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1 Introduction

Our research interests in this project are in exploring how
automated reasoning systems can learn theorem proving
strategies. In particular, we are looking into how a proof
planning system (Bundy, 1988) can automatically learn
new proof methods. For more information on this work,
see (Jamnik et al., 2000, 2001).

One of the ways to extend the power of a proof plan-
ning system is to enlarge the set of available proof meth-
ods. This is particularly beneficial when a class of theo-
rems can be proved in a similar way, hence a new proof
method can encapsulate the general structure, i.e., the rea-
soning strategy of a proof for such theorems. A difficulty
in applying a proof strategy to many domains is that in
the current proof planning systems new methods have to
be implemented and added by the developer of a sys-
tem. In this work, our aim is to explore how a system
can learn new methods automatically given a number of
well chosen examples of related proofs of theorems. This
would be a significant improvement, since examples (e.qg.,
in the form of classroom example proofs) exist typically
in abundance, while the extraction of methods from these
examples can be considered as a major bottleneck of the
proof planning methodology.

In our work we devised an approach to automatic learn-
ing of proof methods within a proof planning framework.
This research bridges at least two well established Al ar-
eas: automated reasoning and machine learning. From
the automated reasoning point of view our work is inter-
esting, because it aims to improve the reasoning systems
by using machine learning techniques. From the machine
learning point of view, our work can be seen as an inter-
esting application of machine learning techniques in au-
tomated reasoning systems.

Figure 1 gives a structure of our approach to learning
proof methods. Given some examples of proofs that use
a similar reasoning strategy, we need to represent them
so that the examples are amenable to the learning pro-
cess. This is achieved by abstracting proof representa-
tions into sequences of method specifiers. We then use
our learning algorithm to learn the so-called method out-
lines. A method outline is a representation common to all
examples. However, this representation is not yet a full-
fleshed proof method. We need to enrich it so that the
newly learnt methods can be used in a proof planner for
proofs of other theorems. We use precondition analysis
to acquire the information for extending the method rep-
resentation. We implemented this framework within the
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Figure 1: An approach to learning proof methods.

proof planner of QMEGA (Benzmilller et al., 1997).

2 Example

Consider two examples of proof fragments from group
theory. They consist of simplifying an expression using
a number of primitive simplification methods such as ax-
ioms of identity, inverse and associativity (where e is the
identity element, 4 is the inverse function, and LHS =
RHS stands for rewriting LHS to RHS):

Xo(YoZ) = (XoY)oZ (A-l)
eoX = X (1d-1)
XoX! = e (Inv-r)
XioX = e (Inv-1)

Here are the two examples of proof steps which simplify
given expressions:

Example 1 Example 2

ao((a® o c)ob) a* o (aob)

U (A-D) U (A-D)
(ao(a® o c))ob (a* o a)ob

e I (inv-l)
((aoa’) oc)ob eobd

U (Inv-r) U (1d-I)

(eoc) ob b
4 (1d-)
cob

The first example can be summarised in the following
string of method identifiers: {A-l, A-l, Inv-r, Id-1}. The
second example can be summarised in the following string
of method identifiers: {A-l, Inv-1,1d-1}. It is clear that



the two examples have a similar structure which could be
captured in a new simplification method. In pseudo-code,
one application of such a simplification method could be
described as follows:

Precondition: there are subtermsin the initial term that
are inverses of each other, and that are not sepa-
rated by other subterms, but only by brackets.

Tactic: 1. apply associativity (A-l) for as many times

as necessary (including 0 times) to bring the
subterms which are inverses of each other to-
gether, and then

2. apply inverse inference rule (Inv-r) or (Inv-1)
to reduce the expression, and then

3. apply the identity inference rule (1d-1).

Postcondition: theinitial termisreduced, i.e, it consists
of fewer subterms.

3 Method Representation

The methods we aim to learn are complex and are beyond
the complexity that can typically be tackled in the field of
machine learning. Therefore, we first simplify the prob-
lem and aim to learn the so-called method outlines. Later,
we reconstruct the full information by extending outlines
to methods using precondition analysis.

Let us assume the following language L, where P is a
set of primitives (which are the known identifiers of meth-
ods used in a method that is being learnt):

foranype P, letpe L,
foranyly,lo € L, let[l1,l2] € L,
foranyly,l> € L, let [l1]l5] € L,
foranyl e L, letl* € L,

foranyl € Landn € N, let{" € L.

“[” and “]” are auxiliary symbols used to separate subex-
pressions, “|” denotes a disiunction, “,” denotes a sequence,
“x”” denotes a repetition of a subexpression any number of
times (including 0), and n a fixed number of times. Let
the set of primitives P be {A-l, Inv-1, Inv-r, 1d-1}. Using
this language, and given the appropriate pre- and postcon-
ditions, the tactic of our simplification method described

by the two examples above could be expressed as:
simplify = [A-1*, [Inv-r|Inv-I], Id-1].

We refer to expressions in language L which describe
compound methods as method outlines. simplify is a typ-
ical method outline that we aim our formalism to learn
automatically.

4 Learning Technique

Our learning technique considers some number of posi-
tive examples which are represented in terms of sequences
of method identifiers, and generalises them so that the
learnt pattern is in language L. The pattern is most spe-
cific according to the given examples, and is of smallest

size with respect to some defined measure of size.
The general idea for the learning technique is (for more
information see (Jamnik et al., 2001)):

e Split each example into all possible substrings.

e For each substring in each example find consecu-
tive repetitions of inference steps, i.e. patterns.

e Find patterns that match in all examples.

o Generalise matched patterns with Kleene star or con-
stant.

e Repeat the process on both sides of the matching
pattern.

e Choose the generalisation with the smallest size.

5 Proof Planning Method

Method outlines do not contain all the information which
is needed for the proof planner to use them. Hence, we
need to restore the missing information.

A typical method that a proof planner uses does not
account for repeated applications of methods (i.e., me-
thodicals), for disjunctive applications of methods, and
for termination condition for repeated applications. Hence,
we build our work on the extension of the method lan-
guage to provide for these constructs, as described by
Jamnik et al. (2000).

Method outlines which are expressed using the lan-
guage L defined in §3 do not specify what the precondi-
tions and postconditions of the methods are. They also
do not specify how the number of loop applications of
inference rules are instantiated when used to prove a the-
orem. Hence, the method outlines need to be enriched to
account for these factors. We use the ideas from precon-
dition analysis developed by Silver (1984) and later ex-
tended by Desimone (1987) in order to enrich our method
representation. Precondition analysis provides explana-
tions for proof steps. In order to be able to attach expla-
nations to the inference rules in the style of precondition
analysis, the method language needs to be extended. We
extend it with the required vocabulary.
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