
Integrating Proof Assistants as
Reasoning and Verification Tools into a

Scientific WYSIWYG Editor

Serge Autexier Christoph Benzmüller Armin Fiedler
Henri Lesourd

Saarland University, Department of Computer Science,
P.O. Box 15 11 50, D-66041 Saarbrücken, Germany

{serge,chris,afiedler,henri}@ags.uni-sb.de

Abstract

A major problem for the acceptance of mathematical proof assistance systems in
mathematical practise is the shortcomings of their user interfaces. Often the in-
terfaces are developed bottom-up starting from the mathematical proof assistance
system. Therefore they usually focus on the individual system and its proof de-
velopment paradigm and neglect traditional forms to communicate proofs as used
by mathematicians. To address this problem we propose a top-down approach
where we start from an existing scientific WYSIWYG text editor which supports
the preparation of mathematical publications in high quality typesetting and in-
tegrate a mathematical proof assistance system to support proof development and
validation. Concretely, we extend the document format of the text editor by se-
mantic markup to encode formal mathematical content and to communicate with
the formal system. Additionally we provide interaction markup defining context-
sensitive means to control the mathematical proof assistance system through the
text editor.

1 Introduction

Unlike computer algebra systems (CASs), mathematical proof assistance sys-
tems have not yet achieved considerable recognition and relevance in math-
ematical practise. Clearly, the functionalities and strengths of these systems
are generally not sufficiently developed to attract mathematicians on the edge
of research. For applications in e-learning and engineering contexts their ca-
pabilities are often sufficient, though. However, even for these applications
significant progress is still required, in particular with respect to the user-
friendliness of the interfaces of these systems. One significant shortcoming of

Preprint submitted to Elsevier Preprint 15 March 2005

the current systems is that they are not fully integrated or accessible from
within standard mathematical text editors and that therefore a duplication of
the representation effort is typically required. For purposes such as tutoring,
communication, or publication, the mathematical content is in practise usually
encoded using common mathematical representation languages by employing
standard mathematical editors (e.g., LATEX and Emacs). Proof assistants, in
contrast, require fully formal representations and they are not yet sufficiently
linked with these standard mathematical text editors.

Therefore, rather than developing a new user interface for the mathemat-
ical assistance system Ωmega [15], the approach suggested in this paper is
to adapt Ωmega to serve as a mathematical service provider for the scientific
text editor TEXmacs [6]. Thereby, the main difference is that instead of pro-
viding a user interface only for the existing interaction means of Ωmega, we
extend Ωmega to support requirements as they arise in the preparation of a
mathematical document.

Generally, we aim at an approach that is independent of the particular
proof assistant system to be integrated. We present several aspects of this
more general viewpoint, but the focus of this paper is on the direct link be-
tween TEXmacs and Ωmega.

TEXmacs [6] is a scientific WYSIWYG text editor that provides pro-
fessional typesetting and supports authoring with powerful macro definition
facilities like in LATEX. It moreover allows for the definition of plug-ins that
automatically process the document and is thus especially well suited for an
integration with a mathematical assistance system.

The mathematical proof assistance system Ωmega [15] is based on the
Core calculus [2], which supports proof development directly at the assertion

level [8], where proof steps are justified in terms of applications of definitions,
lemmas, theorems, or hypotheses (collectively called assertions). In particu-
lar, Ωmega allows for proof development at a high level of abstraction using
knowledge-based proof planning. The proofs can then be verbalised in natural
language via the proof explanation system P.rex [7].

Now, consider a teacher, student, engineer, or mathematician who is about
to write a new mathematical document in TEXmacs. A first crucial step in
our approach is to link this new document to one or more mathematical the-
ories provided in a mathematical knowledge repository. By providing such a
link the document is initialised and TEXmacs macros for the relevant math-
ematical symbols are automatically imported; these macros overload the pure
syntactical symbols and link them to formal semantics. In a TEXmacs dis-
play mode, where this additional semantic information is hidden, the user may
then proceed with editing mathematical text as usual. The definitions, lem-
mas, theorems and especially their proofs give rise to extensions of the original
theory and the writing of some proof goes along with an interactive proof con-

2

struction in Ωmega. We define TEXmacs macros to annotate theory-specific
knowledge such as types, constants, definitions and lemmas. This allows us to
translate new textual definitions and lemmas into the formal representation,
as well as to translate (partial) textbook proofs into formal (partial) proof
plans. Thus, the semantic annotations are used to automatically build up a
corresponding formal representation in Ωmega, thus avoiding a duplicated
encoding effort of the mathematical content. Altogether, this allows for the
development of mathematical documents in professional type-setting quality
which in addition can be formally validated by Ωmega, hence obtaining ver-

ified mathematical documents.

This paper is organised as follows: First, we describe our approach in
abstract terms in Section 2 and give an overview of TEXmacs in Section 3.
Next, in Section 4, we show how we represent mathematical documents with
semantic markup in TEXmacs. Then, we add further markup that allows
the user to interact with the proof assistant through TEXmacs in Section 5
and we present an example in Section 6, before we discuss related work and
conclude the paper.

2 Our Approach

In our approach mathematical documents are prepared within TEXmacs in
direct interaction with Ωmega. This requires that (1) the semantic content
of the document is accessible for formal analysis and (2) the interactions in
either direction should be localised and aware of the surrounding context.

To make the document accessible for a formal analysis requires the extrac-
tion of the semantic content and its encoding in some representation suitable
for further formal processing. Instead of automatically extracting the seman-
tic content we currently use semantic annotations in the TEXmacs document,
which must be provided by the author. Therefore, one requirement is to keep
the burden of providing these annotations as low as possible.

Formal representations of mathematical objects in existing mathemati-
cal assistance systems such as definitions or proofs are very detailed whereas
many formally necessary details that are considered trivial or easily infer-
able are omitted in documents written by human beings. Thus, there is a
big gap between common mathematical language and formal, proof-system-
oriented representations. Hence, another requirement to interfacing TEXmacs

to Ωmega is to keep the amount of detail that must be provided by the user
in the TEXmacs document at an acceptable level.

We expect that the preparation of a mathematical document in interac-
tion with a proof assistance system requires more effort from the authors than
without, since the authors have to provide the semantic annotations for the
different elements in the document, for instance. They will accept the addi-

3

tional burden only if they receive an added value in return. Not speaking of
the benefits of semantics-based management and improved search support, an
immediate benefit of preparing a document in interaction with a proof assis-
tance system is the increase of the quality of the paper in terms of reliability.

These advantages are achieved by specific functionalities provided by the
proof assistance system, such as the ability

• to determine available symbols, definitions, axioms and lemmas known in
some specific context inside the document structure,

• to perform type-checking of arbitrary parts of the document, that is, of the
semantic elements contained therein with respect to the context determined
from the surrounding document parts, and

• to provide sophisticated proof-checking facilities that go beyond simple
checking of calculus rule applications.

This last feature not only increases the reliability of the document, but actually
can save the author time by automatically proving subgoals. Using existing
techniques to generate natural language verbalisations for formal proofs [8,7]
these textual proof fragments can even be directly integrated into the docu-
ment.

In order to allow both the user and the proof assistance system to ma-
nipulate the mathematical content of the document we need a common rep-
resentation format for this pure mathematical content implemented both in
TEXmacs and in Ωmega. To this end we define a language S, which in-
cludes many standard notions known from other specification languages, such
as terms, formulae, symbol declarations, definitions, lemmas and theorems.
The difference to standard specification languages is that our language S

• includes a language for proofs,

• provides means to indicate the logical context of different parts of a docu-
ment, which adjust to the textual structure of documents and are less rigid
than the usual structured theories used in specification languages, and

• accommodates various aspects of underspecification, that is, formal details
that the writer purposely omitted.

Given the language S, we augment the document format of TEXmacs by the
language S. Thus, if we denote the document format of TEXmacs by T , we
define a semantic document format T +S. By T +S we mean a conservative,
that is, still TEXmacs-acceptable, extension of the language T by language S.

Ideally, this format of the documents and especially the semantic annota-
tions should not be specific to Ωmega in order to allow for the combination
of the TEXmacs extension with other proof assistance systems as well as
the development of independent proof checking tools. However, an abstract
language for proofs that is suitable for our purposes and that allows for un-

4

derspecification is not yet completely fixed and thus our implementation cur-
rently supports only the assertion-level proof construction rules provided by
Core [2]. Hence, instead of defining a fixed language S, we divide S in one
part addressing mathematical concepts, formulae, and so forth, and one part
for mathematical proofs. The aim is to replace the current Core-dependent
proof representation language by the general purpose abstract proof language
under development in due time. Our current choice for S is presented in
Section 4. It supports the static representation of semantically annotated
documents, which can be professionally typeset with TEXmacs.

Note that the mathematical content of the document is represented both
in TEXmacs (in the language T + S) and in the proof assistant (in the lan-
guage S). Since both the user and the proof assistant must be able to manip-
ulate the mathematical content, both representations (namely in T + S and
in S) must be synchronised. This synchronisation is done using a diff/patch
mechanism tailored to the tree structure of the TEXmacs documents.

Consider two versions tsi and tsi+1 of the document represented in T + S

and their counterparts si and si+1 in S. When the user edits the document,
thus transforming it from tsi and tsi+1, the differences between tsi and tsi+1

are compiled into a patch description p, which applied to si yields si+1. Simi-
larly, when the proof assistant changes the document version sj into sj+1, the
differences between the two versions are compiled into a patch description p′,
which applied to tsj yields tsj+1. Hence, the patch description p is used to
propagate any changes the user made to the proof assistant, and p′ is used
to update the TEXmacs document whenever the proof assistant modifies the
mathematical content.

In order to translate the patch descriptions, a key-based protocol is used
to identify the corresponding parts in T + S and S. The language for keys
is presented in Section 4 and the synchronisation mechanism is described in
Section 5.

Beyond this basic synchronisation mechanism, we also present in Section 5
a language that allows for the description of specific interactions between
TEXmacs and the proof assistant. This language M is a language for struc-
tured menus and actions with an evaluation semantics that allows the user
interface to flexibly compute the necessary parameters for the commands and
directives employed in interaction with the proof assistants. The TEXmacs

document format T +S from Section 4 is finally extended to T +S+M , where
the menus can be attached to arbitrary parts of a document and the changes
of the documents performed either by the author or by the proof assistants
are propagated between T +S +M and S +M via the diff/patch mechanism.
Note that this includes also the adaptation of the menus, which is a necessary
prerequisite to support context-sensitive menus and actions contained therein.

5

3 TEXmacs: A Scientific WYSIWYG Editor

TEXmacs is a WYSIWYG editor that allows for easy authoring of mathemat-
ical documents. These mathematical documents can be stored as ASCII files
annotated with markup. For example, the following sum

2

n∑
i=1

ai

∫ b

a

fi(x)gi(x) dx

is encoded in TEXmacs markup as

<\equation*>

2<big|sum><rsup|n><rsub|i=1>a<rsub|i><big|int><rsup|b><rsub|a>

f<rsub|i>(x)g<rsub|i>(x) d<no-break>x

</equation*>

Once loaded into TEXmacs, a document is internally represented as a tree.
Such a tree can be displayed in different ways, such as in the markup language,
in LATEX syntax or as a Lisp s-expression.

The architecture of TEXmacs is depicted in Figure 1. The two components
that are most important for our purposes are the macro processor and the
event processor.

Extended
Markup

Tree

Typesetter

Event Processor

Markup
Tree

Main
Event
Loop

Macro Processor

CAS

Prover

External
Systems

T XE MACS

Plug−in

Plug−in

Plug−in

User

Mouse

Screen

Keyboard

Fig. 1. The TEXmacs architecture.

6

The macro processor expands the user-defined macro markup tags occur-
ring in a tree and translates them into primitive, macro-free TEXmacs markup.
One can define new macro tags and the corresponding TEXmacs macros to de-
termine the pretty-printing of these new tags. Once expanded, the rewritten
tree is displayed in the current output device (e.g., the screen, a PostScript
file, or a PDF file) by the typesetter.

The event processor detects the user input events and updates the current
markup tree accordingly. Once updated, the current tree is then expanded
and again typeset. One can define new user inputs (e.g., keyboard shortcuts,
mouse events), and write a TEXmacs plug-in to define the corresponding new
actions that are to be performed on the current markup tree in the editor.
Such plug-ins are extensions to the event processor, and can be written using
the Scheme scripting language, which is embedded in TEXmacs. They can
also be employed to allow external systems such as CASs or theorem provers
to modify the current markup tree.

Markup and Markup Syntax

Let us consider a basic example. The TEXmacs markup fragment

<with|font-shape|italic|<underline|Hello!>>

for instance, is typeset as Hello!

Recall that the markup that one can find in a TEXmacs document file is
only a description of the markup tree represented internally. If we use the
Scheme syntax instead, the markup fragment above is written-printed as the
s-expression

(with font-shape italic (underline "Hello!"))

Macros

In this section, we show a very basic example of the TEXmacs macro lan-
guage (cf. [16] for more details). Here is a simple TEXmacs macro that can be
used to turn a part of the document into italics underlined text:

(underlined-italics x)

=⇒ (with font-shape italic (underline (arg x)))

The left-hand side of this expression stands for the use of the macro and
the right-hand side for its expansion. Given this definition of the macro
underlined-italics, the markup fragment

(underlined-italics "This is italics underlined text.")

is first rewritten by the macro processor as

(with font-shape italic

(underline "This is italics underlined text."))

7

and then displayed in TEXmacs as :

This is italics underlined text.

Processing the Markup Using Scheme

The event processor can be extended by plug-ins defined in Scheme scripts.
These scripts can manipulate the internal markup tree that represents the
document, for example, by inserting new macros, or by dynamically defining
new macros.

4 Formal Representation of Mathematical Documents

For illustration purposes we use a simple example theorem throughout this
paper, one of the deMorgan theorems: For any two sets A and B we have

A ∪ B = A ∩ B

where X denotes the complement of a set X. Using this theorem we illustrate
the different aspects of its processing inside our system. First, the mathe-
matical knowledge is encoded and stored into well-defined parts of a given
TEXmacs document. These well-defined parts are the language S from Sec-
tion 2 and are called mathematical fragments. Mathematical fragments can be
surrounded by the usual markup (the language T from Section 2) that authors
use to write mathematics in natural language in a document.

Currently, the different kinds of mathematical fragments we use are:

• symbols, declarations and terms

• definitions and theorems

• proofs and proof steps

• keys and links

• contexts and environments

4.1 Basic Encoding of Mathematical Fragments

We now present the grammar for the language S used to encode the semantics
of mathematical documents in TEXmacs. Since the language S extends the
language T of TEXmacs documents, we use the non-terminal symbol ELEMENT
to denote the language T and describe the extension by incrementally includ-
ing the concepts of S in T . For the sake of clarity, however, we give only
simplified versions of the grammar rules here. In the following, we assume the
non-terminals SYMBOL and STRING, that can be seen as symbols and strings,

8

respectively, in the sense of Lisp. The symbol ’ ’ is a terminal symbol for
unspecified names.

NAME ::= SYMBOL | _

DECLARATION ::= (type-constant NAME) | (type-variable NAME)

| NAME

TERM ::= SYMBOL | (SYMBOL TERM+) | (BINDER NAME TYPE TERM)

BINDER ::= forall | exists | lambda

TYPE ::= TERM

Note that the symbols occurring inside a TERM should have been previously
defined in a DECLARATION construct. Finally, we extend the language T by
adding the rule

ELEMENT ::= ELEMENT | DECLARATION | TERM

4.1.1 Typesetting Mathematical Fragments

Given our example formula A ∪ B = A∩B, we can define the following macros
for the operators needed:

(set-equal a b)

=⇒ (with mode math (arg a)‘‘=’’(arg b)) displayed as a = b

(set-union a b)

=⇒ (with mode math (arg a)<cup>(arg b)) displayed as a ∪ b

(set-intersection a b)

=⇒ (with mode math (arg a)<cap>(arg b)) displayed as a ∩ b

(set-complement a)

=⇒ (with mode math (overline (arg a))) displayed as a

Based on these macros, the markup fragment

(set-equal (set-complement (set-union A B))

(set-intersection (set-complement A)

(set-complement B)))

is displayed as

A ∪ B = A ∩ B

Thus, TEXmacs macros provide us with a very elegant and very simple way to
define an encoding and — at the same time — the corresponding typesetting
for a given set of mathematical operators. Further mathematical concepts
such as ∈ or ⇔ can be similarly encoded by macros; we omit their definitions
in this paper.

Notation

In order to provide a better readable way to present a long s-expression
in this paper, we write parts of this s-expression as they are displayed in the
TEXmacs editor embraced by doubled angle brackets (’<<’, ’>>’). Our previous

9

markup fragment

(set-equal (set-complement (set-union A B))

(set-intersection (set-complement A)

(set-complement B)))

could for example also be written as

(set-equal <<A ∪ B>> <<A ∩ B>>)

4.1.2 Encoding of the deMorgan Theorem

Now, we present the grammar for assertions, that is, theorems, definitions and
assumptions:

THEOREM ::= (theorem NAME DECLARATION* ASSUMPTION*

CONCLUSION)

CONCLUSION ::= (conclusion NAME TERM)

ASSUMPTION ::= (assumption NAME TERM)

DEFINITION ::= (definition DECLARATION* CONCEPT TERM)

CONCEPT ::= (type-constant NAME) | (constant NAME TYPE)

ELEMENT ::= ELEMENT | DEFINITION | THEOREM

Then, the conclusion of the deMorgan theorem can in this language be encoded
as

(conclusion

(forall A set (forall B set

(set-equal (set-complement (set-union A B))

(set-intersection (set-complement A)

(set-complement B))))))

and the whole theorem can then be encoded by

(theorem deMorgan (conclusion <<∀A : set .∀B : set . A ∪ B = A ∩ B>>))

Given the appropriate set of macros for all the occurring symbols, this markup
is displayed in the TEXmacs editor as

Theorem deMorgan:
Conclusion:

∀A : set .∀B : set . A ∪ B = A ∩ B

4.2 Proofs and Proof Steps

We now define the markup grammar for proofs:

PROOF ::= (proof @THEOREM PROOF-STEP)

PROOF-STEP ::= (proof-step CONTENT RULE-DESCRIPTION

(PROOF-STEP*) MENU)

RULE-DESCRIPTION ::= open | closed | (apply TERM TERM)

| (focus TERM+) | (unfocus) | ...

10

CONTENT ::= (GOAL AVAILABLE-ASSUMPTIONS

ALTERNATIVE-GOALS)

ALTERNATIVE-GOALS ::= (TERM*)

AVAILABLE-ASSUMPTIONS ::= (TERM*)

GOAL ::= TERM

ELEMENT ::= ELEMENT | PROOF-STEP | PROOF

where @THEOREM describes a slot which must contain a link to a fragment of
the type THEOREM. Note that the non-terminal MENU is used to encode the
context-sensitive menu which is available for the respective proof-step. The
detailed definition of the language for menus is given in Section 5.

To illustrate the proof markup language, we show a (slightly simplified)
encoding for the first two proof steps of our deMorgan theorem, after applying
the rule stemming from the assumption ∀A : set . ∀B : set . A = B ⇔ ∀x :
element . x ∈ A ⇔ x ∈ B:

(proof @THEO1

(proof-step

(<<∀A : set .∀B : set . A ∪ B = A ∩ B>> (...) (...))

(apply <<A = B ⇒ ∀x : element . x ∈ A ⇔ x ∈ B>>)

((proof-step

(<<∀A : set .∀B : set .∀x : element . x ∈ A ∪ B ⇔ x ∈ A ∩ B>> (...)

(...))

open

()

(menu ...)))

(menu ...)))

4.3 Keys and Links

In order to allow actions in menus to refer to parts of a TEXmacs document
as well as to design localised patch applications we introduce a system of
symbolic keys and links to denote parts of the document. Since these keys
and links will have a specific semantics, we keep them separated from the
standard label and reference mechanisms as, for instance, known from LATEX
and also available in TEXmacs.

To this end, we decided to define a general way to attach attributes to
the fragments. In particular, important attributes are the key , which can be
seen as an identifier, and the link , which refers to the identifier of a different
fragment. We denote elements for which a key has been defined as keyed

elements. The links can either directly point to these keyed elements or to a
sub-element of a given keyed element by additionally providing the path inside
this element. Keyed elements may also contain further attributes. We define:

KEYED-ELEMENT ::= (keyed (ATTR*) ELEMENT)

ATTR ::= (SYMBOL ELEMENT)

11

ELEMENT ::= ELEMENT | KEYED-ELEMENT

For example, the formula 1 + 2 × 3 with the key FORM1 and attributes
for the depth and the number of leaves can be encoded as an s-expression in
TEXmacs as follows:

(keyed ((key FORM1)(depth 2)(leaves 3))

(expr + 1 (expr * 2 3)))

Notation

For the sake of readability, we introduce the following notation: We use
curly braces (’{’, ’}’) for the attributes, and the attributes themselves are
written with ’=’ as separator between the name and the value. The previous
formula is thus presented as

{ key=FORM1 depth=2 leaves=3 } (expr + 1 (expr * 2 3))

The links referring to keyed elements are defined as follows:

LINK ::= (link KEY PATH)

PATH ::= (NAT*)

ELEMENT ::= ELEMENT | LINK

Notation

In this paper we also write a link (link KEY PATH) as @KEY(PATH). For
example, a link to the (expr * 2 3) subexpression in the formula FORM1

will be written as @FORM1(2), where (2) is the path referring to the second
argument term inside (expr + 1 (expr * 2 3)).

4.4 Contexts and Environments

Generally, the mathematical fragments one can define in a document may use
symbols that refer to other objects (such as definitions or theorems) that are
not defined in the current document. These external objects “live” in pack-
ages that we call theories. These theories could be stored in other TEXmacs

documents or in a knowledge base. To indicate that we write a fragment while
being in the name space of a given theory (or, as we say, in the context of the
theory), we introduce a syntactic construct in the TEXmacs markup, called
context:

CONTEXT ::= (context THEORY BODY)

THEORY ::= (theory-by-name NAME) | (theory-union THEORY+)

ELEMENT ::= ELEMENT | CONTEXT

Then, we can build nested markup structures using the context markup con-
struct. Inside the BODY parts of one or several nested context markup con-

12

structs, one has access to the joint name spaces of all the theories which appear
in the THEORY part of all the nested context markup constructs and also to
all assertions collected from the root of the document downwards to the cur-
rent position. The set of mathematical objects that are accessible from one
position inside such a structure of nested contexts is called the environment

at that position.

In the following, we assume that a theory set-theory is available providing
definitions and lemmas in naive set theory:

∀A : set . ∀B : set . A = B ⇔ ∀x : element . x ∈ A ⇔ x ∈ B (hyp1)
∀A : set . ∀x : element . x ∈ A ⇔ ¬(x ∈ A) (hyp2)
∀A : set . ∀B : set . ∀x : element . x ∈ A ∪ B ⇔ x ∈ A ∨ x ∈ B (hyp3)
∀A : set . ∀B : set . ∀x : element . x ∈ A ∩ B ⇔ x ∈ A ∧ x ∈ B (hyp4)

Thus, the markup shown previously for the deMorgan theorem, for exam-
ple, can be embedded into a context markup construct as follows:

(context (theory-by-name set-theory)

{ key=THEO1 }
(theorem deMorgan

(conclusion _ <<∀ A : set .∀ B : set . A ∪B = A ∩ B>>)))

We observe the following:

• Given a theory stored in some mathematical repository, we need the set
of TEXmacs macros corresponding to the symbols defined in it, so that we
can display the symbols and terms in their common mathematical form in
the TEXmacs editor. We implemented such a mechanism between Ωmega

and the mathematical database MBase [9], which contains the available
theories together with their macro definitions. Given the name of a theory,
the relevant macros can be loaded into TEXmacs from MBase via Ωmega.

• Given a particular position inside a nested context structure, we can derive
its environment, that is, the types, symbols, definitions, lemmas, theorems,
etc. When the user begins a proof of a theorem, the environment of the
theorem is sent to the proof assistant, in order to enable the prover to access
the relevant concepts. Note that the environment not only contains the
predefined elements imported from the database, but also the mathematical
elements defined in the document, that is, symbols, definitions or lemmas
newly introduced in the document. 1

1 So far, capturing and uploading environments into the proof assistant has not yet been
implemented. Currently, we encode the concepts needed (namely the types and the oper-
ations, and the hypotheses, which are encoded as assumptions of the theorem) inside the
theorem.

13

5 Synchronising Editor and Proof Assistants

In this section, we first describe how Core, the logic layer of Ωmega, supports
assertion application via conditional rewriting (cf. [2] for more details). We
then describe our TEXmacs interface to Core.

5.1 Basic Rewrite Steps in Core

For each open proof line, Core provides the goal and the list of available
assertions. The application of one of these to a sub-formula of either the goal
(backward reasoning) or another assertion (forward reasoning), requires

(i) to select a sub-formula of the former, in order to give the information
about how to do the rewriting, and

(ii) to select a sub-formula of the latter in order to give the information about
where the rewriting should take place.

For example, given the hypotheses shown previously, in the first proof step of
our deMorgan proof example, the set of available assertions is:

∀A : set . ∀B : set . A ∪ B = A ∩ B (goal)
∀A : set . ∀B : set . A = B ⇔ ∀x : element . x ∈ A ⇔ x ∈ B (hyp1)
∀A : set . ∀x : element . x ∈ A ⇔ ¬(x ∈ A) (hyp2)
∀A : set . ∀B : set . ∀x : element . x ∈ A ∪ B ⇔ x ∈ A ∨ x ∈ B (hyp3)
∀A : set . ∀B : set . ∀x : element . x ∈ A ∩ B ⇔ x ∈ A ∧ x ∈ B (hyp4)

We decide to apply the definition of set equality (assumption hyp1) using
the sub-formula “A = B” as the left-hand side of our rule, which we indicate
by a box in this paper 2 :

∀A : set . ∀B : set . A = B ⇔ ∀x : element . x ∈ A ⇔ x ∈ B

Using this selection, Core provides us with the following possible rewrite rule:

A = B −→ ∀x : element . x ∈ A ⇔ x ∈ B

In order to apply this rule to the relevant part of the goal, we can thus make
the following selection inside the goal:

∀A : set . ∀B : set . A ∪ B = A ∩ B

2 Note that TEXmacs implements the proof-by-pointing approach [5], where the selection
is done by pointing to a sub-formula with the mouse.

14

As a result of the rewrite step, Core creates a new proof step, inside which
the goal now is:

∀A : set . ∀B : set . ∀x : element . x ∈ A ∪ B ⇔ x ∈ A ∩ B

5.2 User Input and Evaluation

From the previous description, it follows that a user interface to Core must
enable the user to access the list of the assertions for each proof step, and also
allow for selecting the relevant sub-formulae in this list of assertions. More
generally, the user interface should enable the user to provide the missing
information that is needed to apply a theorem proving operation to the current
proof step. In our user interface, the possible user interface actions can either
be apply actions, which refer to some theorem proving operation, or be choice

actions (or choices), which provide a way for the user to select a subset out
of a given dataset (e.g., a list of formulae). The sub-language to define these
menus is given by the grammar rules starting from the non-terminal symbol
MENU:

MENU ::= (menu EVALUATE ACTION)

EVALUATE ::= BOOLEAN

ACTION ::= APPLY | CHOICE

APPLY ::= (apply LABEL FOLDED FUNCTION-NAME PARAMETERS)

CHOICE ::= (choice LABEL FOLDED MIN MAX SET SELECTED)

LABEL ::= STRING

FOLDED ::= BOOLEAN

FUNCTION-NAME ::= SYMBOL

PARAMETERS ::= (EXPR*)

MIN ::= NAT

MAX ::= NAT

SET ::= (EXPR*)

SELECTED ::= (LINK*)

EXPR ::= ACTION | S-EXPRESSION

The menus are trees built using APPLY and CHOICE nodes, and they are
evaluated as usual arithmetic expressions, provided that all the nodes in the
tree are reducible:

• An ACTION node is reducible if and only if its ACTION slot contains a re-
ducible expression.

• An APPLY node is reducible if and only if all the EXPR objects contained in
its PARAMETERS slot are reducible.

• A CHOICE node is reducible if and only if, n being the number of objects
from the SET slot that have been interactively selected by the user, n belongs
to the interval {MIN, MAX}, and if each one of these selected objects is also
reducible.

15

• Any other kind of s-expression is always considered as reducible.

The evaluation of a given MENU node is enabled or disabled according to
the value of its EVALUATE slot. The evaluation proceeds in the following way:

• A reducible APPLY node evaluates to the result of the call of the function
related to the symbol contained in its FUNCTION-NAME slot, using the list
contained in the PARAMETERS slot as the parameter list. This function can
either be local or remote. The evaluation of an APPLY node can also include
side effects, namely, patches to the current document. These side effects are
stored in order to be performed only if the whole execution process succeeds.

• Each time the user selects or deselects an item in the SET slot of a given
CHOICE node, its SELECTED slot is updated accordingly (i.e., a link to the
newly selected or deselected part of the item is either added in or removed
from the SELECTED slot, respectively). A reducible CHOICE node evaluates
to its SELECTED slot.

• A reducible MENU node evaluates to the evaluation of its ACTION slot. If the
evaluation is successful, the stored side-effects are triggered.

5.3 Function Calls

When a reducible APPLY node is to be evaluated, the evaluator first finds the
name of the procedure in the list of procedure names of all the plug-ins 3 . Once
the relevant plug-in has been found, the evaluator performs the remote call.
Local calls are considered as a particular kind of remote calls and are therefore
processed the same way. The evaluation of such a remote call proceeds in two
steps:

• The current function call with all its parameters evaluated is directly sent
(possibly across a socket) to the relevant plug-in. To do this, we use the
REMOTE-CALL node defined below.

• The function call is then remotely evaluated, and the remote process sends
back the result to TEXmacs. This result contains an s-expression which is
the result itself, and the (possibly void) set of side effects, which is stored
until the whole evaluation process succeeds.

The needed elements for the function calls are

RESULT ::= BOOLEAN | (error ...) | S-EXPRESSION

PATCH ::= (patch LINK KEYED-ELEMENT)

SIDE-EFFECT ::= PATCH

REMOTE-CALL ::= (eval-apply @APPLY FUNCTION-NAME PARAMETERS)

REMOTE-RESULT ::= (result RESULT (SIDE-EFFECT*))

3 The list of available procedures for each plug-in is sent to TEXmacs at boot time, that is,
when the plug-in is used for the first time.

16

where @APPLY describes a slot which must contain a link to a fragment of the
type APPLY.

6 Example

Let us now describe the behaviour of our interface using our running example.
We suppose that the user wants to start with a proof of the deMorgan theorem:

(context (theory-by-name set-theory)

{ key=THEO1 }
(theorem deMorgan

(conclusion <<∀A : set .∀B : set . A ∪B = A ∩ B>>)))

First the user inserts the following markup containing a void proof for the
theorem shown (using a button or a keyboard shortcut):

(with prog-language ‘‘core’’ prog-session ‘‘default’’

{ key=PROOF1 } (proof @THEO1))

When this markup is inserted into the document, the plug-in symbolically
described in the attribute prog-language — here Core — is called and
sends its answer in form of a patch back to TEXmacs. In our example, the
new proof for the theorem plus the relevant environment (cf. Section 4.4) is
uploaded into Core which returns a patch containing the first proof step with
its set of available assumptions. The markup of the patched document is then
as follows 4 :

[...]

{ key=THEO1 }
(theorem deMorgan

(conclusion { key=GOAL1 }<<∀A : set .∀B : set . A ∪ B = A ∩ B>>))

[...]

(with prog-language ‘‘core’’ prog-session ‘‘default’’

{ key=PROOF1 }
(proof @THEO1 (proof-step

(@GOAL1

({key=HYP1}
<<∀A : set .∀B : set . A = B ⇔ ∀x ∈ E, x ∈ A ⇔ x ∈ B>>

{key=HYP2}
<<∀A : set .∀x : element . x ∈ A ⇔ ¬(x ∈ A)>>
{key=HYP3}
<<∀A : set .∀B : set .∀x : element . x ∈ A ∪ B ⇔ x ∈ A ∨ x ∈ B>>

{key=HYP4}
<<∀A : set .∀B : set .∀x : element . x ∈ A ∩ B ⇔ x ∈ A ∧ x ∈ B>>)

4 Throughout this paper, the modified parts are shown as italics underlined text. In this
first step, though, most of the markup is new, so we underline only the isolated new part
for adding a key to the goal in the theorem, and the beginning of the proof-step node.

17

())

open ()

{ key=MENU1 }
(menu false

{ key=APPLY1 }
(apply true

apply-rule

({ key=CHOICE1 }
(choice false 2 2 (@GOAL1 @HYP1 @HYP2 @HYP3 @HYP4)

())))))))

Note that in the THEOREM object, a key (cf. Section 4.3) has been added to the
goal formula. Similarly, the available assumptions in the PROOF-STEP node
have keys, which are used to refer to these formulae in the menu elements.
Given the appropriate set of macros, our PROOF object with its menu is dis-
played in the TEXmacs editor as follows:

When the user clicks on the node representing the proof step, the root
element in its menu tree (namely, the APPLY1 node with its CHOICE1 sub-node
containing the goal followed by the set of available assumptions) unfolds itself
as a menu on the right hand side of the proof step 5 :

5 Note that the selections are only performed inside the menu on the right hand side of the
proof step (i.e., no selection occurs in the node representing the proof step). Moreover, the
selection mechanism allows for complex goal formulae, such that parts of the goal can be
used to rewrite other parts of the goal. For instance, in a goal formula x = 0 ⇒ x + y = y

the sub-formula x = 0 can be applied to x + y = y.

18

When the menu is unfolded, the related markup becomes:

{ key=MENU1 }
(menu false

{ key=APPLY1 }
(apply false

apply-rule

({ key=CHOICE1 }
(choice false 2 2 (@GOAL1 @HYP1 @HYP2 @HYP3 @HYP4) ()))))

Performing the Selections

When the user selects the appropriate sub-formulae among the set of available
assumptions in the menu as indicated by boxes

the corresponding markup changes, namely (and if we suppose that the
user starts first by performing her selections inside the chosen assumption, and
next inside the goal) the SELECTED slot of the CHOICE1 choice first becomes:

{ key=CHOICE1 }
(choice false 2 2 (@GOAL1 @HYP1 @HYP2 @HYP3 @HYP4)

(@HYP1(2 2 1)))

When the user performs its selection inside the goal (i.e., the first element in
the menu), we similarly obtain:

{ key=CHOICE1 }
(choice false 2 2 (@GOAL1 @HYP1 @HYP2 @HYP3 @HYP4)

(@GOAL1(2 2) @HYP1(2 2 1)))

Note that the CHOICE1 node is now reducible, because we have made two
selections, namely @GOAL1(2 2) and @HYP1(2 2 1), as it is specified by the
MIN/MAX-slots of CHOICE1. The APPLY1 and MENU1 nodes thus become also
reducible, and the EVALUATE slot of the MENU1 menu can now be raised by the
user (using an input action such as a double-click). The MENU1 menu thus
becomes:

19

{ key=MENU1 }
(menu true

{ key=APPLY1 }
(apply false

apply-rule

({ key=CHOICE1 }
(choice false 2 2 (@GOAL1 @HYP1 @HYP2 @HYP3 @HYP4)

(@GOAL1(2 2) @HYP1(2 2 1))))))

Evaluation of the Menu

The menu can now be evaluated. The CHOICE1 node is first reduced, and the
following REMOTE-CALL node is created:

{ key=REMOTE1 }
(eval-apply

@APPLY1 apply-rule

((@GOAL1(2 2) @HYP1(2 2 1))))

The REMOTE1 node above is then sent to Core, which performs the operation,
and sends back the following REMOTE-RESULT expression as an answer to the
TEXmacs side:

(result true

((patch @PROOF1(2 2)

(apply <<A = B ⇒ ∀x : element . x ∈ A ⇔ x ∈ B>>))

(patch @PROOF1(2 3)

((proof-step

({ key=GOAL2 }
<<∀A : set .∀B : set .∀x : element .x ∈ A ∪ B ⇔ x ∈ A ∩ B>>

(...) (...))

open ()

{ key=MENU2 }(menu ...))))))

This answer is a successful one, which is indicated in the first argument of the
(result ...) expression by true. Since the APPLY1 node, which corresponds
to the successful REMOTE1 remote call, is the root node of the MENU1 menu, the
patches can then be applied. The proof object PROOF1 becomes:

{ key=PROOF1 }
(proof @THEO1

(proof-step

(@GOAL1 ({ key=HYP1 } <<...>> ...) ())

(apply <<A = B ⇒ ∀x : element . x ∈ A ⇔ x ∈ B>>)

((proof-step

({ key=GOAL2 }

<<∀A : set .∀B : set .∀x : element . x ∈ A ∪ B ⇔ x ∈ A ∩ B>>

(...) (...))

20

open ()

{ key=MENU2 } (menu ...)))

{ key=MENU1 } (menu ...)))

The physical markup is then updated, and the modified proof finally ap-
pears in the TEXmacs editor as follows:

7 Related Work

Our project is closely related to the TmCoq 6 project which aims at the full
integration of TEXmacs with the theorem prover Coq. This project finds
it highly desirable “to achieve the functionality allowing the user to interact
with the prover in a mode as transparent as possible” [1] and that the “syntax
conversions between the generic publication oriented editing tool TEXmacs

and the theorem prover should be automated” [1]. We agree with both objec-
tives, but remark that the former is probably of interest for expert Coq users
only. For purposes of system-independent tutoring of mathematical proofs, or
supporting non-expert users, a distinguished goal of our project is to have ad-
ditionally a generic interface featuring a knowledge representation that allows
one to connect various supporting tools. Both TmCoq and our project have
many goals in common leaving room for fruitful collaboration.

Two important related interfaces to theorem provers are Proof General 7

and Pcoq 8 . The research in both projects has led to significant contribu-
tions such as proof-by-pointing, proof script management, and a distributed
approach to user interfaces for theorem provers. Pcoq’s main characteristics
are a graphical interface, the possibility to run Pcoq and Coq as separate
processes, structural editing of formulae and commands in combination with
mouse-based navigation. Proof General is a generic interface for proof assis-
tants, currently based on the customisable text editor Emacs. It shares many
of the previously mentioned characteristics and it has been employed as inter-

6 http://tmcoq.audebaud.org/
7 http://proofgeneral.inf.ed.ac.uk/
8 http://www-sop.inria.fr/lemme/pcoq/

21

http://tmcoq.audebaud.org/
http://proofgeneral.inf.ed.ac.uk/
http://www-sop.inria.fr/lemme/pcoq/

face to several mathematical assistance systems such as Isabelle [11], Coq [14],
and LEGO [13].

8 Conclusion

In this article we reported about the ongoing integration of the scientific text
editor TEXmacs with the proof assistant system Ωmega. The goal of the
integration is to use Ωmega as context-sensitive reasoning and verification
service accessible from within TEXmacs, where the proof assistant adapts to
the style, in which an author would like to write its mathematical publication,
and to hide any irrelevant system peculiarities from the user.

The kind of interface architecture described in this paper, built on a sym-
bolic protocol layer and on a sophisticated display engine, is not completely
unforeseen in the UITP community [4]. Nevertheless, to the best of our knowl-
edge, such interfaces are still not widely used in the domain of theorem proving.
This is why we build our system as a plug-in to TEXmacs [6], which on the one
hand is a first class quality mathematical text editor, and on the other hand
has also shell-style interfaces to many CASs but none for theorem provers
(although some attempts in this direction have already been made [1]).

Based on a formal representation language, we presented an extended
TEXmacs document format which allows for professional typesetting while
the semantic content of the document is accessible for formal systems. Based
on that static format for semantic mathematical documents, we developed a
uniform language for the specification of context-sensitive menus, an evalua-
tion semantics for menus to incrementally compute parameters for the actions
specified in menus, and a diff/patch mechanism to propagate updates com-
puted by the actions to the document.

Although currently the proofs are tailored to the rules of the Core calcu-
lus, the representation language in principle is parameterised over a specific
language for proofs. We plan to replace the Core-specific proof languages
by some generic notion of proofs, in order to obtain a generic format for for-
malised mathematical documents. To this end, we will start from a language
for assertion-level proofs with underspecification [3], which we developed from
previous experiences with tutorial dialogues about mathematical proofs be-
tween a computer and students [12].

We also envision the combination of our approach with natural language
processing tools as recently investigated and developed, for instance, in projects
such as Dialog [12]. Furthermore, it should be possible to integrate the sys-
tem with mathematics e-learning environments (e.g., ActiveMath [10]) and to
connect to distributed mathematical knowledge repositories in the web (e.g.,
MBase [9]).

22

References

[1] Audebaud, P. and L. Rideau, TEXMACS as authoring tool for formal
developments, in: C. Lüth and D. Aspinall, editors, Proceedings of the Workshop
User Interfaces for Theorem Provers (UITP’03), Rome, Italy, 2003.

[2] Autexier, S., “Hierarchical Contextual Reasoning,” Ph.D. thesis, Saarland
University (2003).

[3] Autexier, S., C. Benzmüller, A. Fiedler, H. Horacek and Q. B. Vo, Assertion
level proof representation with underspecification, in: F. Kamareddine, editor,
Proceedings of MKM Symposium, Heriot-Watt, Edinburgh, 2003.

[4] Bertot, Y., The CtCoq system: Design and architecture, Formal Aspects of
Computing 11 (1999), pp. 225–243.

[5] Bertot, Y., G. Kahn and L. Théry, Proof by pointing, in: Symposium on
Theoretical Aspects Computer Software (STACS), number 789 in Lecture Notes
in Computer Science, Springer, 1994 .

[6] der Hoeven, J. V., Gnu TEXmacs: A free, structured, WYSIWYG and
technical text editor, number 39-40 in Cahiers GUTenberg, 2001.

[7] Fiedler, A., “User-adaptive Proof Explanation,” Phd
thesis, Naturwissenschaftlich-Technische Fakultät I, Universität des Saarlandes,
Saarbrücken, Germany (2001).

[8] Huang, X., “Human Oriented Proof Presentation: A Reconstructive Approach,”
Number 112 in DISKI, Infix, Sankt Augustin, Germany, 1996.

[9] Kohlhase, M. and A. Franke, Mbase: Representing knowledge and context for the
integration of mathematical software systems, Journal of Symbolic Computation
23(4) (2001), pp. 365–402.

[10] Melis, E. and J. H. Siekmann, Activemath: An intelligent tutoring system for
mathematics., 2004, pp. 91–101.

[11] Paulson, L. C., “Isabelle: A Generic Theorem Prover,” Lecture Notes in
Computer Science 828, Springer-Verlag, 1994.

[12] Pinkal, M., J. Siekmann, C. Benzmüller and I. Kruijff-Korbayova, Dialog:
Natural language-based interaction with a mathematics assistance system
(2004), project proposal in the Collaborative Research Centre SFB 378 on
Resource-adaptive Cognitive Processes.

[13] Pollack, R., “The Theory of LEGO - A Proof Checker for the Extended Calculus
of Constructions,” Ph.D. thesis, University of Edinburgh (1996).

[14] Saibi, A., B. Werner, B. Barras, C. Parent, C. Murthy, P. mohring Paulin-
mohring, C. Cornes, H. Herbelin, J. christophe Filliatre, J. Courant, P. Coq
and S. Boutin, The Coq proof assistant — reference manual version 6.1 (1997).

23

[15] Siekmann, J., C. Benzmüller, V. Brezhnev, L. Cheikhrouhou, A. Fiedler,
A. Franke, H. Horacek, M. Kohlhase, A. Meier, E. Melis, M. Moschner,
I. Normann, M. Pollet, V. Sorge, C. Ullrich, C.-P. Wirth and J. Zimmer, Proof
development with OMEGA, in: A. Voronkov, editor, Proceedings of the 18th
International Conference on Automated Deduction (CADE-18), number 2392
in LNAI (2002), pp. 144–149.

[16] van der Hoeven et al., J., The TeXmacs manual (stylesheet language),
http://www.texmacs.org/tmweb/manual/web-manual.en.html (1999-2005).

24

	Introduction
	Our Approach
	TeXmacs: A Scientific WYSIWYG Editor
	Formal Representation of Mathematical Documents
	Basic Encoding of Mathematical Fragments
	Proofs and Proof Steps
	Keys and Links
	Contexts and Environments

	Synchronising Editor and Proof Assistants
	Basic Rewrite Steps in Core
	User Input and Evaluation
	Function Calls

	Example
	Related Work
	Conclusion
	References

