
ON FLAT BUNDLES IN CHARACTERISTIC 0 AND p > 0

HÉLÈNE ESNAULT

Abstract. We discuss analogies between the fundamental groups of flat bun-
dles in characteristic 0 and p > 0.

1. Introduction

In this short note, we discuss some analogies betweenOX-coherentDX-modules
over X quasi-projective over k = C, the field of complex numbers, and over an
algebraically closed field of characteristic p > 0. For the finiteness problems we
singled out, they are striking. Yet we have no way to go from characteristic 0 to
characteristic p > 0 and vice-versa.

The note relies on work I have been doing in the last years with numerous
mathematicians, notably Phùng Hô Hai, Adrian Langer, Vikram Mehta, Xiaotao
Sun. I thank them all for the fruitful exchange of ideas and the pleasure of
sharing them. I thank Alexander Beilinson and Bruno Klingler for discussions on
questions related to the topic of this note, Lars Kindler for all the discussions on
regular singularities reflected in his work [19]. In addition, I thank Moritz Kerz
for the mathematics I learned from him.

2. Characteristic 0

Let X be a smooth connected quasi-projective variety defined over the field C
of complex numbers, together with a complex point a ∈ X(C). Then one has the
topological fundamental group πtop

1 (X, a) of loops centered at a of the underlying
topological spaces, modulo homotopy, as defined by Poincaré ([28]).

Grothendieck developed a different viewpoint on it. He considered the category
of topological covers of X. The objects are topological covers π : Y → X while
the maps θ : π1 → π2 are continuous maps Y1 → Y2 over X. The point a
defines a fiber functor ωtop

a to the category of sets by sending π to π−1(a) and
θ to θ|a : π−1

1 (a) → π−1
2 (a). Then the fundamental group becomes identified

with the automorphism group of ωtop
a : πtop

1 (X, a)
∼=−→ Aut(ωtop

a ), by sending a
loop centered at a to the collection of induced automorphisms of π−1(a) for all
topological covers π ([6, 10.11]).
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He restricted ωtop
a to the full subcategory of finite covers of X. By the Riemann

existence theorem, the natural functor from the category of finite étale covers of
X to the category of finite topological covers is an equivalence of categories. Re-
stricting ωtop

a to it defines the fiber functor ωa from the category of finite étale
covers of X to finite sets. This defines the étale fundamental group πét

1 (X, a) cen-
tered at a as the automorphism group of ωa. This is thus the profinite completion
of πtop

1 (X, a). Grothendieck’s definition has the advantage to be general. He de-
fines the étale fundamental group πét

1 (X, a) in [30, V] for any connected normal
scheme X exactly in the same way, in particular for X = Spec k, where k is a
field, in which case πét

1 (X, a) becomes identified with Gal(k̄/k) where k̄ ⊂ κ(a) is
the separable closure of k lying in the residue field of the chosen geometric point.
The fundamental theorem in those theories says that the category of topological
(resp. finite étale) covers of X is equivalent, via the fiber functor ωtop

a (resp. ωa),
to the representation category of πtop

1 (X, a) (resp. πét
1 (X, a)) in the category of

sets (resp. finite sets). ([6], loc. cit. [30, V, Proposition 5.8]).

Coming back to X a smooth connected quasi-projective variety over C, the
underlying topological space is a finite CW complex ([2, Remark p.40]), and thus
πtop

1 (X, a) is finitely presented, in particular finitely generated. This implies that
its pro-algebraic completion

πtop
1 (X, a)alg := lim←−

H

H

where H ⊂ GL(r,C) is the Zariski closure of a complex linear representation
of πtop

1 (X, a), is controlled by the pro-finite completion πét
1 (X, a). For exam-

ple, if f : X → Y, a 7→ b is a morphism of smooth complex connected quasi-
projective varieties, then if f∗ : πét

1 (X, a) → πét
1 (Y, b) is an isomorphism, so is

f∗ : πtop
1 (X, a)alg → πtop

1 (Y, b)alg (Malcev [24], Grothendieck [14, Théorème 1.2]).
In particular, applied to Y = SpecC, it says that if the étale fundamental group
is trivial, there are no non-trivial complex linear representations of πtop

1 (X, a),
that is no non-trivial complex linear systems. The proof of this last point
is easy. Since πtop

1 (X, a) is finitely generated, a complex linear representation
ρ : πtop

1 (X, a)→ GL(r,C) has values in GL(r, A) where A is a ring of finite type
over Z[ 1

N
], for some natural number N 6= 0. If ρ is not trivial, then there is a

closed point s ∈ SpecA, with finite residue field κ(s), such that the specialization
ρ⊗ κ(s) : πtop

1 (X, a)→ GL(r, κ(s)) is not trivial as well.

Let us write the three groups in a diagram. One has

π1(X, a)top

�� ''
πtop

1 (X, a)alg // πét
1 (X, a)

(2.1)
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where the top group is a finitely presented abstract group, the left bottom group is
a pro-algebraic group over C, the right bottom group is a pro-finite group, which
is the pro-finite completion of the top one, and the horizontal map is a morphism
of pro-algebraic groups over C when one thinks of the bottom right group as a
constant pro-algebraic group over C. The horizontal map is surjective as any
finite étale cover π : Y → X defines the local system π∗C with finite monodromy.
In fact, the horizontal map is the pro-finite completion map. We saw that in
the sense discussed above, πét

1 (X, a) controls πtop
1 (X, a)alg. So πtop

1 (X, a)alg is
controlled by its profinite completion.

On the other hand, by the Riemann-Hilbert correspondence [5], the repre-
sentation category of πtop

1 (X, a)alg in finite dimensional complex vector spaces
is tensor equivalent to the category of vector bundles with a regular singular
flat connection. The latter is equivalent to the category of regular singular OX-
coherent DX-modules. This notion is purely algebraic in the following sense:
if k is a field of characteristic 0, X is a smooth geometrically connected quasi-
projective variety defined over k, then the category of vector bundles (E,∇) with
a flat connection, or equivalently the category of OX-coherent DX-modules, is
an abelian, k-linear, rigid tensor category, neutralized by the choice of a k-point
a ∈ X(k). The fiber functor ωalg

a sends (E,∇) to E|a. The Tannaka group

πalg
1 (X, a) := Aut⊗(ωalg

a ) is then a pro-algebraic group over k, its representation
category in finite dimensional k vector spaces is via ωalg

a equivalent to the cate-
gory of vector bundles with a flat connection. The category of flat connections
contains the full subcategory of flat connections with regular singularities at in-
finity [5]. Denoting by ωalg,rs

a the restriction of ωalg
a to this subcategory defines the

Tannaka group πalg,rs
1 (X, a) := Aut⊗(ωalg,rs

a ) as a quotient of πalg
1 (X, a). If k = C,

then πtop
1 (X, a)alg = πalg,rs

1 (X, a).

Again considering πét
1 (X, a) as a constant pro-algebraic group over k, the ho-

momorphism

πalg
1 (X, a)→ πét

1 (X, a)(2.2)

factors through

πalg
1 (X, a)→ πalg,rs

1 (X, a)→ πét
1 (X, a)(2.3)

and πét
1 (X, a) is the pro-finite completion both of πalg

1 (X, a) and πalg,rs
1 (X, a).

However, if K ⊃ k is a field extension, the natural base change morphisms

πalg
1 (X ⊗k K, a⊗k K)→ πalg

1 (X, a)⊗k K

and

πalg,rs
1 (X ⊗k K, a⊗k K)→ πalg,rs

1 (X, a)⊗k K

of pro-algebraic groups over K are not isomorphisms ([6, 10.35]). It is discussed
in loc. cit. over X = Gm, but this is still not an isomorphism even if X is
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projective, in which case the surjective homomorphism πalg
1 (X, a)→ πalg,rs

1 (X, a)

is an isomorphism. For example, assume K = k(t), H0(X,Ω1
X) 6= 0. Then the

flat connection (OX , d+ tα), for 0 6= α ∈ H0(X,Ω1
X) can not be a subquotient of

a connection defined over k. Still the base change morphisms are faithfully flat,
as any subconnection (E ′,∇′) ⊂ (E,∇)⊗kK is defined over a finite extension of
L ⊃ k in K ([7, Proposition 2.21]).

Proposition 2.1 ([14], Théorème 1.2 over C). Let k be an algebraically closed
field of characteristic 0.

i) If f : X → Y is a morphism of smooth connected quasi-projective varieties
mapping a ∈ X(k) to b ∈ Y (k) . If f∗ : πét

1 (X, a) → πét
1 (Y, b) is an

isomorphism, then f∗ : πalg,rs
1 (X, a) → πalg,rs

1 (Y, b) is an isomorphism as
well.

ii) If X is a smooth connected quasi-projective variety with a ∈ X(k), such

that πét
1 (X, a) is trivial. Then πalg,rs

1 (X, a) is trivial as well.

Proof. Then if k ⊂ K is an extension of algebraically closed fields, the base
change morphism

πét
1 (X ⊗k K, a⊗k K)→ πét

1 (X, a)(2.4)

is an isomorphism ([20, Introduction]).
We show i). Assuming k is embeddable in C, the assumption implies that

πalg,rs
1 (X ⊗k C, a ⊗k C) → πalg,rs

1 (Y ⊗k C, b ⊗k C) is an isomorphism by Malcev-
Grothendieck’s theorem. So given M a flat regular singular connection on Y , and
N ⊂ f ∗M a subconnection (thus regular singular) on X, there is a subconnection
N ′ ⊂ M ⊗k C (thus regular singular, as ⊗C preserves the property) with (f ⊗k

C)∗(N ′) = N ⊗k C. These relations are defined over an affine variety S over k
with k(S) ⊂ C. Thus if pZ1 : Z×k S → Z denotes the first projection, one obtains
N ′S ⊂ (pY1 )∗M with (f × 1S)∗(N ′S) = (pX1 )∗N for some relative flat connection
NS. Choosing s ∈ S(k) a rational point, the restriction N ′s of N ′S to Y ×k s
fulfills N ′s ⊂ M (thus is regular singular) and f ∗(N ′s) = N . This shows that

πalg,rs
1 (X, a)→ πalg,rs

1 (Y, b) is faithfully flat ([7, Proposition 2.21]).
Similarly, if M is a flat regular singular connection on X, there is a flat regular

singular connection N on Y ⊗kC such that M is a subquotient of (f⊗C)∗(N). As

N is regular singular, there is a smooth compactification Ŷ of Y such that Ŷ is
projective and D = Ŷ \Y is a normal crossings divisor, and there is a locally free

extension N̂ of N such that the connection extends to N̂ → Ω1
Ŷ⊗kC/C

(logD) ⊗
N̂ . Again spreading out, N̂ is obtained by base change from a flat connection
connection N̂S → Ω1

Ŷ×kS/S
(logD) ⊗ N̂S on Y ×k S relative to S. So restricting

NS = N̂S|Y×kS to a k point of S shows that M is a subquotient of a flat connection
f ∗N0, with N0 a flat regular singular connection defined over Y . This shows that
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πalg,rs
1 (X, a)→ πalg,rs

1 (Y, b) is a closed embedding ([7], loc. cit.). This finishes the
proof if k is embeddable in C.

In general, an object or a morphism between two objects is defined over a
field K0 of finite type over Q in k containing the field of definition k0 of f , so
f = f0 ⊗k0 k. One applies the previous isomorphism to an algebraic closure K̄0

of K0 to conclude that over K̄0, (f0 ⊗k0 K̄0)∗ identifies objects and morphisms.
This finishes the proof of i).

ii) is a particular case of i) for Y = Spec k.
�

Proposition 2.1 i), while applied to f being the Albanese map, implies

Corollary 2.2 (see [13], Theorem 0.4 over C). Let k be an algebraically closed
field of characteristic 0, let X be a smooth projective variety over k. Then
πét

1 (X, a) is abelian, if and only if every irreducible bundle with a flat connec-
tion has rank 1.

Proposition 2.1 is an algebraic statement. Its proof relies on the theorem of
Malcev-Grothendieck, which in turn is a consequence of πtop

1 (X, a) being finitely
generated for X defined over C. We are not aware of the existence of an algebraic
proof to it.

To close this section, we observe that the finite generation of πtop
1 (X, a) is also

reflected, for X projective smooth over C, by the moduli theory of Simpson [29].
The Betti moduli space MB(X), which parametrizes complex local systems of
rank r, is a complex affine variety. He constructed the de Rham moduli space
MdR(X), and, fixing a polarization, the Higgs moduli space MHiggs(X). Both are
quasi-projective varieties. They map to the moduli spaces of semi-stable bundles,
so his construction via geometric invariant theory generalizes the classical one for
vector bundles.

Furthermore, they are all homeomorphic, in fact even real analytically isomo-
morphic. So for example, if one knows that MHiggs(X) is projective, then nec-
essarily it is 0-dimensional, that is there are finitely many isomorphism classes
of irreducible rank r local systems (see [19] where this argument is used). But
to conclude directly Proposition 2.1 ii), one would need for instance that points
in MdR(X) say, which correspond to local systems with finite monodromy, are
dense. It is true rank 1. In higher rank there are rigid local systems which are
isolated (we thank Burt Totaro for the reference [4]) . More generally, it would
be of high interest to understand the points in the three moduli spaces which, in
MBetti(X), correspond to local systems with finite monodromy. Those flat con-
nections (E,∇) are uniquely determined by the underlying vector bundle E. By
Nori [25], such vector bundles (which he called “finite”) are purely algebraically
described. They are those vector bundles E with satisfy a polynomial equation
f(E) = g(E), where f, g ∈ N[T ], f 6= g. (Here in characteristic 0 the category
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is semi-simple, so there is no need to introduce the essentially finite bundles [9,
Section 2]). However, those equations involve higher rank bundles as well, so it
is difficult to cut them down to MdR(X).

3. Characteristic p > 0

Let X be a smooth connected quasi-projective variety defined over an alge-
braically closed field k of characteristic p > 0, endowed with a point a ∈ X(k).
Clearly we do not have a notion of topological fundamental group at disposal.
But we have the theory of étale fundamental groups.

We denote by X(1) the pull-back of X over the Frobenius of Spec k, and by
FX/k : X → X(1) the Frobenius of X relative to k. The Homs in the category of
bundles with a flat connection are linear over OX(1) , so, unless X is proper, there
are not finite dimensional k-vector spaces. On the other hand, the category ofOX-
coherent DX := DX/k-modules is, as in characteristic 0, an abelian, rigid tensor
category [13]. The rigidity comes from the fact that if E is a OX-coherent DX-
module, then it is locally free (Katz, [13, Theorem 1.3, Proof]). Fixing a rational
point a ∈ X(k) defines a fiber functor ωa to the category of finite dimensional
k-vector spaces, by assigning to E its restriction in a. This defines a pro-algebraic
group scheme πalg

1 (X, a) := Aut⊗(ωa).

Recall that the Riemann-Hilbert correspondence over C is betweenOX-coherent
regular singular DX-modules and local systems, that is solutions, in the ana-
lytic topology, of the linear differential equation in the Zariski topology attached
to the DX-module. Katz in [13, Theorem 1.3] showed an analog statement to
the Riemann-Hilbert correspondence in characteristic p > 0. As a consequence
of Cartier’s characterization of p-curvature 0 connections ([16, Theorem 5.1]),
if E is a coherent DX-module, then the associated flat connection is spanned
by flat sections, now in the Zariski topology. This defines a bundle E(1) on
X(1) together with an isomorphism (E,∇) ∼= (F ∗E(1), d⊗ 1E(1)), where we write
F ∗X/kE

(1) = OX ⊗F−1
X/k
O

X(1)
F−1
X/kE

(1). Then E(1) is precisely the subsheaf of E

annihilated by all the differential operators of order ≤ (p − 1) and is a vector
bundle on X(1). In particular, the restriction σ0 : E → F ∗X/kE

(1) to the bundles
of the isomorphism of flat connections determines uniquely the whole isomor-
phism. Further, the differential operators of X of order ≥ p act on E(1). The
subsheaf of sections annihilated by all differential operators of order ≤ (p2 − 1)
is a vector bundle E(2) on X(2) and one has an isomorphism of vector bundles
σ1 : E(1) → F ∗

X(1)/k
E(2) etc. A stratified bundle E = (E(n), σn)n∈N is a sequence of

bundles (E(0) = E,E(1), E(2), . . .) together with a sequence ofOX(n)-isomorphisms
σn : E(n) → F ∗

X(n)/k
E(n+1) of bundles. A morphism ϕ : E → E′ is a collection

(ϕ0, ϕ1, ϕ2, . . .) where ϕn : E(n) → E
′(n) is a bundle map commuting with the

σi and σ′i. Katz’ theorem (loc. cit.) asserts that the functor which assigns to a
OX-coherent DX-module its underlying stratified bundle as explained above is an
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equivalence of categories. This is analog to the Riemann-Hilbert correspondence.
However, as it does not involve a stronger topology than the Zariski one, there is
no growth condition at infinity of solutions which appears here in the non-proper
case. This notion enters later in the sequel.

If π : Y → X is a finite étale cover, then π∗OY is an OX-coherent DX-module.
This defines a surjective homomorphism

πalg
1 (X, a)→ πét(X, a)(3.1)

of pro-algebraic groups, if one considers πét(X, a) as a constant pro-finite algebraic
group over k. By [8, Proposition 13], this map is the pro-finite completion, as in
(2.2).

The analogy with the characteristic 0 theory becomes more involved when one
discusses (2.3). Finite étale tame covers (see [17] for a precise and detailed ac-
count) define a full subcategory of the category of finite étale covers. This defines

the quotient πét,tame
1 (X, a) of πét

1 (X, a). On the other hand, Gieseker [13, Sec-
tion 3] defines regular singular OX-coherent DX-modules, assuming X admits a

smooth projective compactification X̂ such that X̂ \X is a strict normal crossings
divisor. In [18, Section 3], the concept of a regular singular OX-coherent DX-

module is defined unconditionally. If X ⊂ X̂ is a partial (i. e. is not necessarily

projective) smooth compactification such that X̂ \ X is a strict normal cross-
ings divisor, regularity with respect to this partial compactification is defined as
usual, by assuming the existence of a OX̂-coherent extension of the underlying
OX-locally free sheaf, on which the DX-action extends to an action of the differ-
ential operators which stabilize the ideal sheaf of X̂ \ X. Then the DX-module
is regular singular if it is relatively to all such partial compactifications. This
notion coincides with Gieseker’s one if one has a good compactificaton. The full
subcategory of OX-coherent regular singular DX-modules is a sub Tannaka cat-
egory. This defines a quotient πalg,rs

1 (X, a) of πalg
1 (X, a). The main theorem of

[18, Section 4] asserts that the composite of (3.1) with πét
1 (X, a)→ πét,tame

1 (X, a)

factors through πalg,rs
1 (X, a)

πalg
1 (X, a)

��

// πét(X, a)

��
πalg,rs

1 (X, a) // πét,tame(X, a)

(3.2)

and that πét,tame(X, a), while considered as a constant pro-algebraic group over

k, is the pro-finite completion of πalg,rs
1 (X, a).

Let k be an algebraically closed field of characteristic p > 0. So we may raise
the following questions in analogy with Proposition 2.1.



FLAT BUNDLES 8

Questions 3.1. i) Let f : X → Y be a morphism between smooth quasi-
projective varieties mapping a ∈ X(k) to b ∈ Y (k). Assume

f∗ : πét,tame
1 (X, a)→ πét,tame

1 (Y, b)

is an isomorphism, then is

f∗ : πalg,rs
1 (X, a)→ πalg,rs

1 (Y, b)

an isomorphism as well?
ii) Let X be a smooth connected quasi-projective variety with a ∈ X(k),

such that πét,tame
1 (X, a) is trivial. Then is πalg,rs

1 (X, a) trivial as well?

The theory of tame fundamental groups, unfortunately, isn’t well developed.
Natural properties are now yet known. For example, as far as we are aware of,
Künneth formula and the base change property are not known. They are both
known for the maximal prime to p quotient of πét

1 (X, a) (see [27] and in it Re-
marque 5.3 for base change). Topological finite presentation or even topological
finite generation are not known (see [26, Théorème 6.1] for finite generation and
for X being the complement of a divisor in a smooth projective curve over an
algebraically closed field k, but in higher dimension, we do not know the nec-
essary Lefschetz theorems to conclude). A main obstruction to generalize the
corresponding results in [30] is the absence of resolution of singularities (see for
example [23, Theorem A.15] for the homotopy exact sequence for smooth vari-
eties over an algebraically closed field for the tame fundamental groups under the
assumption of resolution of singularities).

Of course we can raise the same questions dropping the tameness assumption.

Questions 3.2. i) Let f : X → Y be a morphism between smooth quasi-
projective varieties mapping a ∈ X(k) to b ∈ Y (k). Assume

f∗ : πét
1 (X, a)→ πét

1 (Y, b)

is an isomorphism, then is

f∗ : πalg
1 (X, a)→ πalg

1 (Y, b)

an isomorphism as well?
ii) Let X be a smooth connected quasi-projective variety with a ∈ X(k),

such that πét
1 (X, a) is trivial. Then is πalg

1 (X, a) trivial as well?

If X is smooth, then X \ Σ has the same πét
1 , resp. πalg

1 as X when Σ has
codimension ≥ 2. So Questions 3.2 reduce to X, Y projective smooth in i), and
X projective smooth in ii) if we start with X \ ΣX and Y \ ΣY , with ΣX ,ΣY of
codimension ≥ 2. On the other hand, by blowing up several times and removing
divisors of a smooth projective variety with πét

1 (X, a) = 0, one easily constructs
examples of non-proper smooth varieties X0 with πét

1 (X0, a) = 0, with a nice
normal compactification such that the locus at infinity has codimension ≥ 2,
but the compactification is not smooth (see [18]). So in absence of resolution
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of singularities, and in view of the difficulty to find interesting examples, this is
meaningful to ask, even if in characteristic 0, the answer is negative, as one sees
for example on the affine line. Indeed, any non-zero closed 1 form ω on A1 defines
a non-trivial connection d+ ω on OA1 . But, in characteristic p > 0, πét

1 (A1, 0) is
highly non-trivial.

When X is smooth projective, Question 3.1, or, equivalently, Question 3.2 is
Gieseker’s conjecture [13, p. 8]. In analogy with Corollary 2.2, Gieseker [13],
loc. cit. further raised the following questions.

Questions 3.3. Let X be a smooth connected projective variety with a ∈ X(k).

i) Does every irreducible OX-coherent DX-module have rank 1 if and only
if the commutator [πét

1 (X, a), πét
1 (X, a)] is a pro-p-group?

ii) Is every OX-coherent DX-module a direct sum of rank 1 ones if and only
if πét

1 (X, a) is abelian without nontrivial p-power quotient?

Finally, assuming X projective smooth, while we have at disposal Langer’s
quasi-projective moduli varieties of Gieseker semi-stable bundles [22], we do
not have any analog to Simpson’s quasi-projective moduli space MdR(X) and
of MBetti(X).

4. Results

The aim of this section is to describe the answers we have to Questions 3.1,
3.2, 3.3. Unfortunately, they are only partial answers.

4.1. Question 3.2, ii). It has a positive answer when X is projective (see [10,
Theorem 1.1]), this is the main result. We describe now the analogies between
the proof of Proposition 2.1, ii) over C and the proof of [10], loc. cit.

Over C we were using that the monodromy group of a representation of πtop
1 (X, a)

lies in some GL(r, A) for A a ring of finite type over Z[ 1
N

], as πtop
1 (X, a) is finitely

generated. This is a statement on the complex local system, which is not easy to
transpose on the side of the DX-modules.

In characteristic p > 0, we do not have a group of finite type controlling the
representation πalg(X, a) → GL(r, k) coming from Tannaka theory. Going to
the side of stratified bundles, we do not have quasi-projective moduli spaces for
them either. But, X being projective, a stratified bundle E is up to isomor-
phism determined by the underlying vector bundles (E(n))n≥0 (Katz’ theorem
[13, Proposition 1.7]). If we can make sure that the E(n) are all µ-stable of slope
0, we can “park” them all on one quasi-projective moduli M . That we may
assume that they are µ-stable relies on two facts. Firstly there is a structure
theorem asserting that there is a natural number n0 such that the shifted strati-
fied bundle (En0 , En0+1, . . .), (σn0 , σn0+1, . . .) is a successive extension of stratified
bundles, each of which with the property that its underlying vector bundles are
all µ-stable of slope 0 ([10, Proposition 2.3]. Secondly, extensions of the trivial
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stratified bundle by itself form a group, which, again using Katz’ theorem, is iden-
tified with the group lim←−F

H1(X,OX), where F is the absolute Frobenius, which

is trivial if πét
1 (X, a) = 0. In fact H1(X,Z/p) = 0 is enough here to conclude ([10,

Proposition 2.4]).

Further over C, once one has ρ : πtop
1 (X, a)→ GL(r, A), we find a closed point

s ∈ SpecA such that the specialization ρ⊗κ(s) : πtop
1 (X, a)→ GL(r, κ(s)) is not

trivial if ρ is not trivial.

In characteristic p > 0, we consider a model MR of M over some ring R of
finite type over Fp. Even of M is not a fine moduli space, it is better than a
coarse moduli space, in particular it gives a moduli interpretation of F̄p-points
of MR, assuming that X itself has a model XR over R. We consider the Zariski
closure N ⊂M of all the moduli points E(n), and specialize N to a closed point s
of SpecR for some R on which it is defined. Then the whole point is to show that
some such specialization contains a moduli point V say which is fixed by some
power of Frobenius ([10, Theorem 3.14]). This yields a Lang torsor over XR⊗R s
by resolving the Artin-Schreier type equation (Fm − Id)∗(V ) = 0 [21, Satz 1.4].
The theory of specialization of the étale fundamental group [30, X, Théorème 3.8]
forces then V to be trivial, a contradiction, unless N is empty. Now, in order
to find such a point V , one has to apply Hrushovsky’s fundamental result [15,
Corollary 1.2] stemming from model theory. This, undoubtedly, is a deeper step
than finding over C an s for which ρ⊗ κ(s) is not trivial.

4.2. Question 3.3. It has a positive answer. The surjection πalg
1 (X, a)→ πét

1 (X, a)
together with some classical representation theory of finite p-groups imply the
one direction (see [13, Theorem 1.10]): assuming irreducible OX-coherent DX-
modules have rank 1, then [πét

1 (X, a), πét
1 (X, a)] is a pro-p-group and if the cate-

gory ofOX-coherent DX-modules is semi-simple, then πét
1 (X, a) is abelian without

p-power quotient.

We described the other direction (see [11]). The method is derived from [10],
with some new ingredients, which we briefly explain now.

We discuss i). By the discussion of the proof of Question 3.2 ii), we extract
the information that if X has a non-trivial OX-coherent DX-module of rank ≥ 2,
then it also has one of the same rank with finite monodromy [11, Theorem 2.3].
This, by classical theory of representation of p-groups, forbids the commutator
of the monodromy group to be a p-group.

We discuss ii). One has to show that the category of OX-coherent DX-modules
is semi-simple. As irreducible OX-coherent DX-modules have rank 1, one has
to show that there are no non-trivial extension of the trivial OX-coherent DX-
modules by a rank 1 one. To this aim, we have to replace Langer’s moduli M
in the proof of Question 3.2 ii) by some quasi-projective moduli M ′ say, to be
constructed, of non-trivial extensions of OX by line bundles L. The assumption
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implies that such an extension of OX by a torsion line bundle L splits, and
does after specialization to XR ⊗R s for a closed point. Hrushovsky theorem as
explained before enables one to find split extensions as moduli points of N ′⊗R s,
a contradiction.

4.3. Rank 1. On X quasi-projective smooth over an algebraic closed field k
of characteristic p > 0, OX-coherent DX-modules of rank 1 are always regular
singular [13, Theorem 3.3]. So Question 3.1 ii) and Question 3.2 ii) are equivalent
for rank 1 objects. It has a positive answer [18, Section 5]. In fact, if one restricts

to rank 1, it is enough to assume that πét,ab,p′

1 (X, a) = 0, the prime to p maximal
abelian quotient of πét

1 (X, a). The point is that under this assumption, necessarily
units on X are constant. This implies that a rank 1 stratified bundle is entirely
determined by the underlying bundles (L(n))n∈N. Then one shows by geometry
that the assumption implies that Pic(X) is a finitely generated abelian group
([18, Section 5]).

4.4. The affine space. A simple discussion (led with Lars Kindler) implies that
Question 3.1 ii) has positive answer for X = An. Indeed by Theorem [13, The-
orem 5.3], any flat regular singular OX-coherent DX-module is a sum of such
rank 1 DX-modules. If L is such a rank 1 DX-module, then there is a OX-locally
free extension L̂ on Pn on which the action of DX on L extends to an action of
DPn(log∞). As an algebraic vector bundle, L = OPn(d · ∞), where ∞ = Pn \X.

The connection ∇(0) : L̂→ Ω1
Pn(log∞)⊗ L̂ on it is necessarily of the shape d+A.

Here d is the connection which is uniquely defined on O(d · ∞) by its restriction
to OPn ↪→ O(d · ∞) given by the section d · ∞, where it is defined by d(1) = 0.
Then A ∈ H0(Pn,Ω1

Pn(log∞)), which is 0. So finally ∇(0) has no poles and is

trivial. We repeat this argument for L̂(i) on (Pn)(i) and conclude that in fact L̂
is a OPn-coherent DPn-module, which is trivial.

5. Some comments and questions

5.1. Moduli. On X projective smooth over an algebraic closed field k, it would
be very nice to extend Simpson’s theory to construct moduli spaces (would they
be quasi-projective?) for stratified bundles and for OX-coherent DX-modules.

Recall that over a field of characteristic 0, a bundle with a flat connection
(E,∇) with finite monodromy is uniquely determined by E ([9], loc. cit.). It
would be very nice to understand how the homeomorphism between MBetti(X)
and MdR(X), followed by the forgetful morphism (E,∇) 7→ E with values in the
moduli of bundles, transports points corresponding to finite local systems.

5.2. From characteristic p to characteristic 0 and vice-versa. In spite of
the strong analogy between Proposition 2.1 ii) for X projective and Question 3.1
ii) for X projective ([10], loc. cit.), and between Corollary 2.2 and Question 3.3



FLAT BUNDLES 12

([11], loc. cit.), we do not have a direct way to go back and forth between char-
acteristic p > 0 and characteristic 0. Indeed, a flat connection in characteristic
0 specializes to a flat connection in characteristic p > 0, that is to an action
of the differential operators of order ≤ 1, but this action does not extend to
an action of DX . Already to request p-curvature 0 (which is equivalent, as al-
ready explained, to the existence of E(1)) for almost all p should be, according
to Grothendieck’s p-curvature conjecture, equivalent to the connection in charac-
teristic 0 to have finite monodromy. Assuming Simpson’s moduli spaces MdR(X)
specialize to moduli spaces of flat connections for almost all p, at least at the
level of geometric points, a positive answer to Grothendieck’s conjecture, for X
projective, would provide some answer to the previous question. In the present
state of knowledge, we know the well behavior of moduli points corresponding
to finite monodromy only in equal characteristic 0 for de Rham moduli ([1]) and
p > 0 for moduli of semi-stable sheaves or, in absence of moduli, for families of
stratified bundles, assuming the monodromy groups have order prime to p ([12]).

5.3. Question 3.1 ii). Of course, all unanswered questions in 3.2, 3.1 are of
interest, that is all relative cases and the absolute non-proper case. Focusing on
this one, even if one assumes that X has a compactification X̂ such that X̂ \X is
a strict normal crossings divisor, the method of proof in the projective case [10]

can not be overtaken as such. The bundles Ê(n) on X̂ do not all have the same
Chern classes, so we can not park them all in one moduli space.

5.4. Finiteness. A natural question which comes from [3], and from [11], is
whether or not, if X is smooth projective over an algebraically closed field, such
that the profinite completion map πalg

1 (X, a)→ πét
1 (X, a) is an isomorphism, i. e.

all OX-coherent DX-modules have finite monodromy, πét
1 (X, a) itself is finite.
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