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Abstract. Ωants is an agent-oriented environment for combining infer-
ence systems. A characteristics of the Ωants approach is that a common
proof object is generated by the cooperating systems. This common proof
object can be inspected by verification tools to validate the correctness
of the proof. Ωants makes use of a two layered blackboard architecture,
in which the applicability of inference rules are checked on one (abstract)
layer. The lower layer administrates explicit proof objects in a common
language. In concrete proofs these proof objects can be quite bit, which
can make communication during proof search very inefficient. As a result
we had situations in which most of the resources went into the overhead
of constructing explicit proof objects and communicating between dif-
ferent components. Therefore we have recently developed an alternative
modelling of cooperating systems in Ωants which allows direct com-
munication between related systems during proof search. This has the
consequence that proof objects can no longer be directly constructed and
thus the correctness-validation in this novel approach is in question. In
this paper we present a pragmatic approach how this can rectified.

1 Introduction

Ωants is an agent-oriented environment for combining inference rules and in-
ference systems. Ωants was originally conceived to support interactive theorem
proving but was later extended to a fully automated proving system [23, 8]. A
characteristics of the Ωants approach is that a joint proof object is generated
by the cooperating inference rules and inference systems. This joint proof object
can be inspected by proof verification tools in combination with proof expansion
in order to validate the correctness at a purely logic level. The Ωants black-
board architecture consists of two layers, an abstract upper layer, and a more
detailed lower layer. Applicability criteria for inference rules are modelled at the
upper layer. The upper layer is supported by computations at the lower layer
which models criteria for the instantiation of the parameters of the inference
rules.



External systems have been modelled in Ωants as individual inference rules
at the upper layer. With this approach, Ωants has been successfully employed
in past experiments to check the validity of set equations using higher-order
and first-order theorem provers, model generation, and computer algebra [5].
However, this approach was very inefficient for hard examples because of the
communication overhead imposed by the need to translate all steps into a com-
mon proof data structure.

Therefore, we have recently developed an alternative approach: the single in-
ference rule approach of cooperating systems in Ωants which exploits the lower
layer of the blackboard architecture. This approach has been successfully applied
to the combination of automated higher-order and first-order theorem provers.
In particular, it has outperformed state-of-the-art first-order specialist reasoners
(including Vampire 7.0) on 45 examples on sets, relations and functions; see [9].

Unfortunately, using a single inference rule approach, we had to sacrifice
the generation of joint proof objects and correctness validation in this novel
approach. In this paper we present a pragmatic approach to how this can be
rectified.

The paper is structured as follows: In Section 2 we motivate and illustrate
the cooperation between a higher-order theorem prover (we employ Leo [6]) and
a first-order theorem prover (we employ Bliksem [12]). In Section 3 we compare
the two options for modelling cooperative reasoning systems in Ωants: the initial
multiple inference approach and the novel single inference rule approach. In
Section 4 we show how a joint proof object can also be obtained for the latter
modelling by mapping it back to the former. Section 5 concludes the paper.

2 Combining Higher-Order and First-Order ATP

2.1 Motivation

When dealing with problems containing higher-order concepts, such as sets, func-
tions, or relations, today’s state-of-the-art first-order automated theorem provers
(ATPs) still exhibit weaknesses on problems considered relatively simple by hu-
mans (cf. [15]). One reason is that the problem formulations use an encoding
in a first-order set theory, which makes it particularly challenging when trying
to prove theorems from first principles, that is, basic axioms. Therefore, to aid
ATPs in finding proofs, problems are often enriched by hand-picked additional
lemmata, or axioms of the selected set theory are dropped leaving the theory
incomplete. This has recently motivated extensions of state-of-the-art first-order
calculi and systems, as for example presented in [15] for the Saturate system.
The extended Saturate system can solve some problems from the SET domain
in the TPTP [25] which Vampire [22] and E-Setheo’s [24] cannot solve.

While it has already been shown in [6, 2] that many problems of this nature
can be easily proved from first principles using a concise higher-order represen-
tation and the higher-order resolution ATP Leo [6], the combinatorial explosion
inherent in Leo’s calculus prevents the prover from solving a whole range of



SET171+3 ∀Xoα, Yoα, Zoα.X ∪ (Y ∩ Z) = (X ∪ Y ) ∩ (X ∪ Z)
SET611+3 ∀Xoα, Yoα.(X ∩ Y = ∅) ⇔ (X \ Y = X)
SET624+3 ∀Xoα, Yoα, Zoα.Meets(X, Y ∩ Z) ⇔ Meets(X, Y ) ∨ Meets(X, Z)
SET646+3 ∀xα, yβ .Subrel(Pair(x, y), (λuα.>) × (λvβ .>))
SET670+3 ∀Zoα, Roβα, Xoα, Yoβ.IsRelOn(R,X, Y ) ⇒

IsRelOn(RestrictRDom(R, Z), Z, Y )

Table 1. Test Problems on Sets and Relations: Examples

possible problems with one universal strategy. Often higher-order problems re-
quire only relatively few but essential steps of higher-order reasoning, while the
overwhelming part of the reasoning is first-order or even propositional level. This
suggests that Leo’s performance could be improved when combining it with a
first-order ATP to search efficiently for a possible refutation in the subset of
those clauses that are essentially first-order.

The advantages of such a combination are not only that many problems can
still be efficiently shown from first principles in a general purpose approach, but
also that problems can be expressed in a very concise way.

For instance, in [9] we present 45 problems from the SET domain of the
TPTP-v3.0.1, together with their entire formalisation in less than two pages,
which is difficult to achieve within a framework that does not provide λ-abstraction.
We have used this problem set, which is an extension of the problems considered
in [15], to show the effectiveness of our approach (cf. [9]). While many of the
considered problems can be proved by Leo alone with some strategy, the com-
bination of Leo with the first-order ATP Bliksem [12] is not only able to solve
more problems, but also needs only a single strategy to prove them. Several of
our problems are considered very challenging by the first-order community and
five of them (of which Leo can solve four) have a TPTP rating of 1.00, saying
that they cannot be solved by any TPTP prover to date.

Technically, the combination has been realised in the concurrent reasoning
system Ωants [23, 8] which enables the cooperation of hybrid reasoning systems
to construct a common proof object. In our past experiments, Ωants has been
successfully employed to check the validity of set equations using higher-order
and first-order ATPs, model generation, and computer algebra [5]. While this
enabled a cooperation between Leo and a first-order ATP, the proposed solution
could not be classified as a general purpose approach. A major shortcoming was
that all communication of partial results had to be conducted via the common
proof object, which was very inefficient for hard examples. Thus, the solved ex-
amples from set theory were considered too trivial, albeit they were often similar
to those still considered challenging in the TPTP in the first-order context.

In [9] we have presented our novel approach to the cooperation between
Leo and Bliksem inside Ωants by decentralising communication. As has been
documented in [9] this leads not only to a higher overall efficiency but also to a
general purpose approach based on a single strategy in Leo.



2.2 Sets, Relations, and Functions: Higher-Order Logic Encoding

We list some examples of the test problems on sets and relations (and functions)
that have been investigated in [9]. These test problems are taken from the TPTP
against which we evaluated our system. The problems are given by the identi-
fiers used in the SET domain of the TPTP, and are formalized in a variant of
Church’s simply typed λ-calculus with prefix polymorphism. In classical type
theory, terms and all their sub-terms are typed. Polymorphism allows the intro-
duction of type variables such that statements can be made for all types. For
instance, in problem SET171 in Table 1, the universally quantified variable Xoα

denotes a mapping from objects of type α to objects of type o. We use Church’s
notation oα, which stands for the functional type α → o. The reader is referred
to [1] for a more detailed introduction. In the remainder, o will denote the type
of truth values, and small Greek letters will denote arbitrary types. Thus, Xoα

(and its η-longform λyα Xy) is actually a characteristic function denoting the
set of elements of type α, for which the predicate associated with X holds. As
further notational convention, we use capital letter variables to denote sets, func-
tions, or relations, while lower case letters denote individuals. Types are usually
only given in the first occurrence of a variable and omitted if inferable from the
context. Table 1 presents some examples of the test problems investigated in [9].

These test problems employ defined concepts that are specified in a knowl-
edge base of hierarchical theories that Leo has access to. Table 2 gives the
concepts necessary for defining the above problems:

−
∈

−
:= λxα, Aoα.[Ax]

∅ := [λxα.⊥]

−
∩

−
:= λAoα, Boα.[λxα.x ∈ A ∧ x ∈ B]

−
∪

−
:= λAoα, Boα.[λxα.x ∈ A ∨ x ∈ B]

−
\
−

:= λAoα, Boα.[λxα.x ∈ A ∨ x /∈ B]
Meets(

−
,
−

) := λAoα, Boα.[∃xα.x ∈ A ∧ x ∈ B]
Pair(

−
,
−

) := λxα, yβ .[λuα, vβ.u = x ∧ v = y]

−
×

−
:= λAoα, Boβ.[λuα, vβ .u ∈ A ∧ v ∈ B]

Subrel(
−

,
−

) := λRoβα, Qoβα.[∀xα, yβ.Rxy ⇒ Qxy]
IsRelOn(

−
,
−

,
−

) := λRoβα, Aoα, Boβ.[∀xα, yβ .Rxy ⇒ x ∈ A ∧ y ∈ B]
RestrictRDom(

−
,
−

) := λRoβα, Aoα.[λxα, yβ .x ∈ A ∧ Rxy]

Table 2. Definitions of Operations on Sets and Relations: Examples

These concepts are defined in terms of λ-expressions and they may contain
other, already specified concepts. For presentation purposes, we use customary
mathematical symbols ∪,∩, etc., for some concepts like union, intersection, etc.,
and we also use infix notation. For instance, the definition of union on sets in
Table 2 can be easily read in its more common mathematical representation
A∪B := {x|x ∈ A∨ x ∈ B}. Before proving a problem, Leo always expands —



Assumptions: ∀B, C, x [x ∈ (B ∪ C) ⇔ x ∈ B ∨ x ∈ C] (1)

∀B, C, x [x ∈ (B ∩ C) ⇔ x ∈ B ∧ x ∈ C] (2)

∀B, C [B = C ⇔ B ⊆ C ∧ C ⊆ B] (3)

∀B, C [B ∪ C = C ∪ B] (4)

∀B, C [B ∩ C = C ∩ B] (5)

∀B, C [B ⊆ C ⇔ ∀x x ∈ B ⇒ x ∈ C] (6)

∀B, C [B = C ⇔ ∀x x ∈ B ⇔ x ∈ C] (7)

Proof Goal: ∀B, C, D [B ∪ (C ∩ D) = (B ∪ C) ∩ (B ∪ D)] (8)

Table 3. Problem SET171+3: The First-Order TPTP Encoding.

recursively, if necessary — all occurring concepts. This straightforward expansion
to first principles is realised by an automated preprocess in our current approach.

2.3 Sets, Relations, and Functions: First-Order Logic Encoding

Let us consider example SET171+3 in its first-order formulation from the TPTP
(see Table 3). We can observe that the assumptions provide only a partial ax-
iomatisation of naive set theory. On the other hand, the specification introduces
lemmata that are useful for solving the problem. In particular, assumption (7) is
trivially derivable from (3) with (6). Obviously, clausal normalisation of this first-
order problem description yields a much larger and more difficult set of clauses.
Furthermore, definitions of concepts are not directly expanded as in Leo. It
is therefore not surprising that most first-order ATPs still fail to prove this
problem. In fact, very few TPTP provers were successful in proving SET171+3.
Amongst them are Muscadet 2.4. [21], Vampire 7.0, and Saturate. The nat-
ural deduction system Muscadet uses special inference rules for sets and needs
0.2 seconds to prove this problem. Vampire needs 108 seconds. The Saturate

system [15] (which extends Vampire with Boolean extensionality rules that
are a one-to-one correspondence to Leo’s rules for Extensional Higher-Order
Paramodulation [3]) can solve the problem in 2.9 seconds while generating 159
clauses. The significance of such comparisons is clearly limited since different
systems are optimised to a different degree. One noted difference between the
experiments with first-order provers listed above, and the experiments with Leo

and Leo-Bliksem is that first-order systems often use a case tailored problem
representation (e.g., by avoiding some base axioms of the addressed theory),
while Leo and Leo-Bliksem have a harder task of dealing with a general (not
specifically tailored) representation. Thus, the comparison of the performance
of Leo and Leo-Bliksem with first-order systems as done in [9] is unfair: the
higher-order systems attack harder, non-tailored problems. Nevertheless, as we
demonstrated by the performance results in [9] the higher-order systems still
perform better.



(1) ∀B,C, D.B ∪ (C ∩ D) = (B ∪ C) ∩ (B ∪ D)
↓ clause initialization
↓ def.-expansion, cnf
↓ B, C, D Skolem const.

(2) [(λx.Bx ∨ (Cx ∧ Dx))= (λx.(Bx ∧ Cx) ∨ (Cx ∧ Dx))]F

↓ unification constraint

(3) [(λx.Bx ∨ (Cx ∧ Dx))=?(λx.(Bx ∧ Cx) ∨ (Cx ∧ Dx))]
↓ f-extensionality
↓ x new Skolem constant

(4) [(Bx ∨ (Cx ∧ Dx))=?((Bx ∧ Cx) ∨ (Cx ∧ Dx))]
↓ B-extensionality

(5) [(Bx ∨ (Cx ∧ Dx))⇔((Bx ∧ Cx) ∨ (Cx ∧ Dx))]F

↓ cnf, factor., subsumption
(6) [Bx]F

(7) [Bx]T∨[Cx]T propositional problem!
(8) [Bx]T∨[Dx]T

(9) [Cx]F∨[Dx]F

↓ propositional reasoning
(10) �

Table 4. Problem SET171+3: Solution in Leo

For the experiments with Leo and the cooperation of Leo with the first-order
theorem prover Bliksem, λ-abstraction as well as the extensionality treatment
inherent in Leo’s calculus [4] is used. This enables a theoretically1 Henkin-
complete proof system for set theory. In the above example SET171+3, Leo gen-
erally uses the application of functional extensionality to push extensional unifi-
cation constraints down to base type level, and then eventually applies Boolean
extensionality to generate clauses from them. These are typically much simpler
and often even propositional-like or first-order-like (FO-like, for short), that is,
they do not contain any ‘real’ higher-order subterms (such as a λ-abstraction or
embedded equations), and are therefore suitable for treatment by a first-order
ATP or even a propositional logic decision procedure.

2.4 Solving the Test Problem SET171+3 in Leo

Table 4 illustrates how Leo tackles and solves the test problem SET171+3. First
the resolution process is initialised, that is, the definitions occurring in the input
problem are expanded, that is, completely reduced to first principles. Then the
problem is turned into a negated unit clause. The resulting (not displayed inter-
mediate) clause is not in normal form and therefore Leo first normalizes it with
explicit clause normalisation rules (cnf) to reach some proper initial clauses. In

1 For pragmatic reasons, such as efficiency, most of Leo’s tactics are incomplete. Leo’s
philosophy is to rely on a theoretically complete calculus, but to practically provide
a set of complimentary strategies so that these cover a broad range of theorems.



our concrete case, this leads to the unit clause (2). Note that negated prim-
itive equations are generally automatically converted by Leo into unification
constraints. This is why (2) is automatically converted into (3), which is a syn-
tactically not solvable, but is a semantic unification problem. Observe, that we
write [.]T and [.]F for positive and negative literals, respectively. Leo then applies
its goal directed functional and Boolean extensionality rules which replace the
unification constraint (3) by the clauses (4) and (5). Unit clause (5) is again not
normal; normalisation, factorisation and subsumption yields the clauses (6)-(9).
This set is essentially of propositional logic character and trivially refutable. Leo

needs 0.56 seconds for solving the problem and generates a total of 36 clauses.

2.5 Solving the Test Problem SET171+3 in Leo-Bliksem

As illustrated in Table 4, Leo transforms test problem SET171+3 straight-
forwardly into a propositional like subproblem. Here the generated clause set
(7)–(10) can still be efficiently refuted by Leo. Generally, however, the gener-
ated subsets of propositional or first-order like subproblems may quickly become
so big that Leo’s refutation procedure, which is not optimised for these prob-
lem classes, gets stuck. And in Leo’s search space generally some further real
higher-order clauses have to be taken into account. This observation motivates
our cooperative Leo-Bliksem proof search approach: while Leo performs its
proof search as before, it periodically also passes the detected first-order like
clauses (which, of course, include the propositional like clauses) to the first-order
specialist reasoner Bliksem. We note:

– The generated first-order like clauses in Leo are copied into a special bag
which never decreases and usually always increases. That is, the bag of first-
order like clauses dynamically changes and eventually becomes refutable
(such as clauses (7)–(10) in our example).

– Leo’s proof search procedure remains unchanged and Leo still tries to refute
such subproblems itself (as before) in a bigger context.

– In addition, specialist reasoners may now support Leo by showing that the
bag of first-order like subproblems is refutable.

– Each time the bag of first-order like subproblems is increased by Leo, a new
instance of a specialist reasoner is launched (with a resource-bound). This
instance runs in parallel to Leo’s proof search and may eventually signal
success to Leo. If Leo receives such a success signal, it stops its own proof
search and reports that a cooperative proof has been found. Alternatively
(as before) Leo stops proof search when it finds the proof itself.

– Our cooperative approach can easily be fine-grained by separating the bag of
first-order like clauses into even more specialised subclasses, such as propo-
sitional logic, guarded fragment, etc. Different specialist reasoners can then
be employed to attack these clause sets.

– For the higher-order problems investigated in [9] we further observe:
• Some problems are immediately mapped by recursive definition expan-

sion (without extensionality reasoning) and normalisation into first-order
like problems; an example is SET624+3.



• Some problems are immediately mapped by recursive definition expan-
sion (without extensionality reasoning) and normalisation into the empty
clause such that proof search does not even start; an example is SET646+3.

• Some problems require several rounds of extensionality processing within
Leo’s set-of-support based proof search procedure before the bag of first-
order like clauses turns into a refutable set of clauses; an example is
SET611+3.

The result of the case study performed in [9] is: The Leo-Bliksem cooper-
ation impressively outperforms both state-of-the art first-order specialists (in-
cluding Vampire 7.0) and the non-cooperative Leo system.

In the next section we describe in more detail how the cooperative proof
search approach between Leo and the first-order prover Bliksem has been mod-
elled in Ωants.

3 Ωants

Ωants was originally conceived to support interactive theorem proving but was
later extended to a fully automated proving system [23, 8]. Its basic idea is to
compose a central proof object by generating, in each proof situation, a ranked
list of potentially applicable inference steps. In this process, all inference rules,
such as calculus rules or tactics, are uniformly viewed with respect to three
sets: premises, conclusions, and additional parameters. The elements of these
three sets are called arguments of the inference rule and they usually depend
on each other. An inference rule is applicable if at least some of its arguments
can be instantiated with respect to the given proof context. The task of the
Ωants architecture is now to determine the applicability of inference rules by
computing instantiations for their arguments.

The architecture consists of two layers. On the lower layer, possible instanti-
ations of the arguments of individual inference rules are computed. In particular,
each inference rule is associated with its own blackboard and concurrent pro-
cesses, one for each argument of the inference rule. The role of every process is
to compute possible instantiations for its designated argument of the inference
rule, and to record these on the blackboard. The computations are carried out
with respect to the given proof context and by exploiting information already
present on the blackboard, that is, argument instantiations computed by other
processes. On the upper layer, the information from the lower layer is used for
computing and heuristically ranking the inference rules that are applicable in
the current proof state. The most promising rule is then applied to the central
proof object and the data on the blackboards is cleared for the next round of
computations.

Ωants employs resource reasoning to guide search.2 This enables the con-
trolled integration (e.g., by specifying time-outs) of full-fledged external reason-

2 Ωants provides facilities to define and modify the processes at run-time. But notice
that we do not use these advanced features in the case study presented in this paper.



ing systems such as automated theorem provers, computer algebra systems, or
model generators into the architecture.

3.1 Cooperation via multiple inference rules

The use of the external systems is modelled by inference rules, usually one for
each system. Their corresponding computations are encapsulated in one of the
independent processes in the architecture. For example, an inference rule mod-
elling the standard application Leo has its conclusion argument set to be an
open higher-order (HO) goal.

HO-goal
Leo (LEO-parameters)

A process can then place an open goal on the blackboard, where it is picked
up by a process that applies the Leo prover to it. Any computed proof from the
external system is again written to the blackboard from where it is subsequently
inserted into the proof object when the inference rule is applied. While this setup
enables proof construction by a collaborative effort of diverse reasoning systems,
the cooperation can only be achieved via the central proof object. This means
that all partial results have to be translated back and forth between the syntaxes
of the integrated systems and the language of the proof object. For modelling
the cooperation of Leo with a first-order reasoner we have first experimented
with the following multiple inference rule modelling (see also [5]):

Neg-Conj-of-FO-clauses

HO-goal
Leo-with-partial-result(Leo-parameters)

FO-goal
Bliksem (Bliksem-parameters)

The first rule models a process that picks up higher-order proof problem from
the blackboard, passes it to Leo which starts its proof search, and then returns
the negated conjunction of generated first-order clauses back (e.g. the negated
conjunction of the clauses (7)–(10) in our previous example). For each modified
bag of first-order like clauses in Leo this rule may suggest a novel reduction of
the original higher-order goal to a first-order criterion.

Since there are many types of integrated systems, the language of the proof
object maintained in Ωants — a higher-order language even richer than Leo’s,
together with a natural deduction calculus — is expressive but also cumbersome.
This leads not only to a large communication overhead, but also means that
complex proof objects have to be created, even if the reasoning of all systems
involved is clause-based. Large clause sets need to be transformed into large
single formulae to represent them in the proof object; the support for this in
Ωants to date is inefficient. Consequently, the cooperation between external
systems is typically rather inefficient [5].



3.2 Cooperation via a single inference rule

In order to overcome the problem of the communication bottleneck described
above, we devised a new method for the cooperation between a higher-order
and a first-order theorem prover within Ωants. Rather than modelling each
theorem prover as a separate inference rule (and hence needing to translate
the communication via the language of the central proof object), we model the
cooperation between a higher-order (concretely, Leo) and a first-order theorem
prover (in our case study Bliksem) in Ωants as a single inference rule.

HO-goal
Leo-Bliksem (

Leo-partial-proof, FO-clauses, FO-proof, Leo-
parameters, Bliksem-parameters

)

The communication between the two theorem provers is carried out directly
by the parameters of the inference rule and not via the central proof object. This
avoids translating clause sets into single formulae and back.

Concretely, the single inference rule modelling the cooperation between Leo

and a first-order theorem prover needs the following arguments to be applicable:
(1) an open higher-order proof goal, (2) a partial Leo proof, (3) a set of FO-
like clauses in the partial proof, (4) a first-order refutation proof for the set
of FO-like clauses, and (5) and (6) the usual flag-parameters for the theorem
provers Leo and Bliksem. Each of these arguments is computed, that is, its
instantiation is found, by an independent process. The first process finds open
goals in the central proof object and posts them on the blackboard associated
with the new rule. The second process starts an instance of the Leo theorem
prover for each new open goal on the blackboard. Each Leo instance maintains
its own set of FO-like clauses. The third process monitors these clauses, and as
soon as it detects a change in this set, that is, if new FO-like clauses are added by
Leo, it writes the entire set of clauses to the blackboard. Once FO-like clauses
are posted, the fourth process first translates each of the clauses directly into
a corresponding one in the format of the first-order theorem prover, and then
starts the first-order theorem prover on them. Note that writing FO-like clauses
on the blackboard is by far not as time consuming as generating higher-order
proof objects. As soon as either Leo or the first-order prover finds a refutation,
the second process reports Leo’s proof or partial proof to the blackboard, that
is, it instantiates argument (2). Once all four arguments of our inference rule
are instantiated, the rule becomes applicable and its application closes the open
proof goal in the central proof object. That is, the open goal is proved by the
cooperation between Leo and a first-order theorem prover. When computing
applicability of the inference rule, the second and the fourth process concurrently
spawn processes running Leo or a first-order prover on a different set of FO-like
clauses. Thus, when actually applying the inference rule, all these instances of
provers working on the same open subgoal are stopped.

While in the previous approach with multiple inference rules the cooperation
between Leo and Bliksem was modelled at the upper layer of the Ωants ar-
chitecture, our new approach models their cooperation by exploiting the lower



layer of the Ωants blackboard architecture. This is not an ad hoc solution,
but rather, it demonstrates Ωants’s flexibility in modelling the integration of
cooperative reasoning systems.

Our approach to the cooperation between a higher-order and a first-order
theorem prover has many advantages. The main one is that the communication
is restricted to the transmission of clauses, and thus it avoids any intermediate
translation into the language of the central proof object. This significantly re-
duces the communication overhead and makes effective proving of more involved
theorems feasible.

4 Constructing a Combined Proof Object

A disadvantage of our approach is that we cannot easily translate and integrate
the two proof objects produced by Leo and Bliksem into the central proof ob-
ject maintained by Ωants. This has been possible in our previous approach with
multiple inference rules. Thus, we developed a simple and pragmatic solution to
the problem:

– The main idea is to replay the proof on the upper level of the Ωants archi-
tecture (using the multiple inference rule modelling) once a proof attempt
was successful (with a single inference rule modelling) on the lower level.

– We can essentially reconstruct all the information from the blackboard that
we need in order to replay the proof. For this remember that the rule Leo-
Bliksem is only applicable if all parameters of the rule are instantiated,
that is, the respective parameter instantiation information is available on
the blackboard for each successful cooperative proof attempt. Respective
instantiation information generated from a successful cooperative proof at-
tempt for our running example SET171+3, for instance, is:

HO-Goal := ∀B, C, D.C ∪ (B ∩ D) = (C ∪ B) ∩ (C ∪ D)

Leo-partial-proof := . . . a HO resolution proof object ∆ . . .

FO-clauses := (7) [Bx]F

(8) [Bx]T∨[Cx]T

(9) [Bx]T∨[Dx]T

(10) [Cx]F∨[Dx]F

FO-proof := . . . a FO resolution proof object Γ . . .

Leo-parameters := . . . the flags chosen for the Leo call . . .

Bliksem-parameters := . . . the flags chosen for the Bliksem call . . .

– For finding joint proofs efficiently in our experiment we called Bliksem in
the fastest mode. In this case the generated FO-proof object is typically very
sparse, i.e. contains only very little information for proof reconstruction and
transformation.



– When the above suggestion of a successful joint proof attempt is selected for
application in Ωants, the initially open (sub-)goal ∀B, C, D.C ∪ (B ∩D) =
(C ∪ B) ∩ (C ∪ D) is closed and the new justification of this proof node
becomes ‘Leo-Bliksem’ augmented with the above parameter instantiation
information:

∀B, C, D.C∪(B∩D) = (C∪B)∩ (C∪D)
Leo-Bliksem (above param. inst.)

– Expansion of this node then replaces the (sub-)proof object by the following
(sub-)proof object employing the multiple inference rule modelling of the
cooperative proof attempt:

neg-FO-clauses
Bliksem (modified Bliksem-param. instantiation)

∀B, C, D. . . . = . . .
Leo-with-partial-result (Leo-param. instantiation)

where ‘neg-FO-clauses ’ is computed from the instantiation of the parameter
FO-clauses as

¬(¬(Bx) ∧ (Bx ∨ Cx) ∧ (Bx ∨ Dx) ∧ (¬(Cx) ∨ ¬(Dx))

– The idea is to support verification of this (sub-)proof by subsequent proof
node expansion, i.e., to investigate the contributions of both reasoning sys-
tems separately. For the expansion of Bliksem, a translation of the pre-
viously generated proof into a proper proof-object is not an option if we
called Bliksem in the fastest mode since the delivered first-order proof ob-
ject may be too sparse. Therefore, the expansion of this proof node simply
calls Bliksem again but now within a different mode (determined by the
slightly changed modified Bliksem-param. instantiation) which ensures the
generation of detailed first-order proof objects.

– For the translation of this regenerated, detailed first-order proof object into
an Ωants proof object we employ the Tramp system [18]. This enables us
to verify the (sub-)proof of Bliksem after its translation into an Ωants

proof object.
– Generally, we could also replace the second call to Bliksem by a call to any

other first-order proof system that is supported by Tramp’s generic proof
transformation mechanism (and which is as strong as Bliksem).

5 Conclusion

In this paper we have discussed the difference between two forms of modelling
cooperating proof systems within Ωants: the multiple inference rule approach
and the single inference rule approach. In previous experiments the latter has
been shown as highly efficient and it has outperformed state-of-the-art first-order
specialist reasoners on 45 examples on sets, relations and functions; cf. [9]. The
drawback so far, however, was that no joint proof object could be generated. In



this paper we have reported how we have solved this problem by simply mapping
the single inference rule modelling back to the multiple inference rule modelling.

Related to our approach is the Techs system [13], which realises a cooper-
ation between a set of heterogeneous first-order theorem provers. Similarly to
our approach, partial results in Techs are exchanged between the different the-
orem provers in form of clauses. The main difference to the work of Denzinger
et al. (and other related architectures like [14]) is that our system bridges be-
tween higher-order and first-order automated theorem proving. Also, unlike in
Techs, we provide a declarative specification framework for modelling exter-
nal systems as cooperating, concurrent processes that can be (re-)configured at
run-time. Related is also the work of Hurd [16] which realises a generic inter-
face between HOL and first-order theorem provers. It is similar to the solution
previously achieved by Tramp [18] in Omega, which serves as a basis for the
sound integration of ATPs into Ωants. Both approaches pass essentially first-
order clauses to first-order theorem provers and then translate their results back
into HOL resp. Omega. Some further related work on the cooperation of Is-
abelle with Vampire is presented in [19]. The main difference of our work to
the related systems is that while our system calls first-order provers from within
higher-order proof search, this is not the case for [16, 18, 19].

Future work is to investigate how far our approach scales up to more complex
problems and more advanced mathematical theories. In less trivial settings as
discussed in this paper, we will face the problem of selecting and adding relevant
lemmata to avoid immediate reduction to first principles and to appropriately
instantiate set variables. Relevant related work for this setting is Bishop’s ap-
proach to selectively expand definitions as presented in [10] and Brown’s PhD
thesis on set comprehension in Church’s type theory [11].
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