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Abstract. We present Leo, a resolution based theorem prover for clas-
sical higher-order logic. It can be employed as both an fully automated
theorem prover and an interactive theorem prover. Leo has been im-
plemented as part of the Ωmega environment [23] and has been inte-
grated with the Ωmega proof assistant. Higher-order resolution proofs
developed with Leo can be displayed and communicated to the user via
Ωmega’s graphical user interface Loui. The Leo system has recently
been successfully coupled with a first-order resolution theorem prover
(Bliksem).

1 Introduction

Many of today’s proof assistants such as Isabelle [22, 20], Pvs [21], Hol [12],
Hol-Light [13], and Tps [2, 3] employ classical higher-order logic (also known as
Church’s simple type theory) as representation and reasoning framework. One
important motivation for the development of automated higher-order proof tools
thus is to relieve the user of tedious interactions within these proof assistants by
automating less ambitious (sub)problems.

In this paper we present Leo, an automated resolution based theorem prover
for classical higher-order logic. Leo is based on extensional higher-order reso-
lution which, extending Huet’s constrained resolution [14, 15], proposes a goal
directed, rule based solution for extensionality reasoning [6, 4, 5]. The main mo-
tivation for Leo is to serve as an automated subsystem in the mathematics
assistance system Ωmega [23]. Additionally, Leo was intended to serve as a
standalone automated higher-order resolution prover and to support the illus-
tration and tutoring of extensional higher-order resolution. A previous system
description of Leo has been published in [7]. Novel in this system description is
the section on Leo’s interaction facilities and its graphical user interface. We also
provide more details on Leo’s automation and point to some recent extensions.

This system description is structured as follows: In Sections 2 and 3 we briefly
address Leo’s connection with Ωmega and Leo’s calculus. Section 4 presents
the interactive theorem prover Leo and Section 5 the automated theorem prover
Leo. In Section 6 we illustrate how Leo’s resolution proofs can be inspected
with Ωmega’s graphical user interface Loui. Some experiments with Leo are
mentioned in Section 7 and Section 8 concludes the paper.



2 Leo is a Subsystem of Ωmega

Leo has been realized as a part of the Ωmega framework. This framework (and
thus also Leo) is implemented in Clos [25], an object-oriented extension of Lisp.
Leo is mainly dependent on Ωmega’s term datastructure package Keim. The
Keim package provides many useful data structures (e.g., higher-order terms,
literals, clauses, and substitutions) and basic algorithms (e.g., application of
substitution, subterm replacement, copying, and renaming). Thus, the usage
of Keim allows for a rather quick implementation of new higher or first-order
theorem proving systems. In addition to the code provided by the Keim-package,
Leo consists of approximately 7000 lines of Lisp code.

Amongst the benefits of the realization of Leo within the Ωmega framework
are:

– Employing Keim supported a quick implementation of Leo. Important in-
frastructure could be directly reused or had to be only slightly adapted or
extended.

– An integration of Leo with the proof assistant and proof planner Ωmega

was easily possible.
– Leo can easily be combined with other external systems already integrated

with Ωmega. Combinations of reasoning systems are particularly well sup-
ported in Ωmega with the help of the agent based reasoning framework
Oants [8].

– Leo may retrieve and store theorems and definitions via Ωmega from Mbase,
which is a structured repository of mathematical knowledge.

– Leo employs Ωmega’s input language Post.

There are also drawbacks of Leo’s realization as a part of Ωmega:

– Leo’s latest version is only available in combination with the Ωmega pack-
age. Installation of Ωmega, however, is very complicated. Consequently,
there is a conflict with the objective of providing a lean standalone theorem
prover.

– The Keim datastructures are neither very efficient nor are they optimized
or easily optimizable with respect to Leo.

Ωmega and with it Leo can be download from http://www.ags.uni-sb.de/˜omega.

3 Leo Implements Extensional Higher-Order Resolution

Leo is based on a calculus for extensional higher-order resolution. This calculus
is described in [6, 4] and more recently in [5].

Extensionality treatment in this calculus is based on goal directed extension-
ality rules which closely connect the overall refutation search with unification
by allowing for mutually recursive calls. This suitably extends the higher-order
E-unification and E-resolution idea, as it turns the unification mechanism into
a most general, dynamic theory unification mechanism. Unification may now



itself employ a Henkin complete higher-order theorem prover as a subordinated
reasoning system and the theory under consideration (which is defined by the
sum of all clauses in the actual search space) dynamically changes.

In order to illustrate Leo’s extensional higher-order resolution approach we
discuss the TPTP (v3.0.1 as of 20 January 2005, see http://www.tptp.org) exam-
ple SET171+3. This problem addresses distributivity of union over intersection1

∀Aoα, Boα, Coα A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

In a higher-order context we can define the relevant set operations as follows

∪ := λYoα, Zoα (λxα x ∈ Y ∨ x ∈ Z)

∩ := λYoα, Zoα (λxα x ∈ Y ∧ x ∈ Z)

∈:= λZα, Xoα (X Z)

After recursively expanding the definitions in the input problem, i.e., com-
pletely reducing it to first principles, Leo turns it into a negated unit clause. Un-
like in standard first-order resolution, clause normalization is not a pre-process
in Leo but part of the calculus. Internalized clause normalization is an impor-
tant aspect of extensional higher-order resolution in order to support the (recur-
sive) calls from higher-order unification to the higher-order reasoning process.
Thus, Leo internally provides rules to deal with non-normal form clauses and
this is why it is sufficient to first turn the input problem into a single, usually
non-normal, negated unit clause. Then Leo’s internalized clause normalization
process can take care of subsequent normalization.

In our concrete case, this normalization process leads to the following unit
clause consisting of a (syntactically not solvable) unification constraint (here
Boα, Coα, Doα are Skolem constants and Bx is obtained from expansion of x ∈
B):

[(λxα Bx ∨ (Cx ∧ Dx)) =? (λxα (Bx ∨ Cx) ∧ (Bx ∨ Dx))]

Note that negated primitive equations are generally automatically converted
by Leo into unification constraints. This is why [(λxα Bx ∨ (Cx ∧ Dx)) =?

(λxα (Bx ∨ Cx) ∧ (Bx ∨ Dx))] is generated, and not [(λxα Bx ∨ (Cx ∧ Dx)) =
(λxα (Bx∨Cx)∧ (Bx∨Dx))]F . Observe that we write [.]T and [.]F for positive
and negative literals, respectively. This unification constraint has no ’syntactic’
pre-unifier. It is solvable ’semantically’ though with the help of the extensionality

1 We use Church’s notation oι, which stands for the functional type ι → o. The reader
is referred to [1] for a more detailed introduction. In the remainder, o will denote the
type of truth values and ι defines the type of individuals. Other small Greek letters
will denote arbitrary types. Thus, Xoα (resp. its η-long form λyα Xy) is actually a
characteristic function denoting the set of elements of type α for which the predicate
associated with X holds. We use the square dot ‘ ’ as an abbreviation for a pair of
brackets, where ‘ ’ stands for the left one with its partner as far to the right as is
consistent with the bracketing already present in the formula.



principles. Thus, Leo applies its goal directed functional and Boolean extension-
ality rules which replace this unification constraint (in an intermediate step) by
the negative literal (where x is a Skolem constant):

[(Bx ∨ (Cx ∧ Dx)) ⇔ ((Bx ∨ Cx) ∧ (Bx ∨ Dx))]F

This intermediate unit clause is not in normal form and subsequent normalization
generates 12 clauses including the following four:

[Bx]F [Bx]T ∨ [Cx]T [Bx]T ∨ [Dx]T [Cx]F ∨ [Dx]F

This set is essentially of propositional logic character and trivially refutable by
Leo. For the complete proof of the problem Leo needs less than one second (on
a notebook with an Intel Pentium M processor 1.60GHz and 2 MB cache) and
a total of 36 clauses is generated.

4 Leo is an Interactive Theorem Prover

Leo is an interactive theorem prover based on extensional higher-order resolu-
tion. The motivation for this is twofold. Firstly, the provided interaction features
support interaction with the automation of this calculus. For this an automated
proof attempt may be interrupted at any time and the system developer can
then employ the interaction facilities to investigate the proof state and to per-
form some steps by hand. He may then again proceed with the automated proof
search. Secondly, the interaction facilities can be employed for tutoring higher-
order resolution in the classroom and they have in fact been employed for this
purpose.

We illustrate below an interactive session with Leo within the Ωmega sys-
tem. For this we assume that the Ωmega system has already been started.
Interaction within Ωmega is supported in two ways. We may use the graphical
user interface Loui, or Ωmega’s older Emacs based command line interface.
Both interfaces can be started and used simultaneously. In this section we de-
scribe interaction only within the Emacs based interface. All commands could
alternatively also be invoked via Loui.

After starting Ωmega we are offered the following command line prompt in
the Emacs interface:

OMEGA:

We assume that we have added the following problem, formalized in Post,
to Ωmega’s structured knowledge bass.

∃Qo(oι)(oι) poo((aoιmι) ∧ ((boιmι) ∨ (coιmι))) ⇒ poo((aoιmι) ∧ (Qo(oι)(oι)coιboι))

The Post representation of this problem is



(th~defproblem little

(in base)
(constants (p (o o)) (a (o i)) (b (o i)) (c (o i)) (m i))

(conclusion
(EXISTS (lam (Q (o (o i) (o i)))

(IMPLIES (p (AND (a m) (OR (b m) (c m))))

(p (AND (a m) (Q c b))))))))

All problems have names and the name chosen for our problem is little. The
in-slot in this problem definition specifies Mbase theories from which further
knowledge, e.g., definitions and lemmata, is inherited. Examples of some Mbase

theories are typed-set, relation, function, and group. Our very simple
example problem is defined in the knowledge repository for theory base, and no
further information is included. The assertion we want to prove is specified in the
conclusion-slot and the typed constant symbols which occur in the assertion
are declared in the constants-slot.

We now load all problems defined in theory base and then call the Ωmega

command show-problems to display the names of all problems. ’[...]’ indicates
that some less interesting output information from Leo has been deleted here
for presentation purposes.

OMEGA: load-theory-problems base

[...]

OMEGA: show-problems
[...]

EMBEDDED
little
less-little

TEST
[...]

Next we initialize the Ωmega proof assistant with the proof problem little

and display Ωmega’s central proof object after initialization.

OMEGA: prove little
Changing to proof plan LITTLE-1

OMEGA: show-pds
...

LITTLE () ! (EXISTS [Q:(O (O I) (O I))] OPEN
(IMPLIES
(P (AND (A M) (OR (B M) (C M))))

(P (AND (A M) (Q C B)))))

OMEGA:

Then we initialize Leo with this problem. Here we choose the default set-
tings (suggested in the ’[]’-brackets) as input parameters for Leo. Each tactic
(here EXT-INPUT-RECURSIVE) determines a specific flag setting of Leo. This flag
setting is displayed after initialization.

OMEGA: leo-initialize

NODE (NDLINE) Node to prove with LEO: [LITTLE]
TACTIC (STRING) The tactic to be used by LEO: [EXT-INPUT-RECURSIVE]

THEORY-LIST (SYMBOL-LIST) Theories whose definitions will be expanded: [()]
Expanding the Definitions....
Initializing LEO....



Applying Clause Normalization....

============== variable settings ================
Value(LEO*F-FO-ATP-RESOURCE) = 0

Value(LEO*F-COOPERATE-WITH-FO-ATP) = NIL
Value(LEO*F-TACTIC) = EXT-INPUT-RECURSIVE
Value(LEO*F-VERBOSE-HALF) = NIL

Value(LEO*F-VERBOSE) = NIL
Value(LEO*F-WEIGHT-AGE-INT) = 4

Value(LEO*F-SOS-TYPE) = TOSET
Value(LEO*F-USABLE-TYPE) = INDEX
Value(LEO*F-CLAUSE-LENGTH-RESTRICTION) = NIL

Value(LEO*F-SAVE-FO-CLAUSES) = T
Value(LEO*F-SUBSUM-MATCH-RESSOURCE) = NIL

Value(LEO*F-SOS-SUBSUMTION) = NIL
Value(LEO*F-BACKWARD-SUBSUMTION) = T

Value(LEO*F-FORWARD-SUBSUMTION) = T
Value(LEO*F-PARAMODULATION) = NIL
Value(LEO*F-REMOVE=EQUIV-NEG) = NIL

Value(LEO*F-REMOVE=EQUIV-POS) = NIL
Value(LEO*F-REMOVE=LEIBNIZ-NEG) = NIL

Value(LEO*F-REMOVE=LEIBNIZ-POS) = NIL
Value(LEO*F-EXT-DECOMPOSE-ONLY) = T

Value(LEO*F-EXT-UNICONSTRCLS-ONLY) = NIL
Value(LEO*F-EXTENSIONALITY-NUM) = 6
Value(LEO*F-EXT-INPUT-TREATMENT-RECURSIVE) = T

Value(LEO*F-EXT-INPUT-TREATMENT) = NIL
Value(LEO*F-EXTENSIONALITY) = T

Value(LEO*F-NO-FLEX-UNI) = NIL
Value(LEO*F-UNI-RESSOURCE) = 5
Value(LEO*F-PRIM-SUBST-TYPES) = NIL

Value(LEO*F-PRIMITIVE-SUBSTITUTION) = T
Value(LEO*F-FACTORIZE) = T

Value(LEO*F-AUTO-PROOF) = NIL
Value(LEO*F-MAIN-COUNTER) = 0

=========== end variable settings =============

OMEGA:

During initialization Leo first recursively expands defined symbols occurring
in the assumptions or the assertion with respect to the specified theories (here
we have none). Then it negates the assertion, turns it into a negated unit input
clause and subsequently normalizes it with its internalized normalization rules.
The resulting clauses are put either into Leo’s set of support (if they stem from
the assertion) or the usable set (if they stem from assumptions; here we have
none). Leo clauses have unique names starting with cl and followed by an au-
tomatically created number. In ’( )’-brackets further clause specific information
follows and the ’{ }’-brackets contain the clause literals. Negative literals have
a leading - and positive literals a leading +. Type information is usually not
displayed. All symbols starting with dc are free variables.

OMEGA: show-clauses

================= BEGIN ===============================
The set of support

cl3(1.5|1):{(-(p (and (a m) (dc2 c b))))}

cl4(1.5|1):{(+(p (and (a m) (or (b m) (c m)))))}
The set of usable clauses

================= END =================================

Leo offers a list of commands, for instance, to apply calculus rules, to ma-
nipulate and maintain the proof state, or to display information.



OMEGA: show-commands leo-interactive

[...]
DECOMPOSE: Applies decomposition on a clause.

DELETE-CLAUSE: Deletes a clause from the current environment.
END-REPORT: Closes the report stream.
EXECUTE-LOG: Reads a log file stepwise and eventuelly stores

some of its commands in a new log file.
EXIT: Leave the current command interpreter top level.

EXT: Applies extensionality rule on a clause.
[...]
FACTORIZE: Applies factorization rule on a clause.

[...]
GUI-PROOF: Displays the LEO proof of node in the GUI.

[...]
LEO-PROVE: Prove with default parameter-settings.

NEW-LOG: Sets the log mode and the log file name to the
given path name.

PARA: Applies paramodulation rule on two clauses.

PRE-UNIFIERS: Computes the pre-unifiers of a clause.
PRE-UNIFY: Applies pre-unification on a clause.

PRIM-SUBST: Applies primitive substitution rule on a clause.
[...]

READ-LEO-PROBLEM: Read a file, which contains a POST
representation of a problem, and transforms this
problem into clause normal form.

[...]
RESOLVE: Applies resolution rule on two clauses.

SAVE-CLAUSE: Save a clause for use after termination of LEO
under its clausename.

[...]

SET-FLAG: Sets a global flag
SET-TACTIC: Sets the tactic.

SHOW-CLAUSE: Displays a clause, determined by name.
SHOW-CLAUSES: Displays the two clause sets: the set of support

(LEO*G-SOS) and the set of usable clauses
(LEO*G-USABLE).

[...]

PROJECT: Applies projection rule on a clause.
SHOW-DERIVATION: Displays a linearized derivation of a the clause.

SHOW-FLAGS: Shows the global flags
SHOW-LEO-PROBLEM: Displays the given problem in POST.
SHOW-LEO-PROOF: Displays the linearized LEO proof

SHOW-TACTICS: Shows the tactics.
SHOW-VARS: Shows the global vars.

START-REPORT: Opens the tex and html report streams.
STEP-LOG: Reads a log file stepwise and eventuelly stores

some of its commands in a new log file.
SUBSUMES: Determines whether a clause subsumes another clause.
[...]

WRITE-DERIVATION: Writes the derivation of a clause in a file.
WRITE-LOUIDERIVATION: Writes the derivation of a clause in LOUI format

in a file.
WRITE-LOUIPROOF: Writes the proof in LOUI format in a file.
WRITE-PROOF: Writes the proof in a file.

OMEGA:

We apply the resolution rule to the clause cl3 and cl4 on literal positions
1 and 1 respectively. This results in the clause cl5 which consists only of a
unification constraint. In this display unification constraints are presented as
negated equations (on the datastructure level they are distinguished from them
as already mentioned in Section 3). Provided that we can solve the unification
constraint cl5, we have found an empty clause and we are done.

OMEGA: resolve



NAME1 (STRING) of a clause: cl3

NAME2 (STRING) of a clause: cl4
POSITION1 (INTEGER) in clause 1: 1

POSITION2 (INTEGER) in clause 2: 1
Clause 1: cl3(1.5|1):{(-(p (and (a m) (dc2 c b))))}.
Clause 2: cl4(1.5|1):{(+(p (and (a m) (or (b m) (c m)))))}.

Res(CL3[1],CL4[1]):
(cl5(1|2):{(-(= (p (and (a m) (dc37 c b)))

(p (and (a m) (or (b m) (c m))))))}).

OMEGA:

We ask Leo to compute the pre-unifiers for this unification constraint.

OMEGA: pre-unifiers

NAME (STRING) of a clause: cl5
The clause: cl5(1|2):{(-(= (p (and (a m) (dc37 c b)))

(p (and (a m) (or (b m) (c m))))))}.

pre-unifiers: ({(dc37 --> [lam ?h45 ?h46.(or (?h46 m) (?h45 m))])}
{(dc37 --> [lam ?h45 ?h46.(or (?h46 m) (c m))])}

{(dc37 --> [lam ?h45 ?h46.(or (b m) (?h45 m))])}
{(dc37 --> [lam ?h45 ?h46.(or (b m) (c m))])}).

OMEGA:

Pre-unification of clause cl5 first generates these four pre-unifiers and then
subsequently applies them to cl5. Instantiation of different pre-unifiers usually
leads to different result clauses. In our simple case here, however, we obtain four
copies of the empty clause.

OMEGA: pre-unify cl5
The clause: cl5(1|2):{(-(= (p (and (a m) (dc37 c b)))

(p (and (a m) (or (b m) (c m))))))}.

Result: (cl14(0|3):{NIL} cl15(0|3):{NIL} cl16(0|3):{NIL} cl17(0|3):{NIL}).

OMEGA:

We now display the derivation of clause cl14 in the Emacs interface. cl14
is the clause we obtain by application of the first pre-unifier from above. The
employed pre-unifier (see clause cl7) is displayed in non-idempotent form. After
applying pre-unifiers Leo subsequently normalizes the resulting clauses. This is
why we have this superfluous looking normalization step from cl7 to cl14.

OMEGA: show-derivation cl14
================= clauses ==================

=============
Clause cl2 is #<Justified by ((Input))> :

cl2(20|0):{(+(not (exists [lam dc-20735.
(implies (p (and (a m) (or (b m) (c m))))

(p (and (a m) (dc-20735 c b))))])))}

=============
================== proof ===================

Clause cl2 is #<Justified by ((Input))> :
cl2(20|0):{(+(not (exists [lam dc-20735.
(implies (p (and (a m) (or (b m) (c m))))

(p (and (a m) (dc-20735 c b))))])))}
=============

Clause cl3 is #<Justified by ((CNF)) on (cl2)> :
cl3(1.5|1):{(-(p (and (a m) (dc-20738 c b))))}

=============
Clause cl2 is #<Justified by ((Input))> :
cl2(20|0):{(+(not (exists [lam dc-20735.



(implies (p (and (a m) (or (b m) (c m))))

(p (and (a m) (dc-20735 c b))))])))}
=============

Clause cl4 is #<Justified by ((CNF)) on (cl2)> :
cl4(1.5|1):{(+(p (and (a m) (or (b m) (c m)))))}
=============

Clause cl5 is #<Justified by
((RES 1 1) (RENAMING {(dc2 --> dc37)})) on (cl3 cl4)> :

cl5(1|2):{(-(= (p (and (a m) (dc37 c b)))
(p (and (a m) (or (b m) (c m))))))}

=============

Clause cl7 is #<Justified by
((UNI {(?h113 --> [lam ?h122 ?h123.m])

(?h107 --> [lam ?h120 ?h121.m])
(?h101 --> [lam ?h111 ?h112.(?h111 (?h113 ?h111 ?h112))])

(?h100 --> [lam ?h105 ?h106.(?h106 (?h107 ?h105 ?h106))])
(dc37 --> [lam ?h98 ?h99.(or (?h100 ?h98 ?h99)

(?h101 ?h98 ?h99))])})

(RENAMING {})) on (cl5)> :
cl7(0|2):{NIL}

=============
Clause cl14 is #<Justified by ((CNF)) on (cl7)> :

cl14(0|3):{NIL}
=============

========== clauses in proof: 7 ============

OMEGA:

We now slightly modify our example problem and obtain a much harder one.

∃Qo(oι)(oι) poo((aoιmι) ∧ ((boιmι) ∨ (coιmι))) ⇒ poo((Qo(oι)(oι)coιboι) ∧ (aoιmι))

In Post this problem is represented as

(th~defproblem less-little
(in base)
(constants (p (o o)) (a (o i)) (b (o i)) (c (o i)) (m i))

(conclusion
(EXISTS (lam (Q (o (o i) (o i)))

(IMPLIES (p (AND (a m) (OR (b m) (c m))))
(p (AND (Q c b) (a m))))))))

While problem little can still be solved by simple higher-order to first-order
transformational approaches, this is not easily the case for the modified problem
less-little since extensionality reasoning is required. The syntactic difference
to little, however, is small. We only switched the two inner conjuncts in the
right hand side of the implication. We now first load the problem, then initialize
Leo and then display Leo’s initial proof state.

OMEGA: prove less-little
Changing to proof plan LESS-LITTLE-1

OMEGA: show-pds

...
LESS-LITTLE () ! (EXISTS [Q:(O (O I) (O I))] OPEN

(IMPLIES

(P (AND (A M) (OR (B M) (C M))))
(P (AND (Q C B) (A M)))))

OMEGA: leo-initialize

NODE (NDLINE) Node to prove with LEO: [LESS-LITTLE]
TACTIC (STRING) The tactic to be used by LEO: [EXT-INPUT-RECURSIVE]



THEORY-LIST (SYMBOL-LIST) Theories whose definitions will be expanded: [()]

Expanding the Definitions....
[...]

OMEGA: show-clauses
================= BEGIN ===============================

The set of support
cl3(1.5|1):{(-(p (and (dc-304 c b) (a m))))}

cl4(1.5|1):{(+(p (and (a m) (or (b m) (c m)))))}
The set of usable clauses

================= END =================================

OMEGA:

Again we resolve between clauses cl3 and cl4.

OMEGA: resolve cl3 cl4 1 1
Clause 1: cl3(1.5|1):{(-(p (and (dc-304 c b) (a m))))}.

Clause 2: cl4(1.5|1):{(+(p (and (a m) (or (b m) (c m)))))}.
Res(CL3[1],CL4[1]): (cl5(1|2):{(-(= (p (and (dc1573 c b) (a m)))

(p (and (a m) (or (b m) (c m))))))}).

OMEGA:

Now the resulting clause cl5 is not pre-unifiable. Its unification constraint
has no ’syntactic’ solution.

OMEGA: pre-unifiers cl5

The clause: cl5(1|2):{(-(= (p (and (dc1573 c b) (a m)))
(p (and (a m) (or (b m) (c m))))))}.

pre-unifiers: NIL.

OMEGA: pre-unify cl5

The clause: cl5(1|2):{(-(= (p (and (dc1573 c b) (a m)))
(p (and (a m) (or (b m) (c m))))))}.

Result: NIL.

OMEGA:

However, there is a semantic solution which we find by application of Leo’s
combined extensionality treatment. This first decomposes the unification con-
straint and then applies Boolean extensionality (beforehand it usually tries to
exhaustively apply functional extensionality, which is not applicable here).

OMEGA: decompose cl5
The clause: cl5(1|2):{(-(= (p (and (dc1500 c b) (a m)))

(p (and (a m) (or (b m) (c m))))))}.
Decomposed: (cl6(1|3):{(-(= (and (dc1500 c b) (a m))

(and (a m) (or (b m) (c m)))))}).

OMEGA: ext cl6
The clause: cl6(1|3):{(-(= (and (dc1500 c b) (a m))

(and (a m) (or (b m) (c m)))))}

Result: (cl14(4.5|4):{(+(a m) +(dc-4682 c b))}
cl13(6.0|4):{(+(c m) +(b m) +(dc-4681 c b))}

cl12(1.5|4):{(+(a m))}
cl11(4.5|4):{(+(c m) +(b m) +(a m))}
cl10(6.0|4):{(-(b m) -(a m) -(dc-4680 c b))}

cl9(6.0|4):{(-(c m) -(a m) -(dc-4679 c b))}).

OMEGA:

This set of resulting (first-order like) clauses is refutable and Leo can find a
refutation. Unfortunately Leo is very bad at first-order reasoning (since it does



not employ optimizations and implementation tricks that are well known in the
first-order community) and therefore the refutation of this clause set is not very
efficient. This motivates a cooperation with first-order provers; see Sections 5
and 7 for further details.

5 Leo is an Automated Theorem Prover

Leo is first and foremost an automated theorem prover for classical higher-order
logic. Within Ωmega it can be applied to prove (sub)problems automatically.
Below we first reinitialize Ωmega with the problem less-little and then call
Leo in its standard flag setting to it.

OMEGA: prove less-little
Changing to proof plan LESS-LITTLE-7

OMEGA: show-pds
...

LESS-LITTLE () ! (EXISTS [Q:(O (O I) (O I))] OPEN
(IMPLIES

(P (AND (A M) (OR (B M) (C M))))
(P (AND (Q C B) (A M)))))

OMEGA: call-leo-on-node

NODE (NDLINE) Node to prove with LEO: [LESS-LITTLE]
TACTIC (STRING) The tactic to be used by LEO: [EXT-INPUT-RECURSIVE]

SUPPORTS (NDLINE-LIST) The support nodes: [()]
TIME-BOUND (INTEGER) Time bound for proof attempt: [100]
THEORY-LIST (SYMBOL-LIST) Theories whose definitions will be

expanded: [(ALL)]
DEFS-LIST (SYMBOL-LIST) Symbols whose definitions will not be

expanded: [(= DEFINED EQUIV)]
INSERT-FLAG (BOOLEAN) A flag indicating whether a partial result will
be automatically inserted.: [()]

Looking for expandable definitions ....
Initializing LEO....

Applying Clause Normalization....
[...]

Start proving ...
Loop: (100sec left)
#1 (SOS 2 USABLE 0 EXT-QUEUE 0 FO-LIKE 4)

(99sec left)
#2 (SOS 1 USABLE 1 EXT-QUEUE 0 FO-LIKE 4)

[...]
(94sec left)

#29 (SOS 72 USABLE 12 EXT-QUEUE 0 FO-LIKE 98)
(91sec left)
#30 (SOS 111 USABLE 13 EXT-QUEUE 0 FO-LIKE 138)

Total LEO time: 8446

**** proof found (next clause nr: cl599) *****
; cpu time (non-gc) 7,600 msec user, 0 msec system
; cpu time (gc) 750 msec user, 10 msec system

; cpu time (total) 8,350 msec user, 10 msec system
; real time 8,451 msec

; space allocation:
; 8,909,213 cons cells, 3,568 symbols, 122,908,112 other bytes,

; 0 static bytes

OMEGA:



Leo’s Architecture and Main Loop

Leo’s basic architecture adapts the set of support approach. The four corner-
stones of Leo’s architecture (see Fig. 1) are:
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Fig. 1. Leo’s main architecture (the ’dotted lines’ indicates functionalities which are
usually disabled or not fully available yet)

USABLE The set of all usable clauses, which initially only contains clauses that
are assumed to be satisfiable, i.e., the clauses stemming from the assumptions
of the theorem to prove.

SOS The set of support, which initially only contains the clauses belonging to
the negated assertion.

EXT The set of all extensionally interesting clauses, i.e., heuristically determined
clauses which are stored for extensionality treatment. Initially this set is
empty. See Step 12 of the main loop description below.

CONT The set of all continuations created by the higher-order pre-unification
algorithm when reaching the pre-unification search depth limit. The idea is
to support continuations of interrupted pre-unification attempts at a later
time. (This store is not activated yet in Leo)



Leo’s main loop (see Fig. 1) consists of the steps 1–13 as described below
(the Initialize step is applied only at the very beginning of the proof attempt
and is not part of the main loop). This loop, whose data-flow is graphically
illustrated in Figure 1, is executed until an empty clause, i.e., a clause consisting
no literals or only of flex-flex-unification constraints2, is detected.

Leo employs a higher-order subsumption test that is, apart from the tech-
nical details, very similar to the ones employed in first-order provers. Instead of
first-order matching, the criteria for comparing the single literals is higher-order
simplification matching, i.e., matching with respect to the deterministic higher-
order simplification rules. It is theoretically possible to develop and employ a
much stronger subsumption filter in Leo. This is future work. However, a per-
fect extensional higher-order subsumption filter, which would be the ideal case,
is not feasible since extensional higher-order unification is undecidable.

Initialize The specified assumptions and the assertion are pre-clausified, i.e.,
the assumptions become positive unit (pre-)clauses and the assertion be-
comes a negative unit (pre-)clause. Definitions are expanded (with respect
to the specified theories) and the pre-clauses are normalized. Within the
clause normalization process the positive primitive equations are usually re-
placed by respective Leibniz equations. Negative primitive equations are not
expanded but immediately encoded as extensional unification constraints.
Furthermore, identical literals are automatically factorized. The assumption
clauses are passed to USABLE and the assertion clause to SOS.

Step 1 (Choose Lightest) Leo chooses the lightest (wrt. to a clause order-
ing), i.e., topmost, clause from SOS. If this clause is a pre-clause, i.e., not
in proper clause normal form, then Leo applies clause normalization to it
and integrates the resulting proper clauses into SOS. Depending on the flag-
setting forward and/or backward subsumption is applied; see also step 13).

Step 2 (Insert to USABLE) Leo inserts the lightest clause into USABLE while
employing forward and/or backward subsumption depending on LEO’s over-
all flag-setting.

Step 3 (Resolve) The lightest clause is resolved against all clauses in USABLE

and the results are stored in RESOLVED.

Step 4 (Paramodulate) Paramodulation is applied between all clauses in
USABLE and the lightest clause, and the results are stored in PARAMOD. (This
step is currently not activated in Leo; currently Leibniz equality is globally
employed instead of primitive equality.)

Step 5 (Factorize) The lightest clause is factorized and the resulting clauses
are stored in FACTORIZED.

Step 6 (Primitive Substitution) Leo applies the primitive substitution prin-
ciple to the lightest clause. The particular logical connectives to be imi-
tated in this step are specified by a flag. The resulting clauses are stored in
PRIM-SUBST.

2 A flex-flex-unification constraint has topmost free variables in each of the two terms
to be unified. Flex-flex-constraints are always solvable.



Step 7 (Extensionality Treatment) The heuristically sorted store EXT con-
tains extensionally interesting clauses (i.e., clauses with unification con-
straints that may have additional pre-unifiers, if the extensionality rules
are taken into account). Leo chooses the topmost clause and applies the
compound extensionality treatment to all extensionally interesting literals.

Step 8 (Continue Unification) The heuristically sorted store CONT contains
continuations of interrupted higher-order pre-unification attempts from the
previous loops (cf. step 10). If the actual unification search depth limit (spec-
ified by a flag, whose value can be dynamically increased during proof at-
tempts) allows for a deeper search in the current loop, then the additional
search for unifiers will be performed. The resulting instantiated clauses are
passed to UNI-CONT and the new continuations are sorted and integrated
into CONT. (This step is currently not activated in Leo)

Step 9 (Collect Results) In this step Leo collects all clauses that have been
generated within the current loop from the stores RESOLVED, PARAMOD,

FACTORIZED, PRIM-SUBST, EXT-MOD, and UNI-CONT, eliminates obvious tau-
tologies, and stores the remaining clauses in PROCESSED.

Step 10 (Pre-Unify) Leo tries to pre-unify the clauses in PROCESSED. Thus, it
applies the pre-unification rules exhaustively, thereby spanning a unification
tree until it reaches the unification search depth limit specified by a special
flag. The unification search depth limit specifies how many subsequent flex-
rigid-branchings may at most occur in each path through the unification
search tree. The pre-unified, i.e., instantiated, clauses are passed to UNIFIED.
The main idea of this step is to filter out all those clauses with syntactically
non-solvable unification constraints (modulo the allowed search depth limit).
But note that there are exceptions, which are determined in steps 11 and 12.
That means that not all syntactically non-unifiable clauses are removed from
the search space as this would, e.g., also remove the extensionally interesting
clauses.

Step 11 (Store Continuations) Each time a pre-unification attempt in step
10 is interrupted by reaching the unification search depth limit, a respective
continuation is created. This object stores the state of the interrupted uni-
fication search process, i.e., it contains the particular unification constraints
as given at the point of interruption together with the remaining literals of
the clause in focus and some information on the interrupted unification pro-
cess. Continuations allow the prover to continue the interrupted unification
process at any later time. The set of all such continuations is integrated in
the sorted store CONT. (This step is not activated yet in Leo.)

Step 12 (Store Extensionally Interesting Clauses) In the pre-unification
process in step 10 Leo analyzes the unification pairs in focus in order to
estimate whether this unification constraint and thus this clause is exten-
sionally interesting, i.e., probably solvable with respect to both extensional-
ity principles. All extensionally interesting clauses are passed to EXT, which
is heuristically sorted. While inserting the clauses into EXT forward and/or
backward subsumption is applied in order to minimize the number of clauses
in this store.



Step 13 (Integrate to SOS) In the last step Leo integrates all pre-unified
clauses in UNIFIED into the sorted store SOS. Forward and/or backward sub-
sumption is employed depending on the flag-setting.

6 Visualizing Leo Derivations in Loui

Ωmega’s graphical user interface Loui [24] usually displays Ωmega proof ob-
jects in multiple modalities: a graphical map of the proof tree, a linearized pre-
sentation of the proof nodes with their formulae and justifications, and a term
browser. Display of type information is optional and is determined by a switch
in Loui.

Loui can be used to display proofs of other systems as well. Leo’s con-
nection to Loui supports the graphical presentation of extensional higher-order
resolution derivations and proofs with the gain for the user that the structure of
interactively or automatically created derivations becomes more transparent as
is possible in the linearized display shown in Section 4.

Display of external proofs is supported by Loui via a specific interface lan-
guage. In order to display Leo’s resolution proofs a simple mapping of the inter-
nal proof state in Leo into this interface language is required. Fig. 2 illustrates
the Loui visualization of the automatically generated Leo proof for problem
less-little from Section 5, and Fig. 3 displays part of the respective interface
language representation of this proof.

7 Experiments with Leo

Leo has successfully been applied to different higher-order examples. For ex-
ample, in [4] Leo’s performance on simple examples about sets has been inves-
tigated. One example is the already addressed TPTP problem SET171+3, i.e.,
distributivity of union over intersection. Despite their simplicity such examples
are often non-trivial for automated first-order theorem provers. More details on
this discussion can be found in [9]. Further, proof examples have been investi-
gated in [5].

In [9] a cooperation of Leo with a first-order theorem prover (we used the au-
tomated theorem prover Bliksem [11] since this was already well integrated in the
OMEGA framework) has been proposed and investigated. Thus, Leo has been
slightly extended so that it now constantly accumulates a bag of first-order like
clause. First-order like clauses do not contain any ‘real’ higher-order subterms
(such as a λ-abstraction or embedded equations), and are therefore suitable for
treatment by a first-order ATP or even a propositional logic decision procedure
after appropriate transformation. We use the transformation mapping as also
employed in Tramp [18], which has been previously shown to be sound and is
based on [17]. Essentially, it injectively maps expressions such as P (f(a)) to ex-
pressions such as @1

pred(P, @1
fun(f, a)), where the @ are new first-order operators

describing function and predicate application for particular types and arities.



Fig. 2. Loui usually displays Ωmega proof plans and Ωmega natural deduction proofs.
In addition it can be employed to display Leo’s resolution proofs. Here we display the
derivation of clause cl7 from example problem less-little.



[...]
insertNode(grounded none "cl3" ["cl3""cl2"]

"([NOT (O O)] ([P (O O)] ([AND (O O O)] ([DC-11438 (O (O I) (O I))]
[C (O I)] [B (O I)]) ([A (O I)] [M I]))))"

"((CNF))" ["cl2"] false)
insertNode(grounded none "cl4" ["cl4""cl2"]

"([P (O O)] ([AND (O O O)] ([A (O I)] [M I]) ([OR (O O O)] ([B (O I)]
[M I]) ([C (O I)] [M I]))))"

"((CNF))" ["cl2"] false)

insertNode(grounded none "cl5" ["cl5""cl4""cl3""cl2"]

"([NOT (O O)] ([= (O O O)] ([P (O O)] ([AND (O O O)] ([A (O I)] [M I])
([OR (O O O)] ([B (O I)] [M I]) ([C (O I)] [M I])))) ([P (O O)]
([AND (O O O)] ([dc2762 (O (O I) (O I))] [C (O I)] [B (O I)])

([A (O I)] [M I])))))"
"((RES 1 1) (RENAMING {(dc2705 --> dc2762)}))" ["cl4""cl3"] false)

insertNode(grounded none "cl6" ["cl6""cl5""cl4""cl3""cl2"]
"([NOT (O O)] ([= (O O O)] ([AND (O O O)] ([A (O I)] [M I]) ([OR (O O O)]

([B (O I)] [M I]) ([C (O I)] [M I]))) ([AND (O O O)] ([dc2762 (O (O I)
(O I))] [C (O I)] [B (O I)]) ([A (O I)] [M I]))))"

"((DEC (1)))" ["cl5"] false)

[...]

Fig. 3. Part of the Loui interface language representation of the Leo proof for problem
less-little as communicated to Loui.

The injectivity of the mapping guarantees soundness, since it allows each proof
step to be mapped back from first-order to higher-order.

Whenever Leo creates a new clause it checks whether this is a first-order
like clause, i.e., whether it is in the domain of the employed transformational
mapping. If this is the case, a copy of it is passed to the store of first-order
like clauses. In each loop of Leo’s search procedure a fast first-order prover
can now be applied to the set of first-order like clauses to find a refutation.
In this case an overall proof has been found. The experiments in [9] show that
this is a very promising approach to combining the benefits of higher-order and
first-order theorem provers. Whereas this cooperative approach can solve the
problem less-little only slightly faster than Leo alone, many examples in [9]
show that there are often significant improvements possible.

OMEGA: prove less-little
Changing to proof plan LESS-LITTLE-10

OMEGA: call-leo-on-node

NODE (NDLINE) Node to prove with LEO: [LESS-LITTLE]
TACTIC (STRING) The tactic to be used
by LEO: [EXT-INPUT-RECURSIVE]fo-atp-cooperation

SUPPORTS (NDLINE-LIST) The support nodes: [()]
TIME-BOUND (INTEGER) Time bound for proof attempt: [100]

THEORY-LIST (SYMBOL-LIST) Theories whose definitions will be
expanded: [(ALL)]
DEFS-LIST (SYMBOL-LIST) Symbols whose definitions will not be

expanded: [(= DEFINED EQUIV)]
INSERT-FLAG (BOOLEAN) A flag indicating whether a partial result

will be automatically inserted.: [()]
Looking for expandable definitions ....

Initializing LEO....
Applying Clause Normalization....
[...]



Start proving ...

Loop: (100sec left)
#1 (SOS 2 USABLE 0 EXT-QUEUE 0 FO-LIKE 4)

(99sec left)
#2 (SOS 1 USABLE 1 EXT-QUEUE 0 FO-LIKE 4)

(98sec left)

[...]
(96sec left)

#9 (SOS 3 USABLE 4 EXT-QUEUE 0 FO-LIKE 12)
[...]
Calling bliksem process 22267 with time resource 50sec .

PARSING BLIKSEM OUTPUT ...
Bliksem has found a saturation.

[...]
(96sec left)

#10 (SOS 10 USABLE 5 EXT-QUEUE 0 FO-LIKE 20)
[...]
(94sec left)

#21 (SOS 39 USABLE 9 EXT-QUEUE 0 FO-LIKE 60)
Calling bliksem process 22454 with time resource 50sec .

bliksem Time Resource in seconds:
PARSING BLIKSEM OUTPUT ...

Bliksem has found a proof.
Bliksem’s time:
; cpu time (non-gc) 0 msec user, 0 msec system

; cpu time (gc) 0 msec user, 0 msec system
; cpu time (total) 0 msec user, 0 msec system

; real time 174 msec
; space allocation:
; 416 cons cells, 0 symbols, 15,720 other bytes, 8936 static bytes

Input Clauses: 75
clauses generated: 37

(94sec left)
#22 (SOS 53 USABLE 10 EXT-QUEUE 0 FO-LIKE 75)

Total LEO time: 7262
**** proof found (next clause nr: cl323) *****
; cpu time (non-gc) 5,650 msec user, 20 msec system

; cpu time (gc) 490 msec user, 0 msec system
; cpu time (total) 6,140 msec user, 20 msec system

; real time 7,273 msec
; space allocation:
; 5,218,155 cons cells, 1,886 symbols, 82,231,456 other bytes,

; 49536 static bytes

8 Related Work and Conclusion

There are only very few automated theorem provers available for higher-order
logic. Tps [2, 3], which is based on the mating search method, is the oldest and
probably still the strongest prover in this category. The extensionality reasoning
of Tps has recently been significantly improved by Brown in his PhD thesis [10].

Related to the cooperation approach is the work of Hurd [16] which re-
alizes a generic interface between higher-order logic and first-order theorem
provers. It is similar to the solution previously achieved by Tramp [18] in
Ωmega. Both approaches pass essentially first-order clauses to first-order the-
orem provers and then translate their results back into higher-order. More re-
cent related work on the cooperation of Isabelle with the first-order theo-
rem prover Vampire is presented in [19]. Further related work is Otter-λ (see
http://mh215a.cs.sjsu.edu/), which extends first-order logic with λ-notation.



Leo has initially been implemented as a demonstrator system for extensional
higher-order resolution in the context of the author’s PhD thesis [4]. The exper-
iments carried out with Leo so far, in particular, its recent combination with
a fast first-order theorem prover, have been very promising, and they motivate
further work in this direction. This is particularly true since interactive proof
assistants based on higher-order logic are recently gaining increasing attention
in formal methods.

During the implementation and later during the experiments many short-
comings of Leo have been identified by the author. These shortcomings are
both of theoretical and of practical nature. Altogether this calls for a proper
reimplementation of Leo. This reimplementation should ideally be independent
of Ωmega in order to provide a lean and easy to install and use automated
higher-order theorem to the community.
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