Adaptive Course Generation and Presentation

The QMEGA group:

Jorg Siekmann, Christoph Benzmiiller, Armin Fiedler,
Andreas Franke, George Goguadze, Helmut Horacek, Michael Kohlhase,
Paul Libbrecht, Andreas Meier, Erica Melis, Martin Pollet,
Volker Sorge, Carsten Ullrich, Jiirgen Zimmer
Universitat des Saarlandes/DFKI Saarbriicken

Germany

Abstract

Today’s interactive mathematics textbooks use a collection of predefined documents, typi-
cally organized as a network of HTML pages. This makes a reuse and a sound re-combination
of the encoded knowledge impossible and inhibits a radical adaption of course presentation
and content to the user’s needs. In order to avoid these drawbacks we have designed a web-
based framework for dynamically producing interactive documents for learning mathematics
called ID. The system design relies on the separation of knowledge representation from sys-
tem functionalities. Salient features of our system are the individual generation of interactive
documents based on general domain knowledge, user-specific preferences and the user’s knowl-
edge as well as the integration of external problem solving systems. The paper describes the
distributed web-based architecture of our system and the principles of its components.

1 Introduction

Today’s interactive mathematics textbooks [4, 5] use a collection of predefined documents including
a fixed set of examples and exercises. Neither can the content (e.g., examples and exercises) be
reused and tailored to the needs of a particular user nor can the presentation of these documents
be adapted flexibly enough.

In order to allow reuse and adaptation of the learning material we have designed a web-based
framework for dynamically producing interactive documents for learning mathematics [14]. The
system design is characterized by the separation of knowledge representation from system func-
tionalities. For the interactive mathematics document ID the knowledge comprises mathematical
facts and methods as well as knowledge about the expertise of a particular user and pedagogical
knowledge.

From these knowledge sources the system can compose individuated versions of interactive doc-
uments dynamically. The generation of an interactive textbook or course may include selectively
composed parts in varying presentation form that differ, for example, in language, in notational
preferences, in the multi-modal display, in the availability of expert services for solving subprob-
lems, or in their depth of explanation. The generation may also be adaptive according to the
context in which it is used, such as a classroom setting or stand-alone use.

Our system allows for exploratory problem solving rather than on mere content learning by
looking up solutions, multiple choice for solutions. That is, the user can solve problems or discover
proofs interactively within the system. The system supports the user by checking the correctness
of proof steps and of the overall solution as well as by heuristically guiding the problem solving
process. A more detailed discussion of exploratory problem solving supported by expert problem
solving systems is given in [11].

In this paper we concentrate on the description of the architecture of ID, the representation
format, and we present the session manager and the realizer that dynamically assemble interactive

mathematics documents (not only single pages, but also whole textbooks and courses) by using
information retrieved from a knowledge base, a user model, and a pedagogical module.

The paper is organized as follows: first we give an overview on the architecture of our system ID.
Then, we detail the knowledge representation format of the underlying mathematical knowledge
base. In section 3.1 we describe what kinds of information are used in the document creation. The
document creation and the functionalities of the session manager and the realizer are explained in
section 3.2. Finally, we give some examples to illustrate the benefits of our approach.

2 Content Representation

Current interactive mathematics textbooks and courses are at best based on a fix collection of
predefined HTML-pages [4] or BWTEX-units [5] which are augmented by navigation features. Only
few of them allow for a generation of documents from a particular subset of pages, but these few
exceptions still use ready-to-present pages.

As opposed to these interactive mathematics textbooks our approach requires a representation
of standard formalized mathematics in a (possibly distributed) knowledge base. Though this
standardization requires some extra work it provides an ontology for the content of the course which
is indispensable for a reuse of teaching or learning material and for a combination of material from
different courses. Moreover, the presentation can be far more flexible when based on a unified
representation in XML-format. In the following, we describe our content representation called
OMDoc.

OMDoc is an extension of the emerging OPENMATH standard [3] (see http: //www.openmath.
org), an XML-based general framework for encoding mathematical objects. OMDOC extends the
OPENMATH representation for mathematical objects by the representations of mathematical facts
such as theorems, definitions, proof methods, and proofs. It includes natural language formula-
tions as well as logical forms, the latter as OPENMATH objects. Figure 1 shows an OPENMATH
representation of the law of commutativity for add-operation in the real numbers (the logical for-
mula Va,b.a+b=b+a). The XML element OMBIND is used for the OPENMATH binding construct
(in this case used for universal quantification) and the OMS, OMV and OMA are the representations
for logical constants,! variables and (function) applications. As an example, Figure 2 shows a def-
inition of a monoid. The CMP (commented mathematical property) element is used for the natural
language representation of the definition (including OPENMATH representations for the objects
involved) and the FMP (formal mathematical property) contains an OPENMATH object (shown as
... in Figure 2) that encodes a logical formula similar to in Figure 1 that formalizes the content
of the CMP (we have not included it for space reasons). For details on OMDoOC, see [9].

3 The Open Architecture

The distributed setup of the system employs the MATHWEB? system [8, 7] for distributed au-
tomated theorem proving that connects a wide range of mathematical services by a common
mathematical software bus. The MATHWEB system provides the functionality to turn existing
theorem proving systems and mathematical tools into services that are homogeneously integrated
into a networked proof development environment. The environment thus gains the services from
these particular modules, but each module in turn gains from using the features of other plugged-
in components. Currentlyy, MATHWEB integrates several mathematical services, a proof planner
[12], several computer algebra systems, the LOQUZ graphical user interface for interactive theorem
provers [15], and MBASE [10], a knowledge base that stores and offers a universal repository of
formalized mathematics that consists of theorems, definitions, proof methods, and proofs. The for-
mal representation of MBASE allows a semantics-based retrieval of mathematical knowledge. For

LOPENMATH symbols, including the cd reference to the home theory of the mathematical concepts represented
by these symbols.
2The system is available from http://www.mathweb.org/mathweb

<0OMOBJ>
<OMBIND>
<0MS cd="quant1" name="forall"/>
<OMBVAR>
<0MV name="a"/>
<0MV name="b"/>
</0MBVAR>
<OMA><0OMS cd="logicl" name="imp1ies"/>
<OMA><OMS cd="logicl" name="and"/>
<0OMA><0MS cd="setl1l" name="in"/><0MV name="a"/><0OMS cd="barshe" name="real"/></0MA>
<0OMA><0MS cd="setl" name="in"/><0OMV name="b"/><OMS cd="barshe" name="real"/></0MA>
</0MA>
<0MA><0MS cd="relation" name="eq"/>
<0OMA><0MS cd="barshe" name="plus-real"/><0MV name="a"/><0OMV name="b"/></0MA>
<0OMA><0MS cd="barshe" name="plus-real"/><0MV name="b"/><OMV name="a'"/></0MA>
</0MA>
</0MA>
</0MBIND>
</0MOBJ>

Figure 1: An OPENMATH representation of Va,b.a + b =0+ a.

<definition id="ida.c6s1p4.d1"
item="monoid" theory="ida.monoid">
<CMP>
A structure
<OMOBJ><0OMA>
<0MS cd="cartesian-products" name="triple"/>
<0OMV name="M"/><OMV name="#"/><0MV name="e"/>
</0MA></0OMOBJ>,
in which
<OMOBJ><OMA>
<O0MS cd="cartesian-products" name="pair"/>
<0OMV name="M"/>
<0OMV name="x*"/>
</0MA></0OMOBJ>
is a semi-group with unit <OMOBJ><OMV name="e"/></0MOBJ>, is called a
<defemph>monoid</defemph>.
</CMP>
<FMP><0MOBJ> \dots </OMOBJ></FMP>
</definition>

Figure 2: A definition of a monoid in OMDOC representation

<= _ | OMEGA |\
hS

P call
— » tell
tell Maple
S call
e ™

pédagogiéﬂa*% Realizer (XU | SESSION | reex |web- | revst| o oo,
Module tell generate Manager | generate |Server| answer
update
tell

tell

(UserModelj

+ Stylesheets

|:| : Process Agents £71 : DataBase Agents ——= : Network Connections D : Data

Figure 3: Architecture of ID

realizing an interactive mathematics course, the MATHWEB environment additionally comprises
a user model, a pedagogical module, a session manager, and a realizer.

Figure 3 depicts the architecture of ID. It gives an overview of the services used in the context
of web-based user-adaptive interactive textbooks and courses and of the communications between
these services. The right hand of the figure shows a standard client-server web-architecture which
handles requests of the user via a browser, a web-server. All MATHWEB services can communicate
over the Internet by a standardized protocol based on XML [2] and KQML [6].

The session manager administers the current session. Session tracking and simple request such
as login or changing display preferences are handled by the session manager. More complex tasks
concerning document creation and alteration are passed to the realizer. The realizer dynamically
creates the preliminary OMDoOcC-documents to be presented to the user by the browser.

3.1 Communicated Information

The realization of several functionalities requires various kind of information from several knowl-
edge sources.

Content Information Content information comprises the mathematical information to be pre-
sented to the user (in ID: mathematical concepts, theorems, examples, exercises, proof methods,
and proofs). It can be received from several information sources, namely (1) from the database
MBASE containing the knowledge items and relations specifying their structure, and (2) from
service systems, such as the proof planner QMEGA or the computer algebra system Maple [13] who
can deliver a proof or the result of a computation.

User Information The user information consists of the relevant parts of the user model and
session specific information. It comprises the following knowledge about the user: her preferences,
learning capabilitie, and goals provided by the user upfront, her domain knowledge, and the
knowledge about the session history.

Some knowledge kept in the user model is rather stable or it is at least slowly changing, in
particular knowledge about the user’s general capabilities and preferences, e.g., the suitable level
of abstraction for a presentation, how much explanation is necessary as well as general preferences,
e.g., whether the user prefers natural language over formulas and which modalities to choose in
multi-modal presentation.

The session-specific information (e.g., what is the current/previous/next page) is needed for
the on-line generation of ID. From this information, conclusions for the navigation support can
be inferred (e.g., indicating the mathematical concepts accessible by the user with her current
domain knowledge).

First we shall implement the user model as a combination of an annotated session list and a
simple table-based overlay-model since the user modeling component is not our focus currently.
As the user modeling component will be realized as a MATHWEB database object with a clearly
defined interface, it is easily replaceable by a more sophisticated component.

Pedagogical Information The pedagogical information contains the pedagogical know-how
about which content to retrieve for a specific type of user. It covers the know-how of how to
present the content in a way adapted to the user’s capabilities. It also determines under which
conditions previously visited lessons should be (partially) repeated or remembered, when to ask
questions, and under which conditions which service systems should be available for the user. The
pedagogical information may also contain some knowledge on which presentation is to be chosen.
How the pedagogical information will be represented is not yet decided. General information such
as “For a novice, choose easy examples” will probably be represented by a set of rules.

3.2 Dynamic Document Generation

For the document creation, the realizer processes content information, user information, and ped-
agogical information.

In order to answer a request, the realizer requests content information sources from MBASE and
transforms the raw data provided by MBASE into a document in OMDoOC format representing the
sequential content. The realizer then computes XSL[18]- and CSS[1]-style-sheets. This content
creation is performed according to the intended presentation functionality and the user model.
Then the realizer sends the OMDocC-document and style-sheets to the session manager. The
session manager sends the start page via the web-server to the browser who displays the content
using the style-sheets. Simple requests, such as next or previous page, can be handled directly by
the session manager. More complex requests requiring new content generation, such as explaining
a concept in more depth or generation of more examples, are passed to the realizer. During
a session some interaction information, such as learned concepts or problem solving results, is
passed to the user model where it is used for updating.

When the session manager receives a request requiring content creation, the request is passed
to the realizer. A document in generated in five steps:

1. Dependent on the user and pedagogical information, mathematical content is retrieved from
information sources like MBASE. For example, all the MBASE items on which a requested
concept depends and that are not marked as known in the user model are collected.

2. The collection of content items is then processed according to the information in the user
model and the pedagogical module. For example, the suitable level of abstraction is chosen.
If more content (such as exercises, remarks, and examples) is needed, the first step can be
repeated. In this step interaction facilities are chosen too, e.g., the availability of a service
system for solving a task.

3. Then this structure is linearized. The user model and the pedagogical module influence the
linearization, as the amount to be presented on one page will vary according to the users pref-
erences and capabilities and different teaching strategies will require different linearizations.
After this step, the course is represented as a sequence of OMDoOC-documents.

4. style-sheets that determine the presentation features are generated according to the infor-
mation in the user model and the pedagogical module.

5. The OMDoc-documents and style-sheets are passed to the session manager. The session
manager then adds further components to the single OMDo0cC-pages, for example, navigation
buttons. This step mainly uses information about the session.

As the result of the document creation one or more documents in OMDoc-format are generated
as well as style-sheets. The documents can be presented to the user by the browser using the style-
sheets.

3.3 Adaptive Functionalities
Some possible dimensions of the adaptation performed by the realizer are

e the choice of the content to be presented (e.g., guided tours explained below, adaptive testing,
prepared kinds of a textbook),

e the availability of service systems (e.g., a calculator, a computer algebra system, or a proof
planner). For example, for routine tasks which are not in the focus of a session, a service
can be used.

e the selection of the service functionalities (e.g., which methods can be used by the user when
using a proof planner).

These dimensions are discussed again in section 3.4. The adaptations depend on the features of
the user and of the overall session, for instance on

e the goal of a session,

e the setting (e.g., standalone use or classroom setting where the teacher can set the session
goal),

e the user’s capabilities (e.g., how abstract a presentation must be in order to be understood
or how much explanation is necessary),

e the user’s understanding of concepts (e.g., well understood concepts do not need to be
(re)explained)

e the user’s preferences (e.g., language, natural language vs. formulas, modalities in multi-
modal presentation),

e the user’s need for motivation.

3.4 Examples

The following examples illustrate how adaptations will look like. The first example shows how
different document contents and presentations can be generated from the same mathematical con-
tent (see Figures 4 and 5). If the concept monoid is presented to an expert, then the presentation
contains only the desired concept as shown in the screenshot of Figure 4. If it is presented to a
student, then the document whose presentation is shown in Figure 5 contains additional exercises,
remarks, and examples.

The following two example sessions illustrate some impacts of the user model and of the
pedagogical information.

Jane Doe is a beginner mathematician, she wants to learn about integer modulo n. Her
background, as entered into the system is fairly small, mainly set and group theory aside of classic
calculus and polynomial algebra.

JE Monoids - Mozilla [O[]

Monoids

Lemma 1 (Monoid)

A seri-group has at most one L,
Formal: V8 Semigroup(S)=(Ace S.(Va e S ae=anca=a) > (Vye 5. (Vb e S by=
yib=b = y=6)))

Semi-groups with a unit element are special and therefore have been given a special name:
Definition

A structure in which (M,*) is a semi-group with unit e, is called a monoid.

Previous N;cxtl Home ﬂl

Figure 4: A presentation of Monoids

JE Monoids - Mozilla [_ O[]

Al | Edit view sewch o oohmarks Twks Moo Debus QA

JF/moms/sulLrich/ inport,/ 110/ enamplss/idacn, html

n -
Monoids
Lemma 1 (Maonoid)
A sermni—group has al most one Wik,

2 L. Remark 2. Remark . 1. Proof) 2. Proof @ 1. Ezercise . 2. Exercise

Exercise
‘What is the unit element of the semi—group @ with operation a*h = Sab.

Thatis correct

Semi-groups with a unit element are special and therefore have been given a special name:

Definition
A structure in which (A4,*) is & semi-group with unit e, s called a monoid.

51 Example @ 2. Ezample

Example (Small Monoids) :

‘We deal with all monolds having 2 elements. Let M= (M,*2,) be a monold with two elements
Suppose that & is the unigue element of A7 different from e. Then for 2 * a we have only two
possibilities. Either a* a= e or a* a= a. This determines the multiplication * completely and we find
two multiplication tables for M. They give rise to two distinct monoids, M1 and M2. Both monoids can
be realized on the set Z/27. Indeed, addition (with e = () leads to M1, while multiplication (with e = 1)
leads to M2,

Previous| Nest| Home| Help|

BuildID: 1989122312

e | Document Dae 1,87 secsh

Figure 5: An extended presentation of Monoids

Allan Blees is an engineer. He wants to investigate integers modulo n. His background contains
only classical calculus and algebra.

They both select the guided tour feature in the menu, asking for Z,,.

The session manager receives the request and associates it with the user information and
pedagogical information. It passes these to the realizer as a request to prepare a guided tour.
Then the realizer asks MBASE to provide several presentable definitions of integers-modulo-n.
One of them uses plain equivalence classes, the other uses quotients of a ring by an ideal. Both
possibilities are explored till the graph of dependencies for knowledge is rooted in the user’s
knowledge.

Pedagogical information, especially the fact the Jane Doe is a mathematician, make it clear
that the definition of Z,, would be more interesting for her when presented with ideals and rings.
The graph of dependencies shows that it is possible to present the concepts in a quick survey about
rings, ideals., and quotient rings. The goal notion, integers modulo n, is then presented to her as
an example to quotient ideals. This makes it possible for the realizer to include some theorems,
such as the Chinese remainder theorem, as well as other examples and exercises.

Similar to proofs of theorems, the solutions of exercises and examples can be presented in a
static way or, if available, in an interactive way that employs a proof-assistant, such as)MEGA.
Jane Doe wants to try out this exercise by herself. An action is triggered which launches the
user interface on the client side. The proof-assistant is then provided with the conjecture of the
exercise and the relevant methods that are supposedly known to the user.

She can now try out the proof planner. Her results and failures are reported to her user
modeling component

For Allan Blees, the situation is fairly different. The pedagogical module infers that, as an en-
gineer, he might prefer to solve some more concrete examples instead of learning abstract theories.
The realizer inserts more concrete examples. The measure of the concreteness implies that a pre-
sentation using Z,,’s definition as simple equivalence classes of numbers is best suited. His guided
tour contains several exercises from physics as well as an introduction to the complex-exponential
and roots of unity.

Here, the exercises and examples are presented as a static textual solution, an interaction with
a computer algebra system such as Maple [13] is possible in places though. The results are reported
to the user modeling component.

4 Related Work

The Dynamic Courseware Generator (DCG)[16] is similar to ID in that it generates individual
courses according to the user’s goals and knowledge. In DCG a planner searches for sub-graphs
connecting the goal concept with concepts known by the user. A linearized version of this plan
is offered to the user to follow. If a user fails to perform successfully on tests related to a certain
concept, new course-plans can be generated. The main difference to ID is the separation of the
domain concept structure from the learning material. That is, in DCG concepts have links to fix
HTML-pages that present the actual content to be learned, whereas in ID the content is generated
from MBASE. Moreover, DCG is a general authoring tool and therefore an integration with service
systems is not intended.

ELM-ART II[17] is a web-based tutoring system for learning programming in LISP. It provides
adaptive navigation support by annotating links in a traffic lights metaphor and the possibility of
selecting the next best step in the course. The course itself is fixed, therefore it is not possible to
construct courses according to the user’s goals as in ID.

The already mentioned interactive mathematics textbooks [4, 5] use a collection of predefined
WTEX documents or HTML pages and include a fixed set of examples and exercises. In [5] courses
are split in several pages (slices) that can be combined in order to construct textbooks. The
adaptivity consists in selecting those pages leading to a certain goal.

5 Conclusion

This paper describes the design principles of the system ID that dynamically generates interactive
documents according to the user’s content needs and presentation preferences, ID individually
generates interactive documents based on user-specific preferences and the user’s knowledge as
well as on general domain knowledge. It also provides a tight interaction with service systems.
The architecture, the representation of knowledge, and the approach of dynamic generation are
well-suited not only for an interactive mathematics textbook but more generally for knowledge-
intensive learning and tutor systems whose knowledge acquisition and representation is tedious
and should therefore be reused, for systems including (expert) services for exploratory learning,
and for systems flexibly generating individual versions of documents to be browsed.

Our system is still under development. MATHWEB and OMDOC are already implemented,
while the session manager and the realizer are currently specified and implemented. We are semi-
automatically re-coding the content of an existing interactive textbook in OMDocC format.

References

[1] B. Bos, H. Lie, C. Lilley, and I. Jacobs. Cascading Style Sheets, level 2 CSS2 Specification. W3C
Recommendation. Technical report, May 12, 1998.

[2] Extensible Markup Language (XML). W3C Recommendation TR-XML, World Wide Web Consor-
tium, December 1997. Available at http://wuw.w3.org/TR/PR-xml.html.

[3] Draft of the Open Math standard. The Open Math Society, http://www.nag.co.uk/projects/
OpenMath/omstd/, 1998.

[4] A. Cohen, H. Cuypers, and H. Sterk. Algebra Interactive! Springer-Verlag, 1999.
[5] B.I. Dahn and H. Wolters. Analysis Individuell. Springer, Berlin, Heidelberg, 2000.

[6] T.Finin and R. Fritzson. KQML — a language and protocol for knowledge and information exchange.
In Proceedings of the 13th Intl. Distributed Artificial Intelligence Workshop, pages 127-136, Seattle,
WA, USA, 1994.

[7] A. Franke, S. M. Hess, C. G. Jung, M. Kohlhase, and V. Sorge. Agent-oriented integration of
distributed mathematical services. Journal of Universal Computer Science, 5:156-187, 1999.

[8] A. Franke and M. Kohlhase. System description: MATHWEB, an agent-based communication layer
for distributed automated theorem proving. In H. Ganzinger, editor, 16th International Conference
on Automated Deduction (CADE-17), volume 397, pages 217-221. Springer, 1999.

[9] M. Kohlhase. OMDoc: Towards an OPENMATH representation of mathematical documents. Seki
Report SR-00-02, Fachbereich Informatik, Universitdt des Saarlandes, 2000. http://www.mathweb.
org/ilo/omdoc.

[10] M. Kohlhase and A. Franke. Mbase: Representing knowledge and context for the integration of
mathematical software systems. Journal of Symbolic Computation, special Issue on the integration of
computer algebra and deduction systems, 11:1-37, 2000.

[11] E. Melis and A. Fiedler. On the benefit of expert services in mathematics education systems. Sub-
mitted to the ITS-2000 Workshop on Modeling Human Teaching Tactics and Strategies, 2000.

[12] E. Melis and J.H. Siekmann. Knowledge-based proof planning. Artificial Intelligence, 115(1):65-105,
November 1999.

[13] Darren Redfern. The Maple Handbook: Maple V Release 5. Springer Verlag, Berlin, Germany, 1998.
[14] J. Siekmann. Interaktives Lehrbuch. Project Proposal, July 1999.

[15] J. Siekmann, S.M. Hess, C. Benzmiiller, L. Cheikhrouhou, A. Fiedler, H. Horacek, M. Kohlhase,
K. Konrad, A. Meier, E. Melis, M. Pollet, and V. Sorge. LOUZ: Lovely QMEGA User Znterface.
Formal Aspects of Computing, 11:326-342, 1999.

[16] J. Vassileva. Dynamic course generation on the www. In B. d. Boulay and R. Mizoguchi, editors,
Proceedings of AI-ED’97, 8th World Conference on Artificial Intelligence in Education, pages 498—
505, Amsterdam, August 1997.

[17] G. Weber and M. Specht. User modeling and adaptive navigation support in WWW-based tutoring
systems. In Anthony Jameson, Cécile Paris, and Carlo Tasso, editors, Proceedings of the 6th Interna-
tional Conference on User Modeling (UM-97), volume 383 of CISM, pages 289-300, Wien, June 02-05
1997. Springer.

[18] Extensible stylesheet language (xsl) specification. W3c working draft, W3C, 1999. Available at
http://www.w3.org/TR/WD-xsl.

10

