
Automated Consistency Checking of Expressive
Ontologies — Beware of the Wrong

Interpretation of Success!

Christoph Benzmüller? and Marco Ziener

Dahlem Center for Intelligent Systems, Freie Universität Berlin, Germany
c.benzmueller@fu-berlin.de, m.ziener@fu-berlin.de

Abstract. There have been attempts to (partially) translate expressive
ontologies such as SUMO or Cyc to first-order logic and to use first-
order automated theorem provers for detecting errors and inconsisten-
cies. Claims have been made that these translation results are now ready
for use within practical applications.
This paper adopts a critical attitude: The fact that a translation of an
expressive ontology into a target logic (be it first-order or higher-order or
modal, etc.) exists for which satisfiability can be shown does not imply
that the approach is ready for application. What might still be missing
is a guarantee of the faithfulness of the translation.
The issue is illustrated in connection with a (knowingly) unfaithful trans-
lation of SUMO into classical higher-order logic. The focus is on a small,
provably satisfiable subset of this translated SUMO ontology. By adding
some intuitively compatible and sound ABox axioms the unfaithfulness
of the translation can easily be revealed with automated theorem provers.
Without the ABox content, however, the problem remains undetected.
We thus argue for the extensive integration of ABox information into
automated consistency checking for expressive ontologies, in particular,
when logic translations are involved and when faithfulness has not or
cannot be formally ensured.

1 Introduction

Expressive formal ontologies such as SUMO [14, 16] or Cyc [11] have been devel-
oped to support a wide range of practical applications. Since these might also
include safety critical applications detecting errors and inconsistencies in the
used ontologies is of utmost importance. For this purpose the use of automated
theorem provers and model finders has been proposed.

Respective research efforts have led to multiple ontology revisions and they
resulted in revised (partial) first-order views on them. Examples include Adimen-
SUMO [1], TPTP-SUMO [15, 17], and first-orderized Cyc [18].

However, such first-orderized ontologies typically adopt very pragmatic at-
titudes towards some challenge aspects in the source ontologies. These include

? Supported by the German Research Foundation DFG (grant BE2501/9-1).

contextual statements in the tradition of McCarthy’s work [12, 13], in which
formulas, say F, are wrapped into context descriptions, e.g. (in-context C F).
These contexts can be of various kinds, including epistemic (e.g. an agent A knows
or believes F: (knows A F)), doxastic (e.g. (believes A F)), or temporal (e.g.
F holds during time T: (holdsDuring T F)).

Pragmatic solutions for handling these aspects are as follows: Adimen-SUMO
simply excludes all affected axioms, that is, Adimen-SUMO is highly partial and
it will hence answer queries incorrectly for which such contextualized axioms do
play a role. TPTP-SUMO and first-orderized Cyc apply ad hoc translations to
affected axioms (cf. [15, 18]). The faithfulness of these translations, however, has
not been formally demonstrated. In fact, related problems in the TPTP-SUMO
ontology have already been pointed out in the past [4].

Faithfulness of a translation α from source logic S to target logic T refers to
the following property (Γ is a set of S-formulas, Φ an S-formula, |=S and |=T

are the semantical entailment relations of S and T):

Γ |=S Φ iff α(Γ) |=T α(Φ)

Ideally the faithfulness of a logic translation should be proven first and then
formally verified resp. formally ensured for the implementation. There is impor-
tant and promising work in this direction, including the OntoIOp1 initiative,
LoLa [10] and the LATIN2 project.

However, a formal assurance of the faithfulness (of the implementation) of a
logic translation is often non-trivial to achieve in practice, and Adimen-SUMO
or TPTP-SUMO are examples where this applies.

Another example is studied in this paper, where classical higher-order logic
(HOL) [2, 8] is employed as target logic for expressive ontologies. In [4] two dif-
ferent mappings of SUMO into HOL (respectively, into the THF0 syntax [22] for
HOL) have bee given. The first mapping, called THF0-SUMO-I in the remain-
der, translates contextualized formulas such as (knows A F) into HOL terms
(knowsi→o→oAiFo) were type i denotes the set of all individuals and type o
stands for Booleans. Similar to the solution in TPTP-SUMO this mapping im-
plicitly assumes extensional semantics for the contextualized, embedded formu-
las, and this is where faithfulness breaks. The second mapping in [4] appropri-
ately identifies epistemic, doxastic and temporal context modifiers such as knows,
believes and holdsDuring with respective modal logic connectives. That is, the
second mapping is actually a mapping into quantified modal logic, which in turn
is modeled in [4] as a fragment of HOL (for more details on the embedding of
quantified modal logic in HOL we refer to [3]). The intention of second mapping
thus has been to guarantee faithfulness. However, no formal formal proof has
been given yet and a respective verification of the implementation appears very
difficult to achieve.

1 http://ontoiop.org
2 http://trac.omdoc.org/LATIN/

The contributions of this paper are as follows:
First, we report on recent experiments with the THF0-SUMO-I translation.

Extending the work in [4], this translation has meanwhile been applied to the
entire SUMO ontology, including the mid-level ontology MILO and including all
SUMO domain ontologies. Several errors in SUMO have been detected this way
which remained undetected so far. However, the unfaithfulness of the THF0-
SUMO-I translation could unfortunately not be revealed in these experiments.

As a second contribution this paper therefore investigates the following ques-
tion: Given an expressive ontology such as SUMO and given some translation
into a target formalism for which automated theorem provers and model finders
are available (be it first-order logic, higher-order logic or modal logic), how much
confidence should we have in it — in particular, with respect to a proper treat-
ment of contextual statements — when the available reasoners for this target
logic report satisfiability or, at least, when they cannot find any further inconsis-
tencies in elaborate and comprehensive experiments? We use a simple example
to illustrate that actually very little can be said based on such experiments. In
fact, it might be misleading and even dangerous if test results are interpreted
wrongly.

As a possible solution we propose the extensive integration of ABox informa-
tion into automated consistency checking for expressive ontologies, in particular,
when logic translations are involved and when faithfulness has not or cannot be
formally ensured.

The remainder of the paper is structured as follows: In Section 2 we out-
line THF0-SUMO-I, our (knowingly incorrect) translation of SUMO into HOL.
Section 3 presents some of the errors in SUMO that we have detected in our
experiments with THF0-SUMO-I. These experiments were facilitated by our
framework for elaborate consistency checking of expressive ontologies with HOL
provers and model finders. This framework is outlined in Section 4. The main
contribution of this paper is then presented in Section 5, where the focus is on
a small, provably satisfiable subset of the THF0-SUMO-I ontology. By adding
some intuitively compatible and sound ABox axioms, the unfaithfulness of the
THF0-SUMO-I translation can now be revealed by HOL reasoners. Without such
additional ABox axioms, however, the problem remains undetected. The paper
is concluded in Section 6.

2 A naive translation of SUMO to THF0

The first mapping in [4], called THF0-SUMO-I in this paper, was deliberately
chosen to simply map embedded formulas in SUMO axioms to HOL terms of
type o (Booleans in THF0) and modal modifiers operating on these embedded
formulas to functions on Booleans. For example, with this mapping the SUMO
axioms

(=> (knows ?AGENT ?FORMULA) (believes ?AGENT ?FORMULA)) (1)

(=> (knows ?AGENT ?FORMULA) (truth ?FORMULA True)) (2)

are translated into the following THF0 representation:

% Type declarations

thf(truth,type,(truth: ($o>$o>$o))).

thf(believes,type,(believes: ($i>$o>$o))).

thf(knows,type,(knows: ($i>$o>$o))).

% Axioms

thf(ax1126,axiom,((! [FORMULA: $o,AGENT: $i]: (3)

((knows @ AGENT @ FORMULA) => (believes @ AGENT @ FORMULA))))).

thf(ax3303,axiom,((! [FORMULA: $o,AGENT: $i]: (4)

((knows @ AGENT @ FORMULA) => (truth @ FORMULA @ $true))))).

The THF0 formulas (3) and (4) correspond to the SUMO axioms (1) and
(2), respectively. $o represents the type of Booleans, $i the type of individuals,
! stands for universal quantification; the quantified variables together with their
types are given in [.]-brackets. => is implication and @ is the explicit applica-
tion operator as required in THF0 syntax. The types of the predicates truth,
believes, and knows are provided in the type declaration section; believes and
knows take an individual and a formula (i.e., a Boolean value $true or $false;
remember that HOL is extensional) as argument and return a Boolean value,
truth acts like a binary connective. More information on THF0 is provided in
[22] and the THF0-SUMO-I translation is discussed in more detail in [4].

Extending the achievements in [4], we have applied the THF0-SUMO-I trans-
lation to produce a translation of the entire SUMO ontology, including the mid-
level ontology MILO and all domains ontologies; this THF0-SUMO-I ontology
can be download from:

http://www.christoph-benzmueller.de/papers/SUMOMILODOMAINS.thf

For the understanding of this paper the very details of THF0-SUMO-I are not
necessarily required. Just remember that modal operators are wrongly mapped
to extensional functions on type o (Booleans). Moreover, the instantiation (copy-
ing) of axioms for different types was required. The reason is that SUMO con-
tains some axioms which cannot be assigned simple types otherwise. Consider,
for example, the SUMO axiom (instance instance BinaryPredicate), which
is translated into thf(ax,axiom,((instance IIiioIioI @ instance IiioI @

lBinaryPredicate i))). Here we have now two differently typed copies of
instance. Further axioms may now have to be formulated for both of these
copies, etc.

3 Detecting errors in SUMO

By employing THF0-SUMO-I numerous errors in the SUMO ontology have been
detected which remained undetected so far, also by the experiments conducted

with Adimen-SUMO or TPTP-SUMO. Most often these errors were related to
unused resp. undeclared variable names; cf. ?HORSE and ?MOTION in the following
axiom from SUMO domain ontology Sports.kif :

(=>

(instance ?HORSEBACK Equitation)

(exists (?HORSE)

(and

(instance ?MOTION HorseRiding)

(subProcess ?MOTION ?HORSEBACK))))

Typically, axioms were concerned which contain embedded formulas, such as the
following one in which the last occurrence of ?RES1 is not bound. Those axioms
are either not translated by the existing alternative approaches (this is the case
for Adimen-SUMO) or the embedded formulas are translated simply as strings
(as selectively done in TPTP-SUMO). In both cases typos and semantical errors
in the embedded formulas can therefore not be detected by these approaches.

(=>

(and

(instance ?AGENT Agent)

(potentialCustomer ?CUST ?AGENT)

(modalAttribute

(and

(instance ?R Reserving)

(destination ?R ?AGENT)) Necessity)

(conditionalProbability

(exists (?RES1)

(and

(instance ?RES1 Reservation)

(reservingEntity ?CUST ?RES1)

(fulfillingEntity ?AGENT ?RES1)))

(customer ?CUST ?AGENT) ?NUM1)

(conditionalProbability

(not

(exists (?RES2)

(and

(instance ?RES1 Reservation)

(reservingEntity ?CUST ?RES2)

(fulfillingEntity ?AGENT ?RES2))))

(customer ?CUST ?AGENT) ?NUM2))

(lessThan ?NUM2 ?NUM1))xf

Hence, for the automated detection of such errors in expressive ontologies
with automated (higher-order or first-order) theorem provers a correct and in-
tuitively appropriate treatment of all concepts in the mapping of the ontology
is not necessarily required. Even very flawed mappings could still be useful to
some extent.

“The procedure we have used for finding inconsistencies in the ontology can
be sketched as follows:

1. An automated procedure translates a large part of SUMO (and discharges
the remaining axioms).

2. Then, the whole resulting formula is given (as input) to a theorem prover
for automatically finding an inconsistency (that is, without providing a
goal).

3. When a refutation is found, the theorem prover provides a description of
the proof, from which we select the collection of axioms involved in that
refutation.

4. With the help of theorem provers (for example, for finding minimal in-
consistent subcollections of axioms), we identify the source of the incon-
sistency and repair it.

5. Once we repair the problem, the process is repeated from the beginning.”

Fig. 1. Automated error and inconsistency checking for expressive ontologies as has
been applied for Adimen-SUMO; the text is copied from [1].

4 A framework for error and inconsistency detection

To enable experiments with THF0-SUMO-I (and with further mappings to HOL)
we have developed and deployed a framework for the mechanized inconsistency
detection in expressive ontologies with HOL theorem provers and model finders.

For this we have followed the same overall procedure as has e.g. been applied
for Adimen-SUMO. This procedure, replicated from [1], is described in Fig. 1.

A main challenge in our work has been to appropriately cluster the THF0-
SUMO-I ontology into smaller subsets which can still be processed by the avail-
able THF0 theorem provers and model finders.

A naive approach would be to generate all subsets of the powerset of axioms
in THF0-SUMO-I and to apply the THF0 reasoners to them; thereby one could
start with the unit sets and work towards larger and larger supersets.

Due to the size of the THF0-SUMO-I ontology such an exhaustive approach
is practically infeasible. Therefore we have decided to cluster the THF0-SUMO-I
ontology first into smaller subontologies. As in related work on ontology cluster-
ing [19, 23, 24] the idea is to identify subsets of axioms which are semantically
independent to a large degree. Recent progress in ontology clustering, where
partial consistency proofs may even be combined into global consistency proofs,
is presented in [9].

Our work has focused on the exploitation of type information for ontology
clustering. Remember that axioms are copied for differently typed instances of
the same SUMO symbols in THF0-SUMO-I. Hence, we conjectured that this
type information might serve as an effective differentiation criterion.

The idea is formalized by viewing the ontology as a structure O(T,A,R)
where

– T is the set of all types used in the ontology (as mentioned before, the
THF0-SUMO-I translation actually generates many different types and it
often introduces axiom duplicates for different types);

– A is the set of all axioms used in the ontology;
– R is the set of user defined relations on a combination of the two previous

sets or restricted to one of them.

Given a relation r ∈ R, our framework computes the induced graph. For incon-
sistency detection we consider all possible subgraphs of this graph. In order to
generate a valid THF0 input file an iteration over all the axioms and types of the
subgraph is needed together with some removal of duplicates. By default rela-
tion r is chosen such that r(a, a′) holds (for a, a′ ∈ A) if and only if there exists
t ∈ T which is used in both a and a′. Respective properties of types and axioms,
on which relations r can be defined, are meta data and they are extracted first.
This meta data forms an implicit adjacency list which is stored in a database.

The framework is implemented in the Python programming language. It sup-
ports the extraction of meta data from a THF0 ontology and it integrates the
HOL automated theorem provers Nitpick [6], LEO-II [5] and Satallax [7]. It is
capable of correctly interpreting their results by using the SZS ontology [21].
Moreover, it provides optimizations like caching and generator expressions for
increasing speed and for limiting memory consumption on subset generation.
Furthermore, the framework stores the ontology and the extracted meta data in
a database for persistence.

The framework supports three different execution modes: (A) It can be de-
ployed locally allowing the user to check and develop algorithms on his local
machine, which he can then deploy to the cluster. (B) It is also possible to use
the framework on the TORQUE [20] cluster or (C) on a custom setup by using
Celery3. When running locally or when using Celery each subgraph is translated
into a single job to be executed. Satisfiable subgraphs as well as generated finite
models are dismissed in order to save storage space.

On TORQUE the framework uses templates for job generation as well as a
packaging mechanism to reduce the overhead caused by distributing the com-
putation onto different machines. Additionally, the framework employs a two
step approach when running on TORQUE. If a job consisting of many THF0
problems runs into a timeout, then this timeout will be detected and the unde-
termined subsets will be written into the database for further examination. If
the job is successful the results will be parsed and negative results (pointing to
errors and inconsistencies) will be stored in the database. The database is polled
on a regular basis for jobs with timeouts and the framework spawns a single
instance of this job with a different prover in order to derive a result.

The error detection framework has been extensively applied over several
weeks to the THF0-SUMO-I ontology. A large number of proof problems (to
be precise, 3.047.128 at the time of writing) has been generated and passed to
the above THF0 reasoners. Thereby, the errors as mentioned in Section 3 have
been detected.
3 http://www.celeryproject.org/

Nevertheless, the outcome of the experiments was disappointing to us: Our
expectation was that the (known) unfaithfulness of the THF0-SUMO-I transla-
tion could eventually be experimentally revealed. Since this was not the case we
did conduct some further experiments in order to find out why this was not the
case. These additional experiments are summarized and discussed in the next
section.

5 Unfaithfulness may be hard to detect

Can the unfaithfulness of a translation of an expressive ontology into a target
logic be automatically detected with automated reasoners for this target logic
in experiments? Or, alternatively, what does it mean if extensive experiments in
this sense stabilize without revealing any further errors or inconsistencies? Can
we then trust the translation? What does it imply if we can even formally prove
the consistency of the translation result?

Statements as we find them, for example, on the Adimen-SUMO website
(cf. http://adimen.si.ehu.es/web/AdimenSUMO) indicate that stabilizing exper-
iments (or satisfiability results) in this sense are in fact applied as a criterion for
the trustfulness of a translation:

As a result of this process [meant is the process as described in Fig. 1], we
obtain a validated and consistent first-order version of the ontology to be used by
first-order theorem provers.

As outlined in Sections 3 and 4 , we have applied a related process to THF0-
SUMO-I. Hence, had we not already been aware of the unfaithfulness of the
translation, the temptation would have been huge to make a similar statement
for the THF0-SUMO-I ontology.

Sure, THF0 theorem provers and model finders are still comparably weak,
and one might argue that this is the reason for not detecting the unfaithfulness of
the translation (note that showing the satisfiability of the entire THF0-SUMO-
I ontology is currently still way beyond the computational capabilities of the
higher-order model finders Nitpick, Satallax and LEO-II). However, as we will
illustrate next, this is not the crucial point. Even if satisfiability of the entire
THF0-SUMO-I ontology could be formally shown, this would still not imply that
THF0-SUMO-I can now be safely employed in applications.

For demonstrating this we consider a SUMO toy ontology consisting of ex-
actly the two SUMO axioms (1) and (2) from page 3; this ontology is called
E1 in the remainder. The THF0-translation of E1 consists of the axioms (3)
and (4) as given on page 4 (together with the necessary type declarations). This
subontology of THF0-SUMO-I is called E1*.

When being applied to E1* the THF0 reasoners LEO-II, Satallax and Nitpick
report satisfiability (LEO-II and Satallax do this within a few milliseconds on
standard PCs, and Nitpick needs about 4 seconds).

Next, we add some ABox information to our toy ontology. Thus, we extend
E1 and E1* into E2 and E2*, respectively. The added facts express that it is
not the truth that Bruce is the father of Ben and of Bill (aboxAx1), that Peter

% Type Declarations

thf(bill,type,(bill: $i)). thf(ben,type,(ben: $i)).

thf(bruce,type,(bruce: $i)). thf(peter,type,(peter: $i)).

thf(father,type,(father: $i > $i > $o)).

thf(truth,type,(truth: $o > $o > $o)).

thf(believes,type,(believes: $i > $o > $o)).

thf(knows,type,(knows: $i > $o > $o)).

% Axioms

thf(ax1126,axiom,(

! [FORMULA: $o,AGENT: $i] :

((knows @ AGENT @ FORMULA) => (believes @ AGENT @ FORMULA)))).

thf(ax3303,axiom,(

! [FORMULA: $o,AGENT: $i] :

((knows @ AGENT @ FORMULA) => (truth @ FORMULA @ $true)))).

thf(aboxAx0,axiom,

((ben != bill) & (bruce != ben) & (bruce != bill)

& (peter != ben) & (peter != bill) & (peter != bruce))).

thf(aboxAx1,axiom,(

~ (truth

@ ((father @ bruce @ ben) & (father @ bruce @ bill))

@ $true))).

thf(aboxAx2,axiom,

(knows @ peter @ (father @ bruce @ ben))).

thf(aboxAx3,axiom,

(believes @ peter @ (father @ bruce @ bill))).

Fig. 2. The satisfiable toy ontology E2*. Adding ~(believes peter ~(father bruce

bill)) results in an unsatisfiable set of THF0 axioms. This is clearly counter-intuitive.

knows that Bruce is the father of Ben (aboxAx2), and that Peter believes that
Bruce is the father of Bill (aboxAx0); in SUMO notation these axioms read as:

~(truth ((father bruce ben) & (father bruce bill)) True)

(aboxAx1)

(knows peter (father bruce ben)) (aboxAx2)

(believes peter (father bruce bill)) (aboxAx3)

Axiom (aboxAx0) additionally states that the constant symbols peter, bruce,
ben and bill denote mutually different individuals. The detailed content of E2*
is presented in Fig. 2.

Toy ontology E2* is still satisfiable, which is quickly confirmed by LEO-II,
Satallax and Nitpick. This is also what we intuitively expect: Peter’s believes
may well differ from the true facts about the world.

Next, we slightly reformulate the content of axiom (aboxAx3) and state that
Peter does not believe that Bruce isn’t the father of Bill:

~(believes peter ~(father bruce bill)) (aboxAx4)

The translation of this SUMO axiom to THF0 is (aboxAx4*):

thf(aboxAx4,axiom,

(~ (believes @ peter @ (~ (father @ bruce @ bill))))).

According to our intuition and according to the intended semantics of SUMO,
axiom (aboxAx4*) should be consistent with E2*. However, this is not the case:
now LEO-II, Satallax and Nitpick do report unsatisfiability. They also report
unsatisfiability when (aboxAx3) is being removed from the example. Moreover,
LEO-II and Satallax show that the query

believes peter ~(father bruce bill)) (query)

is implied by E2*.
The latter results do obviously contradict our intuition on knowledge and

belief, and they do also contradict the semantics of these modalities as intended
in SUMO. The problem clearly is the unfaithfulness (more precisely, the wrongly
assumed fully extensional semantics) of the THF0-SUMO-I translation. However,
as our example nicely illustrates: it cannot be expected that the unfaithfulness of
such a logic translation can be revealed without adding further ABox information
and/or queries.

6 Conclusion

The unfaithfulness of a translation of an expressive ontology into a target logic
might not be detectable by automated reasoners for this target logic in exper-
iments. In our example case that was caused by an extensional treatment of
intensional notions, and this mismatch could not be revealed by solely studying
the translated ontology. However, it has been illustrated that the addition of
further ABox information and of user queries may eventually help.

Instead of conducting theorem prover supported (in-)consistency checking on
the translations of the terminological content of expressive ontologies only, we
instead argue for the additional exploitation of annotated test corpora within
experiments. These test corpora should ideally contain substantial, well selected
ABox information and related user queries. As we have documented, the latter
approach can eventually reveal inconsistencies and unfaithful translations which
will remain undetected otherwise.

Allowedly, the faithfulness of a translation should ideally be formally proved
before the translation is implemented and deployed, and in this respect the

work as pursuit in the OntoIOp, LoLa and LATIN projects is promising and
important. However, such an approach may not be always easily feasible. In
fact, neither for Adimen-SUMO nor for TPTP-SUMO such proofs have been
provided. Moreover, even if a respective pen and paper proof is given, typically
little can be implied from it for the faithfulness of the actual implementation.

Future work includes studying the following question: How can the systematic
creation of respective ABox- and user query-enriched test corpora for expressive
ontologies be achieved in practice? Can such a process eventually be (partially)
automated?

Acknowledgments: We thank Jasmin Blanchette, Chad Brown, Adam Pease and
Geoff Sutcliffe for the provers and the tools which we have employed in our work.
Moreover, we thank the anonymous reviewers of this paper for their valuable
feedback.

References

1. Javier Álvez, Paqui Lucio, and German Rigau. Adimen-sumo: Reengineering an
ontology for first-order reasoning. Int. J. Semantic Web Inf. Syst., 8(4):80–116,
2012.

2. Peter Andrews. Churchś type theory. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Spring 2009 edition, 2009.

3. Christoph Benzmüller and Lawrence Paulson. Quantified multimodal logics in
simple type theory. Logica Universalis (Special Issue on Multimodal Logics), 7(1):7–
20, 2013.

4. Christoph Benzmüller and Adam Pease. Higher-order aspects and context in
SUMO. Journal of Web Semantics (Special Issue on Reasoning with context in
the Semantic Web), 12-13:104–117, 2012.

5. Christoph Benzmüller, Frank Theiss, Lawrence Paulson, and Arnaud Fietzke.
LEO-II - a cooperative automatic theorem prover for higher-order logic (system
description). In Automated Reasoning, 4th International Joint Conference, IJCAR
2008, Sydney, Australia, August 12-15, 2008, Proceedings, volume 5195 of LNCS,
pages 162–170. Springer, 2008.

6. Jasmin Christian Blanchette and Tobias Nipkow. Nitpick: A counterexample gen-
erator for higher-order logic based on a relational model finder. In Theorem Prov-
ing, First International Conference, ITP 2010, Edinburgh, UK, July 11-14, 2010.
Proceedings, volume 6172 of Lecture Notes in Computer Science, pages 131–146.
Springer, 2010.

7. Chad E. Brown. Satallax: An automatic higher-order prover. In Automated Rea-
soning - 6th International Joint Conference, IJCAR 2012, Manchester, UK, June
26-29, 2012. Proceedings, volume 7364 of Lecture Notes in Computer Science, pages
111–117. Springer, 2012.

8. Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5:56–68, 1940.

9. Oliver Kutz and Till Mossakowski. A modular consistency proof for dolce. In
Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence, AAAI
2011, San Francisco, California, USA, August 7-11, 2011. AAAI Press, 2011.

10. Christoph Lange, Till Mossakowski, and Oliver Kutz. Lola: A modular ontology of
logics, languages, and translations. In Proceedings of the 6th International Work-
shop on Modular Ontologies, Graz, Austria, July 24, 2012, volume 875 of CEUR
Workshop Proceedings, 2012.

11. Cynthia Matuszek, John Cabral, Michael Witbrock, and John Deoliveira. An
Introduction to the Syntax and Content of Cyc. In Proceedings of the 2006 AAAI
Spring Symposium on Formalizing and Compiling Background Knowledge and Its
Applications to Knowledge Representation and Question Answering, pages 44–49,
2006.

12. John McCarthy. Generality in artificial intelligence. Communications of the ACM,
30(12):1030–1035, 1987.

13. John McCarthy. Notes on formalizing context. In Proceedings of IJCAI’93, pages
555–562, 1993.

14. Ian Niles and Adam Pease. Towards A Standard Upper Ontology. In C. Welty
and B. Smith, editors, Proceedings of the 2nd International Conference on Formal
Ontology in Information Systems, pages 2–9, 2001.

15. A. Pease and G. Sutcliffe. First Order Reasoning on a Large Ontology. In Proceed-
ings of the CADE-21 Workshop on Empirically Successful Automated Reasoning in
Large Theories, number 257 in CEUR Workshop Proceedings, pages 59–69, 2007.

16. Adam Pease. Ontology — A Practical Guide. Articulate Software Press, 2011.
17. Adam Pease, Geoff Sutcliffe, Nick Siegel, and Steven Trac. Large theory reasoning

with SUMO at CASC. AI Communications, 23(2-3):137–144, 2010.
18. Deepak Ramachandran, Pace Reagan, and Keith Goolsbey. First-orderized Re-

searchCyc: Expressivity and efficiency in a common-sense ontology. In Papers from
the AAAI Workshop on Contexts and Ontologies: Theory, Practice and Applica-
tions, Pittsburgh, Pennsylvania, USA, 2005. Technical Report WS-05-01 published
by The AAAI Press, Menlo Park, California, July 2005.

19. Domenico Rosaci. An ontology-based two-level clustering for supporting e-
commerce agents’ activities. In Proceedings of the 6th international conference on
E-Commerce and Web Technologies, EC-Web’05, pages 31–40, Berlin, Heidelberg,
2005. Springer-Verlag.

20. Garrick Staples. TORQUE - TORQUE resource manager. In Proceedings of the
ACM/IEEE SC2006 Conference on High Performance Networking and Computing,
November 11-17, 2006, Tampa, FL, USA, page 8. ACM Press, 2006.

21. Geoff Sutcliffe. The SZS Ontologies for Automated Reasoning Software. In Pro-
ceedings of the LPAR Workshops: Knowledge Exchange: Automated Provers and
Proof Assistants, and The 7th International Workshop on the Implementation of
Logics, number 418 in CEUR Workshop Proceedings, pages 38–49, 2008.

22. Geoff Sutcliffe and Christoph Benzmüller. Automated reasoning in higher-order
logic using the TPTP THF infrastructure. Journal of Formalized Reasoning,
3(1):1–27, 2010.

23. Donato Malerba Valentina A.M. Tamma, Pepijn R.S. Visser and Dean M. Jones.
Computer assisted ontology clustering for knowledge sharing. In Proceedings of
ECML2000/ML net Workshop on Machine Learning in the New Information Age,
page 7583, 2000.

24. Pepijn Visser and Valentina Tamma. An experience with ontology clustering for
information integration. In Proceedings of the IJCAI-99 Workshop on Intelligent
Information Integration, volume 23 of CEUR Workshop Proceedings, 1999.

