Hence Ecrys is constant
(and so Econv is also constant), as required. So the proof of the theorem is finished
modulo the finiteness and the base change property we used above.

Finally, we prove the finiteness and the base change property. In the following,
for an affine p-adic formal scheme A flat over Spf Zp and a smooth scheme X
over Spec A1 (A1 := A/pA), we say that an isocrystal E = Q ⊗ E on (X/A)crys

is locally free if, for any affine open subscheme U = Spec B1 of X and any lift
U = Spf B of it to an affine p-adic formal scheme which is smooth over Spf A,
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the value EU := Q ⊗ EU = Q ⊗ (lim←−n
EU⊗Z/pnZ) of E at U is a finitely generated

projective Q ⊗ B-module.
For example, when A = Zp, any isocrystal on (X/A)crys is locally free because of

the existence of integrable connection associated to the structure of the isocrystal.
In particular, the isocrystal ẼT,crys above is locally free, and this implies that the
isocrystal ET,crys above is also locally free.

Proposition 5.4. Let Spec A1 be an affine regular scheme of characteristic p > 0,
and let Spf A be a p-adic formal scheme flat over Spf Zp such that A/pA = A1. Let
X → Spec A1 be a smooth proper morphism, and let E be an isocrystal on (X/A)crys

which is locally free.
Moreover, assume that we are given the following cartesian diagram such that

SpecA′
1 is also regular :

X

!!

!

X ′α$$

!!

SpecA1

!!

!

Spec A′
1

$$

!!

Spf A Spf A′.$$

Then we have the following :
(1) RΓ((X/A)crys, E) is a perfect complex of (Q ⊗ A)-modules.
(2) A′ ⊗L

A RΓ((X/A)crys, E) → RΓ((X ′/A′)crys,α∗E) is a quasi-isomorphism.

Because ET,crys is locally free as an isocrystal, we can apply Proposition 5.4 to
it and we obtain the isomorphisms (5.13) and (5.14) as required.

Remark 5.5. Although E is locally free as an isocrystal, it is not clear at all that
there exists a lattice E of E with E locally free as a crystal. This is the reason that
the base change theorem in [9] is not enough for us.

Proof. Let X(•) → X be a simplicial scheme augmented to X defined as the Čech
hypercovering associated to an open covering X =

⋃
i∈I Xi which admits a closed

embedding X(•) → Y(•) into a simplicial p-adic formal scheme Y(•) smooth over A,
and let D(•) be the PD-envelope of it. For n ∈ N, put An := A/pnA, D(•)n :=
D(•)⊗Zp Z/pnZ. Also, let E be a p-torsion free crystal on X/A with E = Q⊗E, let
En be the restriction of E to (X/An)crys, and let E(•)n be the value of E at D(•)n.
Then RΓ((X/An)crys, En) = RΓ(D(•)n, E(•)n⊗Ω̄•

D(•)n
), and this is quasi-isomorphic

to a bounded complex of An-modules flat over Z/pnZ which is compatible with
respect to n. Hence

RΓ((X/An)crys, En) ⊗L
An

An−1 = RΓ((X/An)crys, En) ⊗L
Z/pnZ Z/pn−1Z

= RΓ((X/An−1)crys, En−1).

Also, RΓ((X/A1)crys, E1) = RΓ(X, EX ⊗ Ω•
X) is a perfect complex of A1-modules,

because A1 is regular. Hence, by [9, B.10],

RΓ((X/A)crys, E) = R lim←−
n

RΓ((X/An)crys, En)

is a perfect complex of A-modules, and so RΓ((X/A)crys, E) :=Q⊗RΓ((X/A)crys, E)
is a perfect complex of (Q ⊗ A)-modules. This proves (1).
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Next we prove (2). The left hand side is equal to

Q ⊗ (A′ ⊗L
A RΓ((X/A)crys, E)) = Q ⊗ (R lim←−

n

(A′
n ⊗L

An
RΓ((X/An)crys, En)))

because RΓ((X/A)crys, E) is perfect, and the right hand side is equal to

Q ⊗ R lim←−
n

RΓ((X/A′
n)crys,α

∗En).

Let us define Cn by

Cn := Cone(A′
n ⊗L

An
RΓ((X/An)crys, En) → RΓ((X/A′

n)crys,α
∗En)).

Then it suffices to prove that Q⊗R lim←−n
Cn = 0. To prove this, we may work Zariski

locally on X (because of cohomological descent). So we can reduce to the case that
X → Spec A1 is liftable to an affine smooth morphism X = Spf B → Spf A. (But
we lose the properness of X.)

Let Xn := X ⊗Zp Z/pnZ, X ′
n := X ⊗An A′

n and let EX
n be the value of En at Xn.

Also, let EX := lim←−n
EX

n be the value of E at X .

Then each term of Γ(X , EX ⊗ Ω•
X/A) is a finitely generated p-torsion free B-

module (because E is p-torsion free), and it will become a projective Q⊗B-module
if we apply Q ⊗−, due to the local freeness of E . Also, we have

Γ(X , EX ⊗ Ω•
X/A) ⊗A An = Γ(Xn, EX

n ⊗ Ω•
Xn/An

),

Γ(Xn, EX
n ⊗ Ω•

Xn/An
) ⊗An A′

n = Γ(X ′
n,α∗EX

n ⊗ Ω•
X ′

n/A′
n
),

and Cn is written in the following way:

Cn = Cone(A′
n ⊗L

An
Γ(Xn, EX

n ⊗ Ω•
Xn/An

) → Γ(X ′
n,α∗EX

n ⊗ Ω•
X ′

n/A′
n
)).

For a finitely generated p-torsion free B-module M , put Mn := M ⊗A An and

Cn(M) := Cone(A′
n ⊗L

An
Mn → A′

n ⊗An Mn).

Then, to prove that Q⊗R lim←−n
Cn = 0, it suffices to prove that Q⊗R lim←−n

Cn(M) =
0 when Q ⊗ M is a projective Q ⊗ B-module. If we take a resolution N• → M of
M by finitely generated free B-modules, N•

n → Mn is also a resolution because M
is p-torsion free. Then

Q ⊗ R lim←−
n

Cn(M)(5.15)

= Q ⊗ R lim←−
n

Cone(A′
n ⊗An N•

n → A′
n ⊗An Mn)

= Cone((Q ⊗ A′) ⊗Q⊗A (Q ⊗ N•) → (Q ⊗ A′) ⊗Q⊗A (Q ⊗ M)) = 0.

(The last equality follows from the projectivity of Q ⊗ N•, Q ⊗ M .) So the proof
of (2) is finished. "

6. A very weak form of a Lefschetz theorem for isocrystals

Let X be a smooth projective variety defined over a perfect field k of characteris-
tic p > 0. One expects that given an irreducible isocrystal E ∈ Crys(X/W )Q, there
is an ample divisor Y ⊂ X defined over the same field such that E|Y is irreducible
in Crys(Y/W )Q. One could also expect the existence of such Y which is indepen-
dent of E . One could also weaken all those variants by requesting the irreducibility
only for convergent isocrystals E ∈ Conv(X/K). Note that any subisocrystal of
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a convergent isocrystal is a convergent isocrystal; thus this version for convergent
isocrystals is just the restriction to Conv(X/K) of the version for isocrystals.

We prove here a very weak form of this expectation.

Theorem 6.1. Let X be a smooth projective variety defined over a perfect field k
of characteristic p > 0 which is liftable to W2(k) and let H be an ample line bundle
on X. Then there exists an integer n0 such that, for any n ≥ n0, the following
property is satisfied: If E is an isocrystal on X/W of rank ≤ p which admits a
lattice E with EX µ-stable in Crys(X/k) (with respect to H), and if Y is a smooth
divisor in |Hn| liftable to W2(k) such that the restriction EY of EX to Y is torsion
free, then EY ∈ Crys(Y/k) is µ-stable as well. Moreover, if E as above admits a
locally free lattice (which is not necessarily equal to E), EX is locally free, and so
we can take Y above independently of E .

To link Theorem 6.1 to the expectation, one needs the following theorem.

Theorem 6.2. Let X be a smooth projective variety defined over a perfect field k
of characteristic p > 0. Let E ∈ Crys(X/W )Q which admits a lattice E such that
EX is µ-stable in Crys(X/k). Then E is irreducible.

Proof. Let E ′ ⊂ E be an irreducible subisocrystal and let E′ be a lattice of E ′ which
is µ-semistable in Crys(X/k). (See [19, Prop. 4.1] for the existence of such a lattice.)
Then there is an integer n such that E′(nX) ⊂ E and such that this inclusion is
maximal for this property. By replacing E′ by E′(nX), we can assume that the
inclusion ι : E′ → E in Crys(X/W ) induces a non-zero map ιX : E′

X → EX in
Crys(X/k). The locus Σ ⊂ X on which E′

X , EX are possibly not locally free has
codimension ≥ 2. Let H be the ample line bundle defining the µ-(semi-)stability,
and let C be a smooth complete intersection curve in a high power of the linear
system |H|, which is disjoint of Σ. Then the restrictions E′

C , EC of E′
X , EX to C,

which is the same as the values of E′, E at C, are locally free. By Theorem 1.1, the
degree of E′

C , EC are 0. Thus the slopes µ(E′
X), µ(EX) are 0. Then 0 = µ(E′

X) ≤
µ(Im ιX) < µ(EX) = 0 unless ιX is surjective. Hence ιX is surjective and so is ι.
Hence E ′ = E . "
Remark 6.3. The condition in Theorem 6.2 implies irreducibility but is not equiv-
alent to it. We give two examples.

(1) Let X be a smooth projective curve of genus ≥ 2, with lift XW to W = W (k),
and let a, b ∈ H0(XW ,Ω1

XW /W ) be linearly independent differential forms. Define

the connection on E = OXW e1 ⊕ OXW e2 by the matrix A =

(
0 pa
pb 0

)
, which is

the value of ∇ on the two basis vectors ei. Then EX is a constant connection.
As a consequence, E is locally nilpotent, thus is a crystal. It is irreducible as an
isocrystal, as any subline bundle of degree 0 of OXK e1 ⊕ OXK e2 is isomorphic to
OXK , spanned by λ1e1 +λ2e2, (λ1,λ2) ̸= (0, 0), where λi ∈ K and there is no form
ω ∈ H0(XK ,ωXK ) such that λ2pa = λ1ω, λ1pb = λ2ω.

We prove now that there is no lattice E′ of E := Q⊗E such that E′
X is µ-stable

in Crys(X/k). The argument is essentially the same as in [27, Thm. 5.2]. Assuming
there is such a lattice E′, after replacing E′ by E′(nX) for a suitable integer n,
there is an inclusion ι : E′ → E inducing the identity on E such that the induced
map ιX : E′

X → EX is non-zero. By Theorem 1.1, µ(EX) = µ(E′
X) = 0. If ιX is

not surjective, µ(E′
X) < µ(ImιX) ≤ µ(EX), a contradiction. So ιX , and thus ι are
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surjective. Then E′ = E and thus EX = E′
X , which is impossible as EX is not

stable.
In this example, it is not likely that E is a convergent isocrystal.
(2) We give an example in which E is a convergent isocrystal. Let k be an

algebraically closed field of characteristic p > 0 and let X be a smooth projective
curve such that the p-rank of its Jacobian is r ≥ 2. Let K, K0 be the fraction
field of W (k), W (Fp2) respectively. Let ρ : πét

1 (X) → GL2(Zp) be a continuous
representation such that ρK0 : πét

1 (X) → GL2(Zp) → GL2(K0) is irreducible and
that ρ modulo p is trivial. Because the pro-p completion πét

1 (X)p of the étale
fundamental group πét

1 (X) is isomorphic to a free pro-p group ⟨γ1, . . . , γr⟩ of rank
r ([36], [13, Thm. 1.9]), the composition

πét
1 (X) → πét

1 (X)p ∼= ⟨γ1, . . . , γr⟩ → GL2(Zp)

defined by

γ1 3→
(

1 p
0 1

)
, γ2 3→

(
1 0
p 1

)
, γi 3→

(
1 0
0 1

)
(i ≥ 3)

satisfies the conditions required for ρ. Let (E ,Φ), Φ : F ∗E
∼=−→ E , be the unit-

root convergent F -isocrystal associated to ρQp : π1(X) → GL2(Zp) → GL2(Qp) by
[14, Thm. 2.1], and let E be the lattice of E associated to ρ by the construction
given in [14, Prop. 2.3, Rmk. 2.3.2]. Namely, if we denote the finite Galois covering
associated to the kernel of ρ modulo pn by fn : Yn → X and denote its Galois
group by Gn, E is defined to be the inverse limit of (fn crys∗O2

Yn/Wn
)Gn (n ∈ N),

where the action of Gn is induced by its action on Yn and ρ modulo pn. Then
EX = (f1 crys∗O2

Y1/k)G1 is constant because ρ is trivial modulo p.
We prove that E is irreducible as a convergent isocrystal. Assume on the con-

trary that E has a convergent subisocrystal E ′ of rank 1. Then 0 ! E ′ ! E
is a Jordan-Hölder sequence of E , and so is 0 ! F ∗E ′ ! F ∗E ∼= E . Hence

{E ′, E/E ′} = {F ∗E ′, F ∗E/F ∗E ′}, and so we have an isomorphism (F ∗)2E ′ ∼=−→ E ′,
which we denote by α. By replacing α by pnα for a suitable integer n, we may as-

sume that the slope of (E ′,α) is 0. We denote the composite Φ◦F ∗Φ : (F ∗)2E
∼=−→ E

by Φ2. Let ι1 : E ′ → E be the inclusion map and let ι2 : E ′ → E be the composite

E ′ α−1

−−→ (F ∗)2E ′ → (F ∗)2E Φ2−−→ E . Both ι1, ι2 are maps of convergent isocrystals. If
ι2 is equal to ι1 up to scalar a ∈ K \ {0}, (E ′, aα) is a convergent F -subisocrystal
of (E ,Φ2). Because (E ,Φ2), corresponding to ρK0 : π1(X) → GL2(Zp) → GL2(K0),
has pure slope 0, (E ′, aα) is necessarily of slope 0 and so it induces a non-trivial
subrepresentation of ρK0 , which contradicts the irreducibility of ρK0 . Hence ι2 is

not a scalar multiple of ι1, and so ι := ι1 ⊕ ι2 defines an isomorphism E ′ ⊕ E ′ ∼=−→ E
of convergent isocrystals. If we identify E ′ ⊕ E ′ and E via ι, the isomorphism
Φ2 : (F ∗)2E ′ ⊕ (F ∗)2E ′ → E ′ ⊕ E ′ is written in the form f ◦ (α ⊕ α), where
f ∈ End(E ′ ⊕ E ′) ∼= M(2 × 2, K). Because (E ,Φ2), (E ′,α) have pure slope 0,
the F -isocrystal (K2, f) on K has pure slope 0. Hence there exists a non-zero
(x1, x2) ∈ K2 with f(F 2(x1), F 2(x2)) = (x1, x2). Then we see that the image of
x1 ⊕ x2 : E ′ → E ′ ⊕ E ′ ∼= E is stable under Φ2 and thus defines a convergent F -
subisocrystal of (E ,Φ2), which again leads to a contradiction. Hence E is irreducible
as a convergent isocrystal, as required.

Finally, the same argument as in (1) shows that there is no lattice E′ of E such
that E′

X is µ-stable in Crys(X/k).
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Proof of Theorem 6.1. As EX is torsion free, we find a smooth complete intersec-
tion curve C in |Hn| such that EC as a coherent sheaf is locally free. Thus by
Theorem 1.1, EC has degree 0. Thus µ(EX) = 0, and for all smooth divisors
Y ∈ |Hn| with EY torsion free, µ(EY ) = 0. By [27, Cor. 5.10] the Higgs sheaf
(V, θ) associated to EX by the Ogus–Vologodsky correspondence [34, Thm. 2.8] is
µ-stable of degree 0 as well. By [28, Thm. 10], (V, θ)|Y is µ-stable of degree 0;
thus again by [27, Cor. 5.10], EY is µ-stable of degree 0. When E admits a locally
free lattice, Theorem 1.1, and the independence of crystalline Chern classes with
respect to lattices [19, Proof of Prop. 3.1], the normalized Hilbert polynomial of
EX is the same as that of OX . Thus EX is locally free by [28, Thm. 11]. "
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