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A Lower Bound for Shallow Partitions

Wolfgang Mulzer∗ Daniel Werner†

Abstract

We give a lower bound of Ω(log(n/k)/ log log(n/k))
for the crossing number of shallow partitions in the
plane.

1 Introduction

Range searching is a fundamental problem in com-
putational geometry that has long driven innovation
in the field [3]: given a set of n points in d dimen-
sions, find a data structure such that all points inside
a given query range can be found efficiently. Depend-
ing on the precise nature of the query range and on
the dimension, many different versions of the problem
can be studied. Consequently, a wide variety of tech-
niques have been developed to address them. Among
these tools we can find such classics as range trees and
kd-trees [5, Chapter 5], ε-nets and cuttings [7], span-
ning trees with small crossing number [13], geometric
partitions [9], and many more. For several problems,
almost matching lower bounds are known (in certain
models of computation) [7].

Geometric partitions provide the most effective
means for solving the simplex range searching prob-
lem, where the query range is given by a d-dimensional
simplex [6, 9]. They provide a way to subdivide a
point set into parts of roughly equal size, such that
(i) each part is contained in a simplex; and (ii) any
given hyperplane intersects only few of these sim-
plices. This makes it possible to construct a tree-like
data structure in which each node corresponds to a
simplex in an appropriate geometric partition. With
a careful implementation, one can achieve query time
O(n1−1/d + z) with linear space [6] (here z is the out-
put size, i.e., the number of reported points).

If the query simplex degenerates to a half-space,
we can do better [10]. For this, we need a more spe-
cialized version of geometric partitions, called shallow
partitions. Again, these partitions provide a way for
subdividing a d-dimensional point set into parts of
roughly equal size, such that each part is contained in
a simplex and such that a hyperplane intersects only
few of these simplices. This time, however, we restrict
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ourselves to shallow hyperplanes. Such hyperplanes
have only few points to one side. Thus, we only have
the guarantee that any shallow hyperplane will in-
tersect few simplices of the partition (see below for
details). This makes it possible to decrease the num-
ber of simplices that are intersected and to achieve
better bounds for halfspace range searching. Namely,
one can obtain for d ≥ 4 a linear-space data structure
that answers a query in time O(n1−1/bd/2c+z), where
z is the output size [6] (for d = 2, 3, one can achieve
query time O(log n+ z) and linear space [2]).

Shallow partitions (as well as their cousins—shallow
cuttings) have proved invaluable tools in computa-
tional geometry and have found numerous further ap-
plications. Nonetheless, there still remain some open
questions. As mentioned above, we would like ev-
ery shallow hyperplane to intersect as few simplices
of the shallow partition as possible. But what ex-
actly is possible? For dimension d ≥ 4, the original
bound by Matoušek [9] is known to be asymptotically
tight. For lower dimensions, however, Matoušek asked
whether his result could be improved. It took almost
20 years until Afshani and Chan [2] provided the first
lower bound in three dimensions, almost matching the
upper bound. For the plane, however, so far no non-
trivial lower bounds appear in the literature.

Here, we will give a construction that provides such
a lower bound for shallow partitions in two dimen-
sions. Our result almost matches the upper bound
and also gives an alternative proof for the bound of
Afshani and Chan [2]. A similar construction has been
discovered independently by Afshani [1].

2 Shallow partitions

We begin by providing the details of Matoušek’s shal-
low partition theorem in two dimensions. Let P ⊆ R2

be a planar n-point set in general position. Let
k ∈ {1, . . . , n} be a parameter. A k-partition P for P
consists of two parts: (i) a sequence P1, P2, . . ., Pdn/ke
of pairwise disjoint subsets of P such that

⋃
i Pi = P

and |Pi| = k for i = 1, . . . , bn/kc; and (ii) a sequence
∆1, ∆2, . . ., ∆dn/ke of triangles such that Pi ⊆ ∆i for
all i.

Now let ` be a line that does not contain any point
in P , and let `+ denote the open halfplane above `.
We say that ` is k-shallow if |`+ ∩P | ≤ k. Given a k-
partition P of P , the crossing number of P is the max-
imum number of triangles in P that are intersected by
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any k-shallow line. For any given k, the goal is to find
a k-partition of P whose crossing number is as small
as possible. Matoušek [10, Theorem 3.1] proved the
following theorem.

Theorem 1 Let P be a planar n-point set in general
position and let k ∈ {1, . . . , n}. Then there exists a
k-partition of P with crossing number O(log(n/k)).
�

Matoušek’s original proof uses cuttings and a vari-
ant of the iterative reweighting technique (also known
as the multiplicative weights update method [4]), and
it readily generalizes to higher dimensions. More
recently, Har-Peled and Sharir [8, Lemma 3.3] give
an approach for proving Theorem 1 with elementary
means, but it is not clear whether their technique can
be applied to higher dimensions. As mentioned in the
introduction, Matoušek [10] asked whether the cross-
ing number in Theorem 1 can be improved to O(1).
He conjectured that the answer is no. Afshani and
Chan [2] proved that for any k there are arbitrarily
large point sets in R3 such that the crossing number

of any k-partition for them is Ω
( log(n/k)
log log(n/k)

)
. How-

ever, their construction does not apply for two di-
mensions. Hence, we will describe here a different—
and arguably simpler—construction that yields the
same lower bound for the plane. Independently, Af-
shani [1] used very similar ideas to obtain the same
lower bound.

3 The Lower Bound

Let a(n, k) be the minimum crossing number that a
k-partition can achieve for any planar n-point set in
general position. For the lower bound, we shall con-
sider the dual setting. We use the standard duality
transform along the unit paraboloid that maps the
point p : (px, py) to the line p∗ : y = 2pxx − py and
vice versa [11].

A point set P dualizes to a set P ∗ of planar lines.
We now define the k-level of P ∗, levk(P ∗) [12]. It is
the closure of the set of all points that lie on a line
of P ∗ and that have exactly k lines of P ∗ beneath
them. We observe that levk(P ∗) is an x-monotone
polygonal curve whose edges and vertices come from
the arrangement of P ∗. Let C be the upper convex hull
of levk(P ∗). For each vertex v of C, we let P ∗v ⊆ P ∗

denote the set of lines beneath it. We call P ∗v the
conflict set of v. We have |P ∗v | = k,1 hence v is dual
to a k-shallow line v∗ in the primal plane.

Now we can interpret shallow partitions in the dual
plane:

1Note that levk(P
∗) may also contain vertices with only k−1

lines of P ∗ beneath them, but these vertices cannot appear on
C, since they correspond to a concave bend in levk(P

∗).

Proposition 2 Let C be an x-monotone downward
convex chain, and let L be a set of n lines such that for
each vertex v of C the conflict set Lv has cardinality
k. Then there exists a coloring of L such that (i) each
color class has size at most k; and (ii) each conflict
set Lv contains at most a(n, k) + 1 different colors.

Proof. Consider the primal plane, where L = P ∗ cor-
responds to a point set P . By assumption, there ex-
ists a k-partition P of P with crossing number a(n, k).
Each vertex v of C corresponds to a k-shallow line v∗,
and at most one triangle of P can be wholly contained
in v∗+. Thus, the claim follows from the properties of
the duality transform. �

We are now ready to describe the construction. Let
m = 2β be a power of 2 and let C be an x-monotone
convex chain with m vertices. We denote these ver-
tices by v1, . . ., vm, from left to right. Now, for
j = 0, . . . , β, let Lj be a set of m/2j lines such that the
first line in Lj lies exactly below the vertices v1 to v2j ,
the second line lies below v2j+1 to v2·2j , the third line

lies below v2·2j+1 to v3·2j , etc. We set L′ :=
⋃β
j=0 Lj .

See Fig. 1.
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Figure 1: Sets of lines Lj .

Assume for now that k is a multiple of β + 1, and
let L consist of k/(β+1) copies of L′. We perturb the
lines in L such that they are all distinct while their
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relationship with the vertices of C remains unchanged.
It follows that L has exactly n := (2m − 1)k/(β +
1) lines, with exactly k lines in each conflict set Lvi
(recall that by definition β = logm).

By Proposition 2, there is a coloring of L such that
each color class has size at most k and such that each
conflict set contains at most a(n, k) + 1 colors. The
structure of L lets us interpret this coloring as follows:
let T be a complete binary tree with 2m−1 nodes and
height β. We label the leaves of T with the vertices
v1, . . ., vm, from left to right. Thus, every node w of
T corresponds to an interval of consecutive vertices
of C, namely the leaves of the subtree rooted in w.
By assigning to w the lines that lie exactly below the
vertices in this interval, we obtain a partition of L into
sets of size k/(β + 1). This leads to an interpretation
of shallow partitions as multi-colorings of trees.

Llogm

L2

L1
v1 v2 vm

Figure 2: A tree with height β = log n. The leaves
correspond to the vertices vi, and the level of height i
corresponds to the lines in Li. A line ` is stored in the
node whose subtree corresponds to the vertices that
have ` below them.

Proposition 3 Let T be a complete binary tree with
height β = logm and 2m−1 nodes, and let k be a mul-
tiple of logm+ 1. Then there exists a multi-coloring
of the nodes of T with the following properties: (i)
every node is associated with a multiset of k/(β + 1)
colors; (ii) each color class has at most k elements; (iii)
along each root-leaf path there are at most a(n, k)+1
distinct colors, where n = (2m− 1)k/(β + 1).

Proof. Properties (i) and (ii) follow immediately
from Proposition 2 and the construction. For Prop-
erty (iii), observe that the lines encountered along a
root-leaf path are exactly the lines below the vertex
of C corresponding to the leaf. �

We can now prove the desired lower bound.

Lemma 4 Let T be a complete binary tree with
height β = logm and 2m − 1 nodes, and let k be
a multiple of logm + 1. Consider a multi-coloring of
T such that (i) every node is associated with a multi-
set of k/(β+ 1) colors; and (ii) each color class has at
most 2k elements. Then there exists a root leaf-path
with Ω(logm/ log logm) distinct colors.

Proof. We subdivide the nodes of T into slices. The
first slice consists of the first dlog(3β)e levels of T , the

second slice consists of the following dlog(6β)e levels,
the third slice has the next dlog(9β)e levels, and so
on. In general, the ith slice consists of dlog(3iβ)e
consecutive levels of T .

We claim that there exists a root-leaf path that has
at least one distinct color for each slice that it crosses,
except for the last one. To see this, we first consider
a complete subtree T ′ of T that is has its root in the
first level of a slice i and its leaves in the last level
of the same slice. As a complete binary tree with
dlog(3iβ)e levels, T ′ has at least 3iβ − 1 ≥ 2iβ + 2i
nodes. Therefore, our multi-coloring needs to assign
at least 2(iβ + i)k/(β + 1) colors in T ′. Since each
color class has size at most 2k, this requires at least i
distinct colors.

We now construct the required root-leaf path slice
by slice. Throughout, we maintain the invariant that
after i slices have been considered, the path contains
at least i distinct colors. This is certainly true at the
root. Now suppose that we have constructed a partial
path Qi−1 that ends at a node z in the last level of
the (i− 1)th slice. If Qi−1 contains at least i distinct
colors, we arbitrarily extend it to a path Qi that ends
at the bottom of the ith slice. Otherwise, we pick an
arbitrary child z′ of z. As noted above, the complete
subtree that is rooted at z′ and restricted to the ith
slice contains at least i distinct colors. Thus, we can
extend Qi−1 through z′ to a path Qi that goes to
the bottom of the ith slice and that meets at least i
distinct colors. The claim follows.

It remains to calculate a lower bound for the num-
ber of slices b. By construction, we must have

b∑
i=1

dlog(3iβ)e ≥ β + 1.

Now,

b∑
i=1

dlog(3iβ)e ≤
b∑
i=1

log(4iβ)

≤ b(2 + log b+ log β)

≤ 3b log β,

since clearly b ≤ β. Hence,

b ≥ β + 1

3 log β
= Ω

( logm

log logm

)
,

as desired. �

We now indicate how to drop the assumption that k
is a multiple of β+1. Indeed, suppose that this is not
the case, but k ≥ β + 1. We first perform the above
construction with k′ := bk/(β + 1)c(β + 1) instead of
k. Note that since k ≥ β + 1, we have k ≥ k′. Then
we add k − k′ suitably perturbed copies of Lβ (the
set containing a line in conflict with all vertices of C).
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Let L be the resulting set of lines. By Proposition 2,
there exists a coloring of L such that each color class
has at most k ≤ 2k′ elements and such that each
conflict set has at most a(|L|, k) + 1 distinct colors.
The tree T corresponding to L has the same structure
as before, but now each non-leaf node except the leaf
is associated with k′/(β + 1) colors, while the leaves
have k − k′ additional colors. This suffices for the
argument of Lemma 4 to go through.

Theorem 5 There is a constant c > 0 such that the
following holds. For every n and k ∈ {log n, . . . , n/4},
there exists a planar n-point set P such that the
crossing number for any k-partition of P is at least
c log(n/k)/ log log(n/k). Thus,

a(n, k) = Ω

(
log(n/k)

log log(n/k)

)
.

Proof. Let β ∈ N be maximum with (2β+1−1)/(β+
1) ≤ n/2k. Set m := 2β and k′ := bk/(β+ 1)c(β+ 1).

From Propositions 2 and 3 and Lemma 4, it fol-
lows that by taking the dual we obtain a set P ′ of
n′ := (2m − 1)k′/(β + 1) + k − k′ points such that
any k-partition of P ′ has crossing number at least
c′ logm/ log logm, for some constant c′ > 0.

First note that β < log n and k ≥ β + 1. Hence,
k′ ≤ k ≤ 2k′ and k − k′ ≤ log n. Thus, we can
conclude that

n′ =
2m− 1

logm+ 1
k′ + k − k′ ≤ n

2
+ log n ≤ n.

and

n′ =
2m− 1

logm+ 1
k′ + k − k′ ≥ n

4k
· k

2
=
n

8
.

Thus, by adding at most 7n/8 points that are con-
tained in no k-shallow halfplane, we can obtain from
P ′ a point set P with n points and crossing number
at least c logm/ log logm. Finally, observe that

m ≥ n′

k′
− k ≥ n

9k
,

so P also has crossing number at least c · log(n/k)
log log(n/k) ,

for some c > 0. The result follows. �

Note that our construction also implies a similar
lower bound in R3 by embedding the plane into three-
dimensional space and perturbing the points slightly.
This provides an alternative proof of the result by
Afshani and Chan [2].

4 Conclusion and Open Problems

We have given a simple construction that give a lower

bound of Ω
(

log(n/k)
log log(n/k)

)
for the crossing number of

any shallow partition of a planar point set. Ma-
toušek’s result gives an upper bound of O(log(n/k)).
Thus, there still remains a factor of log log(n/k) to
be settled. Can we show that Matoušek’s analy-
sis is tight? Or, perhaps more interestingly, can
we construct shallow partitions with crossing number

O
(

log(n/k)
log log(n/k)

)
?
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