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Abstract

Our aim is to formulate and prove a weak form in equal characteristic
p > O of the p-curvature conjecture. We also show the existence of a coun-
terexample to a strong form of it.

Introduction

If (E,O) is a vector bundle with an algebraic integrable connecti@r a smooth
complex varietyX, then it is defined over a smooth sche®@®ever Spe@[ﬁ]
for some positive intege, so (E,) = (Es,Us) ®sC over X = Xs®sC for a
geometric generic poir®(S) C C. Grothendieck-Katz'p-curvature conjecture
predicts that if for all closed points of some non-trivial opetd C S, the p-
curvature of(Es, Os) xssis zero, then(E, D) is trivialized by a finiteétale cover
of X (see e.g. [An, Conj.3.3.3]). Little is known about it. N. Kagwoved it for
Gaul-Manin connections [Ka], f&finite over SpeZ[%] (i.e., if X can be defined
over a number field), D. V. Chudnovsky and G. V. Chudnovsky in [@@led it
in the rank 1 case and Y. Angliin [An] proved it in case the Galois differential
Lie algebra of(E, ) at the generic point 08 is solvable (and for extensions of
connections satisfying the conjecture). More recently,&bfand M. Kisin [FK]
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proved it for certain locally symmetric varietieé. In general, one is lacking
methods to think of the problem.

Y. André in [An, 1l] and E. Hrushovsky in [Hr, V] formulated the follding
equal characteristic 0 analog of the conjectureX #> Sis a smooth morphism of
smooth connected varieties defined over a characterist@dkfithen if (Es, Os)
IS a relative integrable connection such that for all clogemhtss of some non-
trivial openU C S (Es,[s) xss s trivialized by a finiteétale cover oiX xss,
then(E, O)|x; should be trivialized by a finitétale cover, wherg is a geometric
generic point andXy = X xsn. So the characteristic 0 analogy to integrable
connections is simply integrable connections, and tgoHeervature condition is
the trivialization of the connection by a finiftale cover. Andr proved it [An,
Prop. 7.1.1], using Jordan’s theorem and Simpson’s modudlabconnections,
while Hrushovsky [Hr, p.116] suggested a proof using molkebty.

It is tempting to formulate an equal characterigiic- O analog of Y. Ande’s
theorem. A main feature of integrable connections over d kief characteristic O
is that they form an abelian, rigi#;linear tensor category. In characterigpic- 0,
the category of bundles with an integrable connection ig @iy, -linear, where
X is the relative Frobenius twist &, and the notion is too weak. On the other
hand, in characteristic 0, the category of bundles with alahection is the same
as the category afx-coherent?x-modules. In characteristg> 0, Ox-coherent
Zx-modules over a smooth variexydefined over a fiel#t form an abelian, rigid,
k-linear tensor category (see [Gi]). It is equivalent to tlaegory of stratified
bundles. It bears strong analogies with the category of lesnalith an integrable
connection in characteristic 0. For exampleXifis projective smooth over an
algebraically closed field, the triviality of thetale fundamental group forces all
suchdx-coherentZx-modules to be trivial ([EM]).

So we raise theuestion I let f : X — Sbe a smooth projective morphism
of smooth connected varieties, defined over an algebrgicllsed characteristic
p > O field, let(E, ) be a stratified bundle relative &) such that for all closed
points of some non-trivial opel C S, the stratified bundI€E, ) |x, is trivialized
by a finite étale cover ofXs := X xgs. Is it the case that the stratified bundle
(E,D)|x; Is trivialized by a finitegtale cover oiXz?.

In this form, this is not true. Y. Laszlo [Ls] constructed aeodimensional
non-trivial family of bundles over a curve ovp which is fixed by the square of
Frobenius, as a (negative) answer to a question of J. de doieging the behav-
ior of representations of thtale fundamental group over a finite fiélg, q= p?,

2



with values inGL(r,[F((t))), whereFF D IF is a finite extension. In fact, Laszlo’s
example yields also a counter-example to the question texissdbove. We ex-
plain this in Sections 1 and 4 (see Corollary 4.3). We remaakiftt is a bundle
on X, such that the bundlg|x, is stable, numerically flat (see Definition 3.2)
and moves in the moduli, theli; cannot be trivialized by a finitétale cover
(see Proposition 4.2). In contrast, we show that if the fail— Sis trivial
(as it is in Laszlo’s example), thus =Y xS, if k is algebraically closed, and
if (R x identitys)*(E)|yx,s = E|vx,s for all closed pointss of some non-trivial
open inSand some fixed natural numberthen the moduli points dE|y s are
constant (see Proposition 4.4). Héke: Y — Y is the absolute Frobenius ¥t

In Laszlo’s example, one does haife? x identity,)* (E)|y x,s = E|yx,s but only
overk =T, (i.e., Sis also defined oveF,). When one extends the family to the
algebraic closure oF,, to go from the absolute Frobenius ovér, that is the
relative Frobenius ovek, to the absolute one, one needs to replace the power 2
with a higher powen(s), which depends on the field of definition &fand is not
bounded.

So we modify question 1 iquestion 2 let f : X — Sbe a smooth projective
morphism of smooth connected varieties, defined over arbedgmlly closed
characteristic fielk of characteristiop > 0, let E be a bundle such that for all
closed points of some non-trivial opeld C S, the bundleE|x; is trivialized by a
finite Galoisétale cover ois := X x gsof order prime top. Is it the case that the
bundIeE]x,7 is trivialized by a finitetale cover oXy?.

The answer is nearly yes: it is the cask i§ not algebraic over its prime field
(Theorem 5.1 2)). Ik =Tp, it might be wrong (Remarks 5.4 2), but what remains
true is that there exists a finidale cover o over which the pull-back of is
a direct sum of line bundles (Theorem 5.1 1)). The idea of thefds borrowed
from the proof of Y. Andé’s theorem [An, Thm 7.2.2]. The assumption on the
degrees of the Galois covers X{ trivializing E|x, is necessary (as follows from
Laszlo’s example) and it allows us to apply Brauer-Feit'stieen [BF, Theorem]
in place of Jordan’s theorem used by AadHowever, there is no direct substitute
for Simpson’s moduli spaces of flat bundles. Instead, we lisertoduli spaces
constructed in [Lal] and we carefully analyze subloci comig the points of
interest, that is the numerically flat bundles. The necgsseterial needed on
moduli is gathered in Section 3.

Finally we raise the genergluestion 3 let f : X — Sbe a smooth projec-
tive morphism of smooth connected varieties, defined ovaigebraically closed
characteristip > 0 field, let(E, ) be a stratified bundle relative & such that for
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all closed points of some non-trivial opet) C S, the stratified bundI€E, O)|x,
is trivialized by a finite Galoigtale cover os := X x gs of order prime top. Is
it the case that the bund(&, [)| is trivialized by a finiteétale cover oK;?

We give the following not quite complete answer. If the ramkEois 1, (in
which case the assumption on the degrees of the Galois aeer®matically ful-
filled), then the answer is yes provid8ds projective, and for ange U, Pic’(X)
is reduced (see Theorem 7.1). The proof relies on (a varirdaroidea of M.
Raynaud [Ra], using the height function associated to a syrurigte bundle
(that is the reason for our assumption $non the abelian scheme and its dual,
to show that an infinite Verschiebung-divisible point hagheequal to O (Theo-
rem 6.2). IfE has any rank, then the answer is yelsig notF, (Theorem 7.2 2)).
In general, there is a prime fworder Galois cover oKy such that the pull-back
of E becomes a sum of stratified line bundles (Theorem 7.2 1)).

AcknowledgementsThe first author thanks Michel Raynaud for the fruitful
discussions in November 2009, which are reflected in [Ra] argkction 6. The
first author thanks Johan de Jong for a beautiful discussidfovember 2010 on
the content of [EM], where she suggested question 1 to hichydnere he replied
that Laszlo’s example should contradict this, and thatgh@uld be better under-
stood. The second author would like to thank Stefan &hfor destroying his
naive hopes concerning&on models of Frobenius twists of an abelian variety.
We thank Damian Bssler for discussions oprtorsion on abelian schemes over
functions fields. We thank the referee of a first version ofdtiecle. He/she ex-
plained to us that the dichotomy in Theorem 5.1 2) and in Té@or.2 2) should
beFp or not rather that countable or not, thereby improving osulte

1 Preliminaries on relative stratified sheaves

Let Sbe a scheme of characterisfi¢i.e., Os is anFp-algebra). By : S— Swe
denote the-th absolute Frobenius morphisaf Swhich corresponds to thg -th
power mapping os.

If X is anSscheme, we denote bgé” the fiber product oK andSover the
r-th Frobenius morphism d. If it is clear with respect to which structupé is
considered, we simplify the notation ¥"). Then ther-th absolute Frobenius
morphism ofX induces therelative Frobenius morphismyfg: X — X In

4



particular, we have the following commutative diagram:

which definesW>Q/S: X X,

Makingr = 1 and replacing by X(), this induces the similar diagram

(i)

TN

1) s % (i)

W (i) J{
S

% l X
ST

We assume thaX/Sis smooth. Arelative stratified sheabn X/Sis a se-

quence{E;, gi }icn Of locally free coherenty ;) -moduleskE; on X () and isomor-

phismsag; : F;(ka)/sEiH — Ej of Oys-modules. Amorphism of relative stratified

sheaveqai} : {E, 0} — {E, 0/} is a sequence afy ) -linear mapsy; : Ej — E/
compatible with theg;, that is such that o F;(k(i)/SaH_l = Qjo Gj.

This forms a categor$trat(X/S), which is contravariant for morphisngs:

T — S to{E,q} € Start(X/S) one assign$*{E;, g; } € Strat(X xsT/T) in the
obvious way:¢ induces L x ¢ : X1 xsT — X and(¢*{E, 61 })i = { (1) x
9)"Ei. (Lo x $)*(0)}.

If S=Spedkwherekis a field,Strat(X/k) is an abelian, rigid, tensor category.
Giving a rational pointx € X(k) defines a fiber functor viay : Strat(X/k) —
Veck, wk({Ei,gi}) = (Eo)|x in the category of finite dimensional vector spaces
over k, thus ak-group schemeat(Strat(X/k), wx) = Aut®(ay). Tannaka dual-
ity implies thatStrat(X/k) is equivalent viaw to the representation category of
r(Strat(X/K), ax) with values inVecy. For any objecE := {E;, g;} € Strat(X/k),
we define itsnonodromy groupo be thek-affine group schema((E), w), where
(E) C Strat(X/k) is the full subcategory spanned By This is the image of
ri(Strat(X/k), wx) in GL(ax(E)) ([DM, Proposition 2.21 a)]). We denote by
Iy j € Strat(X/K) the trivial object, withE' = Oy ando; = ldentity.
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LEMMA 1.1. With the notation above

1) If h:Y — X is a finite étale cover such that*ii is trivial, then hly
has finite monodromy group and one has a faithfully flat honrpimem
((hly k), k) — T((E), k). Thus in particularE has finite monodromy
group as well.

2) If E € Strat(X/k) has finite monodromy group, then there existg &£), wy)-
torsor h: Y — X such that hE is trivial in Strat(Y /k). Moreover, one has

an isomorphisntr((h.Iy /), wx) —11((E), a).

Proof. We first prove 2). Assuma((E), wx) =: G is a finite group scheme over
k. One applies Nori's method [No, Chapter |, 11]: the regulgresentation oG
on the affinek-algebrak[G| of regular function defines the Artik-algebrak|G|
as ak-algebra object of the representation categoran finite dimensionak-
vector spaces, (such that k|G] is the maximal trivial subobject). Thus by Tan-
naka duality, there is an objest= (A, 1;) € Strat(X /K), which is anly /-algebra
object, (such thaty , C A is the maximal trivial subobject). We defife: Y; =
Spegq A' — X, Then the isomorphism yields andy; -isomorphism between

R o
v 2 %) angy L x0), (see, e.g., [SGA5, ExpésxV, § 1, Proposition 2]),

and via this isomorphisna is isomorphic td, Iy . On the other hand(E) is a
subG-representation df{G]*" for somen € N, thusE C A®"in Strat(X/k), thus
there is an inclusiof® C (h.Iy )“" in Strat(X/k), thush“E C (h*h.Iy 5 )®" in
Strat(Y/K). Since(h*h.ly /) is isomorphic tabjengt Ly« in StratY /k) (recall
that by [dS, Proposition 13{; is anétale group scheme), th&AE is isomorphic

to @rlly ik, wherer is the rank ofE. This shows the first part of the statement,
and shows the second part as well: indeds then a subobject abrh.ly y,
thus(E) C (h.ly ) is a full subcategory. One applies [DM, Proposition 2.21 a)]
to show that the induced homomorphismi(h.ly /), w) — T((E),w) = G is
faithfully flat. Som((h.ly ), wx) acts onax(h.ly) = k[G] via its quotientG and
the regular representatidh C GL(k[G]). Thus the homomorphism is an isomor-
phism.

We show 1). Assume that there is a finétale coverh : Y — X such that
h*E is isomorphic inStrat(Y /k) to @&ly ) wherer is the rank ofE. ThenE C
@®rhily jk, thusmi((h.ly ), k) — T((E), a) is faithfully flat [DM, loc. cit], so
we are reduced to showing thah. Iy ) has finite monodromy. But, by the same
argument as of, any of its objects of rank lies in@/h.Iy i So we apply [DM,
Proposition 2.20 a)] to conclude that the monodromip.d{ /i is finite. Il
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COROLLARY 1.2. With the notations as in 1.1, € Strat(X/k) has finite mon-
odromy group, then for any field extensiortkk, E® K € Strat(X @ K/K) has
finite monodromy group.

Let E be andx-module. We say thdE has a stratification relative to iSthere
exists a relative stratified shefi;, g; } such thaty = E.

Let us consider the special caSe= Sped, wherek is a perfect field, and
X/k is smooth. An(absolute) stratified sheabn X is a sequencéE;, g; }icn
of coherentdx-modulesE; on X and isomorphismj; : F{Ej; 1 — Ei of Ox-
modules.

As k is perfect, the, ;) are isomorphisms, thus giving an absolute stratified
sheaf is equivalent to giving a stratified sheaf relativefie®.

We now go back to the general case and we assumeStisaan integralk-
scheme, wheré& is a field. Let us seK = k(S) and letn : SpedK — S be the
generic point ofS. Let us fix an algebraic closuk€ of K and letn be the corre-
sponding generic geometric point &f

By contravariance, a relative stratified shd&, o;} on X/S restricts to a
relative stratified sheafE;, g }|x. in fibers Xs for s a point of S' We are inter-
ested in the relation betwed;, 0i }|x; and{E;, gi}|x, for closed points € |S|.
More precisely, we want to understand under which assumgptibe finiteness
of ({Ei, gi }[x,) for all closed points € |S implies the finiteness of{Ei, i }[x-)-
Recall that finiteness df C Strat(Xs) means that all objects @f£) are subquo-
tients inStrat(Xs) of direct sums of a single object, which is equivalent to sgyi
that after the choice of a rational point, the monodromy groti is finite ([DM,
Proposition 2.20 (a)]).

Let X be a smooth variety defined ovég with g = p". For alln € N\ {0},
one has the commutative diagram

(F>2)n Frn

Em ’X Win >X (1)

&Fql‘ l X/Fq

Spediq —— = SpedF‘q

which allows us to identif)X (™ with X (as anfq-scheme).
Let Sbe anFq connected scheme, with field of constakitse. k is the normal
closure offfq in HO(S, &x). We defineXs:= X xy, S
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ProPOSITION1.3. Let E be a vector bundle onsX Assume that there exists a
positive integer n such that we have an isomorphism

T:((F" xp,ids)")"E ~E. (2)
Then E has a natural stratificatioi; = {E;, 6i}, Eo = E relative to S.
Proof. We define

Em = (W{{}Fq X1 1ds)"E. (3)
Then we use the factorization

FX/IFq (1)Fx(1)/]F\ o x(m 1) /Fq

X X\W X(m) (4)
Spediy

of FQ/‘]F and we define

o

Enro1= (Fx(rﬂ—l)/ﬁrq XTFq ids)"Em,...,E1 = (Fx(l)/]Fq XTFyq ids)“E2 5)

with identity isomorphismso,,_1,...,01. Then we use the isomorphismto
define

Op:E~ (FX/]Fq XFq Ids)*El (6)

Assume we constructed the bund®son X for all i < arn for some integer
a> 1.
We now replace the diagram (1) by the diagram

e —

~
X (arn) *)X ((a+1)rn Hx(arn) (7)

\% l x(@m) kg i

Spequ =7 Spediq

Fq
We then define
Earym = (W)Er(]arn) JFq <Fq ids) " Earn (8)
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(which is equal toE under identification ofX(@™ with X). Then we use the
factorization

F (arn)/]F FX(arn+1 /IFq F x((@+1)rn— 1
X (@m) —- X(arn+1) — - —— x((atl)m— 1 ) — Xi' a+1)rn) (9)
Spediq

arn /

of F"‘ to define
q

E(atym-1= (Fx(@m-1 /5, XFq1ds) Earym, -+
Earn+l — (Fx(arnJrl)/Fq X]Fq idS)*Earn+2 (10)
with identity isomorphism®(a; 1)nr—1,- - - Garn-1. Then we again useto define

Oarn - Earn >~ (F;r(]am)/Fq)*Earn+l- (11)
O]

The above construction and [Gi, Proposition 1.7] imply

PROPOSITION1.4. Assume in addition t@2) that X is proper and®q C k C [y,
Fix a rational point xe Xg(k). Then for any closed points |S, the Tannaka
group schemet(Er,, e, k(s) Of Er, := E|x, over the residue field(k) of s is
finite.

Proof. The bundleE is base changed of a bundi defined oveixX XF, S for
some form& of Sdefined over a finite extensidiya of Fy such thatx is base
change of arfga-rational pointxp of X XF, . We can also assume thmtomes
by base change fromy : ((F" x,ids))")*E® ~ E°. Proposition 1.3 yields then
a relative stratificatio9) = (E?, 07) of E° defined oveffiga, with E; = E? ©ra

k. A closed pointsof S= & ®ra k is a base change of some closed pat
of & of degreeb say overFg. By Corollary 1.2 we just have to show that
"(E(ro)s()?%@zpqak(%)) is finite. So we assume th&t=Fp, S= S, s= .
The underling bundles of; and E;m are by construction all isomorphic for
m= ab. Thus by [Gi, Proposition 1.7E; ~ Em in Strat(X/k). But this implies
that FQQanS(ETS) = [E;. ThuskE is algebraically trivializable on the Lang torsor

h:Y — X xp Fqn and the bundles; are trivializable onY XXt X =

Y /Fgm. Thus the stratified bundlg E; onY relative toFgn is trivial. We apply
Lemma 1.1 to finish the proof. O]



2 Etale trivializable bundles

Let X be a smooth projective variety over an algebraically closeld k. Let
Fx : X — X be the absolute Frobenius morphism.

A locally free sheaf oiX is calledétale trivializableif there exists a finit@&tale
covering ofX on whichE becomes trivial.

Note that ifE is étale trivializable then it is numerically flat (see Defiaiti3.2
and the subsequent discussion). In particular, stabitity semistability for such
bundles are independent of a polarization (and Giesekeslapa stability and
semistability are equivalent). More precisely, su€hs stable if and only if it
does not contain any locally free subsheaves of smaller aadkdegree O (with
respect to some or equivalently to any polarization).

PROPOSITION2.1. (see [LSt])f there exists a positive integer n such taf)“E ~
E then E isétale trivializable. Moreover, if k= I, then E isétale trivializable if
and only if there exists a positive integer n and an isomanpiiF)“E ~ E.

PROPOSITION2.2. (see [BD])If there exists a finite degreeé&tale Galois cover-
ing f:Y — X such that fE is trivial and E is stable, then one has an isomorphism
a: (FI)*E~E.

As a corollary we see that a line bundle Hrik is étale trivializable if and
only if it is torsion of order prime t@. One implication follows from the above
proposition. The other one follows from the fact tiiBf')*L ~ L is equivalent to
Le(P-1) ~ g and for any integen prime top we can findd such thatp® — 1 is
divisible byn.

We recall that ifE is any vector bundle oX such that there iséie N\ {0} and
an isomorphisnu : (F$)*(E) = E, thenE carries arabsolutestratified structure
Eq, i.e. a stratified structure relative K, by the procedure of Proposition 1.3.
On the other hand, any stratified stratified structeg o } relative toF, induces
in an obvious way a stratified structure relativekiadhe absolute Frobenius; :

X — X factors througNV)'g/k XM X, so{(WQ/k)*En, (WQ/k)*on} is the relative
stratified structure, denoted B, . Proposition 2.2 together with Lemma 1.1 2)
show

COROLLARY 2.3. Under the assumptions of Proposition 2.2, we can take d
lengthk[mT((Eq /), )]

Let us also recall that there exist exampletale trivializable bundles such
that (Fy)“E # E for every positive integen (see Laszlo’s example in [BD]).
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PrOPOSITION2.4. (Deligne; see [Ls, 3.2])et X be anFy-scheme. If G is a
connected linear algebraic group defined over a finite figyd then the embed-
ding GFyn) — G induces an equivalence of categories between the catefory o
G(F yn)-torsors on X and G-torsors P over X with an isomorphidtg)*P ~ P.

In particular, if G is a connected reductive algebraic group defined over an
algebraically closed fiel& andP is a principalG-bundle onX/k such that there
exists an isomorphisniFy)*P ~ P for some natural number > 0, then there
exists a Galoi®tale coverf : Y — X with Galois groupG(Fyn) such thatf*P
is trivial. Indeed, every reductive group haZ.gorm so we can use the above
proposition.

3 Preliminaries on relative moduli spaces of sheaves

Let Sbe a scheme of finite type over a universally JapaneseRihgt f : X — S
be a projective morphism dR-schemes of finite type with geometrically con-
nected fibers and letx (1) be anf-very ample line bundle.

A family of pure Gieseker semistable sheaves on the fibreg ef XxsT —
T is aT-flat coherentx, -moduleE such that for every geometric poinbf T
the restriction ofE to the fibreX; is pure (i.e., all its associated points have the
same dimension) and Gieseker semistable (which is sentitstatith respect to
the growth of the Hilbert polynomial of subsheaves defined’Ryl) (see [HL,
1.2]). We introduce an equivalence relatisnon such families in the following
way. E ~ E’ if and only if there exist filtrations 8 Eqg C E; C ... € E;,= E and
0=EjCE] C...C E,=E' by coherentix,-modules such that" JE; /E;_1 is
a family of pure Gieseker semistable sheaves on the fibr¥s ahd there exists
an invertible sheaf onT such thatb ,E//E/_; ~ (& ,Ei/Ei_1) ®¢;, L.

Let us define the moduli functor

AMp(X/9) 1 (SchB)° — Sets
from the category of locally noetherian schemes &trthe category of sets by

~ equivalence classes of families of pure Giesgker
Ap(X/S)(T) = < semistable sheaves on the fibre§ofsX — T,
which have Hilbert polynomiap.

Then we have the following theorem (see [Lal, Theorem 0.2]).
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THEOREM3.1. Let us fix a polynomial P. Then there exists a projective &iseh
Mp(X/S) of finite type over S and a natural transformation of functors

0 : Mp(X/S) — Homg(-,Mp(X/9)),

which uniformly corepresents the functofp(X/S). For every geometric point

s € S the induced map(s) is a bijection. Moreover, there is an open scheme
Mi/S(P) C Mp(X/S) that universally corepresents the subfunctor of families o
geometrically Gieseker stable sheaves.

Let us recall thaMp(X/S) uniformly corepresents#p(X/S) means that for
every flat base chandge — Sthe fiber producMp(X/S) xsT corepresents the
fiber product functor HOR(-, T) Xnomg(.,s) -#P(X/S). For the notion of corep-
resentability, we refer to [HL, Definition 2.2.1]. In genkrfor every S-scheme
T we have a well defined morphisMp(X/S) xsT — Mp(X7/T) which for a
geometric poinfT = Sped(s) — Sis bijection on points.

The moduli spac#p(X/S) in general depends on the choice of polarization
Ox(1).

Definition 3.2. Let k be a field and leY be a projectivek-variety. A coherent
Oy-moduleE is callednumerically flat if it is locally free and botle and its dual
E* = Zom(E, 0y) are numerically effective ol ® k, wherek is an algebraic
closure ofk.

Assume thaty is smooth. Then a numerically flat sheaf is strongly slope
semistable of degree 0 with respect to any polarization [lse2, Proposition
5.1]). But such a sheaf has a filtration with quotients whicé anmerically
flat and slope stable (see [La2, Theorem 4.1]). Let us releatla slope stable
sheaf is Gieseker stable and any extension of Gieseker tadeisheaves with
the same Hilbert polynomial is Gieseker semistable. Thusaemically flat sheaf
is Gieseker semistable with respect to any polarization.

Let P be the Hilbert polynomial of the trivial sheaf of ramk In caseSis a
spectrum of a field we writ®lx (r) to denote the subscheme of the moduli space
Mp(X/K) corresponding to locally free sheaves. For a smooth piegator-
phismX — Swe also define the moduli subscheMéX /S r) — Sof the relative
moduli spacévip(X/S) as a union of connected components which contains points
corresponding to numerically flat sheaves of ranklote that in positive charac-
teristic numerical flatness is not an open condition. Moexisely, on a smooth
projective varietyy with an ample divisoH, a locally free sheaf withumerically
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trivial Chern classes, that is with Chern classeéahe Chow group of codimen-
sion i cycles intersecting trivially fi™Y)=1 for alli > 1, is numerically flat if and
only if it is strongly slope semistable (see [La2, Propositb.1]).

By definition for every familyE of pure Gieseker semistable sheaves on the
fibres ofXT we have a well defined morphisgg = 8([E]) : T — Mp(X/S), which
we call aclassifying morphism.

PrROPOSITION3.3. Let X be a smooth projective variety defined over an alge-
braically closed field k of positive characteristic. Let Sébk-variety and let E

be arank r locally free sheaf on Xy S such that for everys Sk) the restriction

Es is Gieseker semistable with numerically trivial Chern classgssume that the
classifying morphisnpe : S— Mx (r) is constant and for a dense subsetS5(k)

the bundle Eis étale trivializable for s= S. Then E is étale trivializable.

Proof. If Egis stable for somé&-points € Sthen there exists an open neighbour-
hoodU of ¢e(s), a finiteétale morphisn’” — U and a locally free shea¥ on

X x U’ such that the pull backs & and% to X x (¢g1(U) xy U’) are isomor-
phic (this is called existence of a universal bundle on thduligpace in thétale
topology). Butge(S) is a point, so this proves that there exists a vector bundle
on X such thatt is its pull back by the projectioX xx S— X. In this case the
assertion is obvious.

Now let us assume thé& is not stable for als € S(k). fO=E§CEJC ... C
E, = Esis a Jordan—Hlder filtration (in the category of slope semistable tamsio
free sheaves), then by assumption the isomorphism clasesésimplifications
@M ,E®/E> ; do not depend os € k). Let(ry,...,rm) denote the sequence of
ranks of the components®/E> ; for somes € S(k). Since there is only finitely
many such sequences (they differ only by permutation), ve®sh some permu-
tation that appears for a dense sul8et S.

Now let us consider the scheme of relative fldig-laglE /S, Py, ...,Pn) — S
whereR is the Hilbert polynomial ofﬁ’{g. By our assumption the image df
containsS’. Therefore by Chevalley’s theorem it contains an open sudrseb)
of S Let us recall that the scheme of relative flags &g ,u/U;P1,...,Pm) —

U is projective. In particular, using Bertini’s theorekig algebraically closed) we
can find a generically finite morphiswi — U factoring through this flag scheme.
Let us consider pull back of the universal filtratioa=0/c C F, C ... C Fn=Ew
to X xxW. Note that the quotiens' = F; /F_; areW-flat and by shrinkingv we
can assume that they are families of Gieseker stable locelysheaves (since by
assumptiorF,! is Gieseker stable and locally free for some possW (k)N S).
This and the first part of the proof implies tHa4 has a filtration by subbundles
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such that the associated graded sheddtade trivializable. By Lemma 5.2 this
implies thatEy is étale trivializable. O

4 Laszlo’s example

Let us describe Laszlo’s example of a line in the moduli spzfdeundles on a
curve fixed by the second Verschiebung morphism (see [LdidBeg]).
Let us consider a smooth projective genus 2 cot\@verF, with affine equa-
tion
Y2+ X(X+ 1)y =X+ X2 +x.

In this case the moduli spad& (2, Ox) of rank 2 vector bundles oX with trivial
determinant is aif>-scheme isomorphic tB3. The pull back of bundles by the
relative Frobenius morphism defines the Verschiebung map

Vi My (2, Oy ) = P2 s M (2, Ox) =~ P3
which in appropriate coordinates can be described as
[@a:b:c:d] — [a®+b?+c?+d?:ab+cd: ac+bd: ad+ bd.

The restriction oW to the lineA ~ P! given byb = ¢ = d is an involution and it
can be described &a: b] — [a+b: b].

Using a universal bundle on the moduli space (which exisiallpin theétale
topology around points corresponding to stable bundled)taking a finite cov-
eringS— A we obtain the following theorem:

THEOREM4.1. ([Ls, Corollary 3.2])There exist a smooth quasi-projective curve
S defined over some finite extensiofifptind a locally free sheaf E of rarikon

X x S such tha{F? x ids)*E ~ E, detE ~ 0xs and the classifying morphism
¢e : S— Mx(2, Ox) is not constant. Moreover, one can choose S so thQas E
stable for every closed pointsin S.

Now note that the mapFx)* : Mx (2, Ox) --+ Mx(2, Ox) defined by pulling
back bundles by the absolute Frobenius morphism can beilded@nA as[a:
b] — [a®+b?: b?]. In particular, the magF2")*|, is described asa: b] —
[@®",b?"]. It follows that if a stable bundI&€ corresponds to a modular point
of A(FH)\A(FH~1) (or, equivalentlyE is defined oveffn) then(F2")*E ~ E and
(FO)*E 2 Efor0O<m< 2n.

14



This implies that fok = F, and for everys € S(k), the bundleEs which is the
restriction toX xp, s of the bundleE from Theorem 4.1, itale trivializable.

Let X, S be varieties defined over an algebraically closed fietaf positive
characteristic. Assume that is projective. Let us seK = k(S). Letn be a
generic geometric point &.

PROPOSITION4.2. Let E be a bundle ong& X xx S— S which is numerically
flat on the closed fibres ofg% X xxS— S. Assume that for somesS the bundle
Es is stable and the classifying morphispa : S— Mx(r) is not constant. Then
Eq = E|x,7 is notétale trivializable.

Proof. Assume that there exists a fin&tale covert : Y’ — Xi such that ') *Ej ~

03, Askis algebraically closed, one has the base chan@¥) =N m(Xg) for
the étale fundamental group ([SGA1, Exp. X, Cor.1.8]), so thedists a finite
étale coverrr: Y — X such that? = m® K. Hence there exists a finite mor-
phismT — U over some open subset of S, such thatg (Er) is trivial where
TH = T xgidt 1Y xg T — X xx T andEr =pull back byX xy T — X xxU of
E’Xka-

So for anyk-rational point € T, one hast*E; C &Y, wherer is the rank of.
Hencek; C .T'E: C .07, i.e., all the bundleg; lie in one fixed bundlet. &7 .

Sincertis étale, the diagram

LY
T \LT(
X

is cartesian (see, e.g., [SGAS5, Exp. XBZ, Prop. 2]). SinceX is smooth Fx is
flat. By flat base change we have isomorphistérn. oy ) ~ 1. (K 0v) ~ .0y

In particular, this implies thatr, &y is strongly semistable of degree 0. Therefore
if E; is stable then it appears as one of the factors in a JordaldeHfiltration of
L. Oy . Since the direct sum of factors in a Jordaildr filtration of a semistable
sheaf does not depend on the choice of the filtration, theremly finitely many
possibilities for the isomorphism classes of stable sheByvéort € T (k).

It follows that inU C Sthere is an infinite sequence kifrational pointss
with the property thaEs is stable (since stability is an open property) d&d=
Es,,. This contradicts our assumption that the classifying rhism ¢g is not
constant. [

X<

R
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COROLLARY 4.3. There exist smooth curves X and S defined over an algebraic
closure k off, such that X is projective and there exists a locally free §Bean

X xxS— S such that for every s Sk), the bundle Eis étale trivializable but

Ep is notétale trivializable. Moreover, on E there exists a struetof a relatively
stratified sheaE such that for every s S(k), the bundl€Es has finite monodromy
but the monodromy group @y is infinite.

The second part of the corollary follows from PropositioB.1.The above
corollary should be compared to the following fact:

PROPOSITION4.4. Let X be a projective variety defined over an algebraically
closed field k of positive characteristic. Let S be a k-varaeid let E be arank r
locally free sheaf on X% S. Assume that there exists a positive integer n such that
for every s= S(k) we havgFy)*Es ~ Es, where [k denotes the absolute Frobenius
morphism. Then the classifying morphigg: S— Mx(r) is constant and E is
étale trivializable.

Proof. By Proposition 2.1, i F¢)*Es ~ Es then there exists a finitetale Galois
coverTg : Ys — X with Galois groupG = GL; () such thatrg Es is trivial (in
this case it is essentially due to Lange and Stuhler; sed)[L$his implies that
Es C (T8).TEEs ~ ((18). Oy )®" and hence gy Es C (gryn (7). Oy ).

SinceX is proper, thettale fundamental group of is topologically finitely
generated and hence there exists only finitely many fetdée coverings oX of
fixed degree (up to an isomorphism). This theorem is knowmad ang—Serre
theorem (see [LS, T@oreme 4]). Lets be the set of all Galois coverings Bf
with Galois groupG. Then for every closel-points of Sthe semi-simplification
of Es is contained in(gr;y .0y )®" for somea € .. Therefore there are only
finitely many possibilities for images &fpointssin Mx(r). SinceSis connected,
it follows that¢g : S— Mx(r) is constant.

The remaining part of the proposition follows from Propiosit3.3.

0

Note that by Proposition 4.2 together with Corollary 2.3, thenodromy
groups ofEs in Theorem 4.1 fors € Sk) are not uniformly bounded. In fact,
only if k is an algebraic closure of a finite field do we know that the ndoomy
groups ofEs are finite because théfy can be defined over some finite subfieldkof
and the isomorphisr(F2)*Es ~ Es implies that for som@ we have(F)*Es ~ Es
(see the paragraph following Theorem 4.1).

Moreover, the above proposition shows that in Theorem 4el¢cannot hope
to replacer with the absolute Frobenius morphig.
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5 Analogue of the Grothendieck-Katz conjecture in
positive equicharacteristic

As Corollary 4.3 shows, the positive equicharacteristisizer of the Grothendieck—
Katz conjecture which requests a relatively stratified beitd have finite mon-
odromy group on the geometric generic fiber once it does ariaaed fibers, does
not hold in general. But one can still hope that it holds for mifa of bundles
coming from representations of the primegauotient of theetale fundamental
group. In this section we follow Anéis approach [An, Teoeme 7.2.2] in the
equicharacteristic zero case to show that this is indeeddbe.

Letk be an algebraically closed field of positive characterigticet f : X — S
be a smooth projective morphismlotarieties (in particular, integr&tschemes).
Let n be the generic point 06.  In particular, X7 is smooth (see [SGAL,
Defn 1.1]).

THEOREMDb.1. Let E be a locally free sheaf of rank r on X. Let us assume that
there exists a dense subsetUS(k) such that for every s in U, there is a finite
Galois étale coveringt : Ys — Xs of Galois group of order prime-to-p such that
1% (Es) is trivial.

1) Then there exists afinite Gald@#ale coveringt; : Yy — Xq of order prime-
to-p such thatt; Ey is a direct sum of line bundles.

2) Ifk is not algebraic over its prime field and U is open in Srili; is étale
trivializable on a finiteétale cover & — Xy which factors as a Kummer
(thus finite abelian of order prime to p) cover Z- Y7 and a Galois cover
Y — Xq of order prime to p.

Proof. Without loss of generality, shrinkin§ if necessary, we may assume that
Sis smooth. Moreover, by passing to a finite coveiSadnd replacingJ by its
inverse image, we can assume thdtas a sectiow : S— X.

By assumption for everg € U there exists a finitétale Galois coveringg :
Ys — Xs With Galois groufd”s of order prime-top and such thatt Es is trivial. To

these data one can associate a representpgionf'(xs, o(s)) — I's C GL, (k) of
the prime-top quotient of thectale fundamental group.

By the Brauer—Feit version of Jordan’s theorem (see [BF, Timepréhere
exist a constanf(r) such thaf s contains an abelian normal subgroigof index
< j(r) (here we use assumption that t«Sylow subgroup of s is trivial).
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For ak-points of Swe have a homomorphism of specialization
as: m(Xg,a(n)) > 1m(Xs, a(9)),

which induces an isomorphism of the primegoquotients of thettale funda-
mental groups.
So for everys € U we can define the composite morphism

ps: 1 (X7, 0()) 25 P (Xs, 0(5)) 25 Ts = T's/As.

LetK be the kernel of the canonical homomorphism (X, o(n))—m(Sn),
let KP' be its maximal prog-quotient. Then by [SGAL, Exp. XlII, Proposi-

tion 4.3 and Exemples 4.4], one hig§ = rcf,(Xﬁ,o(ﬁ)), the maximal prog'-
quotient ofrg (Xi, 0(n)), and one has a short exact sequence

(1} — 1 (Xg, 0())— T4 (X, 0(7)) "= (S 7) — {1},

wherem (X, a(n)) is defined as the push-out mf (X, a(n)) byK — KP.,

SinceXy is proper,m (Xq,0(n)) is topologically finitely generated. Therefore

rzf/(Xﬁ,o(ﬁ)) is also topologically finitely generated and hence it cargainly
finitely many subgroups of indices j(r). Let G be the intersection of all such

subgroups irnf/(Xﬁ, a(n)). Itis a normal subgroup of finite index. Since k&)
is a normal subgroup of index j(r) in nf(Xﬁ, a(n)) we have

G C () ker(Ps).

scU

Now let us consider the commutative diagram

m(Xy,0(n)) — m(X,0(n)) — m(Sn) — {1}

! ! |

{1} — P (Xg,0(7)) — m (X, 0(1)) — m(S ) — {1}

ThenG- o.(m(Sn)) C m(X,o0(n)) is a subgroup of finite index. It is open
by the Nikolov—Segal theorem [NS, Theorem 1.1]. So the prageH of this
subgroup under the quotient homomorphisrtX, a(n)) — m (X, a(n)) defines
a finite étale coverindh: X’ — X.

18



Let us takes € S(k). Since the composition
H Cm(X,o(n)) — m(X,o(s)) — 1a(Ss)

is surjective, the geometric fibres ®f — Sare connected. Let us choosé-a
point in X’ lying over a(s). By abuse of notation we call @’(s). Similarly, let

us choose a geometric poiait(n) of X,% lying overa(n). Then for anys € U we

have the following commutative diagram:

e

PR

7 (XL 07(8) —— 1 (X, 0(8)) —— T's/As

This diagram shows thatfl(xg, o’(s)) — Is factors throughAs and hencél =
(h*E)s is trivialized by a finiteétale Galois coveringt : Y, — X, with an abelian
Galois group of order prime tp, which is a subgroup ohs. Since

Es C (1) (1) "Eg ~ (1) O%) ™",

and(7g). Oy, is a direct sum of torsion line bundles of orders primetii follows
that for everys € U the bundleE; is also a direct sum of torsion line bundles of
order prime top.

We consider the uniomM(X’/S r) of the components d¥lp(X’/S) containing
moduli points of numerically flat bundles, as defined in Set8. Let us consider
theS-morphismy : M(X'/S,1)*s" — M(X'/S) given by([L4], ..., [L¢]) — [®Li] (in
fact we give it by this formula on the level of functors; eriste of the morphism
follows from the fact that moduli schemes corepresent theseors). The bundle
E’ gives us a sectiom : S— M(X’/Sr), and by the above for evelyrational
point s of U, the pointz(s) is contained in the image ap. Thereforet(S) is
contained in the image @ asy is projective (thus proper).

Let us consider the fibre product

M(X'/S1)*" Xpm(xr/sr) S——S

| [

M(X'/§ 1) ————M(X'/Sr)
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Let us recall that in positive characteristic the canonicapM (X’ xsS/S,r) —
M(X'/Sr) xsS need not be an isomorphism (although it is an isomorphism for
r = 1). Anyway we can find atale morphisn8 — S over some non-empty
open subset d§, such that there existsamap S — M(X’' xsS/S,1)*s" which
composed wittM (X’ xsS/S,1)*s" — M(X’' xsS/S,r) — M(X’/Sr) gives the
composition ofS — Swith 1. This shows that the pull badk” of E’ to X’ xsS

has a filtration whose quotients are line bundles which arelegfee 0 on the
fibres ofX’ xS — S. Now let us note the following lemma:

LEMMA 5.2. Let f: X — S be a projective morphism of k-varieties. 0et>

G1 — G — Gy — 0 be a sequence of locally free sheaves on X. Assume that there
exists a dense subsetdd S(k) such that for each s U this sequence splits after
restricting to %. Then it splits on the fibre Xover the generic poim of S.

Proof. By shrinkingSif necessary, we may assume tBas affine and the relative
cohomology sheaR!p,.7#om(G;,G,) is locally free. The above short exact se-
quence defines a cladse Ext!(G,,G;) ~ HO(S R f,.2#0m(G;,Gy)), such that
A(s) = 0 for everyk-rational points of U. It follows thatA = 0 and hence the
sequence is split over the generic poinSof Il

Now let us note that on a smooth projective variety everytsxact sequence
of the form 0— G; — G — G, — 0 in whichG is a direct sum of line bundles of
degree 0 anc; is a line bundle of degree 0 splits. So the filtratioredfrestricted
to the closed fibers splits. Therefore the above lemma andiedsction show
thatE”, is a direct sum of line bundles, wheng is the generic point o8. This
shows the first part of the theorem.

To prove the second part of the theorem, we may assumé&Jtkal. Let us
take a line bundlé on X such that for everk-rational points the line bundld_g
is étale trivializable. We need to prove that there exists &igesntegern prime
to p and such thalt;" ~ O, .

We thank the referee for showing us the following lemma.

LEMMA 5.3. Let g: A— S be an abelian scheme and ¢ebe a section of g such
that for all s€ S(k), o(s) is torsion of order prime to p. Them is torsion of order
prime to p.

Proof. We may assume th&is normal and affine. Let us choose a subfiéld k
that is finitely generated and transcendental d4gand such thaf — Sando
come by base change Sgee: Sped’ from an abelian scheng : A’ — S and
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a sectiono’ defined ovek/. Letm > 1 be prime top and letl" be the subgroup
A (S)n[m~Y(z.0") of A(S). ThenTl is a finitely generated group. Note that
assumptions of Bron’s specialization theorem [L, Chapter 9, Theorem 6.2] ar
satisfied and therefore there exists a Hilbertsef pointss' € S for which the
specialization mag\'(S) — A (k(s)) is injective onl". Since the Hilbert subset
> C S contains infinitely many closed points (see [L, Chapter 9,0Féms 5.1,
5.2 and 4.2)), there is a closed pog# S the image of which ir8 lies inZ. The
specialization ofZ.o atsis injective and hence is torsion of order dividing the
order ofo(s), which is prime top. O

Let us first assume that — Sis of relative dimension 1. By passing to a finite
cover ofSwe can assume thdthas a section. The relative Picard scheine
Pic%(X/S) — Sis smooth. Using the above lemma to the section correspgndin
to the line bundlé. we see that there exists some positive integatime top and
a line bundleM on Ssuch that. ®" ~ f*M. In particularL;" ~ O, .

Now we use induction on the relative dimensionfofX — Sto prove the the-
orem in the general case. Note that our assumptions implythes numerically
flat and therefore the famil{/l_%”}nez is bounded. Thus for any sufficiently ample

divisor H on X we haveH(Xg, L%Q“(—H)) = 0 for all integersn. We consider
such arH which is defined oven.

Using Bertini’s theorem we can find a very ample diviSor X in the linear
system/H| such thatf |y : Y — Sis smooth (possibly after shrinkir§ and such
that for every positive integerwe haveH(X,,L*"(-Y) lv,) = 0. Indeed, shrink-
ing Sand using semicontinuity of cohomology, we may assumeHhiatdefined
over S, that the function dinti%(Xs, 0% (H)) is constant an& is affine. Let us
choose &-rational pointsin S. Then by Grauert’'s theorem (see [Ha, Chapter I,
Corollary 12.9]) the restriction map

HO(X, Ox (H)) — HO(Xs, Ox (H))

is surjective. By Bertini’s theorem in the linear systéfrk (H)| there exists a
smooth divisor. By the above we can lift it to a divisorc X, which after shrink-
ing Sis the required divisor.

Applying our induction assumption foy onY — X we see that there exists
a positive integen prime to p such that(L]Y)ﬁn ~ 0Oy,. Using the short exact
sequence

0— L (=¥y) = L — (L5 — 0
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we see that the map
0 0
HP (X, L") — HP(Yy, (LY")n)
IS surjective. In particulat,%bn has a section and hence it is trivial. Il

Remark$.4 1. Laszlo’'s example shows that the first part of the theorem is
false if one does not assume that orders of the monodromysgrailes are
prime top (in this exampleEy is a stable rank 2 vector bundle). Note that in
this exampleE has even the richer structure of a relatively stratified lbeind
(see Proposition 1.3).

2. LetE be a supersingular elliptic curve defined oker Fp. Let M be a
line bundle of degree 0 and of infinite order EW Then one can find
a smooth curvés defined ovelk such that there eX|sts a line bundleon
X = SxxE — Ssuch thatLy ~ M. In this example the line bundles is
torsion for everyk-rational points of S as it is defined over a finite field.
SincekE is a supersingular elliptic curve, there are no torsion tinedles of
order divisible byp. So in this case all line bundlés for s S(k) areétale
trivializable (and the monodromy group has order prime)to

This shows that the second part of Theorem 5.1 is no longeritttuis an
algebraic closure of a finite field.

Let us keep the notation from the beginning of the sectian, k. is an al-
gebraically closed field of positive characterispficand f : X — Sis a smooth
projective morphism ok-varieties (in particular connected) with geometrically
connected fibers. For simplicity, we also assume thiads a sectiow : S— X.

LEMMA 5.5. Let E be a locally free sheaf on X. If there exists a poyt S(k)
such that E; is numerically flat then Eis also numerically flat. In particular, if
there exists a pointgsc S(k) such that there is a finite covering, : Yg, — Xs,
such thatrg (Es,) is trivial, then B is also numerically flat.

Proof. Let us fix a relatively ample line bundle. B, is numerically flat then it is
strongly semistable with numerically trivial Chern claség=e [La2, Proposition
5.1]). SinceE is SHflat, the restriction oE to any fiber has numerically trivial
Chern classes (as intersection numbers remain constantres)fiblow note that
for any n the sheafFy /k)*ESO is slope semistable. Since slope semistability is

an open property, it foIIows the(FQn/K)*En is also slope semistable. By [HL,
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Corollary 1.3.8] it follows thal(F)?ﬁ/K) Eq is also slope semistable. This is

strongly semistable with vanishing Chern classes and heémcaumerically flat
by [La2, Proposition 5.1]. O]

Let us recall that numerically flat sheaves on a prdpearietyY form a Tan-
nakian category. A rational point< Y (k) neutralizes it. Thus we can define
S-fundamental group scheme of Y at the poi(dee [La2, Definition 6.1]). For
a numerically flat shedE onY, we consider the Tannakagroup ris((E),y) :=
Aut®((E),y) C GL(Ey), where now(E) is the full tensor subcategory of numeri-
cally flat bundles spanned Iy We call it theS-monodromy group schemgsing
this language we can reformulate Theorem 5.1 in the follgwiay (for simplicity
we reformulate only the second part of the theorem).

THEOREM 5.6. Let E be an S-flat family of numerically flat sheaves on the fi-
bres of X— S. Let us assume that k is not algebraic over its prime field and
there exists a non-empty open subset \$(k) such that for every s in U, the S-
monodromy group schemg((Es), o(s)) is finite étale of order prime-to-p. Then

1s((En),a(n)) is also finiteétale.

6 Verschiebung divisible points on abelian varieties:
on the theorem by M. Raynaud

LetK be an arbitrary field of positive characterisfi@and letA be an abelian vari-
ety defined oveK. The multiplication byp" map[p"] : A— Afactors through the
relative Frobenius morphisfy), : A— A and hence defines théerschiebung

morphism " : A™W — A such that/"Fy), = [p".

Definition 6.1. A K-point P of A is said to beV-divisibleif for every positive
integern there exists &-point P, in A such thav"(R,) = P.

Let T be an integral noetherian separated scheme of dimensiothIfiald
of rational functionXK. Let us recall that a smooth, separated group scheme of
finite type.« — T is called aNeron modebf A if the general fiber ok — T is
isomorphic toA and for every smooth morphis — T, a morphismXx — %k
extends (then uniquely) toB-morphismX — o7

Assume that the base figidis the function field of a normal projective variety
Sdefined over a field of positive characteristip.
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We say thatA hasa good reductiomat a codimension 1 poirg € S if the
Néron model ofA over Spe@s;s is an abelian scheme (the usual definition is
slightly different as it assumes that the identity comparénhe special fibre of
the Neron model is an abelian variety; it is equivalent to the abmve by [BLR,
7.4, Theorem 5]). We say thathas potential good reductioat a codimension
1 points € Sif there exists a finite Galois extensi#ii of K such that ifS is the
normalization ofSin K’ thenAx, has good reduction at every codimension 1 point
s € S lying overs.

We say thaf has(potential) good reductioif it has (potential) good reduction

at every codimension 1 point & Assume tha®A has good reduction at every
codimension 1 point o6. Then there exists hig opensubsetU C S (i.e., the
codimension of the complementdfin Sis > 2) and an abeliabd-schemesZ —
U. Note that the group\(K) of K-points of A is isomorphic via the restriction
map to the group of rational sectiobs--+ <7 of &/ — U defined over some big
open subset o). The section corresponding B A(K) will be denoted by
P:U--» ..

Let c € PicA be a class of a line bundle. By the theorem of the cubg
satisfies the following equality:

MY 23C — My 2C — M{3C — Mp3C+ M C+ MpC+ MiC = 0,

wherem, for | C {1,2,3} is the mapA xk A xx A — A defined by addition over
the factors in. (In particular,m is thei-th projection). Combining [MB, Chapter
[, 3.1] (relying on [MB, Chapter II, Proposition 1.2.1]), ehline bundleL €
Pic(A) extends uniquely (at least if we fix a rigidification) to a libendlel over

24 such that the class= [L] € Pic(.2/) is cubical, i.e., satisfies the relation
MY 95€ — M o€ — M€ — M€ + M E+ MpE+ MEE = 0,

whereV C U is a big open subset and whemefor | C {1,2, 3} is the maps xs
o/ xso/ — <f defined by addition over the factorslin

Now let us choose an ample line bun#leon S. Then the mayh : A(K) — Z
given by A

he(P) = degy(P—0)"¢

is well defined ad is defined on a big open subset ®and P*L extends to a
rank 1 reflexive sheaf 08. This map is the canonical @Mon—Tate) height oA
corresponding ta (see [MB, Chapter lll, Section 3]).

The following theorem was suggested to the authors by M. Rayiia the
good reduction case over a curSeand with a somewhat different proof).
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THEOREM 6.2. Assume that A has potential good reduction. KER(K) is V-
divisible and c is symmetric thdg(P) = 0.

Proof. Let us first assume th&t has good reduction. By assumption there exists
aK-point P, of A such thav"(P,) = P. Since«/ — U is an abelian scheme,
soise/(" — U, thusP, is the restriction to Spé¢ of P, € &7 (M (U).

Let us factor the absolute Frobenius morphiBfhinto the composition of
the relative Frobenius morphisR(), : A — A andW, : AW — A, Let us set

ch = W;c. Its cubical extensiom, e Pic(%\,(n”)), for some big opew,, C U,
together wittH allows one to definég, (P,) by the corresponding formula. Since
(FA)*c=p"c, we have(F/Q/K)*cn = p"c. On the other hand, sin@ds symmetric,
we have[p"]*c = p?"c and hencéFy), ) ((V")c) = p?"c. Therefore

(Fayk)" (VM) *c—p"en) =0.

SinceFA{‘/K is an isogeny this implies that the class= (V")*c— p"cy is torsion.
By additivity and functoriality of the canonical height (§&=, Theorem, p. 35])
we have

A

he(P) = F‘(V“)*c(Pn) = F‘|o”cn(F’n) + F‘d(Pn) =p"- F‘cn(F’n)

(note that additivity implies thatmg = mhy, so sincemd = 0 for somem, we get
hy = 0). Therefore ific(P) # 0 then|he(P)| > p" and we get a contradiction ff
is sufficiently large.

Now let us consider the general case. Since there exist antglfi many
codimension 1 points € S at which A has bad reduction, one can find a finite
Galois extensiork’ of K such that ifS is the normalization o8in K’ thenAx/
has good reduction at every codimension 1 pdirt S. On the other hand, if
P € A(K) is V-divisible onA, P@ K’ € A(K’) is V divisible onAx:. Then by the
above we havémc(P’) = 0 and functoriality of the canonical height implies that
he(P) = 0. O

Remark6.3. It is an interesting problem whether Theorem 6.2 holds foaian
bitrary abelian varietyA/K. Its proof shows that one can use the semiabelian
reduction theorem to reduce the general statement to tieewdaesnA has semia-
belian reduction (see [BLR, 7.4, Theorem 1]).
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Now assume thab is geometrically connected. Then the extendianK is
regular (i.e.K/k is separable anklis algebraically closed iK). Let (B, 1) be the
K /k-trace of the abeliaK-varietyA, whereB is an abeliark-variety andr : Bx —
Ais a homomorphism of abeliaf-varieties (it exists by [Co, Theorem 6.2]). Let
us recall that by definitiofB, 1) is a final object in the category of pairs consisting
of an abeliark-variety and &-map from the scalak-extension of this variety to
A

Since the extensiok C K is regular, the kernék-group scheme of is con-
nected (with connected dual) ([Co, Theorem 6.12]). Theegefois injective on
K-points and in particular we can treBBtk) as a subgroup oA(K).

COROLLARY 6.4. Assume that A has potential good reduction. ER(K) is
V-divisible thenP] € (A(K)/B(K))wrs. In particular, if k is algebraically closed

Proof. We can choose the class Pic(A) so that it is ample and symmetric. Then
the first part of the corollary follows from Theorem 6.2 and [Ctheorem 9.15]
(which is true for regular extensioiks/k).

To prove the second part take positive integesuch thatmP = Q € B(k).
Sincek is algebraically closed, the sBtk) is divisible and there exist® € B(k)
such tham@ = Q. ThenP=Q + (P—Q'), wherem(P— Q') = 0. O

Let us assume that the fiekds algebraically closed. It is an interesting ques-
tion whether &/-divisible K-pointP of A can be written as a sum @f+ R, where
Q € B(k) andR € A(K)1ors is torsionof order prime-to-p

By the Lang—Neron theorem ([Co, Theorem 2.1]), the group8(K) /B (k)
are finitely generated. It follows that the grougs= (A" (K) /B (k))ors are
finite.

Note that the homomorphisi(k) — B (k) induced byF., is a bijection.

One has a factorizatioﬁ/L/K  AKYP) = AD(K) — AD(KY/P)Y, inducing a bi-

jectionA(KY?P) — AD(K). Thus in particular,
Rt AKK)/B(k) — AV (K) /B (k)

is injective.
Moreover, the Verschiebung morphism induces the homonmsmsh

Vit AU(K)/BY (k) — A(K)/B(K)
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such tha¥;F, = p' andRV; = p'. This shows that prime-tp-torsion subgroups of
groupsG; are isomorphic and in particular have the same onaer

Now let us assume that orders of tipeprimary torsion subgroups of the
abelian groups&; are uniformly bounded by son. Then for alli > e

Fi(m[P]) = F(Vi(m[R])) = pPm[R] = 0.

This implies tham[P] = 0, somP € B(k). Now B(k) is a divisible group so there
exists som&) € B(k) such thamP=mQ ThenR= P —Q € A(K) is torsion of
order prime top. So we conclude

LEMMA 6.5. If the order of the Gis bounded as i goes to infinity, under the
assumption the Theorem 6.2, there exists a positive intagprime to p and such
that m- B € B(k) for every integer i.

Note that the above assumption @Gnis satisfied, e.g., i is an elliptic curve
over the function fieldK of a smooth curve ovetr = k. If A is isotrivial then the
assertion is clear. IA is not isotrivial then thg-invariant ofA is transcendental
overk. In this caseA(KPe)s is finite (see [Le]) so orders of the groufs =
A (K)gors are uniformly bounded.

7 Stratified bundles

In this section we use the height estimate of the previousoseand the fact
that torsion stratified line bundles on a perfect field hawepprime top (apply
Proposition 2.2 together with Lemma 1.1).

Let k be an algebraically closed field of positive characterigtitet f : X —
S be a smooth projective morphism kivarieties with geometrically connected
fibres. Assume tha$ is projective, which surely is a very strong assumption.
Indeed, ifk # F , and in the statement of Theorem 74.,is open, then one
obtains the stronger Theorem 7.2. For simplicity, let us alssume that has
a sectiono : S— X. Consider the torsion component P{X /S) — Sof identity
of Pic(X/S) — S Let ¢y : Pic(X/S) — Pic(X/S) be the multiplication byr map.
Then there exists an open subgroup schemé(Ri¢tS) of Pic(X/S) such that
every geometric poirg of Sthe fibre of Pid (X/S) oversis the union

U ¢a ' (Pic°(Xs)),

n>0

27



where Pié(Xs) is the connected component of the identity of (g/s). It is well
known that Pi¢(X/S) — Sis also a closed subgroup scheme of(Xi¢S). More-
over, the morphism PfdX /S) — Sis projective and the formation of Pi¢X /S) —
S commutes with a base change®(see, e.g., [Kl, Theorem 6.16 and Exercise
6.18]).

We assume that P¥¢Xs) is reduced for every poirgte S,

THEOREM 7.1. Let L = {Lj, i} be a relatively stratified line bundle on/%.
Assume that there exists a dense subSet Sk) such that for every s S the
stratified bundléLs = L|x, has finite monodromy. Théry has finite monodromy.

Proof. Replacing]L by a powerL®N, whereN is sufficiently large, we may as-
sume thai.s € Pic? (Xs) for all closed pointsin S(see [KI, Corollary 6.17]).

By assumptiorft: </ = Pic%(X/S) — Sis an abelian scheme. Let us consider
the dual abelian schem& — S. We have a well defined Albanese morphism
g: (X, a) («,e) (see [FGA Expos VI, Theoeme 3.3]). Moreover, the map
g Plc (7 /S) — o« = Pic%(X/9) is an isomorphism o&schemes. Let us set
A= dn

Let R be theK-point of Al) corresponding tdL;),. Note that theK-point
P € Ais V-divisible. Indeed, by the definition of a relative stratfiion we have
V"(P,) = P for all integersn. Similarly, we see that all the poin € Al (K)
areV-divisible. By Corollary 6.4 it follows thaP € B(')(k) +A(')(K)tors, where
(B/k r Bk — A) is theK /k-trace ofA (note that(B() /k, (1)) is theK/k -trace
of Al ) So for everyi > 0 we can writeP = Q; + R for someQ; € Bl )(k) and
R e Al (K)tors

Now we transpose the above by duality. Bdbe the dual abeliak-variety of
A andB the dual abeliak-variety of B. We have the& /k-imagesr (") : AE,') —BY
and anS-morphismt : o/ — B x S(possibly after shrinking). By abuse of no-
tation we can tredt; as line bundles or7 becaus@® : Pic®(.«7 /S) — Pic®(X/S)
is an isomorphism. LeM; be the line bundle oB'") corresponding td); and
let 75 : BY) x, S— B() denote the projection. Let us fix a non-negative inte-
geri and take a positive integety such thatn;R = 0. Then the line bundle
L @ T*r*M” ™™ has degree 0 on every fiber of — S. Thus it is trivial after
restriction toe,. Hence after shrinkinwe can assume thaf™ ~ t*7*M*"™.

Let us fix a points € S(k) and consider the morphism

qu = (T(i)TE)%(i) : ,Qfs(l) — B(I)
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Note thatt(") has connected fibres and her{eg).0 i = Ogi. By assumption

there exists a positive integag, such that for everythe order of the line bundle
(Li) . dividesas. The important point is thads is prime top.
Therefore(1t)*M?®" ~ g and by the projection formula

M2 ~ (7). () "M% ~ (77).,.Op, ~ OB,
This implies thai; is a torsion line bundle and hen@g € A" (K )ors. Therefore
R=Q+R ¢c A(i)(K)tors-

Let us recall that the set gi-torsion points ofA(K) is finite. Assuming it is
not empty, we can therefore find a non-empty open sublsetS such that for
everys € U (k) and everyp-torsion pointT € A(K) the sectionl is defined orlJ
and the poinf (s) is non-zero.

Let us write the order o asm;p%, wherem is not divisible byp. If gg > 1
then the pointmyp® 1Ry is p-torsion inA(K). If we takes e SNU(k), then
asmop®~1Ry(s) = [Lg*™)s = 0, a contradiction. It follows thatoP, = 0. Simi-
larly, the order of alPR, is prime top.

As already mentioned in the last section, the homomorphﬁkﬁml/p)
AW(K) induced byFA/K is a bijection. So we have an induced injection

F:AK) — AD(K).
On the other hand, the Verschiebung morphism induces hompdrisons
Vi : AD(K) — A(K)

such thatV;F(P) = p'P and FV(Q) = p'Q for all P € A(K) andQ € Al)(K).
Hence _

p'moR = RVi(moR) = FK(mpRy) =0
and since the order d&? is prime top we havemyP, = 0O for all i > 0. Therefore
(Li)%ﬁmo ~ Ox; for alli and the stratified line bundle; has finite monodromy. [J

Now we fix the following notationk is an algebraically closed field of positive
characteristip andf : X — Sis a smooth projective morphism kdvarieties with
geometrically connected fibres.
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THEOREM7.2. LetE = {E;, 0} be a relatively stratified bundle on/&. Assume
that there exists a dense subsetd5(k) such that for every s U the stratified
bundleEs = E|x, has finite monodromy of order prime to p.

1) Then there exists a finite Gald@$ale coveringt, : Yy — Xq of order prime-
to-p such thatt; Ej; is a direct sum of stratified line bundles.

2) Ifk#Fp and U is open in &), then the monodromy group Bf; is finite,
andEj trivializes on a finitectale cover 4 — Xz which factors as a Kum-
mer (thus finite abelian of order prime to p) covey Z> Yy and a Galois
cover Yy — Xy of order prime to p.

Proof. We prove 1). Let us first remark that the schem;g%, i >0, are all iso-
morphic (as schemes, notlaschemes). Therefore the relative Frobenius induces
an isomorphism on fundamental groups.

By the first part of Theorem 5.1 we know that there exists a fiGitdois
étale coveringr : Yqi — Xg) of degree prime t@® such thatre*(E) is a direct
sum of line bundlespiLij. Note that from the proof of Theorem 5.1 the degree
of 17 depends only omfl(xg),a(ﬂ(ﬁ)) and the Brauer-Feit constapfr), and
therefore it can be bounded independently.ofJsing the Lang—Serre theorem
(see [LS, Tleoeme 4]) we can therefore assume tifat = Y,%'), whereYy = Yq o.

Now we know that
D _qLij =~ (F\'{%ﬁ)/ﬁ)*(@ﬁ/:l Litaj)-
By the Krull-Schmidt theorem, the set of isomorphism classfeline bundles

{Lij }j is the same as the set of isomorphism classes of lines buntiiek come
by pu"'baCk{(F\I(;Ti)/ﬁ)*(Li+1=i’)}l'" So we can reorder the indicg¢’sso that

i * . A RACTN [
(FYr(Ti)/ﬁ) (LI+1.,J) - L|7J'
This finishes the proof of 1).

To prove 2), we do the proof 1) replaciig — Xy by Z7 — X7 of Theorem 5.1
2). This finishes the proof of 2).
O
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Remarks/.3. 1) Case 2) of Theorem 7.2 applied to a line bundle extends The-
orem 7.1, wheréwas assumed to be projective, Bixs) reduced for all
se Sclosed,S ¢ Sk) dense, to the case wh&is not necessarily projec-
tive andS c S(k) is open and dense, but we have to assumeklignot
algebraic over its prime field.

2) If Yy has a good projective model satisfying assumptions of Tdmof.1
then it follows thafE; has finite monodromy.
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