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Abstract. Let R be a discrete valuation ring of mixed characteristics (0, p), with

finite residue field k and fraction field K, let k′ be a finite extension of k, and let X

be a regular, proper and flat R-scheme, with generic fibre XK and special fibre Xk.

Assume that XK is geometrically connected and of Hodge type ≥ 1 in positive

degrees. Then we show that the number of k′-rational points of X satisfies the

congruence |X(k′)| ≡ 1 mod |k′|. Thanks to [BBE07], we deduce such congruences

from a vanishing theorem for the Witt cohomology groups Hq(Xk,WOXk,Q), for

q > 0. In our proof of this last result, a key step is the construction of a trace

morphism between the Witt cohomologies of the special fibres of two flat regular

R-schemes X and Y of the same dimension, defined by a surjective projective

morphism f : Y → X.
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1. Introduction and first reductions

Let R be a discrete valuation ring of mixed characteristics (0, p), with perfect

residue field k, and fraction field K. The main goal of this article is to prove the

following theorem.
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2 PIERRE BERTHELOT, HÉLÈNE ESNAULT, AND KAY RÜLLING

Theorem 1.1. Let X be a proper and flat R-scheme, with generic fibre XK , such

that the following conditions hold:

a) X is a regular scheme.

b) XK is geometrically connected.

c) Hq(XK ,OXK ) = 0 for all q ≥ 1.

If k is finite, then, for any finite extension k′ of k, the number of k′-rational points

of X satisfies the congruence

(1.1.1) |X(k′)| ≡ 1 mod |k′|.

Condition c) should be viewed as a Hodge theoretic property of XK , which can be

stated by saying that XK has Hodge type ≥ 1 in positive degrees. From this point

of view, this theorem fits in the general analogy between the vanishing of Hodge

numbers for varieties over a field of characteristic 0, and congruences on the number

of rational points with values in finite extensions for varieties over a finite field.

This analogy came to light with the coincidence between the numerical values in

Deligne’s theorem on smooth complete intersections in a projective space [SGA 7 II,

Exposé XI, Th. 2.5], and in the Ax-Katz theorem on congruences on the number of

solutions of systems of algebraic equations [Kz71, Th. 1.0]. It has been made effective

by Katz’s conjecture [Kz71, Conj. 2.9] relating the Newton and Hodge polygons

associated to the cohomology of a proper and smooth variety (and generalizing

earlier results of Dwork for hypersurfaces [Dw64]). For varieties in characteristic p,

this conjecture was proved by Mazur ([Ma72], [Ma73]) and Ogus [BO78, Th. 8.39].

In the mixed characteristic case, where a stronger form can be given using the Hodge

polygon of the generic fibre, it is a consequence of the fundamental results in p-adic

Hodge theory. Our proof of Theorem 1.1 makes essential use of the unequality

between these two polygons, but the setup of the theorem is actually more general,

since the scheme X is not supposed to be semi-stable over R.

Let us also recall that a result similar to Theorem 1.1 has been proved by the

second author [Es06, Th. 1.1] by `-adic methods, with condition c) replaced by a

coniveau condition: for any q ≥ 1, any cohomology class in Hq
ét(XK ,Q`) vanishes

in Hq
ét(UK ,Q`) for some non empty open subset U ⊂ XK . It is easy to see, using

[De71], that this coniveau condition implies that the Hodge level of XK is ≥ 1

in degree q ≥ 1. It would actually follow from Grothendieck’s generalized Hodge

conjecture [Gr69] that the two conditions are equivalent. In this article, the use

of p-adic methods, and in particular of p-adic Hodge theory, allows us to derive

congruence (1.1.1) directly from Hodge theoretic hypotheses.

1.2. As explained by Ax [Ax64], congruences such as (1.1.1) can be expressed in

terms of the zeta function of the special fibre Xk of X. We recall that the rationality

of the zeta function Z(Xk, t) allows to define the slope < 1 part Z<1(Xk, t) of

Z(Xk, t) as follows [BBE07, 6.1]. Let |k| = pa, and write

Z(Xk, t) =
∏
i

(1− αit)/
∏
j

(1− βjt),
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with αi, βj ∈ Qp and αi 6= βj for all i, j. Normalizing the p-adic valuation v of Qp

by v(pa) = 1, one sets

Z<1(Xk, t) =
∏

v(αi)<1

(1− αit)/
∏

v(βj)<1

(1− βjt).

Then the congruences (1.1.1) are equivalent to

(1.2.1) Z<1(Xk, t) =
1

1− t
[BBE07, Prop. 6.3].

On the other hand, let W (OXk) be the sheaf of Witt vectors with coefficients

in OXk , and WOXk,Q = W (OXk) ⊗ Q. Then the identification of the slope < 1

part of rigid cohomology with Witt vector cohomology provides the cohomological

interpretation

(1.2.2) Z<1(Xk, t) =
∏
i

det(1− tF a|H i(Xk,WOXk,Q))(−1)i+1
,

where F is induced by the Frobenius endomorphism of W (OXk) [BBE07, Cor. 1.3].

Therefore, Theorem 1.1 is a consequence of the following theorem, where k is only

assumed to be perfect:

Theorem 1.3. Let X be a regular, proper and flat R-scheme. Assume that

Hq(XK ,OXK ) = 0 for some q ≥ 1. Then:

(1.3.1) Hq(Xk,WOXk,Q) = 0.

Proof of Theorem 1.1, assuming Theorem 1.3. Let us prove here this implication,

which is easy and does not use the regularity assumption on X. Let W = W (k), and

K0 = Frac(W ). Thanks to (1.2.1) and (1.2.2), Theorem 1.3 implies that it suffices

to prove that the homomorphism K0 → H0(Xk,WOXk,Q) is an isomorphism.

Since X is proper and flat over R, H0(X,OX) is a free finitely generated R-

module. As the generic fibre XK is geometrically connected and geometrically re-

duced, the rank of H0(X,OX) is 1. The homomorphism R→ H0(X,OX) maps 1 to

1, hence Nakayama’s lemma implies that it is an isomorphism. Applying Zariski’s

connectedness theorem, it follows that Xk is connected, and even geometrically con-

nected, since the same argument can be applied after any base change from R to

R′, where R′ is the ring of integers of a finite extension of K.

On the other hand, let k̄ be an algebraic closure of k, and let k′ be a finite extension

of k such that Xk̄ red is defined over k′. As k′ is separable over k, the homomor-

phisms Wn(k)→Wn(k′) are finite étale liftings of k → k′, and the homomorphisms

Wn(k′)⊗Wn(k) Wn(OXk)→Wn(OXk′ ) are isomorphisms [Il79, I, Prop. 1.5.8]. It fol-

lows that the homomorphism W (k′)⊗W (k) H
0(Xk,W (OXk)) → H0(Xk′ ,W (OXk′ ))

is an isomorphism, and that it suffices to prove the claim for Xk′ . Using the fact

that

H0(Xk′ ,WOXk′ ,Q)
∼−−→ H0(Xk′ red,WOXk′ red,Q)

by [BBE07, Prop. 2.1 (i)], it suffices to check that, if Z is a proper, geometri-

cally connected and geometrically reduced k-scheme, the homomorphism W (k) →
H0(Z,W (OZ)) is an isomorphism.
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Under these assumptions, the homomorphism k → H0(Z,OZ) is an isomorphism.

As the homomorphism R : Wn(OZ)→Wn−1(OZ) is the projection of a product onto

one of its factors, the homomorphisms H0(Z,Wn(OZ))→ H0(Z,Wn−1(OZ)) are sur-

jective, and one gets by induction that the homomorphismWn(k)→ H0(Z,Wn(OZ))

is an isomorphism for all n. Taking inverse limits, the claim follows. �

1.4. Theorem 1.3 is deeper, and most of our paper is devoted to developing the

techniques used in its proof. We may observe though that, in the context of Theorem

1.1, there is a case where (1.3.1) is trivial: namely, if we replace the condition on the

Hodge numbers of XK , which is equivalent to requiring that the modules Hq(X,OX)

be p-torsion modules, by the stronger condition that Hq(X,OX) vanishes for all

q ≥ 1. Indeed, the flatness of X over R allows to apply the derived base change

formula for coherent cohomology and to conclude that Hq(Xk,OXk) = 0 for all

q ≥ 1. By induction on n, one gets that Hq(Xk,Wn(OXk)) = 0 for all n, q ≥ 1, and

(1.3.1) follows for all q ≥ 1 (even before tensoring with Q).

In the general case, where the Hq(X,OX) are p-torsion modules, we do not know

any direct argument to derive the vanishing property stated in (1.3.1). Our strategy

is then to use the results of p-adic Hodge theory relating the Hodge and Newton

polygons of certain filtered F -isocrystals on k, which allow to study separately the

cohomology groups for a given q as in Theorem 1.3. In particular, when X is semi-

stable on R, a straightforward argument using the fundamental comparison theorems

of p-adic Hodge theory allows to deduce (1.3.1) from the unequality between the two

polygons defined by the log crystalline cohomology of Xk. We explain this argument

in Theorem 2.1.

In the rest of Section 2, we show that this argument can be modified to prove

the vanishing of Hq(Xk,WOXk,Q) in the general case. For any finite extension K ′

of K, with ring of integers R′, let XR′ be deduced from X by base change from R

to R′. After reducing to the case where R is complete, the first step is to apply de

Jong’s alteration theorem to construct for any m an m-truncated simplicial scheme

Y• over the ring of integers R′ of a suitable extension K ′ of K, endowed with an

augmentation morphism Y0 → XR′ , such that the Yi’s are pullbacks of proper semi-

stable schemes, and Y• → XR′ induces an m-truncated proper hypercovering of

XK′ (see Lemma 2.2 for a precise statement). Then, using Tsuji’s extension of

the comparison theorems to truncated simplicial schemes [Ts98], we show that, in

this situation, the cohomology group Hq(Y•k,WOY•k,Q) vanishes. However, due to

the possible presence of vertical components in the coskeletons, the special fibre

Y•k of the m-truncated simplicial scheme Y• may not be a proper hypercovering of

Xk, and it is unclear how the groups Hq(Y•k,WOY•k,Q) are related to the groups

Hq(Xk,WOXk,Q). Therefore another ingredient will be necessary to complete the

proof. It will be provided by the following injectivity theorem, the proof of which

will be given in section 8.

Theorem 1.5. Let X, Y be two flat, regular R-schemes of finite type, of the same

dimension, and let f : Y → X be a projective and surjective R-morphism, with
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reduction fk over Spec k. Then, for all q ≥ 0, the functoriality homomorphism

(1.5.1) f∗k : Hq(Xk,WOXk,Q) −→ Hq(Yk,WOYk,Q)

is injective.

1.6. We will deduce Theorem 1.5 from the existence of a trace morphism

(1.6.1) τi,π : Rf∗(WOYk,Q) −→WOXk,Q,

defined by means of a factorization f = π◦i, where π is the projection of a projective

space P dX on X, and i is a closed immersion. The key fact used in the construction

of this trace morphism is that, under the assumptions of Theorem 1.5, i is a regular

immersion of codimension d, or, said otherwise, that f is a complete intersection

morphism of virtual relative dimension 0, in the sense of [SGA 6, Exposé VIII].

Sections 3 to 7 are devoted to the construction of τi,π. In section 3, we state a

similar result for OX , providing a canonical trace morphism

τf : Rf∗(OY )→ OX ,

whenever X is a noetherian scheme with a relative dualizing complex, and f : Y →
X is a proper complete intersection morphism of virtual relative dimension 0 (see

Theorem 3.1). The existence of τf has been observed by El Zein as a particular case

of his construction of the relative fundamental class [El78, IV, Prop. 6]. However,

there does not seem to be in the literature a complete proof of the properties listed

in Theorem 3.1. Due to the many corrections and complements to [Ha66] made

by Conrad in [Co00], we have included in an Appendix the details of a proof of

Theorem 3.1 based on [Co00]. So we refer to B.7 for the definition of τf , and to B.9

for the proof of Theorem 3.1. When Y is finite locally free of rank r over X, the

composition of the functoriality morphism OX → Rf∗(OY ) with τf is multiplication

by r on OX . This has striking consequences for the functoriality maps induced by f

on coherent cohomology (see Theorem 3.2). For example, if r is invertible on X, one

obtains an injectivity theorem which may be of independent interest. An outline of

the construction of τf is given in the introduction to the Appendix.

To construct the trace morphism τi,π, we consider more generally a projective

complete intersection morphism f : Y → X of virtual relative dimension 0 between

two noetherian Fp-schemes with dualizing complexes. Under these assumptions, we

construct a compatible family of morphisms

τi,π,n : Rf∗(Wn(OY ))→Wn(OX)

for n ≥ 1, with τi,π,1 = τf . Our main tool here is the theory of the relative de

Rham-Witt complex developped by Langer and Zink [LZ04]. In Section 5, we recall

some basic facts about their construction, and we extend to the relative case some

structure theorems proved by Illusie [Il79] when the base scheme is perfect (see in

particular Proposition 5.7 and Theorem 5.13). Then we define τi,π,n by combining

two morphisms. On the one hand, we consider a projective space P := P dX with

projection π on X, and we define in Section 6 a trace morphism

Trpπ,n : Rπ∗(WnΩd
P/X [d])→Wn(OX),
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using the d-th power of the Chern class of the canonical bundle OP (1). On the other

hand, we consider a regularly embedded closed subscheme Y of a smooth X-scheme

P , and we define in Section 7 a relative Hodge-Witt fundamental class for Y in P ,

which is a section of HdY (WnΩd
P/X) and defines a morphism

γi,π,n : i∗Wn(OY )→WnΩd
P/X [d],

with i : Y ↪→ P and d = codimP (Y ). This allows to define the morphism τi,π,n
as being the composition Trpπ,n ◦ Rπ∗(γi,π,n). The proof of Theorem 1.5 is then

completed in Section 8 thanks to a theorem relating the morphisms τi,π,n defined by

the reduction mod p of a factorization of the given morphism f : Y → X over R,

and the morphism τf defined by f .

It may be worth pointing out here that these results seem to indicate that

Grothendieck’s relative duality theory for coherent O-modules can be generalized

to some extent to the Hodge-Witt sheaves, as was already apparent from [Ek84]

when the base scheme is a perfect field. We do not try to develop such a generaliza-

tion in this article, and we limit ourselves to the properties needed for the proof of

Theorem 1.1. For example, it is very likely that the morphisms τi,π,n only depend

on f , and not on the chosen factorization f = π ◦ i, but this is not needed here, and

we did not check it. A natural context one might think of for developing our results

is the theory of the trace map for projectively embeddable morphisms outlined in

[Ha66, III, 10.5 and §11]. Unfortunately, as discussed by Conrad in [Co00, p. 103-

104], the foundation work needed for the definition of such a theory has not really

been done even for coherent O-modules.

Finally, we conclude in Section 9 by giving a family of examples to which Theorem

1.1 can be applied, but which are not covered by earlier results, nor by cases where

Theorem 1.3 can be proved directly, such as the trivial case where H i(X,OX) = 0

for all i ≥ 1, or the semi-stable case. These examples are obtained for p ≥ 7, and

are quotients of an hypersurface of degree p in a projective space P p−2
R by a free

(Z/pZ)-action. Their generic fibre is a smooth variety of general type, and their

special fibre has isolated singularities, at least when p is not a Fermat number.
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General conventions

1) All schemes under consideration are supposed to be separated. By a pro-

jective morphism f : Y → X, we always mean a morphism which can be factorized

as f = π ◦ i, where i is a closed immersion in some projective space PnX , and π is the

natural projection PnX → X.

2) In this paper, we use the terminology of [SGA 6] for complete intersection

morphisms: a morphism of schemes f : Y → X is said to be a complete intersection

morphism if, for any y ∈ Y , there exists an open neighbourhood U of y in Y such

that the restriction of f to U can be factorized as f |U = π ◦ i, where π is a smooth

morphism and i a regular immersion [SGA 6, VIII, 1.1]. Note that this notion of

complete intersection morphism is more general than the notion of “local complete
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intersection map” used in [Ha66] and [Co00], where “lci map” is only used for regular

immersions.

If d is the codimension of i at y, and n the relative dimension of π at i(y), the

integer m = n − d does not depend upon the local factorization f |U = π ◦ i, and

is called the virtual relative dimension of f at y [SGA 6, VIII, 1.9]. One says that

f has constant virtual relative dimension m if the integer m does not depend upon

y. We will always assume in this paper that the virtual relative dimension of the

morphisms under consideration is constant (however, the dimension of the fibres of

such morphisms can vary).

3) Apart from the previous remark, we will use the definitions and sign con-

ventions from Conrad’s book [Co00]. In particular, when i : Y ↪→ P is a regular

immersion of codimension d defined by an ideal I ⊂ OP , we define ωY/P by

ωY/P = ∧d((I/I2)∨)

rather than (∧d(I/I2))∨ as in [Ha66, III, p. 141] (see [Co00, p. 7]). The canonical

identification between both definitions is given by [Bo70, III, §11, Prop. 7].

4) If R, S are commutative rings, R → S a ring homomorphism, and X an

R-scheme, we denote by XS the S-scheme SpecS ×SpecR X.

5) If E• is a complex, we denote by (σ≥iE•)i∈Z the naive filtration on E , i.e.,

the filtration defined by σ≥iEn = 0 if n < i, σ≥iEn = En if n ≥ i.

2. Application of p-adic Hodge theory

We explain in this section how the fundamental results of p-adic Hodge theory

can be used to prove Theorem 1.3. We begin with the semi-stable case, where p-adic

Hodge theory suffices to conclude, and which will serve as a model for the general

case. We use the notations R, K, k as in the introduction.

Theorem 2.1. Let X be a proper and semi-stable R-scheme, with generic fibre

XK and special fibre Xk, and let q ≥ 0 be an integer. If Hq(XK ,OXK ) = 0, then

Hq(Xk,WOXk,Q) = 0.

Proof. We may assume that R is a complete discrete valuation ring. Indeed, if R̂ is

the completion of R, K̂ = Frac(R̂) and X̃ = X
R̂

, then X̃ is proper and semi-stable

over R̂, Hq(X̃
K̂
,O

X̃
K̂

) = K̂ ⊗K Hq(XK ,OXK ) = 0, and X and X̃ have isomorphic

special fibres. So the theorem for X̃ implies the theorem for X.

We endow S = SpecR with the log structure defined by the divisor Spec k ⊂ S,

S0 = Spec k with the induced log structure, and we denote by S, S0 the corre-

sponding log schemes. Similarly, we endow X with the log structure defined by the

special fibre Xk, Xk with the induced log structure, and we denote by X, Xk the

corresponding log schemes. Then X is smooth over S, and Xk is smooth of Cartier

type [Ka89, (4.8)] over S0.

Let Wn = Wn(k) (resp. W = W (k)), and let Σn (resp. Σ) be the log scheme

obtained by endowing Σn = SpecWn (resp. Σ = SpecW ) with the log structure

associated to the pre-log structure defined by the morphism MS0 → OS0 = OΣ1 →
OΣn (resp. OΣ) provided by composition with the Teichmüller representative map.
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We can then consider the log crystalline cohomology groups Hq
crys(X/Σn), which are

finitely generated Wn-modules endowed with a Frobenius action ϕ and a monodromy

operator N . The log scheme Xk also carries a logarithmic de Rham-Witt complex

WΩ•
Xk

= lim←−nWnΩ•
Xk

, constructed by Hyodo [Hy91] in the semi-stable case, and

generalized by Hyodo and Kato [HK94, (4.1)] to the case of smooth S0-log schemes

of Cartier type. In degree 0, we have

(2.1.1) WnΩ0
Xk

= Wn(OXk),

by [HK94, Prop. (4.6)].

It follows from [HK94, Th. (4.19)] that, for all q, there are canonical isomorphisms

(2.1.2) Hq
crys(Xk/Σn)

∼−−→ Hq(Xk,WnΩ•
Xk

),

which are compatible when n varies, and commute with the Frobenius actions. As

Xk is proper over S0, these cohomology groups are artinian W -modules. Therefore

one can apply the Mittag-Leffler criterium to get canonical isomorphisms

(2.1.3)

Hq
crys(Xk/Σ)

∼−−→ lim←−
n

Hq
crys(Xk/Σn)

∼−−→ lim←−
n

Hq(Xk,WnΩ•
Xk

)
∼←−− Hq(Xk,WΩ•

Xk
)

compatible with the Frobenius actions. Using the naive filtration of WΩ•
Xk

and

tensoring by K0, one obtains a spectral sequence

(2.1.4) Ei,j1 = Hj(Xk,WΩi
Xk

)⊗K0 =⇒ H i+j
crys(Xk/Σ)⊗K0

endowed by functoriality with a Frobenius action F ∗. The operators d, F and V on

the logarithmic de Rham-Witt complex satisfy the same relations than on the usual

de Rham-Witt complex [HK94, (4.1)], and the structure theorems of [Il79] remain

valid in the logarithmic case [HK94, Th. (4.4) and Cor. (4.5)]. It follows that one can

argue as in the proof of [Il79, II, Th. 3.2] to prove that, for all i, j, theK0-vector space

Hj(Xk,WΩi
Xk

)⊗K0 is finite dimensional, and that the action of F ∗ on this space

has slopes in [i, i+1[. Therefore, the spectral sequence (2.1.4) degenerates at E1, and

yields in particular an isomorphism (Hq
crys(Xk/Σ)⊗K0)<1 ∼−→ Hq(Xk,WΩ0

Xk
)⊗K0,

the source being the part of Hq
crys(Xk/Σ)⊗K0 where Frobenius acts with slope < 1.

Thanks to (2.1.1), we finally get a canonical isomorphism

(2.1.5) (Hq
crys(Xk/Σ)⊗K0)<1 ∼−−→ Hq(Xk,WOXk,Q).

On the other hand, the choice of an uniformizer π of R determines a Hyodo-Kato

isomorphism [HK94, Th. (5.1)]

(2.1.6) ρπ : Hq
crys(Xk/Σ)⊗W K

∼−−→ Hq(XK ,Ω
•
XK/K

).

This allows to endow Hq
crys(Xk/Σ) ⊗W K with the filtration deduced via ρπ from

the Hodge filtration of Hq(XK ,Ω
•
XK/K

). Together with its Frobenius action and

monodromy operator, Hq
crys(Xk/Σ)⊗WK is then a filtered (ϕ,N)-module as defined

by Fontaine [Fo94, 4.3.2 and 4.4.8]. As such, it has both a Newton polygon, built as

usual from the slopes of the Frobenius action, and a Hodge polygon, built as usual

from the Hodge numbers of Hq(XK ,Ω
•
XK/K

). Now, let K be an algebraic closure of
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K, and let Bst, BdR be the Fontaine p-adic period rings. Then Tsuji’s comparison

theorem [Ts99, Th. 0.2] provides a Bst-linear isomorphism

(2.1.7) Bst ⊗K0 H
q
crys(Xk/Σ)

∼−−→ Bst ⊗K Hq
ét(XK ,Qp),

compatible with the natural Galois, Frobenius and monodromy actions on both sides,

and with the natural Hodge filtrations defined on both sides after scalar extension

from Bst to BdR. Thus Hq
crys(Xk/Σ) ⊗K0 is an admissible filtered (ϕ,N)-module

[Fo94, 5.3.3], and therefore is weakly admissible [Fo94, 5.4.2]. This implies that

its Newton polygon lies above its Hodge polygon [Fo94, 4.4.6]. In particular, either

Hq
crys(Xk/Σ)⊗K0 = 0, or the smallest slope of its Newton polygon is bigger than the

smallest slope of its Hodge polygon. By assumption, the latter is at least 1, which

forces the part of slope < 1 of Hq
crys(Xk/Σ)⊗K0 to vanish. Thanks to (2.1.5), this

implies the theorem. �

In the general case, we will use truncated simplicial log schemes satisfying the

conditions of the next lemma. We will assume that all the log schemes under con-

sideration are fine log schemes [Ka89, (2.3)], and all constructions involving log

schemes will be done in the category of fine log schemes. For any finite extension K ′

of K, with ring of integers R′, we will endow SpecR′ with the log structure defined

by its closed point, and pullbacks of log schemes to SpecR′ will mean pullbacks in

the category of log schemes. Note that, because of [Ka89, (4.4) (ii) and (4.3.1)],

the underlying scheme of such a pullback is the usual pullback in the category of

schemes. We will denote log schemes by underlined letters, and drop the underlining

to denote the underlying schemes.

Lemma 2.2. Assume that R is complete, and that X is an integral, flat R-scheme

of finite type. Let m ≥ 0 be an integer. Then there exists a finite extension K ′ of K,

with ring of integers R′, a split m-truncated simplicial R′-log scheme Y • = (Y•,MY•),

and an augmentation morphism u : Y0 → XR′ over R′, such that the following

conditions hold:

a) Each Y r is projective over XR′, and is a disjoint union of pullbacks to R′ of

semi-stable schemes over the integers of sub-K-extensions of K ′ endowed with the

log structure defined by their special fibre;

b) Via the augmentation morphism induced by u, Y•,K′ is an m-truncated proper

hypercovering of XK′;

c) There exists a projective R-alteration f : Y → X, where Y is semi-stable

over the ring of integers R1 of a sub-K-extension K1 of K ′, and there exists finitely

many R-embeddings σi : R1 ↪→ R′, such that, if u1 : Y → XR1 denotes the R1-

morphism defined by f , and if Yi (resp. ui : Yi → XR′) denotes the R′-scheme (resp.

R′-morphism) deduced by base change via σi from Y (resp. u1), then Y0 =
∐
i Yi and

u|Yi = ui.

Proof. This is a well known consequence of de Jong’s alteration theorem [dJ96,

Th. 6.5]. For the sake of completeness, we briefly recall how to construct such a

simplicial log scheme. One proceeds by induction on m.

Assume first that m = 0. De Jong’s theorem provides a finite extension K1 of

K, an integral semi-stable scheme Y over the ring of integers R1 of K1, and an
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R-morphism f : Y → X which is a projective alteration. Let u1 : Y → XR1 be

the morphism defined by f . Let K ′ be a finite extension of K1 such that K ′/K is

Galois, and R′ its ring of integers. For any g ∈ Gal(K ′/K), let σg be the composition

K1 → K ′
g−→ K ′, and let Y g (resp. ug : Yg → XR′) be the R′-log scheme (resp. R′-

morphism) deduced from Y (resp. u1) by base change via σg : R1 → R′. Then one

defines Y 0 and u by setting

Y 0 =
∐

g∈Gal(K′/K)

Y g, u|Yg = ug.

One easily checks by Galois descent that Y0,K′ → XK′ is surjective, and conditions

a) - c) are then satisfied.

Assume now that the lemma has been proved for m− 1. Over the ring of integers

R′′ of some finite extension K ′′ of K, this provides a split (m−1)-truncated simplicial

log scheme Y ′′• , together with an augmentation morphism u′′ : Y ′′0 → XR′′ , so as to

satisfy conditions a) - c). Note that these conditions remain satisfied after a base

change to the ring of integers of any finite extension of K ′′. Let coskm−1(Y ′′•) be

the coskeleton of Y ′′• in the category of simplicial fine R′′-log schemes, and Z =

coskm−1(Y ′′•)m its component of index m. Denote by Z1, . . . , Zc those irreducible

components of Z which are flat over R′′, and endow each Zj with the log structure

induced by the log structure of Z. As a consequence of condition a), this log structure

induces the trivial log structure on the generic fibre Zj,K′′ . Applying de Jong’s

theorem to Zj , one can find a finite extension K ′j of K ′′, with ring of integers R′j , an

integral semi-stable scheme Tj over R′j and an alteration fj : Tj → Zj . One endows

Tj with the log structure defined by its special fibre. Because the log structure of the

generic fibre Zj,K′′ is trivial, the morphism fj extends uniquely to a log morphism

fj : T j → Zj . Let K ′ be a Galois extension of K ′′ containing K ′j for all j, 1 ≤ j ≤ c,
and let R′ be its ring of integers. Arguing as in the case m = 0 above, one can

deduce from the alterations fj an R′-morphism

(2.2.1) T −→
c∐
j=1

Zj,R′ −→ ZR′
∼−−→ coskm−1(Y ′′• ,R′)m

where T satisfies condition a), and TK′ → coskm−1(Y ′′•,K′)m is projective and surjec-

tive (note that, since all log structures are trivial on the generic fibres, the generic

fibre of the coskeleton computed in the category of fine log schemes is the coskeleton

of the generic fibres computed in the category of schemes). One can then follow

Deligne’s method in [De74, (6.2.5)] to extend Y ′′• ,R′ as a split m-truncated simplicial

log scheme Y • over R′. The R′-log scheme Y m satisfies condition a) because T does

and Y • is split. Similarly, the morphism Ym,K′ → coskm−1(Y•,K′)m is proper and

surjective because the morphism TK′ → coskm−1(Y ′′•,K′)m is proper and surjective.

Thus the m-truncated simplicial scheme Y•,K′ is an m-truncated proper hypercover-

ing of XK′ . Finally, condition c) is satisfied thanks to the induction hypothesis. �

2.3. We recall how to associate cohomological invariants to simplicial schemes and

truncated simplicial schemes (see [De74, 5.2] and [Ts98, (6.2)]).



RATIONAL POINTS OF REGULAR MODELS 11

For r ≥ 0, we denote by [r] the ordered set {0, . . . , r}. Let ∆ (resp. ∆[m]) be the

category which has the sets [r] (resp. with r ≤ m) as objects, the set of morphisms

from [r] to [s] being the set of non-decreasing maps [r] → [s]. If T is a topos, we

denote by T ∆ (resp. T ∆[m]) the topos of cosimplicial objects (resp. m-truncated

cosimplicial objects) in T . Let A be a ring in T , and A• the constant cosimplicial

ring defined by A. If E• is an A•-module of T ∆ (resp. T ∆[m]), one associates to E•
the complex

ε∗E• = E0 → E1 → · · · → Er
∑
j(−1)j∂j

−−−−−−−→ Er+1 → · · ·
(resp. εm∗ E

• = E0 → E1 → · · · → Em → 0→ · · · ).

One views ε∗E• (resp. εm∗ E•) as a filtered complex of A-modules using the naive fil-

tration. The functors ε∗ and εm∗ are exact functors from the category of A•-modules

to the category of filtered complexes of A-modules (which means that they transform

a short exact sequence of A•-modules into a short exact sequence of filtered com-

plexes, i.e., such that the sequence of Fili’s is exact for all i). Hence, they factorize

so as to define exact functors Rε∗ and Rεm∗ from D+(T ∆,A•) (resp. D+(T ∆[m],A•))

to D+F (T ,A). For any complex E•,• ∈ D+(A•), they provide functorial spectral

sequences

(2.3.1) Er,q1 = Hq(Er,•)⇒ Hr+q(Rε∗(E•,•))

and similarly for Rεm∗ with Er,q1 = 0 for r > m (we use here the first index to

denote the simplicial degree). Note that the truncation functor induces a functorial

morphism

(2.3.2) Rε∗(E•,•) −→ Rεm∗ (skm(E•,•)),

and therefore a morphism between the corresponding spectral sequences (2.3.1). It

follows that, if Hq(Er,•) = 0 for q < 0 and all r, then the morphism (2.3.2) is a

quasi-isomorphism in degrees < m.

Let Y• be a simplicial scheme (resp. m-truncated simplicial scheme), and Sets the

topos of sets. If R is a commutative ring, and E• a sheaf of R-modules on Y•, one

can associate to E• a cosimplicial R•-module Γ•(Y•, E•) ∈ Sets∆ (resp. Sets∆[m]) by

setting for all r ≥ 0

Γr(Y•, E•) = Γ(Yr, Er).

The functor Γ• can be derived, and its right derived functor RΓ• can be computed

using resolutions by complexes I•,• such that, for each r, q, the sheaf Ir,q is acyclic

on Yr. The cohomology of Y• with coefficients in a complex E•,• is then by definition

RΓ(Y•, E•,•) = Rε∗RΓ•(Y•, E•,•) (resp. Rεm∗ ),

Hq(Y•, E•,•) = Hq(RΓ(Y•, E•,•)).

If Y• is a smooth simplicial (resp. m-truncated simplicial) R-scheme, this can be

applied to the complex Ω•
Y•/R and to its sub-complexes σ≥iΩ

•
Y•/R, defining the naive

filtration. This provides the definition of the de Rham cohomology of Y•, and of its

Hodge filtration.
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Proposition 2.4. Let K be a field of charactristic 0, X a proper and smooth K-

scheme, Y• → X an m-truncated proper hypercovering of X over K such that Yr is

proper and smooth for all r. Then, for all q < m, the canonical homomorphism

(2.4.1) Hq(X,Ω•
X/K) −→ Hq(Y•,Ω

•
Y•/K)

is an isomorphism of filtered K-vector spaces for the Hodge filtrations.

Proof. Since algebraic de Rham cohomology (endowed with the Hodge filtration)

commutes with base field extensions, standard limit arguments allow to assume

that K is of finite type over Q. Choosing an embedding ι : K ↪→ C, we are reduced

to the case where K = C. Using resolution of singularities, we can find a proper and

smooth hypercovering Z• of X such that skm(Z•) = Y•. As the morphism (2.3.2)

for σ≥iΩ
•
Z•/C is a quasi-isomorphism in degrees < m for all i, it suffices to prove the

proposition with Y• replaced by Z•. This now follows from [De74, Prop. (8.2.2)]. �

Corollary 2.5. Under the assumptions a) and b) of Lemma 2.2, assume in addition

that XK is proper and smooth, and that Hq(XK ,OXK ) = 0 for some q < m. Then

the smallest Hodge slope of Hq(Y•K′ ,Ω
•
Y•K′

) is at least 1.

Proof. Assumption a) and b) imply that the hypotheses of the proposition are sat-

isfied by Y•K′ → XK′ , and the corollary is then clear. �

2.6. Let Σn,Σ be as in the proof of Theorem 2.1. We now denote by Y • = (Y•,MY•)

an m-truncated simplicial log scheme over Σ1. We assume that each Y r is smooth

of Cartier type over Σ1, so that, for all n ≥ 1, its de Rham-Witt complex WnΩ•
Y r

is defined [HK94, (4.1)]. When r varies, the functoriality of the de Rham-Witt

complex turns the family of complexes (WnΩ•
Y r

)0≤r≤m into a complex WnΩ•
Y • on

Y•. One defines its cohomology as in 2.3, and one has similar definitions for the de

Rham-Witt complex WΩ•
Y • = lim←−nWnΩ•

Y • .

For a morphism α : [r] → [s] in ∆[m], let αcrys : (Y s/Σn)crys → (Y r/Σn)crys

be the morphism between the log crystalline topos induced by the corresponding

morphism Y s → Y r. One defines the log crystalline topos (Y •/Σn)crys as being the

topos of families of sheaves (Er)0≤r≤m, where Er is a sheaf on the log crystalline

site Crys(Y r/Σn), endowed with a transitive family of morphisms α−1
crysE

r → Es

for morphisms α in ∆[m]. In particular, the family of sheaves OY r/Σn defines the

structural sheaf of (Y •/Σn)crys, denoted by OY •/Σn . There is a canonical morphism

uY •/Σn : (Y •/Σn)crys → Y•Zar, such that uY •/Σn∗(E
•)r = uY r/Σn∗(E

r) for all r. If

E•,• is a complex of abelian sheaves in (Y •/Σn)crys, one proceeds as in 2.3 to define

its log crystalline cohomology RΓcrys(Y •/Σn, E
•,•) and its projection on the Zariski

topos RuY •/Σn∗(E
•,•). One gives similar definitions for the log crystalline topos

(Y •/Σ)crys relative to Σ. By construction, there are canonical isomorphisms

RΓ(Y•,RuY •/Σn∗(E
•,•))

∼−−→ RΓcrys(Y •/Σn, E
•,•),(2.6.1)

RΓ(Y•,RuY •/Σ ∗(E
•,•))

∼−−→ RΓcrys(Y •/Σ, E
•,•).(2.6.2)

If Y • ↪→ P • is a closed immersion of the m-truncated simplicial log scheme Y • into

a smooth m-truncated simplicial Σn-log scheme P • (resp. Σ-formal log scheme), the
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family of PD-envelopes P log
Y r

(P r) (resp. completed PD-envelopes) [Ka89, (5.4)] de-

fines a sheaf P log
Y • (P •) on Y •, and one can form the de Rham complex P log

Y • (P •)⊗OP•
Ω•
P•/Σn (resp. P log

Y • (P •) ⊗OP• Ω•
P•/Σ), which is supported in Y •. Because the lin-

earization functor L used in the proof of the comparison theorem between crystalline

and de Rham cohomologies [Ka89, (6.9)] makes sense simplicially, this theorem ex-

tends to the simplicial case and there is a canonical isomorphism in D+(Y•,Wn)

(resp. D+(Y•,W ))

RuY •/Σn∗(OY •/Σn)
∼−−→ P log

Y • (P •)⊗OP• Ω•
P•/Σn(2.6.3)

(resp. RuY •/Σ ∗(OY •/Σ)
∼−−→ P log

Y • (P •)⊗OP• Ω•
P•/Σ ).(2.6.4)

Proposition 2.7. With the hypotheses of 2.6, assume that Y • is split. Then there

exists in D+(Y•,Wn) (resp. D+(Y•,W )) canonical isomorphisms compatible with the

transition morphisms and the Frobenius actions

RuY •/Σn∗(OY •/Σn)
∼−−→ WnΩ•

Y •(2.7.1)

(resp. RuY •/Σ ∗(OY •/Σ)
∼−−→ WΩ•

Y • ).(2.7.2)

The proof will use the following lemma, due to Nakkajima [Na09, Lemma 6.1].

Lemma 2.8. Under the assumptions of 2.7, there exists an m-truncated simplicial

log scheme Z• and a morphism of m-truncated simplicial log schemes Z• → Y • such

that, for 0 ≤ r ≤ m, Zr is the disjoint union of affine open subsets of Yr, and the

morphism Zr → Yr induces the natural inclusion on each of these subsets.

Definition 2.9. Let X be a scheme on which p is locally nilpotent, and n ≥ 1 an

integer. We denote by |X| the topological space underlying X, and by Wn(X) the

ringed space (|X|,Wn(OX)), which is a scheme ([Il79, 0, 1.5] and [LZ04, 1.10]). The

ideal VWn−1(OX) carries a canonical PD-structure ([Il79, 0, 1.4] and [LZ04, 1.1]),

which turns the nilpotent immersion u : X ↪→Wn(X) into a PD-thickening of X.

If X = (X,MX) is a log scheme, we denote by Wn(X) = (Wn(X),MWn(X)) the

log scheme obtained by sending MX to Wn(OX) by the Teichmüller representative

map, and taking the associated log structure [HK94, Def. (3.1)]. The immersion u

is then in a natural way an exact closed immersion u : X ↪→Wn(X), functorial with

respect to X.

Lemma 2.10. Under the assumptions of 2.7, there exists a bisimplicial log scheme

Z•,•, m-truncated with respect to the first index and augmented towards Y • with

respect to the second index, a bisimplicial formal log scheme T •,• over Σ, m-truncated

with respect to the first index, and a closed immersion of bisimplicial formal log

schemes i•,• : Z•,• ↪→ T •,•, such that the following conditions are satisfied:

a) For 0 ≤ r ≤ m, Zr,0 is the disjoint union of affine open subsets of Yr, the

augmentation morphism Zr,0 → Yr induces the natural inclusion on each of these

subsets, and the canonical morphism Zr,• → cosk
Y r
0 (sk

Y r
0 (Zr,•)) is an isomorphism.

b) For 0 ≤ r ≤ m and t ≥ 0, the formal log scheme T r,t is smooth over Σ

(i.e., its reduction mod pn is smooth over Σn for all n), and the canonical morphism

T r,• → cosk
Σ
0 (sk

Σ
0 (T r,•)) is an isomorphism.
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c) Let i•,•,n : Z•,• ↪→ T •,•,n be the reduction mod pn of i•,•, and let u•,•,n : Z•,• ↪→
Wn(Z•,•) denote the morphism of bisimplicial log schemes defined by the canonical

immersions. For variable n, there exists a compatible family of Σn-morphisms of

bisimplicial schemes h•,•,n : Wn(Z•,•)→ T •,•,n such that h•,•,n ◦ u•,•,n = i•,•,n.

Proof. Let j• : Z• → Y • be a morphism of m-truncated simplicial log schemes

satisfying the conclusions of Lemma 2.8. One chooses a decomposition Zr =
∐
α Z

α
r ,

with Zαr ⊂ Yr open affine such that jr|Zαr is the natural inclusion.

Let Zαr,1 = Zαr . Since Zαr is affine and smooth over Σ1, and Σn−1 ↪→ Σn is a

nilpotent exact closed immersion, there exists for each r, α and each n ≥ 2 a smooth

log scheme Zαr,n over Σn endowed with an isomorphism Zαr,n−1
∼−→ Σn−1 ×Σn Z

α
r,n

[Ka89, Prop. (3.14) (1)]. Taking limits when n→∞, we obtain a smooth formal log

scheme Zαr over Σ and an isomorphism Zαr
∼−→ Σ1×ΣZαr . Moreover, the smoothness

of Zαr,n over Σn for all n implies that we can find inductively a compatible family of

Σn-morphisms gαr,n : Wn(Zαr ) → Zαr,n such that the composition Zαr ↪→ Wn(Zαr ) →
Zαr,n is the chosen immersion Zαr ↪→ Zαr,n.

Let Zr,n =
∐
α Z

α
r,n, Zr =

∐
αZαr , let vr,n : Zr ↪→ Zr,n, vr : Zr ↪→ Zr be

defined by the immersions Zαr ↪→ Zαr,n and Zαr ↪→ Zαr , and let gr,n : Wn(Zr)→ Zr,n
be defined by the morphisms gαr,n. We now use the method of Chiarellotto and

Tsuzuki ([CT03, 11.2], [Tz04, 7.3]) to deduce from these data a closed immersion

i• of Z• into an m-truncated simplicial formal log scheme T •, smooth over Σ, with

reduction T •,n over Σn, and a compatible family of Σn-morphisms of m-truncated

simplicial log schemes h•,n : Wn(Z•) → T •,n such that h•,n ◦ u•,n = i•,n, where

u•,n : Z•,n ↪→Wn(Z•,n) is the canonical morphism, and i•,n is the reduction mod pn

of i•. First, we set for 0 ≤ s ≤ m

Γs(Zr) =
∏

γ:[r]→[s]

Zr,γ ,

where the product is taken over all morphisms γ : [r]→ [s] in ∆[m], and Zr,γ = Zr
for all γ. Then any morphism η : [s′] → [s] in ∆[m] defines a morphism Γs(Zr) →
Γs′(Zr) having as component of index γ′ the projection of Γs(Zr) to the factor of

index η ◦ γ′. One obtains in this way an m-truncated simplicial formal log scheme

Γ•(Zr) over Σ, the terms of which are smooth over Σ.

For each γ : [r]→ [s], there is a commutative diagram

Wn(Zs)
Wn(γ)

// Wn(Zr)

gr,n

&&LLLLLLLLLLL

Zs
?�

us,n

OO

γ
// Zr

?�

ur,n

OO

� � vr,n
// Zr,n

� � // Zr.

For fixed r and variable s, the family of morphisms Zs → Γs(Zr) having the compo-

sition Zs
γ−→ Zr ↪→ Zr as component of index γ defines a morphism of m-truncated

simplicial formal log schemes Z• → Γ•(Zr). We set

T • =
∏

0≤r≤m
Γ•(Zr),
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and we define i• : Z• → T • as having the previous morphism as component of index

r, for 0 ≤ r ≤ m. For each r, the morphism Zr → Γr(Zr) has the closed immersion

vr : Zr ↪→ Zr as component of index Id[r]. It follows that Zr → T r is a closed

immersion for all r.

Similarly, the family of morphisms Wn(Zs) → Γs(Zr) having the composition

Wn(Zs)
Wn(γ)−−−−→ Wn(Zr)

gr,n−−→ Zr,n ↪→ Zr as component of index γ defines a mor-

phism of m-truncated simplicial log schemes Wn(Z•) → Γ•(Zr). We define h• :

Wn(Z•) → T • as having the previous morphism as component of index r for

0 ≤ r ≤ m, and h•,n : Wn(Z•) → T •,n as being the reduction of h• mod pn. It

is clear that h•,n ◦ u•,n = i•,n, and that the morphisms h•,n form a compatible

family when n varies.

We now set Z•,0 = Z•, T •,0 = T •, and we define

Z•,• = cosk
Y •
0 (Z•,0), T •,• = cosk

Σ
0 (T •,0),

the coskeletons being taken respectively in the category of simplicial m-truncated

simplicial log schemes over Y • and of simplicial m-truncated simplicial formal log

schemes over Σ. The augmentation morphism Z•,0 → Y • is given by j•, and the

morphism i•,• is defined by setting i•,0 = i• : Z•,0 ↪→ T •,0, and extending i•,0 by

functoriality to the coskeletons. As seen above, i•,0 is a closed immersion, and it

follows from the construction of coskeletons that i•,t is a closed immersion for all t.

Since cosk
Σ
0 (T r,0)t = T r ×Σ × · · · ×Σ T r (t+ 1 times), T r,t is smooth over Σ for all

r, t. Finally, we define h•,•,n : Wn(Z•,•)→ T •,•,n as being the composition

Wn(cosk
Y •
0 (Z•,0))→ cosk

Wn(Y •)
0 (Wn(Z•,0))→ cosk

Σn
0 (T •,0,n) ' Σn ×Σ cosk

Σ
0 (T •,0),

where the first map is defined by the universal property of the coskeleton (and is

actually an isomorphism), the second one is defined by functoriality by the morphism

h•,n : Wn(Z•,0)→ T •,n = T •,0,n, and the last one is the base change isomorphism for

coskeletons. The relations h•,•,n ◦ u•,•,n = i•,•,n and the compatibility for variable n

follow from the similar properties for the morphisms h•,n. Properties a) - c) of the

Lemma are then satisfied. �

2.11. Proof of Proposition 2.7. Let

Z•,•
� � i•,• //

j•,•
��

T •,•

��

Y • // Σ

be a commutative diagram satisfying the properties of Lemma 2.10. Since, for all

r ≤ m, the morphism jr,0 is locally an open immersion, the scheme underlying Zr,t
is the usual fibred product Zr,0 ×Yr · · · ×Yr Zr,0 (t + 1 times). It follows that, if

Ur = (Zαr )α is an affine covering of Yr such that Zr,0 =
∐
α Z

α
r and jr,0|Zαr is the

natural inclusion, then, for any abelian sheaf E on Yr, the complex

εr ∗(jr,• ∗j
−1
r,• E) =

[
jr,0 ∗j

−1
r,0 E → · · · → jr,t ∗j

−1
r,t E

∑
k(−1)k∂k−−−−−−−→ jr,t+1 ∗j

−1
r,t+1E → · · ·

]
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is the Čech resolution of E defined by the covering Ur. If E• is an abelian sheaf on

Y•, the fact that j•,0 is an augmentation morphism in the category of m-truncated

simplicial schemes implies that the complex εr ∗(jr,• ∗j
−1
r,• Er) is functorial with respect

to [r] ∈ ∆[m], and we obtain a resolution ε• ∗(j•,• ∗j
−1
•,•E•) of E• in the category of

abelian sheaves on Y•. In particular, taking into account that each jq,q′ is locally an

open immersion, we obtain for all n a resolution of the de Rham-Witt complex of

Y • given by

(2.11.1) WnΩ•
Y •

qis−−→ ε• ∗(j•,•∗WnΩ•
Z•,•).

On the other hand, one can also define for all r a complex on Crys(Y r/Σn) by

setting

εr ∗(jr,• crys ∗(OZr,•/Σn)) =[
jr,0 crys ∗(OZr,0/Σn)→ · · · → jr,t crys ∗(OZr,t/Σn)

∑
k(−1)k∂k−−−−−−−→ · · ·

]
.

Since Zr,• → Yr is the Čech simplicial scheme defined by an affine open covering of Yr,

this complex is a resolution of OY r/Σn [Be74, III, Prop. 3.1.2 and V, Prop. 3.1.2].

Since Z•,• is a bisimplicial scheme, these resolutions are functorial with respect

to [r] and yield a resolution ε• ∗(j•,• crys ∗(OZ•,•/Σn)) of OY •/Σn . Let T •,•,n be the

reduction mod pn of T •,•. The linearization functor L [Ka89, (6.9)] is functorial with

respect to embeddings, hence it provides a complex L(Ω•
T•,•,n/Σn) on Crys(Z•,•/Σn).

This complex is a resolution of OZ•,•/Σn thanks to the log Poincaré lemma which

follows from [Ka89, Prop. (6.5)]. For each (r, t) and each i, one checks easily that

the term jr,t crys ∗(L(Ωi
T r,t,n/Σn

)) is acyclic with respect to uY r/Σn∗ (use [Be74, V,

(2.2.3)] and the equality uY r/Σn∗ ◦ jr,t crys ∗ = jr,t ∗ ◦ uZr,t/Σn∗). Hence, the complex

ε• ∗(j•,• crys ∗(L(Ω•
T•,•,n/Σn))) is an uY •/Σn∗-acyclic resolution of OY •/Σn . Moreover,

the closed immersion of bisimplicial schemes i•,• defines a family of PD-envelopes

P log
Z•,•(T •,•,n), supported in Z•,•. They provide a de Rham complex P log

Z•,•(T •,•,n)⊗
Ω•
T•,•,n/Σn , which can be viewed as a complex of abelian sheaves on Z•,•, and it

follows from [Be74, V, (2.2.3)] that

uY •/Σn∗(j•,• crys ∗(L(Ω•
T•,•,n/Σn))) = j•,• ∗(P log

Z•,•(T •,•,n)⊗ Ω•
T•,•,n/Σn).

So we finally get in D+(Z•,Wn) an isomorphism

(2.11.2) RuY •/Σn∗(OY •/Σn)
∼−−→ ε• ∗(j•,• ∗(P log

Z•,•(T •,•,n)⊗ Ω•
T•,•,n/Σn)).

To prove Proposition 2.7, it suffices to define a quasi-isomorphism between the

right hand sides of (2.11.1) and (2.11.2). Note that, for each r, t, i, the sheaves

WnΩi
Zr,t

and P log
Zr,t

(T r,t,n) ⊗ Ωi
T r,t,n/Σn

are jr,t ∗-acyclic. Indeed, Zr,t is a disjoint

union of affine open subsets of Yr, and on the one hand WnΩi
Zr,t

has a finite filtration

with subquotients which are quasi-coherent over suitable Frobenius pullbacks of Zr,t
[Ka89, Th. (4.4)], on the other hand P log

Zr,t
(T r,t,n) ⊗ Ωi

T r,t,n/Σn
is a quasi-coherent

OTr,t,n-module with support in Zr,t, hence is a direct limit of submodules which have

a finite filtration with subquotients which are quasi-coherent over Zr,t. Therefore,
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it suffices to construct a quasi-isomorphism

(2.11.3) P log
Z•,•(T •,•,n)⊗ Ω•

T•,•,n/Σn −→WnΩ•
Z•,•

in the category of complexes of Wn-modules over Z•,•.

We can now argue as in the proof of [HK94, Th. (4.19)]. Since the PD-immersion

ur,t,n : Zr,t ↪→Wn(Zr,t) is an exact closed immersion for all r, t, the morphism h•,•,n :

Wn(Z•,•) → T •,•,n defines uniquely a PD-morphism P log
Z•,•(T •,•,n) → Wn(OZ•,•) in

the category of sheaves of W -modules on the bisimplicial scheme T•,•,n. As h•,•,n

is a morphism of bisimplicial log schemes, it defines by functoriality a morphism

of complexes Ω•
T•,•,n/Σn → Ω•

Wn(Z•,•)/Σn
on T•,•,n. This morphism extends as a

morphism of complexes with support in Z•,•

P log
Z•,•(T •,•,n)⊗ Ω•

T•,•,n/Σn −→ Ω•
Wn(Z•,•)/Σn

/N •
•,•,

where N •
•,• ⊂ Ω•

Wn(Z•,•)/Σn
denotes the graded ideal generated by the sections

d(a[i]) − a[i−1]da for all sections a of VWn−1(OZ•,•) and all i ≥ 1. The differen-

tial graded algebra WnΩ•
Z•,• is a quotient of Ω•

Wn(Z•,•)/Σn
[HK94, Prop. (4.7)], and

the generators of N •
•,• vanish in WnΩ•

Z•,• (because WΩ•
Z•,• is p-torsion free), so we

finally get the morphism (2.11.3). To check that it is a quasi-isomorphism, it suffice

to do so on each Zr,t, and this follows from [HK94, Th. (4.19)]. We obtain in this

way the isomorphism (2.7.1).

To construct the isomorphism (2.7.2), it suffices to observe that the compatibility

of the previous constructions when n varies implies that they make sense in the

category of inverse systems indexed by n ∈ N. Then one can apply the functor R lim←−n
to the isomorphism (2.7.1) viewed an an isomorphism in the derived category of

inverse systemes of sheaves of W -modules on Y•, and this provides the isomorphism

(2.7.2).

The isomorphisms (2.7.1) and (2.7.2) do not depend upon the choices made in

their construction. If (Z•,•, T •,•, j•,•, i•,•, h•,•,n) and (Z ′•,•, T ′•,•, j′•,•, i′•,•, h′•,•,n) are

two sets of data provided by Lemma 2.10, one can construct a third set of data

(Z ′′•,•, T ′′•,•, j′′•,•, i′′•,•, h′′•,•,n) mapping to the two previous ones by setting

Z ′′•,• = Z•,• ×Y • Z
′
•,•, T ′′•,• = T •,• ×Σ T ′•,•,

and defining j′′•,•, i
′′
•,• and h′′•,•,n by functoriality. Then the independence property of

(2.7.1) and (2.7.2) follows from the functoriality of the canonical isomorphisms used

in their construction with respect to the projections from (Z ′′•,•, T ′′•,•) to (Z•,•, T •,•)

and (Z ′•,•, T ′•,•). Moreover, one can also prove the functoriality of (2.7.1) and (2.7.2)

with respect to Y • by similar arguments using the graph construction: for a mor-

phism ϕ• : Y ′• → Y • between two m-truncated simplicial log schemes satisfying

the assumptions of Lemma 2.7, one can find sets of data (Z•,•, T •,•, j•,•, i•,•, h•,•,n)

and (Z ′•,•, T ′•,•, j′•,•, i′•,•, h′•,•,n) satisfying the conditions of Lemma 2.10 relatively

to Y • and Y ′•, and such that there exists morphisms of bisimplicial log schemes

ψ•,• : Z ′•,• → Z•,•, θ•,• : T ′•,• → T •,• satisfying the obvious compatibilities. Then

the functoriality of (2.7.1) and (2.7.2) with respect to ϕ• follows from the functo-

riality of the canonical isomorphisms used in their construction with respect to ϕ•,
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ψ•,• and θ•,•. In particular, one obtains in this way that the isomorphisms (2.7.1)

and (2.7.2) are compatible with the Frobenius actions. �

2.12. Proof of Theorem 1.3, assuming Theorem 1.5. To conclude this section, we

prove that Theorem 1.5 implies Theorem 1.3. We keep the notations of 1.1, and we

first observe that if Theorem 1.3 holds when R is complete, then it holds in general.

Indeed, let R̂ be the completion of R, and X̃ = X
R̂

. Then X̃ is a regular scheme:

on the one hand, its generic fibre is smooth over K̂ = Frac(R̂); on the other hand,

its special fibre is isomorphic to Xk, and the completions of the local rings of X and

X̃ are isomorphic at any corresponding points of their special fibres. It follows that

X̃ satisfies the assumptions of Theorem 1.3 relatively to R̂, and the theorem for X̃

implies the theorem for X.

Therefore, we assume in the rest of the proof that R is complete. We fix an integer

m > q. Let K ′ be a finite extension of K, with ring of integers R′ and residue field

k′, such that there exists an m-truncated simplicial log scheme Y • over R′, with an

augmentation morphism u : Y0 → XR′ , such that properties a) - c) of Lemma 2.2

are satisfied. Let W ′n = Wn(k′), W ′ = W (k′), K ′0 = Frac(W ′), and let Σ′n, Σ′ be the

log schemes defined by W ′n, W ′ as in 2.1.

Thanks to property a) of Lemma 2.2, the log schemes (Y r)k′ are smooth of Cartier

type over Σ′1. Therefore, we can consider the log crystalline cohomology of Y • k′

RΓcrys(Y • k′/Σ
′,OY • k′/Σ′) := Rεm∗ RΓ•

crys(Y • k′/Σ
′,OY • k′/Σ′),

as defined in 2.6. Using the naive filtration on the functor Rεm∗ (see 2.3), its basic

properties follow from those of the log crystalline cohomology of the proper and

smooth log schemes (Yr)k′ . In particular, since Yr is proper over Σ′1 for all r, the

complex RΓcrys(Y • k′/Σ
′,OY • k′/Σ′) is a perfect complex of W ′-modules, and the

cohomology space Hq
crys(Y • k′/Σ

′,OY • k′/Σ′) ⊗ K
′
0 is a finite dimensional K ′0-vector

space. By functoriality, it is endowed with the semi-linear Frobenius action defined

by the absolute Frobenius endomorphism of Y • k′ .

From (2.6.2) and (2.7.2), we deduce an isomorphism

Hq
crys(Y • k′/Σ

′,OY • k′/Σ′)⊗K
′
0
∼−−→ Hq(Y • k′ ,WΩ•

Y • k′
)⊗K ′0,

which is compatible with the Frobenius actions thanks to Proposition 2.7. The fil-

tration of the complex WΩ•
Y • k′

by the subcomplexes σ≥iWΩ•
Y • k′

provides a spectral

sequence

Ei,j1 = Hj(Y • k′ ,WΩi
Y • k′

)⊗K ′0 =⇒ H i+j
crys(Y • k′/Σ

′,OY • k′/Σ′)⊗K
′
0,

which is endowed with a Frobenius action. Using the naive filtration on Rεm∗ , we

deduce from the case of a single log scheme that each term Ei,j1 is a finite dimensional

K0-vector space on which the Frobenius action is bijective with slopes in [i, i + 1[.

Therefore the spectral sequence degenerates at E1, and, taking (2.1.1) into account,

we get in particular an isomorphism

(2.12.1) (Hq
crys(Y • k′/Σ

′,OY • k′/Σ′)⊗K
′
0)<1 ∼−−→ Hq(Y• k′ ,WOY• k′ ,Q).

Since Y • satisfies property a) of 2.2, the construction of the monodromy operator

N on log crystalline cohomology can be extended to the case of Y • k′ [Ts98, (6.3)].
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Moreover, the Hyodo-Kato isomorphism ρπ can also be extended to the case of Y • k′

[Ts98, (6.3.2)], providing an isomorphism

(2.12.2) ρπ : Hq
crys(Y • k′/Σ

′,OY • k′/Σ′)⊗K
′ ∼−−→ Hq(Y•K′ ,Ω

•
Y•K′

).

Thus, Hq
crys(Y • k′/Σ

′,OY • k′/Σ′)⊗K
′ inherits a filtered (ϕ,N)-module structure.

It follows from [Ts98, Th. 7.1.1] (generalizing [Ts99, Th. 0.2]) that, endowed with

this structure, Hq
crys(Y • k′/Σ

′,OY • k′/Σ′)⊗K
′
0 is an admissible filtered (ϕ,N)-module,

corresponding to the Galois representation Hq
ét(Y•K ,Qp). Therefore it is weakly

admissible. In particular, either Hq
crys(Y • k′/Σ

′,OY • k′/Σ′) ⊗K
′
0 = 0, or its smallest

Newton slope is greater or equal to its smallest Hodge slope. Since Hq(XK ,OXK ) =

0, Corollary 2.5 implies that the smallest Hodge slope is at least 1. Therefore the

part of Newton slope < 1 vanishes. By (2.12.1), we obtain

(2.12.3) Hq(Y• k′ ,WOY• k′ ,Q) = 0.

As Y• → XR′ satisfies property 2.2 c), there exists a sub-K-extension K1 ⊂ K ′,

with ring of integers R1 and residue field k1, a semi-stable scheme Y over R1, a

projective R-alteration f : Y → X, and finitely many R-embeddings σi : R1 ↪→ K ′

such that, if u1 : Y → XR1 denotes the R-morphism defined by f , and if Yi (resp.

ui : Yi → XR′) denotes the R′-scheme (resp. R′-morphism) deduced by base change

via σi from Y (resp. u1), then Y0 =
∐
i Yi, and the augmentation morphism u : Y0 →

XR′ is defined by u|Yi = ui. This provides a commutative diagram

(2.12.4) Y• k′
u• k′ // Xk′

''PPPPPP

Y0,k′ =
∐
i Yi,k′

s0 44hhhhhhh

**UUUUUUUU
Xk

Yk1
� � // Yk

fk

77oooooo

in which we identify schemes with their Zariski topos, Yk := Spec k ×SpecR Y , and:

(i) the morphism u• k′ is such that, for any sheaf E on Xk′ , u
−1
• k′E is the family

of sheaves (ur)
−1
k′ E, with ur : Yr → XR′ defined by the augmentation morphism,

(ii) the morphism s0 is such that, for any sheaf F • on Y• k′ , s
−1
0 F • = F 0,

(iii) the morphism Yi,k′ → Yk1 is the projection corresponding to σi.

By functoriality, we obtain a commutative diagram for the corresponding Witt

cohomology spaces

(2.12.5)

Hq(Xk′ ,WOXk′ ,Q) // Hq(Y• k′ ,WOY• k′ ,Q)

**UUUUUUUUUU

Hq(Xk,WOXk,Q)

55kkkkkkkkkk

f∗k ))SSSSSSSSSS

⊕
iH

q(Yi,k′ ,WOYi,k′ ,Q).

Hq(Yk,WOYk,Q)
∼ // Hq(Yk1 ,WOYk1 ,Q)

' �

44iiiiiiiiii

In this diagram, the lower horizontal arrow is an isomorphism because Yk1 ↪→ Yk
is a nilpotent immersion [BBE07, Prop. 2.1 (i)]. The lower right arrow is injective
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on each summand, because each σi turns k′ into a finite separable extension of k1,

hence it follows from [Il79, 0, Prop. 1.5.8] that

W (k′)⊗W (k1) Γ(U,WOYk1 )
∼−−→ Γ(Ui,WOYi,k′ )

for any affine open subset U ⊂ Yk1 with inverse image Ui ⊂ Yi,k′ ; as one can compute

Witt cohomology using Čech cohomology, this implies that

W (k′)⊗W (k1) H
q(Yk1 ,WOYk1 )

∼−−→ Hq(Yi,k′ ,WOYi,k′ ).

Finally, f : Y → X is a projective alteration between two flat regular schemes of

finite type over R, so Theorem 1.5 implies that f∗k is injective. Therefore, the func-

toriality map Hq(Xk,WOXk,Q)→
⊕

iH
q(Yi,k′ ,WOYi,k′ ,Q) is injective. But (2.12.3)

implies that the composition of the upper path in the diagram is 0. It follows that

Hq(Xk,WOXk,Q) = 0. �

3. An injectivity theorem for coherent cohomology

We now begin our preliminary work in view of the proof of Theorem 1.5.

One of the key ingredients in this proof is a theorem which bounds the order of

elements in the kernel of the functoriality map induced on coherent cohomology by

a proper surjective complete intersection morphism f : Y → X of virtual relative

dimension 0. Such a result is a consequence of the existence of a “trace morphism”

τf : Rf∗OY → OX which satisfies the properties stated in the following theorem:

Theorem 3.1. Let X be a noetherian scheme with a dualizing complex, and let f :

Y → X be a proper complete intersection morphism of virtual relative dimension 0.

There exists a morphism τf : Rf∗OY → OX which satisfies the following properties:

(i) If g : Z → Y is a second proper complete intersection morphism of virtual

relative dimension 0, then the composed morphism

(3.1.1) R(f ◦ g)∗OZ ∼= Rf∗Rg∗OZ
Rf∗(τg)−−−−−→ Rf∗OY

τf−→ OX

is equal to τfg.

(ii) Let X ′ be another noetherian scheme with a dualizing complex, u : X ′ → X

a morphism such that X ′ and Y are Tor-independent over X, and f ′ : Y ′ → X ′ the

pull-back of f by u. If f is projective, or if either f is flat, or u is residually stable

[Co00, p. 132], then the morphism

(3.1.2) Rf ′∗OY ′ ∼= Lu∗Rf∗OY
Lu∗(τf )
−−−−−→ OX′ ,

defined by the base change isomorphism (A.1.2), is equal to τf ′.

(iii) If f is finite and flat, then, for any section b ∈ f∗OY ,

(3.1.3) τf (b) = tracef∗OY /OX (b).

As explained in the introduction, we refer to B.7 for the definition of τf , and to

B.9 for the proof of the theorem.

It may be worth recalling a few examples of complete intersection morphisms of

virtual relative dimension 0 (in short: ci0):
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1) If X and Y are two regular schemes with the same Krull dimension, any

morphism f : Y → X which is locally of finite type is ci0. This is the situation

where we will use Theorem 3.1 in this article.

2) If X and Y are smooth over a third scheme S, with the same relative

dimension, any S-morphism Y → X is ci0.

3) If X is a scheme, Z ↪→ X a regularly embedded closed subscheme, and

f : Y → X the blowing up of X along Z, then f is ci0 [SGA 6, VII, Proposition

1.8].

The existence of τf has a remarkable consequence for the functoriality maps in-

duced on coherent cohomology.

Theorem 3.2. Let X be a noetherian scheme with a dualizing complex, and f :

Y → X a proper complete intersection morphism of virtual relative dimension 0.

Assume that there exists a scheme-theoretically dense open subset U ⊂ X such that

f−1(U) → U is finite locally free of constant rank r ≥ 1. Then, for any complex

E ∈ Db
qc(OX) and any q ≥ 0, the kernel of the functoriality map

(3.2.1) Hq(X, E)→ Hq(Y,Lf∗E)

is annihilated by r. In particular, when r is invertible on X, the functoriality maps

are injective.

Proof. By 3.1 (iii), the composition OX → Rf∗OY
τf−→ OX is multiplication by r

over U . Since U is scheme-theoratically dense in X, it is multiplication by r over X.

The complete intersection hypothesis implies that f has finite Tor-dimension,

hence Lf∗E belongs to Db
qc(OY ). Moreover, we can apply the projection formula

[SGA 6, III, 3.7] to obtain a commutative diagram

E //

× r
%%K

KKKKKKKKKKKK Rf∗OY
L
⊗OX E

∼ //

τf⊗Id

��

Rf∗Lf∗E

wwnnnnnnnnnnnnnn

E ,

in which the upper composed morphism is the adjunction morphism. Applying the

functors Hq(X,−) to the diagram, the theorem follows. �

4. Koszul resolutions and local description of the trace morphism τf

We recall here some well-known explicit constructions based on the Koszul com-

plex which enter in the definition of the trace morphism τf . Later on, this will allow

us to define generalizations of τf for sheaves of Witt vectors. As in the whole article,

we follow Conrad’s constructions and conventions [Co00].

4.1. Let P be a scheme, and let t = (t1, . . . , td) be a regular sequence of sections of

OP , defining an ideal I ⊂ OP . We denote by Y ⊂ P the closed subscheme defined

by I, and by i : Y ↪→ P the corresponding closed immersion. Classically, the Koszul

complex K•(t) defined by the sequence (t1, . . . , td) is the chain complex concentrated

in homological degrees [0, d], such that E := K1(t) is a free OP -module of rank d
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with basis e1, . . . , ed, Kk(t) =
∧kE for all k, and such that the differential is given

in degree k by

dk(ei1 ∧ . . . ∧ eik) =
k∑
j=1

(−1)j−1tijei1 ∧ . . . ∧ êij ∧ . . . ∧ eik .

It is often more convenient to consider K•(t) as a cochain complex concentrated

in cohomological degrees [−d, 0], by setting (K•(t))k = K−k(t) and leaving the

differential unchanged [Co00, p. 17].

Since t is a regular sequence, K•(t) is a free resolution of OY over OP . For any

OP -module M, this resolution provides an isomorphism

(4.1.1) ExtdOP (OY ,M) := Hd(Hom•
OP (K•(t),M))

ψt,M−−−→
∼

HomOP (
∧dE ,M)

IHomOP (
∧dE ,M)

,

where ψt,M is the tautological isomorphism multiplied by (−1)d(d+1)/2 (see [Co00,

definition of (1.3.28) and (2.5.2)]). For any section m of M, we will denote by

(4.1.2)

[
m

t1, . . . , td

]
∈ ExtdOP (OY ,M)

the section corresponding by (4.1.1) to the class of the homomorphism ut,m which

sends e1 ∧ . . . ∧ ed to m. Note that this section is linear with respect to m, only

depends on the class of m mod IM, and is functorial with respect to M. Its

dependence on the regular sequence t is given by the following lemma.

Lemma 4.2. Let t′ = (t′1, . . . , t
′
d) be another regular sequence of sections of OP ,

generating an ideal I ′ such that I ′ ⊂ I. Let C = (ci,j)1≤i,j≤d be a matrix with

entries in OP such that t′i =
∑d

j=1 ci,jtj for all i. If α : ExtdOP (OP /I,M) →
ExtdOP (OP /I ′,M) is the functoriality homomorphism, then

(4.2.1) α(

[
m

t1, . . . , td

]
) =

[
det(C)m

t′1, . . . , t
′
d

]
.

Proof. Let K•(t′) be the Koszul resolution of OP /I ′, and E ′ = K1(t′), with basis

e′1, . . . , e
′
d. One defines a morphism of resolutions φ : K•(t′) → K•(t) by setting

φ1(e′i) =
∑

j ci,jej , and φk = ∧kφ1 for 0 ≤ k ≤ d. Then φ provides a commutative

diagram

HomOP (∧dE ,M) //

φd=det(C)

��

ExtdOP (OP /I,M)

α

��

HomOP (∧dE ′,M) // ExtdOP (OP /I ′,M).

The lemma follows. �
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4.3. Under the assumptions of 4.1, the morphism d1 : E � I defines an isomorphism

E/IE ∼−−→ I/I2. Using the canonical isomorphisms, this provides

HomOP (
∧dE ,M)

IHomOP (
∧dE ,M)

∼−−→ (
∧dE)∨/I(

∧dE)∨ ⊗OY M/IM(4.3.1)

∼−−→
∧d

((E/IE)∨)⊗OY M/IM
∼−−→ ωY/P ⊗OY i

∗M.

Note that, due to the commutation between dual and exterior power, the composi-

tion (4.3.1) maps the class of ut,m to (t̄∨d ∧ . . . ∧ t̄∨1 ) ⊗ i∗(m), where t̄k denotes the

class of tk mod I2.

Composing (4.1.1) and (4.3.1), one obtains the fundamental local isomorphism

[Ha66, III, 7.2] as defined by Conrad [Co00, (2.5.2)] in the local case:

(4.3.2) ηY/P : ExtdOP (OY ,M)
∼−−→ ωY/P ⊗OY i

∗M.

Applying Lemma 4.2 to the case of two regular sequences of generators of the ideal

I, one sees that the isomorphism ηY/P does not depend on the sequence t, so that

local constructions can be glued to define ηY/P for any regular immersion i : Y ↪→ P ,

without assuming that I is defined globally by a regular sequence. One obtains in

this way the fundamental local isomorphism in the general case [Co00, (2.5.1)].

Lemma 4.4. Under the assumptions of 4.1, let π : P → X be a smooth morphism

of relative dimension d, and f = π ◦ i. Let ζ ′i,π : ωY/X
∼−−→ ωY/P ⊗OY i∗ωP/X be the

canonical identification (A.2.5), and let δf be the canonical section of ωY/X (defined

by (A.7.2)). Then

(4.4.1) ζ ′i,π(δf ) = ηY/P (

[
dt1 ∧ · · · ∧ dtd
t1, . . . , td

]
).

Proof. By definition,

[
dt1 ∧ · · · ∧ dtd
t1, . . . , td

]
is mapped to ut,dt1∧...∧dtd by (4.1.1), and

we observed that ut,dt1∧...∧dtd is mapped to (t̄∨d ∧ . . . ∧ t̄∨1 ) ⊗ i∗(dt1 ∧ . . . ∧ dtd) by

(4.3.1). Since ζ ′i,π(δf ) = (t̄∨1 ∧ . . .∧ t̄∨d )⊗ i∗(dtd ∧ . . .∧ dt1) by construction, relation

(4.4.1) follows. �

4.5. Let π : P → X be a smooth morphism of relative dimension d, i : Y ↪→ P a

regular immersion of codimension d, and f = π ◦ i. We define the morphism

(4.5.1) γf : OY → ωP/X [d]

as being the composition

OY
ϕf−→ ωY/X

η−1
Y/P
◦ ζ′i,π−−−−−−→ ExtdOP (OY , ωP/X)

∼−−→ RHomOP (OY , ωP/X [d])
can−−→ ωP/X [d],

where ϕf is the morphism sending 1 to δf .

Proposition 4.6. Let X be a separated noetherian scheme with a dualizing complex,

P = P dX a projective space over X, π : P → X the structural morphism, i : Y ↪→ P
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a regular immersion of codimension d, and f = π ◦ i. Then the trace morphism

τf : Rf∗OY → OX of Theorem 3.1 is equal to the composition

(4.6.1) Rf∗(OY )
Rπ∗(γf )
−−−−−→ Rπ∗(ωP/X [d])

Trpπ−−−→ OX ,

where Trpπ is the trace morphism for the projective space defined in [Co00, (2.3.1)-

(2.3.5)].

Proof. By construction (see B.7), τf is the composition Trf ◦ Rf∗(λf ) ◦ Rf∗(ϕf ) in

the commutative diagram

Rf∗(OY )

Rf∗(ϕf )

��

Rf∗(ωY/X)

Rf∗(ζ′i,π) o
��

Rf∗(λf )

∼
// Rf∗(f !(OX))

Trf
// OX

Rf∗(ωY/P [−d]
L
⊗ Li∗(ωP/X [d]))

Rf∗(η−1
i ) o
��

Rf∗(i!π!(OX))

oRf∗(c−1
i,π)

OO

Rπ∗(Tri)
// Rπ∗(π!(OX))

Trπ

OO

Rf∗(RHomOP (OY , ωP/X [d])) ∼
Rf∗(di)

// Rf∗(i!(ωP/X [d]))

oRf∗(i!(eπ))

OO

Rπ∗(Tri)
// Rπ∗(ωP/X [d]),

Rπ∗(eπ) o

OO

in which the isomorphism λf is defined by the commutativity of the left rectangle

before applying Rf∗ (cf. B.1), and the other arrows are defined as follows:

a) ζ ′i,π is the derived category version of the isomorphism used in Lemma 4.4,

defined by (A.2.6);

b) ηi is the extension to the derived category of the fundamental local isomor-

phism ηY/P , defined by [Co00, (2.5.3)];

c) di is the canonical isomorphism of functors i[ := RHomOP (OY ,−)
∼−−→ i!,

defined by [Co00, (3.3.19)];

d) eπ is the canonical isomorphism of functors π] := ωP/X [d]⊗L π∗(−)
∼−−→ π!,

defined by [Co00, (3.3.21)].

e) ci,π is the transitivity isomorphism f ! ∼−−→ i!π!, defined by [Co00, (3.3.14)].

Moreover, the upper right square commutes because of the transitivity of the trace

morphism [Co00, 3.4.3, (TRA1)], and the lower right square commutes by functori-

ality of the trace morphism Tri with respect to eπ.

In this diagram, the composition of the right vertical arrows is the projective

trace morphism Trpπ [Co00, 3.4.3, (TRA3)], and the isomorphism di on the bottom

row identifies Tri with the trace morphism Trfi for finite morphisms [Co00, 3.4.3,

(TRA2)]. As the latter is the canonical morphism i∗RHomOP (OY ,−)→ Id defined

by OP � OY , it follows that the composition of the left column and the bottom

row of the diagram is equal to Rπ∗(γf ), which proves the proposition. �

5. Preliminaries on the relative de Rham-Witt complex

We extend here to the relative de Rham-Witt complex constructed by Langer and

Zink [LZ04] structure theorems which are classical when the base is a perfect scheme
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of characteristic p ([Il79], [IR83]). We begin by recalling some basic facts from their

construction.

From now on, we fix a prime number p. We denote by Z(p) the localization of Z
at the prime ideal (p). Although many results of [LZ04] are valid for Z(p)-schemes,

we limit our exposition to the case of schemes on which p is locally nilpotent, which

will suffice for our applications.

5.1. Let S be a scheme on which p is locally nilpotent, and let f : X → S be

a morphism of schemes. An F -V -pro-complex of X/S as defined in [LZ04] is a

pro-complex {R : En+1 → En}n≥1 of sheaves on X, where En is a differential

graded Wn(OX)/f−1Wn(OS)-algebra (i.e., En is a commutative graded Wn(OX)-

algebra together with an f−1Wn(OS)-linear map d : En → En(1), satisfying d(αβ) =

(dα)β+(−1)degααdβ and d2 = 0), which is equipped with a map of graded pro-rings

F : E•+1 → E•,

called the Frobenius morphism, and with a map of graded abelian groups

V : E• → E•+1,

called the Verschiebung morphism, such that the following properties hold:

(i) The structure map W•(OX)→ E0
• is compatible with F and V .

(ii) The following relations hold:

FV = p, FdV = d,(5.1.1)

V (ωF (η)) = V (ω)η, for all ω ∈ En, η ∈ En+1, n ≥ 1,(5.1.2)

F (d[a]) = [a]p−1d[a], for all a ∈ OX ,(5.1.3)

where [a] denotes the Teichmüller lift of a to Wn(OX), for any n.

A morphism between two F -V -pro-complexes of X/S is a map of pro-differential

graded W•(OX)/f−1W•(OS)-algebras compatible with F and V . By [LZ04, Prop.

1.6, Rem. 1.10] there exists an initial object in the category of F -V -pro-complexes of

X/S, which is called the relative de Rham-Witt complex of X/S and is denoted by

{R : Wn+1Ω•
X/S → WnΩ•

X/S}n≥1. Each sheaf WnΩq
X/S is a quasi-coherent sheaf on

the scheme Wn(X) := (|X|,Wn(OX)) defined in 2.9, and the transition morphisms

R are epimorphisms. When S is a perfect scheme of characteristic p, the relative de

Rham-Witt complex coincides with the one defined in [Il79]. Notice that we have

the following properties:

WnΩ0
X/S = Wn(OX), W1Ω•

X/S = Ω•
X/S ,

and that, by [LZ04, (1.17) and (1.19)], relations (5.1.1) and (5.1.2) imply that

(5.1.4) V d = pdV, dF = pFd.

In addition, when S is an Fp-scheme, the operators F and V satisfy the relation

V F = p.
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We also recall the behaviour of the de Rham-Witt complex with respect to étale

pull-backs. Let

X ′
h //

��

X

��

S′
g
// S

be a commutative diagram in which h is étale and g unramified. Then, for all

q ≥ 0 and r ≥ n ≥ 1, Wn(X ′) is étale over Wn(X) and we have the Wr(OX′)-linear

isomorphisms

Wr(OX′)⊗h−1Wr(OX) h
−1WnΩq

X/S

∼−−→WnΩq
X′/S′ ,(5.1.5)

Wr(OX′)⊗h−1Wr(OX) h
−1(F r−n∗ WnΩq

X/S)
∼−−→ F r−n∗ WnΩq

X′/S′ , a⊗ ω 7→ F r−n(a)ω,

(5.1.6)

where, for any Wn-module M , F r−n∗ M denotes M viewed as a Wr-module via F r−n :

Wr →Wn [LZ04, Prop. 1.11, Prop. A.8 and Cor. A.11].

Finally, the completed relative de Rham-Witt complex is defined by WΩ•
X/S :=

lim←−nWnΩ•
X/S ; the canonical morphisms WΩ•

X/S →WnΩ•
X/S are still epimorphisms.

5.2. Let S = SpecA be affine. We want to recall the calculation ofWΩq
A[x1,...,xd]/A :=

Γ(AdS ,WΩq

AdS/S
). We need some notations for this.

A weight is a function k : [1, d] = {1, 2, . . . , d} → Z[1
p ]≥0. We write ki := k(i), for

i ∈ [1, d]. The support of k, supp k, consists of those i ∈ [1, d] with ki 6= 0. For any

weight k we choose once and for all a total ordering on the elements of the support

of k,

(5.2.1) supp k = {i1, . . . , ir},

such that:

(i) ordp ki1 ≤ ordp ki2 ≤ · · · ≤ ordp kir .

(ii) The ordering on supp k and on supp pak agree, for any a ∈ Z.

We say k is integral if ki ∈ Z, for all i ∈ [1, d]. We say k is primitive if it is integral

and not all ki are divisible by p. We set

(5.2.2) t(ki) := −ordp ki and t(k) :=

{
max { t(ki) | i ∈ supp k } if supp k 6= ∅,
0 if k = 0.

If k 6= 0, t(k) is the smallest integer such that pt(k)k is primitive, and we have

t(k) = t(ki1) ≥ t(ki2) ≥ · · · ≥ t(kir).

We denote by u(k) the smallest non-negative integer such that pu(k)k is integral,

i.e., u(k) = max {0, t(k)}. Notice that k is integral iff u(k) = 0 iff t(k) ≤ 0, and k

is primitive iff t(k) = 0. An interval of the support of k is by definition a subset

I ⊂ supp k of the form

I = {is, is+1, . . . , is+m}.
We denote by kI the weight which equals k on I and is zero on [1, d] \ I. If k is fixed

and I is an interval of the support of k, we write u(I) := u(kI) and t(I) := t(kI).



RATIONAL POINTS OF REGULAR MODELS 27

An admissible partition P of length q of supp k (or just of k) is a tuple of intervals

of supp k, P = (I0, I1, . . . , Iq), such that:

(i) supp k = I0 t I1 t . . . t Iq.
(ii) The elements in Ij are smaller than the elements in Ij+1 (with respect to

the ordering (5.2.1)) for all j = 0, . . . , q − 1.

(iii) The intervals I1, . . . , Iq are non-empty (but I0 may be).

Notice that u(k) = u(I0) if I0 6= ∅ and u(k) = u(I1) if I0 = ∅.
For any n ≤ ∞, we write Xi := [xi] ∈Wn(A[x1, . . . , xd]). If k is an integral weight

as above, we write Xk = X
ki1
i1
· · ·Xkir

ir
∈Wn(A[x1, . . . , xd]).

Let k be any weight and η ∈W (A). We define

(5.2.3) e0(η, k) := V u(k)(ηXpu(k)k) ∈W (A[x1, . . . xd])

and

(5.2.4) e1(η, k) :=

{
dV u(k)(ηXpu(k)k) if k is not integral

ηF−t(k)dXpt(k)k if k is integral
∈WΩ1

A[x1,...,xd]/A.

Definition 5.3 (Basic Witt differentials [LZ04, 2.2]). Let k be a weight, P =

(I0, I1, . . . , Iq) an admissible partition of k, and ξ = V u(k)(η) ∈ W (A). The basic

Witt-differential e(ξ, k,P) ∈WΩq
A[x1,...,xd]/A is defined as follows:

e(ξ, k,P) :=

{
e0(η, kI0)e1(1, kI1) · · · e1(1, kIq) if I0 6= ∅,
e1(η, kI1)e1(1, kI2) · · · e1(1, kIq) if I0 = ∅.

Rules 5.4 ([LZ04, Prop. 2.5, Prop. 2.6]). Let k be a weight, P = (I0, I1, . . . , Iq) a

partition of k and ξ = V u(k)(η) ∈W (A). Then:

(i) ρe(ξ, k,P) = e(ρξ, k,P) for all ρ ∈W (A).

(ii) Fe(ξ, k,P) =

{
e(Fξ, pk,P) if I0 6= ∅ or k integral,

e(V −1ξ, pk,P) if I0 = ∅ and k not integral.

(iii) V e(ξ, k,P) =

{
e(V ξ, 1

pk,P) if I0 6= ∅ or 1
pk integral,

e(pV ξ, 1
pk,P) if I0 = ∅ and 1

pk not integral.

(iv) de(ξ, k,P) =


0 if I0 = ∅,
e(ξ, k, (∅,P)) if I0 6= ∅ and k not integral,

p−t(k)e(ξ, k, (∅,P)) if I0 6= ∅ and k integral.

Theorem 5.5 ([LZ04, Thm. 2.8]). Every ω ∈WΩq
A[x1,...,xd]/A can uniquely be written

as

ω =
∑
k,P

e(ξk,P , k,P),

where the sum is over all weights k with |supp k| ≥ q and over all admissible parti-

tions of length q of k, and the sum converges in the sense that, for any m ≥ 0, we

have ξk,P ∈ V mW (A) for all but finitely many ξk,P .
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For a weight k, n ≥ 1 and η ∈Wn−u(k)(A) we define e0
n(η, k) ∈Wn(A[x1, . . . , xd])

and e1
n(η, k) ∈WnΩ1

A[x1,...,xd]/A by the same formulas as in (5.2.3) and (5.2.4). For P
an admissible partition of length q of k and ξ = V u(k)(η) ∈ Wn(A), we then define

en(ξ, k,P) ∈ WnΩq
A[x1,...,xd]/A by the same formula as in Definition 5.3 but with ei

replaced by ein, i = 0, 1.

Corollary 5.6 ([LZ04, Prop. 2.17]). Every ω ∈ WnΩq
A[x1,...,xd]/A may uniquely be

written as a finite sum

ω =
∑
k,P

en(ξk,P , k,P), ξk,P ∈ V u(k)Wn−u(k)(A),

where the sum is over all weights k with |supp k| ≥ q and such that pn−1k is integral

and over all admissible partitions P of k of length q.

We now assume that S is an Fp-scheme. The following proposition is known if S

is perfect (see [IR83, II, (1.2.2)]).

Proposition 5.7. Let S be a locally noetherian Fp-scheme and X a smooth S-

scheme. Then the sequence

Fn∗ OS ⊗Wn+1(OS) Wn+1Ωq−1
X/S

(1⊗Fn,−1⊗Fnd)−−−−−−−−−−→ Fn∗ Ωq−1
X/S ⊕ F

n
∗ Ωq

X/S

dV n+V n−−−−−−→Wn+1Ωq
X/S −→ R∗WnΩq

X/S −→ 0

is an exact sequence of Wn+1(OS)-modules.

Proof. The question is local, we thus assume S = SpecA, X = SpecB and B is

étale over B1 = A[x1, . . . , xd]. As WΩ•
X/S → Wn+1Ω•

X/S is an epimorphism, [LZ04,

Prop. 2.19] provides the exactness of the second line, and we only have to show that

(∗B/A) : Fn∗ A⊗Wn+1Ωq−1
B/A

(1⊗Fn,−1⊗Fnd)−−−−−−−−−−→ Fn∗ Ωq−1
B/A⊕F

n
∗ Ωq

B/A

dV n+V n−−−−−−→Wn+1Ωq
B/A

is exact. Notice that it is a complex, as for a ∈ A and ω ∈Wn+1Ωq−1
B/A we have

dV n(aFnω)− V n(aFndω) = 0.

Notice also that, if we let W2n+2(B) act through Fn+1 : W2n+2(B)→Wn+1(B), the

differentials of this complex are W2n+2(B)-linear, since dFn+1 = pn+1Fn+1d = 0 in

Wn+1. We claim

(5.7.1) (∗B/A) = Fn+1
∗ (∗B1/A)⊗W2n+2(B1) W2n+2(B).

Indeed we have the following diagrams:

Fn+1
∗ (Fn∗ A⊗Wn+1Ωq−1

B/A)
1⊗Fn

// F 2n+1
∗ Ωq−1

B/A

Fn+1
∗ (Fn∗ A⊗Wn+1Ωq−1

B1/A
)⊗W2n+2(B)

(1⊗Fn)⊗1
//

OO

Fn+1
∗ (Fn∗ Ωq−1

B1/A
)⊗W2n+2(B),

OO
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Fn+1
∗ (Fn∗ A⊗Wn+1Ωq−1

B/A)
−1⊗Fnd

// F 2n+1
∗ Ωq

B/A

Fn+1
∗ (Fn∗ A⊗Wn+1Ωq−1

B1/A
)⊗W2n+2(B)

(−1⊗Fnd)⊗1
//

OO

Fn+1
∗ (Fn∗ Ωq

B1/A
)⊗W2n+2(B),

OO

both with vertical maps

(a⊗ ω)⊗ b 7→ a⊗ Fn+1(b)ω, η ⊗ b 7→ F 2n+1(b)η,

and

F 2n+1
∗ Ωq−1

B/A ⊕ F
2n+1
∗ Ωq

B/A

dV n+V n
// Fn+1
∗ Wn+1Ωq

B/A

Fn+1
∗ (Fn∗ Ωq−1

B1/A
⊕ Fn∗ Ωq

B1/A
)⊗W2n+2(B)

(dV n+V n)⊗1
//

OO

Fn+1
∗ Wn+1Ωq

B1/A
⊗W2n+2(B),

OO

with vertical maps

(η, ω)⊗ b 7→ (F 2n+1(b)η, F 2n+1(b)ω), ω ⊗ b 7→ Fn+1(b)ω.

Using again the relation dFn+1 = pn+1Fn+1d = 0 in Wn+1, one checks immediately

that all three diagrams commute. Now the claim (5.7.1) follows, since the vertical

maps are isomorphisms by (5.1.6). As W2n+2(B1) → W2n+2(B) is étale [LZ04,

Prop. A.8], we are thus reduced to the case B = B1 = A[x1, . . . , xd].

Now take α ∈ Ωq
B/A and β ∈ Ωq−1

B/A with V n(α) = −dV n(β). We have to show

that there exists an element γ ∈ Fn∗ A⊗Wn+1Ωq−1
B/A with

(5.7.2) −(1⊗ Fnd)(γ) = α and (1⊗ Fn)(γ) = β.

By Corollary 5.6 (and keeping the notation used there), we can write α and β

uniquely as finite sums

(5.7.3) α =
∑
k,P

e1(ξk,P , k,P), β =
∑
k,Q

e1(ηk,Q, k,Q), with ξk,P , ηk,Q ∈ A,

where the sums are over all integral weights k and all admissible partitions P =

(I0, . . . , Iq) of length q (resp. over all admissible partitions Q = (J0, . . . , Jq−1) of

length q − 1). Using the rules 5.4 (iii) and (iv), we obtain

(5.7.4) V n(α) =

n−1∑
i=0

∑
k
pi

primitive

and I0=∅

en+1(pn−iV n(ξk,P), kpn ,P)

+
∑

k
pn

integral

or I0 6=∅

en+1(V n(ξk,P), kpn ,P)



30 PIERRE BERTHELOT, HÉLÈNE ESNAULT, AND KAY RÜLLING

and

(5.7.5) − dV n(β) =
∑

k
pn

integral

and J0 6=∅

−pt(
k
pn

)
en+1(V n(ηk,Q), kpn , (∅,Q))

+
∑

k
pn

not integral

and J0 6=∅

−en+1(V n(ηk,Q), kpn , (∅,Q)),

where t(k/pn) is defined as in (5.2.2). By the uniqueness of this presentation, and

since V n : A→Wn+1(A) is injective, the equality V n(α) = −dV n(β) thus gives the

following set of equations:

ξk,P = −p−t(
k
pn

)
ηk,Q, if

k

pn
is integral, P = (∅,Q) and J0 6= ∅,

ηk,Q = −pn−iξk,P , if
k

pi
is primitive, P = (∅,Q), J0 6= ∅ and 0 ≤ i ≤ n− 1,

ξk,P = 0, if I0 6= ∅.

One now easily verifies that (5.7.2) holds for the following choice of γ ∈ Fn∗ A⊗Wn+1(A)

Wn+1Ωq−1
B/A:

γ :=
n−1∑
i=0

 ∑
k
pi

primitive

and J0 6=∅

(
−ξk,(∅,Q) ⊗ en+1(V n−i(1), kpn ,Q)

)

+
∑

k
pi

primitive

and J0=∅

(
ηk,Q ⊗ en+1(V n−i(1), kpn ,Q)

)
+

∑
k
pn

integral, Q

ηkQ ⊗ en+1(1, kpn ,Q).

This proves the proposition. �

5.8. We now recall some facts from [Il79, 0, 2] about the Cartier operator and its

iterates.

Let S be an Fp-scheme, and denote by FS : S → S its absolute Frobenius endomor-

phism. Let X → S be a smooth morphism of Fp-schemes and set X(pn) := S×S,FnSX.

We have the usual diagram, which defines the iterates FnX/S of the relative Frobenius
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morphism (we write FX/S = F 1
X/S , W = W 1):

X
Fn
X/S
//

""E
EE

EE
EE

EE

FnX

��

X(pn)

��

Wn
// X

��

S
FnS // S.

Notice that

FnX/S = F
X(pn−1)/S

◦ . . . ◦ FX/S .

For an S-morphism f : X ′ → X we denote by f (pn) the base-change morphism

f (pn) = IdS × f : X ′(p
n) → X(pn).

The inverse Cartier operator is a homomorphism of graded OX(p)-algebras

C−1
X/S : Ω•

X(p)/S
→ H•(Ω•

X/S),

which is uniquely determined by

(5.8.1) C−1
X/S |OX(p)

= F ∗X/S and C−1
X/S(W ∗dx) = xp−1dx, for all x ∈ OX .

The inverse Cartier operator is an isomorphism (since X/S is smooth). For n ≥ 0,

one defines abelian subsheaves of Ωq
X/S

(5.8.2) BnΩq
X/S ⊂ ZnΩq

X/S ⊂ Ωq
X/S

via

B0Ωq
X/S = 0, Z0Ωq

X/S = Ωq
X/S ,

B1Ωq
X/S = BΩq

X/S = dΩq−1
X/S , Z1Ωq

X/S = ZΩq
X/S = Ker(d : Ωq

X/S → Ωq+1
X/S),

and, for n ≥ 1,

C−1
X/S : BnΩq

X(p)/S

'−→ Bn+1Ωq
X/S/B1Ωq

X/S ,

C−1
X/S : ZnΩq

X(p)/S

'−→ Zn+1Ωq
X/S/B1Ωq

X/S .

We obtain a chain of inclusions

(5.8.3) 0 ⊂ B1Ωq
X/S ⊂ . . . ⊂ BnΩq

X/S ⊂ Bn+1Ωq
X/S ⊂ . . .

⊂ Zn+1Ωq
X/S ⊂ ZnΩq

X/S ⊂ . . . ⊂ Z1Ωq
X/S ⊂ Ωq

X/S .

Proposition 5.9 ([Il79, 0, (2.2.7), Prop. 2.2.8]). Let S be an Fp-scheme and X a

smooth S-scheme. Then, for all q ≥ 0 and n ≥ 1, the sheaves ZnΩq
X/S and BnΩq

X/S

satisfy the following properties.

(i) ZnΩq
X/S and BnΩq

X/S are locally free OX(pn)-modules of finite type, and, for

any h : S′ → S, we have

h
(pn)∗
X ZnΩq

X/S

∼−−→ ZnΩq
X′/S′ , h

(pn)∗
X BnΩq

X/S

∼−−→ BnΩq
X′/S′ ,

where hX : X ′ := S′ ×S X → X is the base-change map.
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(ii) If f : X ′ → X is an étale S-morphism, then there are natural isomorphisms

f (pn)∗ZnΩq
X/S

∼−−→ ZnΩq
X′/S , f (pn)∗BnΩq

X/S

∼−−→ BnΩq
X′/S .

(iii) BnΩq
X/S is the sub-OS-module of Ωq

X/S locally generated by sections of the

form ap
r−1

1 · · · ap
r−1
q da1 · · · daq, with ai ∈ OX and 0 ≤ r ≤ n− 1.

(iv) ZnΩq
X/S is the sub-OS-module of Ωq

X/S locally generated by BnΩq
X/S and

sections of the form bap
n−1

1 · · · ap
n−1
q da1 · · · daq, with ai ∈ OX and b ∈ OX(pn).

Proposition 5.10 (cf. [Il79, I, Prop. 3.3]). For X/S smooth as above, there is a

unique map of Wn(OS)-modules

C−1
n : FS∗Wn(OS)⊗Wn(OS) WnΩq

X/S −→
WnΩq

X/S

dV n−1Ωq
X/S

,

which makes the following diagram commutative

F∗Wn(OS)⊗Wn+1(OS) Wn+1Ωq
X/S

1⊗F
//

1⊗R
��

WnΩq
X/S

��

F∗Wn(OS)⊗Wn(OS) WnΩq
X/S

C−1
n //

WnΩq
X/S

dV n−1Ωq
X/S

.

For n = 1 we have FS∗OS⊗OS Ωq
X/S = Ωq

X(p)/S
, and C−1

n = C−1 : Ωq

X(p)/S
−→

Ωq
X/S

dΩq
X/S

is the inverse Cartier operator.

Proof. Since 1 ⊗ R is surjective, it is enough to see that the kernel of 1 ⊗ R is

mapped to dV n−1Ωq
X/S under 1⊗F . But an element in the kernel of 1⊗R is a sum

of elements of the form a ⊗ V nω and a ⊗ dV nη, with a ∈ Wn(OS), ω ∈ Ωq
X/S and

η ∈ Ωq−1
X/S . We have in WnΩq

X/S

(1⊗ F )(a⊗ V nω) = aV n−1(pω) = 0, (1⊗ F )(a⊗ dV nη) = dV n−1(Fn−1(a)η).

This gives the existence and the uniqueness of C−1
n . The second statement follows

from the fact that 1 ⊗ F is compatible with products, and from the formula 1 ⊗
F (a⊗ d[x]) = axp−1dx, for a ∈ OS , x ∈ OX . �

Corollary 5.11 (cf. [Il79, I, Prop. 3.11]). Let X/S be as above. Then:

(i) Im(1⊗ Fn : Fn∗ OS ⊗Wn+1(OS) Wn+1Ωq
X/S → Ωq

X/S) = ZnΩq
X/S .

(ii) Im(1⊗ Fn−1d : Fn∗ OS ⊗Wn+1(OS) F∗WnΩq−1
X/S → Ωq

X/S) = BnΩq
X/S .

Proof. We do induction on n. For n = 1, (i) follows from Proposition 5.10 and the

relation d = FdV , and (ii) holds by definition. Now assume the statements are
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proven for n. To prove (i) we consider the following commutative diagram:

Fn+1
∗ OS ⊗Wn+2(OS) Wn+2Ωq

X/S
1⊗Fn

//

1⊗R
��

F∗OS ⊗W2(OS) W2Ωq
X/S

1⊗F
//

1⊗R
��

Ωq
X/S

��

Fn+1
∗ OS ⊗Wn+1(OS) Wn+1Ωq

X/S
1⊗Fn

// Ωq

X(p)/S
C−1

//
Ωq
X/S

dΩq−1
X/S

.

By induction hypothesis we have

Im
(

(1⊗R)◦(1⊗Fn)
)

= Im
(

(1⊗Fn)◦(1⊗R)
)

= FS∗OS⊗OSZnΩq
X/S = ZnΩq

X(p)/S
,

where the last equality follows from the compatibility with base-change. Now, thanks

to the relation d = Fn+1dV n+1, (i) follows from the definition of Zn+1Ωq
X/S . The

proof of (ii) is similar. �

Lemma 5.12. Let X/S be as above. The sheaf BnΩq
X/S is given by

Im(1⊗ Fn−1d : Fn∗ OS ⊗Wn+1(OS) F∗WnΩq−1
X/S → Ωq

X/S)

= {(1⊗ Fnd)(α) |α ∈ Fn∗ OS ⊗Wn+1(OS) Wn+1Ωq−1
X/S with (1⊗ Fn)(α) = 0}.

Proof. We call the left hand side A, and the right hand side B. We know from the

previous corollary that BnΩq
X/S = A, and we want now to show that A = B. In

the following, all non-specified tensor products are over Wn+1(OS). We have the

commutative diagram

Fn∗ OS ⊗ F∗WnΩq−1
X/S

1⊗V
//

1⊗Fn−1d
''OOOOOOOOOOOO

Fn∗ OS ⊗Wn+1Ωq−1
X/S

1⊗Fnd
wwooooooooooooo

Ωq
X/S

.

Since we also have (1⊗Fn) ◦ (1⊗ V ) = 0 it follows that A ⊂ B. It remains to show

(5.12.1) Ker
(

1⊗ Fn : Fn∗ OS ⊗Wn+1Ωq−1
X/S → Fn∗ Ωq−1

X/S

)
⊂ Im

(
Fn∗ OS ⊗ (F∗WnΩq−1

X/S ⊕ F∗WnΩq−2
X/S)

1⊗(V+dV )−−−−−−−→ Fn∗ OS ⊗Wn+1Ωq−1
X/S

)
.

Indeed, if we take an element α in the kernel on the left hand side and we write it as

an element in the right hand side α = (1⊗V )(β)+(1⊗dV )(γ), then (1⊗Fnd)(α) =

(1⊗ Fn−1d)(β), i.e., B ⊂ A. The question is local in X, we may thus assume X is

étale over AdS . For a Wn(OX)-module M we write F r∗M∗F s for M viewed as a left

Wn+r(OS)-module and as a right Wn+s(OX)-module. Then we have the following

commutative diagram, in which the most right tensor product in the upper line is
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over W2n+2(OAdS
):(

Fn∗ OS ⊗ F∗(WnΩq−2

AdS/S
)∗F

n+2 1⊗dV
//

(1⊗can)⊗1

��

Fn∗ OS ⊗ (Wn+1Ωq−1

AdS/S
)∗F

n+1

)
⊗W2n+2(OX)

(1⊗can)⊗1

��

Fn∗ OS ⊗ F∗(WnΩq−2
X/S)∗F

n+2 1⊗dV
// Fn∗ OS ⊗ (Wn+1Ωq−1

X/S)∗F
n+1.

If we write V instead of dV and q − 1 on the left hand side instead of q − 2,

we obtain again a commutative diagram. Since X/AdS is étale, the vertical maps

are isomorphisms (in both diagrams). Thus if we denote the image in (5.12.1) by

Im(X/S) we obtain

Im(X/S) ∼= Im(AdS/S)∗F
n+1 ⊗W2n+2(OAd

S
) W2n+2(OX).

Similarly, denoting the kernel in (5.12.1) by Ker(X/S) one finds

Ker(X/S) ∼= Ker(AdS/S)∗F
n+1 ⊗W2n+2(OAd

S
) W2n+2(OX).

And, since W2n+2(OX) is étale over W2n+2(OAdS
) [LZ04, Prop. A.8], it is thus enough

to prove (5.12.1) in the case S = SpecA, with A an Fp-algebra, and X = SpecB,

with B = A[x1, . . . , xd].

Now, using the notation of Corollary 5.6, any element α ∈ Fn∗ A⊗Wn+1Ωq−1
B/A can

be written as a finite sum

(5.12.2) α =
∑
i

∑
pnk integral
P=(I0,...,Iq−1)

ai⊗en+1(V u(k)(ηk,P,i), k,P), ηk,P,i ∈Wn+1−u(k)(A).

By the rule 5.4, (ii) we have

Fnen+1(V u(k)(η), k,P) =

{
e1(Fn−u(k)(η), pnk,P) if I0 = ∅ or (I0 6= ∅, k integral),

0 if I0 6= ∅ and k not integral.

It follows that an element α as in (5.12.2) lies in Ker(1 ⊗ Fn) = Ker(B/A) iff it

satisfies

(5.12.3)
∑
i

aiF
n−u(k)(ηk,P,i) = 0, for I0 = ∅ or (I0 6= ∅, k integral).

We consider the following three cases:

1) k is integral, i.e., u(k) = 0. Then, by Definition 5.3, en+1(η, k,P) =

ηen+1(1, k,P). By (5.12.3), we get∑
i

ai ⊗ en+1(ηi,k,P , k,P) =

(∑
i

aiF
n(ηi,k,P)

)
⊗ en+1(1, k,P) = 0.

2) k is not integral and I0 = ∅. In this case en+1(η, k,P) ∈ Im(dV ) by Defini-

tion 5.3. Thus ∑
i

ai ⊗ en+1(ηi,k,P , k,P) ∈ Im(1⊗ dV ).
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3) k is not integral and I0 6= ∅. Now en+1(η, k,P) ∈ Im(V ) by Definition 5.3.

Hence ∑
i

ai ⊗ en+1(ηi,k,P , k,P) ∈ Im(1⊗ V ).

Putting the three cases together, we see that α ∈ Ker(1 ⊗ Fn) implies α ∈ Im(1 ⊗
V + 1⊗ dV ) = Im(B/A). This gives the statement. �

Theorem 5.13 (cf. [Il79, I, Cor. 3.9]). Let S be an Fp-scheme and let X be a smooth

S-scheme. For n, q ≥ 0, denote by grnWΩq
X/S the n-th graded piece of the canonical

filtration

FilnWΩq
X/S = V nWΩq

X/S + dV nWΩq
X/S = Ker(WΩq

X/S →WnΩq
X/S).

Then we have an exact sequence of OX-modules

0 −→ Fn+1
X∗

Ωq
X/S

BnΩq
X/S

V n−−→ grnWΩq
X/S −→ Fn+1

X∗

Ωq−1
X/S

ZnΩq−1
X/S

−→ 0,

where the second map is given by V n(α)+dV n(β) 7→ β and the OX-module structure

on grnWΩq
X/S is given via

OX =
WnOX

VWn−1OX
F−−→ Wn+1OX

pWnOX
.

Furthermore FnX/S∗
Ωq
X/S

BnΩq
X/S

and FnX/S∗
Ωq−1
X/S

ZnΩq−1
X/S

are locally free OX(pn)-modules.

Proof. The exactness of the sequence follows from Proposition 5.7, Corollary 5.11

and Lemma 5.12. The second statement is proven as in [Il79, I, Cor. 3.9]. By étale

base change (Proposition 5.9, (ii)), we reduce the question of the local freeness of

the two extreme OX(pn)-modules in the exact sequence to the case X = AdS . Since

everything is compatible with arbitrary base change in the base S (by Proposition

5.9, (i)), we may also assume S = SpecFp, and even S = Spec k with k algebraically

closed. But now the sheaves in question are coherent on (Adk)(pn) ∼= Adk, hence locally

free in some non-empty open subset, whose translates under certain closed points

cover the whole of (Adk)(pn). As they are invariant under translation, this gives the

statement. �

6. The Hodge-Witt trace morphism for projective spaces

Let X be a noetherian Fp-scheme with a dualizing complex, and let f : Y → X

be a projective complete intersection morphism of virtual relative dimension 0. Our

goal in the next two sections is to prove that, given a factorization f = π ◦ i, where

π : P = P dX → X is the structural morphism of some projective space over X, and

i : Y ↪→ P is a closed immersion, one can define for all n ≥ 1 a morphism

τi,π,n : Rf∗WnOY −→WnOX
so as to satisfy the following properties:

(i) For n = 1, τi,π,n is the morphism τf of Theorem 3.1;

(ii) For variable n, τi,π,n commutes with R, F and V .
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Our construction of τi,π,n will be based on a generalization for arbitrary n of

the description of τf given in Proposition 4.6: we will construct on the one hand

a trace morphism Rπ∗WnΩd
P/X [d] → WnOX , which will be a generalization of the

trace morphism Trpπ for the projective space, and on the other hand a morphism

i∗WnOY → WnΩd
P/X [d] which will be a generalization of the morphism γf : OY →

ωP/X [d] defined in (4.5.1).

We begin with the trace morphism for projective spaces.

6.1. We recall first from [Il90, Déf. 1.1] that a smooth proper Fp-morphism f : X →
S is called ordinary, if it satisfies

Rif∗BΩq
X/S = 0, for all i, q ≥ 0.

This notion is compatible with arbitrary base-change in the base S, and P dFp is

ordinary over SpecFp [Il90, Prop. 1.2, Prop. 1.4]. Hence if E is a locally free OX -

module of finite rank on some Fp-scheme X, then P(E) = Proj (SymOXE) is ordinary

over X.

Lemma 6.2. Let f : X → S be ordinary. Then, for all n ≥ 1 and q ≥ 0,

V n : Fn+1
S∗ Rf∗Ωq

X/S

∼−−→ Rf∗grnWΩq
X/S

is an isomorphism in the derived category of quasi-coherent OS-modules (where the

OS-module structure on the right hand side comes from the OX-module structure

defined in Theorem 5.13 ).

Proof. This follows immediately from Theorem 5.13 and the following claim:

(6.2.1) Rif∗ZnΩq
X/S

∼−−→ Rif∗Ω
q
X/S , Rif∗BnΩq

X/S = 0, for all i, q ≥ 0, n ≥ 1.

We prove this by induction on n. The statement for B1 holds by definition of

ordinarity and for Z1 follows from the exact sequence

0 −→ ZΩq
X/S −→ Ωq

X/S

d−→ BΩq+1
X/S −→ 0.

Now for the general case consider the following commutative diagram (in which f∗
is viewed as a functor on the category of abelian sheaves for the Zariski topology on

|X| = |X(p)|)

Rif∗ZnΩq

X(p)/S

C−1
X/S
//

��

Rif∗
Zn+1Ωq

X/S

B1Ωq
X/S

��

Rif∗Zn+1Ωq
X/S

��

oo

Rif∗Ω
q

X(p)/S

C−1
X/S

// Rif∗
Z1Ωq

X/S

B1Ωq
X/S

Rif∗Z1Ωq
X/S .oo

The horizontal maps are isomorphisms as is the vertical map on the left by induction

(notice that X(p)/S is also ordinary). Hence all maps in the diagram are isomor-

phisms, which yields the claim for Zn+1. To prove the statement for Bn+1 it is

enough to consider the upper line in the diagram, with Z replaced by B, and one

immediately obtains the statement. �
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6.3. Let S be a scheme on which p is locally nilpotent, and X an S-scheme. As in

the classical case [Il79, I, 3.23], we define for any n ≥ 1 the log derivation dlog n to

be the morphism of abelian sheaves

dlog n : O×X −→WnΩ1
X/S , a 7→ dlog n(a) :=

d[a]

[a]
.

We may write simply dlog if n is fixed.

For variable n, the maps dlog n satisfy the following relations:

(6.3.1) R(dlog n(a)) = dlog n−1(a), F (dlog n(a)) = dlog n−1(a).

The maps dlog n allow to define Chern classes for line bundles, and to prove for

relative Hodge-Witt cohomology the analog of the classical theorem on the coho-

mology of projective bundles (cf. [SGA 7 II, XI, Thm. 1.1]).

Theorem 6.4. Let X be an Fp-scheme, E a locally free OX-module of rank d +

1, P = P(E), and let π : P → X be the canonical projection. Denote by ηn ∈
H0(X,R1π∗WnΩ1

P/X) the image under dlog n of the class of OP (1) in R1π∗O×P , and

by ηqn ∈ H0(X,Rqπ∗WnΩq
P/X) its q-fold cup product. Then, for all n ≥ 1 and all q

such that 0 ≤ q ≤ d, multiplication with ηqn induces an isomorphism in the derived

category of Wn(OX)-modules

(6.4.1) Wn(OX)[−q] ∼−−→ Rπ∗WnΩq
P/X .

Furthermore these isomorphisms are compatible with restriction, Frobenius and Ver-

schiebung on both sides.

Proof. We first observe that

Rjπ∗WnΩq
P/X = 0 for j 6= q.

Indeed, we can argue by induction using the exact sequences

0 −→ grnWn+1Ωq
P/X −→Wn+1Ωq

P/X −→WnΩq
P/X −→ 0.

For n = 1, the claim follows from [SGA 7 II, XI, Thm. 1.1], and, since P(E) is

ordinary over X, Lemma 6.2 implies similarly the claim for all n.

Therefore, we obtain a canonical isomorphism

(6.4.2) Rπ∗WnΩq
P/X

∼−−→ Rqπ∗WnΩq
P/X [−q],

and we can define the morphism (6.4.1) as corresponding via (6.4.2) and translation

to the morphism

(6.4.3) Wn(OX) −→ Rqπ∗WnΩq
P/X , w 7→ wηqn.

This reduces the proof of the theorem to proving that (6.4.3) is an isomorphism,

compatible with R, F and V .

From (6.3.1), we get for all w ∈Wn+1(OX) the relations

(6.4.4) R(wηqn+1) = R(w)ηqn, F (wηqn+1) = F (w)ηqn

in Rqπ∗WnΩq
P/X . From the second relation, we also get

(6.4.5) V (wηqn−1) = V (wF (ηqn)) = V (w)ηqn
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for all w ∈Wn−1(OX). So the homomorphisms (6.4.3) satisfy the required compat-

ibilities.

To prove that the homomorphisms (6.4.3) are isomorphisms, we may now again

argue by induction on n, using the compatibility with R and V . Then Lemma

6.2 reduces the proof to the case n = 1, which is known by [SGA 7 II, Exp. XI,

Thm. 1.1]. �

Definition 6.5. Under the assumptions of Theorem 6.4, we define the Hodge-Witt

trace morphism for the projective space P(E) to be the WnOX -linear map

(6.5.1) Trpπ,n : Rπ∗WnΩd
P(E)/X [d]

∼−−→WnOX

obtained by inverting the isomorphism (6.4.1), shifting by −d and multiplying by

(−1)d(d+1)/2. Theorem 6.4 implies that Trpπ,n is compatible with restriction, Frobe-

nius and Verschiebung. For n = 1, we obtain

(6.5.2) Trpπ,1 = Trpπ : Rπ∗Ωd
P(E)/X [d]

∼−−→ OX .

Indeed, it follows from (6.4.1) that this is a local property on X. So we may assume

that P(E) = P dX . LetX0, . . . , Xd be homogenous coordinates, and xi = Xi/X0. Then

Trpπ is defined as the isomorphism which maps the Čech cohomology class dx1 ∧
· · · ∧ dxd/x1 · · ·xd to (−1)d(d+1)/2 [Co00, (2.3.1)-(2.3.3)], and this Čech cohomology

class is equal to ηd1 .

7. The Hodge-Witt fundamental class of a regularly embedded

subscheme

In this section, we assume that X is a locally noetherian scheme of characteristic

p, and we consider a regular immersion i : Y ↪→ P of codimension d, where P is a

smooth X-scheme. Under these assumptions, we want to associate to Y a canonical

class γY ∈ Γ(P,HdY (WnΩd
P/X)), for each n ≥ 1.

Proposition 7.1. Under the previous assumptions:

(i) If t1, . . . , td is a regular sequence of sections of OP , then, for all n ≥ 1 and

all r ≥ 1, [t1]r, . . . , [td]
r is a regular sequence of sections of Wn(OP ).

(ii) For all n ≥ 1 and all q, HjY (WnΩq
P/X) = 0 for j 6= d.

Proof. We proceed by induction on n. In the exact sequence of Wn+1(OP )-modules

0 −→ Fn∗ OP
V n−−→Wn+1(OP )

R−−→Wn(OP ) −→ 0,

the action of [ti]
r on Fn∗ OP is given by multiplication by trp

n

i on OP . As P is a

locally noetherian scheme, the sequence trp
n

1 , . . . , trp
n

d is regular in OP , and the first

claim follows easily.

For n = 1, the second one is a well known consequence of the regularity of the

sequence t1, . . . , td. As OP is locally free of finite rank over OP (pn) , we also have

HjY (OP (pn)) = 0 for j 6= d. In the exact sequence

0 −→ grnWn+1Ωq
P/X −→Wn+1Ωq

P/X

R−−→WnΩq
P/X −→ 0,



RATIONAL POINTS OF REGULAR MODELS 39

Theorem 5.13 allows to endow the kernel grnWn+1Ωq
P/X with an OP -module struc-

ture for which it is an extension of two OP -modules which are locally free over

OP (pn) . Therefore, HjY (grnWn+1Ωq
P/X) = 0 for j 6= d. The second claim follows by

induction. �

Theorem 7.2. Under the assumptions of this section, let t = (t1, . . . , td) and t′ =

(t′1, . . . , t
′
d) be two regular sequences of sections of OP generating the ideal I of Y in

P . Let n ≥ 1 be an integer, and let J = ([t1], . . . , [td]), J ′ = ([t′1], . . . , [t′d]) be the

ideals of Wn(OP ) generated by the Teichmüller representatives of these generators.

If

βJ : ExtdWn(OP )(Wn(OP )/J ,WnΩd
P/X) −→ HdY (WnΩd

P/X)

is the canonical homomorphism (and similarly for βJ ′), then, with the notations of

4.1,

(7.2.1) βJ (

[
d[t1] · · · d[td]

[t1], . . . , [td]

]
) = βJ ′(

[
d[t′1] · · · d[t′d]

[t′1], . . . , [t′d]

]
).

Proof. It suffices to prove (7.2.1) in a neighbourhood of each point y ∈ Y . Localizing,

one can reduce the proof of Theorem 7.2 to the case of a very simple change of

generators in I, thanks to the following remarks.

a) If the sequence (t′1, . . . , t
′
d) is deduced from (t1, . . . , td) by permutation, then

J = J ′, and formula (4.2.1) implies the theorem.

b) If there exists invertible sections a1, . . . , ad ∈ O×P such that t′i = aiti for all

i, then [t′i] = [ai][ti] for all i. So J = J ′, we can apply Lemma 4.2, and we can

choose the matrix C to be the diagonal matrix with entries [ai]. Then the theorem

follows from formula (4.2.1), because an element such as (4.1.2) only depends upon

the class of m mod (t1, . . . , td)M , and here we have the congruence

d[t′1] · · · d[t′d] ≡ (
d∏
i=1

[ai]) d[t1] · · · d[td] mod JWnΩd
P/X .

c) Given y ∈ Y , there exists a permutation σ ∈ Sd such that, for any i, 1 ≤ i ≤
d, the sequence t(i) = (t′σ(1), . . . , t

′
σ(i), ti+1, . . . , td) is a regular sequence of generators

of I around y. Indeed, a sequence of elements of Iy is a regular sequence of generators

if and only if it gives a basis of Iy/myIy, and this reduces the claim to an elementary

result in linear algebra over a field. If we set t(0) = (t1, . . . , td), then t(0) = t, and

t(d) is deduced from t′ by permutation. So, using remark a), it suffices to prove the

theorem for the couple of sequences t(i−1) and t(i), for all i, 1 ≤ i ≤ d.

This reduces the proof to the case where there exists an integer i0 ∈ {1, . . . , d}
such that

t′i = ti for i 6= i0, t′i0 =
d∑
j=1

ci0,jtj .

Using remark a), we may assume that i0 = 1. Moreover, the fact that t and t′ induce

bases of the vector space Iy/myIy implies that the coefficient c1,1 is invertible around

y.
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d) In this last case, we define inductively elements t
(j)
1 for 0 ≤ j ≤ d by setting

t
(0)
1 = t1, t

(1)
1 = c1,1t

(0)
1 , t

(j)
1 = t

(j−1)
1 + c1,jtj for 1 < j.

If, for 0 ≤ j ≤ d, we define t(j) = (t
(j)
1 , t2, . . . , td), then t(0) = t, t(d) = t′, and it

suffices to prove the theorem for each of the couples t(j−1), t(j), for 1 ≤ j ≤ d. The

theorem is true for t(0), t(1), thanks to remark b), and, applying again remark a),

we can write all the remaining couples as changes of generators of the form

(7.2.2) t′1 = t1 + ct2, for some c ∈ A, t′i = ti for i ≥ 2.

Thus it suffices to prove the theorem for the change of generators of I given by

(7.2.2). The generators t3, . . . , td play no role and go unchanged along the compu-

tation, so we will drop them to simplify notations, and assume that d = 2.

Let h ∈ VWn−1(OP ) be defined by setting

(7.2.3) [t1] + [c][t2] = [t1 + ct2] + h = [t′1] + h

in Wn(OP ). Since [t′2] = [t2], this can be rewritten as

(7.2.4) [t1] = [t′1]− [c][t′2] + h.

The binomial formula gives

(7.2.5) [t1]p
n−1

= ([t′1]− [c][t′2])p
n−1

+

pn−1∑
i=1

pn−1!

(pn−1 − i)!i!
hi([t′1]− [c][t′2])p

n−1−i.

Because the ideal VWn−1(OP ) ⊂ Wn(OP ) is a PD-ideal, we can write hi = i!h[i],

with h[i] ∈ VWn−1(OP ) when i ≥ 1. Therefore the numerical coefficient of h[i] in the

i-th term of the sum is divisible by pn−1 for all i ≥ 1. Since pn−1 kills VWn−1(OP ),

equation (7.2.5) reduces to

(7.2.6) [t1]p
n−1

= ([t′1]− [c][t′2])p
n−1

.

If, for all k ≥ 1, we denote by J (k) the ideal ([t1]k, [t2]k), this shows that J (pn−1) ⊂
J ′. So we can apply Lemma 4.2 to the sequences ([t′1], [t′2]) and ([t1]p

n−1
, [t2]p

n−1
),

which are regular by Lemma 7.1. Moreover, we can write equation (7.2.6) as

[t1]p
n−1

= [t′1]p
n−1−1 · [t′1] + c1,2 · [t′2],

so that we can use as matrix C in Lemma 4.2 an upper triangular matrix with

diagonal entries [t′1]p
n−1−1, [t′2]p

n−1−1 (since [t2]p
n−1

= [t′2]p
n−1−1 · [t′2]). In particular,

det(C) = [t′1]p
n−1−1[t′2]p

n−1−1. Thus, formula (4.2.1) provides the equality

(7.2.7) α′(

[
d[t′1] d[t′2]

[t′1][t′2]

]
) =

[
[t′1]p

n−1−1[t′2]p
n−1−1 d[t′1] d[t′2]

[t1]p
n−1

[t2]p
n−1

]
,

where α′ is the canonical homomorphism

ExtdWn(OP )(Wn(OP )/J ′,WnΩd
P/X) −→ ExtdWn(OP )(Wn(OP )/J (pn−1),WnΩd

P/X).
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On the other hand, we also have J (pn−1) ⊂ J . So we can also apply Lemma 4.2 to

the regular sequences ([t1], [t2]) and ([t1]p
n−1

, [t2]p
n−1

), using now for C the diagonal

matrix with entries [t1]p
n−1−1, [t2]p

n−1−1. If we denote by

α : ExtdWn(OP )(Wn(OP )/J ,WnΩd
P/X) −→ ExtdWn(OP )(Wn(OP )/J (pn−1),WnΩd

P/X)

the canonical homomorphism, formula (4.2.1) provides the second equality

(7.2.8) α(

[
d[t1] d[t2]

[t1][t2]

]
) =

[
[t1]p

n−1−1[t2]p
n−1−1 d[t1] d[t2]

[t1]p
n−1

[t2]p
n−1

]
.

As βJ = βJ (pn−1) ◦α and βJ ′ = βJ (pn−1) ◦α′, relation (7.2.1) will follow if we prove

the equality

(7.2.9)

[
[t′1]p

n−1−1[t′2]p
n−1−1 d[t′1] d[t′2]

[t1]p
n−1

[t2]p
n−1

]
=

[
[t1]p

n−1−1[t2]p
n−1−1 d[t1] d[t2]

[t1]p
n−1

[t2]p
n−1

]
in ExtdWn(OP )(Wn(OP )/J (pn−1),WnΩd

P/X). To prove it, it suffices to prove inWnΩd
P/X

the congruence

(7.2.10)

[t′1]p
n−1−1[t′2]p

n−1−1 d[t′1] d[t′2] ≡ [t1]p
n−1−1[t2]p

n−1−1 d[t1] d[t2] mod ([t1]p
n−1

, [t2]p
n−1

),

and, thanks to (5.1.3), the latter will follow by applying Fn−1 if we prove the con-

gruence

(7.2.11) d[t′1] d[t′2] ≡ d[t1] d[t2] mod ([t1], [t2])W2n−1Ωd
P/X .

So let us prove (7.2.11). We still denote by h ∈ VW2n−2OP the difference h =

[t1] + [ct2] − [t1 + ct2] = [t1] + [ct2] − [t′1] computed in W2n−1OP . Since t′2 = t2, it

suffices to prove the congruence

(7.2.12) dh d[t2] ≡ 0 mod ([t1], [t2])W2n−1Ωd
P/X .

For all i, let

Si(X0, . . . , Xi, Y0, . . . , Yi) ∈ Z[X0, . . . , Xi, Y0, . . . , Yi]

be the universal polynomial defining the i-th component of the sum of two Witt

vectors, and

(7.2.13) si(X0, Y0) = Si(X0, 0, . . . , 0, Y0, 0, . . . 0) ∈ Z[X0, Y0].

Note that, for i ≥ 1, the polynomial si(X0, Y0) is divisible by X0Y0, since (0, . . . , 0)

is the zero element in a Witt vector ring. By definition, we have

[t1] + [ct2] = (t1 + ct2, s1(t1, ct2), . . . , s2n−2(t1, ct2)),

and

h = (0, s1(t1, ct2), . . . , s2n−2(t1, ct2)).

Since si(X0, Y0) is divisible by Y0, we can write si(t1, ct2) = zit2 for some section

zi ∈ OP . We obtain

h = (0, z1t2, . . . , z2n−2t2),
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which we can write as

h =

2n−2∑
i=1

V i([zi][t2]).

For each i, 1 ≤ i ≤ 2n− 2, we now obtain

dV i([zi][t2]) d[t2] = dV i([zi][t2]F i(d[t2])) = dV i([zi][t2]p
i
d[t2])

= dV i([zi]F
i([t2])d[t2]) = d([t2]V i([zi]d[t2])) ≡ d[t2]V i([zi]d[t2])

= V i(F i(d[t2])[zi]d[t2]) = V i([t2]p
i−1d[t2][zi]d[t2]) = 0

mod [t2]W2n−1Ωd
P/X , which proves (7.2.12). �

Definition 7.3. Under the assumptions of this section, we define the n-th Hodge-

Witt fundamental class γY,n of Y in P relatively to X as being the section of

HdY (WnΩd
P/X) obtained by glueing the sections βJ (

[
d[t1] · · · d[td]

[t1], . . . , [td]

]
) defined locally

by regular sequences of generators of the ideal I of Y in P .

Proposition 7.4. For n ≥ 1, let

R : HdY (Wn+1Ωd
P/X) −→ HdY (WnΩd

P/X),

F : HdY (Wn+1Ωd
P/X) −→ HdY (WnΩd

P/X),

V : HdY (WnΩd
P/X) −→ HdY (Wn+1Ωd

P/X)

be the homomorphisms defined by functoriality. Then

(7.4.1) R(γY,n+1) = γY,n, F (γY,n+1) = γY,n, V (γY,n) = pγY,n+1.

Proof. We may assume that there exists a regular sequence t1, . . . , td such that I =

(t1, . . . , td). For each n ≥ 1, let Jn be the ideal of Wn(OP ) generated by the

Teichmüller representatives [ti] of the ti’s, and let K•([t]n) be the Koszul complex

defined by the [ti]’s over Wn(OP ). Since R([ti]) = [ti], scalar extension through R

yields an isomorphism

Wn(OP )⊗Wn+1(OP ) K•([t]n+1)
∼−−→ K•([t]n).

Using the fact that the [ti]’s form a regular sequence both in Wn+1(OP ) and in

Wn(OP ), it can be seen in the derived category of Wn(OP )-modules as an isomor-

phism

(7.4.2) Wn(OP )
L
⊗Wn+1(OP ) Wn+1(OP )/Jn+1

∼−−→Wn(OP )/Jn.
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By adjunction, we obtain a diagram

(7.4.3)

Hd(Hom•
Wn+1(OP )(K•([t]n+1),Wn+1Ωd

P/X))

R

��

∼
++WWWWWWWWWWWWWW

ExtdWn+1(OP )(Wn+1(OP )/Jn+1,Wn+1Ωd
P/X)

βJn+1
//

ρ

��

HdY (Wn+1Ωd
P/X)

R

��

Hd(Hom•
Wn+1(OP )(K•([t]n+1),WnΩd

P/X))

Hd(Hom•
Wn(OP )(K•([t]n),WnΩd

P/X))

o
OO

∼
++WWWWWWWWWWWWWW

ExtdWn(OP )(Wn(OP )/Jn,WnΩd
P/X)

βJn // HdY (WnΩd
P/X),

in which ρ is defined so that the left part of the diagram commutes. On the other

hand, (7.4.2) implies that injective Wn(OP )-modules are acyclic for the functor

HomWn+1(OP )(Wn+1(OP )/Jn+1,−). Replacing Wn+1Ωd
P/X and WnΩd

P/X by injec-

tive resolutions, it is then easy to check that the right part of the diagram commutes.

As R(d[t1] · · · d[td]) = d[t1] · · · d[td], the first relation of (7.4.1) follows.

One proceeds similarly to prove the second one. Since F ([ti]) = [tpi ] = [ti]
p, and

the sequence [ti]
p, . . . , [td]

p is a regular sequence in Wn(OP ), we obtain isomorphisms

Wn(OP )⊗Wn+1(OP ) K•([t]n+1)
∼−−→ K•([t]pn),

Wn(OP )
L
⊗Wn+1(OP ) Wn+1(OP )/Jn+1

∼−−→Wn(OP )/J (p)
n ,(7.4.4)

where the tensor products are now taken via F : Wn+1(OP ) → Wn(OP ). They

provide a commutative diagram similar to (7.4.3)

(7.4.5)

Hd(Hom•
Wn+1(OP )(K•([t]n+1),Wn+1Ωd

P/X))

F

��

∼
++WWWWWWWWWWWWWW

ExtdWn+1(OP )(Wn+1(OP )/Jn+1,Wn+1Ωd
P/X)

βJn+1
//

φ

��

HdY (Wn+1Ωd
P/X)

F

��

Hd(Hom•
Wn+1(OP )(K•([t]n+1),WnΩd

P/X))

Hd(Hom•
Wn(OP )(K•([t]pn),WnΩd

P/X))

o
OO

∼
++WWWWWWWWWWWWWW

ExtdWn(OP )(Wn(OP )/J (p)
n ,WnΩd

P/X)
β
J (p)
n // HdY (WnΩd

P/X).

Since F (d[t1] · · · d[td]) = [t1]p−1 · · · [td]p−1d[t1] · · · d[td], it follows that

F (βJn+1(

[
d[t1] · · · d[td]

[t1], . . . , [td]

]
)) = βJ (p)

n
(

[
[t1]p−1 · · · [td]p−1 d[t1] · · · d[td]

[t1]p, . . . , [td]
p

]
).
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On the other hand, if α denotes the canonical homomorphism

α : ExtdWn(OP )(Wn(OP )/Jn,WnΩd
P/X) −→ ExtdWn(OP )(Wn(OP )/J (p)

n ,WnΩd
P/X),

we have by (4.2.1)

α(

[
d[t1] · · · d[td]

[t1], . . . , [td]

]
) =

[
[t1]p−1 · · · [td]p−1 d[t1] · · · d[td]

[t1]p, . . . , [td]
p

]
.

As βJ (p)
n
◦ α = βJn , it follows that F (γY,n+1) = γY,n.

The last relation of (7.4.1) follows formally, because V (γY,n) = V (F (γY,n+1)) =

pγY,n+1. �

Proposition 7.5. Let n ≥ 1 be an integer, and let γY,n ∈ HdY (WnΩd
P/X) be the

Hodge-Witt fundamental class of Y in P relatively to X, as defined in 7.3.

(i) The linear homomorphism Wn(OP ) → HdY (WnΩd
P/X) sending 1 to γY,n

vanishes on Wn(I) := Ker(Wn(OP ) � i∗Wn(OY )).

(ii) Let γi,π,n be the composition

(7.5.1)

γi,π,n : i∗Wn(OY ) −→ HdY (WnΩd
P/X)

∼−−→ RΓY (WnΩd
P/X [d]) −→WnΩd

P/X [d],

where the first morphism is defined thanks to the previous assertion. Then γi,π,n
commutes with R, F and V .

(iii) For n = 1, we have γi,π,1 = γf , where γf is the morphism defined by (4.5.1).

Proof. To prove assertion (i), we may again assume that I is generated by a regular

sequence t1, . . . , td. Any section w of Wn(I) can then be written as a sum

w =
n−1∑
i=0

V i([ai,1][t1] + · · ·+ [ai,d][td]),

with ai,j ∈ I and [ai,j ], [tj ] ∈ Wn−i(OP ). By functoriality, we have V (a)ω =

V (aF (ω)) for any a ∈ Wi(OP ), ω ∈ HdY (Wi+1Ωd
P/X), i ≥ 1. Using (7.4.1), we

obtain

V i([ai,j ][tj ])γY,n = V i([ai,j ][tj ]F
i(γY,n)) = V i([ai,j ][tj ]γY,n−i).

The symbol (4.1.2) is linear with respect to m, therefore we have

[ai,j ][tj ]γY,n−i = βJ (

[
[ai,j ][tj ] d[t1] · · · d[td]

[t1], . . . , [td]

]
) = 0

since the upper entry in the symbol belongs to ([t1], . . . , [td])Wn−iΩ
d
P/X .

In the definition of γi,π,n, the last two arrows commute with R, F and V by

functoriality. Relations (7.4.1) imply that the first one also commutes with R, F

and V , since R(1) = F (1) = 1, and V (1) = p.

Let us assume that n = 1, and check assertion (iii). By construction, γi,π,1 is

the composition of the morphism i∗OY → HdY (Ωd
P/X) sending 1 to γY,1 with the

canonical morphism

HdY (Ωd
P/X)

∼−−→ RΓY (Ωd
P/X [d]) −→ Ωd

P/X [d].
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Comparing with the definition of γf in 4.5, and using the same notations, it suffices

to show that the composed morphism

OY
ϕf−→ ωY/X

η−1
Y/P
◦ ζ′i,π−−−−−−→ ExtdOP (OY ,Ωd

P/X)
βI−→ HdY (Ωd

P/X)

sends 1 to γY,1. Since this is a morphism of sheaves (rather than complexes in the

derived category), it is a local verification, which is provided by Lemma 4.4. �

Definition 7.6. Let X be a noetherian Fp-scheme with a dualizing complex, E a

locally free OX -module of rank d+1, P = P(E), π : P → X the canonical projection,

i : Y ↪→ P a regular closed immersion of codimension d. For each integer n ≥ 1, we

define a trace morphism τi,π,n by

(7.6.1) τi,π,n : Rf∗(Wn(OY ))
Rπ∗(γi,π,n)
−−−−−−−→ Rπ∗(WnΩd

P/X [d])
Trpπ,n−−−−→Wn(OX),

where γi,π,n is the morphism (7.5.1), and Trpπ,n is the Hodge-Witt trace morphism

defined in (6.5.1).

Proposition 7.7. Under the assumptions of 7.6, the morphisms τi,π,n satisfy the

following properties.

(i) For variable n, τi,π,n commutes with R, F and V .

(ii) For n = 1, τi,π,1 = τf .

Proof. Taking into account Proposition 4.6, both assertions follow from the similar

properties of γi,π,n and Trpπ,n proved in 7.5 and 6.5. �

Definition 7.8. Under the assumptions of 7.6, we can use the previous constructions

to define a morphism τi,π : Rf∗(W (OY )) −→ W (OX) which commutes with F and

V , and is such that Rn ◦ τi,π = τi,π,n ◦ Rn for all n, Rn denoting both restriction

maps W (OX)→Wn(OX) and W (OY )→Wn(OY ).

To construct τi,π, we first recall that, for any scheme X, the inverse system

(Wn(OX))n≥0 is lim←−-acyclic, as the cohomology of each term vanishes on affine open

subsets, and the inverse system of sections on such a subset has surjective transition

maps. So, if f• ∗ denotes the obvious extension of the direct image functor to the

category of inverse systems, it suffices to define a morphism

(7.8.1) τi,π,• : Rf• ∗(W•(OY )) −→W•(OX)

in the derived category of inverse systems on X, and to apply the functor R lim←−
and the canonical isomorphism Rf∗ ◦ R lim←− ' R lim←− ◦Rf• ∗. On the one hand, the

relations R(γY,n+1) = γY,n imply that, for variable n, the fundamental classes define

a morphism of inverse systems i• ∗(W•(OY )) → HdY (W•Ωd
P/X). As the canonical

morphisms

HdY (W•Ω
d
P/X)

∼−−→ RΓY (W•Ω
d
P/X [d]) −→W•Ω

d
P/X [d]

make sense in the derived category of inverse systems, we can define in this derived

category a morphism γi,π,• : i• ∗(W•(OY )) → W•Ωd
P/X [d] which has the morphisms

γi,π,n defined in (7.5.1) as components. On the other hand, the homomorphisms

dlog n used to define Chern classes for invertible bundles form an inverse system of

homomorphisms, hence, for variable n, the powers of the Chern classes of OP (1)
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define a morphism W•(OP )[−d] → Rπ• ∗(W•Ωd
P/X), which is an isomorphism of

the derived category of inverse systems. Composing its inverse with the projection

by Rπ• ∗ of γi,π,• provides τi,π,•. It is clear that τi,π,• has the morphisms τi,π,n as

components, and commutes with F and V . Then the morphism

(7.8.2) τi,π : Rf∗(W (OY ))
∼−−→ R lim←−Rf• ∗(W•(OY ))

R lim←−(τi,π,•)
−−−−−−−→W (OX)

has the required properties.

Finally, as f is a morphism of noetherian schemes, f∗ and Rf∗ commute with ten-

sorisation with Q. So we can define a morphism again denoted τi,π : Rf∗(WOY,Q) −→
WOX,Q by

(7.8.3) τi,π : Rf∗(WOY,Q)
∼−−→ Rf∗(WOY )⊗Q

τi,π⊗Q−−−−→WOX,Q.

This morphism also commutes with F and V .

8. Proof of the injectivity theorem for Witt vector cohomology

The main result of this section is Theorem 8.1 below, which gives an injectivity

property for the functoriality morphisms induced on Witt vector cohomology by

some complete intersection morphisms of virtual relative dimension 0. As explained

in Remark 8.2, Theorem 1.5 is a particular case of this result.

Theorem 8.1. Let f : Y → X be a projective morphism between two flat noether-

ian Z(p)-schemes with dualizing complexes, which is complete intersection of virtual

relative dimension 0. We assume that there exists a scheme-theoretically dense open

subscheme U ⊂ X such that f−1(U)→ U is finite locally free of constant rank r ≥ 1.

Let fn : Yn → Xn be the reduction of f mod pn+1.

(i) For all q ≥ 0, the kernels of the functoriality homomorphisms

f∗ : Hq(X,OX) −→ Hq(Y,OY ),(8.1.1)

f∗n : Hq(Xn,OXn) −→ Hq(Yn,OYn),(8.1.2)

f∗0 : Hq(X0,Wn(OX0)) −→ Hq(Y0,Wn(OY0)),(8.1.3)

f∗0 : Hq(X0,W (OX0)) −→ Hq(Y0,W (OY0)),(8.1.4)

are annihilated by r.

(ii) For all q ≥ 0, the functoriality homomorphism

(8.1.5) f∗0 : Hq(X0,WOX0,Q) −→ Hq(Y0,WOY0,Q)

is injective.

Remark 8.2. Theorem 8.1 implies Theorem 1.5. Indeed, let f : Y → X be as in

1.5. The morphisms Xk ↪→ X0 and Yk ↪→ Y0 are nilpotent immersions, hence the

canonical homomorphisms

Hq(X0,WOX0,Q) −→ Hq(Xk,WOXk,Q), Hq(Y0,WOY0,Q) −→ Hq(Yk,WOYk,Q)

are isomorphisms [BBE07, Prop. 2.1]. Therefore it suffices to check that f satisfies

the hypotheses of Theorem 8.1. We may assume that X is connected, and replace Y

by one of its connected components mapping surjectively to X, so that X and Y are
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integral schemes. At any closed point y ∈ Y , with image x = f(y), we may choose

a closed immersion Y ↪→ P around y, with P smooth over X. If dimOX,x = n,

then OP,y is a regular local ring of dimension n + d for d = dim(P/X), and OY,y
is a regular quotient of OP,y of dimension n. Therefore, the ideal I of Y in P is

regular of codimension d around y, and it follows that f is complete intersection of

virtual relative dimension 0. Moreover, the function field extension K(X) ↪→ K(Y )

is finite, hence f is finite and locally free of constant rank ≥ 1 above a non empty

open subset U . As X is integral, U is scheme-theoretically dense and the hypotheses

of Theorem 8.1 are satisfied.

In order to prove Theorem 8.1, we will choose a factorization f = π ◦ i, where

i : Y ↪→ P = P dX is a closed immersion, and π : P → X the structural morphism.

Let i0, π0 be the reductions mod p of i, π. The key point will be to relate the trace

morphisms τi0,π0,n constructed in 7.6 to the trace morphism τf given by Theorem

3.1, and this is made possible by the following constructions.

Lemma 8.3. Let X be a scheme on which p is locally nilpotent, P a smooth X-

scheme, a ⊂ OX a quasi-coherent ideal, X ′ ↪→ X the closed subscheme defined by

a, P ′ = X ′ ×X P . For each n ≥ 1, let N •
n ⊂ WnΩ•

P/X be the additive subgroup

generated by sections of the form

(8.3.1) V r([a]ω), dV r([a]ω), with a ∈ a, ω ∈Wn−rΩ
•
P/X , 0 ≤ r ≤ n− 1.

Then, for variable n, the canonical homomorphisms WnΩ•
P/X → WnΩ•

P ′/X′ induce

a transitive family of isomorphisms

(8.3.2) WnΩ•
P/X/N

•
n
∼−−→WnΩ•

P ′/X′ .

Proof. Thanks to (5.1.2), one first notices that N •
n is a differential graded ideal of

WnΩ•
P/X . Using (5.1.4), one sees that, for all n ≥ 1, V (N •

n) ⊂ N •
n+1. Using (5.1.1)

(and a direct computation for r = 0), one sees that F (N •
n+1) ⊂ N •

n . Therefore,

the projective system {WnΩ•
P/X/N

•
n} is an F -V -procomplex over P/X. In degree

0, it is easy to see by induction on n that the ideal N 0
n ⊂ Wn(OP ) is the kernel of

Wn(OP )→Wn(OP ′). It follows that {WnΩ•
P/X/N

•
n} is actually an F -V -procomplex

over P ′/X ′. It is then clear that it satisfies the universal property which defines

{WnΩ•
P ′/X′}, which implies that (8.3.2) is an isomorphism of F -V -procomplexes. �

Proposition 8.4. Let X be a Z(p)-scheme and denote Xn = X ⊗Z(p)
Z(p)/p

n+1.

(i) For all n ≥ 1, there exists a unique homomorphism of sheaves of rings

F̃n : Wn(OX0) −→ OXn−1

making the following diagram commute

Wn+1(OXn−1)
Fn //

��

OXn−1

Wn(OX0)
F̃n

77ooooooooooo
,
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where the vertical map is the natural reduction map. Furthermore, if we assume X

to be flat over Z(p) and denote by Rn : W (OX0) → Wn(OX0) the natural reduction

map, then

(8.4.1) Ker(F − Id : W (OX0)→W (OX0)) ∩
⋂
n≥1

Ker(F̃n ◦Rn) = 0.

(ii) Let P be a smooth X-scheme and denote Pn = P ×X Xn. For all n ≥ 1,

there exists a unique homomorphism of sheaves of graded algebras

F̃n : WnΩ•
P0/X0

−→ H•(Ω•
Pn−1/Xn−1

)

making the following diagram commute

Wn+1Ω•
Pn−1/Xn−1

Fn //

��

ZΩ•
Pn−1/Xn−1

��

WnΩ•
P0/X0

F̃n // H•(Ω•
Pn−1/Xn−1

).

Furthermore, for all a ∈ O×P0
and all ã ∈ O×Pn−1

lifting a, we have

(8.4.2) F̃n(dlog ([a])) = cl(dã/ã).

When X0 is a perfect scheme and Xn−1 = Wn(X0), F̃n is the isomorphism

(8.4.3) θn : WnΩ•
P0/X0

∼−−→ H•(Ω•
Pn−1/Xn−1

)

defined by Illusie-Raynaud [IR83, III, (1.5)].

Note that, in formula (8.4.2), the class of dã/ã does not depend upon the choice

of the liftng ã: if b̃ = ã+ pw, then

db̃/b̃ = dã/ã+ d(log(1 + p
w

ã
)),

where log(1 + pw/ã) is defined thanks to the canonical divided powers of p.

Proof. (i) We may assume X is affine. The kernel of the vertical map in the diagram

is locally generated (as an abelian group) by elements of the form V n([a]) and

V r([pb]) for some a, b ∈ OPn−1 and 0 ≤ r ≤ n. As these elements are clearly mapped

to 0 under Fn, this gives the unique existence of F̃n.

To prove (8.4.1), let w ∈ Ker(F − Id) ∩
⋂
n Ker(F̃n ◦Rn). If w 6= 0, we can write

w =

∞∑
i≥s

V i([ai]), with ai ∈ OX0 and as 6= 0.

Then Rs+1(w) = V s([as]) ∈ Ker(F̃ s+1) ⊂Ws+1(OX0), which is equivalent to

psãps ∈ ps+1OX , with ãs ∈ OX any lifting of as.

Since X is Z(p)-flat, we obtain ãps ∈ pOX , in particular aps = 0 ∈ OX0 . But by

assumption we have

F (w) =
∑
i≥s

V i([api ]) =
∑
i≥s

V i([ai]) = w.

Hence as = aps = 0, a contradiction.
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(ii) First of all, since dFn = pnFnd, the image of Fn : Wn+1Ω•
Pn−1/Xn−1

→
Ω•
Pn−1/Xn−1

is clearly contained in ZΩ•
Pn−1/Xn−1

. Thus the diagram makes sense.

Now, Lemma 8.3 and [LZ04, Prop. 2.19] imply that, in degree q, the kernel of the

vertical map on the left hand side is locally generated (as an abelian group) by

sections of the following form

(8.4.4) V n(α), dV n(β), V r([p]ω), dV r([p]η),

with α ∈ Ωq
Pn−1/Xn−1

, β ∈ Ωq−1
Pn−1/Xn−1

, 0 ≤ r ≤ n, ω ∈ Wn+1−rΩ
q
Pn−1/Xn−1

and

η ∈Wn+1−rΩ
q−1
Pn−1/Xn−1

. One immediately sees that Fn maps the first three sections

to 0. For the last one, we observe that

FndV r([p]η) = Fn−rd([p]η) = Fn−r([p]dη) = pp
n−r−(n−r)d(Fn−r(η)) = 0

in Hq(Ω•
Pn−1/Xn−1

). Thus Fn maps all elements in the kernel of the vertical map to

0 in Hq(Ω•
Pn−1/Xn−1

). Since the vertical map is surjective, this yields the statement.

If ã ∈ O×Pn−1
lifts a, we get by construction

F̃n(d[a]/[a]) = cl(Fn(d[ã]/[ã])) = cl([ã]p
n−1d[ã]/[ã]p

n
),

which gives (8.4.2).

Finally, let us assume that X0 is perfect and Xn−1 = Wn(X0). By [IR83, III,

(1.5)], H•(Ω•
Pn−1/Xn−1

) has the structure of a differential graded algebra (dga) with

the differential d : Hi(Ω•
Pn−1/Xn−1

) → Hi+1(Ω•
Pn−1/Xn−1

) given by the boundary of

the long exact cohomology sequence coming from the short exact sequence

0 −→ Ω•
Pn−1/Xn−1

pn−−→ Ω•
P2n−1/X2n−1

−→ Ω•
Pn−1/Xn−1

−→ 0.

The isomorphism θn is compatible with the differential and the product, and in-

duces thus an isomorphism of dga’s θn : WnΩ•
P0/X0

∼−−→ H•(Ω•
Pn−1/Xn−1

). On the

other hand, it follows from the relation Fnd = pndFn that the morphism F̃n is

compatible with the differentials. Therefore F̃n also induces a morphism of dga’s

F̃n : WnΩ•
P0/X0

∼−−→ H•(Ω•
Pn−1/Xn−1

). In degree 0, θn is defined by

θn(a0, . . . , an−1) = ãp
n

0 + pãp
n−1

1 + · · ·+ pn−1ãpn−1,

where ã0, . . . , ãn−1 are liftings to OPn−1 of a0, . . . , an−1 [IR83, p. 142, l. 8]. This

definition shows that, in degree 0, θn is the factorization of the n-th ghost component

Wn+1(OPn−1) → OPn−1 . From the definition of the morphism of functors Fn :

Wn+1 →W1, we also get that, in degree 0, F̃n is the factorization of the n-th ghost

component. Since F̃n = θn in degree 0 and WnΩ•
Pn−1/Xn−1

is generated as dga by

its sections in degree 0, F̃n and θn have to be equal. �

Lemma 8.5. Let S be SpecZ(p), X an S-scheme, π : P := P dX → X the struc-

tural morphism of a projective space over X. For n ≥ 0, denote by Sn, Xn, Pn, πn
the reductions modulo pn+1, and let BΩd

Pn/Xn
⊂ Ωd

Pn/Xn
be the subsheaf of exact

differential forms.

(i) For all n ≥ 0, the canonical homomorphism

(8.5.1) bdn : Rdπn ∗(Ω
d
Pn/Xn

) −→ Rdπn ∗(Ω
d
Pn/Xn

/BΩd
Pn/Xn

)
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is an isomorphism.

(ii) Assume that X is flat over S, and let Y0 ↪→ P0 be a regular closed immersion

of codimension m. Then,

(8.5.2) ∀ j 6= m, ∀ n ≥ 0, HjY0(Ωd
Pn/Xn

/BΩd
Pn/Xn

) = 0.

Proof. Let Q = P dS , and let T0, . . . , Td be homogenous coordinates on Q. We define

an S-endomorphism φ : Q→ Q by sending Ti to T pi , 0 ≤ i ≤ d. By base change by

u : X → S, we obtain an X-endomorphism of P , for which we will keep the notation

φ, as well as for its reduction mod pn+1.

Let us fix n ≥ 0. We can use the morphism φn+1 and view φn+1
∗ Ω•

Pn/Xn
as a

complex of quasi-coherent OPn-modules, the differential of which is then OPn-linear.

But Pn has an open covering by d+ 1 open subsets which are relatively affine with

respect to Xn, and therefore Rdπn ∗ is a right exact functor on the category of

quasi-coherent OPn-modules. As Rdπn ∗(Ω
d−1
Pn/Xn

) = 0, the first assertion follows.

To prove the second one, we use φn+2 to view φn+2
∗ Ω•

Pn/Xn
as a complex of quasi-

coherent OPn-modules with an OPn-linear differential, and we claim that the sheaf

of OPn-modules

Hd(φn+2
∗ Ω•

Pn/Xn
) = φ∗(φ

n+1
∗ Ωd

Pn/Xn
/Bφn+1

∗ Ωd
Pn/Xn

)

has a filtration by sub-OPn-modules, the graded of which is locally free over OP0 .

As Y0 is locally defined in P0 by a regular sequence of m sections, the claim clearly

implies assertion (ii).

To prove the existence of this filtration, we may replace X, P by S, Q, because

the projection v : P → Q is flat, and

v∗(φn+2
∗ Ω•

Qn/Sn
)
∼−−→ φn+2

∗ Ω•
Pn/Xn

.

Now S0 is a perfect scheme, and Sn = Wn+1(S0). Thanks to the last assertion of

Proposition 8.4 (ii), Fn+1 defines an isomorphism of graded algebras

F̃n+1 : Wn+1Ω•
Q0/S0

∼−−→ H•(Ω•
Qn/Sn

).

We may view F̃n+1 as an OQn-linear isomorphism by endowingH•(Ω•
Qn/Sn

) with the

OQn-module structure provided by the homomorphism OQn → H0(Ω•
Qn/Sn

) defined

by φn+2, and Wn+1Ω•
Q0/S0

with the structure corresponding to the previous one via

(F̃n+1)−1 : H0(Ω•
Qn/Sn

)
∼−−→ Wn+1(OQ0). The canonical filtration of Wn+1Ωd

Q0/S0

is then a filtration by sub-OQn-modules, which can be transported to Hd(Ω•
Qn/Sn

)

via F̃n+1. As we know by [Il79, I, Cor. 3.9] that the corresponding graded pieces

are locally free OQ0-modules for the structure defined by the homomorphism

(8.5.3) F : OQ0 −→Wn+1(OQ0)/pWn+1(OQ0)
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factorizing F : Wn+1(OQ0) → Wn+1(OQ0), the proof will be complete if we check

the commutativity of the diagram

(8.5.4) OQn
φn+2 ∗

//

����

H0(Ω•
Qn/Sn

) ∼
(F̃n+1)−1

// Wn+1(OQ0)

����

OQ0

F // Wn+1(OQ0)/pWn+1(OQ0).

It is enough to check that the diagram induced on sections over D+(Ti) ⊂ Qn
commutes, for 0 ≤ i ≤ d. So we may replace OQn by A = (Z/pn+1Z)[x], with

x = (x1, . . . , xd) and φ∗(xj) = xpj , 1 ≤ j ≤ d. Take f =
∑

I aIx
I ∈ A, with

aI ∈ Z/pn+1Z. Then

(F̃n+1)−1 ◦ φn+2 ∗(f) =
∑
I

aI(F̃
n+1)−1(xp

n+2I).

As F̃n+1 is the factorization of the (n+2)-th ghost component wn+1 : Wn+2(A)→ A,

we see that (F̃n+1)−1(xp
n+1

j ) = [xj ], 1 ≤ j ≤ d. Therefore, we obtain

(F̃n+1)−1 ◦ φn+2 ∗(f) =
∑
I

aI [x]pI .

Since F is given by lifting an element of A0 to Wn+1(A0), applying Frobenius and

reducing modulo p, this gives the commutativity of (8.5.4). �

Proposition 8.6. Under the assumptions of Theorem 8.1, let f = π ◦ i be a factor-

ization of f as the composition of a regular closed immersion i : Y ↪→ P = P dX of Y

into a projective space on X, followed by the canonical projection π : P → X. For all

n ≥ 1, let fn, in, πn be the reductions of f, i, π modulo pn+1. Then the compositions

OX
f∗−→ Rf∗(OY )

τf−→ OX ,(8.6.1)

OXn
f∗n−→ Rfn ∗(OYn)

τfn−−→ OXn ,(8.6.2)

Wn(OX0)
f∗0−→ Rf0 ∗(Wn(OY0))

τi0,π0,n−−−−−→Wn(OX0),(8.6.3)

W (OX0)
f∗0−→ Rf0 ∗(W (OY0))

τi0,π0−−−→W (OX0),(8.6.4)

WOX0,Q
f∗0−→ Rf0 ∗(WOY0,Q)

τi0,π0−−−→WOX0,Q,(8.6.5)

are given by multiplication by r.

Proof. Since the restriction of f above U is finite locally free of rank r, it follows

from (3.1.3) that the endomorphism of OU induced by τf ◦ f∗ is mutiplication by r.

But U is scheme-theoretically dense in X, therefore the same relation holds on X

itself. So (8.6.1) is multiplication by r.

Thanks to the flatness of X and Y over Z(p), the spectral sequence for the com-

position of Tor’s implies that, for all n ≥ 1, Xn and Y are Tor-independent over X.

Therefore, by Theorem 3.1, (ii), the morphism τfn ◦ f∗n is deduced from τf ◦ f∗ by

base change from X to Xn, and (8.6.2) is also multiplication by r.
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We want to deduce from this result that (8.6.3) is also multiplication by r. We

observe first that the homomorphisms F̃n defined by Lemma 8.4 provide morphisms

F̃nX : Wn(OX0) −→ OXn−1 ,

f∗(F̃
n
Y ) : f0 ∗(Wn(OY0)) −→ fn−1 ∗(OYn−1),

Rdπ∗(F̃
n
P ) : Rdπ0 ∗(WnΩd

P0/X0
) −→ Rdπn−1 ∗(Ω

d
Pn−1/Xn−1

/BΩd
Pn−1/Xn−1

).

Moreover, we can use the isomorphism (8.5.1) and define

G̃nP := (bdn)−1 ◦Rdπ∗(F̃nP ) : Rdπ0 ∗(WnΩd
P0/X0

) −→ Rdπn−1 ∗(Ω
d
Pn−1/Xn−1

).

We consider the diagram

(8.6.6)

Wn(OX0)

F̃nX
��

f∗0 // f0 ∗(Wn(OY0))

f∗(F̃nY )

��

π0 ∗(γi0,π0,n)
// Rdπ0 ∗(WnΩd

P0/X0
)

G̃nP
��

Trpπ0,n

∼
// Wn(OX0)

F̃nX
��

OXn−1

f∗n−1
// fn−1 ∗(OYn−1)

πn−1 ∗(γfn−1
)
// Rdπn−1 ∗(Ω

d
Pn−1/Xn−1

)
Trpπn−1

∼
// OXn−1 ,

where the compositions of the upper and lower rows are respectively the maps in-

duced by (8.6.3) and (8.6.2) on degree 0 cohomology. Let us prove that this diagram

is commutative. The left square commutes because the morphism F̃nX is functorial

with respect to X. To prove that the right square commutes, it suffices to show

that, if ξdRW and ξdR are the de Rham-Witt and de Rham Chern classes of OP (1),

then ξddRW and ξddR have same image in Rdπn−1 ∗(Ω
d
Pn−1/Xn−1

/BΩd
Pn−1/Xn−1

). As

R•πn−1 ∗(F̃
n
P ) and b•n are compatible with cup-products, it suffices to show that the

diagram

R1π0 ∗(O×P0
)

dlog
// R1π0 ∗(WnΩ1

P0/X0
)

R1π∗(F̃nP )
��

R1πn−1 ∗(O×Pn−1
)

OO

dlog
// R1πn−1 ∗(H1(Ω•

Pn−1/Xn−1
))

is commutative, which follows from (8.4.2).

To simplify notations, we drop the base scheme from the indices, and denote

CdPn−1
= Ωd

Pn−1
/BΩd

Pn−1
. To prove the commutativity of the central square of (8.6.6),

it suffices to prove the commutativity of the diagram

i0 ∗(Wn(OY0)) //

i∗(F̃nY )

��

HdY0(WnΩd
P0

)

HdY (F̃nP )
��

RΓY0(WnΩd
P0

)[d]
∼oo

RΓY (F̃nP )[d]
��

// WnΩd
P0

[d]

F̃nP [d]
��

HdYn−1
(CdPn−1

) RΓYn−1(CdPn−1
)[d]

∼oo // CdPn−1
[d]

in−1 ∗(OYn−1) // HdYn−1
(Ωd

Pn−1
)

OO

RΓYn−1(Ωd
Yn−1

)[d]
∼oo

OO

// Ωd
Yn−1

[d] ,

OO

to apply the functor Rπn−1 ∗, and to pass to cohomology sheaves in degree 0. In

this diagram, the upper left (resp. lower left) horizontal arrow maps 1 to γY0,n (resp.
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γYn−1,1), and the middle horizontal arrow is an isomorphism thanks to Lemma 8.5

(ii). The middle and right squares commute by functoriality, and it suffices to prove

that the left rectangle commutes. This part of the diagram comes from a diagram of

morphisms of sheaves, therefore the verification is local on P . Thus we may assume

that Y is defined by a regular sequence t1, . . . , td in P . Then, since Y and P are flat

over Z(p), the images of this sequence in OPn−1 and OP0 (still denoted t1, . . . , td) are

regular sequences defining Yn−1 and Y0. It is enough to show that the symbols[
d[t1] · · · d[td]

[t1], . . . , [td]

]
∈ ExtdWn(OP0 )(Wn(OY0),WnΩd

P0
)

and

[
dt1 · · · dtd
t1, . . . , td

]
∈ ExtdOPn−1

(OYn−1 ,Ω
d
Pn−1

)

have same image in HdY (CdPn−1
). By functoriality, the image of

[
dt1 · · · dtd
t1, . . . , td

]
in

ExtdOPn−1
(OYn−1 , C

d
Pn−1

) is

[
cl(dt1 · · · dtd)
t1, . . . , td

]
. On the other hand, it follows from the

construction of F̃n in Proposition 8.4 that F̃nP ([ti]) = tp
n

i ∈ OPn−1 , and F̃nP (d[ti]) =

cl(tp
n−1
i dti) ∈ H1(Ω•

Pn−1
). Since the tp

n

i ’s form a regular sequence in OPn−1 , we may

argue as in the proof of Proposition 7.4 to show that the symbols

[
d[t1] · · · d[td]

[t1], . . . , [td]

]
and

[
cl(tp

n−1
1 · · · tp

n−1
d dt1 · · · dtd)

tp
n

1 , . . . , tp
n

d

]
have same image in HdYn−1

(CdPn−1
). The wanted

equality is then a consequence of Lemma 4.2, and the commutativity of (8.6.6)

follows.

Returning to the homomorphism (8.6.3), we observe that it is defined by multipli-

cation by a section κn of Wn(OX0). Proposition 7.7 (i) implies that, for variable n,

the sections κn form a compatible family under restriction, and satisfy F (κn) = κn−1.

If κ = lim←−n κn ∈ Γ(X0,W (OX0)), then F (κ−r) = κ−r. On the other hand, the com-

mutativity of (8.6.6) implies that F̃nX(κn − r) = 0. So, if Rn : W (OX0)→Wn(OX0)

is the restriction homomorphism, we obtain that

κ− r ∈ Ker(F − Id) ∩
⋂
n≥1

Ker(F̃nX ◦Rn),

which is zero by (8.4.1). Thus κ = r, hence κn = r for all n.

If we now consider in the derived category of inverse systems the composition

W•(OX0)
f∗0 •−−→ Rf0 • ∗(W•(OY0))

τi,π,•−−−→W•(OX0),

we obtain a morphism which has (8.6.3) as component of degree n. Therefore, this

composition is multiplication by r on the inverse system W•(OX0). It follows that

the composition

W (OX0)
R lim←− f∗0 •−−−−−→ R lim←−Rf0 • ∗(W•(OY0))

R lim←− τi,π,•
−−−−−−→W (OX0)
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is multiplication by r. Using the isomorphism R lim←− ◦ Rf0 • ∗ ' Rf0 ∗ ◦ R lim←−, we

obtain that (8.6.4) is multiplication by r. Tensoring by Q and using the commutation

of Rf0 ∗ with tensorisation by Q, we obtain that (8.6.5) is multiplication by r. �

8.7. Proof of Theorem 8.1. The first assertion is a particular case of Theorem 3.2. To

prove the other ones, we choose a factorization f = π◦i, where i is a closed immersion

of Y into a projective space P = P dX over X, and π is the structural morphism, and

we keep the notations of the previous subsections. Applying the functor Hq(Xn,−)

(resp. H i(X0,−)), the morphisms τfn , τi,π,n and τi,π define homomorphisms

Hq(Yn,OYn)
τfn−−→ Hq(Xn,OXn),

Hq(Y0,Wn(OY0))
τi,π,n−−−→ Hq(X0,Wn(OX0)),

Hq(Y0,W (OY0))
τi,π−−→ Hq(X0,W (OX0)),

Hq(Y0,WOY0,Q)
τi,π−−→ Hq(X0,WOX0,Q).

Proposition 8.6 implies that the composition of these homomorphisms with the func-

toriality homomorphisms defined by fn (resp. f0) is multiplication by r, and this

implies Theorem 8.1. �

This also completes the proof of Theorems 1.5, 1.3 and 1.1.

9. An example

Because Theorem 1.1 was previously known in some cases, and can be proved in

some other cases without using the most difficult results of this paper, it may be

worth giving an example for which we would not know how to prove congruence

(1.1.1) without using them. We give here such an example for each p ≥ 7, except

perhaps when p is a Fermat number.

9.1. We begin with a list of conditions that we want our example to satisfy. In these

conditions, R, K and k are as in Theorem 1.1, and X is an R-scheme.

(1) X is a regular scheme, projective and flat over R.

(2) H0(XK ,OXK ) = K, and Hq(XK ,OXK ) = 0 for all q ≥ 1.

(3) There exists q ≥ 1 such that Hq(Xk,OXk) 6= 0.

(4) X is not a semi-stable R-scheme (in particular, not smooth).

(5) dimXK ≥ 3.

(6) XK is a variety of general type.

Conditions (1) and (2) will ensure that X satisfies the hypotheses of Theorem 1.1.

Condition (3) will ensure that we are not in the trivial situation described in the

first paragraph of subsection 1.4. Condition (4) will ensure that Theorem 2.1 does

not suffice to conclude. Condition (5) will rule out the case of surfaces, for which

Theorem 1.1 is already known by [Es06, Th. 1.3]. Condition (6) rules out rationally

connected varieties, for which Theorem 1.1 is also known because they satisfy the

coniveau condition of [Es06, Th. 1.1]. It also grants that, if X can be embedded

as a global complete intersection in some projective space over R, then congruence

(1.1.1) cannot be proved by applying Katz’s theorem [Kz71, Th. 1.0] to Xk, since a
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smooth complete intersection in a K-projective space for which Katz’s µ invariant

is ≥ 1 is a Fano variety.

Remarks 9.2. We begin with a few remarks that make it easier to find an example

satisfying the previous conditions.

(i) Examples such that dimkH
1(Xk,OXk) > dimK H

1(XK ,OXK ) = 0 have

been known since Serre’s construction of a counter-example to Hodge symmetry in

characteristic p [Se58, Prop. 16]. The general principle behind such examples is that,

by a theorem of Raynaud, the datum of a torsor Y on X under a finite group G

defines a morphism G′ → PicX/R, where G′ is the Cartier dual of G. Then, under

certain conditions, the Lie algebra of G′k can have a non zero image in the tangent

space H1(Xk,OXk) to PicXk/k (see [Ra70, Prop. 6.2.1] for a precise statement).

The simplest case (which was the one considered by Serre) is when G is the étale

group Z/pZ. Then the Artin-Schreier exact sequence shows that, when the torsor

Yk remains non-trivial after extension to an algebraic closure k of k, its class gives

a non-zero element in H1(Xk,OXk), and therefore H1(Xk,OXk) 6= 0. This happens

in particular when Yk is a complete intersection in some projective space, since we

then have dimkH
0(Yk,OYk) = 1.

To simplify our quest, we will therefore replace condition (3) (and condition (5))

by the more restrictive condition:

(3’) X is the quotient of an hypersurface Y in a projective space PnR of relative

dimension n ≥ 4 over R by a free action of the group Z/pZ.

(ii) Assume that X satisfies condition (3’). Then H0(YK ,OYK ) = K, and

Hq(YK ,OYK ) = 0 for q 6= 0, n− 1. Because char(K) = 0, we have Hq(XK ,OXK ) =

Hq(YK ,OYK )G. Hence, H0(XK ,OXK ) = K, and condition (2) is satisfied if and

only if χ(OXK ) = 1. As YK is an étale cover of XK of degree p, the Riemann-Roch-

Hirzebruch formula implies that

(9.2.1) χ(OYK ) = pχ(OXK ).

Then condition (2) is satisfied if and only if χ(OYK ) = p. If d is the degree of the

hypersurface Y , we obtain

(−1)n−1(p− 1) = dimK H
n−1(YK ,OYK )

= dimK H
n(PnK ,OPnK (−d))

= dimK H
0(PnK ,OPnK (d− n− 1)).

The simplest choice for checking this equation is d − n − 1 = 1, so that we get

dimK H
0(PnK ,OPnK (d− n− 1)) = n+ 1. Then we have to satisfy the conditions

(9.2.2) p > 2, n = p− 2, d = p.

Therefore, we will simplify even further our quest by replacing condition (3’) by

the following more precise condition, which implies (2), (3) and (5):

(3”) X is the quotient of an hypersurface Y of degree p in the projective space

PnR of relative dimension n = p− 2 over R by a free action of the group Z/pZ, with

p ≥ 7.
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(iii) Assuming thatX satisfies conditions (1) and (3”), then condition (6) follows

automatically. Indeed, YK is smooth over K since char(K) = 0, and its canonical

sheaf is then OYK (−n− 1 + d) = OYK (1). Since YK is an étale covering of XK , it is

the inverse image of the canonical sheaf on X, which therefore is ample too.

So it suffices for our purpose to construct an example satisfying conditions (1),

(3”) and (4).

9.3. We now begin the construction of our example. Assume that p ≥ 5, and let E

be the free Z(p)-module (Z(p))
p. We denote by e0, . . . , ep−1 its canonical basis. Let σ

be a generator of G := Z/pZ. We let σ act on E by cyclic permutation of the basis:

(9.3.1) σ : e0 7→ e1 7→ · · · 7→ ep−1( 7→ e0).

Let H ⊂ E be the hyperplane consisting of elements for which the sum of coordinates

is 0. It is stable under the action of G, and we endow it with the basis v1, . . . , vp−1

defined by vi = ei − ei−1. We take as projective space the space P(H) ' Pp−2
Z(p)

, with

the induced G-action, and we denote by X1, . . . , Xp−1 the homogenous coordinates

on P(H) defined by the dual basis to the basis v1, . . . , vp−1 of H. One checks easily

that the orbit of X1 under the G-action is described by

(9.3.2) X1 7→ −Xp−1 7→ Xp−1 −Xp−2 7→ Xp−2 −Xp−3 7→ · · · 7→ X2 −X1 (7→ X1).

Let g0(X1, . . . , Xp−1) be the sum of the elements of the orbit of Xp
1 , i.e.,

(9.3.3) g0(X1, . . . , Xp−1) = Xp
1 + (−Xp−1)p +

p−1∑
i=2

(Xi −Xi−1)p.

Then g0 ∈ pZ[X1, . . . , Zp−1], and we can define a polynomial g(X1, . . . , Xp−1) ∈
Z[X1, . . . , Zp−1] by

(9.3.4) g(X1, . . . , Xp−1) =
1

p
g0(X1, . . . , Xp−1).

Let Z ⊂ P(H) be the hypersurface defined by g. Since g is G-invariant, the

action of G on P(H) induces an action on Z. We denote by g the reduction of g

in Fp[X1, . . . , Xp−1]. We first study the singular points of ZFp . They are solutions

of the system of homogenous equations ∂g/∂Xi = 0, 1 ≤ i ≤ p − 1, which can be

written as

(9.3.5)


Xp−1

1 = (X2 −X1)p−1

(X2 −X1)p−1 = (X3 −X2)p−1

... =
...

(Xp−1 −Xp−2)p−1 = (−Xp−1)p−1 .

Lemma 9.4. Let Fp be an algebraic closure of Fp.
(i) The solutions of (9.3.5) in Pn(Fp) belong to Pn(Fp), and they correspond

bijectively to the families (u1, . . . , up−1) ∈ (F×p )p−1 such that

(9.4.1) 1 + u1 + · · ·+ up−1 = 0.
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(ii) For u ∈ F×p , let ũ = [u] ∈ µp−1(Zp) be its Teichmüller representative. Then

a point x ∈ Pn(Fp) which is a solution of (9.3.5) belongs to ZFp if and only if

(9.4.2) 1 + ũ1 + · · ·+ ũp−1 ∈ p2Zp,

where (u1, . . . , up−1) ∈ (F×p )p−1 corresponds to x by (i).

Proof. Given (u1, . . . , up−1) ∈ (F×p )p−1 satisfying (9.4.1), the corresponding solution

x = (ξ1 : . . . : ξp−1) ∈ Pn(Fp) of the system (9.3.5) is obtained by choosing ξ1 ∈ F×p ,

setting

(9.4.3) ξi − ξi−1 = ui−1ξ1 for 2 ≤ i ≤ p− 1,

and observing that (9.4.1) implies that −ξp−1 = up−1ξ1. Assertion (i) is then

straightforward.

Let η1 ∈ Zp be a lifting of ξ1, and let ηi be defined inductively for 2 ≤ i ≤ p − 1

by

(9.4.4) ηi − ηi−1 = ũi−1η1.

Define α ∈ Zp by

(9.4.5) 1 + ũ1 + · · ·+ ũp−1 = pα.

Then we get by adding the equations in (9.4.4)

(9.4.6) ηp−1 = (1 + · · ·+ ũp−2)η1 = (pα− ũp−1)η1.

We can now substitute (9.4.4) and (9.4.6) in g0, and we obtain the relation

g0(η1, . . . , ηp−1) = ηp1(1 + ũp1 + . . .+ ũpp−2 + (ũp−1 − pα)p)

= ηp1(1 + ũ1 + . . .+ ũp−2 + ũp−1 +

p∑
j=1

(
p

j

)
ũp−jp−1(−pα)j)(9.4.7)

≡ pαηp1 mod p2Zp.

Hence we get

(9.4.8) g(η1, . . . , ηp−1) ≡ αηp1 mod pZp,

and assertion (ii) follows. �

Lemma 9.5. (i) The action of G on ZFp is free.

(ii) If p is not a Fermat number, then ZFp is singular, and is not the special

fibre of a semi-stable scheme.

Let us recall that the Fermat numbers are the integers of the form 22n + 1 with

n ≥ 0, that any prime number of the form 2n + 1 with n > 0 is a Fermat number,

and that the only known prime Fermat numbers are 3, 5, 17, 257 and 65537.

Proof. A linear algebra computation shows that the only fixed point of σ in Pn(Fp) is

the point x0 = (1 : 2 : . . . : p−1). This point is the solution of (9.3.5) corresponding

to u1 = . . . = up−1 = 1. Lemma 9.4 (ii) implies that it does not belong to ZFp ,

which proves assertion (i).

As the system (9.3.5) has only a finite number of solutions, the singular points of

ZFp are isolated. In particular, since dimZFp ≥ 4, ZFp cannot be the special fibre
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of a semi-stable scheme if it has a singular point. To find a singular point on ZFp ,

Lemma 9.4 shows that it suffices to construct a family (ũi)1≤i≤p−1 of (p−1)-th roots

of unity in Zp such that 1 +
∑

i ũi ∈ p2Zp. Since p is not a Fermat number, p − 1

has an odd prime factor q. We can choose a primitive q-th root of unity ζ, and

set ũi = ζi for 1 ≤ i ≤ q − 1, ũi = 1 for q ≤ i ≤ q + (p − q)/2 − 1, ũi = −1 for

q + (p− q)/2 ≤ i ≤ p− 1. So ZFp is singular. �

9.6. We now address the regularity condition in 9.1 (1). We replace Z by another

equivariant lifting of ZFp defined as follows. Let R be the ring of integers of a finite

extension K of Qp, of degree > 1, with residue field k. If K/Qp is unramified, we set

π = p, otherwise we choose a uniformizer π of R. Let λ ∈ R be an element satisfying

the following condition:

a) If K/Qp is unramified, then the reduction of λ mod p does not belong to Fp;
b) If K/Qp is ramified, then λ ∈ R×.

Let h ∈ Z[X1, . . . , Xp−1] be the product of the elements of the orbit of X1, i.e.,

(9.6.1) h(X1, . . . , Xp−1) = X1(−Xp−1)

p−1∏
i=2

(Xi −Xi−1),

and let f ∈ R[X1, . . . , Xp−1] be defined by

(9.6.2) f = g + πλh.

We define Y ⊂ PnR to be the hypersurface with equation f . Since f is invariant

under G, the action of G on PnR induces an action on Y . Its special fibre Yk is

equal to Zk, on which G acts freely by Lemma 9.5. Then the fixed locus of σ is a

closed subscheme of Y , and its projection on SpecR is a closed subset which does

not contain the closed point. Therefore it is empty, and the action of G on Y is free.

We define X to be the quotient scheme X = Y/G.

Proposition 9.7. Assume that p is an odd prime which is not a Fermat number.

Then the scheme X defined above satisfies conditions (1) - (6) of 9.1.

Proof. As observed in 9.2 (iii), it suffices to check that X satisfies conditions (1),

(3”) and (4), and condition (3”) holds by construction.

The hypersurface Y is projective and flat over R, since g is not divisible by π.

So X is also projective and flat. As Yk = Zk, Lemma 9.5 (ii) implies that Y is not

semi-stable. Since Y → X is étale and semi-stability is a local property for the étale

topology, X is not semi-stable either. So we only have to prove that X is regular.

This is again a local property for the étale topology, hence it suffices to prove that Y

is regular. Because Y is excellent, its singular locus is closed, and the same holds for

its projection to SpecR. So it is enough to check the regularity of Y at the points

of its special fibre. The regularity is clear at the smooth points of Yk, and we need

to prove it at the singular points.

Let x = (ξ1 : . . . : ξp−1) ∈ Pn(k) be a singular point of Yk. As Yk = Zk, x

corresponds by Lemma 9.4 to a family (u1, . . . , up−1) ∈ (F×p )p−1 such that

(9.7.1) 1 + ũ1 + · · ·+ ũp−1 = p2β
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for some β ∈ Zp. We have seen in the proof of Lemma 9.4 that ξ1 ∈ F×p , so we may

assume that ξ1 = 1. We set η1 = 1, and we define inductively ηi for 2 ≤ i ≤ p − 1

by (9.4.4). This allows to work on the affine space AnR = D+(X1) ⊂ PnR, and we will

denote

a∗(X2, . . . , Xp−1) := a(1, X2, . . . , Xp−1)

for any homogenous polynomial a(X1, . . . , Xp−1) ∈ R[X1, . . . , Xp−1]. For 2 ≤ i ≤
p− 1, we set

Xi = ηi + Yi,

so that (π, Y2, . . . , Yp−1) is a regular sequence of generators of the maximal ideal mx

of the regular local ring OAnR,x.

We want to prove that OAnR,x/(f∗) is regular, i.e., that f∗ /∈ m2
x. We first claim

that

(9.7.2) g∗ ≡ pβ mod m2
x.

Indeed, applying (9.4.7) with α = pβ, we obtain the congruence

g0 ∗(η2, . . . , ηp−1) ≡ p2β mod p3Zp,

hence

(9.7.3) g∗(η2, . . . , ηp−1) ≡ pβ mod p2Zp ⊂ m2
x.

On the other hand, equations (9.4.4) show that, for 2 ≤ i ≤ p− 2,

(9.7.4)
∂g∗
∂Xi

(η2, . . . , ηp−1) = 0.

Finally, equations (9.4.4) and (9.4.6) show that

∂g∗
∂Xp−1

(η2, . . . , ηp−1) = (ηp−1 − ηp−2)p−1 − ηp−1
p−1

= 1− (p2β − ũp−1)p−1

≡ 0 mod p2Zp ⊂ m2
x.(9.7.5)

Applying (9.7.3), (9.7.4) and (9.7.5) to the Taylor development of g∗ proves (9.7.2).

From the definition of h, we obtain

(9.7.6) h∗(η2, . . . , ηp−1) = −(p2β − ũp−1)

p−2∏
i=1

ũi ≡
p−1∏
i=1

ũi mod mx.

As h∗ ≡ h∗(η2, . . . , ηp−1) mod mx, f∗ satisfies the congruence

(9.7.7) f∗ = g∗ + πλh∗ ≡ π(
p

π
β + λ

p−1∏
i=1

ũi) mod m2
x.

Let w = p
πβ + λ

∏
i ũi. If K/Qp is ramified, then condition 9.6 b) implies that w

is a unit. If K/Qp is unramified, then π = p, and condition 9.6 a) implies that the

reduction mod p of w is non-zero, hence w is again a unit. In each case, f∗ /∈ m2
x,

and OY,x is regular. �

Appendix: Complete intersection morphisms of virtual relative

dimension 0
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As mentioned in the introduction, we explain here the construction of the mor-

phism τf : Rf∗OY → OX for a proper complete intersection morphism f : Y → X

of virtual dimension 0, and we give a proof of Theorem 3.1.

The Appendix consists of two sections. In section A, we recall the construction of

the invertible sheaf ωY/X associated to a complete intersection morphism f : Y → X,

and we prove some of its properties. We do not use duality theory here, even if we

keep for convenience the terminology “relative dualizing sheaf”. Instead, we use the

complete intersection assumption to deduce our constructions from the elementary

properties of smooth morphisms and regular immersions, thanks to the canonical

isomorphisms defined by Conrad [Co00, 2.2]. It is then easy to define the canonical

section δf of ωY/X when f has virtual relative dimension 0, and to prove its basic

properties.

In section B, we assume that X is noetherian and has a dualizing complex. We

then use duality theory and the identification ωY/X
∼−−→ f !OX to deduce τf from the

canonical section δf . To translate the properties of δf into the properties of τf listed

in Theorem 3.1, we need to use the fundamental identifications of duality theory, as

well as the various compatibilities between these identifications. Our proofs rely in

an essential way on Conrad’s exposition [Co00].

It may be worth pointing out that we need in this article the compatibility of

τf with base change in a context which is not covered by the base change results

of [Co00]. Indeed, we consider morphisms f which are not flat in general (such

as in Theorem 1.5), and base change morphisms which are not flat either (such as

reduction mod pn in the proof of Proposition 8.6). The key property we use here,

which is familiar to the experts, but not so well documented in the literature, is the

Tor-independence of f and the base change morphism.

A. The canonical section of the relative dualizing sheaf

We recall now the construction of the invertible sheaf ωY/X for a complete inter-

section morphism, and we explain some of its properties. As usual, the main work is

to prove that the constructions are well-defined, and in particular to check the sign

conventions. As the details are easy but tedious, we leave most of them as exercises,

and only sketch the main steps of the verifications.

We first recall a standard base change result for complete intersection morphisms.

Proposition A.1. Let f : Y → X be a complete intersection morphism of virtual

relative dimension m, and let

(A.1.1) Y ′
v //

f ′

��

Y

f

��

X ′
u // X

be a cartesian square such that X ′ and Y are Tor-independent over X.

(i) The morphism f ′ is a complete intersection morphism of virtual relative

dimension m.
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(ii) Assume that X is quasi-compact, and that f is separated of finite type.

If E• ∈ Db
qc(OY ) is of finite Tor-dimension over OY , then Rf∗E• is of finite Tor-

dimension over OX , and the base change morphism

(A.1.2) Lu∗Rf∗E• −→ Rf ′∗Lv∗E
•

is an isomorphism.

Proof. The first claim is local on Y ′, so we may assume that there exists a factor-

ization f = π ◦ i such that π : P → X is a smooth morphism of relative dimension

n, and i : Y ↪→ P is a closed immersion of codimension d = n − m. Then i is a

regular immersion, defined by an ideal I ⊂ OP , and, since the claim is local, we

may assume that I is generated by a regular sequence t1, . . . , td of sections of OP .

Then the Koszul complex K•(t1, . . . , td) is a resolution of OY by OP -modules which

are flat relatively to X. Let P ′ = X ′ ×X P , and let t′1, . . . , t
′
d be the images of

t1, . . . , td in OP ′ . Since X ′ and Y are Tor-independent over X, the Koszul complex

K(t′1, . . . , t
′
d) is a resolution of OY ′ over OP ′ , which shows that f ′ is a complete

intersection morphism of virtual relative dimension m.

Assume now that the hypotheses of (ii) are satisfied. Since X is quasi-compact, it

suffices to check that Rf∗E• is of finite Tor-dimension when X is affine. We can then

choose a finite covering U of Y by affine open subsets Uα, and we may assume that

the Uα are small enough so that the restriction fα of f to Uα can be factorized as

fα = πα ◦ iα, where πα : Pα → X is smooth and iα : Uα ↪→ Pα is a closed immersion

defined by a regular sequence of sections of OPα . For each sequence α0 < · · · < αr,

denote Uα = Uα0 ∩ · · · ∩ Uαr , jα : Uα ↪→ Y , and let fα be the restriction of f

to Uα. If I• is an injective resolution of E•, then the alternating Čech complex

Č•(U, I•) is a resolution of E•. Since jα is an affine open immersion, the complex

jα ∗j
∗
αI• = Rjα ∗j∗αE• belongs to Db

qc,fTd(OY ) for each α. Therefore it suffices to

prove that Rf∗E• ∈ Db
qc,fTd(OX) for complexes E• of the form Rj∗F•, where j is

the inclusion of an affine open subscheme U , and F• ∈ Db
qc,fTd(OU ). This reduces

the proof to the case where Y is affine. Then there exists a bounded complex of

OY -modules P• with flat quasi-coherent terms, and a quasi-isomorphism P• → E•.
Since OY has finite Tor-dimension over OX , so does any flat OY -module, and the

first assertion of (ii) follows.

The complex Lv∗E• belongs to Db
qc,fTd(OY ′), and the base change morphism

(A.1.2) can be defined by adjunction as usual. Arguing as before, it suffices to

prove that it is an isomorphism when X is affine and E• is of the form Rj∗F•, where

j is the inclusion of an affine open subscheme U ⊂ Y , and F• ∈ Db
qc,fTd(OU ). Let

U ′ = X ′ ×X U , and let w : U ′ → U be the projection, j′ : U ′ ↪→ Y ′ the pull-

back of j. Since j is an affine morphism and F• ∈ Db
qc,fTd(OU ), the base change

morphism Lv∗Rj∗F• → Rj′∗Lw∗F• is an isomorphism. This implies that the base

change morphism for f and E• is an isomorphism if and only if the base change

morphism for f ◦ j and F• is an isomorphism. If one chooses a bounded, flat, quasi-

coherent resolution P• of F•, the Tor-independence assumption implies that, for

each n, (f ◦ j)∗Pn is u∗-acyclic. It follows easily that the base change morphism for

P• is an isomorphism, which ends the proof. �
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A.2. Let f : Y → X be a complete intersection morphism of relative dimension

m. Recall that, if f = π ◦ i is a factorization of f where π : P → X is a smooth

morphism of relative dimension n and i : Y ↪→ P a closed immersion of codimension

d = n−m, defined by a regular ideal I ⊂ OP , one defines an invertible OY -module

ωY/X , called the relative dualizing sheaf of Y/X (or f), by setting

ωY/X = ωY/P ⊗OY i
∗ωP/X(A.2.1)

= ∧d((I/I2)∨)⊗OY i
∗Ωn

P/X .

We also recall how this construction is made independent of the choice of the

factorization, up to canonical isomorphism. Let f = π′ ◦ i′ be another factorization

of f through a smooth morphism π′ : P ′ → X, and let ωPY/X and ωP
′

Y/X be the

invertible OY -modules defined by (A.2.1) using the two factorizations. Assume first

that there exists an X-morphism u : P ′ → P such that u◦ i′ = i, and which is either

a smooth morphism or a regular immersion. Then, one defines an isomorphism

εP
′,P (u) : ωPY/X

∼−−→ ωP
′

Y/X by the commutative diagram

(A.2.2) ωPY/X = ωY/P ⊗ i∗ωP/X ∼

ζ′
i′,u⊗ Id

//

∼

εP
′,P (u) ++VVVVVVVVVVVVVVVVVVV

ωY/P ′ ⊗ i′∗ωP ′/P ⊗ i′∗u∗ωP/X

ωY/P ′ ⊗ i′∗ωP ′/X = ωP
′

Y/X .

∼ Id⊗ i′∗(ζ′u,π)

OO

The definitions of ζ ′i′,u and ζ ′u,π depend upon whether u is a smooth morphism

or a regular immersion (the two definitions agree when u is an open and closed

immersion):

a) If u is smooth, then ζ ′i′,u is defined by [Co00, p. 29, (d)], and ζ ′u,π is defined

by [Co00, p. 29, (a)].

b) If u is a regular immersion, then ζ ′i′,u is defined by [Co00, p. 29, (b)], and ζ ′u,π
is defined by [Co00, p. 29, (c)].

Let f = π′′ ◦ i′′ be a third factorization of f through a smooth morphism π′′ :

P ′′ → X, let ωP
′′

Y/X be defined by (A.2.1) using this factorization, and assume that

there exists an X-morphism v : P ′′ → P ′ such that v ◦ i′′ = i′ and such that each

of the morphisms v and u ◦ v is either a smooth morphism or a regular immersion.

Then it follows readily from Conrad’s general transitivity relation for compositions

of smooth morphisms and regular immersions [Co00, (2.2.4)] that

(A.2.3) εP
′′,P ′(v) ◦ εP ′,P (u) = εP

′′,P (u ◦ v).

If f = π ◦ i = π′ ◦ i′ are any factorizations as above, let now P ′′ = P ′ ×X P ,

and let i′′ : Y ↪→ P ′′ be the diagonal immersion, and q : P ′′ → P, q′ : P ′′ → P ′ the

two projections. One defines the canonical isomorphism εP
′,P : ωPY/X

∼−→ ωP
′

Y/X by

setting

(A.2.4) εP
′,P := εP

′′,P ′(q′)−1 ◦ εP ′′,P (q).
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Whenever there exists a smooth morphism or a regular immersion u : P ′ → P as

above, it follows from (A.2.3) that εP
′,P (u) = εP

′,P . One checks similarly that the

isomorphisms εP ′,P satisfy the usual cocycle condition for three factorizations.

Note that, thanks to this cocycle condition, one can define the invertible sheaf

ωY/X even when there does not exist a global factorization f = π ◦ i as above, by

choosing local factorizations and glueing the invertible sheaves obtained locally by

the previous construction. By construction, the sheaf ωY/X commutes with Zariski

localization, and is equipped with a canonical isomorphism for which we keep the

notation ζ ′:

(A.2.5) ζ ′π,i : ωY/X
∼−−→ ωY/P ⊗OY i

∗ωP/X ,

for any factorization f = π ◦ i where π is a smooth morphism and i is a regular

immersion.

If m is the virtual relative dimension of Y over X, we will need to work with

the complex ωY/X [m] which is the single OY -module ωY/X sitting in degree −m. If

f = π ◦ i as above, we define in Db(OY ) the isomorphism of complexes

(A.2.6) ζ ′i,π : ωY/X [m]
∼−−→ ωY/P [−d]

L
⊗OY Li∗(ωP/X [n])

by (A.2.5) in degree −m, without any sign modification. If f is a smooth morphism

or a regular immersion, this definition is consistent with [Co00, (2.2.6)]. By [Co00,

(1.3.6)], the isomorphism (A.2.6) is equal to the composed isomorphism

ωY/X [m]
∼−−−−−−→

(A.2.5)[m]
(ωY/P

L
⊗OY Li∗(ωP/X))[m]

∼−−→ (ωY/P
L
⊗OY Li∗(ωP/X [n]))[−d]

∼−−→ ωY/P [−d]
L
⊗OY Li∗(ωP/X [n])

and differs from the composed isomorphism

ωY/X [m]
∼−−−−−−→

(A.2.5)[m]
(ωY/P

L
⊗OY Li∗(ωP/X))[m]

∼−−→ (ωY/P [−d]
L
⊗OY Li∗(ωP/X))[n]

∼−−→ ωY/P [−d]
L
⊗OY Li∗(ωP/X [n])

by multiplication by (−1)dn.

Lemma A.3. Under the assumptions of Proposition A.1, there exists a canonical

isomorphism

(A.3.1) Lv∗(ωY/X) ∼= v∗(ωY/X)
∼−−→ ωY ′/X′ .

Moreover, if the assumptions of Proposition A.1 (ii) are satisfied, the canonical base

change morphism

(A.3.2) Lu∗Rf∗(ωY/X)→ Rf ′∗(ωY ′/X′).

is an isomorphism.

Proof. Since ωY/X is invertible, Lv∗(ωY/X)
∼−−→ v∗(ωY/X). To prove the isomor-

phism (A.3.1), assume first that there exists a factorization f = π ◦ i where π is

smooth and i is a regular immersion. Let f ′ = π′ ◦ i′ be the factorization de-

duced from f = π ◦ i by base change. Then, if I and I ′ are the ideals defining i
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and i′, the Tor-independence assumption implies that the canonical homomorphism

u∗(I/I2)→ I ′/I ′2 is an isomorphism, which defines (A.3.1). It is easy to check that,

for two factorizations of f , the corresponding isomorphisms are compatible with the

identifications (A.2.4). This provides the isomorphism (A.3.1) in the general case.

When the assumptions of A.1 (ii) are satisfied, the isomorphism (A.3.2) follows

from (A.3.1) and (A.1.2). �

A.4. Let

Y ′
v //

f ′

��

Y

f

��

X ′
u // X

be a cartesian square, and assume that:

a) f and u are complete intersection morphisms of relative dimensions m and n;

b) X ′ and Y are Tor-independent over X.

Then Lemma A.3 provides canonical isomorphisms

v∗(ωY/X)
∼−−→ ωY ′/X′ , f ′∗(ωX′/X)

∼−−→ ωY ′/Y .

One defines the canonical isomorphism

(A.4.1) χf,u : ωY ′/Y ⊗OY ′ v
∗(ωY/X)

∼−−→ ωY ′/X′ ⊗OY ′ f
′∗(ωX′/X)

as being the product by (−1)mn of the composite

ωY ′/Y ⊗OY ′ v
∗(ωY/X)

∼−−→ f ′∗(ωX′/X)⊗OY ′ ωY ′/X′
∼−−→ ωY ′/X′ ⊗OY ′ f

′∗(ωX′/X),

where the first isomorphism is the product of the previous base change isomorphisms,

and the second one is the usual commutativity isomorphism of the tensor product

(see [De83, Appendix, (a)] and [Co00, p. 215-216]).

The following relations follow easily from the local description of the isomorphisms

ζ ′f,g given in [Co00, p. 30, (a) - (d)]:

(i) In the above cartesian square, assume that each of the three morphisms u,

f and u ◦ f ′ = f ◦ v is either a smooth morphism or a regular immersion. Then the

following isomorphisms ωY ′/X
∼−−→ ωY ′/X′ ⊗OY ′ f

′∗(ωX′/X) are equal:

(A.4.2) ζ ′f ′,u = χf,u ◦ ζ ′v,f .

(ii) Let

Y ′
� � v //

f ′

��

Y

f

��

X ′′
� � i //

. �

j
==||||||||

X ′
� � u // X

be a commutative diagram in which the square is cartesian, f is smooth, i and u

are regular immersions. Then the following isomorphisms

ωX′′/X
∼−−→ ωX′′/Y ′ ⊗OX′′ j

∗(ωY ′/X′)⊗OX′′ i
∗(ωX′/X)

are equal:

(A.4.3) (ζ ′j,f ′ ⊗ Id) ◦ ζ ′i,u = (Id⊗ j∗(χf,u)) ◦ (ζ ′j,v ⊗ Id) ◦ ζ ′vj,f .
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(iii) Let

Y ′′
v′ //

f ′′

��

Y ′
v //

f ′

��

Y

f

��

X ′′
u′ // X ′

u // X

be a commutative diagram in which both squares are cartesian, each of the mor-

phisms f , u, u′ and u ◦ u′ is either a smooth morphism or a regular immersion, X ′

and Y are Tor-independent over X, and X ′′ and Y ′ are Tor-independent over X ′ (so

that X ′′ and Y are Tor-independent over X, and all immersions are regular). Then

the following isomorphisms

ωY ′′/Y ⊗OY ′′ (vv′)∗(ωY/X)
∼−−→ ωY ′′/X′′ ⊗OY ′′ f

′′∗(ωX′′/X′ ⊗OX′′ u
′∗(ωX′/X))

are equal:

(A.4.4) (Id⊗ f ′′∗(ζ ′u′,u)) ◦ χf,uu′ = (χf ′,u′ ⊗ Id) ◦ (Id⊗ v′∗(χf,u)) ◦ (ζ ′v′,v ⊗ Id).

We will also need to extend the isomorphism χf,u to the derived category. We

define

(A.4.5) χf,u : ωY ′/Y [n]
L
⊗OY ′ Lv

∗(ωY/X [m])
∼−−→ ωY ′/X′ [m]

L
⊗OY ′ Lf

′∗(ωX′/X [n])

by (A.4.1) in degree −(m+n), without any further sign modification. Because of the

sign convention in the commutativity isomorphism for the derived tensor product

[Co00, p. 11], χf,u can also be described as the composite

ωY ′/Y [n]
L
⊗OY ′ Lv

∗(ωY/X [m])
∼−−→ Lf ′∗(ωX′/X [n])

L
⊗OY ′ ωY ′/X′ [m]

∼−−→ ωY ′/X′ [m]
L
⊗OY ′ Lf

′∗(ωX′/X [n]),

where the first isomorphism is the tensor product of the base change isomorphisms,

and the second one is the commutativity isomorphism. With this definition, the

previous relations (A.4.2) to (A.4.4) remain valid in Db(OY ′).

A.5. We now consider the composition of two complete intersection morphisms

f : Y → X, g : Z → Y , and define a canonical isomorphism

(A.5.1) ζ ′g,f : ωZ/X
∼−−→ ωZ/Y ⊗OZ g

∗(ωY/X)

extending the isomorphism (A.2.5).

Assume first that there exists a factorization f = π ◦ i, where π : P → X is

a smooth morphism, and a factorization i ◦ g = π′′ ◦ j, where π′′ : P ′′ → P is a

smooth morphism (such factorizations always exist when X, Y and Z are affine).
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Let π′ : P ′ → Y be the pull-back of π′′, so that we get a commutative diagram

(A.5.2) P ′′

ψ

��

π′′

  A
AA

AA
AA

A

P ′
. �

i′′
>>||||||||

π′

!!B
BB

BB
BB

B � P
π

  @
@@

@@
@@

@

Z
;�

j

00

/ �

i′
>>~~~~~~~~

g
// Y

. �

i
>>}}}}}}}}

f
// X

where the middle square is cartesian. Using (A.2.5) for (j, ψ), and the isomorphisms

ζ ′i′,i′′ ⊗ j∗(ζ ′π′′,π), we obtain an isomorphism

ωZ/X ∼= ωZ/P ′′ ⊗ j∗(ωP ′′/X)
∼−−→ (ωZ/P ′ ⊗ i′∗(ωP ′/P ′′))⊗ j∗(ωP ′′/P ⊗ π′′∗(ωP/X))
∼−−→ ωZ/P ′ ⊗ i′∗(ωP ′/P ′′ ⊗ i′′∗(ωP ′′/P ))⊗ g∗i∗(ωP/X).

Using the isomorphism

χπ′′,i : ωP ′/P ′′ ⊗ i′′∗(ωP ′′/P )
∼−−→ ωP ′/Y ⊗ π′∗(ωY/P )

defined in A.4, and (ζ ′i′,π′ ⊗ g∗(ζ ′i,π))−1, we then obtain the composed isomorphism

ωZ/X
∼−−→ ωZ/P ′ ⊗ i′∗(ωP ′/Y ⊗ π′∗(ωY/P ))⊗ g∗i∗(ωP/X)
∼−−→ (ωZ/P ′ ⊗ i′∗(ωP ′/Y ))⊗ g∗(ωY/P ⊗ i∗(ωP/X))
∼−−→ ωZ/Y ⊗ g∗(ωY/X),

which defines (A.5.1).

To prove that this isomorphism is well defined, and to glue the local constructions

to obtain a global one when a diagram (A.5.2) does not exist globally, we must

check that it does not depend on the chosen factorizations. If we have two diagrams

(A.5.2), with factorizations f = πk ◦ ik, ik ◦ g = π′′k ◦ jk, for k = 1, 2, we can

embed Y diagonally in P1 ×X P2, and Z in P ′′1 ×X P ′′2 . This allows to reduce the

verification to the case where there exists a smooth X-morphism u : P2 → P1 such

that u ◦ i2 = i1, and a smooth morphism u′′ : P ′′2 → P ′′1 such that π′′1 ◦ u′′ = u ◦ π′′2 ,

and j1 = u′′ ◦ j2. Morever, the same argument shows that we may assume that the

morphism P ′′2 → P ′′1 ×P1 P2 is smooth. The verification can then be reduced to the

following two cases:

(i) The morphism P ′′2 → P ′′1 ×P1 P2 is an isomorphism;

(ii) The morphism P2 → P1 is an isomorphism.

In each of these cases, the equality of the two definitions of (A.5.1) breaks down

to a succession of elementary commutative diagrams involving isomorphisms of the

form ζ ′f,g and χf,u. We omit details here, and only point out that, in addition to

[Co00, (2.2.4)], the first case uses relation (A.4.2), and the second one uses relation

(A.4.3). In particular, the sign convention introduced in the definition of χf,u in A.4

is necessary for this independence result.
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If m and m′ are the virtual relative dimensions of f and g, we define as in A.2

the derived category variant of (A.5.1) as being the morphism

(A.5.3) ζ ′g,f : ωZ/X [m+m′]
∼−−→ ωZ/Y [m′]⊗L

OZ Lf∗(ωY/X [m])

defined by applying (A.5.1) to the underlying modules (sitting in degree −m−m′),
without any sign modification.

With the definition of ζ ′g,f provided by (A.5.1) (resp. (A.5.3)), we now extend to

complete intersection morphisms Conrad’s transitivity relation [Co00, (2.2.4)].

Proposition A.6. Let

T
h−−→ Z

g−−→ Y
f−−→ X

be three complete intersection morphisms. Then

(A.6.1) (Id⊗ h∗(ζ ′g,f )) ◦ ζ ′h,fg = (ζ ′h,g ⊗ Id) ◦ ζ ′gh,f .

Proof. As the verification is local on T , we may assume that there exists a commu-

tative diagram

R′′

ψ′′

  A
AA

AA
AA

A

Q′′
. �

k′′
>>||||||||

ϕ′′

  B
BB

BB
BB

B
Q′

ϕ′

��?
??

??
??

?

P ′′
. �

j′′
>>||||||||

π′′

!!C
CC

CC
CC

C P ′
. �

j′
>>}}}}}}}}

π′

!!B
BB

BB
BB

B P
π

  @
@@

@@
@@

@

T
. �

i′′
>>}}}}}}}}

h
// Z

. �

i′
=={{{{{{{{

g
// Y

. �

i
>>}}}}}}}}

f
// X

in which the three squares are cartesian, the morphisms π, ϕ′, ψ′′ are smooth, and

the immersions i, i′, i′′ are regular. Using [Co00, (2.2.4)] and the relation (A.4.4), the

proof of (A.6.1) again breaks into a succession of elementary commutative diagrams,

which we do not detail here. �

A.7. We now assume that f : Y → X is a complete intersection morphism of

(virtual) relative dimension 0, and, under this hypothesis, we define a section δf ∈
Γ(Y, ωY/X), which we call the canonical section.

We first assume that there is a factorization f = π ◦ i such that π : P → X

is a smooth morphism of relative dimension n, and i : Y ↪→ P is a regular closed

immersion, necessarily of codimension n since f has relative dimension 0. Let I ⊂
OP be the ideal defining i. The canonical derivation d : OP → Ω1

P/X induces an

OY -linear homomorphism d̄ : I/I2 → i∗Ω1
P/X . Taking its n-th exterior power, we

obtain a linear homomorphism

(A.7.1) ∧nd̄ : ∧n(I/I2) −→ i∗Ωn
P/X .
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Through the canonical isomorphisms

HomOY (∧n(I/I2), i∗Ωn
P/X) ∼= (∧n(I/I2))∨ ⊗OY i

∗Ωn
P/X

∼= ∧n((I/I2)∨)⊗OY i
∗Ωn

P/X

= ωY/X ,

it can be seen as a section of ωY/X , which is the section δf . If (t1, . . . , tn) is a regular

sequence of generators of I on a neighbourhood U of some point y ∈ Y , then

(A.7.2) δf = (t̄∨1 ∧ . . . ∧ t̄∨n )⊗ i∗(dtn ∧ . . . ∧ dt1) ∈ Γ(U, ωY/X),

since the canonical isomorphism (∧n(I/I2))∨ ∼= ∧n((I/I2)∨) maps (t̄n ∧ . . . ∧ t̄1)∨

to t̄∨1 ∧ . . . ∧ t̄∨n .

To end the construction of δf , it suffices to check that the section obtained in this

way does not depend on the chosen factorization. Using the diagonal embedding,

it suffices as usual to compare the sections δf and δ′f defined by two factorizations

f = π ◦ i = π′ ◦ i′ when there exists a smooth X-morphism u : P ′ → P such that

u ◦ i′ = i. Let I ′ be the ideal of Y in P ′, and

ω′Y/X = ∧n′((I ′/I ′2)∨)⊗OY i
′∗Ωn′

P ′/X ,

where n′ is the codimension of Y in P ′. Then the canonical identification ωY/X ∼=
ω′Y/X is given by (A.2.2), case a), and, thanks to (A.7.2), the equality δf = δ′f follows

from [Co00, p. 30, (a) and (d)].

Proposition A.8. Let f : Y → X be a complete intersection morphism of virtual

relative dimension 0.

(i) Let g : Z → Y be a second complete intersection morphism of virtual

relative dimension 0. The image of δfg under the isomorphism ζ ′g,f defined in (A.5.1)

is given by

(A.8.1) ζ ′g,f (δfg) = δg ⊗ g∗(δf ).

(ii) For any cartesian square (A.1.1), the isomorphism (A.3.1)

v∗(ωY/X)
∼−−→ ωY ′/X′

maps v∗(δf ) to δf ′.

Proof. As the first claim is local on Z, we may assume that there exists a diagram

(A.5.2) in which the immersion i is defined by a regular sequence (t1, . . . , tn), and the

immersion j = i′′ ◦ i′ by a regular sequence (t′1, . . . , t
′
n′ , t

′′
1, . . . , t

′′
n), with t′′i = π′′∗(ti).

If we set t̄′i = i′′∗(t′i), then i′ is defined by the regular sequence (t̄′1, . . . , t̄
′
n′). By

construction, δfg corresponds by ζ ′j,ψ to the section

(t′′n
∨ ∧ . . . ∧ t′′1∨ ∧ t′n′∨ ∧ . . . ∧ t′1∨)⊗ j∗(dt′1 ∧ . . . ∧ dt′n′ ∧ dt′′1 ∧ . . . ∧ dt′′n)

of ωZ/P ′′ ⊗ j∗(ωP ′′/X), which is mapped by ζ ′i′,i′′ ⊗ j∗(ζ ′π′′,π) to the section

((−1)nn
′
(t̄′n′
∨∧. . .∧t̄′1∨)⊗i′∗(t′′n∨∧. . .∧t′′1∨))⊗j∗((dt′1∧. . .∧dt′n′)⊗π′′∗(dt1∧. . .∧dtn))

of (ωZ/P ′ ⊗ i′∗(ωP ′/P ′′))⊗ j∗(ωP ′′/P ⊗π′′∗(ωP/X)). We then get via χπ′′,i the section

(t̄′n′
∨∧ . . .∧ t̄′1∨)⊗ i′∗(dt̄′1∧ . . .∧dt̄′n′)⊗ i′∗π′∗(tn∨∧ . . .∧ t1∨)⊗ j∗π′′∗(dt1∧ . . .∧dtn)),
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of ωZ/P ′ ⊗ i′∗(ωP ′/Y ) ⊗ i′∗π′∗(ωY/P ) ⊗ j∗π′′∗(ωP/X), which, by construction, corre-

sponds by (ζ ′i′,π′ ⊗ g∗(ζ ′i,π))−1 to the section δg ⊗ g∗(δf ) of ωZ/Y ⊗ g∗(ωY/X).

The second claim follows from (A.7.2). �

B. The trace morphism τf on Rf∗(OY )

Let f : Y → X be a proper complete intersection morphism of virtual relative

dimension 0. This section is devoted to the construction of the “trace morphism”

τf : Rf∗OY → OX , derived from the canonical section of ωY/X defined in A.7.

The key step is to define an identification λf between ωY/X as defined in A.2, and

f !OX . The construction is then a straightforward application of the relative duality

theorem, and the properties of τf listed in Theorem 3.1 follow from corresponding

properties of δf and λf .

B.1. For the whole section, we assume that X is a noetherian scheme with a du-

alizing complex. Let f : Y → X be a complete intersection morphism of virtual

relative dimension m. We first explain the relation between the relative dualizing

module ωY/X defined in the previous section, and the extraordinary inverse image

functor f ! defined in [Ha66, VII 3.4] and [Co00, 3.3].

Let r ∈ Z be an integer, L an invertible OX -module, and E = L[r] ∈ Db
coh(OX).

We define

(B.1.1) f ](E) := ωY/X [m]
L
⊗OY Lf∗(E),

and we observe that f ](E) is another complex concentrated in a single degree, with

an invertible cohomology sheaf. We can then construct a canonical isomorphism

(B.1.2) λf,E : f ](E)
∼−−→ f !(E)

as follows.

a) If f is smooth, then the functor f ] defined above is the usual one, and we set

(B.1.3) λf,E = ef : f ](E)
∼−−→ f !(E),

where ef is the isomorphism defined by [Co00, (3.3.21)].

b) If f is a regular immersion, then we define λf,E to be the composition

(B.1.4) λf,E : f ](E)
η−1
f−−→
∼

f [(E)
df−→
∼

f !(E),

where ηf is defined by [Co00, (2.5.3)] and df by [Co00, (3.3.19)].

c) In the general case, let us assume first that there exists a factorization f = π◦i,
where π : P → X is a smooth morphism of relative dimension n, and i is a regular

immersion of codimension d = n − m. Then we define λf,E by the commutative

diagram

(B.1.5) ωY/X [m]
L
⊗OY Lf∗E
∼ζ′i,π⊗Id
��

λf,E

∼
// f !E

ci,π∼

��

ωY/P [−d]
L
⊗OY Li∗π]E

λ
i,π]E

∼
// i!π]E

i!(λπ,E)

∼
// i!π!E

where ci,π is the transitivity isomorphism [Co00, (3.3.14)].
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This isomorphism is actually independent of the chosen factorization. To check

it, one can argue as in A.2 to reduce the comparison between the isomorphisms

(B.1.2) defined by two factorizations f = π ◦ i = π′ ◦ i′ to the case where there

is a smooth X-morphism u : P ′ → P such that u ◦ i′ = i. It is then a long but

straightforward verification, using various functorialities, the compatibility between

ζ ′i′,u and the isomorphism i[ ' i′[u] [Co00, (2.7.4)], the compatibility between ζ ′u,π
and the isomorphism π′] ' u]π] [Co00, (2.2.7)], and the properties (VAR1), (VAR3)

and (VAR5) of the functor f ! (see [Ha66, III, Th. 8.7] and [Co00, p. 139]).

Since f !OX is acyclic outside degree −m, a morphism ωY/X [m]→ f !OX in D(OY )

is simply a module homomorphism ωY/X → H−m(f !OX). Therefore, the previous

construction provides in the general case local isomorphisms which can be glued

to define a global isomorphism even if there does not exist a global factorization

f = π ◦ i as above.

When E = OX , the isomorphism (B.1.2) will simply be denoted

(B.1.6) λf : ωY/X [m]
∼−−→ f !OX .

If f is flat, hence is a CM map, it provides the identification between the construction

of ωY/X used in this article, and the construction of Conrad for CM maps [Co00,

3.5, p. 157].

We now give for the isomorphisms λf,E a transitivity property which generalizes

(B.1.5).

Proposition B.2. Let g : Z → Y be a second complete intersection morphism, with

virtual relative dimension m′. Then the diagram

(B.2.1)

ωZ/X [m+m′]
L
⊗OZ L(fg)∗E
∼ζ′g,f⊗Id
��

λfg,E

∼
// (fg)!E

cg,f∼
��

ωZ/Y [m′]
L
⊗OZ Lg∗f ]E

λ
g,f]E

∼
// g!f ]E

g!(λf,E)

∼
// g!f !E

ωZ/Y [m′]
L
⊗OZ Lg∗f ]E

g](λf,E)

∼
// ωZ/Y [m′]

L
⊗OZ Lg∗f !E

λ
g,f !E

∼
// g!f !E

commutes.

Proof. The commutativity of the lower part of the diagram is due to the functo-

riality of the isomorphism λg with respect to morphisms between two complexes

concentrated in the same degree.

We first observe that the commutativity of (B.2.1) is clear in the following cases:

a) If f is smooth and g is a closed immersion, the diagram is (B.1.5), which

commutes by construction.

b) If f and g are smooth, the isomorphism (fg)] ∼= g]f ] is defined by ζ ′g,f ,

hence the commutativity of (B.2.1) is the compatibility of the isomorphisms ef with

composition, i.e., property (VAR3) of the functor f ! [Co00, p. 139].

c) If f and g are regular immersions, then isomorphisms such as ηfg commute

with ζ ′g,f and cg,f [Co00, Th. 2.5.1], and the commutativity of (B.2.1) follows from
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the compatibility of the isomorphisms df with composition, i.e., property (VAR2)

of the functor f ! [Co00, p. 139].

We will also use the following remark. Let h : T → Z be a third complete

intersection morphism, yielding the four couples of composable complete intersection

morphisms (h, g), (g, f), (gh, f) and (h, fg). Then, if the diagrams (B.2.1) for the

couples (h, g) and (g, f) are commutative, the commutativity of (B.2.1) for (gh, f)

is equivalent to the commutativity of (B.2.1) for (h, fg): this is a consequence of

(A.6.1) and of the compatibility of the isomorphisms cg,f with triple composites (i.e.,

property (VAR1) of the functor f ! [Co00, p. 139]).

In the general case, the complexes entering in (B.2.1) are concentrated in the

same degree, hence its commutativity can be checked locally. So we may assume

that there exists a diagram (A.5.2). Thanks to the three particular cases listed above,

one can then deduce the commutativity of (B.2.1) for (f, g) from the commutativity

of (B.2.1) for (π′, i), by applying the previous remark successively to the triples

(i′, i′′, π′′), (i′′i′, π′′, π), (i′, π′, i) and (g, i, π).

To prove the commutativity of (B.2.1) for (π′, i), we use the factorization i ◦π′ =
π′′ ◦ i′′ to define λiπ′,E . Let d be the codimension of Y in P , and n′ the relative

dimension of P ′′ over P . Then, if E is a complex on P as in B.1, (B.2.1) for (π′, i)

is made of the exterior composites in the diagram

(B.2.2)

ωP ′/P [n′ − d]
L
⊗ L(iπ′)∗E

ζ′
π′,i⊗Id ∼
vvmmmmmmmmm ζ′

i′′,π′′⊗Id
∼

))RRRRRRRRRR

ωP ′/Y [n′]
L
⊗ π′∗(ωY/P [−d]

L
⊗ Li∗E)

χπ′′,i⊗Id

∼
//

π′](η−1
i )∼

��

π′](λi,E)

!!

ωP ′/P ′′ [−d]
L
⊗ Li′′∗(ωP ′′/P [n′]

L
⊗ π′′∗E)

η−1
i′′ ∼
��

λ
i′′,π′′]E

}}

π′]i[E
∼ //

π′](di)∼
��

i′′[π′′]E
di′′ ∼
��

π′]i!E
eπ′=λπ′,i!E∼
��

i′′!π′′]E
i′′!(λπ′′,E)=i′′!(eπ′′ ) ∼

��

π′!i!E (iπ′)!E = (π′′i′′)!Ecπ′,i

∼oo
ci′′,π′′

∼ // i′′!π′′!E .

Here, the middle horizontal arrow is the standard isomorphism [Co00, Lemma 2.7.3],

and the lower rectangle commutes thanks to property (VAR4) of the functor f !

[Co00, Theorem 3.3.1]. The upper triangle commutes thanks to (A.4.2). To check

the comutativity of the middle rectangle, one observes on the one hand that ηi
commutes with the flat base change π′′ and that ηi′′ commutes with tensorisation

by the invertible sheaf ωP ′′/P (see [Co00, last paragraph of p. 54]). On the other

hand, ηi′′ commutes also with the translation by n′, provided that the convention

[Co00, (1.3.6)] is used for the commutation of the tensor product with translations

applied to the second argument (see the discussion on [Co00, p. 53]). This requires
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here multiplication by (−1)dn
′

on ωP ′/P ′′ ⊗ i′′∗ωP ′′/P , since ωP ′/P ′′ sits in degree d.

As this is the sign entering in the definition of χπ′′,i, this ends the proof. �

B.3. Assume now that f is proper. As in B.1, let E = L[r] ∈ Db
coh(OX), L being

an invertible OX -module and r an integer. Using (B.1.2), we can define the trace

morphism Tr ]f,E on Rf∗f ]E = Rf∗(ωY/X [m]⊗L
OY Lf∗E) as the composite

(B.3.1) Tr ]f,E : Rf∗f ]E
Rf∗(λf,E)
−−−−−−→

∼
Rf∗f !E

Trf−−→ E ,

where Trf denotes the classical trace morphism defined in [Ha66, VII, Cor. 3.4] and

[Co00, 3.4]. When E = OX , we will use the shorter notation

(B.3.2) Tr ]f : Rf∗(ωY/X [m])→ OX .

We first give some basic properties of the morphism Tr ]f .

Lemma B.4. With the previous hypotheses, let

(B.4.1) µf,E : Rf∗(ωY/X [m])
L
⊗OX E

∼−−→ Rf∗(ωY/X [m]
L
⊗OY Lf∗E) = Rf∗f ]E

be the isomorphism given by the projection formula [Ha66, II, Prop. 5.6]. Then the

diagram

(B.4.2) Rf∗(ωY/X [m])
L
⊗OX E

µf,E

∼
//

∼
Tr ]f⊗Id

''PPPPPPPPPPPPPP
Rf∗f ]E

∼
Tr ]f,E{{xx

xx
xx

xx
x

E
commutes.

Proof. When f is flat, it suffices to invoke [Co00, Th. 4.4.1]. Since we make no such

assumption on f , we give a direct argument, which is made a lot simpler by the very

special nature of the complex E .

Let K be a residual complex on X, and let f∆K be its inverse image on Y in

the sense of residual complexes, which is a residual complex on Y . Then K and

f∆K define respectively duality δ-functors DX on Db
coh(OX) and DY on Db

coh(OY ).

Recall that, by definition, f ! = DY ◦ Lf∗ ◦DX . Using the fact that E = L[r], with

L invertible, one easily sees that there is a canonical isomorphism which commutes

with translations acting on E

(B.4.3) f !OX
L
⊗OY Lf∗E ∼−−→ f !E .

On the other hand, we have by definition a canonical isomorphism

(B.4.4) f ]OX
L
⊗OY Lf∗E ∼−−→ f ]E ,

which also commutes with translations. A first observation is that the diagram

(B.4.5) f ]OX
L
⊗OY Lf∗E

λf⊗Id ∼
��

(B.4.4)

∼
// f ]E

λf,E∼

��

f !OX
L
⊗OY Lf∗E

(B.4.3)

∼
// f !E
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commutes. Indeed, all complexes are concentrated in the same degree m− r, hence

the verification can be done locally. This allows to assume that L = OX , which

reduces the verification to the commutation of the vertical arrows with translations

acting on E . This now follows from the fact that the isomorphisms ef , ηf and df
used in the construction of λf commute with translations.

Applying Rf∗ to this diagram, and using the functoriality of the projection formula

isomorphism, the proof is reduced to proving the commutativity of the diagram

(B.4.6) Rf∗f !OX
L
⊗OX E

Trf⊗Id

∼

**TTTTTTTTTTTTTTTTTTT

νf

∼
// Rf∗(f !OX

L
⊗OY Lf∗E)

(B.4.3)

∼
// Rf∗f !E

Trf
∼

uukkkkkkkkkkkkkkkkk

E ,

where νf is the projection formula isomorphism. As all morphisms of the diagram

commute with translations, we may assume that r = 0. We recall that Trf is defined

as the morphism of functors defined by the composite

Rf∗f !(·) ∼−−→ RHomOX (DX(·), f∗f∆K)
Trf,K−−−→ RHomOX (DX(·),K)

∼←−− Id,

where the first isomorphism follows from the definition of f ! and the adjunction

between Lf∗ and Rf∗, the second morphism is defined by the trace morphism for

residual complexes Trf,K and the last isomorphism is the local biduality isomor-

phism (see [Co00, p. 146]). Each of these morphisms has a natural compatibility

with respect to the tensor product of the argument by an invertible sheaf. Putting

together these compatibilities yields the commutativity of (B.4.6). �

Proposition B.5. Let g : Z → Y be a second proper complete intersection mor-

phism, with virtual relative dimension m′. Then the diagram

(B.5.1)

Rf∗Rg∗(ωZ/X [m′ +m])

Tr ]fg

��

∼

Rf∗Rg∗(ζ′g,f )
// Rf∗Rg∗(ωZ/Y [m′]

L
⊗OZ Lg∗(ωY/X [m]))

∼
��

Rf∗(Rg∗(ωZ/Y [m′])
L
⊗OY ωY/X [m])

Rf∗(Tr ]g⊗Id)

��

OX Rf∗(ωY/X [m])
Tr ]f

oo

(where the second isomorphism is given by the projection formula) is commutative.

Proof. It follows from Lemma B.4 that the right vertical arrow is equal to the mor-

phism

Rf∗Rg∗(ωZ/Y [m′]⊗ g∗(ωY/X [m]))
Tr ]
g,ωY/X [m]

−−−−−−−→ Rf∗(ωY/X [m]).

Then, using adjunction between Rf∗ and f !, and adjunction between Rg∗ and g!,

one sees that the commutativity of (B.5.1) is equivalent to the commutativity of

(B.2.1). �
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Proposition B.6. With the hypotheses of Proposition A.1, assume in addition that

X and X ′ are noetherian schemes with dualizing complexes, and that one of the

following conditions is satisfied:

a) f is projective;

b) f is proper and u is residually stable [Co00, p. 132];

c) f is proper and flat.

Then the triangle

(B.6.1) Lu∗Rf∗(ωY/X [m])

(A.3.2) ∼

��

Lu∗(Tr ]f )

''OOOOOOOOOOOO

OX′

Rf ′∗(ωY ′/X′ [m])
Tr ]
f ′

77oooooooooooo

is commutative.

Proof of Case a). We can choose a factorization f = π ◦ i, where π : P → X is the

structural morphism of some projective space P = PnX over X, and i is a regular

immersion of codimension d = n − m. Let f ′ = π′ ◦ i′ be the factorisation of f ′

defined by base change, with π′ : P ′ = PnX′ → X ′, and let w : P ′ → P be the

projection.

The isomorphisms ζ ′i,π and ζ ′i′,π′ are clearly compatible with the base change

isomorphisms (A.3.1) relative to f and u, and the same holds for the projection

formula isomorphisms µi,ωP/X [n] and µi′,ωP ′/X′ [n], and the base change isomorphisms

(A.3.1) relative to i and w. Then, using Proposition B.5, one sees that it suffices to

prove the proposition for f = i and for f = π.

When f = π : PnX → X, let X0, . . . , Xn be the canonical coordinates on PnX ,

and xi = Xi/X0, 1 ≤ i ≤ n. If U is the relatively affine covering of PnX defined

by X0, . . . , Xn, the corresponding alternating Čech resolution provides a canonical

isomorphism

(B.6.2) f∗(Č
•(U, ωP/X)[n])

∼−−→ Rf∗(ωP/X [n]).

Recall that eπ : π] ∼= π! identifies the trace morphism for projective spaces Trpπ with

the general trace morphism Trπ [Co00, Lemma 3.4.3, (TRA3)]. Then the commu-

tativity of (B.6.1) for π follows from the fact that Trpπ can be characterized as the

only morphism which, via (B.6.2), induces on H0 the map sending the cohomology

class dx1 ∧ . . . ∧ dxn/x1 · · ·xn to (−1)n(n+1)/2 [Co00, (2.3.1)-(2.3.3)].

When f = i : Y ↪→ P , recall that di : i[ ∼= i! identifies the trace morphism for finite

morphisms Trfi with the general trace morphism Tri [Co00, Lemma 3.4.3, (TRA2)],

and that Trfi : RHomOP (OY ,OP ) → OP is the canonical morphism induced by

OP � OY . Using local cohomology with supports in Y , it can be factorized as

(B.6.3) Trfi : RHomOP (OY ,OP )→ RΓY (OP )→ OP .
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On the other hand, there exists a canonical morphism

(B.6.4) Lw∗RΓY (OP ) −→ RΓY ′(OP ′),

which is an isomorphism: to check this, it suffices to choose a finite affine covering

V of V = P \ Y , and to identify RΓY (OP ) with its flat resolution provided by the

total complex

OP → j∗Č(V,OV ),

where j denotes the inclusion of V in P and OP sits in degree 0. Moreover, this

shows that the diagram

Lw∗RΓY (OP )

∼
��

// Lw∗(OP )

∼
��

RΓY ′(OP ′) // OP ′

commutes. Therefore, it suffices to prove the commutativity of the diagram

(B.6.5) Lw∗i∗(ωY/P [−d])

∼
��

// Lw∗RΓY (OP )

∼
��

ωY ′/P ′ [−d] // RΓY ′(OP ′) .

Since Y ′ ↪→ P ′ is a regular immersion of codimension d, all complexes in this diagram

are acyclic except in degree d, so that, up to translation by −d, the diagram is

actually a diagram of morphisms of OP ′-modules. It follows that its commutativity

can be checked locally on P ′. Thus we may assume that P is affine, and that the

ideal I of Y in P is generated by a regular sequence t1, . . . , td. Then the ideal I ′
of Y ′ in P ′ is generated by the images t′1, . . . , t

′
d of t1, . . . , td in OP ′ , which form a

regular sequence. Let V = (V1, . . . , Vd) be the open covering of P \Y defined by the

sequence (t1, . . . , td). For any section a ∈ Γ(P,OP ), let us still denote by a/t1 · · · td
the image of a/t1 · · · td ∈ Γ(V1 ∩ . . . ∩ Vd,OP ) under the canonical homomorphisms

Γ(V1 ∩ . . . ∩ Vd,OP )→ Hd−1(P \ Y,OP )→ Hd
Y (P,OP ) = Γ(P,HdY (OP )).

Then the canonical morphism

ωY/P
∼−−→ ExtdOP (OY ,OP )→ HdY (OP )

maps (t̄∨1 ∧ . . . ∧ t̄∨d ) ⊗ a to ε(d)a/t1 · · · td, where ε(d) ∈ {±1} only depends upon d

(see [Co00, p. 252-254]). The commutativity of (B.6.5) follows. �

Proof of Case b). When u is residually stable, the diagram analogous to (B.6.1)

commutes, thanks to [Co00, 3.4.3, (TRA4)]. Moreover, the isomorphisms eπ and di
entering in the local definition of λf in B.1.2 c) also commute with base change by

u, thanks to [Co00, p. 139, (VAR6)]. Then it suffice to observe that ηi commutes

with flat base change, which is clear. �

Proof of Case c). When f is flat, f is a CM map, and the results of [Co00, 3.5 - 3.6]

can be applied. Then the commutativity of (B.6.1) follows from [Co00, Theorem

3.6.5], provided one checks that λf identifies the base change isomorphism (A.3.1)
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for ωY/X with the more subtle base change isomorphism βf,u for ωf defined in [Co00,

Theorem 3.6.1]. As we will not use Case c) in this article, we leave the details to

the reader. �

B.7. Let X be a noetherian scheme with a dualizing complex, and f : Y → X

a proper complete intersection morphism of virtual relative dimension 0. One can

define in Db
coh(X) a “trace morphism”

(B.7.1) τf : Rf∗(OY ) −→ OX

as follows. Thanks to the relative duality theorem (see [Ha66, VII, 3.4] or [Co00,

Th. 3.4.4]), defining τf is equivalent to defining a morphism OY → f !OX . Using the

isomorphism λf , this is also equivalent to defining a morphism

(B.7.2) ϕf : OY −→ ωY/X ,

i.e., a section of the invertible sheaf ωY/X . We define ϕf as being the morphism

which maps 1 to the canonical section δf of ωY/X , defined in A.7.

From this construction, it follows that the morphism τf can be described equiva-

lently either as the composition

(B.7.3) τf : Rf∗(OY )
Rf∗(λf◦ϕf )
−−−−−−−→ Rf∗(f !OX)

Trf−−→ OX ,

or as the composition

(B.7.4) τf : Rf∗(OY )
Rf∗(ϕf )
−−−−−→ Rf∗(ωY/X)

Tr ]f−−→ OX ,

where Tr ]f is the trace map defined in (B.3.1).

Before proving Theorem 3.1, we relate τf to the residue symbol defined in [Co00,

(A.1.4)] (which differs by a sign from Hartshorne’s definition in [Ha66]).

Proposition B.8. With the hypotheses of B.7, assume in addition that f is finite

and flat, and that f = π ◦ i, where π is smooth of relative dimension d, and i is

a closed immersion, globally defined by a regular sequence (t1, . . . , td) of sections of

OP . Then, for any section a of OP , with reduction ā on Y , we have

(B.8.1) τf (ā) = ResP/X

[
a dt1 ∧ . . . ∧ dtd

t1, . . . , td

]
.

Proof. Let ω = a dt1 ∧ . . . . . . ∧ dtd. By construction, the residue symbol is given by

(B.8.2) ResP/X

[
ω

t1, . . . , td

]
= (−1)d(d−1)/2 ϕω(1),

where ϕω : f∗OY → OX is the image of (t∨1 ∧ . . . ∧ t∨d ) ⊗ i∗(ω) by the isomorphism

of complexes concentrated in degree 0 [Co00, (A.1.3)]

(B.8.3) ωY/P [−d]
L
⊗OY Li∗(ωP/X [d])

η−1
i−−→
∼

i[π]OX
ψ−1
i,π−−→
∼

f [OX ;

here f [OX = HomOX (f∗OY ,OX) viewed as a OY -module, and ψi,π is the canonical

isomorphism of functors f [
∼−−→ i[π]. Since Trff is the morphism



RATIONAL POINTS OF REGULAR MODELS 77

f∗HomOX (f∗OY ,OX)→ OX given by evaluation at 1, we can use the isomorphism

df : f [
∼−−→ f ! and the equality Trf ◦ f∗(df ) = Trff [Co00, 3.4.3, (TRA2)] to write

(B.8.4)

ResP/X

[
ω

t1, . . . , td

]
= (−1)d(d−1)/2 Trf (f∗(df ◦ ψ−1

i,π ◦ η
−1
i )(t∨1 ∧ . . . ∧ t∨d ⊗ i∗(ω))).

On the other hand, we have by definition

ζ ′i,π(δf ) = (−1)d(d−1)/2 t∨1 ∧ . . . ∧ t∨d ⊗ i∗(dt1 ∧ . . . . . . ∧ dtd),

so we deduce from (B.7.3) the equality

τf (ā) = Trf (f∗(λf ◦ ϕf )(ā))

= (−1)d(d−1)/2 Trf (f∗(c
−1
i,π ◦ i

!(eπ) ◦ di ◦ η−1
i )(t∨1 ∧ . . . ∧ t∨d ⊗ i∗(ω))).

Therefore, it suffices to check that

df ◦ ψ−1
i,π = c−1

i,π ◦ i
!(eπ) ◦ di,

and this results from (VAR5) [Co00, (3.3.26)]. �

B.9. Proof of Theorem 3.1.

(i) The transitivity formula (3.1.1) is the equality of the exterior composites

in the diagram

Rf∗Rg∗OZ
Rf∗Rg∗(ϕg)

//

Rf∗Rg∗(ϕfg)

��

Rf∗Rg∗ωZ/Y

Rf∗(Tr ]g )

��

Rf∗Rg∗(Id⊗Lg∗(ϕf ))
��

Rf∗Rg∗ωZ/X
Rf∗Rg∗(ζ′g,f )

//

Tr ]fg

��

Rf∗Rg∗(ωZ/Y
L
⊗OZ Lg∗ωY/X)

∼
��

Rf∗((Rg∗ωZ/Y )
L
⊗OY ωY/X)

Rf∗(Tr ]g⊗Id)
��

OX Rf∗ωY/X
Tr ]f

oo Rf∗OY ,
Rf∗(ϕf )

oo

where the upper left square commutes thanks to (A.8.1), the lower left square is the

commutative square (B.5.1), and the right triangle commutes by functoriality.

(ii) Thanks to Proposition B.6 and to the description (B.7.4) of τf , the assertion

follows from the compatibility of the canonical section δf with Tor-independent

pull-backs (proved in Proposition A.8 (ii)) and the functoriality of the base change

morphism.

(iii) To prove (3.1.3), it suffices to prove that the equality holds in the henseliza-

tion Oh
X,x of the local ring of X at each point x. As the morphism SpecOh

X,x → X

is residually stable [Co00, p. 132], Proposition B.6 and the commutation with base

change of the classical trace map for the finite locally free algebra f∗OY allow to

assume that X = SpecA, where A is a henselian noetherian local ring. Then Y is

a disjoint union of open subschemes Yi = SpecBi, where Bi is a finite local algebra

over A. Each of the morphisms Yi → X is a complete intersection morphism of
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virtual relative dimension 0 (since this is a local condition on Y ), and the additivity

of the trace (valid both for Trf , hence for τf , and for tracef∗OY /OX ) shows that it

suffices to prove (3.1.3) for each morphism Yi → X. So we may assume that B is

local. We can choose a presentation B ∼= C/I, where C is a smooth A-algebra, and

I is an ideal in C. Let P = SpecC, I = IOP , and let y ∈ Y ⊂ P be the closed point.

Then Iy is generated by a regular sequence (t1, . . . , td). Shrinking P if necessary,

we may assume that t1, . . . , td generate I globally on P , so that the hypotheses of

B.8 are satisfied. Then (3.1.3) follows from (B.8.1) and from property (R6) of the

residue symbol [Co00, p. 240]. �
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[Bo70] N. Bourbaki, Algèbre, Chapitres 1–3, Springer-Verlag (1970).

[Co00] B. Conrad, Grothendieck Duality and Base Change, Lecture Notes in Math. 1750, Springer-

Verlag (2000).

[CT03] B. Chiarellotto, N. Tsuzuki, Cohomological descent of rigid cohomology for étale coverings,

Rend. Sem. Mat. Univ. Padova 109 (2003), 63–215.
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Bures 1988, Astérisque 223 (1994), 113–184.

[Gr69] A. Grothendieck, Hodge’s general conjecture is false for trivial reasons, Topology 8 (1969),

299–303.

[Ha66] R. Hartshorne, Residues and duality, Lecture Notes in Math. 20, Springer-Verlag (1966).

[Hy91] O. Hyodo, On the de Rham-Witt complex attached to a semi-stable family, Compositio

Math. 78 (1991), 241–260.

[HK94] O. Hyodo, K. Kato, Semi-stable reduction and crystalline cohomology with logarithmic poles,
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IRMAR, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes cedex, France

E-mail address: pierre.berthelot@univ-rennes1.fr

Mathematik, Universität Duisburg-Essen, FB6, Mathematik, 45117 Essen, Germany

E-mail address: esnault@uni-essen.de

Mathematik, Universität Duisburg-Essen, FB6, Mathematik, 45117 Essen, Germany

E-mail address: kay.ruelling@uni-due.de


