RATIONAL POINTS OVER FINITE FIELDS FOR REGULAR
MODELS OF ALGEBRAIC VARIETIES OF HODGE TYPE >1
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ABSTRACT. Let R be a discrete valuation ring of mixed characteristics (0, p), with
finite residue field k and fraction field K, let ¥’ be a finite extension of k, and let X
be a regular, proper and flat R-scheme, with generic fibre X i and special fibre Xj.
Assume that X g is geometrically connected and of Hodge type > 1 in positive
degrees. Then we show that the number of k’-rational points of X satisfies the
congruence | X (k)| = 1 mod |k’|. Thanks to [BBE07], we deduce such congruences
from a vanishing theorem for the Witt cohomology groups H?(X, WOx, q), for
q > 0. In our proof of this last result, a key step is the construction of a trace
morphism between the Witt cohomologies of the special fibres of two flat regular
R-schemes X and Y of the same dimension, defined by a surjective projective
morphism f:Y — X.
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Theorem 1.1. Let X be a proper and flat R-scheme, with generic fibre Xg, such
that the following conditions hold:

a) X is a regular scheme.

b) Xk is geometrically connected.

c) HY(Xk,Ox,)=0 forallg>1.

If k is finite, then, for any finite extension k' of k, the number of k'-rational points
of X satisfies the congruence

(1.1.1) IX(K) =1 mod [K].

Condition ¢) should be viewed as a Hodge theoretic property of X, which can be
stated by saying that Xx has Hodge type > 1 in positive degrees. From this point
of view, this theorem fits in the general analogy between the vanishing of Hodge
numbers for varieties over a field of characteristic 0, and congruences on the number
of rational points with values in finite extensions for varieties over a finite field.
This analogy came to light with the coincidence between the numerical values in
Deligne’s theorem on smooth complete intersections in a projective space [SGA 7 II,
Exposé XI, Th. 2.5, and in the Ax-Katz theorem on congruences on the number of
solutions of systems of algebraic equations [Kz71, Th. 1.0]. It has been made effective
by Katz’s conjecture [Kz71, Conj. 2.9] relating the Newton and Hodge polygons
associated to the cohomology of a proper and smooth variety (and generalizing
earlier results of Dwork for hypersurfaces [Dw64]). For varieties in characteristic p,
this conjecture was proved by Mazur ([Ma72], [Ma73]) and Ogus [BO78, Th. 8.39].
In the mixed characteristic case, where a stronger form can be given using the Hodge
polygon of the generic fibre, it is a consequence of the fundamental results in p-adic
Hodge theory. Our proof of Theorem 1.1 makes essential use of the unequality
between these two polygons, but the setup of the theorem is actually more general,
since the scheme X is not supposed to be semi-stable over R.

Let us also recall that a result similar to Theorem 1.1 has been proved by the
second author [Es06, Th. 1.1] by f-adic methods, with condition c¢) replaced by a
coniveau condition: for any ¢ > 1, any cohomology class in Hgt(XF,Qg) vanishes
in Hgt(UI—(, Q) for some non empty open subset U C Xg. It is easy to see, using
[De71], that this coniveau condition implies that the Hodge level of Xg is > 1
in degree ¢ > 1. It would actually follow from Grothendieck’s generalized Hodge
conjecture [Gr69] that the two conditions are equivalent. In this article, the use
of p-adic methods, and in particular of p-adic Hodge theory, allows us to derive
congruence (1.1.1) directly from Hodge theoretic hypotheses.

1.2. As explained by Ax [Ax64], congruences such as (1.1.1) can be expressed in
terms of the zeta function of the special fibre X of X. We recall that the rationality
of the zeta function Z(X,t) allows to define the slope < 1 part Z<!(Xy,t) of
Z(Xk,t) as follows [BBE07, 6.1]. Let |k| = p®, and write

Z(Xpt) = [J( = at)/ T = 550),

)
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with oy, 85 € @p and «; # B; for all 4, j. Normalizing the p-adic valuation v of @p
by v(p®) = 1, one sets

ZNXet)= ] A—ait)/ J] (=851

v(a;)<1 v(B;)<1
Then the congruences (1.1.1) are equivalent to
(1.2.1) Z<H Xy, t) = T
[BBEO7, Prop. 6.3].

On the other hand, let W(Ox,) be the sheaf of Witt vectors with coefficients
in Ox,, and WOx, o = W(Ox,) ® Q. Then the identification of the slope < 1
part of rigid cohomology with Witt vector cohomology provides the cohomological
interpretation

(1.2.2) Z<H Xy, t) = Hdet(l — tFeH' (X}, V{/(/)Xk’q:@))(71)“’17

where F' is induced by the Frobenius endomorphism of W (Ox,) [BBE07, Cor. 1.3].
Therefore, Theorem 1.1 is a consequence of the following theorem, where k is only
assumed to be perfect:

Theorem 1.3. Let X be a reqular, proper and flat R-scheme. Assume that
HY(Xg,Ox,) =0 for some ¢ > 1. Then:

(1.3.1) HY Xy, WOx, 0) =0.

Proof of Theorem 1.1, assuming Theorem 1.3. Let us prove here this implication,
which is easy and does not use the regularity assumption on X. Let W = W (k), and
Ko = Frac(W). Thanks to (1.2.1) and (1.2.2), Theorem 1.3 implies that it suffices
to prove that the homomorphism Ky — H°(Xy, WOx, @) is an isomorphism.

Since X is proper and flat over R, H°(X,Ox) is a free finitely generated R-
module. As the generic fibre X is geometrically connected and geometrically re-
duced, the rank of H°(X,Ox) is 1. The homomorphism R — H°(X,Ox) maps 1 to
1, hence Nakayama’s lemma implies that it is an isomorphism. Applying Zariski’s
connectedness theorem, it follows that X}, is connected, and even geometrically con-
nected, since the same argument can be applied after any base change from R to
R’, where R’ is the ring of integers of a finite extension of K.

On the other hand, let k be an algebraic closure of k, and let &’ be a finite extension
of k such that X} 4 is defined over k’. As k' is separable over k, the homomor-
phisms W, (k) — W, (k) are finite étale liftings of k — k', and the homomorphisms
Wi (k') @w, ) Wa(Ox,) — Wn(Ox,,) are isomorphisms [1179, I, Prop. 1.5.8]. It fol-
lows that the homomorphism W (k') @y ) H(Xg, W(Ox,)) = H° (X, W(Ox,,))
is an isomorphism, and that it suffices to prove the claim for Xj/. Using the fact
that

H( X, WOx,, ) — H*(Xpred, WOx,, . 0)
by [BBEO7, Prop. 2.1 (i)], it suffices to check that, if Z is a proper, geometri-
cally connected and geometrically reduced k-scheme, the homomorphism W (k) —
HY(Z,W(Og)) is an isomorphism.
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Under these assumptions, the homomorphism k — H°(Z, 0) is an isomorphism.
As the homomorphism R : W,,(Oz) — W,_1(Oz) is the projection of a product onto
one of its factors, the homomorphisms H%(Z, W,,(0z)) — H°(Z,W,,_1(0y)) are sur-
jective, and one gets by induction that the homomorphism W,, (k) — H°(Z, W,,(0z))
is an isomorphism for all n. Taking inverse limits, the claim follows. O

1.4. Theorem 1.3 is deeper, and most of our paper is devoted to developing the
techniques used in its proof. We may observe though that, in the context of Theorem
1.1, there is a case where (1.3.1) is trivial: namely, if we replace the condition on the
Hodge numbers of X, which is equivalent to requiring that the modules H?(X, Ox)
be p-torsion modules, by the stronger condition that H?(X,Ox) vanishes for all
q > 1. Indeed, the flatness of X over R allows to apply the derived base change
formula for coherent cohomology and to conclude that HY(Xj,Ox,) = 0 for all
g > 1. By induction on n, one gets that H9(Xy, W, (Ox,)) =0 for all n,q > 1, and
(1.3.1) follows for all ¢ > 1 (even before tensoring with Q).

In the general case, where the H4(X, Ox) are p-torsion modules, we do not know
any direct argument to derive the vanishing property stated in (1.3.1). Our strategy
is then to use the results of p-adic Hodge theory relating the Hodge and Newton
polygons of certain filtered F-isocrystals on k, which allow to study separately the
cohomology groups for a given ¢ as in Theorem 1.3. In particular, when X is semi-
stable on R, a straightforward argument using the fundamental comparison theorems
of p-adic Hodge theory allows to deduce (1.3.1) from the unequality between the two
polygons defined by the log crystalline cohomology of X;. We explain this argument
in Theorem 2.1.

In the rest of Section 2, we show that this argument can be modified to prove
the vanishing of HY(Xj, WOx, @) in the general case. For any finite extension K’
of K, with ring of integers R’, let X be deduced from X by base change from R
to R’. After reducing to the case where R is complete, the first step is to apply de
Jong’s alteration theorem to construct for any m an m-truncated simplicial scheme
Y, over the ring of integers R’ of a suitable extension K’ of K, endowed with an
augmentation morphism Yy — X g/, such that the Y;’s are pullbacks of proper semi-
stable schemes, and Y, — Xp induces an m-truncated proper hypercovering of
Xk (see Lemma 2.2 for a precise statement). Then, using Tsuji’s extension of
the comparison theorems to truncated simplicial schemes [Ts98], we show that, in
this situation, the cohomology group H4(Y,j, WOy, @) vanishes. However, due to
the possible presence of vertical components in the coskeletons, the special fibre
Y, of the m-truncated simplicial scheme Y, may not be a proper hypercovering of
Xk, and it is unclear how the groups HY(Y,x, WOy,, @) are related to the groups
HY(X},WOx, @). Therefore another ingredient will be necessary to complete the
proof. It will be provided by the following injectivity theorem, the proof of which
will be given in section 8.

Theorem 1.5. Let X, Y be two flat, reqular R-schemes of finite type, of the same
dimension, and let f :' Y — X be a projective and surjective R-morphism, with
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reduction fi over Speck. Then, for all ¢ > 0, the functoriality homomorphism
(1.5.1) fr s H{(Xy, WOx, o) — HY (Y, WOy, q)

18 injective.

1.6. We will deduce Theorem 1.5 from the existence of a trace morphism
(1.6.1) Tiz : Rfx(WOy, 0) — WOx, o,

defined by means of a factorization f = moi, where 7 is the projection of a projective
space ]P’j‘i( on X, and 7 is a closed immersion. The key fact used in the construction
of this trace morphism is that, under the assumptions of Theorem 1.5, ¢ is a regular
immersion of codimension d, or, said otherwise, that f is a complete intersection
morphism of virtual relative dimension 0, in the sense of [SGA 6, Exposé VIII].

Sections 3 to 7 are devoted to the construction of 7; . In section 3, we state a
similar result for Oy, providing a canonical trace morphism

Ty Rf*(OY) — Ox,

whenever X is a noetherian scheme with a relative dualizing complex, and f:Y —
X is a proper complete intersection morphism of virtual relative dimension 0 (see
Theorem 3.1). The existence of 77 has been observed by El Zein as a particular case
of his construction of the relative fundamental class [E178, IV, Prop. 6]. However,
there does not seem to be in the literature a complete proof of the properties listed
in Theorem 3.1. Due to the many corrections and complements to [Ha66] made
by Conrad in [Co00], we have included in an Appendix the details of a proof of
Theorem 3.1 based on [Co00]. So we refer to B.7 for the definition of 7¢, and to B.9
for the proof of Theorem 3.1. When Y is finite locally free of rank r over X, the
composition of the functoriality morphism Ox — Rf,(Oy) with 7 is multiplication
by r on Ox. This has striking consequences for the functoriality maps induced by f
on coherent cohomology (see Theorem 3.2). For example, if r is invertible on X, one
obtains an injectivity theorem which may be of independent interest. An outline of
the construction of 77 is given in the introduction to the Appendix.

To construct the trace morphism 7; r, we consider more generally a projective
complete intersection morphism f : Y — X of virtual relative dimension 0 between
two noetherian Fj,-schemes with dualizing complexes. Under these assumptions, we
construct a compatible family of morphisms

Timtn - Rf*<Wn(OY)> — Wn(OX)

for n > 1, with 7; 71 = 77. Our main tool here is the theory of the relative de
Rham-Witt complex developped by Langer and Zink [LZ04]. In Section 5, we recall
some basic facts about their construction, and we extend to the relative case some
structure theorems proved by Illusie [1179] when the base scheme is perfect (see in
particular Proposition 5.7 and Theorem 5.13). Then we define 7;  ,, by combining
two morphisms. On the one hand, we consider a projective space P := IP’j‘l( with
projection m on X, and we define in Section 6 a trace morphism

Trpn,n : IR7T>'<(V[/YTLQ(IiD/X [d]) - WH(OX)a
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using the d-th power of the Chern class of the canonical bundle Op(1). On the other
hand, we consider a regularly embedded closed subscheme Y of a smooth X-scheme
P, and we define in Section 7 a relative Hodge-Witt fundamental class for Y in P,
which is a section of H{ (W,Q4, / ) and defines a morphism

Vi W (Oy) = WaQ% x [d],

with ¢ : ¥ < P and d = codimp(Y). This allows to define the morphism 7;
as being the composition Trp, ,, © Rm«(Yixn). The proof of Theorem 1.5 is then
completed in Section 8 thanks to a theorem relating the morphisms 7;  , defined by
the reduction mod p of a factorization of the given morphism f : Y — X over R,
and the morphism 7, defined by f.

It may be worth pointing out here that these results seem to indicate that
Grothendieck’s relative duality theory for coherent O-modules can be generalized
to some extent to the Hodge-Witt sheaves, as was already apparent from [Ek84]
when the base scheme is a perfect field. We do not try to develop such a generaliza-
tion in this article, and we limit ourselves to the properties needed for the proof of
Theorem 1.1. For example, it is very likely that the morphisms 7; , only depend
on f, and not on the chosen factorization f = 7 o4, but this is not needed here, and
we did not check it. A natural context one might think of for developing our results
is the theory of the trace map for projectively embeddable morphisms outlined in
[Ha66, III, 10.5 and §11]. Unfortunately, as discussed by Conrad in [Co00, p. 103-
104], the foundation work needed for the definition of such a theory has not really
been done even for coherent O-modules.

Finally, we conclude in Section 9 by giving a family of examples to which Theorem
1.1 can be applied, but which are not covered by earlier results, nor by cases where
Theorem 1.3 can be proved directly, such as the trivial case where H(X,0x) = 0
for all ¢+ > 1, or the semi-stable case. These examples are obtained for p > 7, and
are quotients of an hypersurface of degree p in a projective space IP’}I;Q by a free
(Z/pZ)-action. Their generic fibre is a smooth variety of general type, and their
special fibre has isolated singularities, at least when p is not a Fermat number.

Acknowledgements
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General conventions

1) All schemes under consideration are supposed to be separated. By a pro-
jective morphism f :Y — X, we always mean a morphism which can be factorized
as f = moi, where 7 is a closed immersion in some projective space P%, and r is the
natural projection P% — X.

2) In this paper, we use the terminology of [SGA 6] for complete intersection
morphisms: a morphism of schemes f : Y — X is said to be a complete intersection
morphism if, for any y € Y, there exists an open neighbourhood U of y in Y such
that the restriction of f to U can be factorized as f|i = m o ¢, where 7 is a smooth
morphism and i a regular immersion [SGA 6, VIII, 1.1]. Note that this notion of
complete intersection morphism is more general than the notion of “local complete
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intersection map” used in [Ha66] and [Co00], where “lci map” is only used for regular
immersions.

If d is the codimension of i at y, and n the relative dimension of 7 at i(y), the
integer m = n — d does not depend upon the local factorization f|y = m o4, and
is called the virtual relative dimension of f at y [SGA 6, VIII, 1.9]. One says that
f has constant virtual relative dimension m if the integer m does not depend upon
y. We will always assume in this paper that the virtual relative dimension of the
morphisms under consideration is constant (however, the dimension of the fibres of
such morphisms can vary).

3) Apart from the previous remark, we will use the definitions and sign con-
ventions from Conrad’s book [Co00]. In particular, when i : ¥ < P is a regular
immersion of codimension d defined by an ideal Z C Op, we define wy,p by

wy/p = N ((Z/T%)Y)

rather than (A%4(Z/Z?%))Y as in [Ha66, III, p. 141] (see [Co00, p. 7]). The canonical
identification between both definitions is given by [Bo70, III, §11, Prop. 7].

4) If R, S are commutative rings, R — S a ring homomorphism, and X an
R-scheme, we denote by Xg the S-scheme Spec S Xgpec R X.

5) If £° is a complex, we denote by (0>;€®)icz the naive filtration on &, i.e.,
the filtration defined by 0>;£" =0if n <, 05" =& if n > 4.

2. APPLICATION OF p-ADIC HODGE THEORY

We explain in this section how the fundamental results of p-adic Hodge theory
can be used to prove Theorem 1.3. We begin with the semi-stable case, where p-adic
Hodge theory suffices to conclude, and which will serve as a model for the general
case. We use the notations R, K, k as in the introduction.

Theorem 2.1. Let X be a proper and semi-stable R-scheme, with generic fibre
Xk and special fibre Xy, and let ¢ > 0 be an integer. If H1(Xk,Ox, ) = 0, then
HY(X, WOx, qg) =0.

Proof. We may assume that R is a complete discrete valuation ring. Indeed, if Ris
the completion of R, K = Frac(R) and X = X 7> then X is proper and semi-stable

over ﬁ, Hq()zf(,(’))?A) =K o HY(Xg,Ox,) =0, and X and X have isomorphic
K

special fibres. So the theorem for X implies the theorem for X.

We endow S = Spec R with the log structure defined by the divisor Speck C S,
So = Speck with the induced log structure, and we denote by S, Sy the corre-
sponding log schemes. Similarly, we endow X with the log structure defined by the
special fibre X, X with the induced log structure, and we denote by X, X the
corresponding log schemes. Then X is smooth over S, and X}, is smooth of Cartier
type [Ka89, (4.8)] over Sp.

Let W,, = W, (k) (resp. W = W (k)), and let X,, (resp. X) be the log scheme
obtained by endowing >, = SpecW,, (resp. ¥ = Spec W) with the log structure
associated to the pre-log structure defined by the morphism Mg, = Og, = Oy, —
Oy, (resp. Oxy) provided by composition with the Teichmiiller representative map.
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We can then consider the log crystalline cohomology groups Héys(X /X,,), which are
finitely generated W,,-modules endowed with a Frobenius action ¢ and a monodromy
operator N. The log scheme X}, also carries a logarithmic de Rham-Witt complex
Wy, = Hm WnQ%, , constructed by Hyodo [Hy91] in the semi-stable case, and
generalized by Hyodo and Kato [HK94, (4.1)] to the case of smooth Sy-log schemes
of Cartier type. In degree 0, we have

by [HK94, Prop. (4.6)].
It follows from [HK94, Th. (4.19)] that, for all ¢, there are canonical isomorphisms

(2.1.2) HE (X /En) —— HI (X5, Wik, ),

crys

which are compatible when n varies, and commute with the Frobenius actions. As
X}, is proper over Sy, these cohomology groups are artinian W-modules. Therefore
one can apply the Mittag-LefHler criterium to get canonical isomorphisms
(2.1.3)

n n
compatible with the Frobenius actions. Using the naive filtration of WQ% —and
tensoring by Kj, one obtains a spectral sequence

(2.1.4) By = H (X, Wy, ) © Ko = HL1(X,/2) ® Ko

crys

endowed by functoriality with a Frobenius action F*. The operators d, F' and V on
the logarithmic de Rham-Witt complex satisfy the same relations than on the usual
de Rham-Witt complex [HK94, (4.1)], and the structure theorems of [I179] remain
valid in the logarithmic case [HK94, Th. (4.4) and Cor. (4.5)]. It follows that one can
argue as in the proof of [1179, IT, Th. 3.2] to prove that, for all 4, j, the K(-vector space
HI (X, Wﬂkk) ® Ky is finite dimensional, and that the action of F™* on this space
has slopes in [i,i+1[. Therefore, the spectral sequence (2.1.4) degenerates at F, and
yields in particular an isomorphism (Héys(X1/%) © Ko)<! = HI(X;, WQ%, ) ® Ko,
the source being the part of Héys(X/X) ® Ky where Frobenius acts with sTope < 1.
Thanks to (2.1.1), we finally get a canonical isomorphism

(2.1.5) (HY (X1/2) ® Ko)~! = HY( X}, WOx, 0)-

crys

On the other hand, the choice of an uniformizer m of R determines a Hyodo-Kato
isomorphism [HK94, Th. (5.1)]

(2.1.6) P HE o (X1/D) @w K = HY(X g, 0%, /x0)-

crys

This allows to endow Héys(Xy/X) @w K with the filtration deduced via p, from
the Hodge filtration of H?(Xg, Q% / ). Together with its Frobenius action and
monodromy operator, Héys(X /) @w K is then a filtered (¢, N)-module as defined
by Fontaine [Fo94, 4.3.2 and 4.4.8]. As such, it has both a Newton polygon, built as
usual from the slopes of the Frobenius action, and a Hodge polygon, built as usual

from the Hodge numbers of H?( X, Q% / ). Now, let K be an algebraic closure of
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K, and let By, Bgr be the Fontaine p-adic period rings. Then Tsuji’s comparison
theorem [Ts99, Th. 0.2] provides a Bg;-linear isomorphism

(2.1.7) By @k, Hbyo(X1/E) — B Ok Hj (X, Qp),

Crys
compatible with the natural Galois, Frobenius and monodromy actions on both sides,
and with the natural Hodge filtrations defined on both sides after scalar extension
from By to Bgr. Thus Héys(Xk/X) ® Ko is an admissible filtered (¢, N)-module
[Fo94, 5.3.3], and therefore is weakly admissible [Fo94, 5.4.2]. This implies that
its Newton polygon lies above its Hodge polygon [Fo94, 4.4.6]. In particular, either
Hys(X1/X)® Ky = 0, or the smallest slope of its Newton polygon is bigger than the
smallest slope of its Hodge polygon. By assumption, the latter is at least 1, which
forces the part of slope < 1 of Héys(X /%) @ Ko to vanish. Thanks to (2.1.5), this
implies the theorem. O

In the general case, we will use truncated simplicial log schemes satisfying the
conditions of the next lemma. We will assume that all the log schemes under con-
sideration are fine log schemes [Ka89, (2.3)], and all constructions involving log
schemes will be done in the category of fine log schemes. For any finite extension K’
of K, with ring of integers R’, we will endow Spec R’ with the log structure defined
by its closed point, and pullbacks of log schemes to Spec R’ will mean pullbacks in
the category of log schemes. Note that, because of [Ka89, (4.4) (ii) and (4.3.1)],
the underlying scheme of such a pullback is the usual pullback in the category of
schemes. We will denote log schemes by underlined letters, and drop the underlining
to denote the underlying schemes.

Lemma 2.2. Assume that R is complete, and that X is an integral, flat R-scheme
of finite type. Let m > 0 be an integer. Then there ewists a finite extension K' of K,
with ring of integers R', a split m-truncated simplicial R'-log schemeY o = (Yo, My,),
and an augmentation morphism u : Yo — Xpg over R, such that the following
conditions hold:

a) FEachY, is projective over Xg/, and is a disjoint union of pullbacks to R’ of
semi-stable schemes over the integers of sub-K-extensions of K' endowed with the
log structure defined by their special fibre;

b) Via the augmentation morphism induced by u, Yo g+ is an m-truncated proper
hypercovering of Xg;

¢) There exists a projective R-alteration f :'Y — X, where Y is semi-stable
over the ring of integers Ry of a sub-K -extension K1 of K', and there exists finitely
many R-embeddings o; : Ry — R/, such that, if vy : Y — Xpg, denotes the R;-
morphism defined by f, and if Y; (resp. u; : Y; — Xpgs) denotes the R'-scheme (resp.
R'-morphism) deduced by base change via o; from'Y (resp. 1), then Yo = [, Y; and
Uly; = Uj-

Proof. This is a well known consequence of de Jong’s alteration theorem [dJ96,
Th. 6.5]. For the sake of completeness, we briefly recall how to construct such a
simplicial log scheme. One proceeds by induction on m.

Assume first that m = 0. De Jong’s theorem provides a finite extension K7 of
K, an integral semi-stable scheme Y over the ring of integers R; of Ki, and an
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R-morphism f : Y — X which is a projective alteration. Let u; : ¥ — Xpg, be
the morphism defined by f. Let K’ be a finite extension of K; such that K'/K is
Galois, and R’ its ring of integers. For any g € Gal(K'/K), let o4 be the composition
K, = K' 2% K, and let Y, (vesp. ug : Yy — Xp/) be the R'-log scheme (resp. R'-
morphism) deduced from Y (resp. u1) by base change via o4 : Ry — R’. Then one
defines Yy and u by setting

XO = H Xg, U|Yg - UQ.
geGal(K'/K)

One easily checks by Galois descent that Yy gr — Xk is surjective, and conditions
a) - ¢) are then satisfied.

Assume now that the lemma has been proved for m — 1. Over the ring of integers
R of some finite extension K" of K, this provides a split (m—1)-truncated simplicial
log scheme Y7, together with an augmentation morphism v” : Y — Xpn, so as to
satisfy conditions a) - ¢). Note that these conditions remain satisfied after a base
change to the ring of integers of any finite extension of K”. Let cosk,,—1(Y") be
the coskeleton of Y/ in the category of simplicial fine R”-log schemes, and Z =
cosky,—1(YY),, its component of index m. Denote by Zi, ..., Z. those irreducible
components of Z which are flat over R”, and endow each Z; with the log structure
induced by the log structure of Z. As a consequence of condition a), this log structure
induces the trivial log structure on the generic fibre Z; g~. Applying de Jong’s
theorem to Z;, one can find a finite extension K ; of K", with ring of integers R;, an
integral semi-stable scheme T} over R;- and an alteration f; : Tj — Z;. One endows
T; with the log structure defined by its special fibre. Because the log structure of the
generic fibre Z; g is trivial, the morphism f; extends uniquely to a log morphism
fi:Tj — Zj. Let K' be a Galois extension of K" containing K for all j, 1 <j <,
and let R’ be its ring of integers. Arguing as in the case m = 0 above, one can
deduce from the alterations f; an R'-morphism

C
(2.2.1) T—[[2ir — Zr = coskm 1(YY 5)m
j=1

where T satisfies condition a), and Tx+ — cosky—1(Y) k/)m is projective and surjec-
tive (note that, since all log structures are trivial on the generic fibres, the generic
fibre of the coskeleton computed in the category of fine log schemes is the coskeleton
of the generic fibres computed in the category of schemes). One can then follow
Deligne’s method in [De74, (6.2.5)] to extend Y, s as a split m-truncated simplicial
log scheme Y, over R'. The R'-log scheme Y, satisfies condition a) because T does
and Y, is split. Similarly, the morphism Y, g — cosky,—1(Ye k7)m is proper and
surjective because the morphism T+ — cosky,—1(Y) k/)m is proper and surjective.
Thus the m-truncated simplicial scheme Y, g is an m-truncated proper hypercover-
ing of X . Finally, condition c) is satisfied thanks to the induction hypothesis. [

2.3. We recall how to associate cohomological invariants to simplicial schemes and
truncated simplicial schemes (see [De74, 5.2] and [Ts98, (6.2)]).
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For r > 0, we denote by [r| the ordered set {0,...,r}. Let A (resp. A[m]) be the
category which has the sets [r] (resp. with » < m) as objects, the set of morphisms
from [r] to [s] being the set of non-decreasing maps [r] — [s]. If T is a topos, we
denote by T4 (resp. T2I™) the topos of cosimplicial objects (resp. m-truncated
cosimplicial objects) in 7. Let A be a ring in 7, and A* the constant cosimplicial
ring defined by A. If £* is an A®*-module of T2 (resp. T2I™), one associates to £°
the complex

(—1)7 87
eet = 0 gty e 2T e
(resp. £7E* = 9 E o HEM S0 ),

One views £,E* (resp. e7'E®) as a filtered complex of A-modules using the naive fil-
tration. The functors e, and €7 are exact functors from the category of A*-modules
to the category of filtered complexes of A-modules (which means that they transform
a short exact sequence of A®-modules into a short exact sequence of filtered com-
plexes, i.e., such that the sequence of Fil’s is exact for all i). Hence, they factorize
s0 as to define exact functors Re, and Re™ from DT (T2, A*) (resp. DT (TAM, A*))
to DT F(T,A). For any complex £%* € DT (A*), they provide functorial spectral
sequences

(2.3.1) EDT = HI(E™) = HTY(Re, (E%°))

and similarly for Re?™ with E"? = 0 for r > m (we use here the first index to
denote the simplicial degree). Note that the truncation functor induces a functorial
morphism

(2.3.2) Re.(£%°) — Re(skm (E%7)),

and therefore a morphism between the corresponding spectral sequences (2.3.1). It
follows that, if H4(E™*) = 0 for ¢ < 0 and all 7, then the morphism (2.3.2) is a
quasi-isomorphism in degrees < m.

Let Y, be a simplicial scheme (resp. m-truncated simplicial scheme), and Sets the
topos of sets. If R is a commutative ring, and £° a sheaf of R-modules on Y,, one
can associate to £* a cosimplicial R*-module I'*(Y,, £*) € Sets® (resp. Sets®I™) by
setting for all > 0

"y, &%) =I(Y;,&).

The functor I'* can be derived, and its right derived functor RI'® can be computed
using resolutions by complexes Z*° such that, for each r, ¢, the sheaf 7" is acyclic
on Y. The cohomology of Y, with coefficients in a complex £%* is then by definition

RI'(Y,.,E%°) = Re, RI*(Y,, E%°) (resp. Rel"),
HY(Y,,E**) = HY(RT(Y,,E%*)).

If Y, is a smooth simplicial (resp. m-truncated simplicial) R-scheme, this can be

applied to the complex 3, /R and to its sub-complexes o>;{2 defining the naive

Yo/ R
filtration. This provides the definition of the de Rham cohomology of Y,, and of its

Hodge filtration.
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Proposition 2.4. Let K be a field of charactristic 0, X a proper and smooth K-
scheme, Yo — X an m-truncated proper hypercovering of X over K such that'Y, is
proper and smooth for all r. Then, for all ¢ < m, the canonical homomorphism

(2.4.1) HI(X, Qi) — HI(Ye, Q3 /)
is an isomorphism of filtered K -vector spaces for the Hodge filtrations.

Proof. Since algebraic de Rham cohomology (endowed with the Hodge filtration)
commutes with base field extensions, standard limit arguments allow to assume
that K is of finite type over Q. Choosing an embedding ¢ : K — C, we are reduced
to the case where K = C. Using resolution of singularities, we can find a proper and
smooth hypercovering Z, of X such that sk,,(Z.) = Y,. As the morphism (2.3.2)
for 0,25, /C is a quasi-isomorphism in degrees < m for all i, it suffices to prove the
proposition with Y, replaced by Z,. This now follows from [De74, Prop. (8.2.2)]. O

Corollary 2.5. Under the assumptions a) and b) of Lemma 2.2, assume in addition
that Xx is proper and smooth, and that H1(X,Ox, ) =0 for some ¢ < m. Then
the smallest Hodge slope of H1(Y4 g, Q;/.K,) s at least 1.

Proof. Assumption a) and b) imply that the hypotheses of the proposition are sat-
isfied by Y, — Xk, and the corollary is then clear. (]

2.6. Let X,, X be as in the proof of Theorem 2.1. We now denote by Y. = (Ys, My,)
an m-truncated simplicial log scheme over Y;. We assume that each Y, is smooth
of Cartier type over X1, so that, for all n > 1, its de Rham-Witt complex W,
is defined [HK94, (4.1)]. When r varies, the functoriality of the de Rham-Witt
complex turns the family of complexes (Wnﬁgzr)ogrgm into a complex W, (2., on
Y,. One defines its cohomology as in 2.3, and one has similar definitions for the de
Rham-Witt complex WQi,. = mn WnQi/..

For a morphism « : [r] — [s] in Alm], let aeys : (Yo/Zn)erys = (Yr/Zn)erys
be the morphism between the log crystalline topos induced by the corresponding
morphism Y, — Y. One defines the log crystalline topos (Ye/%,)crys as being the
topos of families of sheaves (E")o<y<m, where E” is a sheaf on the log crystalline
site Crys(Y,/%;), endowed with a transitive family of morphisms ozc};SET — E*
for morphisms « in A[m]. In particular, the family of sheaves Oy /5, defines the
structural sheaf of (Y4/%,)crys, denoted by Oy, /5,- There is a canonical morphism
tyy/s,  (Yeo/Zn)erys = Yozar, such that uy, /s, (E®)" = uy, /s, (E") for all r. If
E** is a complex of abelian sheaves in (Y4/%;,)crys, one proceeds as in 2.3 to define
its log crystalline cohomology RI'¢;ys(Ye/Xn, E*®) and its projection on the Zariski
topos Ruy, /s, «(E**). One gives similar definitions for the log crystalline topos
(Yo/X)crys relative to X. By construction, there are canonical isomorphisms

(26.1) RI(Ye, Ruy, /s, . (™)) — Rleys(Ye/S E),
(2.6.2) RL(Ye, Ruy, /5. (E**) —= Rleys(Ye/Z, E*).

IfY, — P, is a closed immersion of the m-truncated simplicial log scheme Y, into
a smooth m-truncated simplicial ¥,,-log scheme P, (resp. X-formal log scheme), the
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family of PD-envelopes Plog( P,) (resp. completed PD-envelopes) [Ka89 (5.4)] de-
fines a sheaf Plog( P,) onY,, and one can form the de Rham complex 73 5(P.) @0 o

Q;D /S (resp. 73 ( o) ®op, Np Pe/3 5), which is supported in Y,. Because the lin-
earization functor L used in the proof of the comparison theorem between crystalline
and de Rham cohomologies [Ka89, (6.9)] makes sense simplicially, this theorem ex-
tends to the simplicial case and there is a canonical isomorphism in DT (Y,, W,,)
(resp. DT (Y., W))

(2.6.4) (resp. RUXO/Z*(OXO/Z) —) 'Pi)g( ) ®(9P. Q;:)./E )

Proposition 2.7. With the hypotheses of 2.6, assume that Yo is split. Then there
exists in DT (Yo, Wy,) (resp. DT (Yo, W)) canonical isomorphisms compatible with the
transition morphisms and the Frobenius actions

(2.7.1) Ruy,/s,«(Oves,) — WaQy,
The proof will use the following lemma, due to Nakkajima [Na09, Lemma 6.1].

Lemma 2.8. Under the assumptions of 2.7, there exists an m-truncated simplicial
log scheme Zo and a morphism of m-truncated simplicial log schemes Zo — Y o such
that, for 0 < r < m, Z, is the disjoint union of affine open subsets of Y., and the
morphism Z, — Y, induces the natural inclusion on each of these subsets.

Definition 2.9. Let X be a scheme on which p is locally nilpotent, and n > 1 an
integer. We denote by | X| the topological space underlying X, and by W,,(X) the
ringed space (|X|, W, (Ox)), which is a scheme ([I179, 0, 1.5] and [LZ04, 1.10]). The
ideal VW,,_1(Ox) carries a canonical PD-structure ([I179, 0, 1.4] and [LZ04, 1.1]),
which turns the nilpotent immersion w : X < W, (X) into a PD-thickening of X.

If X = (X, Mx) is a log scheme, we denote by W, (X) = (W, (X), My, (x)) the
log scheme obtained by sending Mx to W,,(Ox) by the Teichmiiller representative
map, and taking the associated log structure [HK94, Def. (3.1)]. The immersion u
is then in a natural way an exact closed immersion u : X — W, (X), functorial with
respect to X.

Lemma 2.10. Under the assumptions of 2.7, there exists a bisimplicial log scheme
Zeo, m-truncated with respect to the first index and augmented towards Yo, with
respect to the second index, a bisimplicial formal log scheme T 4 o over X, m-truncated
with respect to the first index, and a closed immersion of bisimplicial formal log
schemes iee : Zoo — Tee, such that the following conditions are satisfied:

a) For 0 <r < m, Z,.g is the disjoint union of affine open subsets of Y;., the
augmentation morphism Z,o — Y, induces the natural inclusion on each of these
subsets, and the canonical morphism Z,+ — cosk%/r (sk%/’" (Zr4)) ts an isomorphism.

b) For 0 < r < m and t > 0, the formal log scheme T, is smooth over ¥
(i.e., its reduction mod p™ is smooth over ¥, for alln), and the canonical morphism
Tre— COSkOE(SkOZ(IT,Q)) is an isomorphism.
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c) Letieen: Zee— Teen bethereduction modp™ of iee, and let Ueern : Zoo —
Wn(Zs,s) denote the morphism of bisimplicial log schemes defined by the canonical
immersions. For variable n, there exists a compatible family of X,-morphisms of
bisimplicial schemes heen : Wn(Zes) = Teen Such that heern O Ue e n = Teen-

Proof. Let jo : Ze — Yo be a morphism of m-truncated simplicial log schemes
satisfying the conclusions of Lemma 2.8. One chooses a decomposition Z, = [[, Z%,
with Z C Y, open affine such that j,|zo is the natural inclusion.

Let Z7, = Z. Since Z;' is affine and smooth over X;, and X, — X, is a
nilpotent exact closed immersion, there exists for each r, o and each n > 2 a smooth
log scheme Z,?‘m over Y, endowed with an isomorphism Z?’nfl =2 Y X S Z;ffn
[Ka89, Prop. (3.14) (1)]. Taking limits when n — oo, we obtain a smooth formal log
scheme Z¢ over X and an isomorphism Z¢ =y x » Z;. Moreover, the smoothness
of Z7,, over X, for all n implies that we can find inductively a compatible family of
X,-morphisms gr,, : W, (Z) — Z7,, such that the composition Zy — W,(Z}) —
Z, is the chosen immersion Z7¥ < Z7",.

Let Zr,n = HQZ?MJ” Zr = Hagfy let Urmn Zr — Zr,nv Uy Zr — ZT be
defined by the immersions Z — Z7, and Z — Z7, and let g, : Wi (Zr) = Zrn
be defined by the morphisms g;,,. We now use the method of Chiarellotto and
Tsuzuki ([CT03, 11.2], [Tz04, 7.3]) to deduce from these data a closed immersion
1e Of Zo into an m-truncated simplicial formal log scheme 7T,, smooth over X, with
reduction T, ,, over ¥,, and a compatible family of ¥,-morphisms of m-truncated
simplicial log schemes he, @ Wy(Ze) — T such that hey, © Uep = ten, Where
Uep : Zoyn > Wn(Zep) is the canonical morphism, and i, 5 is the reduction mod p”
of i,. First, we set for 0 < s <m

Fs(gr) = H Zm,
v:lrl—=[s]
where the product is taken over all morphisms + : [r] = [s] in A[m], and Z,., = Z,
for all 4. Then any morphism 7 : [s'] — [s] in A[m] defines a morphism I's(Z,) —
'y (Z,) having as component of index +' the projection of I';(Z,) to the factor of
index 1 o4’. One obtains in this way an m-truncated simplicial formal log scheme
I'e(Z,) over X, the terms of which are smooth over X.
For each v : [r] — [s], there is a commutative diagram

Zr( » Zr,n(—> Zr-

For fixed r and variable s, the family of morphisms Zs — I's(Z,) having the compo-
sition Zg MR Z, — Z, as component of index v defines a morphism of m-truncated
simplicial formal log schemes Z, — I's(Z;). We set

Io: H F.(Zr),

0<r<m
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and we define i, : Zo — T as having the previous morphism as component of index
r, for 0 < r < m. For each r, the morphism Z, — I'.(Z,) has the closed immersion
v Ly — Z, as component of index Idm. It follows that Z, — 7, is a closed
immersion for all 7.

Similarly, the family of morphisms W, (Zs) — I's(Z,) having the composition

Wn(Zs) M Win(Z,) ELLN Zypn — Z, as component of index «y defines a mor-
phism of m-truncated simplicial log schemes W, (Z.) — I'e(Z,). We define h, :
Wn(Zs) — T. as having the previous morphism as component of index r for
0 <7 <m,and hep : Wp(Zs) = T, as being the reduction of h, mod p™. It
is clear that hep © Ueyn = ten, and that the morphisms h, , form a compatible

family when n varies.
We now set Zoo = Zo, Teo =T., and we define

Zo,o == COSk%/. (Zo,[))y Iow == COSk%(I.,O),

the coskeletons being taken respectively in the category of simplicial m-truncated
simplicial log schemes over Y, and of simplicial m-truncated simplicial formal log
schemes over Y. The augmentation morphism Z.,o — Y, is given by j., and the
morphism ¢, is defined by setting ie 0 = e : Zo o — T, and extending i, by
functoriality to the coskeletons. As seen above, i, is a closed immersion, and it
follows from the construction of coskeletons that 7. is a closed immersion for all ¢.
Since coskOE(Iﬁo)t =T, xg x---xXg T, (t+1 times), T, is smooth over X for all
r,t. Finally, we define he e : Wi (Zeo) = Lo n as being the composition

Wn(coskéj' (Zep)) — coskg‘/"(x')(Wn(Z.,o)) — coskOZ” (Teon) ~ Xy Xy coskoz(l'.,o),

where the first map is defined by the universal property of the coskeleton (and is
actually an isomorphism), the second one is defined by functoriality by the morphism
hen : Win(Zep) = LTen =Tepn, and the last one is the base change isomorphism for
coskeletons. The relations he e n © Ue,e.n = %ee,n and the compatibility for variable n
follow from the similar properties for the morphisms h. ,. Properties a) - c) of the
Lemma are then satisfied. O

2.11. Proof of Proposition 2.7. Let

Zoo % T,

M ——

jc,ol
Yo ——

be a commutative diagram satisfying the properties of Lemma 2.10. Since, for all
r < m, the morphism j, o is locally an open immersion, the scheme underlying Z, ;
is the usual fibred product Z,o Xy, --- Xy, Zpo (t + 1 times). It follows that, if
U = (Z)q is an affine covering of Y. such that Z,o = [[, Z and j.o|ze is the
natural inclusion, then, for any abelian sheaf £ on Y., the complex

. . . 1o k(DR .
57"*(.77",0 *]r,olg) = |Jro0 *]nolg o T Ot *Jr,tlg IR Jrt+1 *]r,tl—f—lg — - :|
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is the Cech resolution of £ defined by the covering §l.. If £* is an abelian sheaf on
Y., the fact that j, o is an augmentation morphism in the category of m-truncated
simplicial schemes implies that the complex &, 4 (jr.o *jr_ . &) is functorial with respect
to [r] € Afm], and we obtain a resolution e.(jeesjssE®) of £ in the category of
abelian sheaves on Y,. In particular, taking into account that each j, , is locally an
open immersion, we obtain for all n a resolution of the de Rham-Witt complex of
Y, given by

(2.11.1) WSy, T can(onsWn2, ,).

On the other hand, one can also define for all » a complex on Crys(Y,/%,) by
setting

5r*(jr,ocrys*(OZr,./Zn)) =
k
[jr,Ocrys*(OZT,o/Zn) o jT,tcrys*(OZr’t/;n) M R

Since Z, o — Y, is the Cech simplicial scheme defined by an affine open covering of Y.,
this complex is a resolution of Oy, /5, [Be74, III, Prop. 3.1.2 and V, Prop. 3.1.2].
Since Z.. is a bisimplicial scheme, these resolutions are functorial with respect
to [r] and yield a resolution ce.(joecrys+(Oz44/5,)) of Oy, /s, Let Teon be the
reduction mod p" of T, .. The linearization functor L [Ka89, (6.9)] is functorial with
respect to embeddings, hence it provides a complex L(QT. «n/Sn )on Crys(Zee/Zn).
This complex is a resolution of Og, , /5, thanks to the log Poincaré lemma which
follows from [Ka89, Prop. (6.5)]. For each (r,t) and each i, one checks easily that
the term jntcrys*(L(QiImn/;n)) is acyclic with respect to uy, 5. (use [Be74, V,
(2.2.3)] and the equality Uy, /5% O Jritcryss = Jrix © “Zr,t/Zn*)' Hence, the complex
Eox(oeerys+(L(QF, , | 5.))) is an uy, /5, -acyclic resolution of Oy, /s,,. Moreover,
the closed immersion of bisimplicial schemes i, o defines a family of PD-envelopes
Pg).g.( ee.n), Supported in Z, ,. They provide a de Rham complex Plog TLeen)®
Q}. /S which can be viewed as a complex of abelian sheaves on Z.7.7 and it
follows from [BeT4, V, (2.2.3)] that

uX'/Zn*(j'ﬂCrys*(L( i-,o,n/zn))) ‘]. .*(Plog ( .’.’n) ® QT' ,® n/En)

So we finally get in D" (Z,,W,,) an isomorphism

(2.11.2) Ruy, /5,+(Oye/s,) — ox(jo, -*(Plzog (Loron) @1y, s))-

To prove Proposition 2.7, it suffices to define a quasi-isomorphism between the
right hand sides of (2.11.1) and (2.11.2). Note that, for each r,t,i, the sheaves
W, Qi - and plog ( ritn) @ Ql Tt /S A€ Jrits-acyclic. Indeed, Z,; is a disjoint
union of affine open subsets of Y., and on the one hand W, .., has a finite filtration
with subquotients which are quasi-coherent over suitable Frobemus pullbacks of 7, ;
[Ka89, Th. (4.4)], on the other hand Plog (Lrtn) ® QT n/S, I8 @ quasi-coherent
Or,, ,-module with support in Z, 4, hence is a direct limit of submodules which have
a finite filtration with subquotients which are quasi-coherent over Z,.;. Therefore,
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it suffices to construct a quasi-isomorphism

(2.11.3) Pyt (Laen) @, s, — Wal,,

— %

in the category of complexes of W,,-modules over Z, ,.

We can now argue as in the proof of [HK94, Th. (4.19)]. Since the PD-immersion
Urtn : Lrt — Win(Zr ) is an exact closed immersion for all r, ¢, the morphism he o p
Wi(Zeo) = Teen defines uniquely a PD-morphism Plog Leen) = Win(Og,,) in
the category of sheaves of W-modules on the b1s1mphc1al scheme Ty o . AS heopn
is a morphism of bisimplicial log schemes, it defines by functoriality a morphism
of complexes Q‘I.’.m/;n — Q;/Vn(Z /s, 00 Teen. This morphism extends as a
morphism of complexes with support in Z..

'PIOg( OGH)®QT.. /E —>Q;/Vn(Zo,o)/;n/N::”

=%,

where ./\/,, C QW (Zeo.0)/Sn denotes the graded ideal generated by the sections

d(al?y — al'=1da for all sections a of VWyn-1(Ogz,,) and all @ > 1. The differen-
tial graded algebra W05, .. 15 @ quotient of 23, Wi (Ze.e)/Sn [HK94, Prop. (4.7)], and
the generators of N7, vanish in W, Q. . (because WQ . 18 p-torsion free), so we
finally get the morphlsrn (2.11.3). To check that it is a quasi-isomorphism, it suffice
to do so on each Z,;, and this follows from [HK94, Th. (4.19)]. We obtain in this
way the isomorphism (2.7.1).

To construct the isomorphism (2.7.2), it suffices to observe that the compatibility
of the previous constructions when n varies implies that they make sense in the
category of inverse systems indexed by n € N. Then one can apply the functor R 1&nn
to the isomorphism (2.7.1) viewed an an isomorphism in the derived category of
inverse systemes of sheaves of W-modules on Y,, and this provides the isomorphism
(2.7.2).

The isomorphisms (2.7.1) and (2.7.2) do not depend upon the choices made in
their construction. If (Zee,Tee;je.0:%,0,f00n) a0d (Z, o, T4 e;Je esle e Meon) are
two sets of data provided by Lemma 2.10, one can construct a thlrd set of data
(Zy e T4 Je sl e e on) mapping to the two previous ones by setting

Z,o/,o = Z.,O XY Z,o o) I/o,,o = I0,0 X% I/o,oa

and defining ], o lo o and hY . » by functoriality. Then the independence property of

o 0,0
(2.7.1) and (2. 7. 2) follows from the functoriality of the canonical isomorphisms used
in their construction with respect to the projections from (Z¢,,74,,) t0 (Ze e, Te.e)
and (Z,

..’

T..).- Moreover, one can also prove the functoriality of (2.7.1) and (2.7.2)
with respect to Y, by similar arguments using the graph construction: for a mor-
phism ¢, : Y, — Y, between two m-truncated simplicial log schemes satisfying
the assumptions of Lemma 2.7, one can find sets of data (Zee, T ee;je.e; %00, een)
and (Z4 e; T4 esJeesle e e on) satisfying the conditions of Lemma 2.10 relatively
to Y. and X’ and such that there exists morphisms of bisimplicial log schemes
Voo : Zeo —+ Zow, oo : Too — T satisfying the obvious compatibilities. Then
the functoriality of (2 7.1) and (2.7. 2) with respect to ¢, follows from the functo-

riality of the canonical isomorphisms used in their construction with respect to e,
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e e and B, . In particular, one obtains in this way that the isomorphisms (2.7.1)
and (2.7.2) are compatible with the Frobenius actions. O

2.12. Proof of Theorem 1.3, assuming Theorem 1.5. To conclude this section, we
prove that Theorem 1.5 implies Theorem 1.3. We keep the notations of 1.1, and we
first observe that if Theorem 1.3 holds when R is complete, then it holds in general.
Indeed, let R be the completion of R, and X=X 7+ Then Xisa regular scheme:

on the one hand, its generic fibre is smooth over K= Frac(f%); on the other hand,
its special fibre is isomorphic to X, and the completions of the local rings of X and
X are isomorphic at any corresponding points of their special fibres. It follows that
X satisfies the assumptions of Theorem 1.3 relatively to ]/%, and the theorem for X
implies the theorem for X.

Therefore, we assume in the rest of the proof that R is complete. We fix an integer
m > q. Let K’ be a finite extension of K, with ring of integers R’ and residue field
k', such that there exists an m-truncated simplicial log scheme Y, over R, with an
augmentation morphism wu : Yy — Xp/, such that properties a) - ¢) of Lemma 2.2
are satisfied. Let W), = W, (k'), W' = W(k), K, = Frac(W’), and let X/,, ¥’ be the
log schemes defined by W), W’ as in 2.1.

Thanks to property a) of Lemma 2.2, the log schemes (Y, ) are smooth of Cartier
type over Xj. Therefore, we can consider the log crystalline cohomology of Y

chrys(zo k’/;lv OX. k//Z/) = R&TRF‘ (Xo k’/2/7 OX. k//Z/)v

Crys
as defined in 2.6. Using the naive filtration on the functor Re* (see 2.3), its basic
properties follow from those of the log crystalline cohomology of the proper and
smooth log schemes (Y;)r. In particular, since Y, is proper over X} for all r, the
complex RTcrys(Yor /2, Oy, o /s) is a perfect complex of W/'-modules, and the
cohomology space Héys(Yer /X', Oy, /2) @ K is a finite dimensional Kj-vector
space. By functoriality, it is endowed with the semi-linear Frobenius action defined
by the absolute Frobenius endomorphism of Y, .
From (2.6.2) and (2.7.2), we deduce an isomorphism

He (Yor /Z, Oy, /s) @ Ky — H (Yo, Wy, ) @ Ky,

crys

which is compatible with the Frobenius actions thanks to Proposition 2.7. The fil-
tration of the complex WQ;/. y by the subcomplexes UZZ‘WQ;/. y provides a spectral
sequence

Ei] =H/ (Yo, WQQ/,,C,) ® Ky = Hi+j(¥-k//§'>oz,k,/;') ® Ky,

Crys
which is endowed with a Frobenius action. Using the naive filtration on Re?*, we
deduce from the case of a single log scheme that each term Ei] is a finite dimensional
Ky-vector space on which the Frobenius action is bijective with slopes in [, + 1].
Therefore the spectral sequence degenerates at E7, and, taking (2.1.1) into account,
we get in particular an isomorphism

(2.12.1) (Héy(Yor /E, Oy, ,s) @ Ky) <t = HU(Y, ), WOy, , 0)-

crys
Since Y, satisfies property a) of 2.2, the construction of the monodromy operator
N on log crystalline cohomology can be extended to the case of Y45 [Ts98, (6.3)].
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Moreover, the Hyodo-Kato isomorphism p, can also be extended to the case of Y 41
[Ts98, (6.3.2)], providing an isomorphism

(2122) Pr - HY (Zok’/z/a OX.,C//ZI) ® K/ L> Hq(Y'K/7Q;/oK’)'

crys

Thus, Héys(Yer /2, Oy, ,,/sr) ® K' inherits a filtered (o, N)-module structure.

It follows from [T's98, Th. 7.1.1] (generalizing [Ts99, Th. 0.2]) that, endowed with
this structure, Héys(Yor /X', Oy, , /5)® K{ is an admissible filtered (¢, N)-module,
corresponding to the Galois representation HY (Y, 7z,Q,). Therefore it is weakly
admissible. In particular, either Héys(Y o /Y, Oy, /) ® K{, = 0, or its smallest
Newton slope is greater or equal to its smallest Hodge slope. Since HY(X g, Ox, ) =
0, Corollary 2.5 implies that the smallest Hodge slope is at least 1. Therefore the
part of Newton slope < 1 vanishes. By (2.12.1), we obtain

(2.12.3) HY(Yer, WOy, 0) = 0.

As Y, — Xp satisfies property 2.2 ¢), there exists a sub-K-extension K7 C K’,
with ring of integers R; and residue field k;, a semi-stable scheme Y over Rjp, a
projective R-alteration f :Y — X, and finitely many R-embeddings o; : Ry — K’
such that, if u; : Y — Xp, denotes the R-morphism defined by f, and if Y; (resp.
u; : Y; = Xp) denotes the R'-scheme (resp. R’-morphism) deduced by base change
via o; from Y (resp. uy), then Yy = [[, Y;, and the augmentation morphism w : Yy —
Xp is defined by u|y; = u;. This provides a commutative diagram

Ug k!
(2.12.4) Yo — X
o
Yor =11; Yiw Xk

in which we identify schemes with their Zariski topos, Y} := Speck Xspec g Y, and:
(i) the morphism u, is such that, for any sheaf F on Xy, u._,i,E is the family
of sheaves (ur),;,lE , with wu, : Y, — X g/ defined by the augmentation morphism,
(ii) the morphism sq is such that, for any sheaf F'* on Y, s, salF' = FO,
(iii) the morphism Y;; — Y, is the projection corresponding to o;.
By functoriality, we obtain a commutative diagram for the corresponding Witt
cohomology spaces
(2.12.5)

Hq<Xk/, WOth@) E— Hq(Y. k' WOY.k/,Q>

/ \

HY(X),, WOx,.0) D; H(Yiw, WOy, . 0)-

T "

H(Yy, WOYk@) —— HY(Y}y, WOYkl 7(@)

In this diagram, the lower horizontal arrow is an isomorphism because Yy, — Y}
is a nilpotent immersion [BBE0O7, Prop. 2.1 (i)]. The lower right arrow is injective
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on each summand, because each o; turns &’ into a finite separable extension of k1,
hence it follows from [1179, 0, Prop. 1.5.8] that

W (k') @w (k) D(U, WOy, ) — L (Ui, WOy, ,,)

for any affine open subset U C Y}, with inverse image U; C Y; s ; as one can compute
Witt cohomology using Cech cohomology, this implies that

W(K') @w(ry) H Vi, WOy, ) — H(Yipr, WOy, ,,).

Finally, f : Y — X is a projective alteration between two flat regular schemes of
finite type over R, so Theorem 1.5 implies that f; is injective. Therefore, the func-
toriality map H(Xy, WOx, o) = @; H!(Yiw, WOy, ,, @) is injective. But (2.12.3)
implies that the composition of the upper path in the diagram is 0. It follows that
HY(X,,WOx, 0) =0. O

3. AN INJECTIVITY THEOREM FOR COHERENT COHOMOLOGY

We now begin our preliminary work in view of the proof of Theorem 1.5.

One of the key ingredients in this proof is a theorem which bounds the order of
elements in the kernel of the functoriality map induced on coherent cohomology by
a proper surjective complete intersection morphism f : Y — X of virtual relative
dimension 0. Such a result is a consequence of the existence of a “trace morphism”
77 : RfxOy — Ox which satisfies the properties stated in the following theorem:

Theorem 3.1. Let X be a noetherian scheme with a dualizing complex, and let f :
Y — X be a proper complete intersection morphism of virtual relative dimension 0.
There exists a morphism 7y : Rf,Oy — Ox which satisfies the following properties:

(i) If g: Z =Y is a second proper complete intersection morphism of virtual
relative dimension 0, then the composed morphism

(3.1.1) R(f 0 ¢)eOr = RfRGO,; L0 m1 0y 2y 0
is equal to Tyg.

(ii) Let X' be another noetherian scheme with a dualizing complex, u: X' — X
a morphism such that X' and Y are Tor-independent over X, and f' : Y’ — X' the
pull-back of f by u. If f is projective, or if either f is flat, or u is residually stable
[Co00, p. 132], then the morphism

Lu*(7y)
—

(3.1.2) Rf. Oy = Lu*Rf, Oy Oy,

defined by the base change isomorphism (A.1.2), is equal to Ty
(iii) If f is finite and flat, then, for any section b € f.QOy,
(313) ’Tf(b) = tracef*oy/ox (b)

As explained in the introduction, we refer to B.7 for the definition of 7, and to
B.9 for the proof of the theorem.

It may be worth recalling a few examples of complete intersection morphisms of
virtual relative dimension 0 (in short: ci0):
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1) If X and Y are two regular schemes with the same Krull dimension, any
morphism f : Y — X which is locally of finite type is ci0. This is the situation
where we will use Theorem 3.1 in this article.

2) If X and Y are smooth over a third scheme S, with the same relative
dimension, any S-morphism Y — X is ci0.

3) If X is a scheme, Z — X a regularly embedded closed subscheme, and
f Y — X the blowing up of X along Z, then f is ¢i0 [SGA 6, VII, Proposition
1.8].

The existence of 7; has a remarkable consequence for the functoriality maps in-
duced on coherent cohomology.

Theorem 3.2. Let X be a noetherian scheme with a dualizing complex, and f :
Y — X a proper complete intersection morphism of virtual relative dimension 0.
Assume that there exists a scheme-theoretically dense open subset U C X such that
Y U) — U is finite locally free of constant rank v > 1. Then, for any complex
£ e Dgc((’)x) and any q > 0, the kernel of the functoriality map

(3.2.1) HI(X,E) — HUY,Lf*€)

is annihilated by r. In particular, when r is invertible on X, the functoriality maps
are injective.

Proof. By 3.1 (iii), the composition Ox — Rf.Oy I, Ox is multiplication by r
over U. Since U is scheme-theoratically dense in X, it is multiplication by r over X.

The complete intersection hypothesis implies that f has finite Tor-dimension,
hence Lf*E belongs to DSC((’)y). Moreover, we can apply the projection formula
[SGA 6, III, 3.7] to obtain a commutative diagram

L ~
£ — ROy ®o, € —3RELFE

in which the upper composed morphism is the adjunction morphism. Applying the
functors H4(X, —) to the diagram, the theorem follows. O

)

4. KOSZUL RESOLUTIONS AND LOCAL DESCRIPTION OF THE TRACE MORPHISM Tf

We recall here some well-known explicit constructions based on the Koszul com-
plex which enter in the definition of the trace morphism 7;. Later on, this will allow
us to define generalizations of 7 for sheaves of Witt vectors. As in the whole article,
we follow Conrad’s constructions and conventions [Co00].

4.1. Let P be a scheme, and let t = (¢1,...,t4) be a regular sequence of sections of
Op, defining an ideal Z C Op. We denote by Y C P the closed subscheme defined
by Z, and by ¢ : Y — P the corresponding closed immersion. Classically, the Koszul
complex K,(t) defined by the sequence (t1, ..., ts) is the chain complex concentrated
in homological degrees [0, d], such that £ := K;(t) is a free Op-module of rank d
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with basis eq,...,eq, Ki(t) = /\ké' for all k, and such that the differential is given
in degree k by

M»

di(ei, N...Nejy,) = 1771, Jein N NEG NN,

J:1

It is often more convenient to consider K,.(t) as a cochain complex concentrated
in cohomological degrees [—d, 0], by setting (K.(t))* = K_j(t) and leaving the
differential unchanged [Co00, p. 17].

Since t is a regular sequence, K,(t) is a free resolution of Oy over Op. For any
Op-module M, this resolution provides an isomorphism

berm Homo, (N'€, M)
~ IHom@P(/\dE, M)7

(4.1.1)  Eatd (Oy, M) = H (Hom},(K.(t),M))

where ¢ A is the tautological isomorphism multiplied by (—1)Hd+1/2 (see [Co00,
definition of (1.3.28) and (2.5.2)]). For any section m of M, we will denote by

m d
(4.1.2) [ th. ot } € &uto, (Oy, M)

the section corresponding by (4.1.1) to the class of the homomorphism g, which
sends e; A ... Aeg to m. Note that this section is linear with respect to m, only
depends on the class of m mod ZM, and is functorial with respect to M. Its
dependence on the regular sequence t is given by the following lemma.

Lemma 4.2. Let t' = (t},...,t);) be another reqular sequence of sections of Op,
generating an ideal I' such that ' C Z. Let C = (¢;j)1<ij<d be a matric with
entries in Op such that t, = 2?21 cigty for all i. If a : Extd (Op/I,M) —
Sxt%P (Op/T', M) is the functoriality homomorphism, then

(12.1) ol " D=

Proof. Let K.(t') be the Koszul resolution of Op/Z’, and & = K;(t'), with basis
€l,...,€;. One defines a morphism of resolutions ¢ : K.(t') — K,(t) by setting
p1(e;) = _;cijej, and g = A*¢y for 0 < k < d. Then ¢ provides a commutative
diagram

Homop(/\dg, M) —— &Etﬁép (Op/Z, M)

qbddet(C)l la

Homo, (NE', M) — &Et%P(Op/I’,M).

The lemma follows. U
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4.3. Under the assumptions of 4.1, the morphism d; : & — 7 defines an isomorphism
£/IE = T/I?. Using the canonical isomorphisms, this provides

Homop(/\dé',./\/l) ~

a (Ne)V/T(N€)Y ®0, M/IM
THome, (N\"E, M)

(4.3.1)

~

A (&/18)Y) 90, M/TM
——  wy/p Qoy M.

Note that, due to the commutation between dual and exterior power, the composi-
tion (4.3.1) maps the class of ugm, to (£ A... Aty) ®i*(m), where ¢ denotes the
class of t;, mod Z2.

Composing (4.1.1) and (4.3.1), one obtains the fundamental local isomorphism
[Ha66, 111, 7.2] as defined by Conrad [Co00, (2.5.2)] in the local case:

(432) 7]y/p : gm’t%P(OY,M) L) wY/p ®OY i M.

Applying Lemma 4.2 to the case of two regular sequences of generators of the ideal
Z, one sees that the isomorphism 7y,p does not depend on the sequence t, so that
local constructions can be glued to define 7y, p for any regular immersion i : Y < P,
without assuming that Z is defined globally by a regular sequence. One obtains in
this way the fundamental local isomorphism in the general case [Co00, (2.5.1)].

Lemma 4.4. Under the assumptions of 4.1, let m : P — X be a smooth morphism
of relative dimension d, and f = mo1i. Let CZ{J Wy x = wy/p ®oy "wp/x be the
canonical identification (A.2.5), and let 65 be the canonical section of wy,x (defined
by (A.7.2)). Then

(4.4.1) ¢a(6r) = nY/p<[ dtL Ao Ndta ]>.

t1,...,tq

dti A--- Ndtg
ty o ta
we observed that wg gy, A adr, 18 mapped to (£ A ... AtY) ®i*(dty A ... Adtg) by
(4.3.1). Since ¢; (07) = (8 A... At)) ®i*(dta A... Adt1) by construction, relation
(4.4.1) follows. O

Proof. By definition, [ ] is mapped to ug gia..adt, by (4.1.1), and

4.5. Let m : P — X be a smooth morphism of relative dimension d, i : Y — P a
regular immersion of codimension d, and f = 7w o 7. We define the morphism

(4.5.1) vf : Oy — wp/x|d]
as being the composition

7771 OQ{,W ~ can
OY ﬁ) Wy/x Y/P—> giEt%P(Oy,wP/X) — ]R’Homop(Oy,wp/X[d]) — wp/X[d],

where ¢ is the morphism sending 1 to ;.

Proposition 4.6. Let X be a separated noetherian scheme with a dualizing compler,
P = Pj‘g a projective space over X, m: P — X the structural morphism, i : Y — P



24 PIERRE BERTHELOT, HELENE ESNAULT, AND KAY RULLING

a regular immersion of codimension d, and f = moi. Then the trace morphism
77 RfiOy — Ox of Theorem 3.1 is equal to the composition

Rars (vy)
—

(4.6.1) Rf,(Oy) Rer, (wpyx [d]) —2% O,

where Trp,. is the trace morphism for the projective space defined in [Co00, (2.3.1)-
(2.3.5)].

Proof. By construction (see B.7), 7y is the composition Try o Rf.(Af) o Rfi(¢s) in
the commutative diagram

Rf.(Oy)
Rf«(er)
~ Rf«(Af) Tr
Rfi(wy/x) Rl Rf.(f(Ox)) d Ox
Rf«(Gf 2) |2 Rf.(c; b) |2 Trr
M 2 Rrr (T¥;) |
Rfi(wy)p[—d] ® Li*(wp)x[d])) Rf (i (Ox)) —— Rm (7 (Ox))
Rfc(n; 1) |2 RS (i (ex)) |2 R (ex) |2
~ Rf«(ds) Ry (Tr;)

Rf«(RHomo, (Oy,wpyx|d])) ——— Rf.(i' (wp/x[d])) R (wpyx(d]),

in which the isomorphism Ay is defined by the commutativity of the left rectangle
before applying Rf, (cf. B.1), and the other arrows are defined as follows:

a) {m is the derived category version of the isomorphism used in Lemma 4.4,
defined by (A.2.6);

b) m; is the extension to the derived category of the fundamental local isomor-
phism 7y, p, defined by [Co00, (2.5.3)];

¢) d; is the canonical isomorphism of functors i’ := RHomo,(Oy,—) — ',
defined by [Co00, (3.3.19)];

d) e is the canonical isomorphism of functors 7* := wp, x[d] @~ 7* () — =,
defined by [Co00, (3.3.21)].

e) ¢ is the transitivity isomorphism f' — i'z', defined by [Co00, (3.3.14)].
Moreover, the upper right square commutes because of the transitivity of the trace
morphism [Co00, 3.4.3, (TRA1)], and the lower right square commutes by functori-
ality of the trace morphism Tr; with respect to e;.

In this diagram, the composition of the right vertical arrows is the projective
trace morphism Trp,. [Co00, 3.4.3, (TRA3)], and the isomorphism d; on the bottom
row identifies Tr; with the trace morphism Trf; for finite morphisms [Co00, 3.4.3,
(TRA2)]. As the latter is the canonical morphism i,RHome,(Oy, —) — Id defined
by Op — Oy, it follows that the composition of the left column and the bottom
row of the diagram is equal to R, (vs), which proves the proposition. O

5. PRELIMINARIES ON THE RELATIVE DE RHAM-WITT COMPLEX

We extend here to the relative de Rham-Witt complex constructed by Langer and
Zink [LZ04] structure theorems which are classical when the base is a perfect scheme
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of characteristic p ([I179], [IR83]). We begin by recalling some basic facts from their
construction.

From now on, we fix a prime number p. We denote by Z,) the localization of Z
at the prime ideal (p). Although many results of [LZ04] are valid for Z,-schemes,
we limit our exposition to the case of schemes on which p is locally nilpotent, which
will suffice for our applications.

5.1. Let S be a scheme on which p is locally nilpotent, and let f : X — S be
a morphism of schemes. An F-V-pro-complex of X/S as defined in [LZ04] is a
pro-complex {R : E,y1 — Ep},>1 of sheaves on X, where E, is a differential
graded W, (Ox)/f W, (Og)-algebra (i.e., E, is a commutative graded W, (Ox)-
algebra together with an f~1W,,(Og)-linear map d : E,, — E, (1), satisfying d(a3) =
(do) B+ (—1)4°8*adf3 and d? = 0), which is equipped with a map of graded pro-rings

F:FEey1 — E,,
called the Frobenius morphism, and with a map of graded abelian groups
| E. — E._|_1,

called the Verschiebung morphism, such that the following properties hold:
(i) The structure map Wo(Ox) — EY is compatible with F and V.
(ii) The following relations hold:

(5.1.1) FV =p, FdV =d,
(5.1.2) V(wF(n)=V(w)n, forallwe E,,n€ Ept1,n>1,
(5.1.3) F(da)) = [a]P"Yd[a], for all a € O,

where [a] denotes the Teichmiiller lift of a to W, (Ox), for any n.

A morphism between two F-V-pro-complexes of X/S is a map of pro-differential
graded W,(Ox)/f W, (Os)-algebras compatible with F' and V. By [LZ04, Prop.
1.6, Rem. 1.10] there exists an initial object in the category of F-V-pro-complexes of
X /S, which is called the relative de Rham-Witt complex of X/S and is denoted by
{R: Wn+193(/5 — WnQB(/g}nzl- Each sheaf WnQ%{/S is a quasi-coherent sheaf on
the scheme W, (X) := (| X|, W,(Ox)) defined in 2.9, and the transition morphisms
R are epimorphisms. When S is a perfect scheme of characteristic p, the relative de
Rham-Witt complex coincides with the one defined in [I179]. Notice that we have
the following properties:

Wnx /s = Wn(Ox), Wify/s = %/s
and that, by [LZ04, (1.17) and (1.19)], relations (5.1.1) and (5.1.2) imply that
(5.1.4) Vd=pdV, dF =pFd.

In addition, when S is an [F)-scheme, the operators F' and V' satisfy the relation
VF =p.



26 PIERRE BERTHELOT, HELENE ESNAULT, AND KAY RULLING

We also recall the behaviour of the de Rham-Witt complex with respect to étale

pull-backs. Let

X/L)X

[, 1

g —2=s
be a commutative diagram in which h is étale and ¢ unramified. Then, for all
g>0andr>n>1, W,(X') is étale over W,(X) and we have the W,.(Ox)-linear
isomorphisms

(5.1.5) WT(OX/) ®h71Wr(OX) h_lang(/S SRR Wan(’/S”
(5.1.6)
Wi (Ox7) ®@p-1yw,(0x) b~ (FL "W Q% 15) = FIT"WaQ% g, a®@w e T a)w,

where, for any W,,-module M, F] "M denotes M viewed as a W,.-module via F"™" :
W, — W,, [LZ04, Prop. 1.11, Prop. A.8 and Cor. A.11].

Finally, the completed relative de Rham-Witt complex is defined by W5 /5=
@n WR 2 /s the canonical morphisms WQS, /s Wi /5 are still epimorphisms.

5.2. Let S = Spec A be affine. We want to recall the calculation of I/VQZ‘[I1 /AT

I(Ad, WQ?M / S)' We need some notations for this.
S
A weight is a function k : [1,d] = {1,2,...,d} — Z[%}Zg. We write k; := k(i), for

i € [1,d]. The support of k, supp k, consists of those i € [1,d] with k; # 0. For any
weight k& we choose once and for all a total ordering on the elements of the support
of k,

(5.2.1) suppk = {i1,..., i},
such that:
(1) OI“dp ki1 < OI'dp ]{JZ‘Q <... < OI‘dp kiT-
(ii) The ordering on supp k and on supp p®k agree, for any a € Z.
We say k is integral if k; € Z, for all i € [1,d]. We say k is primitive if it is integral
and not all k; are divisible by p. We set

(5.2.2) t(k;) = —ordyk; and t(k) = {max{t(ki) i€ suppk} if suppk 70,

if k=0.
If £ # 0, t(k) is the smallest integer such that pt®)E is primitive, and we have

t(k) = t(ki,) = t(kip) = -+ = t(ki,).
We denote by u(k) the smallest non-negative integer such that p“k L is integral,
ie., u(k) = max{0,t(k)}. Notice that k is integral iff u(k) = 0 iff ¢(k) < 0, and &
is primitive iff ¢(k) = 0. An interval of the support of k is by definition a subset
I C supp k of the form

I= {i&is—i—la R 7i5+m}-

We denote by k; the weight which equals &k on I and is zero on [1,d]\ I. If k is fixed
and [ is an interval of the support of k, we write u(I) := u(kr) and t(I) = t(kp).
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An admissible partition P of length q of supp k (or just of k) is a tuple of intervals
of suppk, P = (lo, I1,...,1;), such that:
(i) suppk=IloULU...Ul,.

(ii) The elements in I; are smaller than the elements in ;41 (with respect to
the ordering (5.2.1)) for all 5 =0,...,q — 1.

(iii) The intervals Iy,..., I, are non-empty (but Iy may be).
Notice that u(k) = u(lp) if Iy # 0 and w(k) = u(ly) if I = (.

For any n < oo, we write X; := [z;] € W, (A[z1,...,z4]). If k is an integral weight

as above, we write X* = X ---Xik:”" € Wn(Alzi,...,z4q)).

71

Let k be any weight and n € W(A). We define
(5.2.3) O (n, k) := ViR (X" k) € W(Alzy, ... 24))

and

dvﬂ(k)(nXP“(k)k) if k is not integral

U .
nF’t(k)prt(k)k if k is integral Aler,-o,zal/A

(5.2.4)  e'(n, k) := {
Definition 5.3 (Basic Witt differentials [LZ04, 2.2]). Let k be a weight, P =
(Io, I1, ..., 1,) an admissible partition of k, and & = V¥¥) () € W(A). The basic

Witt-differential e(&, k, P) € WQ4

Azt mg] /A 18 defined as follows:

60(77,]{2]0)81(1,]{3[1)"'61(1,]{7[(1) if Io #wa

k =
6(57 773) {61(77, ]{;11)61(1, kfz) T 61(17 qu) if IO - @

Rules 5.4 ([LZ04, Prop. 2.5, Prop. 2.6]). Let k be a weight, P = (Io, I1,...,1;) a
partition of k and & = V¥*)(n) € W(A). Then:

(1) p€(§7 k>P) = 6(,0§, k‘,P) for all p € W(A)
e(F¢, pk,P) if Iy # 0 or k integral,

i) Fe(& k,P) =
. ¢ ) {e V=I¢ pk,P) if Iy = 0 and k not integral.

@

(
(V¢, %k,'P) if Iy # (0 or %kz integral,
(

i) Ve(e, k,P) =
() ¢ ! {e pV¢, %]“%P) if Iy = 0 and %k‘ not integral.

0 if Iy = 0,
(iv) de(&k,P) =< e(& Kk, (0,P)) if Iy # () and k not integral,
p~ " ®e(¢ k, (0,P)) if Iy # 0 and k integral.

Theorem 5.5 ([LZ04, Thm. 2.8]). Everyw € WQY
as

o1, mq]/A COT uniquely be written

w=YelpkP),
k,P
where the sum is over all weights k with |supp k| > q and over all admissible parti-
tions of length q of k, and the sum converges in the sense that, for any m > 0, we
have &, p € V"W (A) for all but finitely many & p.
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For a weight k, n > 1 and n € W,,_,,)(A) we define ) (n, k) € Wy, (Al21, ..., z4])
and el (n, k) € Wth[m,m,xd]/A by the same formulas as in (5.2.3) and (5.2.4). For P
an admissible partition of length ¢ of k and ¢ = V*(®)(n) € W,,(A), we then define
en(§,k,P) € WnQi‘[mw,xd]/A by the same formula as in Definition 5.3 but with e’
replaced by e€!,, 7 =0, 1.

Corollary 5.6 ([LZ04, Prop. 2.17]). Every w € W”QqA[xl,...,xd]/A may uniquely be
written as a finite sum

w=>en(&hp.k,P),  Cep € VEIW, ) (A),
k,P

where the sum is over all weights k with |supp k| > q and such that p"~ 1k is integral
and over all admissible partitions P of k of length q.

We now assume that S is an [F-scheme. The following proposition is known if S
is perfect (see [IR83, II, (1.2.2)]).

Proposition 5.7. Let S be a locally noetherian Fy-scheme and X a smooth S-
scheme. Then the sequence
(1®F™,—1@F™d)

—1
Ffﬂg(/s @ Fng(/s

W1 Q% g — RV, Q% o — 0

-1
F'Os ®@w, 4, (0s) Wn+1Q§(/S
avnr4vne
=T

is an exact sequence of Wy+1(Og)-modules.

Proof. The question is local, we thus assume S = Spec A, X = Spec B and B is
étale over By = Alxy,...,xq]. As WQB(/S — WnHQ;(/S is an epimorphism, [LZ04,
Prop. 2.19] provides the exactness of the second line, and we only have to show that

(1®F™,—1®F"d)

— — dV" Vn
(*B/4) : FSA®Wn+1QqB/2 FquB/Z@FquB/A Ll AN Wo19% 4

is exact. Notice that it is a complex, as for a € A and w € Wn_l’_quB_/z we have
dV™(aF"w) — V" (aF"dw) = 0.

Notice also that, if we let Wa,42(B) act through F™"* : Wa,, 1 o(B) — W,41(B), the
differentials of this complex are Wa,2(B)-linear, since dF"*! = p"t1Fntld = (0 in
Wht1. We claim

(5.7.1) (xp/a) = FI' (x5, /4) ®@wanya(B1) Wont2(B).
Indeed we have the following diagrams:

— 1QF™ _
FI (I A® Wan Q) F2rQg

[ I

- (1&F™)®1 _
FIHY(FrA® Wn—f—quBl}A) ® Wany2(B) e, F:LH(F:LQQBJA) @ Want2(B),
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—1®F"d n
Fn+1(FnA®Wn+1QB/A) © s F2 “Q‘}B/A
_ (-1®F*d)®1 . " T
FrM Y (FrA @ WnHQ‘IBl} ) ® Wanio(B) N Y03 0% /) @ Wanya(B),
both with vertical maps
(a@w) @b a® F" 1 (bw, n®b— FH (b,
and
F>k2n+1Q€IB7}4 ® F*Qn—HQqB/A avr4vne 1Wn+1QB/A
(dV"+V™MR1 . T
Fn+1(Fan LA F"Qqu/A) ® Wapso(B) ——— F) “Wn+19791//4 ® Wopni2(B),

with vertical maps
(n,w) @b (F* L (b)n, F2T(b)w), w® b F(b)w.

Using again the relation dF"+ = pnt F"+1d = 0 in W41, one checks immediately
that all three diagrams commute. Now the claim (5.7.1) follows, since the vertical
maps are isomorphisms by (5.1.6). As Wa,y0(B1) — Wayta(B) is étale [LZ04,
Prop. A.8], we are thus reduced to the case B = By = Alz1,...,x4].

Now take o € Q%/A and 3 € QqB/IlL‘ with V"(a) = —dV"(8). We have to show
that there exists an element v € F"A ® W, 1107 B7 4 With

(5.7.2) —(1® F'd)(y)=a and (1® F")(y)=p.

By Corollary 5.6 (and keeping the notation used there), we can write a and
uniquely as finite sums

(5.73)  a=> elp,kP), B=) e(mok Q), with&p,mo € A,
kP k,Q

where the sums are over all integral weights k and all admissible partitions P =
(Io, ..., 1) of length ¢ (resp. over all admissible partitions Q = (Jy,...,Jg—1) of
length g — 1). Using the rules 5.4 (iii) and (iv), we obtain

(5.74) V™(a Z > en@" TV (&) 2, P)

=0 —i primitive
and Ig=0

+ Y e (V(Ep)s . P)

n integral

or In#0
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and

(575) —dv' @) = > e (V" (mo). . (0,Q)

Ln integral

and Jo#0

+ Z —en+1 (V" (1k,0); p*’iw 0,9)),

k

—/ not integral

and Jo#0
where t(k/p") is defined as in (5.2.2). By the uniqueness of this presentation, and

since V" : A — Wp41(A) is injective, the equality V" (a) = —dV"™(8) thus gives the
following set of equations:

(ke k
Gp = —p o, i Tis integral, P = (0,Q) and Jo # 0,

- k
ko = —p" "p, if — is primitive, P = (0, Q), Jo# P and 0 <i<n—1,
p

Sep = 0, if Inp#0.

One now easily verifies that (5.7.2) holds for the following choice of v € F' A®yy, , , (4)

—1
Wn—l—quB/A:
n—1
R o n—i k.
= ) ( &k,0,0) ® enta (V' (1), 17, Q))
=0 % primitive
and Jo#0
Y (me®en (V). 4. 9)
% primitive
and Jo=0
+ > me®enn(l, £, Q)
pin integral, Q
This proves the proposition. O

5.8. We now recall some facts from [I179, 0, 2] about the Cartier operator and its
iterates.

Let S be an IF,,-scheme, and denote by Fg : S — § its absolute Frobenius endomor-
phism. Let X — S be a smooth morphism of [F-schemes and set X (P") .= S s FeX.
We have the usual diagram, which defines the iterates Fy /s of the relative Frobenius
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morphism (we write Fy/g = F)lqs, W =Wwh:

Notice that
F)?/S = FX(pnfl)/S o...0Fxg.
For an S-morphism f : X’ — X we denote by f®") the base-change morphism
FO =1dg x f: X' 5 x @),
The inverse Cartier operator is a homomorphism of graded Oy (,)-algebras
CX}S ;((p)/s — HY (Q%/s),
which is uniquely determined by

(5.8.1) C)_(}S|OX(F) =Iy)g and CX/S(W*da:) = 2P ldz, for all z € Oy.

The inverse Cartier operator is an isomorphism (since X/S is smooth). For n > 0,
one defines abelian subsheaves of Q7

X/S
(5.8.2) B, Q! x/s € Zn 9% /SCQX/S
via
By g =0, ZoQ% g =% g,
q—1 . +1
B o = BOY o = dQY G, Z219% o = 29% ¢ = Ker(d : 0% ¢ — Q415),
and, for n > 1,
1

CX/S B QX<p>/s = BnHQX/s/Bl X/81

C)_(/s Z QX@)/S — ZnHQX/s/BlQX/S
We obtain a chain of inclusions
(5.8.3) 0C BlQX/s Cc...CB Q%(/S C Bn+1Q§(/S C...

C Zn1Q% /g C Zn/s C - C Z10% /g C Q-

Proposition 5.9 ([II79, 0, (2.2.7), Prop. 2.2.8]). Let S be an F,-scheme and X a
smooth S-scheme. Then, for all g > 0 and n > 1, the sheaves Z,, Q and B, Q1
satisfy the following properties.

(i) Znﬁg(/s and Ban(/S are locally free O y ) -modules of finite type, and, for
any h: 8" — S, we have

X/S X/S

nP"* B0 s B!

(p™)*
hy " ZnS X/S X'/8"

X/S—>ZQ

X//S/7

where hx : X' := 8" xg X — X is the base-change map.
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(ii) If f : X' = X is an étale S-morphism, then there are natural isomorphisms

f( ")* B, 0

F* 2,00 X/s

X/s -~ B,

= 7,04

X'/8? X'/s

(iii) Bnﬂg(/s 18 the sub-Og-module of Q%{/S locally generated by sections of the

form a’fr_l aqr_ldal ~dag, with a; € Ox and 0 <r <n—1.
(iv) Z QX/S is the sub-Og-module of

, pr—1 o n_1
sections of the form bal ~ -

X/8 locally generated by B QX/S and

day - --dag, with a; € Ox and b € Ox ).

Proposition 5.10 (cf. [I179, I, Prop. 3.3]). For X/S smooth as above, there is a
unique map of Wy, (Og)-modules

W% g

dvr—10t .’

Co 'l FouWa(Os) @w,05) W s —
X/8

which makes the following diagram commutative

F
EWn(Os) @w, 44 (05) W"‘HQX/S 1&) W, Q?{/s

Jin j

q cnt Wn 4
F Wy (Os) @w,(0s) WnQX/S e 1gé(s/s’
q o o
Forn =1 we have FS*OS®OSQX/5 QX(P>/S’ and C;;t = C™1 QX(p)/S — a0% s

is the inverse Cartier operator.

Proof. Since 1 ® R is surjective, it is enough to see that the kernel of 1 ® R is
mapped to dV"™ 1Qq X/$ under 1® F. But an element in the kernel of 1 ® R is a sum

of elements of the form a ® V"w and a ® dV"n, with a € W,,(Og), w € QX/S and

n e QX/S We have in W, QX/S

1@ F)(a®V"w)=aV" Hpw) =0, (1®F)(a®dV"y)=dV" " (F""}(a)).

This gives the existence and the uniqueness of C,; 1. The second statement follows
from the fact that 1 ® F' is compatible with products, and from the formula 1 ®
F(a®d[z]) = axP~'dz, for a € Og, x € Ox. O

Corollary 5.11 (cf. [1179, I, Prop. 3.11]). Let X/S be as above. Then:
(i) Im(1® F": F'Og OWpi1(0g) W”‘HQX/S — QX/S) Z QX/S

(i) Im(1® F"'d: FI'Os ®w,  (0g) FWnQ% g — Q B, Q%

X/ X/S) /S

Proof. We do induction on n. For n = 1, (i) follows from Proposition 5.10 and the
relation d = FdV, and (ii) holds by definition. Now assume the statements are
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proven for n. To prove (i) we consider the following commutative diagram:

n 1QF™ 1®F
F] +1OS ®Wn+2(os) WnJrQQg(/S = sy F,.Og ®W2(OS) WQQX/S Qg(/s

e e |

q
" 1QF" q c-! Dx/s
F™Og OW,11(0s) Wn+1QX/S ’ QX(P>/S 109 /1 :
X/S

By induction hypothesis we have

Im((l@R)o(l@F”)) :Im((1®Fn)o(1®R)> Fs.0s®04 Zy, QX/S_Z Qx(m/sv

where the last equality follows from the compatibility with base-change. Now, thanks
to the relation d = F"*1dV"™*t! (i) follows from the definition of Z,119Q% /- The
proof of (ii) is similar. O

Lemma 5.12. Let X/S be as above. The sheaf Ban(/S s given by

(1@ F"~'d: F'Os @w, ,,05) FWaQ% 5 = % 5)

= {1 F'd)(a) |0 € FIOs ®w,.,(05) War1 Q% with (1© F")(a) = 0}.

Proof. We call the left hand side A, and the right hand side B. We know from the
previous corollary that B, Q% X/s = = A, and we want now to show that A = B. In

the following, all non-specified tensor products are over Wy,41(Og). We have the
commutative diagram

FrOs ® FWa Qs s P05 © W1 2%
1@& M
2%/s

Since we also have (1® F™)o (1® V) = 0 it follows that A C B. It remains to show

(5.12.1) Ker (1 ©F": F'Os @ W Q% — Fmg(/g)

C Im <F"(95 ® (RWa QL% & Wl 2) 220

FnOS ® Wn+1QX/S>

Indeed, if we take an element « in the kernel on the left hand side and we write it as
an element in the right hand side « = (1@ V)(8) + (1®dV)(y), then (1® F"d)(a) =
(1® F*1d)(B), i.e., B C A. The question is local in X, we may thus assume X is
étale over A%. For a W,,(Ox)-module M we write FI M, F* for M viewed as a left
Whir(Og)-module and as a right W,,;s(Ox)-module. Then we have the following
commutative diagram, in which the most right tensor product in the upper line is
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over W19 (OA‘;):

AL/S)*

(1®can)®1l l(l@can)@l

F"Og ® F, (W Q%(/?S') Fnt2 1®dV FrOg (Wn+1Qg(7]é)*Fn+l'

A% _
(Ffos ® Fu(Wallf 5 ) P2 2255 FI05 @ (Wopn Q) o). F nH) © Wan+2(Ox)

If we write V instead of dV and ¢ — 1 on the left hand side instead of ¢ — 2,
we obtain again a commutative diagram. Since X /Afé is étale, the vertical maps
are isomorphisms (in both diagrams). Thus if we denote the image in (5.12.1) by
m(X/S) we obtain

Im(X/S) = Im(A%/S). F"* @ws,, o0, 2 Wapnt2(Ox).

Similarly, denoting the kernel in (5.12.1) by Ker(X/S) one finds
Ker(X/8) 2 Ker(A4/S). F" ™ @, (0, 2 Woni2(Ox).

And, since Wy, 12(Ox) is étale over Wo,,12(O Ad ) [LZ04, Prop. A.8], it is thus enough
to prove (5.12.1) in the case S = Spec A, with A an F,-algebra, and X = Spec B,
with B = A[x1,...,z4].

Now, using the notation of Corollary 5.6, any element o € F'A® Wn+1Q‘JIB_/}4 can
be written as a finite sum

(5.12.2) a = Z Z a;®ens1(V'"® (1 p,0), k. P), opi € Wit —ury (A)-
P ?fofﬁf?g;all>

By the rule 5.4, (ii) we have

n—u(k n ; _ :
Fenia (V0 (o), ) — { 1700 P) Do =D or Uy 20,k integral)
0 if Iy # () and k not integral.

It follows that an element « as in (5.12.2) lies in Ker(1 ® F") = Ker(B/A) iff it
satisfies

(5.12.3) Z a; F7 77k pi) =0, for Iy =0 or (Ip# 0,k integral).

We consider the following three cases:
1) k is integral, i.e., u(k) = 0. Then, by Definition 5.3, e,+1(n,k,P) =
nen+1(1, k, P). By (5.12.3), we get

Zal®en+1(mk7’ak P (ZCLZ 77sz ) ®€n+1(17k773) =0.

2) k is not integral and Iy = (). In this case e,+1(n, k, P) € Im(dV') by Defini-
tion 5.3. Thus

> i @ ens1(igp, k. P) € Im(1 @ dV).

i
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3) k is not integral and Iy # 0. Now e,+1(n, k,P) € Im(V) by Definition 5.3.
Hence
Z a; & €n+1(77i,k’,777 k, P) S Im(l ® V)

(2
Putting the three cases together, we see that a € Ker(1 ® F™) implies a € Im(1 ®
V4+1®dV)=1Im(B/A). This gives the statement. O

Theorem 5.13 (cf. [1179, I, Cor. 3.9]). Let S be an Fp-scheme and let X be a smooth
S-scheme. Forn,q > 0, denote by gr”WQg(/S the n-th graded piece of the canonical
filtration

Fil"wQ

= VWY g + AV WO o = Ker(WQ o — WaQ g)-

X/S X/S X/S
Then we have an exact sequence of Ox-modules
Dss  ym Vs
0— Fft =2 2 "Wt — Fll ——2 0,
B ”ng/S e Zan(/g

where the second map is given by V" () +dV™(B) — [ and the O x-module structure
on gr”WQg(/s is given via

W,Ox F WpOx

Ox = .
VanloX anoX
0? q—1
Furthermore F)’é/s*# and F)’é/s*% are locally free O pny-modules.
nifx/s ZnQX/S

Proof. The exactness of the sequence follows from Proposition 5.7, Corollary 5.11
and Lemma 5.12. The second statement is proven as in [1179, I, Cor. 3.9]. By étale
base change (Proposition 5.9, (ii)), we reduce the question of the local freeness of
the two extreme Oy n)-modules in the exact sequence to the case X = A‘é. Since
everything is compatible with arbitrary base change in the base S (by Proposition
5.9, (i), we may also assume S = SpecF, and even S = Spec k with k algebraically
closed. But now the sheaves in question are coherent on (Az)(pn) =~ A9 hence locally
free in some non-empty open subset, whose translates under certain closed points
cover the whole of (A%)#"). As they are invariant under translation, this gives the
statement. ]

6. THE HODGE-WITT TRACE MORPHISM FOR PROJECTIVE SPACES

Let X be a noetherian F,-scheme with a dualizing complex, and let f : Y — X
be a projective complete intersection morphism of virtual relative dimension 0. Our
goal in the next two sections is to prove that, given a factorization f = 7 o4, where
m: P = ]P’ji( — X is the structural morphism of some projective space over X, and
1:Y < P is a closed immersion, one can define for all n > 1 a morphism

Timn - Rf W, 0y — W,Ox

so as to satisfy the following properties:
(i) Forn =1, 7jxy is the morphism 7 of Theorem 3.1;
(ii) For variable n, 7; r ,, commutes with R, F' and V.
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Our construction of 7; r, will be based on a generalization for arbitrary n of
the description of 7; given in Proposition 4.6: we will construct on the one hand
a trace morphism RW*WnQdP / «ld] — W,Ox, which will be a generalization of the
trace morphism Trp,. for the projective space, and on the other hand a morphism
W, 0y — WnQdP / «[d] which will be a generalization of the morphism vy : Oy —
wp/x|d] defined in (4.5.1).

We begin with the trace morphism for projective spaces.

6.1. We recall first from [I190, Déf. 1.1] that a smooth proper Fp-morphism f : X —
S is called ordinary, if it satisfies
R'f,.BQY

e 0, foralli,q>0.

This notion is compatible with arbitrary base-change in the base S, and ]P’I‘Fip is
ordinary over SpecF, [1190, Prop. 1.2, Prop. 1.4]. Hence if € is a locally free Ox-
module of finite rank on some Fj-scheme X, then P(£) = Proj (Symg  £) is ordinary
over X.

Lemma 6.2. Let f: X — S be ordinary. Then, for alln > 1 and q¢ > 0,

V' FGHRAOS ¢ — Rfgt"WOY
is an isomorphism in the derived category of quasi-coherent Og-modules (where the
Og-module structure on the right hand side comes from the Ox-module structure

defined in Theorem 5.13).

Proof. This follows immediately from Theorem 5.13 and the following claim:

(6.2.1) Rif*Znﬁg(/S SEAGEN Rif*Qg(/S, Rif*Bnﬁg(/S =0, foralli,g>0,n>1.

We prove this by induction on n. The statement for B; holds by definition of
ordinarity and for Z; follows from the exact sequence

0 -4 ettt 0.

0— 201 %/s %s

X/
Now for the general case consider the following commutative diagram (in which f,
is viewed as a functor on the category of abelian sheaves for the Zariski topology on
X[ =[X®))

-1

C q
; q X/s . Zn+1Q . q
BRI 25 s — Bl par, B f ity

| o L J

; 710
R Q%) /g Rif, =

X/s Ri 7.04
BiO% F 2180y

The horizontal maps are isomorphisms as is the vertical map on the left by induction
(notice that X()/S is also ordinary). Hence all maps in the diagram are isomor-
phisms, which yields the claim for Z,.1. To prove the statement for B, it is
enough to consider the upper line in the diagram, with Z replaced by B, and one
immediately obtains the statement. U
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6.3. Let S be a scheme on which p is locally nilpotent, and X an S-scheme. As in
the classical case [I179, I, 3.23], we define for any n > 1 the log derivation dlog,, to
be the morphism of abelian sheaves

dlog,, : O — Wy QY/g, a— dlog,(a) := Cﬁ].
a
We may write simply dlog if n is fixed.
For variable n, the maps dlog ,, satisfy the following relations:

(6.3.1) R(dlog,(a)) = dlog,,_1(a),  F(dlog,(a)) = dlog,,_,(a).

The maps dlog,, allow to define Chern classes for line bundles, and to prove for
relative Hodge-Witt cohomology the analog of the classical theorem on the coho-
mology of projective bundles (cf. [SGA 7 II, XI, Thm. 1.1]).

Theorem 6.4. Let X be an Fy-scheme, £ a locally free Ox-module of rank d +
1, P =P¢), and let 1 : P — X be the canonical projection. Denote by n, €
HO(X, le*WnQ}D/X) the image under dlog,, of the class of Op(1) in R'7.O}, and
by nh € HO(X, quWnQ(JID/X) its q-fold cup product. Then, for alln > 1 and all q
such that 0 < q < d, multiplication with 1} induces an isomorphism in the derived
category of Wy, (Ox)-modules

(6.4.1) Wn(Ox)[—q] — RW*WnQ(]IJ/X.

Furthermore these isomorphisms are compatible with restriction, Frobenius and Ver-
schiebung on both sides.

Proof. We first observe that

RIm W0, =0 for j#q.

Indeed, we can argue by induction using the exact sequences

0— gr"Wn+1QqP/X — Wn+1Q(1]:,/X — WnQ;]D/X — 0.

For n = 1, the claim follows from [SGA 7 II, XI, Thm. 1.1], and, since P(£) is
ordinary over X, Lemma 6.2 implies similarly the claim for all n.
Therefore, we obtain a canonical isomorphism

(642) R’/T*WHQ}ID/X - Rqﬂ'*WnQ%/X[_QL

and we can define the morphism (6.4.1) as corresponding via (6.4.2) and translation
to the morphism

(6.4.3) Wn(Ox) — quWnQI}D/X, w — wnl.

This reduces the proof of the theorem to proving that (6.4.3) is an isomorphism,
compatible with R, F' and V.
From (6.3.1), we get for all w € W,,41(Ox) the relations

(6.4.4) R(wny 1) = R(w)nl,  F(wni,,) = F(w)n

n Rqﬁ*WnQ‘IID /X From the second relation, we also get

(6.4.5) V(wng_y) = V(wF () = V(w)nj
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for all w € W,,_1(Ox). So the homomorphisms (6.4.3) satisfy the required compat-
ibilities.

To prove that the homomorphisms (6.4.3) are isomorphisms, we may now again
argue by induction on n, using the compatibility with R and V. Then Lemma
6.2 reduces the proof to the case n = 1, which is known by [SGA 7 II, Exp. XI,
Thm. 1.1]. O

Definition 6.5. Under the assumptions of Theorem 6.4, we define the Hodge-Witt
trace morphism for the projective space P(€) to be the W,,Ox-linear map

(6.5.1) Trp, RW*WanPl,(g)/X [d] — W, Ox

obtained by inverting the isomorphism (6.4.1), shifting by —d and multiplying by
(—=1)#d+1)/2 Theorem 6.4 implies that Trp, ,, is compatible with restriction, Frobe-
nius and Verschiebung. For n = 1, we obtain

Indeed, it follows from (6.4.1) that this is a local property on X. So we may assume
that P(&) = ]P’)d(. Let Xo, ..., X4 be homogenous coordinates, and z; = X;/Xy. Then
Trp,. is defined as the isomorphism which maps the Cech cohomology class dz; A
o Adxg/xy - xg to (—1)4H/2 [Co00, (2.3.1)-(2.3.3)], and this Cech cohomology
class is equal to 77‘11.

7. THE HODGE-WITT FUNDAMENTAL CLASS OF A REGULARLY EMBEDDED
SUBSCHEME

In this section, we assume that X is a locally noetherian scheme of characteristic
p, and we consider a regular immersion ¢ : Y — P of codimension d, where P is a
smooth X-scheme. Under these assumptions, we want to associate to Y a canonical

class vy € I'(P, H%(WnQdP/X)), for each n > 1.

Proposition 7.1. Under the previous assumptions:
(i) Ift1,...,tq is a reqular sequence of sections of Op, then, for alln > 1 and
allr > 1, [t1]",..., [ta]" is a regular sequence of sections of W,(Op).

(ii) For alln > 1 and all q, ”H{/(Wnﬂsﬂ/x) =0 forj #d.

Proof. We proceed by induction on n. In the exact sequence of W,,;1(Op)-modules
0— F"Op L5 Wit (0Op) 25 W (Op) — 0,

the action of [¢;]” on FI'Op is given by multiplication by ¢” " on Op. As Pis a
locally noetherian scheme, the sequence 57", . .. i " is regular in Op, and the first
claim follows easily.

For n = 1, the second one is a well known consequence of the regularity of the
sequence ti,...,tq. As Op is locally free of finite rank over Opn), we also have
’H{/((’)P(pn)) = 0 for j # d. In the exact sequence

q

b = WnaQh o =5 W08 — 0,

0 —>gran+1Q P/X P/X
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q
P/
ture for which it is an extension of two Op-modules which are locally free over

Openy. Therefore, ”Hg/ (gr" Wy 195 / ) =0 for j # d. The second claim follows by

induction. O

Theorem 5.13 allows to endow the kernel gr"W,, 112 X with an Op-module struc-

Theorem 7.2. Under the assumptions of this section, let t = (t1,...,tq) and t' =
(t, ..., 1)) be two reqular sequences of sections of Op generating the ideal I of Y in
P. Let n > 1 be an integer, and let J = ([t1],...,[ta]), T = ([t1],...,[t}]) be the
ideals of W,,(Op) generated by the Teichmiiller representatives of these generators.
If

Ba = Entiy, (0 (Wa(OP) /T, Wallp ) — Hiy (Wi x)

is the canonical homomorphism (and similarly for B+), then, with the notations of

4-1,

dlt] - dlta] 1. _ ditt] - d[t')]

Proof. Tt suffices to prove (7.2.1) in a neighbourhood of each point y € Y. Localizing,
one can reduce the proof of Theorem 7.2 to the case of a very simple change of
generators in Z, thanks to the following remarks.

a) If the sequence (t},...,t)) is deduced from (t1,...,tq4) by permutation, then
J =J’, and formula (4.2.1) implies the theorem.

b) If there exists invertible sections ay,...,aq € (’)IXD such that ¢, = a;t; for all
i, then [t]] = [a;][t;] for all i. So J = J’, we can apply Lemma 4.2, and we can

choose the matrix C' to be the diagonal matrix with entries [a;]. Then the theorem
follows from formula (4.2.1), because an element such as (4.1.2) only depends upon

the class of m mod (t1,...,ty)M, and here we have the congruence
d
dity] - dfty] = ([ Jlas) dlta] - -~ dfta] mod TW,QE .
i=1

¢) Given y € Y, there exists a permutation o € &4 such that, for any i, 1 <i <
d, the sequence t() = (t;(l), . ,t;(i), tit1,.--,tq) is a regular sequence of generators
of 7 around y. Indeed, a sequence of elements of Z, is a regular sequence of generators
if and only if it gives a basis of Z,,/m,Z,, and this reduces the claim to an elementary
result in linear algebra over a field. If we set t(0) = (¢1,...,t;), then t® = ¢, and
t(4) is deduced from t’ by permutation. So, using remark a), it suffices to prove the
theorem for the couple of sequences t=1) and t(?), for all i, 1 < i < d.

This reduces the proof to the case where there exists an integer ig € {1,...,d}
such that

d
’ . . /
ti = t’L fOI‘ 7 7é Z(), tiO - ZCiOajtj'
j=1

Using remark a), we may assume that ig = 1. Moreover, the fact that t and t’ induce
bases of the vector space Z,/m,Z, implies that the coefficient ¢; ; is invertible around

Y.
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d) In this last case, we define inductively elements tgj ) for 0 < j < d by setting

e 0) () _ G-

th) =1 =cy,1ty 7, ] ] + c1,5t4 for 1 < j.

)

If, for 0 < j < d, we define t\9) = (tgj),tz,...,td), then t© = t, t@ = ¢/, and it
suffices to prove the theorem for each of the couples tU—1), tU) for 1 < j < d. The
theorem is true for t(9, t() thanks to remark b), and, applying again remark a),
we can write all the remaining couples as changes of generators of the form

(7.2.2) th =t1 + cty, for some c € A, ti=1t; fori>2.

Thus it suffices to prove the theorem for the change of generators of I given by
(7.2.2). The generators ts,...,tq play no role and go unchanged along the compu-
tation, so we will drop them to simplify notations, and assume that d = 2.

Let h € VIW,,_1(Op) be defined by setting

(7.2.3) [t1] + [c][ta] = [t1 + cto) + h=[t1] +
in W, (Op). Since [ty] = [t2], this can be rewritten as
(7.24) [t1] = [t1] = [e][t5] + .

The binomial formula gives

n—1 n—1 . o
(7.2.5) [tlv’"”zam[cntgw”‘#zwhl([m[c][t’znp
i=1

Because the ideal VW,,_1(Op) C W, (Op) is a PD-ideal, we can write h’ = il
with rld € VW, —1(Op) when ¢ > 1. Therefore the numerical coefficient of hld in the
i-th term of the sum is divisible by p"~! for all i > 1. Since p"~! kills VW, _1(Op),
equation (7.2.5) reduces to

n—1 n—1

(7.2.6) [t = ([t1] = [c][ta])”

If, for all k > 1, we denote by J*) the ideal ([t1]*, [t2]*), this shows that J®" ) ¢
J'. So we can apply Lemma 4.2 to the sequences ([t}],[t4]) and ([t1]7" ", [t2]”" ),
which are regular by Lemma 7.1. Moreover, we can write equation (7.2.6) as

[t1]P

so that we can use as matrix C' in Lemma 4.2 an upper triangular matrix with
diagonal entries_l[t’l]pnil__ll, [t5]P" 'L (since [to]P" " = [th]P" 1. [t4]). In particular,
det(C) = [t}]P" ~L[th]P"" 1. Thus, formula (4.2.1) provides the equality

AL AR N A A P (AT
can o] i b‘[ P |

where o is the canonical homomorphism

n—1
Extly, (0 (Wn(Op) [T, Wah x0) — Extiy (0, (Wal(Op) /T ), W ).

n—1 n—1__
=[P T ]+ ea - (1),
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On the other hand, we also have J *"™) ¢ J. So we can also apply Lemma 4.2 to
the regular sequences ([t1], [t2]) and ([t1]?" ", [t2]?" ), using now for C' the diagonal
matrix with entries [t1]P" 1, [t2]P" " 1. If we denote by

@ &tcvlvn(op)( n(Op)/T, W, QP/X) — &L‘t%/n(op)( W(0p) /TP, W, QP/X)

the canonical homomorphism, formula (4.2.1) provides the second equality

dlt]dfs) |, _ [ 10 ] e
a2 o i D= ™ ]

As By = Bj(pnfl) oaand Sy = Bj(pnfl) o, relation (7.2.1) will follow if we prove
the equality

e 1[75'] P 1d[ dlty] | [tl]pnfl_l[tﬂ P 1d[ 1] d[tz]
(729 S ] - [ P ol
1n5xtW Op )( W(Op)) T@" QP/X) To prove it, it suffices to prove in W, QP/X
the congruence
(7.2.10)
0 P i) dltg) = [ el ] dt] mod ([t (2],

and, thanks to (5.1.3), the latter will follow by applying F"~! if we prove the con-
gruence

(7.2.11) dt}] d[th] = d[t1]d[t2] mod ([t1], [tg])Wgn_lﬁjé/X.

So let us prove (7.2.11). We still denote by h € VWa,,_oOp the difference h =
[t1] + [cta] — [t1 + cta] = [t1] + [ct2] — [t}] computed in Wa,,—1Op. Since t) = ta, it
suffices to prove the congruence
(7.2.12) dhd[ts] =0 mod ([t1], [t2]) Wan— 195 x-

For all i, let
Si(XO,' "7Xi7}/07"'7}/’i) € Z[XOM",XDYYOM",}/’L']

be the universal polynomial defining the i-th component of the sum of two Witt
vectors, and

(7.2.13) si(Xo, Yo) = Si(Xo,0,...,0,Y,0,...0) € Z[ Xy, Y]
Note that, for ¢ > 1, the polynomial s;(Xp, Yp) is divisible by XyYp, since (0, ...,0)
is the zero element in a Witt vector ring. By definition, we have
[t1] + [cto] = (t1 + cta, s1(t1, cta), ..., San—a(t1,cta)),
and
h = (0,s1(t1,cta),...,Sop—2(t1,cta)).

Since s;(Xo, Yy) is divisible by Yy, we can write s;(t1,cta) = z;te for some section
z; € Op. We obtain
h = (0, z1to, ..., ZQn_gtg),
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which we can write as

2n—2

h="Y" Vi(zllta)).
i=1
For each i, 1 <17 < 2n — 2, we now obtain

AV ([2i][ta]) dlta] = AV ([z][ta] F'(d[ta])) = dV([zi][t2]" d[ts])
= dV'([«]F'([ta))d[t2]) = d([to] V' ([2i]d[ta])) = dlta] V' ([2i]d[t2])
= VI(F'(d[t2]) [z)d[t2]) = V' ([t2)"d[to]

mod [tQ]Wgn,leP/X, which proves (7.2.12). O
Definition 7.3. Under the assumptions of this section, we define the n-th Hodge-
Witt fundamental class vy, of Y in P relatively to X as being the section of

dt,] - - d[td] }

defined locall

[tl}v'--a[td] ) Y

by regular sequences of generators of the ideal Z of Y in P.

HE (W04 /x) obtained by glueing the sections 5 ( [

Proposition 7.4. Forn > 1, let

R:HY (W1 Q%) ) — HE- (W0 ),
F: de(Wn+1Q§lD/X) — H%(WnQdP/X)a
& H%(WHQ?D/X) — H%(Wnﬂgdp/x)

be the homomorphisms defined by functoriality. Then

(7.4.1) R(vynv1) = Vyins F(vynt1) = Yy, V(vvn) = Pvmst

Proof. We may assume that there exists a regular sequence t¢1,...,t4 such that 7 =
(t1,...,t7). For each n > 1, let J, be the ideal of W, (Op) generated by the
Teichmiiller representatives [t;] of the ¢;’s, and let K,([t],,) be the Koszul complex
defined by the [t;]’s over W,,(Op). Since R([t;]) = [t;], scalar extension through R
yields an isomorphism

Wi (OP) @w, 1 (0p) Ke([tlnt1) — Ko([t]n)-

Using the fact that the [t;]’s form a regular sequence both in W, ;(Op) and in
Wi (Op), it can be seen in the derived category of W, (Op)-modules as an isomor-
phism

L ~
(7.4.2) Wiu(OP) @w, .1 (0p) Wns1(OP) )/ Tns1 — Wn(Op)/Tn.
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By adjunction, we obtain a diagram
(7.4.3)
( )(KO([t]nH)?WnHQC]lD/X))

\ ﬁJn+1

R g$t%/n+1(op) (Wn—i-l(OP)/jn—i-la Wn—i-lQ%/X) —_— de(Wn—&-lQ(;J/X)

’Hd(Hom{/VnH(Op) (K.([t]n—i-l)a WnQCfl’/X))

zT P R
HI(Homy, (o (Kel[tln), Wa2l 1))

~

-

~ 5 . L
gxt%/n(Op)(Wn(OP)/jn, WnQ%/X) LN %%(W”Q?D/X)»

~

in which p is defined so that the left part of the diagram commutes. On the other
hand, (7.4.2) implies that injective W, (Op)-modules are acyclic for the functor
Homw, 1 (0p) Wint1(Op)/Tn+1,—). Replacing Wn+1Q§l3/X and WHQ?;./X by injec-
tive resolutions, it is then easy to check that the right part of the diagram commutes.
As R(d[t1] - - - d[tg])) = d[t1] - - - d[tg], the first relation of (7.4.1) follows.

One proceeds similarly to prove the second one. Since F([t;]) = [t!] = [t;]F, and
the sequence [t;]?, . .., [tq]P is a regular sequence in W,,(Op), we obtain isomorphisms

Wa(OP) @w, 1 (0p) Ke([tlnt1) — Ke([t]h),

L ~
(7.4.4) Wa(Op) @w, .1 (0p) Wat1(OP) [ Tns1 —— Wi (Op) /TP,

where the tensor products are now taken via F : W, 41(Op) — W, (Op). They
provide a commutative diagram similar to (7.4.3)
(7.4.5)

Hd(Hom;/VnH(oP) (Ko([t]ny1), Wn-&-lQC]g/X))

0p) Wnt1(OP)/ Tns1, Wn+1Q§l;/X)

Bjn+1

F &Ut%/ — %dy(Wn-&-lQC]lD/X)

n+1

Hd(’;'-[om{/vnﬂ(op) (Ko([t]n+1>7 WnQdP/X))
0 ¢ F
HI(Homyy, o) (Ke([615), W )

\ M B A

7P

Entl, o) (Wn(Op) ST W, 0, x) ———— HE (Wl ).

Since F(d[t1]---d[tq)) = [t1]P~1 - [ta]P~td[t1] - - - d[ta], it follows that

dlta] ---dlta] |\ _ [Pt [t ] - dtd]
F(/Bjn+1(|: [tl],...,[t;] :|)) —ﬁjép)([ [tl]pci.”’[td]p d )-
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On the other hand, if o denotes the canonical homomorphism
a: Extfy (0p (Wn(OP) ) Tn, WaQb) ) — Extly (0, (Wa(Op) /TP, Wa %),
we have by (4.2.1)

dlt1]---d[ta] 1\ _ [ [ta]P~" - [talP = d]t] - - - dta]
a([ [tl]""7[td] :|) |: [tl]pa”-»[td]p

As ﬁj(p) oa = fz,, it follows that F(yyn+1) = Vyn-
The last relation of (7.4.1) follows formally, because V(vy,) = V(F(Yynt1)) =
PYYn+1- O

Proposition 7.5. Let n > 1 be an integer, and let vy, € H%(WNQ‘]@/X) be the
Hodge- Witt fundamental class of Y in P relatively to X, as defined in 7.5.
(i) The linear homomorphism W,(Op) — ’H%(WnQ‘}D/X) sending 1 to vy
vanishes on Wy (Z) := Ker(W,,(Op) — i, W,(Oy)).
(ii) Let vixn be the composition
(7.5.1)
Vi Wi (Oy) — H- (W) ) —— RLy (Wn Q%) [d]) — WoQF «[d],

where the first morphism is defined thanks to the previous assertion. Then 7;rn
commutes with R, F and V.
(iii) Forn =1, we have v; =1 = vf, where vy is the morphism defined by (4.5.1).

Proof. To prove assertion (i), we may again assume that Z is generated by a regular
sequence t1,...,tq. Any section w of W,,(Z) can then be written as a sum

n—1
w = Z Vi(laia]ta] + - + [aid][ta))s
i=0

with a;; € T and [a;;], [t;] € W,—i(Op). By functoriality, we have V(a)w =
V(aF(w)) for any a € W;(Op), w € H%(WiHQ%/X), i > 1. Using (7.4.1), we
obtain

Vi(lai ][t vvm = Vi(lail 1 (vvin)) =V (laig]t]vvn-i)-

The symbol (4.1.2) is linear with respect to m, therefore we have

[ai j][t;] d[t1] - - - d[tq]
[t1], ..., [td]

since the upper entry in the symbol belongs to ([t1], ..., [td])Wn_iQ?D/X.

In the definition of v; r,, the last two arrows commute with R, F' and V by
functoriality. Relations (7.4.1) imply that the first one also commutes with R, F
and V, since R(1) = F(1) =1, and V(1) = p.

Let us assume that n = 1, and check assertion (iii). By construction, 7; 1 is
the composition of the morphism i,Oy — H{E(Q4 / ) sending 1 to 7y,; with the
canonical morphism

[ai j][t5]vvin—i = B ( )=0

HY (0% x) — ROy (2% x[d]) — Q) x[d].
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Comparing with the definition of v in 4.5, and using the same notations, it suffices
to show that the composed morphism
©f My)p oGl d d Bz, 4,d 1d
Oy — Wy/x —_—> gItOP(Oy, QP/X) — HY(QP/X)
sends 1 to 7y,;. Since this is a morphism of sheaves (rather than complexes in the
derived category), it is a local verification, which is provided by Lemma 4.4. (|

Definition 7.6. Let X be a noetherian [F)-scheme with a dualizing complex, £ a
locally free O x-module of rank d+1, P = P(€), 7 : P — X the canonical projection,
1:Y — P aregular closed immersion of codimension d. For each integer n > 1, we
define a trace morphism 7; r,, by

Trp,

Ry 1,7,
(761)  Timn: RE(Wa(Oy)) =220 R (W08 4 [d]) —22% Wi (Ox),

where 7; r » is the morphism (7.5.1), and Trp, ,, is the Hodge-Witt trace morphism
defined in (6.5.1).

Proposition 7.7. Under the assumptions of 7.6, the morphisms T;  n satisfy the
following properties.

(i) For variable n, T xn commutes with R, F and V.

(ii) Forn=1, Tjz1=7f.

Proof. Taking into account Proposition 4.6, both assertions follow from the similar
properties of v; r », and Trp, ,, proved in 7.5 and 6.5. U

Definition 7.8. Under the assumptions of 7.6, we can use the previous constructions
to define a morphism 7; » : Rf,.(W(Oy)) — W (Ox) which commutes with F' and
V', and is such that R, o 7, = 75 rn 0 R, for all n, R, denoting both restriction
maps W(Ox) — W,(Ox) and W(Oy) — W, (Oy).

To construct 7; ., we first recall that, for any scheme X, the inverse system
(Wn(Ox))n>0 is lim-acyclic, as the cohomology of each term vanishes on affine open
subsets, and the inverse system of sections on such a subset has surjective transition
maps. So, if fe« denotes the obvious extension of the direct image functor to the
category of inverse systems, it suffices to define a morphism

(7.8.1) Time : Rfex(We(Oy)) — We(Ox)

in the derived category of inverse systems on X, and to apply the functor Rl.&l
and the canonical isomorphism R f, o R@ ~ Rl’&n 0Rfex. On the one hand, the
relations R(Vy,n4+1) = 7Yv,n imply that, for variable n, the fundamental classes define
a morphism of inverse systems i,.(Wa(Oy)) — HE(W.Q4 / +)- As the canonical
morphisms

HY (WaQp)x) = RLy (WeQf) x[d]) — W0 [d]

make sense in the derived category of inverse systems, we can define in this derived
category a morphism 7; e : ies(Wa(Oy)) = WaQ% /X [d] which has the morphisms
Yi,xn defined in (7.5.1) as components. On the other hand, the homomorphisms
dlog,, used to define Chern classes for invertible bundles form an inverse system of

homomorphisms, hence, for variable n, the powers of the Chern classes of Op(1)
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define a morphism W,(Op)[—d] — Rme,(W.Q5 /x)> which is an isomorphism of
the derived category of inverse systems. Composing its inverse with the projection
by Rmes of ¥ e provides 7; ro. It is clear that 7; r o has the morphisms 7; ,, as
components, and commutes with ' and V. Then the morphism

(782)  mxiRE(W(Oy) =5 REmR S, (Wa(Oy)) —m 1w (0x)

has the required properties.

Finally, as f is a morphism of noetherian schemes, f, and R f, commute with ten-
sorisation with Q. So we can define a morphism again denoted 7; » : Rf.(WOyq) —
WOx g by

(7.8.3) Tim  RE(WOyg) =5 RE(WOy) ©Q 2% woy .

This morphism also commutes with ' and V.

8. PROOF OF THE INJECTIVITY THEOREM FOR WITT VECTOR COHOMOLOGY

The main result of this section is Theorem 8.1 below, which gives an injectivity
property for the functoriality morphisms induced on Witt vector cohomology by
some complete intersection morphisms of virtual relative dimension 0. As explained
in Remark 8.2, Theorem 1.5 is a particular case of this result.

Theorem 8.1. Let f : Y — X be a projective morphism between two flat noether-
ian Zy)-schemes with dualizing complexes, which is complete intersection of virtual
relative dimension 0. We assume that there exists a scheme-theoretically dense open
subscheme U C X such that f~Y(U) — U s finite locally free of constant rankr > 1.
Let f, : Y, — X, be the reduction of f mod p™*1.

(i) For all ¢ > 0, the kernels of the functoriality homomorphisms

(8.1.1) FHY(X,0x) — HI(Y,Oy),
(8.1.2) fa  HI(X,, Ox,,) — H(Yy, Oy,),
(8.1.3) fo + HY(Xo, Wn(Ox,)) — H(Yo, Wn(Oy,)),
(8.1.4) [+ HY(Xo, W (0Ox,)) — HI(Yy, W(Oy,)),

are annihilated by r.
(ii) For all ¢ > 0, the functoriality homomorphism

(8.1.5) fo : H(Xo, WOXx,,0) — H* (Yo, WOy, 0)
18 1njective.
Remark 8.2. Theorem 8.1 implies Theorem 1.5. Indeed, let f : Y — X be as in

1.5. The morphisms X; — Xy and Y, — Y| are nilpotent immersions, hence the
canonical homomorphisms

Hq(Xo,WOXO,Q) — Hq(Xk,WOXk’Q), Hq(Y(),WOYmQ) — Hq(yk,WOyk@)

are isomorphisms [BBEQ7, Prop. 2.1]. Therefore it suffices to check that f satisfies
the hypotheses of Theorem 8.1. We may assume that X is connected, and replace Y
by one of its connected components mapping surjectively to X, so that X and Y are
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integral schemes. At any closed point y € Y, with image x = f(y), we may choose
a closed immersion Y < P around y, with P smooth over X. If dimOx, = n,
then Op, is a regular local ring of dimension n + d for d = dim(P/X), and Oy,
is a regular quotient of Op, of dimension n. Therefore, the ideal Z of Y in P is
regular of codimension d around ¥, and it follows that f is complete intersection of
virtual relative dimension 0. Moreover, the function field extension K(X) — K(Y')
is finite, hence f is finite and locally free of constant rank > 1 above a non empty
open subset U. As X is integral, U is scheme-theoretically dense and the hypotheses
of Theorem 8.1 are satisfied.

In order to prove Theorem 8.1, we will choose a factorization f = 7 o, where
1:Y - P= Pj‘g is a closed immersion, and 7 : P — X the structural morphism.
Let ig, mg be the reductions mod p of i, 7. The key point will be to relate the trace
morphisms 7, ,» constructed in 7.6 to the trace morphism 7 given by Theorem
3.1, and this is made possible by the following constructions.

Lemma 8.3. Let X be a scheme on which p is locally nilpotent, P a smooth X-
scheme, a C Ox a quasi-coherent ideal, X' < X the closed subscheme defined by
a, PP = X' xx P. For each n > 1, let N C Wnﬂ},/X be the additive subgroup
generated by sections of the form

(8.3.1) V'([ajw), dV'([aw), with a€a, we Wy ,Qpx, 0<r<n-1

Then, for variable n, the canonical homomorphisms WnQ;D/X — WnQ;D,/X, induce
a transitive family of isomorphisms

(8.3.2) WnSQp) /Ny = WnQpr -

Proof. Thanks to (5.1.2), one first notices that N, is a differential graded ideal of
Wiy - Using (5.1.4), one sees that, for all n > 1, V(N;}) C N, Using (5.1.1)
(and a direct computation for r = 0), one sees that F(N;, ;) C N;;. Therefore,
the projective system {W, Q5 /X JN2} is an F-V-procomplex over P/X. In degree
0, it is easy to see by induction on n that the ideal N, C W,,(Op) is the kernel of
Wn(Op) = Wy (Opr). It follows that {W, QP/X/NT:} is actually an F-V-procomplex
over P'/X'. Tt is then clear that it satisfies the universal property which defines
{W,05, / «}, which implies that (8.3.2) is an isomorphism of F-V-procomplexes. [

Proposition 8.4. Let X be a Zy)-scheme and denote X, = X ®z, Z(p)/p"H.
(i) For alln > 1, there exists a unique homomorphism of sheaves of rings

F™ Wn(Ox,) — Ox, _,

making the following diagram commute

’I’L+1 OXn 1 OXn 1

J/

2(0x,) ’
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where the vertical map is the natural reduction map. Furthermore, if we assume X
to be flat over Z, and denote by Ry : W(Ox,) — Wn(Ox,) the natural reduction
map, then

(8.4.1) Ker(F —1d : W(Ox,) = W(Ox,)) N [ ] Ker(F" o R,) = 0.
n>1

(ii) Let P be a smooth X-scheme and denote P, = P xx X,,. For alln > 1,
there exists a unique homomorphism of sheaves of graded algebras

Fn . WnQ;DO/XO — H.(Q;anl/anl)
making the following diagram commute

. F™ .
Wn+IQP7L71/X7L71 ? ZQPnfl/anl

|

W"Q;DO/XO BN H.(Q;%_l/Xn_l)‘

Furthermore, for all a € Op and alla € Of _ lifting a, we have

(8.4.2) F"™(dlog ([a])) = cl(da/a).
When X is a perfect scheme and X,,—1 = Wy, (Xo), F™ is the isomorphism
(8.4.3) On = WoQp /xy — H(Q%, /x, )

defined by Illusie-Raynaud [IR83, III, (1.5)].
Note that, in fqrrnula (8.4.2), the class of da/a does not depend upon the choice
of the liftng a: if b = a + pw, then
db/b = da/a + d(log(1 + p%)),
where log(1 + pw/a) is defined thanks to the canonical divided powers of p.

Proof. (i) We may assume X is affine. The kernel of the vertical map in the diagram
is locally generated (as an abelian group) by elements of the form V"([a]) and
V" ([pb]) for some a,b € Op,_, and 0 < r < n. As these elements are clearly mapped

to 0 under F™, this gives the unique existence of ﬁf
To prove (8.4.1), let w € Ker(F —Id) N, Ker(F" o R,). If w # 0, we can write

w=Y "Vi(la]), witha; € Ox, and a, # 0.
>
Then Ryi1(w) = V5([as]) € Ker(F5t1) € Wiy 1(Ox,), which is equivalent to
piaf € p*1Oyx, with @, € Oy any lifting of as.

Since X is Z,-flat, we obtain at € pOx, in particular af = 0 € Ox,. But by
assumption we have

Pw) = Y Vil = Y Villed) = w.

Hence a, = a¥ = 0, a contradiction.



RATIONAL POINTS OF REGULAR MODELS 49

(ii) First of all, since dF™ = p"F™d, the image of F" : Wn_le}anl/anl —
Q.Pn—l /X is clearly contained in ZQ},n_1 S X1 Thus the diagram makes sense.
Now, Lemma 8.3 and [LZ04, Prop. 2.19] imply that, in degree ¢, the kernel of the
vertical map on the left hand side is locally generated (as an abelian group) by

sections of the following form

(8.4.4) Vi), dv™(B), V'([plw), dV'([pln),
. -1
with a € Qan—l/Xn—l’ 8 € Q(IIDn—l/Xn—l’ 0<r<n,wée W”H*TQ?%_l/Xn_l and

nE Wn+1_TQqP_i1 JXo 1t One immediately sees that F™ maps the first three sections
to 0. For the last one, we observe that

F"aV" ([pln) = F*~"d([pln) = F" " ([pldn) = p”" =" d(F" " (1)) = 0
in H‘?(Q}nil / anl)‘ Thus F™ maps all elements in the kernel of the vertical map to
0 in HQ(Q;Dn_l/Xn_1
Ifae OIX%_1 lifts a, we get by construction

). Since the vertical map is surjective, this yields the statement.

s

F*(dla)/la]) = l(F™(d[a/[a))) = cl([a]”" " d[a)/[a]”

which gives (8.4.2).
Finally, let us assume that X is perfect and X,,_; = W, (Xy). By [IR83, III,
(1.5)], H.(Q;Dn,l/xn,l) has the structure of a differential graded algebra (dga) with
) = HTH(Q,

the differential d : Hi(QIDn,l/Xn,l nfl/anl) given by the boundary of

the long exact cohomology sequence coming from the short exact sequence

),

L] pn L] L]
0— QPn—l/Xn—l — QPZn—l/XQn—l — QPn—l/Xn—l — 0.
The isomorphism #,, is compatible with the differential and the product, and in-
duces thus an isomorphism of dga’s 0, : WnQy, v — H.(Q;an/Xnﬂ)' Oli the
other hand, it follows from the relation F"d = p"dF"™ that the morphism F"™ is

compatible with the differentials. Therefore F™ also induces a morphism of dga’s
. WHQ;DO/XO - H.(Q;an/anl)‘ In degree 0, 6, is defined by

n n—1
_ =p ~p —1:p
On(ao,...,an—1) =ay + pa; +- 4+ p" A,

where ag,...,a,—1 are liftings to Op, , of ag,...,a,—1 [IR83, p. 142, 1. 8]. This
definition shows that, in degree 0, 6,, is the factorization of the n-th ghost component
Wint1(Op, ;) — Op,_,. From the definition of the morphism of functors F" :
W1 — Wi, we also get that, in degree 0, F™ is the factorization of the n-th ghost
component. Since P = 0, in degree 0 and WnQ;D%1 /X1 is generated as dga by

its sections in degree 0, F™ and 0, have to be equal. O

Lemma 8.5. Let S be SpecZ,), X an S-scheme, m : P = IF’% — X the struc-
tural morphism of a projective space over X. For n > 0, denote by Sy, Xy, Pp, T
the reductions modulo p™t', and let BQ?%/X” C QdPn/Xn be the subsheaf of exact
differential forms.

(i) For alln >0, the canonical homomorphism

(8.5.1) b R'mn (9%, /x.) — Rmn (9%, /%, /B, /x.)
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18 an isomorphism.
(ii) Assume that X is flat over S, and let Yo — Py be a regular closed immersion
of codimension m. Then,

(8.5.2) Vi#Em, Vn>0 M () /By )=0.

Proof. Let QQ = Pg, and let Tp, ..., Ty be homogenous coordinates on (). We define
an S-endomorphism ¢ : Q — @ by sending T; to T7, 0 < i < d. By base change by
u: X — 5, we obtain an X-endomorphism of P, for which we will keep the notation
¢, as well as for its reduction mod p™*!.

Let us fix n > 0. We can use the morphism ¢"*' and view QSQHQ}n /x, as a
complex of quasi-coherent Op,-modules, the differential of which is then Op, -linear.
But P, has an open covering by d + 1 open subsets which are relatively affine with
respect to X,, and therefore R%r,, is a right exact functor on the category of
quasi-coherent Op, -modules. As Rdwn*(leD;} x,) =0, the first assertion follows.

To prove the second one, we use ¢"12 to view gf):}“Q;gn /x,, s a complex of quasi-
coherent Op, -modules with an Op, -linear differential, and we claim that the sheaf
of Op,-modules

HUGIT2 0%, x,) = 0:(0171Q, x, /BOTTO, x,)

has a filtration by sub-Op, -modules, the graded of which is locally free over Op,.
As Y is locally defined in Py by a regular sequence of m sections, the claim clearly
implies assertion (ii).

To prove the existence of this filtration, we may replace X, P by S, @), because
the projection v : P — @ is flat, and

U*(¢Q+ZQ. "/Sn) :_> ¢Q+2Q.n/Xn'

Now Sp is a perfect scheme, and S, = W;,4+1(Sp). Thanks to the last assertion of
Proposition 8.4 (ii), F™"*! defines an isomorphism of graded algebras

Fntl Wnt1Q9, /5, = M1 On/5n)-

We may view F" as an Og,,-linear isomorphism by endowing H'(an / g,) with the
Ogq,.-module structure provided by the homomorphism Og,, — ’;’-[O(QZ;)n / g, ) defined
by ¢"*2, and Wn+1Qb0 /S0 with the structure corresponding to the previous one via
(Fr1)=1 . HO(an/Sn) = Wn+1(Og,). The canonical filtration of WnHQéO/SO
is then a filtration by sub-Og,-modules, which can be transported to Hd(an / s,)

via F™"F1. As we know by [1179, I, Cor. 3.9] that the corresponding graded pieces
are locally free Og,-modules for the structure defined by the homomorphism

(8.5.3) F Ogo — Wn+1(0q,) /PWn41(0Og,)
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factorizing F' : Wy11(Ogq,) = Wn41(Ogq,), the proof will be complete if we check
the commutativity of the diagram

¢n+2* 0 R (ﬁnJrl),l
| F |
Oq, > Wit1(0q,) /pWi41(0q,)-

It is enough to check that the diagram induced on sections over D, (T;) C Qn
commutes, for 0 < ¢ < d. So we may replace Og, by A = (Z/p"t1Z)[z], with
z = (21,...,2q) and ¢*(zj) = :vz;, 1 <j<d Take f = Y ;az! € A, with
ar € Z/p" ' 7Z. Then

(ﬁerl)fl ° ¢n+2*(f) _ Zal(ﬁn+1)71(£pn+2[)'
1

As F"t1 s the factorization of the (n+2)-th ghost component w1 : Wy42(A) — A,

we see that (ﬁ"*l)_l(x§n+1) = [z;], 1 < j < d. Therefore, we obtain

(ﬁn+1)71 O¢n+2*(f) _ Zal[i]pl~
I

Since F is given by lifting an element of Ay to W,,+1(Ao), applying Frobenius and
reducing modulo p, this gives the commutativity of (8.5.4). O

Proposition 8.6. Under the assumptions of Theorem 8.1, let f = woi be a factor-
ization of f as the composition of a reqular closed immersion i:Y — P = ]P’;i( of Y
into a projective space on X, followed by the canonical projection w: P — X. For all

n>1, let fn,in, T, be the reductions of f,i,m™ modulo p"+'. Then the compositions

(8.6.1) Ox LS5 RE(0Oy) T O,

(8.6.2) Ox, L% R (Oy,) 22 Ox,,

(8.6.3) Wi(Oxy) 225 Rfo s (Wi(Oyy)) 22707 W, (Ox, ),
(8.6.4) W(Ox,) 25 Ry (W(Oy,)) 2270 W (Ox,),
(8.6.5) WOy, q 2% Rfg (WOy, 0) 2% WOx, q.

are given by multiplication by r.

Proof. Since the restriction of f above U is finite locally free of rank r, it follows
from (3.1.3) that the endomorphism of Oy induced by 7y o f* is mutiplication by 7.
But U is scheme-theoretically dense in X, therefore the same relation holds on X
itself. So (8.6.1) is multiplication by r.

Thanks to the flatness of X and Y over Z,), the spectral sequence for the com-
position of Tor’s implies that, for all n > 1, X,, and Y are Tor-independent over X.
Therefore, by Theorem 3.1, (ii), the morphism 7y, o fr is deduced from 7y o f* by
base change from X to X, and (8.6.2) is also multiplication by r.
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We want to deduce from this result that (8.6.3) is also multiplication by r. We
observe first that the homomorphisms F™ defined by Lemma 8.4 provide morphisms
ﬁ;é : Wn(OXO) — OXﬂ—l?
fo(FY)  fox(Wn(Oyy)) — fr—1+(Ov,_1),

RIm.(FB) : R'mou(Wa%, x,) — Rima 1499, x, /B, x. )
Moreover, we can use the isomorphism (8.5.1) and define

G = (b))~ o RUm(FB) : R0 (WaQ% x,) — Rimn 1.(Qh /. )

We consider the diagram
(8.6.6)

Trp7r0 n

——— Wa(Ox,)

lG’f» JFX
Trp P

d d L
Rimo () —23 Ox, .

13 70+ (Vig,mg,n)

Wn(OXo) — fO*(Wn(OYo)) — Rdﬂo*(W”QdPO/Xo)

ﬁxl f*(ﬁ%

n—1 ﬂ'n_l*(’\/fn—l)
OXH,1 E— fn—l*(OYn—l) E—

where the compositions of the upper and lower rows are respectively the maps in-
duced by (8.6.3) and (8.6.2) on degree 0 cohomology. Let us prove that this diagram
is commutative. The left square commutes because the morphism ]5)’} is functorial
with respect to X. To prove that the right square commutes, it suffices to show
that, if {grw and £gr are the de Rham-Witt and de Rham Chern classes of Op(1),
then §gRW~and {gR have same image in Rdﬂ”—l*<QdPn,1/Xn,1/BQCIan,1/Xn,1)' As
R*mp—14(F3) and b}, are compatible with cup-products, it suffices to show that the
diagram

dlo,
Rlﬂ'o*((’)léo) g RIWO*(W”Q}DO/XO)

T lle(ﬁ};)

dl .
Ry *(Olénﬂ) & R'7y1 *(Hl(QPnfl/anl )

is commutative, which follows from (8.4.2).

To simplify notations, we drop the base scheme from the indices, and denote
Cj‘_l,nil = Qdan /BQﬁlgnil. To prove the commutativity of the central square of (8.6.6),
it suffices to prove the commutativity of the diagram

i0+(Wa(Oyy)) —— HS, (Wn Q) «—— RLy, (WnQ} )[d] —— Wo Q4 [d]
H%(ﬁml lRFy(ﬁﬁ)[d] lﬁs [d]
i (Fp) H{ (Cf ) «——RLy, ,(C% d —— C% _ [d]

| [ T T

Z.n_l *(OYnfl) — Hgl/n,1 (QdPnfl) Q REYTL*]. (ng 1)[d} — QdYn,1 [d] ’

n—

to apply the functor Rm,_ 1., and to pass to cohomology sheaves in degree 0. In
this diagram, the upper left (resp. lower left) horizontal arrow maps 1 to vy, » (resp.
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YY,_1,1), and the middle horizontal arrow is an isomorphism thanks to Lemma 8.5
(ii). The middle and right squares commute by functoriality, and it suffices to prove
that the left rectangle commutes. This part of the diagram comes from a diagram of
morphisms of sheaves, therefore the verification is local on P. Thus we may assume
that Y is defined by a regular sequence t1,...,tg in P. Then, since Y and P are flat
over Z,), the images of this sequence in Op,_, and Op, (still denoted t1,...,t4) are
regular sequences defining Y;,_1 and Yj. It is enough to show that the symbols

[ d[t1] - d[tq]

1], - -, [td] } € Eatly, (0p) (Wa(Ox,), W)

dty---dtg

d
an [tl,...,td

} c &Et%Pn,l (OYn717 Q%’n—l)

dty---dtg | .
m
t, ..ty

have same image in ’H%(C’jﬂnfl). By functoriality, the image of [

d d . Cl(dtl s dtd)
g‘TtOPn_l (OYn—17CPn,1) 18 |: tl,,td

construction of F™ in Proposition 8.4 that ﬁﬁ([tl]) = tfn € Op, ,, and ﬁﬁ(d[tl]) =
cl(tfnfldti) e H'(Q} ). Since the tfn’s form a regular sequence in Op, ,, we may
d[t] - - d[td] ]

] . On the other hand, it follows from the

argue as in the proof of Proposition 7.4 to show that the symbols [ it] ita]
1f5---5(bd
n_1 n__1
c(t) - - th diy - dtg)
&t

equality is then a consequence of Lemma 4.2, and the commutativity of (8.6.6)

and have same image in Hgl/n_l (C’j‘in_l). The wanted

follows.

Returning to the homomorphism (8.6.3), we observe that it is defined by multipli-
cation by a section k, of W, (Ox,). Proposition 7.7 (i) implies that, for variable n,
the sections k,, form a compatible family under restriction, and satisfy F'(k,) = £n—1-
Ifk=lim ke I'(Xo, W(Ox,))s tlien F(k—r) = k—7. On the other hand, the com-
mutativity of (8.6.6) implies that F¢(k, —r) = 0. So, if R, : W(Ox,) = Wy(Ox,)
is the restriction homomorphism, we obtain that

k—1 € Ker(F —1d)N ﬂ Ker(F% o Ry,),

n>1

which is zero by (8.4.1). Thus x = r, hence k,, = r for all n.
If we now consider in the derived category of inverse systems the composition

Wa(Ox0) 2% Rfges(Wa(Oy,)) 2% Wa(Ox,),

we obtain a morphism which has (8.6.3) as component of degree n. Therefore, this
composition is multiplication by r on the inverse system W,o(Ox,). It follows that
the composition

Rl.glfo*o ) Rl'gln,mo
W(0x,) ——— RImRfoe.(We(Oy,)) ——— W(Ox,)
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is multiplication by r. Using the isomorphism Rl’gl o Rfpges = Rfgs 0 ]Ryin, we
obtain that (8.6.4) is multiplication by r. Tensoring by Q and using the commutation
of Rfp. with tensorisation by Q, we obtain that (8.6.5) is multiplication by . O

8.7. Proof of Theorem 8.1. The first assertion is a particular case of Theorem 3.2. To
prove the other ones, we choose a factorization f = mwoi, where ¢ is a closed immersion
of Y into a projective space P = IP’;"( over X, and = is the structural morphism, and
we keep the notations of the previous subsections. Applying the functor H4(X,,, —)
(resp. H' (X, —)), the morphisms Tt Tiyrn and 7; r define homomorphisms

H(Y,,Oy,) " HI(X,,Ox,),
HY(Yo, Wa(Oyy)) —% HY(Xo, W (Ox,)),
HY(Yy, W (Oy,)) T H9(Xo, W (Ox,)),
H(Yy, WOy, 0) = HI(Xo, WOx,.0)-

Proposition 8.6 implies that the composition of these homomorphisms with the func-
toriality homomorphisms defined by f, (resp. fy) is multiplication by r, and this
implies Theorem 8.1. ([

This also completes the proof of Theorems 1.5, 1.3 and 1.1.

9. AN EXAMPLE

Because Theorem 1.1 was previously known in some cases, and can be proved in
some other cases without using the most difficult results of this paper, it may be
worth giving an example for which we would not know how to prove congruence
(1.1.1) without using them. We give here such an example for each p > 7, except
perhaps when p is a Fermat number.

9.1. We begin with a list of conditions that we want our example to satisfy. In these
conditions, R, K and k are as in Theorem 1.1, and X is an R-scheme.
(1) X is a regular scheme, projective and flat over R.
(2) H°Xg,Ox,)=K,and HI(Xg,Ox,) =0 for all ¢ > 1.
(3) There exists ¢ > 1 such that H?(X}, Ox,) # 0.
(4) X is not a semi-stable R-scheme (in particular, not smooth).
(
(

w
NSNS AN

5) dim X > 3.
6) Xk is a variety of general type.

Conditions (1) and (2) will ensure that X satisfies the hypotheses of Theorem 1.1.
Condition (3) will ensure that we are not in the trivial situation described in the
first paragraph of subsection 1.4. Condition (4) will ensure that Theorem 2.1 does
not suffice to conclude. Condition (5) will rule out the case of surfaces, for which
Theorem 1.1 is already known by [Es06, Th. 1.3]. Condition (6) rules out rationally
connected varieties, for which Theorem 1.1 is also known because they satisfy the
coniveau condition of [Es06, Th. 1.1]. It also grants that, if X can be embedded
as a global complete intersection in some projective space over R, then congruence
(1.1.1) cannot be proved by applying Katz’s theorem [Kz71, Th. 1.0] to Xk, since a
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smooth complete intersection in a K-projective space for which Katz’s p invariant
is > 1 is a Fano variety.

Remarks 9.2. We begin with a few remarks that make it easier to find an example
satisfying the previous conditions.

(i) Examples such that dimy H'(Xy,Ox,) > dimg H' (X, Ox,) = 0 have
been known since Serre’s construction of a counter-example to Hodge symmetry in
characteristic p [Seb8, Prop. 16]. The general principle behind such examples is that,
by a theorem of Raynaud, the datum of a torsor ¥ on X under a finite group G
defines a morphism G’ — Pic x/Rr, Where G’ is the Cartier dual of G. Then, under
certain conditions, the Lie algebra of G, can have a non zero image in the tangent
space H'(Xy,Ox,) to Picy, /; (see [Ra70, Prop. 6.2.1] for a precise statement).
The simplest case (which was the one considered by Serre) is when G is the étale
group Z/pZ. Then the Artin-Schreier exact sequence shows that, when the torsor
Y}, remains non-trivial after extension to an algebraic closure k of k, its class gives
a non-zero element in H'(X7, Ox_ ), and therefore H1(X},Ox,) # 0. This happens
in particular when Y} is a complete intersection in some projective space, since we
then have dimy H°(Y}, Oy.) = 1.

To simplify our quest, we will therefore replace condition (3) (and condition (5))
by the more restrictive condition:

(3") X is the quotient of an hypersurface Y in a projective space P, of relative
dimension n > 4 over R by a free action of the group Z/pZ.

(ii) Assume that X satisfies condition (3’). Then H°(Yg,Oy,) = K, and
H1(Yk, Oy, ) =0 for ¢ # 0,n — 1. Because char(K) = 0, we have H!(Xk,Ox, ) =
H9(Yy, Oy, )¢. Hence, H(Xg,Ox,) = K, and condition (2) is satisfied if and
only if x(Ox,) = 1. As Yk is an étale cover of X of degree p, the Riemann-Roch-
Hirzebruch formula implies that

(9.2.1) X(Oyi) = Px(Oxy)-
Then condition (2) is satisfied if and only if x(Oy, ) = p. If d is the degree of the
hypersurface Y, we obtain
(1) Hp—-1) = dimg H" '(Yk,Oy)
= dimg H"(Pk, Opy (—d))
= dimg H(P%, Opy (d —n —1)).

The simplest choice for checking this equation is d — n — 1 = 1, so that we get
dimg HO(P%, Opn (d —n —1)) =n+ 1. Then we have to satisfy the conditions

(9.2.2) P> 2 n=p-—2, d=p.

Therefore, we will simplify even further our quest by replacing condition (3’) by
the following more precise condition, which implies (2), (3) and (5):

(3”7) X is the quotient of an hypersurface Y of degree p in the projective space
P, of relative dimension n = p — 2 over R by a free action of the group Z/pZ, with
p=>T.
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(iii) Assuming that X satisfies conditions (1) and (3”), then condition (6) follows
automatically. Indeed, Y is smooth over K since char(K) = 0, and its canonical
sheaf is then Oy, (—n —1+d) = Oy, (1). Since Yk is an étale covering of X, it is
the inverse image of the canonical sheaf on X, which therefore is ample too.

So it suffices for our purpose to construct an example satisfying conditions (1),
(37) and (4).

9.3. We now begin the construction of our example. Assume that p > 5, and let
be the free Z)-module (Z(p))P. We denote by eg, ..., e, its canonical basis. Let o
be a generator of G := Z/pZ. We let o act on E by cyclic permutation of the basis:

(9.3.1) giegrrep o ep 1(— €p).

Let H C FE be the hyperplane consisting of elements for which the sum of coordinates
is 0. It is stable under the action of GG, and we endow it with the basis v1,...,vp—1
defined by v; = e; — e;—1. We take as projective space the space P(H) ~ IP)%(;Q), with
the induced G-action, and we denote by Xi,..., X;,_1 the homogenous coordinates
on P(H) defined by the dual basis to the basis v1,...,vp—1 of H. One checks easily
that the orbit of X; under the G-action is described by

(932) X1 — *prl — Xp,1 — Xp,Q — Xp,Q — Xp,3 [ e 4 X2 — X1 (i—) X1)
Let go(X1,...,Xp—1) be the sum of the elements of the orbit of X7 i.e.,
p—1
(9.3.3) go(X1,. . Xpo1) = XD+ (= Xp )P + ) (Xi — Xi1)P
=2

Then go € pZ[X1,...,Zy,-1], and we can define a polynomial g(Xq,...,Xp—1) €
ZIX1,...,Zy1] by

1
(934) g(Xl,...,Xp_l) = I;g()(Xl,...,Xp_l).

Let Z C P(H) be the hypersurface defined by g. Since g is G-invariant, the
action of G on P(H) induces an action on Z. We denote by g the reduction of g
in F,[X1,..., Xp1]. We first study the singular points of Zg,. They are solutions
of the system of homogenous equations 9g/0X; = 0, 1 < i < p — 1, which can be
written as

Xf_l = (XQ — Xl)pil

(9.3.5) (X2 — ){1)1’—1 = (X3 - Xo)p L

(Xp—1 = Xp2)P ™! = (=X )P " .

Lemma 9.4. Let F,, be an algebraic closure of F,.

(i) The solutions of (9.3.5) in P"(F,) belong to P™(F,), and they correspond
bijectively to the families (uy, ..., up—1) € (FX)P~" such that

(9.4.1) 1—|—u1—|—---+up_1 = 0.
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(ii) Foru €Ty, let it = [u] € up-1(Zy) be its Teichmiiller representative. Then
a point x € P"(IF,) which is a solution of (9.3.5) belongs to Zg, if and only if

(9.4.2) L4y + -+ Gy € p*Zy,

where (u1, ..., up—1) € (F})P~1 corresponds to x by (i).

Proof. Given (u1,...,up-1) € (F) )P~ 1 satisfying (9.4.1), the corresponding solution
r=(§ ... :&-1) € P'(Fp) of the system (9.3.5) is obtained by choosing &, € F,
setting

(9.4.3) §i—&i1=ui 16 for2<i<p-—1,

and observing that (9.4.1) implies that —&,—1 = wu,—1&1. Assertion (i) is then
straightforward.

Let n1 € Z, be a lifting of &, and let ; be defined inductively for 2 <7 <p -1
by

(9.4.4) M — M1 = Ui—171-

Define o € Z,, by

(9.4.5) 1+a 4+ tp—1 = pa.

Then we get by adding the equations in (9.4.4)

(9.4.6) Mp—1 = L+ +Up2)m = (pa — tp—1)m.

We can now substitute (9.4.4) and (9.4.6) in gg, and we obtain the relation
go(m,...smp—1) = QA +a] +...+ a5+ (Gp-1 — pa)P)

(9.4.7) = (I +a+...+Tpo+p1+ Ep: (z;) aﬁ:{(—pa)j)

j=1

= pan! mod p*Z,.
Hence we get

(9.4.8) g(m, ... ,mp—1) = any  mod pZy,

and assertion (ii) follows. O

Lemma 9.5. (i) The action of G on Z, is free.
(ii) If p is not a Fermat number, then Zp, 1s singular, and is not the special
fibre of a semi-stable scheme.

Let us recall that the Fermat numbers are the integers of the form 22" + 1 with
n > 0, that any prime number of the form 2 + 1 with n > 0 is a Fermat number,
and that the only known prime Fermat numbers are 3, 5, 17, 257 and 65537.

Proof. A linear algebra computation shows that the only fixed point of o in P"*(IF,) is
the point o = (1:2:...:p—1). This point is the solution of (9.3.5) corresponding
tou; = ... = up-1 = 1. Lemma 9.4 (ii) implies that it does not belong to Z,,
which proves assertion (i).

As the system (9.3.5) has only a finite number of solutions, the singular points of
Zy, are isolated. In particular, since dim Zp, > 4, Zp, cannot be the special fibre
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of a semi-stable scheme if it has a singular point. To find a singular point on Zf,,
Lemma 9.4 shows that it suffices to construct a family (@;)1<i<p—1 of (p—1)-th roots
of unity in Z, such that 14>, 4; € pQZp. Since p is not a Fermat number, p — 1
has an odd prime factor q. We can choose a primitive ¢-th root of unity ¢, and
set ; =P for1 <i<q—-1, 4 =1forqg<i<qg+(p—q)/2—1, 1% = —1 for
q+(p—q)/2<i<p-—1. So Zp, is singular. O

9.6. We now address the regularity condition in 9.1 (1). We replace Z by another
equivariant lifting of Zp, defined as follows. Let R be the ring of integers of a finite
extension K of Q), of degree > 1, with residue field k. If K/Q, is unramified, we set
m = p, otherwise we choose a uniformizer 7 of R. Let A € R be an element satisfying
the following condition:
a) If K/Q, is unramified, then the reduction of A mod p does not belong to Fp;
b) If K/Q, is ramified, then A\ € R*.
Let h € Z[X, ..., Xp—1] be the product of the elements of the orbit of X1, i.e.,

(9.6.1) X1, Xpo1) = H (Xi — X;_1)
i=2

and let f € R[X1,..., X, 1] be defined by
(9.6.2) f=g+mh.

We define Y C P% to be the hypersurface with equation f. Since f is invariant
under G, the action of G' on P% induces an action on Y. Its special fibre Y}, is
equal to Zg, on which G acts freely by Lemma 9.5. Then the fixed locus of o is a
closed subscheme of Y, and its projection on Spec R is a closed subset which does
not contain the closed point. Therefore it is empty, and the action of G on Y is free.
We define X to be the quotient scheme X =Y/G.

Proposition 9.7. Assume that p is an odd prime which is not a Fermat number.
Then the scheme X defined above satisfies conditions (1) - (6) of 9.1.

Proof. As observed in 9.2 (iii), it suffices to check that X satisfies conditions (1),
(37) and (4), and condition (3”) holds by construction.

The hypersurface Y is projective and flat over R, since g is not divisible by .
So X is also projective and flat. As Yy = Zi, Lemma 9.5 (ii) implies that Y is not
semi-stable. Since Y — X is étale and semi-stability is a local property for the étale
topology, X is not semi-stable either. So we only have to prove that X is regular.
This is again a local property for the étale topology, hence it suffices to prove that Y
is regular. Because Y is excellent, its singular locus is closed, and the same holds for
its projection to Spec R. So it is enough to check the regularity of Y at the points
of its special fibre. The regularity is clear at the smooth points of Yy, and we need
to prove it at the singular points.

Let = (& : ... : §&-1) € P"(k) be a singular point of Y. As Yy = Zj, «
corresponds by Lemma 9.4 to a family (u1,...,up—1) € (F) )P~ such that

(9.7.1) 14y +- F by 1 =p°B



RATIONAL POINTS OF REGULAR MODELS 59

for some 3 € Z,. We have seen in the proof of Lemma 9.4 that £, € F)’, so we may
assume that & = 1. We set 71 = 1, and we define inductively n; for 2 <i <p—1
by (9.4.4). This allows to work on the affine space A% = D, (X1) C P}, and we will
denote
a*()(g,...,)(p_l) = a(l,jfz,...,)(p_l)
for any homogenous polynomial a(Xy,...,X,—-1) € R[X1,...,Xp—1]. For 2 <i <
p—1, we set
Xi=ni+Y;

so that (7, Ya,...,Y,_1) is a regular sequence of generators of the maximal ideal m,
of the regular local ring Opn .

We want to prove that Opn ./(f«) is regular, i.e., that f. ¢ m2. We first claim
that

(9.7.2) g« =pf mod m?.
Indeed, applying (9.4.7) with a = pf3, we obtain the congruence
gox(n2s -y Mp—1) =p°B  mod p*Zy,

hence
(9.7.3) g«(M2, ... ,mp—1) =pB  mod p*Z, C m2.
On the other hand, equations (9.4.4) show that, for 2 < <p— 2,
0
9.74 ey Mp—1) = 0.
( ) 8XZ (7727 9 np 1)
Finally, equations (9.4.4) and (9.4.6) show that
09+ - -1
8T1<7727 catp—1) = (p-1 — p—2)P - 775—1
—
1 - (p2ﬂ - f‘p—l)p_1
(9.7.5) = 0 mod p*Z, C m2.

Applying (9.7.3), (9.7.4) and (9.7.5) to the Taylor development of g, proves (9.7.2).
From the definition of h, we obtain

p—2 p—1
(9.7.6) ha(n, . mp-1) = —=(*B = ip—1) [ = [[ @ mod m,.
i=1 i=1
As hy = hy(n2,...,mp—1) mod my, f, satisfies the congruence
p—1
(9.7.7) fe=germih o =n(Za+ A ][ @) mod m?.
T

i=1
Let w = 28 + A]]; 4. If K/Q, is ramified, then condition 9.6 b) implies that w
is a unit. If K/Q, is unramified, then 7 = p, and condition 9.6 a) implies that the
reduction mod p of w is non-zero, hence w is again a unit. In each case, f. ¢ m2,
and Oy is regular. O

Appendix: Complete intersection morphisms of virtual relative
dimension 0
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As mentioned in the introduction, we explain here the construction of the mor-
phism 77 : Rf,Oy — Ox for a proper complete intersection morphism f:Y — X
of virtual dimension 0, and we give a proof of Theorem 3.1.

The Appendix consists of two sections. In section A, we recall the construction of
the invertible sheaf wy x associated to a complete intersection morphism f: YV — X,
and we prove some of its properties. We do not use duality theory here, even if we
keep for convenience the terminology “relative dualizing sheaf”. Instead, we use the
complete intersection assumption to deduce our constructions from the elementary
properties of smooth morphisms and regular immersions, thanks to the canonical
isomorphisms defined by Conrad [Co00, 2.2]. It is then easy to define the canonical
section df of wy,x when f has virtual relative dimension 0, and to prove its basic
properties.

In section B, we assume that X is noetherian and has a dualizing complex. We
then use duality theory and the identification wy, x 5 f'Ox to deduce 7r from the
canonical section d¢. To translate the properties of 6 into the properties of 7 listed
in Theorem 3.1, we need to use the fundamental identifications of duality theory, as
well as the various compatibilities between these identifications. Our proofs rely in
an essential way on Conrad’s exposition [Co00].

It may be worth pointing out that we need in this article the compatibility of
77 with base change in a context which is not covered by the base change results
of [Co00]. Indeed, we consider morphisms f which are not flat in general (such
as in Theorem 1.5), and base change morphisms which are not flat either (such as
reduction mod p™ in the proof of Proposition 8.6). The key property we use here,
which is familiar to the experts, but not so well documented in the literature, is the
Tor-independence of f and the base change morphism.

A. THE CANONICAL SECTION OF THE RELATIVE DUALIZING SHEAF

We recall now the construction of the invertible sheaf wy,x for a complete inter-
section morphism, and we explain some of its properties. As usual, the main work is
to prove that the constructions are well-defined, and in particular to check the sign
conventions. As the details are easy but tedious, we leave most of them as exercises,
and only sketch the main steps of the verifications.

We first recall a standard base change result for complete intersection morphisms.

Proposition A.1. Let f: Y — X be a complete intersection morphism of virtual
relative dimension m, and let

(A.1.1) Yy ——Y

o

X ——X

be a cartesian square such that X' and Y are Tor-independent over X.
(i) The morphism [’ is a complete intersection morphism of virtual relative
dimension m.
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(ii) Assume that X is quasi-compact, and that f is separated of finite type.
If & € Dgc(Oy) is of finite Tor-dimension over Oy, then Rf.E® is of finite Tor-
dimension over Ox, and the base change morphism

(A.1.2) Lu*Rf,E® — Rf.Lv*E®
s an tsomorphism.

Proof. The first claim is local on Y’, so we may assume that there exists a factor-
ization f = mw o such that 7 : P — X is a smooth morphism of relative dimension
n, and 7 : Y < P is a closed immersion of codimension d = n — m. Then i is a
regular immersion, defined by an ideal Z C Op, and, since the claim is local, we
may assume that Z is generated by a regular sequence t1,...,t4 of sections of Op.
Then the Koszul complex K,(t1,...,t4) is a resolution of Oy by Op-modules which
are flat relatively to X. Let P’ = X' xx P, and let ¢},...,t, be the images of
t1,...,tq in Op:. Since X' and Y are Tor-independent over X, the Koszul complex
K(t,...,t,) is a resolution of Oys over Op/, which shows that f’ is a complete
intersection morphism of virtual relative dimension m.

Assume now that the hypotheses of (ii) are satisfied. Since X is quasi-compact, it
suffices to check that R f,£® is of finite Tor-dimension when X is affine. We can then
choose a finite covering 4 of Y by affine open subsets U,, and we may assume that
the U, are small enough so that the restriction f, of f to U, can be factorized as
fa = My 0iq, where 7, @ P, — X is smooth and i, : U, — P, is a closed immersion
defined by a regular sequence of sections of Op,. For each sequence ag < - -+ <
denote Uy = Upy N - NUq,, Ja : Uy — Y, and let f, be the restriction of f
to Uy. If Z° is an injective resolution of £°, then the alternating Cech complex
C*(U4,Z°) is a resolution of £°*. Since j, is an affine open immersion, the complex
Jaxial® = Rja«ja€® belongs to Dgcvad(Oy) for each . Therefore it suffices to
prove that Rf.E® € Dgc,de(OX) for complexes £° of the form Rj,F*, where j is
the inclusion of an affine open subscheme U, and F* € Dgc,de(OU)- This reduces
the proof to the case where Y is affine. Then there exists a bounded complex of
Oy-modules P* with flat quasi-coherent terms, and a quasi-isomorphism P* — £°.
Since Oy has finite Tor-dimension over Ox, so does any flat Oy-module, and the
first assertion of (ii) follows.

The complex Lv*E® belongs to Dgcﬂd((?y/), and the base change morphism
(A.1.2) can be defined by adjunction as usual. Arguing as before, it suffices to
prove that it is an isomorphism when X is affine and £° is of the form Rj.F*, where
Jj is the inclusion of an affine open subscheme U C Y, and F* € Dgcyde(OU). Let
U = X' xx U, and let w : U' — U be the projection, 5/ : U’ — Y’ the pull-
back of j. Since j is an affine morphism and F* € Dgcﬂd((’)y), the base change
morphism Lv*Rj, F* — Rj.Lw*F* is an isomorphism. This implies that the base
change morphism for f and £° is an isomorphism if and only if the base change
morphism for foj and F* is an isomorphism. If one chooses a bounded, flat, quasi-
coherent resolution P® of F*, the Tor-independence assumption implies that, for
each n, (foj),P" is u*-acyclic. It follows easily that the base change morphism for
P* is an isomorphism, which ends the proof. O
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A.2. Let f:Y — X be a complete intersection morphism of relative dimension
m. Recall that, if f = 7o is a factorization of f where 7 : P — X is a smooth
morphism of relative dimension n and i : Y < P a closed immersion of codimension
d = n —m, defined by a regular ideal Z C Op, one defines an invertible Oy -module
wy/x, called the relative dualizing sheaf of Y/X (or f), by setting

(A21) wy/X == wY/P®OY i*wp/X
= N(Z/1%)Y) ®oy " p)x.

We also recall how this construction is made independent of the choice of the
factorization, up to canonical isomorphism. Let f = 7’ o4’ be another factorization
of f through a smooth morphism 7/ : P’ — X, and let w}Jf/X and ng be the
invertible Oy-modules defined by (A.2.1) using the two factorizations. Assume first
that there exists an X-morphism u : P’ — P such that uwoi’ = 4, and which is either
a smooth morphism or a regular immersion. Then, one defines an isomorphism
e P(u) w}]f/X - ng by the commutative diagram

, G0 ®1d , -
(A22) wi/X = Wy/p X Z*WP/X em— wy/P/ & 2/*(.013//13 X i*u Wwp/x
= NTId(@Zl*(C'{L,W)
EP/’P(U)

/% _ P
CL)Y/p/@l wp//X—wy/X.

The definitions of ¢/, and C{M depend upon whether u is a smooth morphism
or a regular immersion (the two definitions agree when u is an open and closed
immersion):

a) If u is smooth, then ¢, , is defined by [Co00, p. 29, (d)], and ¢, . is defined
by [Co00, p. 29, (a)].

b) If u is a regular immersion, then ¢}, , is defined by [Co00, p. 29, (b)], and ¢, ,
is defined by [Co00, p. 29, (c)]. 7

Let f = 7" 04" be a third factorization of f through a smooth morphism 7’ :
P’ — X, let w{i}lx be defined by (A.2.1) using this factorization, and assume that
there exists an X-morphism v : P” — P’ such that v o’ = i’ and such that each
of the morphisms v and w o v is either a smooth morphism or a regular immersion.
Then it follows readily from Conrad’s general transitivity relation for compositions
of smooth morphisms and regular immersions [Co00, (2.2.4)] that

(A.2.3) e P (v) o e P (u) = e P(uow).

If f =moi = n'o014 are any factorizations as above, let now P” = P’ xx P,
and let ¢/ : Y — P” be the diagonal immersion, and q : P” — P,q' : P — P’ the
two projections. One defines the canonical isomorphism &’ P
setting

., P~ P
Pwy x Wy by

(A.2.4) el P = PP () o P (g).
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Whenever there exists a smooth morphism or a regular immersion u : P’ — P as
above, it follows from (A.2.3) that &P (u) = e©F. One checks similarly that the
isomorphisms eps p satisfy the usual cocycle condition for three factorizations.

Note that, thanks to this cocycle condition, one can define the invertible sheaf
wy/x even when there does not exist a global factorization f = 7 o4 as above, by
choosing local factorizations and glueing the invertible sheaves obtained locally by
the previous construction. By construction, the sheaf wy,x commutes with Zariski
localization, and is equipped with a canonical isomorphism for which we keep the
notation (’:

(A.2.5) <7/T,1 : wY/X L) wy/p ®(’)Y i*wp/X,
for any factorization f = w o¢ where 7 is a smooth morphism and 7 is a regular
immersion.

If m is the virtual relative dimension of Y over X, we will need to work with
the complex wy x[m] which is the single Oy-module wy, x sitting in degree —m. If
f = moi as above, we define in DP(Oy) the isomorphism of complexes

(A.2.6) (in wyyx[m] = wyyp[—d (%Oy Li*(wp/x[n])

by (A.2.5) in degree —m, without any sign modification. If f is a smooth morphism
or a regular immersion, this definition is consistent with [Co00, (2.2.6)]. By [Co00,
(1.3.6)], the isomorphism (A.2.6) is equal to the composed isomorphism

N Lo, - L
wy,x[m] m* (wy/p ®oy Li*(wp/x))m] — (wy/p ®oy Li*(wp/x[n]))[—d]

—  wy/pl—d] ®o, Li*(wp/x[n])

and differs from the composed isomorphism

J/z

wyx[m] (wyyp Boy Li* (wpyx)) ] (wypl—d] Goy Li*(wp)x )]

_~
(A.2.5)[m)]

wy,p[—d] éoy Li*(wp,x[n])

J/z

by multiplication by (—1)%.

Lemma A.3. Under the assumptions of Proposition A.1, there exists a canonical
isomorphism

(A31) LU*(Wy/X) = U*(WY/X) L} wY//X/.

Moreover, if the assumptions of Proposition A.1 (ii) are satisfied, the canonical base
change morphism

(A32) Lu*Rf*(wy/X) — Rf;(wy//X/).

18 an isomorphism.

Proof. Since wy,x is invertible, Lv*(wy/x) SN v*(wy/x). To prove the isomor-
phism (A.3.1), assume first that there exists a factorization f = m o4 where 7 is

smooth and 7 is a regular immersion. Let f’ = 7’ o4 be the factorization de-
duced from f = woi by base change. Then, if Z and Z’ are the ideals defining 4
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and 7/, the Tor-independence assumption implies that the canonical homomorphism
u*(Z/T*) — I'/T'? is an isomorphism, which defines (A.3.1). It is easy to check that,
for two factorizations of f, the corresponding isomorphisms are compatible with the
identifications (A.2.4). This provides the isomorphism (A.3.1) in the general case.
When the assumptions of A.1 (ii) are satisfied, the isomorphism (A.3.2) follows

from (A.3.1) and (A.1.2). O
A.4. Let
Y ——Y
f’l J(f
X —— X

be a cartesian square, and assume that:
a) f and u are complete intersection morphisms of relative dimensions m and n;
b) X' and Y are Tor-independent over X.
Then Lemma A.3 provides canonical isomorphisms

U*(WY/X) — Wy’ /X7 f,*(wX’/X) — Wy’ )y -

One defines the canonical isomorphism

(A4.1) Xfu Wy )y @0y, U*(WY/X) AN wy/x1 @0y, f/*(WX//X)
as being the product by (—1)™" of the composite

/%

wyry ®oy, v (wy)x) — [ (wxi/x) ®oy, wyryxr — wyr/xr Qoy, [ (wxrx),

where the first isomorphism is the product of the previous base change isomorphisms,
and the second one is the usual commutativity isomorphism of the tensor product
(see [De83, Appendix, (a)] and [Co00, p. 215-216]).

The following relations follow easily from the local description of the isomorphisms
(4 given in [Co00, p. 30, (a) - (d)]:

(i) In the above cartesian square, assume that each of the three morphisms w,

fand uo f' = fouw is either a smooth morphism or a regular immersion. Then the
following isomorphisms wy,x s wyr /x' @0y, [*(wxrx) are equal:

(A.4.2) Chrou = Xpu 0 Gy
(i) Let
vy sy
/’f’l lf
X ¢ LN x' s x

be a commutative diagram in which the square is cartesian, f is smooth, i and u
are regular immersions. Then the following isomorphisms

~ Sk -k
WX///X — wX///Y/ ®0X” ] (wy//X/) ®OX” 7 (CL)X//X)

are equal:

(A.4.3) (G ®Id) o, = (1d@ 5" (xsu)) © (G ®Id) 0 ¢ p-
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(iii) Let
y v’ y! v Y
f”l f’l f
X" N ) d u X

be a commutative diagram in which both squares are cartesian, each of the mor-
phisms f, u, ' and wo v is either a smooth morphism or a regular immersion, X’
and Y are Tor-independent over X, and X" and Y are Tor-independent over X’ (so
that X” and Y are Tor-independent over X, and all immersions are regular). Then
the following isomorphisms

wY”/Y ®Oy,, (UU/)*(Wy/X) L) wY///X// ®Oy/, f//*(wX///X/ ®OX” U,*(WX//X))

are equal:

(Add)  (1d@ f"(Gru)) o Xpuw = (Xprw @1d) 0 (Id @0 (xpu)) 0 (G @ 1d).

We will also need to extend the isomorphism X, to the derived category. We
define

L ~ L %
(A45)  Xfu:wyry[n] ®oy, Lo*(wy,x[m]) — wyr x/[m] @o,, Lf"* (wxr/x[n])

by (A.4.1) in degree —(m+n), without any further sign modification. Because of the
sign convention in the commutativity isomorphism for the derived tensor product
[Co00, p. 11], Xt can also be described as the composite

L ~ N L
wyyy[n] ®oy, Lv*(wy x[m]) —— Lf*(wx/x[n]) @o,, wyr/x:[m]

~ ]L’ *
e wy//X/[m} ®OY’ ]Lf, (LL)X//X[TL]),

where the first isomorphism is the tensor product of the base change isomorphisms,
and the second one is the commutativity isomorphism. With this definition, the
previous relations (A.4.2) to (A.4.4) remain valid in D"(Oy~).

A.5. We now consider the composition of two complete intersection morphisms
f:Y =X ¢g:7Z—Y, and define a canonical isomorphism

(A.5.1) Cof i Wz/x — wzy ®o, 9 (wy)x)

extending the isomorphism (A.2.5).

Assume first that there exists a factorization f = 7 o4, where 7 : P — X is
a smooth morphism, and a factorization i o g = 7" o j, where 7" : P — P is a
smooth morphism (such factorizations always exist when X, Y and Z are affine).
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Let 7' : P’ =Y be the pull-back of 7", so that we get a commutative diagram

(A5.2)

where the middle square is cartesian. Using (A.2.5) for (j,), and the isomorphisms
5 @ 3%(¢Ly ), we obtain an isomorphism

wz/x = wzpr @ § (wpryx) —— (wzyp @1 (wprypn)) @ 7 (wpryp @ 7" (Wp/x )

— wzpr @i (wWprypr @1 (wpryp)) ® g7 (Wpyx)-

Using the isomorphism

Xw”,i : wP//P// X i//*<wP///P) L) CL)P//Y ® W/*(WY/P)

defined in A.4, and (¢}, ., ® g*( {m))_l, we then obtain the composed isomorphism

wz/x — wzp @1 (wpy @ 7 (wyyp)) ® g5 (wpyx)
—  (wzyp @1 (wpryy)) @ " (wyyp @1 (wpyx))

— wzy ® g (Wy/x),

which defines (A.5.1).

To prove that this isomorphism is well defined, and to glue the local constructions
to obtain a global one when a diagram (A.5.2) does not exist globally, we must
check that it does not depend on the chosen factorizations. If we have two diagrams
(A.5.2), with factorizations f = mj o iy, iy 0 g = m o ji, for k = 1,2, we can
embed Y diagonally in P, xx P, and Z in P{’ xx Pj. This allows to reduce the
verification to the case where there exists a smooth X-morphism u : P, — P; such
that u o iy = i1, and a smooth morphism u” : Py’ — PJ’ such that 7} o u” = uon¥,
and 71 = u” o jo. Morever, the same argument shows that we may assume that the
morphism P} — P{’ X p, Py is smooth. The verification can then be reduced to the
following two cases:

(i) The morphism PY — P{ xp, P, is an isomorphism;
(ii) The morphism P, — Pj is an isomorphism.

In each of these cases, the equality of the two definitions of (A.5.1) breaks down
to a succession of elementary commutative diagrams involving isomorphisms of the
form (},
[Co00, (2.2.4)], the first case uses relation (A.4.2), and the second one uses relation
(A.4.3). In particular, the sign convention introduced in the definition of xy, in A.4

and xy,. We omit details here, and only point out that, in addition to

is necessary for this independence result.
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If m and m’ are the virtual relative dimensions of f and g, we define as in A.2
the derived category variant of (A.5.1) as being the morphism

(A.5.3) Co.p i wzyx[m+m/] — wyy[m'] ®H@Z Lf*(wy/x[m])

defined by applying (A.5.1) to the underlying modules (sitting in degree —m —m’),
without any sign modification.

With the definition of (] ; provided by (A.5.1) (resp. (A.5.3)), we now extend to
complete intersection morphisms Conrad’s transitivity relation [Co00, (2.2.4)].

Proposition A.6. Let
Tz Sy Lix
be three complete intersection morphisms. Then
(A.6.1) (Id ® 1™ (Cg,5)) © G, rg = (Chog ®1d) 0 Gy -

Proof. As the verification is local on T, we may assume that there exists a commu-

/\

/\/\
/\/\/\

in which the three squares are cartesian, the morphisms 7, ¢, ¥” are smooth, and
the immersions i, i, i are regular. Using [Co00, (2.2.4)] and the relation (A.4.4), the
proof of (A.6.1) again breaks into a succession of elementary commutative diagrams,
which we do not detail here. 0

tative diagram

A.7. We now assume that f : ¥ — X is a complete intersection morphism of
(virtual) relative dimension 0, and, under this hypothesis, we define a section §; €
I'(Y,wy/x), which we call the canonical section.

We first assume that there is a factorization f = mo¢ such that # : P — X
is a smooth morphism of relative dimension n, and ¢ : Y < P is a regular closed
immersion, necessarily of codimension n since f has relative dimension 0. Let Z C
Op be the ideal defining ?. The canonical derivation d : Op — Q}D /X induces an

Oy-linear homomorphism d : Z/Z? — i*Q} P/X" Taking its n-th exterior power, we
obtain a linear homomorphism

(A.7.1) A NY(T/T?) — ik
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Through the canonical isomorphisms
Homo, (A"(Z/T°),i* Pix) = (AN(Z/T%))Y ®oy P 5
N(Z/T2)Y) Doy iUy

= Wy/Xx,

1

it can be seen as a section of wy,x, which is the section d;. If (t1,...,%,) is a regular
sequence of generators of Z on a neighbourhood U of some point y € Y, then
(A.7.2) op =N AL @ (dty AL AN dl) € T(U,wy)x),
since the canonical isomorphism (A™(Z/Z?))Y = A"((Z/Z?)Y) maps (f, A ... At1)Y
tot)Y A.. ALY

To end the construction of ¢y, it suffices to check that the section obtained in this
way does not depend on the chosen factorization. Using the diagonal embedding,
it suffices as usual to compare the sections d; and 6} defined by two factorizations

f = moi = 7' o4 when there exists a smooth X-morphism v : P’ — P such that
uoi =1i. Let 7/ be the ideal of Y in P’, and

Wg//x — An/((I//IIQ)\/) R0y Z-/*Q?D’I/X’
where n/ is the codimension of Y in P’. Then the canonical identification wy,x =

ng/x is given by (A.2.2), case a), and, thanks to (A.7.2), the equality d7 = &’ follows
from [Co00, p. 30, (a) and (d)].

Proposition A.8. Let f : Y — X be a complete intersection morphism of virtual
relative dimension 0.

(i) Let g : Z — Y be a second complete intersection morphism of virtual
relative dimension 0. The image of 6 y4 under the isomorphism C;’f defined in (A.5.1)
s given by

(A.8.1) Co.f(01g) = g ® g™ (0y).
(ii) For any cartesian square (A.1.1), the isomorphism (A.3.1)

v* (WY/X) — Wy’ /x!

maps v*(d¢) to dpr.

Proof. As the first claim is local on Z, we may assume that there exists a diagram

(A.5.2) in which the immersion 7 is defined by a regular sequence (¢1, ..., t,), and the
immersion j = " 04’ by a regular sequence (t},...,t ,,t1,... ), with t] = 7"*(t;).

If we set t; = ¢"*(t;), then ¢’ is defined by the regular sequence (#},...,t ,). By
construction, d¢, corresponds by C]’- y to the section

AV AN ALY A A @5 (dE A AN dE ANdE] AL A L)
of wy/pr ® j*(wpr/x), which is mapped by Clrn @ 3*(CLi ) to the section
(=)™ (@A AT A AN @5 ((dE A AdE ) @7 (dEL A . Adty,))
Of (WZ/P’ X i/*(wP//P//)) ®j*(wPu/P ®7T”*(WP/X)). We then get via Xﬂ’",i the section
NN ANAE) QT T (YA AR )@ T (dt AL AdL)),
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of wy/pr @i (wpryy) @i 1" (wy/p) @ j*7"*(wp/x), which, by construction, corre-
sponds by ((j .+ ® g*( {J))_l to the section d, ® g*(dy) of wz/y ® g*(wy/x)-
The second claim follows from (A.7.2). O

B. THE TRACE MORPHISM 7 ON Rf,(Oy)

Let f : Y — X be a proper complete intersection morphism of virtual relative
dimension 0. This section is devoted to the construction of the “trace morphism”
7+ RfiOy — Ox, derived from the canonical section of wy,x defined in A.7.
The key step is to define an identification Ay between wy,x as defined in A.2, and
f'Ox. The construction is then a straightforward application of the relative duality
theorem, and the properties of 77 listed in Theorem 3.1 follow from corresponding
properties of dy and Aj.

B.1. For the whole section, we assume that X is a noetherian scheme with a du-
alizing complex. Let f : Y — X be a complete intersection morphism of virtual
relative dimension m. We first explain the relation between the relative dualizing
module wy,x defined in the previous section, and the extraordinary inverse image
functor f' defined in [Ha66, VII 3.4] and [Co00, 3.3].

Let r € Z be an integer, £ an invertible O x-module, and & = L[r] € D, (Ox).
We define

(B.1.1) FHE) = wyx[m] Bo, LF*(E),

and we observe that f#(£) is another complex concentrated in a single degree, with
an invertible cohomology sheaf. We can then construct a canonical isomorphism

(B.1.2) Aret FHE) T £1(E)
as follows.

a) If f is smooth, then the functor fti defined above is the usual one, and we set
(B.1.3) Are =ep: fHE) == f1(E),

where ey is the isomorphism defined by [Co00, (3.3.21)].
b) If f is a regular immersion, then we define A¢¢ to be the composition

(B.1.4) Mg F1E) s PE) Y ),

where 7 is defined by [Co00, (2.5.3)] and dy by [Co00, (3.3.19)].

¢) Inthe general case, let us assume first that there exists a factorization f = moi,
where 7 : P — X is a smooth morphism of relative dimension n, and 7 is a regular
immersion of codimension d = n —m. Then we define A\;¢ by the commutative
diagram

Ar,e

L
(B.1.5) wy,x[m] ®oy Lf*E . > 1€
ci,,T@IdlAJ ~|

L et i,mhe g 7;!(>‘7T,5) g
wy/p[—d] ®oy Li*m*E ———— i'mE ——— i€

~

where ¢; » is the transitivity isomorphism [Co00, (3.3.14)].
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This isomorphism is actually independent of the chosen factorization. To check
it, one can argue as in A.2 to reduce the comparison between the isomorphisms
(B.1.2) defined by two factorizations f = moi = 7’ o ¢’ to the case where there
is a smooth X-morphism u : P — P such that uw o4 = 7. It is then a long but
straightforward verification, using various functorialities, the compatibility between
Cir,, and the isomorphism i ~ i"*uf [Co00, (2.7.4)], the compatibility between Coom
and the isomorphism 7% ~ uf7# [Co00, (2.2.7)], and the properties (VAR1), (VAR3)
and (VARS5) of the functor f' (see [Ha66, IIT, Th. 8.7] and [Co00, p. 139]).

Since f'Oy is acyclic outside degree —m, a morphism wy/x[m] — f 'Ox in D(Oy)
is simply a module homomorphism wy,x — H™"( f'Ox). Therefore, the previous
construction provides in the general case local isomorphisms which can be glued
to define a global isomorphism even if there does not exist a global factorization
f =moi as above.

When £ = Oy, the isomorphism (B.1.2) will simply be denoted

(B.1.6) Af twy)x[m] = f'Ox.

If f is flat, hence is a CM map, it provides the identification between the construction
of wy/x used in this article, and the construction of Conrad for CM maps [Co00,
3.5, p. 157].

We now give for the isomorphisms Ay ¢ a transitivity property which generalizes
(B.1.5).

Proposition B.2. Let g: Z — Y be a second complete intersection morphism, with
virtual relative dimension m’. Then the diagram

(B.2.1)

L . Afg.€ !
wz/x[m+m'] ®o, L(fg)*E ~ (f9)€
¢ f®Idl~ Nicg, ;

L Ag,rhe g'(Are)
wzy[m'] @o, Lg* f*& = > g' i€ = »9'f'E
. L . gt 9" (Are) n L % ol Aoste
wzyy[m'] ®@o, Lg* f*& ———— wz)y[m| ®o, Lg" f€ ——— g f*€

commutes.

Proof. The commutativity of the lower part of the diagram is due to the functo-
riality of the isomorphism A, with respect to morphisms between two complexes
concentrated in the same degree.

We first observe that the commutativity of (B.2.1) is clear in the following cases:

a) If f is smooth and g is a closed immersion, the diagram is (B.1.5), which
commutes by construction.

b) If f and g are smooth, the isomorphism (fg)! = ¢ff* is defined by C;’f,
hence the commutativity of (B.2.1) is the compatibility of the isomorphisms ey with
composition, i.e., property (VAR3) of the functor f' [Co00, p. 139].

c) If f and g are regular immersions, then isomorphisms such as 7y, commute
with (; ; and ¢ ¢ [Co00, Th. 2.5.1], and the commutativity of (B.2.1) follows from
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the compatibility of the isomorphisms d; with composition, i.e., property (VAR2)
of the functor f' [Co00, p. 139].

We will also use the following remark. Let h : T — Z be a third complete
intersection morphism, yielding the four couples of composable complete intersection
morphisms (h, g), (g, f), (gh, f) and (h, fg). Then, if the diagrams (B.2.1) for the
couples (h, g) and (g, f) are commutative, the commutativity of (B.2.1) for (gh, f)
is equivalent to the commutativity of (B.2.1) for (h, fg): this is a consequence of
(A.6.1) and of the compatibility of the isomorphisms ¢, ¢ with triple composites (i.e.,
property (VAR1) of the functor f' [Co00, p. 139]).

In the general case, the complexes entering in (B.2.1) are concentrated in the
same degree, hence its commutativity can be checked locally. So we may assume
that there exists a diagram (A.5.2). Thanks to the three particular cases listed above,
one can then deduce the commutativity of (B.2.1) for (f,g) from the commutativity
of (B.2.1) for (n,4), by applying the previous remark successively to the triples
(@, " 7", (" 7" 7, (V7 i) and (g1, ).

To prove the commutativity of (B.2.1) for (7', 7), we use the factorization i o’ =
7’ 01" to define A\jvg. Let d be the codimension of Y in P, and n’ the relative
dimension of P” over P. Then, if £ is a complex on P as in B.1, (B.2.1) for (7',1)
is made of the exterior composites in the diagram
(B.2.2)

L
(,Up//p[n/ — d] ® L(’Lﬂ'/)*g

47/7’ 18;% \%H@Id

L L_ X ;®1d L L
wpry ] @ 7 (wypl—d] @ Li*E) ———— wpr/pr[—d] @ Li"* (wpn p[n] @ 7"*E)

~ | 7t Y 77;/,1 N\
~N- ~N-
F’ﬁ()\iyg) { ﬂ./ﬁ,lbg i/,bﬂ,/ﬁg > Ai”,ﬂ'”ﬁg
\/N ﬂ/ﬁ(di) d;r N/
~ v
. 1!
W’ﬁl'g Z//.ﬂ_//ﬁg
~ eﬂ":’\ﬂ-’,i!é‘ i”!()\ﬂ//’g):i”!(eﬂ.//) ~
~ ~
/e ~ Ve — (piMle ot

aile <7Cﬂ/’i (in'y € = (n"i")E e AT E.

Here, the middle horizontal arrow is the standard isomorphism [Co00, Lemma 2.7.3],
and the lower rectangle commutes thanks to property (VAR4) of the functor f*
[Co00, Theorem 3.3.1]. The upper triangle commutes thanks to (A.4.2). To check
the comutativity of the middle rectangle, one observes on the one hand that #;
commutes with the flat base change 7" and that 7;» commutes with tensorisation
by the invertible sheaf wpr/p (see [Co00, last paragraph of p. 54]). On the other
hand, 7;» commutes also with the translation by n’, provided that the convention
[Co00, (1.3.6)] is used for the commutation of the tensor product with translations
applied to the second argument (see the discussion on [Co00, p. 53]). This requires
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dn’

here multiplication by (—1)*" on wpr/pr ® i"*wprp, since wpr/pr sits in degree d.

As this is the sign entering in the definition of x,~ ;, this ends the proof. U

B.3. Assume now that f is proper. As in B.1, let & = L[r] € D>, (Ox), L being
an invertible Ox-module and r an integer. Using (B.1.2), we can define the trace
morphism Tr}f‘g on Rf, fi€ =R, (wyx[m] ®H@Y Lf*E) as the composite

(

(B.3.1) Trb o REfiE L Ry fle Ty g

where Tr¢ denotes the classical trace morphism defined in [Ha66, VII, Cor. 3.4] and
[Co00, 3.4]. When & = Ox, we will use the shorter notation

(B.3.2) Trﬁ ' Rfi(wy/x[m]) = Ox.
We first give some basic properties of the morphism Tr]%.
Lemma B.4. With the previous hypotheses, let
L ~ L .
(BA41)  ppe: Rfu(wy/x[m]) ®oy € — Rfi(wy/x[m] ®o, L E) = Rf.f1E

be the isomorphism given by the projection formula [Ha66, II, Prop. 5.6]. Then the
diagram

(B.4.2) R fi(wy,x[m — S Rf.fEE

®OX
m‘ /

Proof. When f is flat, it suffices to invoke [Co00, Th. 4.4.1]. Since we make no such
assumption on f, we give a direct argument, which is made a lot simpler by the very

commautes.

special nature of the complex £.

Let K be a residual complex on X, and let f2K be its inverse image on Y in
the sense of residual complexes, which is a residual complex on Y. Then K and
FAK define respectively duality d-functors Dx on DP ) (Ox) and Dy on Db (Oy).
Recall that, by definition, f' = Dy oL f* o Dy. Using the fact that £ = L[r], with
L invertible, one easily sees that there is a canonical isomorphism which commutes
with translations acting on £

(B.4.3) FOx Goy LFE = fI€.

On the other hand, we have by definition a canonical isomorphism

(B.4.4) FlOx Bo, L€ 2 fie,

which also commutes with translations. A first observation is that the diagram
(B.A5) F10x Goy Lfre — T2 pig

Af ®Idl~ Nl)‘fyi

| L . B.4. !
fOx ®oy, LfE ——— f°€
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commutes. Indeed, all complexes are concentrated in the same degree m — r, hence
the verification can be done locally. This allows to assume that £ = Ox, which
reduces the verification to the commutation of the vertical arrows with translations
acting on &£. This now follows from the fact that the isomorphisms e¢, 7y and d;
used in the construction of Ay commute with translations.

Applying R f, to this diagram, and using the functoriality of the projection formula
isomorphism, the proof is reduced to proving the commutativity of the diagram

| L vy | L o (BA3) |
(B.4.6) Rf, f'Ox Goy £ —— Rf(fOx G0, LF*E) — Rf, f'€

~

Tr;®Id Try
E )

where vy is the projection formula isomorphism. As all morphisms of the diagram
commute with translations, we may assume that » = 0. We recall that Try is defined
as the morphism of functors defined by the composite

RS, f'(-) == RHomoy (Dx (), fofAK) 225 RHome, (Dx (), K) +2 1d,

where the first isomorphism follows from the definition of f' and the adjunction
between ILf* and Rf,, the second morphism is defined by the trace morphism for
residual complexes Try ;i and the last isomorphism is the local biduality isomor-
phism (see [Co00, p. 146]). Each of these morphisms has a natural compatibility
with respect to the tensor product of the argument by an invertible sheaf. Putting
together these compatibilities yields the commutativity of (B.4.6). O

Proposition B.5. Let g : Z — Y be a second proper complete intersection mor-
phism, with virtual relative dimension m'. Then the diagram

(B.5.1)
, RI.Rg(C) ) L
RfRg:(wz/x[m' +m]) —————— RfiRg.(wz/y[m'] ®o, Lg*(wy,x[m]))
Tk / L
Ig Rfc(Rgs(wz/y[m]) ®oy, wy,x[m])
Rf.(Tri®Id)
~ TY}I ~
Ox R fi(wy,x[m])

(where the second isomorphism is given by the projection formula) is commutative.

Proof. Tt follows from Lemma B.4 that the right vertical arrow is equal to the mor-
phism

gy xtm)

RfiRgs(wz v [m'] @ g% (wy;x[m])) R fi(wy/x[m]).

Then, using adjunction between Rf, and f', and adjunction between Rg, and g¢',

one sees that the commutativity of (B.5.1) is equivalent to the commutativity of
(B.2.1). O
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Proposition B.6. With the hypotheses of Proposition A.1, assume in addition that
X and X' are noetherian schemes with dualizing complexes, and that one of the
following conditions is satisfied:

a) f is projective;

b) f is proper and u is residually stable [Co00, p. 132];

c) f is proper and flat.

Then the triangle

(B.6.1) Lu*R fi(wy,x[m])
Lu* (Tr})

(A.3.2) |~ OX’

R fi(wyr/x:[m])
18 commutative.

Proof of Case a). We can choose a factorization f = 7 o4, where 7 : P — X is the
structural morphism of some projective space P = P% over X, and ¢ is a regular
immersion of codimension d = n — m. Let f' = 7’ o4’ be the factorisation of f’
defined by base change, with 7’ : P = P%, — X', and let w : P’ — P be the
projection.

The isomorphisms ¢; . and (j, ., are clearly compatible with the base change
isomorphisms (A.3.1) relative to f and w, and the same holds for the projection

formula isomorphisms p; /x[n] and fr g, , and the base change isomorphisms

xr[n]
(A.3.1) relative to ¢ and w. Then, using Pr/oposition B.5, one sees that it suffices to
prove the proposition for f =i and for f = .

When f =7 : P% — X, let Xo,...,X,, be the canonical coordinates on P,
and z; = X;/Xo, 1 < i < n. If U is the relatively affine covering of P% defined
by Xo,...,Xn, the corresponding alternating Cech resolution provides a canonical

isomorphism

(B.6.2) f*(C’(il, WP/X)[”]) — Rf*(WP/X[n])~

Recall that e, : 7! = 7' identifies the trace morphism for projective spaces Trp, with
the general trace morphism Tr; [Co00, Lemma 3.4.3, (TRA3)]. Then the commu-
tativity of (B.6.1) for 7 follows from the fact that Trp, can be characterized as the
only morphism which, via (B.6.2), induces on H° the map sending the cohomology
class dzy A ... Adxyp /-2, to (—1)MFD/2 [Co00, (2.3.1)-(2.3.3)].

When f =i:Y < P, recall that d; : * = i' identifies the trace morphism for finite
morphisms Trf; with the general trace morphism Tr; [Co00, Lemma 3.4.3, (TRA2)],
and that Trf; : RHomo,(Oy,Op) — Op is the canonical morphism induced by
Op — Oy . Using local cohomology with supports in Y, it can be factorized as

(B.6.3) Trf; : RHomoe, (Oy,Op) — Ry (Op) — Op.
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On the other hand, there exists a canonical morphism
(B64) ]L’U)*REY(OP) — REY’(OP’),

which is an isomorphism: to check this, it suffices to choose a finite affine covering
U of V= P\Y, and to identify RI'y (Op) with its flat resolution provided by the
total complex

Op — j*C(‘B, Ov),
where j denotes the inclusion of V in P and Op sits in degree 0. Moreover, this
shows that the diagram

LM*REY (Op) — Lw* (OP)

RLy/(Op) ——— Op

commutes. Therefore, it suffices to prove the commutativity of the diagram

(B.6.5) Lw*iy(wy;p[=d]) —— Lw*RLy (Op)

Nl JN
wy1/prl=d] > RDy(Op) .

Since Y/ < P’ is a regular immersion of codimension d, all complexes in this diagram
are acyclic except in degree d, so that, up to translation by —d, the diagram is
actually a diagram of morphisms of Op/-modules. It follows that its commutativity
can be checked locally on P’. Thus we may assume that P is affine, and that the
ideal Z of Y in P is generated by a regular sequence tq,...,ty. Then the ideal Z’
of Y in P’ is generated by the images t/,...,t, of t1,...,t4 in Ops, which form a
regular sequence. Let U = (V4,..., V) be the open covering of P\Y defined by the
sequence (t1,...,tq). For any section a € I'(P, Op), let us still denote by a/t; ---t4
the image of a/t;-- -t € I'(ViN...N Vg, Op) under the canonical homomorphisms

T(Vin...NVy,O0p) —» H=Y(P\Y,0p) » HE(P,0p) =T (P, HL(Op)).
Then the canonical morphism
wy/p — Eatd,(Oy,Op) = HY(Op)
maps (&) A...At)) ®a to e(d)a/t - tq, where e(d) € {£1} only depends upon d
(see [Co00, p. 252-254]). The commutativity of (B.6.5) follows. O

Proof of Case b). When wu is residually stable, the diagram analogous to (B.6.1)
commutes, thanks to [Co00, 3.4.3, (TRA4)]. Moreover, the isomorphisms e, and d;
entering in the local definition of A in B.1.2 ¢) also commute with base change by
u, thanks to [Co00, p. 139, (VARG6)]. Then it suffice to observe that n; commutes
with flat base change, which is clear. O

Proof of Case ¢). When f is flat, f is a CM map, and the results of [Co00, 3.5 - 3.6]
can be applied. Then the commutativity of (B.6.1) follows from [Co00, Theorem
3.6.5], provided one checks that \; identifies the base change isomorphism (A.3.1)
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for wy x with the more subtle base change isomorphism Sy, for wy defined in [Co00,
Theorem 3.6.1]. As we will not use Case c) in this article, we leave the details to
the reader. O

B.7. Let X be a noetherian scheme with a dualizing complex, and f : ¥ — X

a proper complete intersection morphism of virtual relative dimension 0. One can
define in DP

coh

(B.7.1) Tr - Rf*(Oy) — OX

(X) a “trace morphism”

as follows. Thanks to the relative duality theorem (see [Ha66, VII, 3.4] or [Co00,
Th. 3.4.4]), defining 7 is equivalent to defining a morphism Oy — f 'Ox. Using the
isomorphism Ay, this is also equivalent to defining a morphism

(B72) Pf - Oy — CL)y/X,

Le., a section of the invertible sheaf wy,x. We define ¢y as being the morphism
which maps 1 to the canonical section dy of wy,x, defined in A.7.

From this construction, it follows that the morphism 7; can be described equiva-
lently either as the composition

(B.7.3) 1 RE(Oy) X gy (Foy) T4 o,
or as the composition

Rf- (¢5) Trf
(B.7.4) 7 RE(Oy) =% R, (wy/x) — Ox,

where Trﬁ is the trace map defined in (B.3.1).
Before proving Theorem 3.1, we relate 7¢ to the residue symbol defined in [Co00,
(A.1.4)] (which differs by a sign from Hartshorne’s definition in [Ha66]).

Proposition B.8. With the hypotheses of B.7, assume in addition that f is finite
and flat, and that f = wo i, where w is smooth of relative dimension d, and i is
a closed immersion, globally defined by a regular sequence (ti,...,tq) of sections of
Op. Then, for any section a of Op, with reduction a on'Y, we have

_ adtiy A\ ... Ndtg
(B.8.1) 77(a) = Resp/x [ bty
Proof. Let w=adt; A...... A dty. By construction, the residue symbol is given by
w _
(B.8.2) Resp)x [ t.t ] = (=)D g, (1),
Ly---sld

where ¢, : f,Oy — Ox is the image of (£ A... At)) ® i*(w) by the isomorphism
of complexes concentrated in degree 0 [Co00, (A.1.3)]

-1

L -1 [
(B.8.3) wy,pl—d) Go, Li*(wpx[d]) “— P74 0x —5 fOx;

here f°Ox = Homo (f«Oy,Ox) viewed as a Oy-module, and 1); » is the canonical
isomorphism of functors f° ——» ’xf Since Trf; is the morphism
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fsHomo (f«Oy,Ox) — Ox given by evaluation at 1, we can use the isomorphism
ds: f> = f' and the equality Trs o f.(d;) = Trf; [Co00, 3.4.3, (TRA2)] to write
(B.8.4)

w _ _ _ «
fesrx { Hooo ta } = (=DM Tap(fuldg o gt on N AL ALY ®0F(w))).
On the other hand, we have by definition
Ca(6y) = (1) D2 AL At @it (dt A Adtg),

so we deduce from (B.7.3) the equality

tr(a) = Tre(fu(Aropp)(a))
(1)@= Ty (f (e !

7,7

oit(en) odion V(Y AL ALY @i (w))).
Therefore, it suffices to check that

djothy =cqoilen)od;
and this results from (VARS5) [Co00, (3.3.26)]. O

B.9. Proof of Theorem 3.1.
(i) The transitivity formula (3.1.1) is the equality of the exterior composites
in the diagram

Rf,Rgs
RfRg.Oz [-Bo-(20) > RfiRgswz)y
Rf.Rg.(¢7,) Rf.Rg. (1SLg"(¢)) |
+ RfRg.(C) ;) L )
RfRgwz x ——— RfiRgi(wz)y ®o, Lg*wy,x) o Rf(Txf)
Trf L
fa Rf*((Rg*WZ/Y) Koy WY/X)
Rf«(Tri®ld)
~ Tr! v Rf«(ef)
Ox ! Rf>|<WY/X ! Rf.Oy,

where the upper left square commutes thanks to (A.8.1), the lower left square is the
commutative square (B.5.1), and the right triangle commutes by functoriality.

(ii) Thanks to Proposition B.6 and to the description (B.7.4) of 7, the assertion
follows from the compatibility of the canonical section d; with Tor-independent
pull-backs (proved in Proposition A.8 (ii)) and the functoriality of the base change
morphism.

(iii) To prove (3.1.3), it suffices to prove that the equality holds in the henseliza-
tion OE‘(’:C of the local ring of X at each point z. As the morphism Spec OE(J — X
is residually stable [Co00, p. 132], Proposition B.6 and the commutation with base
change of the classical trace map for the finite locally free algebra f,Oy allow to
assume that X = Spec A, where A is a henselian noetherian local ring. Then Y is
a disjoint union of open subschemes Y; = Spec B;, where B; is a finite local algebra
over A. Each of the morphisms Y; — X is a complete intersection morphism of
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virtual relative dimension 0 (since this is a local condition on Y'), and the additivity
of the trace (valid both for Try, hence for 7, and for tracey, o, 0, ) shows that it
suffices to prove (3.1.3) for each morphism Y; — X. So we may assume that B is
local. We can choose a presentation B = C'/I, where C' is a smooth A-algebra, and
Tisanidealin C. Let P = SpecC,Z = IOp, and let y € Y C P be the closed point.
Then Z, is generated by a regular sequence (ti,...,tq). Shrinking P if necessary,
we may assume that ¢1,...,t; generate Z globally on P, so that the hypotheses of
B.8 are satisfied. Then (3.1.3) follows from (B.8.1) and from property (R6) of the
residue symbol [Co00, p. 240]. O
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