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1 Introduction
Modal logics extend classical logic with the modalities ”it is necessarily true that” and ”it is possibly
true that” represented by the unary operators 2 and 3, respectively. First-order modal logics (FMLs)
extend propositional modal logics by domains specifying sets of objects that are associated with each
world, and the standard universal and existential quantifiers [7].

FMLs have many applications, e.g., in planning, natural language processing, program verification,
querying knowledge bases, and modeling communication. These applications motivate the use of au-
tomated theorem proving (ATP) systems for FMLs. Whereas there are some ATP systems available for
propositional modal logics, e.g., MSPASS [9] and modleanTAP [1], there were — until recently — no
(correct) ATP systems that can deal with the full first-order fragment of modal logics.

This abstract presents several new ATP systems for FML and sketches their calculi and working
principles. The abstract also summarizes the results of a recent comparative evaluation of these new
provers (see [4] for further details).

The syntax of first-order modal logic adopted here is: F,G ::= P (t1, . . . , tn) | ¬F | F ∧ G |
F ∨G | F ⇒ G | 2F | 3F | ∀xF | ∃xF . The symbols P are n-ary (n ≥ 0) relation constants which
are applied to terms t1, . . . , tn. The ti (0 ≤ i ≤ n) are ordinary first-order terms and they may contain
function symbols. The usual precedence rules for logical constants are assumed.

Regarding semantics a well accepted and straightforward notion of Kripke style semantics for FML
is adopted [7]. In particular, it is assumed that constants and terms are denoting and rigid, i.e. they
always pick an object and this pick is the same object in all worlds. Regarding the universe of discourse
constant domain, cumulative domain and varying domain semantics are considered.

The following new ATP systems for FML are presented; they support different combinations of
modal logics and domain semantics:1

ATP system base technique modal logics domain semantics

MleanSeP 1.2 sequent calculus K,K4,D,D4,T,S4 constant,cumulative
MleanTAP 1.3 tableau calculus D,T,S4,S5 constant,cumulative,varying
MleanCoP 1.2 connection calculus D,T,S4,S5 constant,cumulative,varying
f2p-MSPASS 3.0 instance-based method K,D,T,S4,S5 constant,cumulative
LEO-II 1.3.2-M1.0 embedding in HOL K,K4,D,D4,T,S4,S5 constant,cumulative,varying
Satallax 2.2-M1.0 embedding in HOL K,K4,D,D4,T,S4,S5 constant,cumulative,varying

∗This work is partly funded by the German Research Foundation DFG under reference number BE2501/9-1.
†This work is partly funded by the German Science Foundation DFG under reference number KR858/9-1.

1GQML-Prover (http://cialdea.dia.uniroma3.it/GQML/) has not been included since it returned incorrect re-
sults in our experiments for several input problems.
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Γ+, F ` ∆+

Γ,2F ` ∆
2-left

Γ∗ ` F,∆∗
Γ ` 2F,∆

2-right
Γ∗, F ` ∆∗

Γ,3F ` ∆
3-left

Γ+ ` F,∆+

Γ ` 3F,∆
3-right

logic Γ+ ∆+ Γ∗ ∆∗

K (no rules) Γ(2) ∆(3)

K4 (no rules) Γ[2] ∆[3]

D Γ(2) ∆(3) Γ(2) ∆(3)

logic Γ+ ∆+ Γ∗ ∆∗

D4 Γ[2] ∆[3] Γ[2] ∆[3]

T Γ ∆ Γ(2) ∆(3)

S4 Γ ∆ Γ2 ∆3

Figure 1: The additional rules of the modal sequent calculus

2 Calculi and ATP Systems for FML

Sequent Calculus The classical sequent calculus LK [8] is probably the most elegant calculus for
classical logic and used in many interactive proof systems. This calculus can be extended to modal
logics with cumulative domains by adding the modal rules 2-left, 2-right, 3-left, and 3-right. These
rules introduce the modal operators 2 and 3 into the left side or right side of the sequent, respectively
(see, e.g. [19]).

The sequent calculus for the modal logics K, K4, D, D4, T, and S4 with cumulative domains consists
of the axiom and rules of the classical sequent calculus and the four additional rules shown in Figure 1.
It is Γ2 := {2G |2G∈Γ}, ∆3 := {3G |3G ∈∆}, Γ(2) := {G |2G∈Γ}, ∆(3) := {G |3G∈∆},
Γ[2] := Γ2 ∪ Γ(2), and ∆[3] := ∆3 ∪∆(3). A sequent proof for a modal formula F is a derivation
of ` F in the modal sequent calculus, in which all leaves are closed by axioms.

The modal sequent calculus captures the cumulative domain condition. There are no similar cut-free
sequent calculi for the modal logics with constant or varying domain or for the modal logic S5 [19].

MleanSeP is an ATP system written in PROLOG that implements the sequent calculus for several
modal logics. It can be download at http://www.leancop.de/mleansep/. MleanSeP performs
proof search in an analytic way, i.e. the sequent rules are applied from bottom to top. Furthermore,
free-variables are used in combination with a dynamic Skolemization that is calculated during the
proof search. Together with the occurs-check of the term unification algorithm this ensures that the
Eigenvariable condition is respected. To deal with constant domains, the Barcan formula is automati-
cally added to the given formula in a preprocessing step. The Barcan formula (scheme) has the form
∀~x(2p(~x)⇒ 2∀~xp(~x) with ~x = x1, . . . , xn for all predicates p with n ≥ 1.

Prefixed Tableau Calculus In general, the (classical) tableau calculus can be seen as compact rep-
resentations of the (classical) sequent calculus. The classical tableau calculus [16] can be extended to
several modal logics by adding a prefix to each formula occuring in a tableau rule. A prefix is a string
consisting of (prefix) variables and (prefix) constants. Essentially, it represents a world path that cap-
tures the particular Kripke semantics of the modal logic in question. A prefixed formula has the form
F pol : p, where F is a (first-order) modal formula, pol∈{0, 1} is its polarity and p is its prefix.

The (prefixed) tableau calculus for the modal logics D, T, S4, and S5 consists of the rules of the
classical tableau calculus [16], which do not change the prefix p of formulae, and the four additional
rules shown in Figure 2. V ∗ is a new prefix variable, a∗ is a new prefix constant and ◦ is the composition
of two strings. A branch is closed if, and only if, it contains a pair of literals of the form {A1

1 : p1, A
0
2 : p2}

that are complementary under a term substitution σQ and an additional modal substitution σM , i.e.
σQ(A1) =σQ(A2) and σM (p1) =σM (p2). A tableau proof for a prefixed formula F pol : p is a tableau
derivation such that all branches are (simultaneously) closed for a pair of term and modal substitutions
(σQ, σM ). A tableau proof for a modal formula F is a tableau proof for F 0 : ε.
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(2F )1: p

F 1: p ◦ V ∗ 2
1

(3F )0: p

F 0: p ◦ V ∗ 3
0

(2F )0: p

F 0: p ◦ a∗ 2
0

(3F )1: p

F 1: p ◦ a∗ 3
1

Figure 2: The four additional rules of the modal tableau calculus

In the prefixed tableau calculus the particular modal logic is specified by distinct properties of the
modal substitution σM . An additional admissible criterion on σM is used to capture the different domain
variants, i.e., constant, cumulative, or varying domains. Like the modal connection calculus the modal
tableau calculus is based on the modal matrix characterization of logical validity [19].

MleanTAP is a compact ATP system written in PROLOG that implements the modal tableau calculus.
In can be downloaded at http://www.leancop.de/mleantap/. The proof search of MleanTAP is
split up into two phases. The first phase performs a purely classical proof search. In the second phase,
after a classical tableau proof is found, the prefixes p1 and p2 of all literals that close branches in the
classical tableau are unified. The unification of these prefixes is done by a specialized string unification
algorithm. If the prefix unification fails, alternative classical proofs (and prefixes) are computed. In
order to fulfill the distinct properties of the modal substitution σM , a specific unification algorithm is
used for each modal logic that also respects the admissible criterion.

Connection Calculus Connection calculi use a connection-driven search strategy and are already suc-
cessfully used for automated theorem proving in classical and intuitionistic logic [11, 12]. A connection
is a pair of literals, {A,¬A} or {A1, A0}, with the same predicate symbols but different polarities. The
connection calculus for classical logic is adapted to modal logic by adding prefixes to all literals. For-
mally, a prefix is a string over an alphabet ν ∪ Π, where ν is a set of prefix variables, denoted by V ,
and Π is a set of prefix constants, denoted by a. It is defined in the same way as in the tableau calculus.
Subformulae of the form (2F )1 or (3F )0 extend the prefix by a variable V , subformulae of the form
(2F )0 or (3F )1 extend the prefix by a constant a (see also Figure 2). For the modal logic S5 only the
last character of all prefixes is considered (or ε if the prefix is the empty string ε).

Proof-theoretically, a prefix of a formula F captures the modal context of F and specifies the se-
quence of modal rules of the sequent calculus that have to be applied (analytically) in order to obtain
F in the sequent. Semantically, a prefix denotes a specific world in a model [6, 19]. The prefixes of
the two literals in a connection, which corresponds to an axiom in the sequent calculus, need to denote
the same world, hence, they need to unify under a modal substitution. A connection {A1

1 : p1, A
0
2 : p2}

is σ-complementary, for σ := (σQ, σM ), if σQ(A1) = σQ(A2) and σM (p1) =σM (p2), where σQ is
the standard term substitution and σM : ν → (ν ∪ Π)∗ is the modal substitution that assigns a string
over the alphabet ν ∪Π to every element in ν . The substitutions σQ and σM induce a reduction order-
ing, which has to be irreflexive [19]. Alternatively, a Skolemization technique can be used for the term
Eigenvariables and for the prefix constants, as already done in [10].

For the modal logics D and T the accessibility condition |σM (V )|= 1 or |σM (V )| ≤ 1 has to hold for
all V ∈ν , respectively. The accessibility condition encodes the characteristics of each modal logic. Like
for the modal tableau calculus, σM has to be admissible with respect to σQ. The admissible criterion
depends on the domain condition, i.e. it is different for constant, cumulative and varying domains.

The matrix of a formula F is a set of clauses that represents the disjunctive normal form of F [5].
In the prefixed matrix M of F each literal L is additionally marked with its prefix p. The axiom and
the rules of the modal connection calculus are defined in Figure 3. M is the prefixed matrix of F ,
the subgoal clause C and the active path Path are sets of (prefixed) literals or ε. σ= (σQ, σM ) is an
admissible substitution and σQ and σM are rigid, i.e. they are applied to the whole derivation.

A connection proof for C,M,Path is a derivation such that all leaves are axioms for an admissible
substitution σ = (σQ, σM ). A modal connection proof for the matrix M is a modal connection proof
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Axiom (A)
{},M, Path

Start (S)
C2,M, {}
ε, M, ε

and C2 is copy of C1∈M

Reduction (R)
C,M,Path∪{L2: p2}

C∪{L1: p1},M, Path∪{L2: p2}
and {L1: p1, L2: p2} is σ-complementary

Extension (E)
C2\{L2: p2},M, Path∪{L1: p1} C,M,Path

C∪{L1: p1},M, Path

and C2 is a copy of C1 ∈M ,
L2:p2 ∈C2, and {L1: p1, L2: p2}
is σ-complementary

Figure 3: The modal connection calculus

for ε,M, ε. Correctness and completeness proofs are based on the the matrix characterization for modal
logic [19] and the correctness and completeness of the connection calculus [5]. See [13] for more details.

MleanCoP [13] is an implementation of the connection calculus for first-order modal logic. MleanCoP
can be downloaded at http://www.leancop.de/mleancop/. It is based on leanCoP, an automated
theorem prover for first-order classical logic [11]. To adapt the implementation to the modal connection
calculus the leanCoP prover is extended by (a) prefixes that are added to literals and collected during the
proof search and (b) an additional list that contains term variables together with their prefixes in order
to check the domain condition. First, MleanCoP performs a classical proof search. After a classical
proof is found, the prefixes of the literals in each connection are unified and the domain condition is
checked. MleanCoP uses additional techniques to prune the search space: regularity, lemmata, restricted
backtracking, a definition clausal form translation, and a fixed strategy scheduling; see [12] for details.

Instance-Based Method Instance-based methods consist of two components. The first component
adds instances of subformula to the given formula and grounds the resulting formula, i.e. removes
quantifiers and replaces all variables by a unique constant. The second component consists of an ATP
system for propositional logic to find a proof or counter model for the ground formula. This method
can be adapted to modal logic by using an ATP system for modal propositional logic. The approach is
restricted to the cumulative domain condition and to formulae that contain either only existential or only
universal quantifiers.

f2p-MSPASS is an implementation of the instance-based method for first-order modal logic. The
first component, called first2p, adds instances of subformulae to the FML formula and grounds the
resulting formula. It does not translate the given formula into any clausal form but preserves its structure.
For the second component the propositional modal ATP system MSPASS [9] is used. MSPASS is an
extension of and incorporated into the resolution-based ATP system SPASS. By default the standard
relational translation from modal logic into classical logic is applied. To deal with constant domains,
first2p adds the Barcan formula (scheme) to the given FML formula in a preprocessing step.

Embedding into Classical Higher-Order Logic Various non-classical logics, including FMLs, can
be embedded in classical higher-order logic (HOL) [2, 3]. The approach exploits the fact that Kripke
structures can be elegantly modeled in HOL [3]: FML propositions F are associated with HOL terms
Fρ of predicate type ρ := ι � o. Type o denotes the set of truth values and type ι is associated with
the domain of possible worlds. Thus, the application (Fρwι) corresponds to the evaluation of FML
proposition F in world w. Consequently, validity is formalized as vldρ�o = λFρ∀wιFw. Classical
connectives like ¬ and ∨ are simply lifted to type ρ as follows: ¬ρ�ρ = λFρλwι¬Fw and ∨ρ�ρ�ρ =
λFρλGρλwι(Fw ∨Gw). 2 is modeled as 2ρ�ρ = λFρλwι∀vι(¬Rwv ∨ Fv), where constant symbol
Rι�ι�o denotes the accessibility relation of the 2 operator, which remains unconstrained in logic K.
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Further logical connectives are defined as usual: ∧ = λFρλGρ¬(¬F ∨ ¬G), ⇒ = λFρλGρ(¬F ∨
G), 3 = λFρ¬2¬F . To obtain e.g. modal logics D, T, S4, and S5, R is axiomatized as serial,
reflexive, reflexive and transitive, and an equivalence relation, respectively. Arbitrary normal modal
logics extending K can be axiomatized this way.

For individuals a further base type µ is reserved in HOL. Universal quantification ∀xF is introduced
as syntactic sugar for ΠλxF , where Π is defined as follows: Π(µ�ρ)�ρ = λHµ�ρλwι∀xµHxw. For
existential quantification, Σ = λHµ�ρ¬Πλxι¬Hx is introduced. ∃xF is then syntactic sugar for
ΣλxF . n-ary relation symbols P, n-ary function symbols f and individual constants c in FML obtain
types µ1 � . . . � µn � ρ, µ1 � . . . � µn � µn+1 (with µi = µ for 0 ≤ i ≤ n+ 1) and µ, respectively.

For any FML formula F holds: F is a valid in modal logic K for constant domain semantics if and
only if vld Fρ is valid in HOL for Henkin semantics. This correspondence provides the foundation for
proof automation of FMLs with HOL-ATP systems. The correspondence follows from [3], where a
more general result is shown for FMLs with additional quantification over Boolean variables.

The above approach is adopted for varying domain semantics as follows: 1. Π is now defined as
Π = λHµ�ρλwι∀xµexInWxw ⇒ Hxw, where relation exInWµ�ι�o (for ’exists in world’) relates
individuals with worlds. 2. The non-emptiness axiom ∀wι∃xµexInWxw for these individual domains
is added. 3. For each individual constant symbol c an axiom ∀wιexInWcw is postulated; these axioms
enforce the designation of c in the individual domain of each world w. Analogous designation axioms
are required for function symbols.

For cumulative domain semantics the axiom ∀xµ∀vι∀wιexInWxv ∧ Rvw ⇒ exInWxw is addi-
tionally postulated. It states that the individual domains are increasing along relation R.

The above approach can be employed in combination with any HOL ATP system, cf. [17]. It sup-
ports both proving theorems and finding countermodels with these systems.

3 Evaluation Summary
The introduced ATP systems were evaluated on all 580 uni-modal problems of version 1.1 of the QMLTP
library [14]. The QMLTP library is a benchmark library for testing and evaluating ATP systems for
FML, similar to the TPTP library for classical logic [18] and the ILTP library for intuitionistic logic [15].
In the experiments the following modal logics were considered: K, D, T, S4, and S5 with constant,
cumulative, and varying domain semantics. These modal logics are supported by most of the described
ATP systems. Table 1 gives an overview of the test results for each prover.2 It contains the number of
proved problems for each considered logic and each domain condition.

f2p-MSPASS cannot be applied to 299 problems as these problems contain both existential and
universal quantifiers. f2p-MSPASS, Satallax and MleanCoP also find counter models for many (invalid)
FML formulae. E.g., for T with cumulative domains, these ATP systems found counter models for 89,
90, and 125 problems, respectively. Of the 20 first-order multi-modal problems in the QMLTP library,
Satallax and LEO-II prove 14 and 15 problems, respectively.

The theorem prover leanTAP 2.3 (http://userpages.uni-koblenz.de/ beckert/leantap/)
for first-order classical logic was run on the 580 problems in the QMLTP library, in which all modal
operators have been removed. It proves 296 problems and refutes one problem.

Acknowledgements. We thank Geoff Sutcliffe and Chad Brown for their valuable input to this work.

2 All tests were conducted on a 3.4 GHz Xeon system with 4 GB RAM running Linux 2.6.24-24.x86 64. The CPU time limit
was set to 600 seconds. All ATP systems and components written in Prolog use ECLiPSe Prolog 5.10. LEO-II 1.3.2 was compiled
with OCaml 3.12, and uses prover E 1.4. For Satallax a binary of version 2.2 is used. For MSPASS the sources of SPASS 3.0
were compiled using the GNU gcc 4.2.4 compiler.
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Table 1: Number of proved uni-modal problems of the QMLTP library

———————————— ATP system ————————————
Logic Domain f2p-MSPASS MleanSeP MleanTAP LEO-II Satallax MleanCoP
K varying - - - 73 104 -

cumulative 70 121 - 89 122 -
constant 67 124 - 120 146 -

D varying - - 100 81 113 179
cumulative 79 130 120 100 133 200

constant 76 134 135 135 160 217
T varying - - 138 120 170 224

cumulative 105 163 160 139 192 249
constant 95 166 175 173 213 269

S4 varying - - 169 140 207 274
cumulative 121 197 205 166 238 338

constant 111 197 220 200 261 352
S5 varying - - 219 169 248 359

cumulative 140 - 272 215 297 438
constant 131 - 272 237 305 438
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