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Abstract. In proof tutoring, human maths tutors are observed to reject
correct proof steps if they are not at the expected level of granularity,
i.e. if they are too detailed or too coarse-grained. We investigate how
the judgments on granularity as observed from human tutors can be
automated with the help of automated reasoning techniques. We evaluate
our approach with data collected in an empirical study.
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1 Introduction

The use of automated theorem provers within tutoring environments for mathe-
matical proofs poses a challenge. Didactic considerations require theorem provers
to support actual mathematical practice, in addition to providing powerful au-
tomation in a selected mathematical domain. Since the development of classical
theorem provers and investigations on logical calculi are mainly driven by cor-
rectness, completeness and efficiency issues, these theorem provers can generally
not be used to determine the general appropriateness of a proof step proposed by
a learner in a tutorial context. For instance, human maths teachers are known to
reject proof steps that are logically correct if they lack other desirable properties,
in particular, if the steps are of inappropriate step size or irrelevant. This moti-
vates the development of techniques suitable for the automated analysis of proof
steps w.r.t. their correctness, but also their granularity, i.e. the argumentative
size of a proof step, and their relevance in reaching the goal of a proof.

In this paper we report on ongoing work to automate the analysis of the
granularity of proof steps in the frame of the Dialog project [1]1. The Dialog

project investigates natural tutorial dialog between a student and a mathemat-
ical assistant system. At the present time, the (simplified) approach for the
Dialog system is:
1. The student inputs a proof via the user interface using a mixture of natural

language and formulas. The analysis of this input and its conversion into a
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formalized representation suitable for a mathematical assistant system is a
challenge for computational linguistics.

2. Automated reasoning techniques are employed to support the tutoring of
mathematical proofs. The Dialog project relies on the mathematical as-
sistant system Ωmega developed in the Ωmega group2. In particular, the
Ωmega environment is employed to analyze the student’s formalized proof
step in order to judge its soundness, its granularity and its relevance for
solving the proof problem.

3. The analysis results of step (2) are passed on to a tutoring module which
determines appropriate feedback to be presented to the student via the Dia-

log system user interface. The tutoring module may employ further relevant
information, such as a learner and a teacher model.

In summer 2005, the Dialog project collected a corpus of tutorial dialogs, in
which thirty-seven students interacted with a mock-up dialog system, simulated
with the help of four experienced human tutors in turn. The students were given
exercises in the domain of binary relations, dealing with the properties of the
inverse relation and relation composition, which the students had to solve in a
collaborative dialog with the system (for details, see [2]). In order to investigate
the role of granularity, we asked the tutors to annotate each proof step proposed
to them by the students with one out of three granularity categories; namely
appropriate, too detailed and too coarse-grained. On average, 1.92 student ut-
terances per session were classified by the experts as either too detailed or too

coarse-grained, out of an average of 25 utterances per session.

Related work has also identified granularity as a worthwhile study subject
for the design of e-learning systems, under the aspect of cognitive principles [3]
and also in the specific context of a tutoring system for LISP programming [4].
Another work in the domain of mathematical proof illustrates the schism that
exists between the step size in classical theorem proving and in human practice.
McMath et al. [5] integrate the theorem prover Otter into an environment for
mathematics in order to automatically verify subproofs of a proof under con-
struction. In order to prevent the resolution-calculus based Otter prover from
allowing “too large leaps of logic”, they limit the use of Otter to a few seconds,
a strategy which they observe to be unsatisfactory. In particular, in case the
time limit prevents Otter from finding a proof, it remains unclear whether this
is because the subproof represents a too big step, or whether the subproof is
incorrect, or whether the employed proof search strategy is inappropriate.

2 Techniques and Calculi for Granularity Analysis

We present a procedure that is aimed at judging the granularity of a user’s proof
step in a proof attempt, and evaluate it with data from the experiment reported
in [2]. The work is described in detail in [6]. Then we describe work in progress
which is aimed at refining the approach.

2 http://www.ags.uni-sb.de/∼omega



2.1 Granularity Relative to a Proof Calculus

The problem we are investigating is the following: given the formalized version
of a proof step proposed by a student, how can we estimate its argumentational
complexity? In the setting of the Dialog project, we allow underspecified in-
put, such that a student may claim that a formula A follows from some other
formulas B1, B2, etc... without indicating which rules of inference were used and
which assertions were implicitly assumed. In particular, the user is not restricted
to a fixed set of inference rules, but may simply state that A follows from B1,
B2, etc... . Whether this proposed inference is correct can be checked with au-
tomated reasoning techniques, however, on the level of a formal calculus, this
usually requires a number of intermediate steps. An example proof step from the
experiment described above is3:

(1)
student: [...] (z, y) ∈ R−1 and (x, z) ∈ S−1

tutor: [Correct.]
student: It follows: (x, y) ∈ S−1

◦ R−1

If we look at this proof step formally, it consists of both the application of the
standard definition of ◦ and the commutativity of ∧. Generally, a single proof
step from the user can require n steps in a formal calculus.

We now consider a simple procedure which uses automated reasoning to build
a minimal reconstruction of the proof step at the level of a formal proof system
�, and then merely counts the number of inference steps in the reconstruction.
We then use this number as an indicator for the argumentative complexity of the
original proof step. The approach relies heavily on the assumption that a calcu-
lus exists which is both suitable for automation and at the same time reflects
the step size of human mathematical reasoning. As a first step, we tested this
hypothesis with two natural deduction calculi, the traditional natural deduction
(ND) calculus by Gentzen [7] and the empirically motivated PSYCOP (short-
hand for “Psychology of Proof”) calculus [8]. Before considering any further
options, such as assertion level proofs [9], we decided to evaluate their suitabil-
ity first. Besides the choice of a suitable calculus, a second question concerns
how to extract a measure for granularity from the constructed proof object.
The simple approach of summing up the number of calculus rule applications
assumes an equal contribution of all inference rules to the complexity of a proof
fragment. A more elaborate approach consists in building weighted sums over
the inference rule applications. In order to account for these options, we have
implemented a framework for granularity analysis which is parameterized over
the choice of a concrete calculus and a particular weighting (for details see [6]).

We performed a preliminary evaluation of our approach with a sample of
twenty proof steps from the experiment in the Dialog project. The proof steps
were formalized, and then analyzed with the described framework, using both
Gentzen’s ND calculus and PSYCOP as the proof calculi, for comparison. The

3 We denote the inverse relation of R as R
−1, and we denote the binary operator for

relation composition by ◦.



Table 1. Average number of calculus level proof steps that constitute a student’s proof
step for twenty steps from the study, grouped by their granularity level as identified by
the tutors. The “too detailed” group consists of only two student proof steps, therefore
standard deviations are omitted. Calculus level proofs of zero length usually occur
when the formalization of the analyzed statement is identical to a previous statement
by the user.

Tutor’s rating Avg. proof step length at calculus level (with std. deviation)

PSYCOP calculus Gentzen’s ND calculus

“too detailed” 1,00 0
“appropriate” 5,27 (4,88) 5,00 (5,14)
“too coarse-grained” 11,67 (6,80) 10,33 (7,72)

complexity of a proof step was assumed to be represented simply by the num-
ber of calculus level steps obtained by reconstructing the original proof step in
Gentzen’s ND and the PSYCOP calculus. The PSYCOP theory [8] explicitly pro-
vides a decision procedure for proof search, which we followed in the evaluation.
In the case of Gentzen’s ND, we considered the shortest derivation in the number
of calculus level proof steps to be representative of the original proof step.

2.2 First Results

The results (cf. Table 1) show indeed a tendency of those proof steps that were
too detailed in the eyes of the tutor to require shorter reconstructions on the
calculus level than the average appropriate proof step, which again on average
required shorter reconstructions than those steps that were too coarse-grained.
This would indeed support the hypothesis that granularity is reflected in the
number of proof steps on the level of the two natural deduction calculi. How-
ever, this method alone appears to be insufficient to distinguish between the
three granularity classes too detailed, appropriate and too coarse-grained from
the experiment, which is the aim of the granularity analysis. As indicated by the
corresponding standard deviations, the sizes of the proof step reconstructions
vary greatly within the appropriate and the too coarse-grained group. The com-
parison between using Gentzen’s ND and PSYCOP on this particular sample of
proof steps shows no significant difference.

3 Discussion

Our goal of mechanizing the analysis of granularity judgments has led us to
evaluate the suitability of human-oriented calculi and proof mechanisms for this
purpose. A first evaluation on a specific sample of proof steps shows no advan-
tage of one of the two considered natural deduction calculi over the other. This
preliminary evaluation motivates the investigation of other candidate calculi like
the Core [10] calculus, which has recently been implemented as a part of the
Ωmega-Core framework. In particular, we observed that the students in our



experiments often used proof steps that can be characterized as rewriting steps
or deep inference steps, which are more naturally represented in Core than in
the two considered natural deduction calculi. Thus, we expect that the granu-
larity analysis measures we can obtain with Core as base calculus will be even
more convincing.

Furthermore, in the above evaluation we assume that granularity judgments
by the mathematics experts depend only on the purely logical properties of a
given proof step, related to its calculus level proof. However, personal preferences
of the involved experts, the maths proficiency of each particular student and the
context of each proof step were ignored completely, even though they can pro-
vide further explanation. Our ongoing work aims at guiding the theorem-prover-
based granularity analysis with information from a student model, a tutoring
model and an annotated repository of the mathematical domain, and enhancing
it with an expert system that decides on the appropriateness of the proof step
in question. This alters the original conception of the three-step approach in the
Dialog system presented in Section 1, such that not only the tutoring module
interacts with a student and a tutoring model, but also the proof step analy-
sis. We conclude that beyond automated reasoning on the mathematical domain
level, our investigation motivates the development of techniques that support
the reasoning about the appropriateness of a particular proposed proof step.
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