The Leo-III Project

Max Wisniewski1 \quad Alexander Steen2 \quad Christoph Benzmüller3

1 FU-Berlin, Arnimallee 7, max.wisniewski@fu-berlin.de
2 FU-Berlin, Arnimallee 7, a.steen@fu-berlin.de
3 FU-Berlin, Arnimallee 7, c.benzmueller@fu-berlin.de

Abstract: We introduce the recently started Leo-III project — a Higher-Order Logic Theorem Prover and successor to LEO-II.

1 Summary

We report on the recently started Leo-III project, in which we design and implement a state-of-the-art Higher-Order Logic Theorem Prover, the successor of the well known LEO-II prover \cite{2}. Leo-III will be based on ordered paramodulation/superposition.

In constrast to LEO-II, we replace the internal term rep-resentation (the commonly used simply typed lambda calculus) by a more expressive system supporting type polymorphism. In the course of the project, we plan to further enhance the type system with type classes and type constructors similar to System Fω.

In order to achieve a substantial performance speed-up, the architecture of Leo-III will be based on massive parallelism (e.g. And/Or-Parallelism, Multisearch) \cite{3}. The current design is a multi-agent blackboard architecture \cite{10} that will allow to independently run agents with our proof calculus as well as agents for external (specialized) provers.

Leo-III will focus right from the start on compatibility to the widely used TPTP infrastructure \cite{8}. Moreover, it will offer built-in support for specialized external prover agents and provide external interfaces to interactive provers such as Isabelle/HOL \cite{5}. The implementation will exces-sively use term sharing \cite{6,7} and several indexing tech-niques \cite{4,9}. Leo-III will also offer special support for reasoning in various quantified non-classical logics by explo-iting a semantic embedding \cite{1} approach.

References

\begin{thebibliography}{10}
\bibitem{2} Christoph Benzmüller, Lawrence C. Paulson, and Frank Theiss. Leo-ii a cooperative automatic theorem prover for higher-order logic. In \textit{In Fourth International Joint Conference on Automated Reasoning (IJCAR08)}, volume 5195 of LNAI. Springer, 2008.
\end{thebibliography}