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Abstract. In this paper we present a WKB approximation for spherically-
symmetric solutions of the Schrödinger-Newton equations. These are nonlinear
modifications of the ordinary Schrödinger equation involving gravitational self-
interaction of the wavefunction. Applying the WKB procedure leads to two
different nonlinear differential equations for the gravitational potential U for
positive and negative values of U . Both equations can be solved analytically.
The corresponding wavefunctions that are regular within the neighbourhood of
the turning point are calculated and compared to the numerical solutions. In the
last section the asymptotic behaviour of the eigenvalues is derived by aid of a
modified Bohr-Sommerfeld quantization rule.

1. Introduction

The Schrödinger-Newton equations form a nonlinear system of differential equations
obtained by coupling together the ordinary Schrödinger equation and Newton’s field
equation for the gravitational potential. The equations describe a particle moving in
its own gravitational field, where the field is generated by the particle’s probability
density via classical Newton’s field equation. The name Schrödinger-Newton equations

was originally introduced by Penrose in [1]. He also gave a heuristic motivation
for the model provided by the equations. In the following, Schmidt [2] extended
the Schrödinger-Newton equations to many particles and provided a model of the
measurement process. Moroz et al. performed numerical studies in [3]. In a second
work [4] they proved that a class of bounded solutions for the Schrödinger-Newton
equations exists. The equations are also known as Choquard’s equation from plasma
physics. As far back as in 1977 Lieb proved the existence and the uniqueness of the
ground state for Choquard’s equation in [5] using functional analytical methods.

Since we are dealing with classical gravitational interaction, it seems reasonable to
derive a quasi-classical approximation for the problem. We adopt the ordinary WKB-
method for the time-independent one-dimensional Schrödinger equation and for a
given potential U , in order to reduce the Schrödinger-Newton equations approximately
to a nonlinear ODE which can be solved analytically.

The paper is structured as now to be told: In section 2, we introduce the
Schrödinger-Newton equations with their general properties. A numerical analysis,
slightly different from the one in [3] is presented in section 3. To come to the main
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aspect in section 4, we develop a WKB-approximation for the Schrödinger-Newton
equations that reproduces most of the numerical results. Further, an asymptotic
formula for the eigenvalues is derived in the last section.

2. The Schrödinger-Newton equations

Considering a single particle of mass m, the time-independent Schrödinger-Newton
equations take the form

∆ψ = − 2m

~2
(E − φ)ψ , (1)

∆φ = − 4πGm2|ψ|2 , (2)

where ψ is the wavefunction, φ denotes the gravitational potential, E is the energy
eigenvalue and G is the gravitational constant. In this context, the probability density
|ψ|2 multiplied by m is interpreted as the particle’s matter density. Following [3], we
redefine the variables

U :=
2m

~2
(E − φ) and S :=

~ψ√
8πGm3

, (3)

and receive a simplified pair of equations of real functions S and U

∆S = − S U , (4)

∆U = − S2 (5)

that we may call the modified Schrödinger-Newton equations. Here, as in the previous
papers [4] and [3], we shall restrict our attention to the spherically-symmetric solutions.
It can be easily verified that the system (4) and (5) has a scaling invariance with respect
to a one-parameter group of scaling transformations Γ that is given by

Γ(µ2, µ) : {S,U, r} 7→ {µ2S, µ2U, µ−1r} . (6)

We are only interested in solutions S and U that are normalizable. So we can assume
the normalization integral (total probability)

I =

∫ ∞

0

r2S(r)2 dr (7)

to be finite. It transforms under rescaling Γ according to I 7→ µI. Consequently,
choosing µ = I−1 will set the total probability equal to one. We require the solutions
{S(r), U(r)} to be smooth at the origin. This implies that their derivatives vanish at
r = 0. Writing S(0) = S0 and U(0) = U0 and integrating (4) as (5) twice with respect
to r, we obtain integral equations for S and U :

S(r) = S0 −
∫ r

0

x
(

1 − x

r

)

S(x)U(x) dx , (8)

U(r) = U0 −
∫ r

0

x
(

1 − x

r

)

S(x)2 dx . (9)

We may use the integral solutions to derive asymptotic forms for S and U (cf. [3, 4]).
Near r = 0, Taylor series expansion yields

S(r) = S0 −
S0U0

6
r2 + O(r4) (10)

U(r) = U0 −
S2

0

6
r2 + O(r4) . (11)



WKB Approximation of the Nonlinear Schrödinger-Newton Equations 3

Equation (9) can be written in a different form in order to indicate the asymptotic
behaviour for large r

U(r) = U0 −
∫ r

0

xS(x)2 dx+
1

r

∫ r

0

x2S(x)2 dx
r→∞−→ U∞ +

I

r
, (12)

where we only assumed the solutions to be normalizable. In this case, both integrals
necessarily converge. The normalized energy eigenvalue is then written as

E =
µ2

2
lim

r→∞
U(r) =

U∞

2 I2
. (13)

The wavefunction S exhibits the usual exponential behaviour for large values of r.
Setting U equal to U∞, we find from (4)

S(r) ∼ k

r
e
−

p

|U∞| r
. (14)

3. Numerical Analysis

In principle, the Schrödinger-Newton equations can be integrated by standard
numerical routines. However, the 1/r-singularity of the Laplacian operator requires
extremely small step widths tending to zero with r decreasing. In order to circumvent
the 1/r-term, we transform (4) and (5) into an autonomous system of differential
equations. We suppose to achieve a considerable improvement of the numerical
accuracy by avoiding the singularity. First of all the modified Schrödinger-Newton
equations are written as one fourth order equation

dS

dr
= F

(

r, S,
d2S

dr2
,
d3S

dr3
,
d4S

dr4

)

, where F : R5 → R . (15)

Taking into account the one-parameter group of scaling transforms that is generated
by Γ(µ2, µ), we can, according to [6] reduce the order of (15) by one. To this end,
consider the transformation

S(r) 7→ r2S(r) = x(t) , (16)

U(r) 7→ r2U(r) = y(t) with r = e
t
. (17)

Substitution into (4) and (5) yields an autonomous system for {x(t), y(t)}
ẍ(t) − 3ẋ(t) +

(

2 + y(t)
)

x(t) = 0 , (18)

ÿ(t) − 3ẏ(t) + 2y(t) + x(t)2 = 0 . (19)

Here, the dot denotes differentiation with respect to t. We found that integrating
the autonomous equations (18) and (19) instead of the original system increases the
numerical accuracy essentially. Nevertheless, for the sake of clarity, we shall refer to
the original solutions S and U in the following paragraph.

We shall now turn to the bound states of (4) and (5). The solutions can be
enumerated in the way that the n-th solution has n − 1 zeros. Further, using the
scaling freedom (6) we can set U0 = 1 without loss of generality. The solutions
therefore only depend on the single free parameter S0 > 0. Let S0 be an element of
M0 =]a0, b0], where M0 has to be a sufficiently large interval. We choose the positive
initial value ξ1 = (a0 + b0)/2 and start the integration for the n-th solution. One can
show that if the calculated function S1 has more than n − 1 zeros, then ξ1 < S0 and
else ξ1 > S0. Thus we can define a recursion sequence {Mi} as

Mi+1 =]ai+1, bi+1] =

{

]ξi, bi ] , if Ni > n− 1
]ai, ξi ] else

(20)
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with Ni counting the zeros of the calculated function Si and ξi = (ai−1 + bi−1)/2. It
follows by induction that M0 ⊃ M1 ⊃ . . . ⊃ Mn ⊃ . . . ⊃ {S0}. Simultaneously the
sequence of functions {Si} converges to the wanted solution S as we get the potential
U . The corresponding eigenvalues can be easily calculated using equation (13). Here,
in contrast to the procedure suggested in [3], it is not necessary to make a difference
n even or odd.

As figure 2 shows, E(n) exhibits power law behaviour. We have plotted the first
twenty eigenvalues and conjecture the asymptotic behaviour for large n to be

En ∝ n−2 with n→ ∞ . (21)

Moroz et al. found a deviating law in [3]. However, they calculated only the first
ten eigenvalues, which might solve this contradiction. To verify (21), we use Levin’s
u-sequence acceleration method (cf. [7]). We may define Un = ln(En/En+1)/ ln((n+
1)/n). If the u-sequence elements are assigned to u1 = U1, u2 = U2−U1, u3 = U3−U2

and so forth, then the Levin formula for the limit of {Un} is given by

U (N) =

∑N

n=1(−1)n−1
(

N
n

)

nN−2 Un

un

∑N

n=1(−1)n−1
(

N

n

)

nN−2 1
un

. (22)

We find U (20) = −2.03435 . . . in good agreement with the results of the WKB
approximation in section 5. In order to estimate the numerical error of our eigenvalues,
we multiply (4) by r2 and integrate the obtained equation from 0 to infinity. It follows

0 =

∫ ∞

0

r2S U dr =
2m

~2

∫ ∞

0

r2S (E − φ) dr ' 2m

~2

∫ ∞

0

r2S ε dr ,(23)

where ε denotes the deviation of the numerical eigenvalue from the exact one. By
calculating the corresponding error for S, it can be shown that S is numerically
sufficiently exact determined compared to U . Consequently

ε =

∣

∣

∣

∣

∫ ∞

0

r2S U dr

∣

∣

∣

∣

∣

∣

∣

∣

2m

~2

∫ ∞

0

r2S dr

∣

∣

∣

∣

−1

(24)

provides a crude estimate for the absolute error of the normalized eigenvalue. It
indicates when the discretization error becomes relevant and renders the numerical
solutions to be unstable. We observed that ε blows up, when n gets larger than 20.

4. WKB-Approximation

We are aiming at developing an approximate solution for the Schrödinger-Newton
equations that is asymptotically valid. So it seems reasonable to adopt quasi-classical
methods as the WKB approximation. Usually, this method is used to construct
approximate bound solutions of the ordinary one-dimensional Schrödinger equation
with a given potential U for large quantum numbers n (cf. [8]). If we define
X(r) = rS(r), then we can write equation (4) as a one-dimensional Schrödinger
equation

X ′′(r) = −U(r)X(r) . (25)

As we know from the general WKB procedure, X can be approximated as follows

X(r) = C U(r)−
1

4 Re

{

exp

(

i

∫ r

r0

U(x)
1

2 dx

)}

. (26)
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Here, we restrict the WKB solution to its real part. The integration constant r0 is
determined by the condition U(r0) = 0 (turning point). Without loss of generality we
may assume that U is positive for r < r0 (classically allowed region) and negative, if
r > r0 (classically forbidden region). We shall regard these two domains separately.

Our first step will be to calculate U from the field equation (5) for U > 0. Since
we focus our attention on the large quantum numbers limit, we expect the function
X to be rapidly oscillating. Thus let

X̄(r) =
C

π
U(r)−

1

4

∫ 2π

0

cos 2Θ dΘ = C U(r)−
1

4 (27)

be the averaged value of X , where Θ denotes the wavefunction’s phase contribution.
Then, X̄ approximately satisfies the equation X̄ ′′ = −UX̄ and we may therefore use
the ansatz S(r) = r−1X̄(r). Substituting this expression into (5) we obtain the WKB
equation for the classically allowed domain:

U ′′(r) +
2

r
U ′(r) +

C2

r2
U(r)−

1

2 = 0 . (28)

The correct choice of C will guarantee I = 1 in (7). If we integrate (28) from 0 to
r < r0, we get

r2U ′(r) = −C2

∫ r

0

U(x)−
1

2 dx + β . (29)

We will show later that r2U ′(r) converges to β < 0 at the origin. The solution then
necessarily diverges. Since β is negative, there is an open neighbourhood of r = 0,
within that U ′(r) is negative. Consequently, U is monotonically decreasing on the
interval ]0, r0].

Although being a modification of the well-known Emden-Fowler equation, the
WKB equation represents a special case, in which no solution is to be found in
literature.§ Note that (28) has a scaling invariance with respect to dilatations of
the argument U(r) 7→ U(µr), where µ is a positive, real parameter. Similar to
the proceedings in the second section, we can apply the same procedure as above,
producing an autonomous WKB equation

ẍ(t) + ẋ(t) + C2x(t)−
1

2 = 0 , (30)

that results from the transformation x(t) = U(et). As U , the function x ought to be
monotonically decreasing. Thus on the parameter set M =] − ∞, ln r0] the inverse
function t(x) exists and we may define p(x) = ẋ(t(x)). Differentiation yields

ẍ(t) =
dp

dt
=
dp

dx

dx

dt
= p′(x)p(x) . (31)

If we now label the independent variable by x, then we can rewrite (30) into

p(x)p′(x) + p(x) + C2x−
1

2 = 0 . (32)

Further, replacing the square root term by s = −2C
√
x provides an Abelian differential

equation of the second kind for P (s) = p(−2C
√
x)

P (s)P ′(s) +
s

2C2
P (s) = 1 . (33)

§ We found a solution for the case that C2 is negative in [9]. However we have considerable doubts
concerning the correctness of the solution presented there.
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For the last equation a parametric solution can be found in literature (cf. [9]).
Introducing the parameter α = P (s) + s2/(4C2) and differentiating implicitly with
respect to α gives

dα

dα
= 1 =

dP

ds

ds

dα
+

s

2C2

ds

dα
. (34)

A comparison to (33) reveals that s′(α) = P (s(α)), which leads to the special Riccati
equation

s′(α) +
s(α)2

4C2
− α = 0 . (35)

If we substitute s(α) = 4C2u′(α)u(α)−1, with u(α) denoting the Airy functions

u(α) = k1Ai ((2C)
2

3α) + k2Bi ((2C)
2

3α) , (36)

we find our parametric solution

U(α) = x(α) =
s(α)2

4C2
= 4C2

(

u′(α)

u(α)

)2

, (37)

where we used the relation s = −2C
√
x. The parametrization of r = et is easy to find.

From

t− t0 =

∫

dt =

∫

dt

dx
dx = 2

∫

1

u(α)

du

dα
dα = 2 ln

u

u0
(38)

it follows that

r(α) = e
t(α)

= u(α)2 . (39)

Note that the initial conditions U0 = 1 and U ′
0 = 0, we chose for the Schrödinger-

Newton equations, are not consistent with the WKB potential U . This becomes clear
if we expand (37) into a power series with respect to α. Let α1 be a zero of r(α).
Then, within a neighbourhood of α1 we can derive

U(α) =

(

u′(α)

u(α)

)2

=
1

(α− α1)2
+

2α1

3
+ O(|α − α1|) . (40)

According to (39), we can expand r(α) into

r(α − α1) = u′(α1)
2(α− α1)

2 + O(|α− α1|6) , (41)

which yields

U(r) =
u′(α)2

r
+

2α1

3
+ O(r

1

2 ) . (42)

This verifies the assumption β < 0, we used in (29). We shall now have a look at
the classically forbidden region: Due to the fact that the general WKB solution (26)
has a singularity at r0, it provides an acceptable approximation only far away from
the turning point. As we know from (12), U is approximately constant for large r.
Assuming that U ≈ U∞ for all r ≥ r1 > r0 we may write

X(r) ' C exp

(

−
∫ r1

r0

√

|U(x)| dx−
∫ r

r1

√

|U∞| dx
)

∀r > r1 , (43)

If we summarize all constant terms to the normalization constant C, then X takes the
following simple form

X(r) ' C exp
(

−
√

|U∞|r
)

, (44)
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in accordance to the asymptotic formula (14) derived previously. Substitution into
the field equation yields the WKB equation for the classically forbidden region:

U ′′(r) +
2

r
U ′(r) +

C2

r2
e
−2

p

|U∞|r
= 0 . (45)

We will see later that the solution of (45) can be extended to the whole region
r > r0, though we restricted the domain of definition of X to r > r1 > r0. Defining
Y (r) = rU(r), Y (r) obeys the separable equation

Y ′′(r) +
C2

r
e
−2

p

|U∞|r
= 0 . (46)

Integrating once from r to ∞ and then, a second time from r0 to r provides the
solution

Y (r) = K + Y ′

∞r −
C2e

−2
p

|U∞|r

2
√

|U∞|
− C2rEi (−2

√

|U∞|r) , (47)

where all integration constants are again summarized to one constant that is labeled
by K. The last term denotes the well-known exponential integral function (cf. [10])

Ei (r) =

∫ r

−∞

e
x

x
dx . (48)

As a numerical comparison of the last two terms to the others in (47) shows, those
can be neglected. If we further take into account that Y ′

∞ = U∞, we may approximate
U(r) by

U(r) ' U∞ +
KR

r
, (49)

which is consistent with the results from the first section. The only thing to do now
is to fit both solution’s branches to each other at r0. The turning point is determined
by U(r0) = 0, which yields the condition

U(α0) = 0 ⇐⇒ u′(α0) = 0 , (50)

r(α0) = r0 ⇐⇒ u(α0) =
√
r0 . (51)

The parameter α is restricted to the interval [α0, α1], where α1 determines the origin
r = 0. The choice of α0 fixes the slope U ′

0 at the turning point. It can be verified that
the left-handed limit of U ′(r) exists and is simply given by

dU

dr

∣

∣

r→r0

=
α0

r0
, where r < r0 . (52)

The corresponding WKB wavefunction is given by (26). However, there is a procedure
which yields an approximation for the WKB wavefunction that is regular within the
vicinity of the turning point (cf. [11]). It can be proved that

χ(r) = C

∣

∣

∣

∣

ζ(r)

U(r)

∣

∣

∣

∣

1

4

Ai (ζ(r)) (53)

converges uniformly to the WKB wavefunction (26) far away from the turning point
and is an exact solution of the Schrödinger equation (25) at the turning point up to
first order. The argument ζ(r) is defined by

2

3
ζ(r)

3

2 =

∫ r

r0

U(r′)
1

2 dr′ for U > 0 , (54)

2

3
ζ(r)

3

2 = e
± 3πi

2

∫ r

r0

|U(r′)| 12 dr′ for U < 0 . (55)



WKB Approximation of the Nonlinear Schrödinger-Newton Equations 8

With some effort, both integrals can be solved analytically. Of course, within the
classically allowed domain the wavefunction’s representation is parameterized by α
and we can compare the numerical to the WKB wavefunctions on the whole domain
r > 0. Figure 1 shows such an example for n = 20. Due to the singularity of the WKB

0 50 100 150

r

−0.4

−0.2

0

0.2

0.4

S

WKB wavefunction for n=20

20−th bound state

Figure 1. Numerical and WKB wavefunction for n = 20.

potential at r = 0, the WKB wavefunctions diverge there, too. As a consequence, each
wavefunction has infinitely many zeros, which accumulate within a neighbourhood of
the origin.

Despite of qualitative confirmation of the functions in figure 1, one can observe
that their phases deviate from each other. Nevertheless the WKB procedure provides
generally reliable results for the eigenvalues. Since the procedure is valid especially for
the semi-classical limit of large quantum numbers, we suppose the phase behaviour
of the WKB wavefunction to improve only for much larger n, i.e. for higher bound
states. However, we cannot examine our conjecture here.

5. Asymptotic behaviour of the eigenvalues

The numerical results suggest a power law for the n-dependence of the eigenvalues. We
expect the asymptotic n-dependence to be En ∝ n−2. Usually, the Bohr-Sommerfeld
quantization rule allows to calculate the eigenvalues for a fixed n, if the potential U is
given. It is possible to derive a modified quantization rule for the Schrödinger-Newton
equations.

We can calculate the number of zeros by means of Cauchy’s residue theorem
from the potential. Consider an analytical continuation of the solutions {S,U} of the
Schrödinger-Newton equations to complex values z. Then, the number n of zeros is
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given by

2π

(

n+
1

2

)

=

∮

C

|U(z)| 12 dz , (56)

where the curve C encloses the turning point z0 as all complex zeros of the wavefunction
S. If we bear in mind the WKB potential’s singularity at the origin, then the
expression (56) transforms into

2π

(

n+
1

8

)

=

∫ r0

0

U(r)
1

2 dr . (57)

Since the WKB approximation is only valid for large n, we might neglect the term π/4
on the right-hand side of the last equation. As already mentioned, the WKB potential
has a scaling invariance with respect to dilatations Γ : r 7→ µ−1r. Under rescaling the
phase integral transforms according to

P̃ (r̃0) := (Γ ◦ P ) (r̃0) =

∫ r̃0

0

Ũ(r)
1

2 dr =

∫ r̃0

0

U(µr)
1

2 dr

= µ−1

∫ µr̃0

0

U(ρ)
1

2 dρ = µ−1P (r0) .

(58)

The tilde labels all rescaled quantities. Hence, the number of zeros formally transforms
as n 7→ µ−1n. We might understand this scaling property as follows: If we calculate a
wavefunction S from the Schrödinger-Newton equation with a given WKB potential
U , then under rescaling of U the number n of zeros changes to ñ, assuming n and ñ
are integer.

1 10

ln(n)

0.0001

0.001

0.01

0.1

ln(E)

Numerical eigenvalues

WKB eigenvalues

Figure 2. The first 19 numerical and WKB eigenvalues.

We shall now work out the scaling behaviour of the eigenvalues. As we know from
previous considerations, the eigenvalue can be expressed by terms of the potential’s
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asymptotic formula (12). We assume that the asymptotic expression already provides
a valid approximation in the vicinity of the turning point. Thus using U(r0) = 0, we
can rewrite equation (13) into

E =
1

2

1

r30U
′(r0)

, (59)

which transforms under rescaling Γ according to E 7→ µ2E. The transformed
eigenvalue Ẽ represents the eigenvalue corresponding to the quantum number ñ. A
comparison to the scaling properties of n yields immediately

Ẽ

E
=

(n

ñ

)2

=⇒ Ẽ ∝ ñ−2 . (60)

This result is to be read on condition that ñ is large. It underpins our suspicion
concerning the asymptotical n-dependence of the eigenvalues as figure 2 shows. It
further gives an analytical justification for (21).

6. Summary

In this paper we have presented a semi-classical approximation of the spherically-
symmetric Schrödinger-Newton equations, which provides support for the numerical
results. We have found explicit solutions for the potential as for the wavefunction in
the limit of high quantum numbers n. We further derived an asymptotically valid
power law for the n-dependence of the eigenvalues.

Extensions of the present study containing generalizations to the non-stationary
case and to non-spherically-symmetric solutions would be desirable.
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