On the computational complexity of Ham-Sandwich cuts, Helly sets and related problems

Christian Knauer (U Bayreuth)
Hans Raj Tiwary (UL Bruxelles)
Daniel Werner (FU Berlin)

March 12, 2011
Basics

The Ham-Sandwich Theorem
Our results
d-Sum

d-Ham-Sandwich

The idea
The construction
Correctness
Summary

Further results
The planar case

Let $P = R \cup B$. Then there is a line that *bisects* both sets simultaneously.
The planar case

Let $P = R \cup B$. Then there is a line that *bisects* both sets simultaneously.

Such a line can be found in linear time!

[Edelsbrunner, Waupotitsch; '86]
Theorem

For every d point sets in \mathbb{R}^d there exists a hyperplane that bisects them simultaneously.
Theorem

For every d point sets in \mathbb{R}^d there exists a hyperplane that bisects them simultaneously.

Proof: Borsuk-Ulam
General version

Theorem

For every d point sets in \mathbb{R}^d there exists a hyperplane that bisects them simultaneously.

Proof: Borsuk-Ulam

known bounds:

- trivial algorithm: n^{d+1}
General version

Theorem

For every \(d \) point sets in \(\mathbb{R}^d \) there exists a hyperplane that bisects them simultaneously.

Proof: Borsuk-Ulam

known bounds:

- trivial algorithm: \(n^{d+1} \)
- best known: \(O(n^{d-1}) \) [Lo, Matoušek, Steiger; ’92]
The Ham-Sandwich Theorem

For every d point sets in \mathbb{R}^d there exists a hyperplane that bisects them simultaneously.

Proof: Borsuk-Ulam

known bounds:

- trivial algorithm: n^{d+1}
- best known: $O(n^{d-1})$ [Lo, Matoušek, Steiger; ’92]
- recently: $O(n \log^d n)$ for well separated point sets [Bárány, Hubard, Jéronimo; ’08], [Steiger, Zhao; ’09]
The decision problem

Can we find a cut incrementally?
The decision problem

Can we find a cut incrementally?

\((d\text{-}HAM\text{-}SANDBWICH)\)

Given: Sets \(P_1, \ldots, P_d\) in \(\mathbb{R}^d\)
The decision problem

Can we find a cut incrementally?

\((d\text{-HAM-SANDWICH})\)

Given: Sets \(P_1, \ldots, P_d\) in \(\mathbb{R}^d\)

Question: Is there a ham-sandwich cut through the origin?
The decision problem

Can we find a cut incrementally?

\textbf{(d-Ham-Sandwich)}

\textbf{Given:} Sets P_1, \ldots, P_d in \mathbb{R}^d

\textbf{Question:} Is there a ham-sandwich cut through the origin?

Alternatively:

\textbf{Given:} Sets P_1, \ldots, P_{d+1} in \mathbb{R}^d

\textbf{Question:} Is there a ham-sandwich cut?
The decision problem

Can we find a cut incrementally?

\((d\text{-HAM-SANDWICH})\)

Given: Sets \(P_1, \ldots, P_d\) in \(\mathbb{R}^d\)

Question: Is there a ham-sandwich cut through the origin?

Alternatively:

Given: Sets \(P_1, \ldots, P_{d+1}\) in \(\mathbb{R}^d\)

Question: Is there a ham-sandwich cut?

No complexity results known so far.

Christian Knauer, Hans Raj Tiwary, Daniel Werner
If the dimension is part of the input, \(d\text{-HAM-SANDWICH} \) is
Our results

If the dimension is part of the input, \(d\text{-HAM-SANDWICH}\) is

- **NP-hard** (does not exclude \(O(n)\) for every fixed dimension)
If the dimension is part of the input, \textit{d-HAM-SANDWICH} is

- \textbf{NP-hard} (does not exclude $O(n)$ for every fixed dimension)
- \textbf{W[1]-hard} when parameterized with the dimension
Our results

If the dimension is part of the input, d-HAM-SANDWICH is

- **NP-hard** (does not exclude $O(n)$ for every fixed dimension)
- **W[1]-hard** when parameterized with the dimension
- requires $n^{\Omega(d)}$ time, unless 3-SAT can be solved in $2^{o(n)}$
The d-SUM problem

(d-SUM)

Given: A set of integers $S = \{s_1, \ldots, s_n\}$.
The \(d\text{-}\text{SUM}\) problem

\((d\text{-SUM})\)

Given: A set of integers \(S = \{s_1, \ldots, s_n\}\).

Question: Do \(d\) of them sum up to 0?
The \textbf{d-Sum} problem

\begin{itemize}
\item \textbf{(d-Sum)}
\item \textbf{Given:} A set of integers \(S = \{s_1, \ldots, s_n\} \).
\item \textbf{Question:} Do \(d \) of them sum up to 0?
\end{itemize}

\begin{itemize}
\item parameterized version of \textbf{Subset-Sum}
\end{itemize}
The d-SUM problem

(d-SUM)

Given: A set of integers $S = \{s_1, \ldots, s_n\}$.

Question: Do d of them sum up to 0?

- parameterized version of SUBSET-SUM
- $\text{W}[1]$-hard [Fellows, Koblitz; ’93]
The d-\textsc{Sum} problem

(d-\textsc{Sum})

\textbf{Given: } A set of integers $S = \{s_1, \ldots, s_n\}$.

\textbf{Question: } Do d of them sum up to 0?

- parameterized version of \textsc{Subset-Sum}
- requires $n^{\Omega(d)}$ time, unless 3-\textsc{Sat} can be solved in $2^{o(n)}$ [Pătraşcu, Williams; ’10]
The idea

Reduction from d-SUM
The idea

Reduction from d-SUM

General idea: *Embed* the numbers as points into $\mathbb{R}^f(d)$ that have a certain property iff there are d numbers that sum up to 0.
The idea

Reduction from d-SUM

General idea: *Embed* the numbers as points into $\mathbb{R}^f(d)$ that have a certain property iff there are d numbers that sum up to 0.

Here: Construct point sets P_1, \ldots, P_{d+1} in \mathbb{R}^{d+1} such that
The idea

Reduction from d-SUM

General idea: Embed the numbers as points into $\mathbb{R}^{f(d)}$ that have a certain property iff there are d numbers that sum up to 0.

Here: Construct point sets P_1, \ldots, P_{d+1} in \mathbb{R}^{d+1} such that there exists a *linear* ham-sandwich cut

\[\Leftrightarrow \]

d of the numbers sum up to 0.
Encoding the numbers

Let $S = \{s_1, \ldots, s_n\}$
Encoding the numbers

Let $S = \{s_1, \ldots, s_n\}$

Goal: Construct d sets P_1, \ldots, P_d in \mathbb{R}^{d+1} from S

(and one extra set later)
Encoding the numbers

Let $S = \{s_1, \ldots, s_n\}$

Goal: Construct d sets P_1, \ldots, P_d in \mathbb{R}^{d+1} from S
(and one extra set later)
such that number appears in solution \iff linear cut goes through corresponding point.
Encoding the numbers

Let $S = \{s_1, \ldots, s_n\}$

Goal: Construct d sets P_1, \ldots, P_d in \mathbb{R}^{d+1} from S

(and one extra set later)

such that number appears in solution \iff linear cut goes through corresponding point.

In dimension j: add point $p_i^j := \frac{1}{s_i} \cdot e_j + e_{d+1}$ for $1 \leq i \leq n$
Encoding the numbers

Let \(S = \{s_1, \ldots, s_n\} \)

Goal: Construct \(d \) sets \(P_1, \ldots, P_d \) in \(\mathbb{R}^{d+1} \) from \(S \)

(and one extra set later)

such that number appears in solution \(\iff \) linear cut goes through corresponding point.

In dimension \(j \): add point \(p^j_i := \frac{1}{s_i} \cdot e_j + e_{d+1} \) for \(1 \leq i \leq n \)
Encoding the numbers

Let $S = \{s_1, \ldots, s_n\}$

Goal: Construct d sets P_1, \ldots, P_d in \mathbb{R}^{d+1} from S

(and one extra set later)

such that number appears in solution \iff linear cut goes through corresponding point.

In dimension j: add point $p_i^j := \frac{1}{s_i} \cdot e_j + e_{d+1}$ for $1 \leq i \leq n$

Observe: if $h \cdot p_i^j = 0$ then $h_j = -h_{d+1}s_i$.
Problem: Hyperplane through origin will *not* bisect the sets:

\[x_{d+1} = 1 \]

Balancing points

Christian Knauer, Hans Raj Tiwary, Daniel Werner
Problem: Hyperplane through origin will not bisect the sets:

⇒ add balancing points
Balancing points

Problem: Hyperplane through origin will *not* bisect the sets:

\[x_{d+1} = 1 \]

⇒ add *balancing* points

Christian Knauer, Hans Raj Tiwary, Daniel Werner
Balancing points

Problem: Hyperplane through origin will *not* bisect the sets:

\[x_{d+1} = 1 \]

\[x_{d+1} = 1 \]

⇒ add *balancing* points
Balancing points

Problem: Hyperplane through origin will *not* bisect the sets:

\[x_{d+1} = 1 \]

⇒ add *balancing* points
Problem: Hyperplane through origin will \textit{not} bisect the sets:

\begin{align*}
\mathbf{x}_d + 1 &= 1 \\
\mathbf{x}_d + 1 &= \mathbf{x}_j
\end{align*}

\implies add \textit{balancing} points
Balancing points

Problem: Hyperplane through origin will *not* bisect the sets:

\[x_{d+1} = 1 \]

⇒ add *balancing* points
Balancing points

Problem: Hyperplane through origin will *not* bisect the sets:

\[x_{d+1} = 1 \]

\[x_j \]

\[\Rightarrow \text{add balancing points} \]
The point q

One extra point will ensure that

- none of the balancing points can lie on a linear cut
The point q

One extra point will ensure that

- none of the balancing points can lie on a linear cut
- if points lie on linear cut \Rightarrow corresponding numbers sum to 0
The point q

One extra point will ensure that

- none of the balancing points can lie on a linear cut
- if points lie on linear cut \Rightarrow corresponding numbers sum to 0

Set

$$q = - \sum_{i=1}^{d} e_i$$

and $P_{d+1} = \{q\}$.
Some facts

Every linear cut
 • must contain q
Some facts

Every linear cut

- must contain \(q \)
- contains \textit{exactly} one point from each \(P_i \)
Some facts

Every linear cut

- must contain q
- contains exactly one point from each P_i
- contains none of the balancing points
Why it works

Claim:

There are d numbers that sum to 0.

\Leftrightarrow

There is a linear ham-sandwich cut.
Why it works

⇒: Let $\sum_{j=1}^{d} s_{ij} = 0$.
Why it works

⇒: Let $\sum_{j=1}^{d} s_{ij} = 0$.

Let $h_j = s_{ij}$, $1 \leq j \leq d$
Why it works

⇒: Let $\sum_{j=1}^{d} s_{ij} = 0$.

Let $h_j = s_{ij}$, $1 \leq j \leq d$ and $h_{d+1} = -1$.
Why it works

⇒: Let \(\sum_{j=1}^{d} s_{ij} = 0 \).

Let \(h_j = s_{ij}, \ 1 \leq j \leq d \) and \(h_{d+1} = -1 \).

Then

\[
hp_{ij}^j
\]
Why it works

⇒: Let $\sum_{j=1}^{d} s_{ij} = 0$.

Let $h_j = s_{ij}$, $1 \leq j \leq d$ and $h_{d+1} = -1$.

Then

$$hp_{ij}^j = h \left(\frac{1}{s_{ij}} \cdot e_j + e_{d+1} \right)$$
Why it works

⇒: Let $\sum_{j=1}^{d} s_{ij} = 0$.

Let $h_j = s_{ij}$, $1 \leq j \leq d$ and $h_{d+1} = -1$.

Then

$$hp_{ij} = h \left(\frac{1}{s_{ij}} \cdot e_j + e_{d+1} \right) = s_{ij} \frac{1}{s_{ij}} - 1$$
Why it works

⇒: Let $\sum_{j=1}^{d} s_{ij} = 0$.
Let $h_j = s_{ij}$, $1 \leq j \leq d$ and $h_{d+1} = -1$.

Then

$$hp_{ij}^j = h \left(\frac{1}{s_{ij}} \cdot e_j + e_{d+1} \right) = s_{ij} \frac{1}{s_{ij}} - 1 = 0,$$
Why it works

⇒: Let $\sum_{j=1}^{d} s_{ij} = 0$.

Let $h_j = s_{ij}$, $1 \leq j \leq d$ and $h_{d+1} = -1$.

Then

$$hp_{ij}^j = h \left(\frac{1}{s_{ij}} \cdot e_j + e_{d+1} \right) = s_{ij} \frac{1}{s_{ij}} - 1 = 0,$$

so h halves each P_i, $1 \leq i \leq d$.
Why it works

⇒: Let \(\sum_{j=1}^{d} s_{ij} = 0 \).

Let \(h_j = s_{ij}, \ 1 \leq j \leq d \) and \(h_{d+1} = -1 \).

Then

\[
hp_{ij}^j = h \left(\frac{1}{s_{ij}} \cdot e_j + e_{d+1} \right) = s_{ij} \frac{1}{s_{ij}} - 1 = 0,
\]

so \(h \) halves each \(P_i, \ 1 \leq i \leq d \).

Further, as

\[
hq
\]
Why it works

⇒: Let $\sum_{j=1}^{d} s_{ij} = 0$.

Let $h_j = s_{ij}, 1 \leq j \leq d$ and $h_{d+1} = -1$.

Then

$$ h p^j_{i,j} = h \left(\frac{1}{s_{ij}} \cdot e_j + e_{d+1} \right) = \frac{1}{s_{ij}} s_{ij} - 1 = 0,$$

so h halves each $P_i, 1 \leq i \leq d$.

Further, as

$$ h q = h \sum_{i=1}^{d} e_i $$
Why it works

⇒: Let $\sum_{j=1}^{d} s_{ij} = 0$.

Let $h_j = s_{ij}, 1 \leq j \leq d$ and $h_{d+1} = -1$.

Then

$$hp^j_{ij} = h \left(\frac{1}{s_{ij}} \cdot e_j + e_{d+1} \right) = s_{ij} \frac{1}{s_{ij}} - 1 = 0,$$

so h halves each $P_i, 1 \leq i \leq d$.

Further, as

$$hq = h \sum_{i=1}^{d} e_i = \sum_{j=1}^{d} s_{ij}$$
Why it works

⇒: Let $\sum_{j=1}^{d} s_{ij} = 0$.

Let $h_j = s_{ij}$, $1 \leq j \leq d$ and $h_{d+1} = -1$.

Then

$$hp_{ij}^j = h \left(\frac{1}{s_{ij}} \cdot e_j + e_{d+1} \right) = s_{ij} \frac{1}{s_{ij}} - 1 = 0,$$

so h halves each P_i, $1 \leq i \leq d$.

Further, as

$$hq = h \sum_{i=1}^{d} e_i = \sum_{j=1}^{d} s_{ij} = 0$$

q also lies on h.
Why it works

⇐: Let h be a linear cut.
Why it works

\Leftarrow: Let h be a linear cut.

Fact: h contains exactly one point from each P_i

(in particular, $h_{d+1} \neq 0$)
Why it works

⇐: Let h be a linear cut.

Fact: h contains exactly one point from each P_i

(in particular, $h_{d+1} \neq 0$)

Fact: each must be a point of the form $p_i = \frac{1}{s_i} \cdot e_j + e_{d+1}$
Why it works

\(\Leftarrow \): Let \(h \) be a linear cut.

Fact: \(h \) contains exactly one point from each \(P_i \)

\[(\text{in particular, } h_{d+1} \neq 0) \]

Fact: each must be a point of the form \(p^j_i = \frac{1}{s_i} \cdot e_j + e_{d+1} \)

and wlog \(h_{d+1} = -1 \), thus \(h_j = s_{ij} \) for some \(i_j \).
Why it works

\Leftarrow: Let h be a linear cut.

Fact: h contains exactly one point from each P_i

(in particular, $h_{d+1} \neq 0$)

Fact: each must be a point of the form $p^j_i = \frac{1}{s_i} \cdot e_j + e_{d+1}$

and wlog $h_{d+1} = -1$, thus $h_j = s_{ij}$ for some i_j.

Further, as q lies on h, we have
Why it works

⇐: Let h be a linear cut.

Fact: h contains exactly one point from each P_i (in particular, $h_{d+1}
eq 0$)

Fact: each must be a point of the form $p^j_i = \frac{1}{s_i} \cdot e_j + e_{d+1}$ and wlog $h_{d+1} = -1$, thus $h_j = s_{ij}$ for some i_j.

Further, as q lies on h, we have

\[0 \]
Why it works

⇐: Let h be a linear cut.

Fact: h contains exactly one point from each P_i

(in particular, $h_{d+1} \neq 0$)

Fact: each must be a point of the form $p^j_i = \frac{1}{s_i} \cdot e_j + e_{d+1}$

and wlog $h_{d+1} = -1$, thus $h_j = s_{ij}$ for some i_j.

Further, as q lies on h, we have

$$0 =hq$$
Why it works

\Leftarrow: Let h be a linear cut.

Fact: h contains exactly one point from each P_i
(in particular, $h_{d+1} \neq 0$)

Fact: each must be a point of the form $p_i^j = \frac{1}{s_i} \cdot e_j + e_{d+1}$

and wlog $h_{d+1} = -1$, thus $h_j = s_{ij}$ for some i_j.

Further, as q lies on h, we have

$$0 = hq = h \sum_{i=1}^{d} e_i$$
Why it works

\[\Leftarrow: \text{Let } h \text{ be a linear cut.}\]

Fact: \(h \) contains exactly one point from each \(P_i \)

\[(\text{in particular, } h_{d+1} \neq 0)\]

Fact: each must be a point of the form

\[p^j_i = \frac{1}{s_i} \cdot e_j + e_{d+1}\]

and wlog \(h_{d+1} = -1 \), thus \(h_j = s_{i_j} \) for some \(i_j \).

Further, as \(q \) lies on \(h \), we have

\[0 =hq = h \sum_{i=1}^{d} e_i = \sum_{j=1}^{d} h_j\]
Why it works

⇐: Let h be a linear cut.

Fact: h contains exactly one point from each P_i

(in particular, $h_{d+1} \neq 0$)

Fact: each must be a point of the form $p^j_i = \frac{1}{s_i} \cdot e_j + e_{d+1}$

and wlog $h_{d+1} = -1$, thus $h_j = s_{ij}$ for some i_j.

Further, as q lies on h, we have

$$0 = hq = h \sum_{i=1}^{d} e_i = \sum_{j=1}^{d} h_j = \sum_{j=1}^{d} s_{ij}$$
Why it works

\[\Leftarrow: \text{Let } h \text{ be a linear cut.} \]

Fact: \(h \) contains exactly one point from each \(P_i \)

(in particular, \(h_{d+1} \neq 0 \))

Fact: each must be a point of the form

\[p^j_i = \frac{1}{s_i} \cdot e_j + e_{d+1} \]

and \(\text{wlog } h_{d+1} = -1 \), thus \(h_j = s_{ij} \) for some \(i_j \).

Further, as \(q \) lies on \(h \), we have

\[0 = hq = h \sum_{i=1}^{d} e_i = \sum_{j=1}^{d} h_j = \sum_{j=1}^{d} s_{ij} \]

and thus \(d \) numbers sum up to 0.
Why it works

⇐: Let \(h \) be a linear cut.

Fact: \(h \) contains exactly one point from each \(P_i \)

(in particular, \(h_{d+1} \neq 0 \))

Fact: each must be a point of the form \(p^j_i = \frac{1}{s_i} \cdot e_j + e_{d+1} \)

and wlog \(h_{d+1} = -1 \), thus \(h_j = s_{i_j} \) for some \(i_j \).

Further, as \(q \) lies on \(h \), we have

\[
0 = hq = h \sum_{i=1}^{d} e_i = \sum_{j=1}^{d} h_j = \sum_{j=1}^{d} s_{i_j}
\]

and thus \(d \) numbers sum up to 0.
What we have done

\[S = \{s_1, \ldots, s_n\} \text{ is a } d\text{-SUM instance} \]
What we have done

\[S = \{s_1, \ldots, s_n\} \text{ is a } d\text{-SUM instance} \]
\[\iff \]
\[P_1, \ldots, P_{d+1} \text{ can be bisected by a linear cut} \]
What we have done

\[S = \{s_1, \ldots, s_n\} \text{ is a } d\text{-SUM instance} \]

\[\iff \]

\[P_1, \ldots, P_{d+1} \text{ can be bisected by a linear cut} \]

- ptime-reduction \(\Rightarrow\) NP-hard
What we have done

\[S = \{s_1, \ldots, s_n\} \text{ is a } d\text{-SUM instance} \]
\[\iff \]
\[P_1, \ldots, P_{d+1} \text{ can be bisected by a linear cut} \]

- ptime-reduction \implies NP-hard
- fpt-reduction \implies W[1]-hard
What we have done

\[S = \{s_1, \ldots, s_n\} \text{ is a } d\text{-SUM instance} \]

\[\iff \]

\[P_1, \ldots, P_{d+1} \text{ can be bisected by a linear cut} \]

- ptime-reduction \Rightarrow NP-hard
- fpt-reduction \Rightarrow W[1]-hard
- linear parameter \Rightarrow n^{\Omega(d)} \text{ (conditional) lower bound}
What we have done

\[S = \{s_1, \ldots, s_n\} \text{ is a } d\text{-SUM instance} \]

\[\iff \]

\[P_1, \ldots, P_{d+1} \text{ can be bisected by a linear cut} \]

- ptime-reduction \implies NP-hard
- fpt-reduction \implies W[1]-hard
- linear parameter \implies n^{\Omega(d)} (conditional) lower bound
In a similar spirit one can show $n^{\Omega(d)}$ lower bounds for
In a similar spirit one can show $n^{\Omega(d)}$ lower bounds for

- Carathéodory sets
In a similar spirit one can show $n^\Omega(d)$ lower bounds for

- Carathéodory sets
- Helly sets (via duality)
Further results

In a similar spirit one can show $n^{\Omega(d)}$ lower bounds for

- Carathéodory sets
- Helly sets (via duality)
- more specific: Minimum Infeasible Subsystem for LP