WP1: Interpretation of Informal Mathematical Input

Robust Sentence-Level Analysis
- Processing “ill-formed” input (syntactic errors, incompleteness, out-of-grammar) through combination of deep and shallow methods:
 - In diesem Fall: z.B. \(K(A) = \text{dem Begriff } K(A \cup B) \)
 - Extension from written-only to simultaneous written and spoken input, accompanied with simple pointing/selection on screen

Discourse Representation of Informal Mathematical Input
- Coreference of symbolic identifiers
- Anaphoric reference to parts of mathematical expressions
- Discourse structure as reflex of proof structure

Ontology-Based Domain-Specific Interpretation
- Informal and/or imprecise naming of domain concepts and relations:
 - A muss in B sein
 - B vollständig ausschließlich von A liegen muss
 - ... dann sind A und B vollkommen verschieden
- Semantically complex operators:
 - Wenn alle A in K(B) enthalten sind und dies auch umgekehrt gilt, ...

WP2: Proof Management and Proof Step Evaluation (PSE)

Abstract-level Proof Representation
- Required for PSE:
 - cognitive oriented proof representation

PSE: Novel Theorem Proving Application

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Task (first approach)</th>
<th>Requirements for theorem prover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soundness</td>
<td>(E \lor C \lor D \lor E)</td>
<td>Yes or ‘No’ answer; any theorem prover resp. calculus C</td>
</tr>
<tr>
<td>Granularity</td>
<td>proof-steps((E \lor C \lor D \lor E))</td>
<td>adequate abstract-level theorem prover resp. calculus C; measure ‘shortest’ proof; take tutorial constraints into account; proof planning or assertion level reasoning?</td>
</tr>
</tbody>
</table>
| Relevance | \(A \land B \)
\(A \Rightarrow C \)
\(C \Rightarrow D \)
\(F \Rightarrow B \) | recognize detours; compare with other shorter proofs; take tutorial constraints into account; forward case more challenging |

WP3: Domain Reasoning for Ambiguity Resolution

An example
Discourse:
(a) From the context follows \(D \) since \(C \) implies \(D \) by Lemma \(Y \).
(b) It holds \(D \) since \(C \) implies \(D \) by Lemma \(Y \).
(c) From this follows \(D \) since \(C \) implies \(D \) by Lemma \(Y \).
(d) We show \(\neg A \land B \)...

- Ambiguities may arise at linguistic and domain reasoning level.
- Ambiguities are resolved by a combination of linguistic processing and proof step evaluation.
- Remaining ambiguous readings are explicitly represented and ranked.
- The use of underspecification techniques (CHORUS) will be explored.

Further ambiguity examples

<table>
<thead>
<tr>
<th>Example</th>
<th>Where does ambiguity arise?</th>
<th>Ambiguity resolution means</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) (x \in B) und somit (x \subseteq K(B)) und (x \subseteq K(A))</td>
<td>linguistic meaning level; attachment, coordination</td>
<td>linguistic means; type checking in (2)</td>
</tr>
<tr>
<td>(2) (A) enthält (B)</td>
<td>linguistic meaning level; informal character of discourse</td>
<td>type checking for (3); mathematical domain reasoning for (4)</td>
</tr>
<tr>
<td>(3) (P(A, C) \lor (B, \neg C) = PC \lor (A \lor B))</td>
<td>underspecified proof step</td>
<td>mathematical domain reasoning</td>
</tr>
<tr>
<td>(4) (K(A, C) \lor (B, \neg C) = KC \lor (A \lor B))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(5) T1: Bitte zeigen Sie: (K(A \lor B) \cap (C \lor D))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S1: nach deMorgan-Regel-2 ist (K(A \lor B) \cap (C \lor D))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>