Hardness of discrepancy and related problems
parameterized by the dimension

P. Giannopoulos, C. Knauer, M. Wahlström, D. Werner

March 22, 2010
Basics
- Geometric Discrepancy
- Parameterized Complexity
- Maximum-Empty-Subinterval

Our Results
- Overview

Hardness of Maximum-Empty-Subinterval
- The construction
- Encoding vertices
- Encoding edges
- Correctness
- Approximation

Conclusion
- Adaption to the other problems
How equally distributed is a point set?

Let P be a finite set of points in the d-dimensional unit cube and O be a subset of \mathbb{R}^d. We set

$$D_O(P) := \left| \frac{|P \cap O|}{|P|} - \text{vol}(O) \right|.$$
How equally distributed is a point set?

Let P be a finite set of points in the d-dimensional unit cube and O be a subset of \mathbb{R}^d. We set

$$D_O(P) := \left| \frac{|P \cap O|}{|P|} - \text{vol}(O) \right|.$$
How equally distributed is a point set?

Let P be a finite set of points in the d-dimensional unit cube and O be a subset of \mathbb{R}^d. We set

$$D_O(P) := \left| \frac{|P \cap O|}{|P|} - \text{vol}(O) \right|.$$

$$D_O(P) = \left| \frac{1}{10} - \frac{1}{25} \right| = \frac{3}{50}.$$
How equally distributed is a point set?

Let P be a finite set of points in the d-dimensional unit cube and O be a subset of \mathbb{R}^d. We set

$$D_O(P) := \left| \frac{|P \cap O|}{|P|} - \text{vol}(O) \right|.$$
The *Star Discrepancy* is defined as

\[D^*(P) = \max_{I \in \mathcal{I}^*} D_I(P) \]

where \mathcal{I}^* is the set of all boxes inside the unit cube that contain the origin.

The *Box Discrepancy* is defined as

\[D(P) = \max_{I \in \mathcal{I}} D_I(P) \]

where \mathcal{I} is the set of all boxes inside the unit cube.
A parameterized decision problem is a language $L \subseteq \Sigma^* \times \mathbb{N}$.
A parameterized decision problem is a language \(L \subseteq \Sigma^* \times \mathbb{N} \).

\(L \) is *fixed-parameter tractable*, if it can be decided in \(\mathcal{O}(f(k) \cdot |x|^c) \) time whether \((x, k) \in L\).
A parameterized decision problem is a language $L \subseteq \Sigma^* \times \mathbb{N}$.

L is **fixed-parameter tractable**, if it can be decided in $O(f(k) \cdot |x|^c)$ time whether $(x, k) \in L$.

A problem is $W[1]$–hard if the k–CLIQUE problem can be reduced to it by a parameterized reduction.
The Maximum-Empty-Subinterval problem

Given: A finite point set P inside the d-dimensional unit cube, a number V.

Question: Is there a box inside $[0, 1]^d$ containing the origin and none of the points that has volume at least V?
The following problems are W[1]–hard with respect to the dimension (and NP–hard):

- Maximum-Empty-Subinterval
The following problems are \(\text{W}[1]\)-hard with respect to the dimension (and \(\text{NP}\)-hard):

- **Maximum-Empty-Subinterval**
- **Star-Discrepancy**
The following problems are \(W[1] \)-hard with respect to the dimension (and NP-hard):

- **Maximum-Empty-Subinterval**
- **Star-Discrepancy**
- **Maximum-Empty-Box**
The following problems are $W[1]$–hard with respect to the dimension (and NP–hard):

- **Maximum-Empty-Subinterval**
- **Star-Discrepancy**
- **Maximum-Empty-Box**
- **Box-Discrepancy**
The following problems are $W[1]$–hard with respect to the dimension (and NP–hard):

- **Maximum-Empty-Subinterval**
Overview

- Reduction from \textit{k–Clique}
Overview

- Reduction from k-CLIQUE
- For $G = ([n], E)$ and an integer k, we will construct a set of points in \mathbb{R}^{2k} that admits an empty box of volume C^k iff G has a k-clique.
Overview

- Reduction from k-CLIQUE
- For $G = ([n], E)$ and an integer k, we will construct a set of points in \mathbb{R}^{2k} that admits an empty box of volume C^k iff G has a k-clique.
- We will place points into k orthogonal planes to encode the vertices
Overview

- Reduction from k-\textsc{Clique}
- For $G = ([n], E)$ and an integer k, we will construct a set of points in \mathbb{R}^{2k} that admits an empty box of volume C^k iff G has a k-clique.
- We will place points into k orthogonal planes to encode the vertices
- and additionally into their pairwise product to encode the edges.
Overview

- Reduction from \textsc{k-Clique}

- For $G = ([n], E)$ and an integer k, we will construct a set of points in \mathbb{R}^{2k} that admits an empty box of volume C^k iff G has a k-clique.

- We will place points into k orthogonal planes to encode the vertices

- and additionally into their pairwise product to encode the edges.

- Observe: As the origin must be contained, the planes can be considered separately.
Let $\mu > 1$ and $C := 1/\mu^{n-1} < 1$. In each of the k planes, we place $n + 1$ points (n large rectangles) as follows.
Let $\mu > 1$ and $C := 1/\mu^{n-1} < 1$. In each of the k planes, we place $n + 1$ points (n large rectangles) as follows.
Let $\mu > 1$ and $C := 1/\mu^{n-1} < 1$. In each of the k planes, we place $n + 1$ points (n large rectangles) as follows.
Let $\mu > 1$ and $C := 1/\mu^{n-1} < 1$. In each of the k planes, we place $n+1$ points (n large rectangles) as follows.
Let $\mu > 1$ and $C := 1/\mu^{n-1} < 1$. In each of the k planes, we place $n + 1$ points (n large rectangles) as follows.
Let $\mu > 1$ and $C := 1/\mu^{n-1} < 1$. In each of the k planes, we place $n + 1$ points (n large rectangles) as follows.

![Diagram showing the placement of points and rectangles.](attachment:image.png)
Let $\mu > 1$ and $C := 1/\mu^{n-1} < 1$. In each of the k planes, we place $n + 1$ points (n large rectangles) as follows.
Let $\mu > 1$ and $C := 1/\mu^{n-1} < 1$. In each of the k planes, we place $n + 1$ points (n large rectangles) as follows.

A selection of k such rectangles corresponds to a subset of vertices of G.
How to forbid certain large rectangles?

We want to forbid boxes corresponding to u in the i–th \mathbb{R}^2 and to v in the j–th \mathbb{R}^2 for $uv \notin E$.
How to forbid certain large rectangles?

We want to forbid boxes corresponding to u in the i–th \mathbb{R}^2 and to v in the j–th \mathbb{R}^2 for $uv \notin E$.
How to forbid certain large rectangles?

We want to forbid boxes corresponding to u in the i–th \mathbb{R}^2 and to v in the j–th \mathbb{R}^2 for $uv \notin E$.

P. Giannopoulos, C. Knauer, M. Wahlström, D. Werner

Hardness of discrepancy and related problems
How to forbid certain large rectangles?

We want to forbid boxes corresponding to u in the i–th \mathbb{R}^2 and to v in the j–th \mathbb{R}^2 for $uv \not\in E$.

- Add a point in the product of the two planes (\mathbb{R}^4).

\[(x, C/x) \]
How to forbid certain large rectangles?

We want to forbid boxes corresponding to u in the i–th \mathbb{R}^2 and to v in the j–th \mathbb{R}^2 for $uv \notin E$.

- Add a point in the product of the two planes (\mathbb{R}^4).
- The two rectangles cannot be chosen at the same time.
How to forbid certain large rectangles?

We want to forbid boxes corresponding to u in the i–th \mathbb{R}^2 and to v in the j–th \mathbb{R}^2 for $uv \notin E$.

- Add a point in the product of the two planes (\mathbb{R}^4).
- The two rectangles cannot be chosen at the same time.
- Do this for all $1 \leq i \neq j \leq k$ and all $uv \notin E$.
How to forbid certain large rectangles?

We want to forbid boxes corresponding to u in the i–th \mathbb{R}^2 and to v in the j–th \mathbb{R}^2 for $uv \notin E$.

- Add a point in the product of the two planes (\mathbb{R}^4).
- The two rectangles cannot be chosen at the same time.
- Do this for all $1 \leq i \neq j \leq k$ and all $uv \notin E$.
How to forbid certain large rectangles?

We want to forbid boxes corresponding to u in the i–th \mathbb{R}^2 and to v in the j–th \mathbb{R}^2 for $uv \notin E$.

- Add a point in the product of the two planes (\mathbb{R}^4).
- The two rectangles cannot be chosen at the same time.
- Do this for all $1 \leq i \neq j \leq k$ and all $uv \notin E$.
Lemma

G has a k–clique iff there is an empty box of size C^k.

Theorem

Maximum-Empty-Box is $W[1]$–hard with respect to the dimension.

Corollary

Unless $W[1] = FPT$, there is no algorithm running in time $O(f(d) \cdot |P|^c)$ for this problem.
An even stronger result

- Observe: If there is no k–clique, we need to choose at least one rectangle of size at most C/μ in one plane.
An even stronger result

- Observe: If there is no k–clique, we need to choose at least one rectangle of size at most C/μ in one plane.
- An empty box can have a total volume of at most C^k/μ.
An even stronger result

- Observe: If there is no k–clique, we need to choose at least one rectangle of size at most C/μ in one plane.
- An empty box can have a total volume of at most C^k/μ.
- Choosing μ large creates a large gap between positive and negative instances.
An even stronger result

- Observe: If there is no k–clique, we need to choose at least one rectangle of size at most C/μ in one plane.
- An empty box can have a total volume of at most C^k/μ.
- Choosing μ large creates a large gap between positive and negative instances.
- Approximating the problem by, e. g., a factor of $1/2^{|P|}$ is \text{NP–hard}!
Shrink and lift

The proof can be modified to show the $W[1]$–hardness of

- **Star-Discrepancy**
Shrink and lift

The proof can be modified to show the \(W[1] \)-hardness of

- **Star-Discrepancy**
- **Maximum-Empty-Box**
The proof can be modified to show the $W[1]$-hardness of

- **Star-Discrepancy**
- **Maximum-Empty-Box**
- **Box-Discrepancy**.
Thank You.