
NON-LIFTABILITY OF AUTOMORPHISM GROUPS OF A K3

SURFACE IN POSITIVE CHARACTERISTIC

HÉLÈNE ESNAULT AND KEIJI OGUISO

Abstract. We show that a characteristic 0 model XR → SpecR, with Picard number
1 over a geometric generic point, of a K3 surface in characteristic p ≥ 3, essentially
kills all automorphisms (Theorem 5.1). We show that there is an explicitely constructed
automorphism on a supersingular K3 surface in characteristic 3, which has positive entropy,
the logarithm of a Salem number of degree 22 (Theorem 6.4). In particular it does not
lift to characteristic 0. In addition, we show that in any large characteristic, there is
an automorphism of a supersingular K3 which has positive entropy and does not lift to
characteristic 0 (Theorem 7.5).

1. Introduction

Let X be a K3 surface over an algebraically closed field k of characteristic p > 0. A
classical theorem [Del81] asserts that the formal universal deformation space Ŝ of X is
unobstructed, and is formally smooth of dimension 20 over W (k), the ring of Witt vectors

of k. Moreover, the closed formal subscheme of Ŝ parametrizing the locus Σ̂(X,L) over
which a given line bundle L on X lifts, is a hypersurface, flat over W (k). The aim of
our article is to understand conditions for automorphisms of X to be or not to be liftable
to a proper model XR → SpecR of X, where R is a discrete valuation ring such that
SpecR → Ŝ dominates SpecW (k). Said in words, we study conditions on automorphisms
of X to lift to characteristic 0, or not. One motivation for this study is the observation that
the crystalline classes of graphs of automorphisms on a positive characteristic K3 surface
obey the Fontaine-Mazur p-adic variational Hodge conjecture as expressed in [BlEsKe14,
Conj. 1.2] (see Remark 6.5).

Our main results are Theorem 5.1, Theorem 6.4 and Theorem 7.5. Simplified versions are
Theorems 1.2, 1.3, 1.4 explained below. For the discussion in the introduction, we assume
for simplicity that p ≥ 3.

Recall one has a natural injective specialization homomomorphism

ι : Aute (XK̄/K̄)→ Aut (X/k)

where K is the field of fractions of R and Aute(XK̄/K̄) ⊂ Aut(XK̄/K̄) is the subgroup of
automorphisms which lift to some proper model XR → Spec R. We say f ∈ Aut (X/k) is
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not geometrically liftable to characteristic 0 if it is not in the image of ι (see Section 2 for
details).

In the complex case, for any K3 surface M and any given line bundles Li (1 ≤ i ≤ d ≤ 19)
on M for which the Li, i = 1, . . . , d are part of a Z-basis of Pic (M), there is a smooth
proper small deformation

ψ : (M,L1, . . . ,Ld)→ ∆

of (M,L1, . . . , Ld), where ∆ is the analytic disc, such that Pic (Mt) = 〈(L1)t, . . . , (Ld)t〉 '
Zd for a point t ∈ ∆, generic in the complex analytic sense. The proof goes via a study of
the period map. In particular, if d = 1 and L1 is ample primitive, then ψ :M→ ∆ is also
projective and Pic (Mt) = Z(L1)t for generic t. As a consequence, the specialization homo-
morphism has very small image even if Aut (M) is very large. In other words, interesting
automorphisms disappear on the generic fiber Mt (see eg. [Og03]).

Our first aim is to show the analogous results Theorems 1.1, 1.2 on liftings from charac-
teristic p to characteristic 0 (see Theorems 4.1, 4.3, 5.1 for more precise statements):

Theorem 1.1. If p ≥ 3, there is a discrete valuation ring R, finite over the ring of Witt
vectors W (k), together with a projective model XR → SpecR, such that the Picard rank of
XK̄ is 1.

The proof is given in [LieOls11, App. A]. The proof in loc.cit. relies on [Ogu79], [Ogu83]
and on the properties of the stack parametrizing deformations of a K3 surface together with
line bundles. In Section 4, we sketch another proof, relying on [Del81]. Theorem 4.3 has
its own interest.

As an immediate but remarkable consequence of Theorem 1.1, we obtain:

Theorem 1.2. If p ≥ 3, there is a projective model XR → SpecR such that no subgroup
G ⊂ Aut (X), except for G = {idX} is geometrically liftable to XR → SpecR, unless
Pic (X) = Z ·H with self-intersection number (H2) = 2.

See also Theorem 5.1 2) for the exceptional case. We also note that when X is not
supersingular, Theorem 1.2 is in sharp contrast to the model constructed by Lieblich and
Maulik [LieMau11], to show the Kamawata-Morrison Cone Conjecture for K3 surfaces in
positive characteristic. We prove Theorem 1.2 in Section 5.

The second aim of our article is to show the richness of automophisms of supersingular
K3 surfaces of Artin invariant 1, in view of the non-liftability problem. Supersingular K3
surfaces of Artin invariant 1 are unique up to isomorphisms, for each field k of characteristic
p > 0. They are the most special K3 surfaces (see Section 6 for a brief review). We denote
them by X(p). Recently, several interesting aspects of automorphisms of X(p) for various
p were studied ([DK09], [DK09-2], [Sh13], [KS12] and references therein). The notion of
entropy is classical in the complex case, and is of topological nature (see e.g. [Og14] and
references therein); it has been introduced in [EsnSri13] in positive characteristic. The
positivity of entropy is a numerical measure of complexity or richness of automorphisms
in any characteristic (see Section 2.3). We note here that an automorphism of positive
entropy is necessarily of infinite order, but it is a stronger constraint as there are many
automorphisms of infinite order with null-entropy.
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Our next main results are Theorems 1.3 and 1.4, showing the richness of automorphisms
of supersingular K3 surfaces of Artin invariant 1:

Theorem 1.3. There is an f ∈ Aut (X(3)) of positive entropy such that for all n ∈ Z\{0},
fn is not geometrically liftable to characteristic zero. The entropy of f is the logarithm of
a Salem number of degree 22.

This is the first explicit example of an automorphism of positive entropy which can
never be lifted to characteristic zero. In characteristic 2, (non-explicit) examples have been
constructed in [BC13] (see [EOY14, Thm. 4.2] for a slight clarification). See Theorem 6.4
for the precise statement and Section 3 for the definition of Salem numbers.

Recall that there are non-projective complex K3 surfaces with an automorphism for
which the entropy is the logarithm of a Salem number of degree 22 ([Mc02]). However,
the entropy of an automorphism of a projective K3 surface over a field of characteristic
zero is either zero or the logarithm of Salem number of degree ≤ 20 ([Mc02], [Mc13]). In
particular, the Salem number we construct in Theorem 1.3 can not be the Salem number
associated to the entropy of a projective K3 surface in characteristic 0.

Our construction is entirely based on a result of Kondo and Shimada [KS12] and is
mildly supported by a Mathematica computation. It would be nicer if one could find a
more conceptual reason for the existence.

Finally we show:

Theorem 1.4. For p large, there is an automorphism of X(p), of positive entropy, which
is not geometrically liftable to characteristic 0.

See also Theorem 7.5 for a more general statement. Our construction is based on Jang’s
result [Jan14, Thm. 3.3] together with a result on the Mordell-Weil groups of elliptic fibra-
tions due to Shioda [Sh90]. In the proof, one shows a way to construct an automorphism
of positive entropy out of those of null-entropy. This might have an interest on its own. 1

We prove Theorem 1.3, Theorem 1.4 in Sections 6, 7.
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2. Lifting automorphisms of K3 surfaces: notations and formulation of the
problems

We introduce some notations and formulate the main questions addressed in our article.

2.1. Models and Lifts. Let M be a proper variety defined over a perfect characteristic
p > 0 field k, and R be a discrete valuation ring (in the sequel abbreviated as DVR) with
residue field k and field of fractions K = Frac (R). A model of M over SpecR is a proper
flat morphism of schemes MR → SpecR lifting M → Spec k. If M is smooth, then a
lift MR → SpecR is a model if and only if MR → SpecR is smooth. We call a model
MR → SpecR a lift to characteristic zero if K is of characteristic zero. If MR → SpecR is
a model of X, and L ⊃ K is any field extension, we say that ML = MR ⊗R L is a lift of M
to L. If K has characteristic 0, we say ML is a lift of M to characteristic 0. We call a lift
MR → SpecR to characteristic zero a projective model of M if MR → SpecR is projective.

2.2. Automorphisms. Let M and S be schemes and ϕ : M → S be a morphism. We
denote by Aut (M/S) the group of automorphisms of M over S. When ϕ is flat projective,
Aut (M/S) is the group of S-points of a group scheme representing the Aut(−/S)-functor,
but we will just use the abstract group Aut (M/S). If S is the spectrum of a ring R, we
also write Aut(M/R). Finally for S = Spec k, we write Aut(M) instead of Aut(M/k) if
there is no danger of confusion.

2.3. K3 surfaces and automorphisms. A K3 surface V over a field F is a smooth projec-
tive geometrically irreducible 2-dimensional variety defined over F such that H1(V,OV ) = 0
and the dualizing sheaf ωV is trivial, i.e., ωV ' OV . As a smooth proper scheme of di-
mension 2 over a field is necessarily projective, we stick to the notion of ’projective’ surface
rather than ’algebraic’ surface.

Thoughout this article, X is a K3 surface over an algebraically closed field k of charac-
teristic p > 0. A model XR → SpecR of a K3 surface has the property that XK/K is a
K3 surface.

The Néron-Severi group NS (X) of X is isomorphic to Pic (X), and it is a free Z-module
of finite rank. The rank is called the Picard number of X and denoted by ρ(X). We have
1 ≤ ρ(X) ≤ 22. The Hodge index theorem implies that the Néron-Severi group NS (X)
is an even hyperbolic lattice with respect to the intersection from (∗, ∗∗), i.e., (∗, ∗∗) ∈
Sym2(NS(X)∨), of signature (1, ρ(X)−1) on NS (X)⊗ZR. In addition, (x2) := (x, x) ∈ 2Z
for all x ∈ NS (X), as by the Riemann-Roch theorem x2 = 2(χ(X,x) − χ(X,OX)). We
denote the group of isometries of (NS (X), (∗, ∗∗)) by O (NS (X)).

The action by pull-back of line bundles L 7→ f∗L defines a contravariant representation

Aut (X)→ O (NS (X)).

Let f ∈ Aut (X). The spectral radius of f∗ ∈ O (NS (X)), denoted by sp (f), is the max-
imum of the absolute values of eigenvalues of f∗ ⊗ idC|NS (X)⊗C. Here and hereafter for a

complex number α = a + b
√
−1 (a, b ∈ R) the absolute value |α| of α is the non-negative

real number

|α| =
√
a2 + b2.
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One has det f∗ = ±1. Thus, sp (f) ≥ 1. One defines f to be of positive entropy (resp. of
null-entropy) if sp (f) > 1 (resp. sp (f) = 1). The entropy of f is defined by

h(f) = log sp (f) .

This definition is in fact equivalent to the one obtained by first defining the entropy as
the natural logarithm of the maximum of absolute values of the eigenvalues of f∗ acting
of the `-adic cohomology ring ⊕iH i(X,Q`), with respect to all complex embeddings of
the eigenvalues, as it is shown in [EsnSri13] that regardless of the choice of the complex
embedding, this maximum is taken on the Néron-Severi group. This is also consistent with
the notion of entropy for complex projective K3 surfaces. Note that if f is of positive
entropy, then f is of infinite order, while the converse is not true in general. Let G ⊂
Aut (X) be a subgroup. We call G of null-entropy (resp. of positive entropy) if all the
elements of G are of null-entropy (resp. some element of G is of positive entropy).

2.4. Specializations. Let XR → SpecR be a smooth proper morphism. Recall ([SGA6,
X, App.]) that one has a specialization homomorphism sp : Pic(XK̄) → Pic(X) on the
Picard group, which is defined as follows: any LK̄ ∈ Pic(XK̄) is defined over a finite
extension L ⊃ K, L ⊂ K̄, so LK̄ = LL ⊗L K̄. Let RL ⊂ L be the ring of integers. The
restriction homomorphism Pic(XRL

) → Pic(XL) is an isomorphism as XRL
is smooth. So

LL = LRL
⊗ L. Then the specialization of LK̄ is LRL

⊗ k.
The specialization factors through the Néron-Severi group spNS : NS(XK̄) → NS(Xk)

and through the Néron-severi group modulo torsion spNS/torsion : NS(XK̄)/torsion →
NS(Xk)/torsion. Then spNS/torsion is injective, as sp is compatible with the injections

NS(XK̄)/torsion→ H2(XK̄ ,Q`(1)), NS(X)/torsion→ H2(X,Q`(1)) defined by the Chern
class and the specialization H2(XK̄ ,Q`(1)) → H2(X,Q`(1)) on `-adic cohomology, which
is an isomorphism by the smooth proper base change theorem ([SGA4.5, V, Thm. 3.1]).

Let XR → SpecR be a model of a K3 surface X. Then one has a restriction homo-
morphism Aut(XR/R)→ Aut(X). Let us define the subset Aute(XK̄/K̄) ⊂ Aut(XK̄/K̄)
consisting of those automorphisms which lift to some model XR → Spec R. (Here e stands
for extendable). It is clearly a subgroup, where the group law is define after finite base
change. Then the restriction homomorphism yields a specialization homomorphism

ι : Aute(XK̄/K̄)→ Aut(X/k).

Moreover, sp is equivariant under ι. In addition, as automorphisms are recognized on the
associated formal scheme, and H0(X,TX/k) = 0, the specialization homomorphism ι is
injective (see [LieMau11, Lem. 2.3]) .

We call f geometrically liftable if it is in the image of the specialization homomorphism
ι. One similarly defines geometric liftability of a subgroup G ⊂ Aut(X).

Remark 2.1. It is natural to ask whether the subgroup Aute(XK̄/K̄) ⊂ Aut(XK̄/K̄) is
a strict subgroup. We give an explicit example for which Aute(XK̄/K̄) 6= Aut(XK̄/K̄) in

Theorem 6.2. Any f ∈ Aut (XK̄/K̄) extends uniquely to f̃ ∈ Bir (XRL
/RL), the group of

birational automorphisms, where L, with K ⊂ L ⊂ K̄, is a field of definition of f . As X
is regular, if f̃ is not regular, then there is a 1-dimensional subscheme C ⊂ X such that f̃
is well defined as a morphism f̃ : XRL

\ C → XRL
, but the morphism does not necessarily

extend to XRL
. Finally this implies that for any field extension L′ ⊃ L, L′ ⊂ K̄, the base
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changed morphism f̃ ⊗ RL′ : XRL′ \ C → XRL′ does not extend either. See [LieMat14,
Prop. 4.1] for related phenomena.

3. Automorphisms of even hyperbolic lattices

We call a polynomial P (x) ∈ Z[x] a Salem polynomial if it is irreducible, monic, of even
degree 2d ≥ 2 and the complex zeroes of P (x) are of the form (1 ≤ i ≤ d− 1):

a > 1 , 0 < a−1 < 1 , αi, αi ∈ S1 := {z ∈ C | |z| = 1} \ {±1} .

Proposition 3.1. Let r be a positive integer and L = (Zr, (∗, ∗∗) ∈ Sym2(Zr)∨) be a hy-
perbolic lattice, i.e., the bilinear form (∗, ∗∗) is non-degenerate of signature (1, r − 1). Let
C := {x ∈ L ⊗ R | (x2) > 0}. Then C has exactly two connected components, say C0 and
−C0. Let f ∈ AutL and assume that f(C0) ⊂ C0. Then, the characteristic polynomial
of f is the product of cyclotomic polynomials and at most one Salem polynomial. In par-
ticular, when f(C0) ⊂ C0, the characteristic polynomial of f is the product of cyclotomic
polynomials if and only if f is of null-entropy if and ony if f is quasi-unipotent, i.e., all
the eigenvalues of fn are 1 for some positive integer n.

Proof. This is well-known and essentially due to McMullen [Mc02]. See also [Og10]. �

One way for an automorphism f of an hyperbolic lattice to perserve C0 is to fulfill
f(e) = e for a non-zero isotropic vector e.

Remark 3.2. For f as in Proposition 3.1, we define (by a slight abuse of notation) f to
be of positive entropy (resp. of null entropy) if sp (f) > 1 (resp. sp (f) = 1). Thus f is of
positive entropy (resp. of null entropy) if and only if the characteristic polynomial of f has
a Salem factor (then exactly one) (resp. only cyclotomic factors).

Proposition 3.3. Let L be as in Proposition 3.1 and f be in Aut(L). Assume that there
is e ∈ L \{0} such that f(e) = e with (e2) := (e, e) = 0. Then the characteristic polynomial
of f is the product of cyclotomic polynomials.

Proof. We may assume without loss of generality that e is primitive in the sense that e is a
part of Z-basis of L. By the assumption, f acts on the flag Ze ⊂ (Ze)⊥ and hence induces
an automorphism f̄ of

L := (Ze)⊥/Ze .

The bilinear form of L induces a bilinear form of L of signature (0, r−2), i.e., L is negative
definite or {0}. If L 6= 0, the eigenvalues of f̄ on L are of absolute value 1. Here we
use the well-known fact that eigenvalues of a real orthogonal matrix are of absolute value
1. Combining this with f(e) = e, we find that the eigenvalues of f are of absolute value
1 except perhaps one eigenvalue counted with multiplicities. Note that det f = ±1, as
an automorphism of free Z-module L of finite positive rank. Hence the last eigenvalue
is also of absolute value 1. Since f(C0) ⊂ C0 as f(e) = e, this implies the result by
Proposition 3.1. �
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4. Lifting to characteristic 0 K3 surfaces with Picard number one

Let M be a complex projective K3 surface with a primitive ample line bundle H. Recall
H is said to be primitive if it is a part of Z-basis of the finitely generated free Z-module
Pic (M) = NS (M). It is well-known that any generic fiber Xt of the Kuranishi family
κ : (X ,H)→ K of (X,H) is of Picard number 1. Here ’generic’ is to be understood in the
complex analytic sense. In particular, restricting κ to the germ of a smooth curve B ⊂ K
containing a generic point, the kernel of the Gauß-Manin connection on H2 on B is spanned
by the first de Rham Chern class of a generator of NS (Xt).

In [LieOls11, App. A], M. Lieblich and M. Olsson, prove the analogous result on Picard
rank 1 lifts to characteristic 0 of characteristic p ≥ 3 K3 surfaces.

Theorem 4.1. Let X be a K3 surface defined over an algebraically closed field k of char-
acteristic p > 0, where p > 2 if X is Artin-supersingular. Then there is a discrete valu-
ation ring R, finite over the ring of Witt vectors W (k), together with a projective model
XR → SpecR, such that the Picard rank of XK̄ is 1, where K = Frac (R) and K̄ ⊃ K is
an algebraic closure.

Their proof (in p ≥ 3) relies on [Ogu79] and [Ogu83] and properties of stacks for pairs
of K3 surfaces together with line bundles.

For a line bundle L on X, we denote by cHodge
1 (L) ∈ H1(X,Ω1

X) its Hodge Chern class.

Proposition 4.2. Let X be a K3 surface defined over an algebraically closed field k of
characteristic p > 0, with p > 2 if X is Artin-supersingular. Then there is an ample

primitive line bundle L such that cHodge
1 (L) 6= 0.

Proof. Unfortunately, we can not prove it directly, this is the reason for the restriction on
p. If X is not Artin-supersingular, then by [GK00, Prop. 10.3],

cHodge
1 : Pic(X)/pPic(X)→ H1(X,Ω1

X/k)

is injective. Else, due to our assumption, it is Shioda-supersingular, thus by [GK00,

Prop. 11.9], cHodge
1 is not identically zero. Once one line bundle M fulfills cHodge

1 (M) 6= 0,

then given any ample line bundle H, 0 6= cHodge
1 (M) = cHodge

1 (M + mpH) for any integer
m, and for m large, M + pmH is ample. The Z-module Q · (M + pmH) ∩NS(X) of rank
1 has a generator L such (M +mH) = aL where a ∈ N \ {0}. Then L is primitive, ample,

and fulfills cHodge
1 (L) 6= 0.

�

In fact, one can prove Theorem 4.1 by using [Del81] and Proposition 4.2 only. Indeed, for
L as in Proposition 4.2, one shows ([Ogu79, Prop. 2.2] and [LieMau11, Lem. 4.3]) that the

formal hypersurface Σ(X,L) ⊂ Ŝ = Spf W [[t1, . . . , t20]], which is defined as the solution

to the deformation functor of the pair (X,L), while Ŝ is defined as the solution of the
deformation functor of X, is formally smooth.

Let X̂ be the formal universal K3 surface over Ŝ. Set Ŷ = X̂ ×Ŝ Σ(X,L) and let

L be the formal universal line bundle on Ŷ lifting L on X. Then the de Rham class
cDR1 (L) ∈ H2

DR(Ŷ /Σ(X,L)) is non-zero as its restriction in H1(X,Ω1
X) is non-zero.
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Then one shows, using the injectivity of the crystalline Chern class map Pic(X) →
H2
DR(X̂W /W ) ([Del81, 2.10])

Theorem 4.3. The kernel of the Gauß-Manin connection

∇ : H2(Ω≥1

Ŷ /Σ̂
)→ Ω1

Σ̂/W
⊗H2

DR(Ŷ /Σ̂)

is spanned by cDR1 (L) over W .

From Theorem 4.3 one easily deduces Theorem 4.1.

Remark 4.4. Given X as in Theorem 4.1, and L ∈ Pic(X) as in Proposition 4.2, then
XR → SpecR of Theorem 4.1 is constructed in such a way that L lifts to XR.

5. No lifting of automorphisms

In this section, applying Theorem 4.1, we construct a projective model XR → SpecR of a
K3 surface X, with K = Frac(R) of characteristic zero, for which almost all automorphisms
of X are not geometrically liftable.

Theorem 5.1. Let X be a K3 surface defined over an algebraic closed field k of character-
istic p > 0, where p > 2 if X is Artin-supersingular.

1) Assume that either the Picard number of X is ≥ 2 or that Pic (X) = Z · H and
H2 6= 2. Then there is a DVR R, finite over W (k), together with a projective
model XR → SpecR of X → Spec k such that no subgroup G ⊂ Aut (X), except for
G = {idX}, is geometrically liftable to XR → SpecR;

2) Assume that Pic (X) = Z ·H and (H2) = 2. Then, for any projective model XR →
SpecR with R finite over W (k), Aute(XR/R) = Aut(XR/R), the specialization
homomorphism ι : Aut(XK̄)→ Aut(X) is an isomorphism, and Aut(X) = Z/2.

Proof. First we prove 2). By replacing H by −H if necessary, we may assume that H is

ample. By Proposition 4.2 or, if p 6= 2, simply by H2(X,Ω2
X/k) 3 c

Hodge
1 (H)∪2 = residue

class of 2 in k, which is thus non-zero, cHodge
1 (H) 6= 0 and H extends to a line bundle

HR for any projective lift XR → SpecR to characteristic 0. By [SD74], h0(X,H) = 3,
hi(X,H) = 0 (i ≥ 1), and H is globally generated. Strictly speaking, p 6= 2 is assumed in
[SD74]. However, since H is an ample generator, h0(H) ≥ 3 by the Riemann-Roch theorem.
Moreover, any element in |H| is irreducible and reduced. (Indeed, if C +D ∈ |H| for some
non-zero effective divisors C,D, with possibly C = D, then C ∈ |nH| and D ∈ |mH|
for some positive integers n, m by Pic (X) = Z · H. However, then 2 ≤ n + m = 1, a
contradiction.) So, we can apply [SD74, Prop. 2.6, Thm. 3.1], which is characteristic free,
to our X, to conclude that |H| defines a finite surjective morphism ϕ : X → P2

k of degree
2. This is also separable even for p = 2, as X has no non-zero vector field by [RS81]. We
denote the covering involution by ι ∈ Aut (X). Since hi(X,H) = 0 (i ≥ 1), it follows
that H0(XR, HR) is a rank 3 free module over R, which satisfies base change. It thus
defines a finite surjective morphism ϕR : XR → P(H0(XR, HR)∨) ∼= P2

R, of degree 2, the
specialization of which over Spec k is ϕ : X → P2

k. We denote by ι ∈ Aut (XR/R) the
covering involution of ϕR, which exists as ϕR is finite. Then ιR specializes to ι. Hence, in
the exceptional case Pic (X) = Z · H with (H2) = 2, the involution ι ∈ Aut (X) lifts as
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an automorphism to any projective lift to characteristic 0, in particular, ι is geometrically
liftable to any projective lift to characteristic zero. More precisely, Pic (XK̄) = Z · HK̄ ,
(H2

K̄
) = 2 and Aut (XK̄) = 〈ιK̄〉 ' Z/2, where K̄ is an algebraic closure of K = Frac (R)

and ιK̄ is the covering involution of the morphism ϕK̄ : XK̄ → P2
K̄

given by |HK̄ |. This
finishes the proof of 2). �

Proof. We prove 1). The following lemma ought to be well-known to the experts:

Lemma 5.2. Let Z be a complex projective K3 surface, with Picard group Pic (Z) generated
by an ample class H. Assume that (H2) 6= 2. Then Aut (Z) = {idZ}.

We do not know whether Lemma 5.2 holds also for a K3 surface X with ρ(X) = 1 in
characteristic p ≥ 3. However, if X is a K3 surface defined over F̄p, with p ≥ 3, the positive
solution to the Tate conjecture ([MPe13], also [Ben14] with references therein) implies that
ρ(X) is even ([Ar74]).

Proof. We give a proof for the reader’s convenience.
Since H0(Z, TZ) = 0 and Aut (Z) preserves the ample generator H, it follows that

Aut (Z) is of dimension 0 and also a closed algebraic subgroupscheme of the affine group-
scheme Aut (P(H0(Z,mH)∨)) for large m > 0. It follows that Aut (Z) is a finite group.

Let T (Z) be the transcendental lattice of Z, that is, the orthogonal complement of
NS (Z) in H2(Z,Z(1)). Thus the representation Aut (Z) → O (NS (Z)) × O (T (Z)) has
image in {1} × O (T (Z)). On the other hand, since Z is projective and Aut (Z) is a
finite group, by Nikulin [Ni79], the image of the natural map G → O (T (Z)) is a cyclic
group of finite order N , where N is exactly the order of the image of the representation
Aut (Z) → GL (H0(Z,Ω2

Z)) = CωZ , and the Euler function ϕ(N) := [Q(e2πi/N ) : Q] of N
is a divisor of the rank of the transcendental lattice T (Z). In our case, T (Z) is of rank
21 = 22− 1. In particular, it is an odd number. Hence N = 1 or 2. As (NS(X)⊕T (Z))⊗Z
Q = H2(Z,Q(1)) and Aut (Z) stabilizes the lattice NS(Z)⊕T (Z) ⊂ H2(Z,Q(1)), the image
of the representation Aut (Z) → GL(H2(Z,Q(1))) is cyclic of order 1 or 2, as well as the
image of the representation G→ GL(H2(Z,Z(1)). On the other hand, by the global Torelli
theorem for complex projective K3 surfaces ([PS71]), the action of Aut (Z) on H2(Z,Z(1))
is faithful. Thus Aut (Z) is either {idZ} or cyclic of order 2.

So far, we did not use (H2) 6= 2. Set 2d = (H2) ≥ 2. Then by [Ni79-2, Cor. 1.6.2], we
have

Z/2d ' NS (Z)∗/NS (Z) ' T (Z)∗/T (Z) ,

as H2(Z,Z) is free and unimodular and NS (Z) is primitive in H2(Z,Z). Here (−)∗ means
HomZ((−),Z) and T (Z) = (Z ·H)⊥.

As ι∗H is ample, and H is the unique ample generator of Pic (Z), one concludes that
ι∗(H) = H, thus ι∗ = id on NS (Z)∗/NS (Z). Hence ι∗ = id on T (Z)∗/T (Z) as well. On the
other hand, the involution ι satisfies ι∗ωZ = −ωZ by Nikulin’s result above. Thus ι∗ = −id
on T (Z)∗/T (Z). Thus id = −id on Z/2d. Hence 2d = 2 as claimed. �

Lemma 5.3. Let X be as in Theorem 5.1. Assume that Pic(X) = NS (X) is not isomorphic
to Z · H with self-intersection number (H2) = 2. Then, there is an ample primitive line

bundle L such that cHodge
1 (L) 6= 0 and (L2) 6= 2.
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Proof. By Proposition 4.2, there is an ample primitive line bundle L0 such that cHodge
1 (L0) 6=

0. If (L2
0) 6= 2, then we may take L = L0. In particular, if ρ(X) = 1, then we are done, as

we exclude the case Pic (X) = Z · L with (L2) = 2.
So, we may assume without loss of generality that ρ(X) ≥ 2 and (L2

0) = 2. Since L0

is primitive and ρ(X) ≥ 2, we can choose a line bundle M such that {L0,M} is part of a
Z-basis of Pic (X). Replacing M by M +nL0 with large integer n, we may further assume,
without loss of generality, that M is also ample. Note here that Z〈L0,M〉 = Z〈L,M+nL0〉
and L0 and M remain part of free Z-basis under this replacement. Now consider L =
pM +L0. Then L is ample, as M and L0 are ample. L is also primitive, as L0 and M form
part of free Z-basis of Z-module Pic (X). Moreover,

(L2) = p2(M2) + 2p(M.L0) + (L2
0) > 2 ,

by (M2) > 0, (M.L0) > 0 and (L2
0) > 0 by the ampleness. Thus (L2) 6= 2. Moreover,

cHodge
1 (L) = pcHodge

1 (M) + cHodge
1 (L0) = 0 + cHodge

1 (L0) = cHodge
1 (L0) 6= 0 ,

in the k-vector space H1(X,Ω1
X). So, L = pM + L0 satisfies all the requirements. �

Now we are ready to finish the proof of Theorem 5.1 1). We take the model XR → SpecR
of Theorem 4.1, Remark 4.4, applied to the ample primitive line bundle L in Lemma 5.3.
Assume that G is geometrically liftable to XR → SpecR. Then G has to stabilize Pic(XK̄),
thus it fixes the polarisation LK̄ . Hence G is a finite group. So we may assume that there
is an abstract field isomorphism K̄ → C and XK̄ is a complex projective K3 surface, say Z,
with Picard group Pic (Z) generated by an ample class HZ with (H2

Z) 6= 2, and G is now a
group of automorphisms of Z. Then G = {idX} by Lemma 5.2.

�

6. Non-liftable automorphism of positive entropy

The aim of this section is to construct an example of an automorphism of a supersin-
gular K3 surface over an algebraically closed field k of characteristic p ≥ 3, which is not
geometrically liftable to any projective model. As far as we are aware of, this is the first
such example. Our construction is based on the work by Kondo-Shimada [KS12], and is
(mildly) computer supported. The characteristic p will be equal to 3.

Recall that det NS (X) = −p2σ0 for a supersingular K3 surface defined over k. The value
σ0 is called the Artin invariant of X. Artin [Ar74] proved that 1 ≤ σ0 ≤ 10 and Ogus
[Ogu79] proved the uniqueness of a supersingular K3 surface over k with σ0 = 1, up to
isomorphisms. Then this K3 surface is isomorphic to the Kummer K3 surface Km (E×kE)
associated to the product abelian surface E ×k E of any supersingular elliptic curve E/k.
Tate and Shioda ([Sh75]) proved that the Fermat quartic K3 surface is supersingular if and
ony if p ≡ 3 mod 4. There are several other descriptions of supersingular K3 surfaces of
Artin invariant 1 (see e.g. [Sh13]).

From now until the end of this section, X is a supersingular K3 surface, defined over
k of characteristic 3, with Artin invariant 1. As remarked above, X is isomorphic to the
Fermat quartic K3 surface. We denote by q : X ↪→ P3 the projective embedding and set
H = q∗OP3(1).



NON-LIFTABLE AUTOMORPHISMS 11

In [KS12], Kondo and Shimada prove the following statements, which are crucial for our
construction:

(i) X has two globally generated line bundles Li (i = 1, 2) of degree 2 (Lmi in their
notation [KS12, p. 19]). They are not ample. The linear system associated to
H0(X,Li) induces a well defined morphism ϕi : X → P2 which is generically finite
2 : 1, but not finite. The Galois involution of the function field extension extends as
an automorphism τi ∈ Aut (X/P2). Indeed, it clearly extends as an automorphism
in Aut(Yi/P2) where ϕi : X → Yi → P2 is the Stein factorization, and on the other
hand, X is the minimal desingularization of the surface Yi.

(ii) Let Aut (X,H) be the automorphism group of X induced by the projective linear
automorphisms of P3 under q. It is known that Aut (X,H) is a finite group but of
huge order (see. e.g. [DK09], [Mu88]). In Aut (X,H), there is a special element
τ ∈ Aut (X,H) of order 28 ([KS12, Ex. 3.4]).

They prove the following beautiful description of the automorphism group of X:

Theorem 6.1. Aut (X) = 〈τ1, τ2,Aut (X,H)〉.

In the course of the proof, they work with an explicit Z-basis B of NS (X), consisting
of 22 lines among the 112 lines on X ([SSL10, Lem. 6.3]) and compute the (right, hence
covariant) representation of (τi)∗|NS (X), τ∗|NS (X) on NS (X). They actually write explicitely
the matrices of (τi)∗|NS (X) and τ∗|NS (X) in the basis B. We denote them by A1, A2, T
respectively, of which explicit forms are in Tables 5.4, 5.5, 3.3 in [KS12]. These forms are
important for the proof of Theorem 6.1.

Suppose one has a modelXR → SpecR on which Li lift to Li,R. Then, asH0(XR, Li,R)⊗R
k = H0(X,Li), one has base change Yi,R ⊗R k = Yi for the Stein factorization ϕi,R : XR →
Yi,R → P2

R of the well defined morphism ϕi,R : XR → P2
R associated to H0(XR, Li,R). The

Galois involution of the function field extension induced by ϕi,R extends as an automor-
phism τYi,R ∈ Aut(Yi,R/P2

R), which induces a birational automorphism τi,R ∈ Bir(XR/P2
R).

One says that τi lifts to XR if τi,R ∈ Aut(XR/P2
R) ⊂ Bir(XR/P2

R).

Theorem 6.2. There is a projective model XR → Spec R of X = X(3) with R of char-
acteristic 0 such that Aute(XK̄) 6= Aut (XK̄). Here K = Frac(R) and K̄ is an algebraic
closure of K.

Proof. Let H be an ample line bundle on X. By [LieOls11, App. A], there is a model
XR → Spec R such that L1, L2 and H lift. This property is compatible with further base
change R ⊂ RL where L ⊃ K is a field extension with L ⊂ K̄. This model is projective.
Let us denote by fi the restriction of τi,R to XK̄ . Then fi ∈ Aut(XK̄) as XK̄ is a minimal
smooth projective surface. It suffices to show that one of fi (i = 1, 2) is not in Aute(XK̄).
Assume to the contrary that both fi (i = 1, 2) are in Aute(XK̄). Then f∗i ω = −ω, where
ω is a non-zero global 2-form of XK̄ . Then (f1 ◦ f2)∗ω = ω. Thus (f1 ◦ f2)∗ has one
eigenvalue equal to one on de Rham cohomology H2

DR(XK̄/K̄), thus, by the comparison
theorem, on `-adic cohomology H2

ét(XK̄ ,Q`(1)) as well, thus by ([SGA4.5, V, Thm. 3.1]),
on H2

ét(X,Q`(1)) as well.
On the other hand, using the explicit forms of A1 and A2 in Tables 5.4, 5.5 in [KS12], and

Mathematica (all we need here are Dot command, CharacteristicPolynomial command,
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Factor command), we find that the characteristic polynomial of (τ2 ◦ τ1)∗|NS (X) = τ1∗ ◦
τ2∗|NS(X), i.e., of A1A2, is

(1+x+x2)(1−11x+10x2−9x3+9x4−10x5+15x6−23x7+19x8−14x9+14x10−14x11+19x12

−23x13 + 15x14 − 10x15 + 9x16 − 9x17 + 10x18 − 11x19 + x20) ,

of which 1 is not a zero, a contradiction. �

Remarks 6.3. On the model of Theorem 6.2, one of the τi does not lift, which means that
a small modification occurs on the special fiber. In fact one can say the following. Given
a projective model XR → Spec R, with ample line bundle LR, then τi always lifts to an
automorphism τ0

i of Xi
R := XR \ Σi, where Σi is the exceptional locus of X → Yi. So one

can always define the line bundle Li,R = (τ0
i )∗LR|Xi

R
∈ Pic(Xi

R) = Pic(XR). Then τi lifts

to XR if and only if Li,R is ample, which is equivalent to Li,R ⊗R k = τ∗i (LR ⊗R K).

The next theorem gives the (first) explicit example of a positive entropy automorphism
of a K3 surface which is not geometrically liftable to characteristic zero.

Theorem 6.4. The automorphism f := τ1 ◦ τ ◦ τ2 ◦ τ ∈ Aut (X)

(1) is not geometrically liftable to any projective model XR → SpecR of characteristic
zero as well as its power fn (n ∈ Z \ {0});

(2) has positive entropy h(f) equal to the logarithm of a Salem number a of degree 22;
(3) h(f) is not the entropy of any automorphism on any projective K3 surface in char-

acteristic 0;
(4) numerically

a = 26.9943 . . . , h(f) = log 26.9943 . . . .

Proof. Using the explicit forms ofA1, A2, T in Tables 5.4, 5.5, 3.3 in [KS12], and Mathematica

(all we need here are Dot command, CharacteristicPolynomial command, Factor command,

and NSolve command), we find that the characteristic polynomial P of f∗|NS (X)), i.e., of
A1TA2T , is

1− 27x+ 4x3 + 3x4 + 24x5 + 15x6 − 7x7 + x8 − 14x9 − 2x10 − 5x11 − 2x12

−14x13 + x14 − 7x15 + 15x16 + 24x17 + 3x18 + 4x19 − 27x21 + x22 .

This is an irreducible Salem polynomial of degree 22. The fact that this is irreducible is
checked by Factor command. Then this is a Salem polynomial by Proposition 3.1. Indeed,
it is either a Salem polynomial or a cyclotomic polynomial of degree 22. But NSolve

command shows that one of the zeroes of the above polynomial is approximately 26.9943.
Hence it is a Salem polynomial of degree 22 with Salem number approximately 26.9943.
This shows (2).

By [Smy14, Lem. 2], if λ is a Salem number of degree d, then λn is a Salem number of
the same degree d for all n ∈ N\{0}. Applying this to the eigenvalue λ of f or of f−1 which
is a Salem number, one concludes that fn, for all n ∈ Z \ {0}, has entropy the logarithm of
a Salem number of degree 22.

As in characteristic 0, an automorphism g always stabilizes NS(X) ⊂ H2(XK̄ ,Q`(1))
and the Picard rank is at most 20, the logarithm of the absolute value of a root of P can
not be the entropy of g. This shows (3).
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If fn, n ∈ Z was lifting to an automorphism g on XR → SpecR, then the specialization
ι : NS(XK̄) ↪→ NS(X) (see Section 2.3) would be g equivariant, thus, as the Picard rank
of XK̄ is at most 20, the minimal polynomial of g could not have degree 22. This shows
(1) and finishes the proof. �

Remarks 6.5. 1) As discussed in [BlEsKe14, Conj. 1.2], one expects that the rational
crystalline cycle class of an algebraic cycle, expressed as a de Rham class on a model in
characteristic 0, is the cycle class of an algebraic cycle on the model, if and only if it is in
the right level of the Hodge filtration. For the cycle class c of the graph of an automorphism
f on a K3 surface, the conjecture is verified (as written in [Ogu79, Cor. 2.5]). Indeed,

c ∈ F 2H4
DR(XR ×R XR/R) = F 2H4(X̂R ×R X̂R/R)

if and only if f∗ acting on H2
DR(X̂R/R) = lim←−nH

2
DR(Xn/(R/〈πn〉)) respects the Hodge

filtration. Here π is the uniformizer of R and Xn = X ⊗R Rn, Rn = R/〈πn〉. Clearly,

if f lifts, then c is the cycle class of the graph and lies in F 2H4(X̂R ×R X̂R/R). Let

us now assume that c ∈ F 2H4(X̂R ×R X̂R/R). The obstruction to lifting fn on Xn to
fn+1 on Xn+1 lies in H1(Xn, f

∗
nTXn/Rn

⊗ πn|Xn) and is identified with the action of f∗n in

Hom(H1(f∗(Ω1
Xn/Rn

)), πn ⊗H2(OXn)), thus dies. One constructs in this way a prosystem

of lifts lim←−n fn, thus, a formal scheme lim←−n Γn, where Γn ⊂ Xn ×Rn Xn is the graph of fn,

thus, by [EGA3, Chap.III, Thm. 5.4.5], a projective scheme ΓR ⊂ XR ×R XR which lifts
the graph of f and thus defines the lift.

So the test whether or not an automorphism lifts to characteristic 0 is of p-adic nature.
On the other hand, the test we develop in Theorem 6.4 relies on the degree of an algebraic
integer. It is of course very specific to our situation, nonetheless it is intriguing.

2) The Salem number we define in Theorem 6.4 does not come from the entropy of an
automorphism on a projective K3 surface in characteristic 0. One could perhaps speculate
that there is a projective model VR → SpecR of a higher dimensional smooth projective
variety VK in characteristic 0, with an automorphism fR of VR/R, such that its entropy
is reached on the class of a 1-cycle, the support of which, by specialization, lies on the K3
surface considered in Theorem 6.4, as a higher codimensional cycle on VR ⊗R k. Though
we do not have any computation going in this direction, this would just be nice.

7. Lifting of automorphisms of supersingular K3 surfaces of Artin
invariant 1 in large characteristic

Throughout this section, k is an algebraically closed field of characteristic p ≥ 3 and
X = X(p) as in Section 6. So X(p) is a supersingular K3 surface of Artin invariant 1, and
is uniquely defined up to isomorphism with this property.

Using Ogus’ crystalline Torelli theorem [Ogu83], J. Jang [Jan14, Thm.3.3] proved the
following theorem:

Theorem 7.1. The image of the representation of Aut(X) in the linear automorphism of
the one dimensional vector space k ·ω = H0(X,Ω2

X/k) is a cyclic group of cardinality p+ 1.

We denote by h an element in Aut(X) such that h∗ω = ξp+1ω where ξp+1 is a primitive
(p+ 1)-th root of unity in k.
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Remark 7.2. Let M be a projective K3 surface over a characteristic 0 field K. Then
the image of Aut(M) in the linear automorphism of the one dimensional vector space
K · ω = H0(M,Ω2

M/K) is a cyclic group of order ≤ 66 ([Ni79]). In fact Nikulin considered

the image of a finite subgroup, but, by the finiteness of the pluri-canonical representation
in characteristic 0 (Ueno-Deligne, [Ue75, Thm. 14.10]), the proof extends to the whole
automorphism group.

Jang deduces from Theorem 7.1 and Remark 7.2 the following:

Corollary 7.3. If p ≥ 67, then h is not geometrically liftable to characteristic 0.

The aim of this section is to construct an element τ ∈ Aut(X) of positive entropy which
is not geometrically liftable to characteristic 0. (Recall X = X(p)).

Definition 7.4. We define β to be the least common multiple of the natural numbers n
such that the value of the Euler function ϕ(n) is smaller or equal to 22.

Theorem 7.5. If p+ 1 ≥ 67β, then there is an automorphism τ in Aut(X(p)), of positive
entropy, which is not geometrically liftable to characteristic 0.

In order to prove the theorem, we first state the following lemmata.
For an endomorphism θ of a free Z-module of finite type, we denote by tr(θ) its trace

with values in Z.

Lemma 7.6. Let X be a K3 surface over any field. Let f ∈ Aut (X) such that

|tr (f∗|NS (X))| ≥ 23.

Then f is of positive entropy. Conversely, if f is of positive entropy, then there is a positive
integer N such that |tr ((fn)∗|NS (X))| ≥ 23 for all integers n such that n ≥ N .

Proof. Recall that NS (X) is of rank ρ ≤ 22. Let αi (1 ≤ i ≤ ρ) be the eigenvalues of
f∗|NS (X). If f is not of positive entropy, then αi are cyclotomic integers by Remark 3.2.
Hence

|tr (f∗|NS (X))| = |
ρ∑
i=1

αi| ≤
ρ∑
i=1

|αi| = ρ < 23 .

Hence f is of positive entropy if |tr (f∗|NS (X))| ≥ 23. Assume that f is of positive entropy.
Then, after renumbering, α1 is a Salem number a > 1, α2 is 1/a and all other αk are of
absolute value 1 by Remark 3.2. Then

tr ((fN )∗|NS (X)) = aN +
1

aN
+

ρ∑
k=3

αNk ,

which is an integer, in particular, real. Hence

tr ((fN )∗|NS (X)) = aN +
1

aN
+

ρ∑
k=3

Re (αNk ) .

Since |αNk | = |αk|N = 1, it follows that

−18 =

ρ∑
k=3

−1 ≤
ρ∑

k=3

Re (αNk ) ≤
ρ∑

k=3

1 = 18 .
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On the other hand, since a > 1, it follows that

lim
N→∞

aN +
1

aN
= +∞ .

Hence, there is N such that tr ((fn)∗|NS (X)) ≥ 23, hence |tr ((fn)∗|NS (X))| ≥ 23, for all
integers n such that n ≥ N . �

Lemma 7.7. Let X = X(p). Then there is f ∈ Aut (X) such that |tr (f∗|NS (X))| > 23,
and f∗ω = ω. In particular, f is of positive entropy.

Proof. Recall that X(p) = Km(E ×k E) where E is a supersingular elliptic curve. The
projections pri : E×k E → E, i = 1, 2 descend to elliptic fibrations ϕi : X → P1 ∼= E/〈±1〉
(thus with section) and with exactly 4 singular fibers of type I∗0 . We choose a zero-section
of ϕ and denote it by O. We identify it with its image O ⊂ X. Let MW (ϕi) be the
Mordell-Weil group of ϕi. It acts on the generic fiber Xη of ϕ by translation, thus is an
abelian subgroup of Aut(X).

One has ([Sh90])

rank MW(ϕi) = rank NS(X)− 2− 4× 4 = 4.

For each i = 1, 2, choose fi ∈ MW (ϕi) such that fi is of infinite order. The Néron-Severi
class ei of a closed fiber of ϕi is stable under fi, i.e., f∗i (ei) = ei for i = 1, 2, e1, e2 are of self-
intersection 0, and they are linearly independent in the hyperbolic lattice NS (X). Then, by
[Og09, Thm. 3.1], f3 := fn1

1 ◦f
n2
2 ∈ Aut (X) is of positive entropy for large positive integers

n1, n2. Note that f∗i ω = ω as fi is a translation automorphism of an elliptic fibration.
Thus f∗3ω = ω as well. Hence f = fN3 for large N is a required solution. �

Proof of Theorem 7.5. If h is of positive entropy, we are done. So we assume h has null-
entropy. This means, the characteristic polynomial of h∗|NS(X) is the product of cyclotomic

polynomials of degree ≤ 22. Set g := hβ. As rank NS(X) = 22, g∗|NS(X) is unipotent, so
there is a basis of NS (X)⊗Q in which g∗|NS(X)⊗Q is represented by the Jordan canonical
form:

g∗|NS(X)⊗Q = J := J(r1, 1)⊕ · · · ⊕ J(rs, 1) .

Set s = max {ri}si=1 − 1 and choose f as in Lemma 7.7.
If s = 0, then g∗|NS(X) = Id. Hence (f ◦ g)∗|NS(X) = f∗|NS(X) and (f ◦ g)∗ω = ξmω with

some m ≥ 67. Thus f ◦ g ∈ Aut(X) is of positive entropy and not geometrically liftable to
characteristic 0.

Assume s > 0.
In the same basis, f∗|NS(X)⊗Q is represented by a matrix A = (Aij) where Aij is ri × rj

matrix located at the (i, j)-block. Then

tr ((f ◦ gN )∗|NS (X)) = tr (JNA) =
s∑
i=1

tr (J(ri, 1)NAii).
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We want to estimate each summand of the formula above. For instance, if r1 = 4, then

J4 := J(4, 1) = I4 +R4 , R4 :=


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ,

and R4 = 0. Thus, by the binomial expansion

JN4 = I4+N


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

+
N(N − 1)

2


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

+
N(N − 1)(N − 2)

6


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 .

Hence, for a 4× 4-matrix A4 := (aij) of rational entries, we have

tr (JN4 A4) = tr (A4) +N(a21 + a32 + a43) +
N(N − 1)

2
(a31 + a42) +

N(N − 1)(N − 2)

6
a41 ,

which is a polynomial of N of degree ≤ 3 = 4− 1, with rational coefficients depending on
A4 (and independent of N). For exactly the same reason, from the expansion of J(r, 1)N

as above, we find that tr ((f ◦ gN )∗|NS (X)) is of the form

tr ((f ◦ gN )∗|NS (X)) = asN
s + as−1N

s−1 + · · ·+ a1N + trA .

Here ak are rational numbers depending only on A (and independent of N). So, if it
happened that |tr ((f ◦ gkn)∗|NS (X))| ≤ 22 for some sequence of positive integers

k1 < k2 < k3 < · · · < kn < · · · → +∞ ,

one would have

as = as−1 = · · · = a1 = 0 ,

and hence

|tr ((f ◦ gN )∗|NS (X))| = |tr (A)|
for all positive integer N . But

|tr (A)| = |tr (f∗|NS (X)))| ≥ 23 ,

by our choice of f , a contradiction to |tr ((f ◦ gkn)∗|NS (X))| ≤ 22. Hence, there are only

finitely many positive integers ` such that |tr ((f ◦ g`)∗|NS (X)))| ≤ 22. Thus, there is

a positive integer M such that |tr ((f ◦ gN )∗|NS (X)))| ≥ 23 for all integers N such that
N ≥M .

Let us choose N such that N ≥ M and (N,m) = 1. Define τ := f ◦ gN . Then
|tr(τ∗|NS(X))| ≥ 23, and τ∗ω = ξNmω. Note ξNm is a primitive m-th root of unity with m ≥ 67.
Thus τ ∈ Aut(X) is of positive entropy and not geometrically liftable to characteristic 0.

�

Remark 7.8. In [EOY14] we show that various elliptic structures on X(p), for p ≥ 11 and
p 6= 13, with a rich Mordell-Weil group force the existence of autmorphisms with entropy
the logarithm of a degree 22 Salem number.
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