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1 Introduction

The SFB 378 project DIALOG [2] investigates natural tutorial dialog between a
student and an assistance system for mathematics (ASM). The aim is to mech-
anize the tutoring of mathematical proofs. At the present time, the (simplified)
approach in the DIALOG system is:

(1) The student inputs a proof via the user interface using a mixture of nat-
ural language and formulas. The analysis of this input and its conversion into
a formalized representation suitable for an ASM is a challenge for Computa-
tional Linguistics.

(2) Theorem proving techniques are employed to support the tutoring of
mathematical proofs. In particular, the ASM analyzes the student’s formalized
proof step and makes judgments on its soundness, its granularity (i.e., argumen-
tative complexity), and its relevance for solving the proof problem.

(3) The analysis results of step (2) are passed on to a tutoring module which
determines appropriate feedback to be presented to the student via the DiaLoG
system user interface.

Here we focus on the aspect of granularity in mathematical dialogs, which
refers to the size of a proof step w.r.t. its argumentative complexity. It is well
known that when proving a theorem, the same line of reasoning can be expressed
in different step sizes. Compare for example the two excerpts® from the proof for
AN(BUC) = (ANB)U(ANC) — note that (2) omits an intermediate argument:

(1) Let x be an element of AN(BUC), (2) Letx be an element of AN(BUC).

then x € A and x € BUC. This This means that x € A, and either
means that z € A, and either z € B ze€Borzel. |.]
orxzeC. [.]

Does granularity play a role in tutorial dialogs on proofs? In order to answer
this question, we have collected a corpus of tutorial dialogs on mathematics in
a Wizard-of-Oz experiment with four experienced human tutors (cf. [3]). The
corpus indicates that granularity was indeed a relevant aspect for the tutors in
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! Excerpt (1) is taken from R. Bartle and D. Sherbert, Introduction to Real Analysis,
Wiley, 1982. Proof fragment (2) is a constructed example.



Table 1. Average number of calculus level proof steps that constitute a student’s proof
step for twenty steps from the study, grouped by their granularity level as identified by
the tutors. Standard deviations in the “too detailed” group, which consists of only two
student proof steps, are omitted. Zero length proof steps occur when the formalization
of the analyzed statement is identical to a previous statement by the user.

Tutor’s rating Avg. calculus level proof length (std. deviation in brackets)
PSYCOP calculus |Gentzen’s ND calculus

“too detailed” 1,00 0

“appropriate” 5,27 (4,88)]5,00 (5,14)

“too coarse-grained”|11,67 (6,80){10,33 (7,72)

the role of the wizard: During each experiment session the experts annotated an
average of 1.92 utterances from the students as to “too detailed” or “too coarse-
grained” (out of on average of 25 dialog contributions the students made during
a session). More details on the reported work can be found in [7]. Even though
the phenomenon of granularity has been identified in the literature, related work
such as [8] generally focuses on the correctness aspect of informal proofs.

2 Framework and Calculi for Granularity Analysis

We started with the simple and plausible hypothesis that the size of the for-
malized proof step, i.e. the sum of the nodes in the proof tree for this step, can
serve as an indicator for the granularity of the student’s argument. However,
which target calculus should we choose? And would it not be more appropriate
to employ weighted sums over the nodes to account for the fact that not all cal-
culus level steps may have the same cognitive status? To account for these and
similar options, we have developed a generic framework for granularity analysis,
described in [7], which is parameterized over the target proof calculus and the
particularly selected weighting.

What are good proof calculi for granularity analysis? It is plausible to watch
out for human-oriented, cognitively adequate calculi which closely reflect the ac-
tual way humans proceed when proving mathematical theorems. Two prominent
candidates are the traditional natural deduction (ND) calculus by Gentzen [4]
and the empirically motivated PSYCOP (shorthand for “Psychology of Proof”)
calculus [6]. Before considering any further options, such as assertion level
proofs [5], we decided to evaluate their suitability first.

Evaluation. We instantiated our framework with these two calculi and used
equal weights for each rule. Both framework instances were then applied to the
student proof steps from the corpus. The resulting proof size figures were related
and compared to the granularity annotations the expert tutors had provided for
each proof step during the experiment. The tutors had been asked to categorize
the granularity of each student step as either appropriate, too coarse-grained or
too detailed.

The results are shown in Table 1. Those proof steps that were appropriate in
the eyes of the tutor require on average more steps in both framework instances



(with only small differences) than the average too detailed proof step, and less
calculus level steps than the average too coarse-grained proof step. This provides
evidence for our hypothesis that the granularity of student proof steps is reflected
by the size of the formalized proofs in ND or PSYCOP. However, as indicated
by the standard deviations, the sizes of the calculus level proofs vary greatly
within the appropriate and the too coarse-grained group. This overlap between
the three classes thus allows no rigid distinction between them based on calculus
level proof length alone. Hence, further investigation is required.

3 Discussion

In the experiments, the students often used proof steps which can be charac-
terized as rewriting steps, or assertion level resp. deep inference steps. Such
reasoning steps are not modeled appropriately in either the ND or the PSYCOP
calculus. Ongoing work therefore is to build a third instance of our granularity
analysis framework based on the (recently stabilizing implementation of the)
OMEGA-CORE calculus [1], which aims at better supporting such reasoning
steps. Furthermore, in order to obtain stronger evaluation results we plan another
experiment that will be more specifically designed to support the investigation
of granularity phenomena.

A particular phenomenon in our current corpus is that the granularity an-
notations by the four expert tutors reflect personal differences in the perception
of granularity, which — in contrast to correctness — is a very subjective mat-
ter. Therefore, the coupling of the presented framework for granularity analysis
with student and teaching models appears useful in order to better address the
context sensitivity of granularity judgments.
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