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Abstract

The Dialog project investigates flexible natural language tutorial dialogue on math-
ematical proofs. Since the medium of communication is natural language dialogue,
and since tutorial dialogues are by nature both flexible and unpredictable, it is
essential to include a sophisticated, dedicated dialogue manager to handle the in-
teraction between student and the system modules. In this paper we present the
design and implementation of the dialogue manager for the demonstrator system
of the Dialog project. The dialogue manager forms the interface between the user
and the system modules, including the automated theorem prover Ωmega–Core,
the tutorial module and the linguistic analysis module.
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1 Introduction

In this paper we present and discuss the design and implementation of the di-
alogue manager for the demonstrator system of the Dialog project 3 [5,23,24].
This system was built for demonstration purposes by the Dialog team 4 at
Saarland University for the review of the Collaborative Research Centre 378.
The goal of the Dialog project is to investigate flexible natural language tuto-
rial dialogue in mathematics; our particular focus is on tutoring mathematical
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proofs in naive set theory. To this end Dialog must employ natural language
understanding and generation, automated theorem proving, and tutorial man-
agement. Since the medium of communication is natural language dialogue,
and since tutorial dialogues are by nature both flexible and unpredictable
(from the standpoint of the tutor), it is essential to include a sophisticated,
dedicated dialogue manager to handle the interaction between student and
the system modules.

The problems which the Dialog project is concentrating on include lin-
guistic analysis of the informal input to the system, evalution of utterances
in terms of soundness, granularity and relevance, and ambiguity resolution at
all levels of processing. This means that there must be a tight interplay in
the system of the modules responsible for linguistic analysis and automated
theorem proving. This is facilitated by a dialogue manager which provides the
link between the two modules.

In order to use a traditional automated theorem prover (ATP), the user
must be familiar with its logic, since input and output are expressed in this
machine-oriented formalism. If an ATP is to be used as a mathematical as-
sistance system, i.e. a mathematician’s tool, it must be able to be accessed in
the language familiar to the mathematician: a mixture of natural language,
formulas and diagrams. For the moment, no ATP fully supports this type of
natural interface, but there has been much research in this direction.

One system which abstracts away from the standard interface of ATPs is
Proof General [2]. It provides a uniform interface for ATPs which is adapt-
able to the user’s expertise level and hides the interface with the ATP at hand
behind a generic proof scripting language. AUTOMATH [8,9], Mizar 5 and
Isabelle/Isar [35] use an approach where input and output are expressed in a
formal mathematical language which is both human and machine understand-
able. Although these languages are human readable, they have a formal style
— using keywords and strict structure — which is far from natural language or
textbook-style proofs. The grammatical framework (GF) [27] attempts to rem-
edy this by allowing the user to define in a λ-calculus a concrete input/output
language on top of the abstract syntax of the mathematical expressions. The
result is a context-free grammar which can be used both to parse input to and
to generate output from the ATP. Although this allows for the definition of a
fragment of natural language, the languages that can be defined are relatively
restricted.

Other approaches concentrate solely on a more natural output from the
ATP, and leave input in the machine-oriented formalism. The systems Coq
[7] and Theorema [6] have output components which use schema-based tech-
niques to achieve a pseudo-natural language proof presentation. A further
step towards natural langauge output is to apply techniques from the area
of natural language generation to produce texts. This approach is used in

5 http://www.mizar.org
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the presentation component of Nuprl [16], which uses a content planner to
select information to be included and a surface realiser to choose words and
output sentences. Similarly, PROVERB [17] and its successor P.rex [10] use a
pipeline architecture of macroplanning, microplanning and surface realisation
to generate proofs comparable to those found in mathematical textbooks.

The Dialog project differs from the approaches outlined above in that it
attempts to support a fully flexible natural language interface to a tutorial sys-
tem on mathematical proofs in both input and output. The tutorial system in
turn links to the ATP Ωmega–Core. We impose no restraints on the language
used to communicate with the system in terms of the level of formalism. This
goal puts heavy demands on NLU and proof management (the link to the
ATP) and on the dialogue manager which must facilitate their cooperation.

We begin in this paper in Section 2 with an outline of the functions of the
dialogue manager, followed by a description in Section 3 of the Dialog system
modules whose interaction it facilitates. In Section 4 we briefly introduce Ru-
bin, the development platform for the dialogue manager, before presenting the
definition of the dialogue manager itself in Section 5. Finally we discuss some
results and mention some desiderata for a dialogue manager in the Dialog

project.

1.1 Approaches to Dialogue Management

There are a number of candidate approaches to dialogue management which
could be suitable for Dialog. Finite-state methods, such as the CSLU toolkit
[20,30], are suited to situations where a certain set of data must be collected
by an agent in order to carry out some action, or where the number of possible
dialogues is relatively small. Such systems are characterised by a finite state
machine which statically encodes all possible dialogues; dialogues are hard–
wired and system–driven. Such methods are not sufficient for Dialog because
of our interest in flexible, natural tutorial dialogues.

The form-filling approach, such as in the AUTOTUTOR system [15], is more
adaptable than finite-state. The information that the system seeks is stored
in slots in a form which is incrementally filled until the required amount of
information is reached. This allows the system to be more flexible in relation
to the order in which information is elicited from the user. However, even
this flexibility does not reach the level required by Dialog. Also, form-filling
is more suited to situations in which the information flow is mainly in the
direction of the system, for instance in personal banking applications, whereas
the dialogue manager for Dialog must support flexible information exchange
in both directions.

The solution we decided on is the Information State Update approach
[32]. In this approach the dialogue manager maintains a description of the
state of the discourse and its participants, which then forms a framework for
communication between the external modules associated with the system.
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Fig. 1. Architecture

1.2 The Sample Dialogue

The Dialog demonstrator has been developed to illustrate the functionality
of the Dialog system at hand of a few dialogues from the project’s Wizard-
of-Oz corpus [11]. Here we concentrate on dialog did16k. The task that the
student is asked to prove is theorem (1) ( where K stands for the complement
operation).

(1) K((A∪B)∩(C∪D)) = (K(A)∩K(B))∪(K(C)∩K(D))

The examples in this paper of information exchange between modules are
all taken from this sample dialogue.

Some of the modules are still only simulated in our demonstrator; our
emphasis so far has been on the development of the input analyser, proof
manager, tutorial manager, natural language generator and graphical user
interface.

2 The Dialogue Manager

The function of the dialogue manager in Dialog is to handle interaction be-
tween student and system, and to facilitate communication between system
modules. The following modules are connected to the system (see also Fig-
ure 1):

GUI The graphical user interface that the student uses. So far we assume
only typed input in the project.

Input Analyser This is the sentence analyser which parses the student’s
utterance and determines its linguistic content and an underspecified repre-
sentation of the proof step (the mathematical content of the utterance) that
the student performed, including for instance the formula in the utterance
and the type of inference.

Dialog Move Recogniser This module identifies the function (i.e. dialogue
moves) of utterances, based on the current state of the dialogue.
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Proof Manager The proof manager is based on the Ωmega–Core theorem
prover, and evaluates student input and monitors and maintains the proof
state.

Domain Info Manager This module determines the mathematical informa-
tion of the proof step at hand.

Tutorial Manager The tutorial manager provides and applies pedagogical
knowledge which specifies generic and domain–specific teaching strategies,
including didactic and socratic teaching methods, and hinting dialog moves.

NL Generator This module creates a natural language realisation of the
dialogue move with which the system responds.

The system modules will be described in detail in Section 3.

The design of the dialogue manager is based on the Information State
Update approach used in the Siridus [25] and Trindi [26] projects, and im-
plemented in TrindiKit [31]. The Information State (IS) is a central data
structure storing information about the current state of the dialog and about
the internal states of modules participating in the dialogue. It is divided
into “private” system information, “public” information shared between the
system and the user, and information which is neither private nor fully pub-
lic, but rather shared between certain system modules. The IS stores both
dialogue-level knowledge, such as the user’s last speech act or an evaluation
of the utterance, as well as meta–information about the dialogue, such as an
utterance history.

2.1 Dialogue Move Selection

At its simplest level, the function of a dialogue manager is to receive a dialogue
move from the linguistic analysis module, and, based on the current IS, decide
on the most appropriate dialogue move to respond with. A dialogue move is a
notion which extends that of a speech act. It consists of a number of dimen-
sions, each of which encode a different aspect of the information contained
in the utterance. For example, the forward-looking dimension corresponds to
the notion of a speech act, and the backward-looking dimension accounts for
the relationship of the utterance to the dialogue up to that point. Dimensions
can themselves contain hierarchical structure. In this way a single dialogue
move can account for the many functions that an utterance may have. Con-
sider example (2) from the corpus of the Dialog Wizard-of-Oz experiments
[36] (translated from German):

(2) “Can you explain that in more detail?”

This utterance is a request for information, it refers back to a previous
utterance (the anaphor “that”) which the system made, and it introduces an
obligation on the system to explain that utterance.

Each of the functions of an utterance are encoded in the dimensions of its
dialogue move. The taxonomy of dialogue moves used in Dialog is described in
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[33]; it is an adaptation and extension of the DAMSL taxonomy [1]. DAMSL
is a standard and application–independent annotation scheme for dialogue
tagging, and the taxonomy used in Dialog is therefore tailored to account for
the types of moves found in tutorial dialogues, as well as the management of
tutorial dialogue in general. Dialogue moves consist of 6 dimensions:

Forward-looking This characterises the effect an utterance has on the sub-
sequent dialogue.

Backward-looking This dimension captures how the current utterance re-
lates to the previous discourse.

Task In contrast to the DAMSL design, here the task content of an utterance
constitutes a separate dimension. It captures functions that are specific to
the task at hand and its manipulation. This dimension is particularly im-
portant for the genre of tutorial dialogues, and has itself an inner structure.

Communication management This concerns utterances that manage the
structure of the dialogue, for instance to begin or end a subdialogue.

Task management This dimension captures utterances that address the
management of the task at hand, for instance beginning a case distinction
or declaring a proof complete.

Communicative status This dimension concerns utterances which have un-
usual features, such as non-interpreted utterances.

What dialogue move the system produces is determined based on infor-
mation supplied by each of the modules mentioned above. The first source of
information is the content of the user’s utterance. This comes from the input
analyser in the form of linguistic meaning of the utterance and its proof step,
and from the dialogue move recogniser, which determines the dialogue move
representing the utterance. The linguistic meaning can impose obligations on
the system; for instance if the user poses a question, the system should create
a dialogue move which answers the question, thereby discharging the obliga-
tion. In order to decide on the mathematical content of its reply, the system
combines information from the proof manager, the tutorial manager and the
domain information manager. Given the proof step that the user’s utterance
contained, the proof manager determines whether in the context of the proof
that the user is constructing the proof step is correct, if it has the appropriate
level of detail, if it is relevant, etc. With this information the dialogue manager
can decide for example to confirm a correct step, signal incorrectness, or ask
the tutorial manager to add a hinting aspect to the response dialogue move.
The tutorial manager contributes the whole task dimension of the system’s
dialogue move. This may include a hint, which is typically to supply the user
with a mathematical concept (given by the domain information manager) that
should help the user progress in the current proof state.

The final step is to pass the now complete response dialogue move, along
with any extra specifications required, to the generation module to be ver-
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balised, the resulting utterance is outputted, and the turn passes to the user.
At this point the system waits for the next user utterance to be received. The
result is a sequence of dialogue moves according to the model of the dialogue.

2.2 Inter-module communication

The second responsibility of the dialogue manager is to be the communication
link between modules. Modules are not able to pass messages directly to each
other, for design as well as technical reasons. The design of the system is
such that the dialogue manager is the mediator of all communication between
system modules, and in this way is able to control all message passing and
thus the order of module execution. Because the dialogue manager is based
on information state updates, each result computed by a module needs to
be stored in the IS. Since the dialogue manager receives the results of each
module’s computation, it has the opportunity to immediately make the cor-
responding information state update, and has full control of top-level system
execution. On the technical side, the design of the system in Figure 1 shows
that it is a star type architecture. Each module is connected only to the
central server (the dialogue manager) and there is no link between modules
themselves. The result of this is that all information must first be sent to the
dialogue manager, where it can be stored in the IS, and is then passed on to
the modules that require it.

Here we would like to stress that there are two different notions of a dia-
logue manager, depending on what is seen to be its main task. One is that a
dialogue manager has the function of computing a dialogue move based on the
partial dialogue leading up to the current move, and the contents of the infor-
mation state. This is the view that was introduced in Section 2.1. The other
notion of a dialogue manager is a platform which supports the development
of a dialogue-based application, often one which implements the information-
state approach. In this sense the dialogue manager provides features such
as communication between modules, an information state, and a language to
define update rules, etc. This is the approach described in section 2.2. The
Dialog demonstrator contains subsystems which fulfil both of these tasks, and
in this paper we concentrate on the second notion of dialogue management –
the development platform for dialogue applications.

The dialogue manager is built on Rubin [14], a platform for developing
dialogue management applications from CLT company, which is described in
section 4.

3 Modules connected to the Dialog System

As shown in the diagram of the system in Figure 1, the dialogue manager acts
as the communications centre for each module that is connected to it, and it
in turn accesses the information state. In this section we detail the functions
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Translation:

SYS: Please show: K((A∪B)∩(C∪D)) =
(K(A)∩K(B))∪(K(C)∩K(D))!

USER: According to deMorgan-rule-2, it holds that K((A∪B)∩(C∪D)) =
(K(A∪B) ∪ K(C∪D))

SYS: That’s correct!
USER: K(A∪B) is according to DeMorgan-1 K(A) ∩ K(B)
SYS: That’s also correct.
USER: B does not contain any x ∈ A.
SYS: That’s not correct!
USER: A and B must be disjunct.
SYS: That’s not correct! You should consider union
USER: A = K(K(A))
SYS: That’s correct, but not relevant at the moment.

Fig. 2. The DiaWoz tool, extended for the Dialog demonstrator, showing the first
5 moves of the sample dialogue.

of each of the seven modules which are connected to the dialogue manager.
Information enclosed in chain brackets represents a structure, information
in round brackets is a list. See section 4.1 for details of the Rubin data
structures. Each of the examples of input and output to or from a module
relates to the computation involved in responding to the student utterance
“Nach deMorgan-Regel-2 ist K((A∪B)∩(C∪D)) = (K(A∪B)∪K(C∪D))”; see
also Figure 2.

3.1 Graphical User Interface

The GUI of the demonstrator program is an extension of the DiaWoZ tool
[11], which has been developed in the Dialog project at the very beginning to
support the Wizard-of-Oz experiments in which we collected our corpus. The
GUI is presented in Figure 2.

In the lower text field the user types his input, which when submitted,
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appears in the upper text field, or conversation field. System utterances also
appear in this field. The GUI is implemented in Java.

Input: 6 A string (the system utterance), which is then displayed in the
conversation field, e.g.: “Das ist richtig!”

Output: The user utterance (st input), the tutorial mode if it was set since
the last user utterance (mode), and a boolean flag (delete) indicating whether
a deletion of the last turn is to be carried out:

{ st input = “Nach deMorgan-Regel-2 ist K((A∪B)∩(C∪D)) =
(K(A∪B)∪K(C∪D))”

mode = “min”,
delete = false }

3.2 Input Analyser

The input analyser receives the user’s utterance and determines its linguistic
meaning and proof content. Input is syntactically parsed using the openCCG
parser [22], and its linguistic meaning is represented using Hybrid Logic De-

pendence Semantics (HLDS) [4].

Input: The user’s utterance in a string (see st input in the output of the GUI
above).

Output: A structure containing the linguistic meaning (LM) represented
in HLDS and the underspecified proof step contained in the utterance, in
an ad-hoc LISP-like representation (LU, standing for Proof Language with
Underspecification). This is a language in the spirit of the proof representation
language described in [3], but designed for the inter-module communication
requirements of the Dialog project:

{ LM = @h1(holds ∧ <criterion>(d1 ∧ deMorgan-Regel-2)

∧ <patient>(f1 ∧ formula))

LU = (input (label 1 1)

(formula (= (complement (intersection

(union a b) (union c d)))

(union (complement (union a b))

(complement (union c d)))))

(type ?) (direction ?)

(justifications (just (reference demorgan-2)

(formula ?) (substitution ?)

(role:from))))

}

6 The notion of input/output depends on point of view: the results that a module computes
are its output, which then become the input to the dialogue manager. In this section we
take the point of view of the module, that is, input is the data which it receives from the
dialogue manager, and output is the result of its computation, which is then sent back to
the dialogue manager.
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3.3 Dialogue Move Recogniser

The dialogue move recogniser determines the values of the six dimensions of
the dialogue move associated with the user’s utterance. It does this based on
the linguistic meaning output by the input analyser.

Input: The linguistic meaning of the user’s utterance, which is the LM ele-
ment in the output of the Input Analyser.

Output: A dialogue move or set of dialogue moves corresponding to the
student’s utterance:

{ fwd = “Assert”,
bwd = “Address statement”,
commm = “”,
taskm = “”,
comms = “”,
task = “Domain contribution” }

This dialogue move encodes the student’s utterance in the forward-looking
(fwd), backward-looking (bwd), and task (task) dimensions. “Assert” in the
forward dimension means that the speaker has made a claim about the world.
“Address statement” means simply that the utterance addresses a preceding
statement. The task dimension “Domain contribution” describes a dialogue
move which is concerned with resolving the domain task.

3.4 Proof Manager

The proof manager is the mediator between the dialogue manager and the
mathematical proof assistant Ωmega–Core [28]. The proof manager replays
and stores the status of the partial proof which has been built by the stu-
dent so far, and based on this partial proof, it analyses the soundness and
relevance of a next proof step. It also investigates, based on a user model,
whether the proof step has the appropriate granularity, i.e., if the step is too
detailed or too abstract, and whether it is relevant. The proof manager also
tries to resolve ambiguity and underspecification in the representation of the
proof step uttered by the student. In doing this the proof manager ideally
accesses mathematical knowledge stored in MBase [19] and the user model
in ActiveMath [21], and also deploys a domain reasoner, usually a theorem
prover. These tasks for the proof manager are very ambitious; some first
solutions are presented in [3,18,34].

The proof manager receives the underspecified proof step which was ex-
tracted from the user’s utterance by the input analyser. This is encoded in the
proof representation language LU [3] (LU in the output of the input analyser
(3.2)). The proof manager is able to reconstruct the proof step that the stu-
dent has made using mathematical knowledge, its own representation of the
partially constructed proof so far and the potentially underspecified represen-
tation of the user proof step. It then outputs the fully specified representation
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of the user proof step, along with the step category, (e.g. correct, incorrect,
irrelevant, etc) and whether the proof was completed by the step. It also
includes a number of possible completions for the proof that the student is
building (stored in completeProofs). This is used by the domain information
manager and the tutorial manager to determine what mathematical concept
to either give away to or elicit from the student.

Input: The underspecified proof step outputted by the input analyser (LU in
Section 3.2).

Output: An evaluation of the proof step.

((KEY 1_1) -->

((Evaluation

(expStepRepr

(label 1_1)

(formula (=(complement(intersection(union(A B) union(C D)))

union(complement(union(A B))

complement(union(C D))))))

(type inference)

(direction forward)

(justification (

(reference demorgan-2)

(formula nil)

(substitution ((X union(A B) Y union(C D))))

(role nil))))

(StepCat correct)))

(ProofCompleted false)

(completeProofs ....))

This example shows the similarity of the proof manager’s output to the
underspecified proof step that it receives from the input analyser. In this
case, the proof manager was able to resolve a number of underspecified ele-
ments of the proof step, namely type, direction and substitution. It was also
able to determine that the proof step was correct (the item StepCat), and
added ProofCompleted false, meaning that after this proof step has been
integrated into the student’s partial proof plan, the proof is still not complete.

3.5 Domain Information Manager

The domain information manager determines which domain information is
essentially addressed in the attempted proof step and assigns the value of
the domain information to the expected proof step specified by the proof
manager. It receives both the underspecified and evaluated proof step in
order to categorise the user input in more detail.

Input: The proof step from the input analyser and its evaluation from the
proof manager.

Output: Proof step information:
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{ domConCat: "correct", proofCompleted: false, proofstepCompleted:

true, proofStep: "", relConU: true, hypConU: true, domRelU:

false, iRU: true, relCon: "intersection", hypCon: "union",

domRel: "", iR: "deMorgan-Regel-2"}

Here domConCat refers to the categorisation of the proof step from the
proof manager. The domain information manager has added relCon, referring
to the main mathematical concept addressed in the utterance (in this case
intersection), and hypCon, the hypotaxis of the concept, expressing a kind of
interdefinability.

3.6 Tutorial Manager

The job of the tutorial manager [13] is to use pedagogical knowledge to decide
on how to give hints to the user, and this decision is based on the proof
step category (correct, irrelevant, etc), the expected step, a naive student
model and the domain information used or required. The tutorial manager
can decide for instance to elicit or give away the right level of information,
e.g., a mathematical concept, or to simply accept or reject the proof step in
the case that it is correct or incorrect, respectively. This decision is influenced
by the tutorial mode, also known as hinting strategy. This can be minimal
feedback (“min”), didactic (“did”), in which answers and explanations are
constantly provided by the tutor, or socratic (“soc”), where hints are used to
achieve self-explanation [12].

Input: The tutorial mode, the task dimension of the user’s dialogue move,
which is determined by the dialog move recogniser, and the proof step in-
formation, which is the whole output from the domain information manager.
This includes the evaluation of the user’s proof step, and the possibilities for
the next proof step, according to the proof manager.

Output: A tutorial move specification, that is, the tutorial mode and the
task content of the system dialogue move.

{ mode = “min”;
task = (signalAccept;

{proofStep= “”; relCon= “”; hypCon= “”; domRel= “”;
iR= “”; taskSet= “”; completeProof= “”})
}

3.7 NL Generator

The natural language generation system used in Dialog is P.rex . P.rex , as
mentioned in the introduction, is designed to present complete proofs in nat-
ural language, and has been adapted for the Dialog project. Adaptation was
necessary because in a dialogue setting utterances are produced separately
and sequentially, not as a complete coherent text. Also, referents of anaphors
are constantly changing as the dialogue model develops.
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The NL Generator receives a dialogue move and returns an utterance whose
function captures each dimension of the move.

Input: A system dialogue move specification, that is, a six-dimensional dia-
logue move along with the current tutorial mode, e.g.:

{ mode = “min”;
fwd = “Assert”;
bwd = “Address statement”;
task = ( “signalCorrect”, {proofStep= “”, relCon= “”,

hypCon= “”, domRel=“”, iR= “”, taskSet= “”,
completeProof= “”});

comms = “”;
commm = “”;
taskm = “”}

The value of the task dimension of the dialogue move and the tutorial
mode is taken from the output of the tutorial manager. The other 5 dimen-
sions are computed by the dialogue manager itself, based on the dialogue
move of the student’s utterance. For instance, the “Address statement” in
the backward-looking dimension is in response to the “Assert” in the forward-
looking dimension of the student’s dialogue move.

Output: The natural language utterances that correspond to the system
dialogue moves. These then become the input to the GUI, e.g. “Das ist
richtig!”.

4 Rubin

Rubin is a platform for building dialogue management applications developed
by the CLT company [29]. It uses an information state based approach to di-
alogue management, and allows quick prototyping and integration of external
modules (called “devices”). The developer of a dialogue application writes a
dialogue model describing the dialogue manager, which is then able to handle
device communication, parse and interpret input, fire input rules based on
messages received from clients, and execute dialogue plans. Rubin has been
used for instance to support flexible dialogue in an airport flight information
system.

4.1 The Rubin Dialogue Model

The Rubin term “dialogue model” refers to a user–defined specification of
system behaviour. It should be noted that this does not refer to the model of
domain objects, salience, and discourse segments, etc, as in other theories of
discourse. It consists of the following sections:

Information State The IS in Rubin is implemented as a set of freely–defined
typed global variables (called slots) which are internally visible in the di-
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alogue manager. Slots can have any of Rubin’s internal datatypes: bool,
int, real, string, list or struct. The IS is specified by the following
syntax:

IS := slot*

slot := label [ : type ][ = value]
type ∈ {bool, int, real, string, list, struct}

where label is any variable name, and value is an object which has the
correct type in its context, e.g. a quoted string for a variable of type string.
list and struct objects are specified as follows:

list := [ ] | [ value {, value}* ]
struct := {slot*}

For a slot of type struct, it is possible to either directly specify the slot
as having the type struct, or to specify the exact structure of slots within
the struct.

External Devices Arbitrary modules that send and receive data can be con-
nected to the Rubin server, for example a speech recogniser or a graphical
user interface. A connection is specified by a unique device name and a port
number over which communication takes place:

device declaration := device name : port number ;

Grammar Using a grammar written in the Speech Recognition Grammar
Format (SRGF), it is possible to preprocess (i.e. parse and interpret) nat-
ural language input from a device before performing further computations
within the dialogue manager, or sending the input to another module. The
grammar is context-free with semantic tags. It takes a string as input and
returns either the corresponding semantic tagging, or the string which was
recognised, if no semantic tags are given.

For instance, a grammar could be used to parse a natural language utter-
ance containing the time of day before sending the utterance to a sentence
analysis module for further processing. In this case a grammar would parse
strings like “four fifteen p.m.” or “a quarter past four” and determine a
semantic representation such as:

{ h = 16 , m = 15 }

In Dialog we do not make use of a grammar, since input analysis is
handled by our own input analyser.

Support Functions Auxiliary functions can be defined in Rubin for use
within the dialogue manager, and these are globally visible. These can
perform operations on the internal datatypes used in the dialogue model,
and the syntax is nearly identical to ANSI C. Statements can also set the
value of slots in the information state, and make calls to devices.

Plans These are special functions with return type Boolean and which have
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input rule := IS constraints { |device name} input pattern :
{statement*}

IS constraints := | {matching*}
input pattern := | label | listpattern | structpattern

listpattern := [ ] | [ pattern {, pattern}*]
structpattern := {pattern {, pattern}*}
pattern := matching | label

matching := slot = value

Table 1
The syntax of Rubin’s input rules.

positive and negative preconditions which are tested for the duration of their
execution. Plans can make changes to the IS and make calls to devices.

Input Rules These are rules which carry out arbitrary actions based on input
from devices connected to the dialogue manager, and are specified with the
syntax given in Table 1.

When input is received from some device a rule can be fired based on
the content of the fields in its header. IS constraints is a set of constraints
(which may be empty) on values in the IS which must hold for the rule to
fire. That is, for the constraint

{ x = 3 }

the value of the slot x in the information state must be 3 for the rule
to fire. device name must be the same as the unique name of the device
from which the input came. If “ ” is given as the device name, the rule
can match input from any device. The input pattern must match 7 with
the input from the device. A side effect of this matching is that the input
becomes bound to the variables which are implicitly declared in the input
pattern. For example, the rule

_, "SA", { LM = typeof_lm, LU = input} : {...}

will only match on input from the device called “SA” with input of type
struct, where the structure contains 2 slots, LM and LU. This rule puts no
constraints on the type of the values in these two slots. When the rule
fires, the values in the slots are bound to the labels typeof lm and input

respectively, and these labels are visible in the body of the rule. The first
rule in the dialogue model whose IS constraints, device name and input
patterns match is executed.

The body of a rule is an inlined plans that can update IS, push other plans
and so on. Thus given a data object as input, a rule can make changes to
the IS, to the plan stack, or to both.

7 Here we speak of matching as opposed to unification. In Rubin it is not possible to have
variables in the information state, so matching is sufficient to decide on the applicability of
rules and to bind input to local variable names.
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In general an input rule denotes a function f :

f ∈ AS × PS × Inputs → AS × PS

where

AS = set of all assignments of IS slots
PS = set of all possible states of the plan stack
Inputs = the set of Rubin data objects

An input rule f(as, ps, input) may fire when as is an assignment of IS
slots which satisfies the IS constraints of the rule and input matches with
the input pattern of the rule.

Rubin provides the Java abstract class Client which acts as a wrapper
linking Rubin with a device. It also provides a graphical user interface which
displays the state of the dialogue manager, i.e. the values in the IS, and the
input rules which fire. This is useful for prototyping, debugging and testing.

5 The Dialogue Model

The dialogue model for the Dialog demonstrator contains the specification of
the IS slots, the device connections, the update rules to capture input from
modules, and plans for unparsable input. The slots that make up the IS in
our example are listed in Table 2.

Since our linguistic analysis is performed entirely by a more advanced
sentence analyser (the analysis of mixed natural language and mathematical
formulas is one of the core issues of the Dialog project), the dialogue model
does not use the grammar functionality provided by Rubin.

A support function is used to implement the choice of dialogue move for
the system (this is still a simulated module in the demonstrator). It is a
function which takes as input the dialogue move corresponding to the student
utterance, specified by its 6 dimensions, and tries to match it against a list of
hard-coded dialogue moves. For each possible student dialogue move it returns
the dialogue move representing the appropriate system response. This move
is underspecified in the sense that the pedagogical knowledge of the tutorial
manager has not yet been added.

Plans are used to handle unparsable input, since in this case no mathe-
matical or pedagogical knowledge is required by the dialogue manager, and
these modules therefore do not need to be called. When the dialogue manager
receives input from the sentence analyser stating that the user’s utterance was
uninterpretable, the dialogue manager sends the generation module a ready–
made dialogue move which has in its backward dimension an encoding of why
the utterance was not parsed (e.g. due to a parenthesis mismatch). This in-
formation can be used in the verbalisation of the move in order to tell the user
what was wrong with the input, and to help them correct their error.
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Slot Name Type Description and example

student task string The task-level content of the student’s last dia-
logue move.
“Domain contribution”

user input string The user’s last utterance.
“A und B müssen disjunkt sein.”

input lm string Linguistic meaning of the utterance, from sen-
tence analyser
“domaincontribution”

input lu string Underspecified representation of the user’s proof
step
(input (label 1 1) (formula . . . ) (see Section 3.2)

tut mode string The current tutorial mode
“did”, “soc” or “min”

current move struct The six dimensions of the dialogue move just
performed by the user.
{fwd = “Assert”, bwd = “Address statement”,
commm = “”,
task = “Domain contribution”, . . . } (see Sec-
tion 3.3)

complete proof string The complete user proof, outputted by the proof
manager when the proof has been completed.
((KEY 1 1) → ((Evaluation (expStepRepr (label
1 1) (formula . . . ) (see Section 3.4)

deleting bool A flag which is set to true when the latest
user/system turn is to be undone. (true/false)

Table 2
The IS slots in the dialogue model.

5.1 Input Rules

The rules section of the dialogue contains the following rules (only the rule
headers are listed):

_, "Gen", input: {...}

_, "GUI", { student_input = stinput,

mode = tmode,

delete = d} : {...}

_, "SA", { LM = typeof_lm, LU = input} : {...}

_, "DMR", input : {...}

_, "ProofMan", input : {...}

_, "DomainInfoMan", input : {...}

_, "TutMan", input : {...}
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1. _, "GUI", { student_input = stinput, mode = tmode, delete = d}

2. : { slots.user_input = stinput;

3. //check if the tutorial task is being set

4. if (stinput == "settask") {

5. slots.tut_mode = tmode;

6. // send complete structure with null values to TutMan

7. output_struct(TutMan, GUI, {mode = tmode, ...});

8. }else if (d==true) {

9. //what to do if delete

10. slots.deleting = true;

11. output_string(SA, GUI, stinput);

12. }else {

13. if (tmode != "")

14. slots.tut_mode = tmode;

15. output_string(SA, GUI, stinput);

16. }

17. }

Fig. 3. The input rule for data received from the GUI.

For each module connected to the dialogue manager there is a rule to
capture its input to the Rubin server. None place any constraints on values
in the IS. Where the input needs to be analysed to decide on what action the
dialogue manager takes, a pattern is used to bind elements of the input to
specific variable names.

The input rules in the dialogue model are the concrete realisation of the
communication function of the dialogue manager. Because an input rule is
specified for each device, the dialogue manager can accept data from each
device at any time. In each rule there is a call to the output function, which
passes data to another device. In this way, the dialogue manager uses its input
rules to create an input/output framework, in which each rule stores its input
in the IS, and based on conditional tests, sends output to another module.

As an example consider the rule for input from the GUI, shown in Figure 3.
This rule fires only on input where the object which is received is a structure
with the field labels student input, mode, and delete. This is exactly the
structure that the GUI sends each time the user submits an utterance. In the
header of the rule matching takes place on the input pattern, and the values
in the structure become bound to the local variables stinput, tmode and d.
Line 2 shows access to the IS, where the user utterance (a string) is stored in
the IS slot user input. This makes it available to other modules for future
computations. In this line, slots refers to the structure in the dialogue model
which contains each of the IS slots.

The next step in this rule is to determine if the user has just started a
new dialogue with the system. A new dialogue is started in the demonstra-
tion system simply by setting the tutorial mode. In this situation, the token
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Fig. 4. Information flow in the Dialog demonstrator for a single system turn.

“settask” is sent as the user utterance (even though the user did not really
say this), and control switches directly to the tutorial manager to set the task
(Line 7). The tutorial manager receives a structure which is empty except for
the tutorial mode. In this way the tutorial manager knows that a dialogue is
being initialised and in what tutorial mode.

The if-clause in Line 8 tests if the user has decided to delete a move. In
this case, the flag deleting in the IS is set to true, and control passed to the
input analyser (with the device name “SA”) by sending it the user utterance
which is in the variable stinput. The final check is in Line 13, where the rule
tests if the tutorial mode has changed. In this case the new tutorial mode is
simply stored in the IS, and control passes to the input analyser as usual.

The functionality to delete a pair of user/system turns is also implemented
in our dialogue model. When the GUI’s output contains the flag delete =

true, then this value is stored in the IS slot deleting to be later passed to
the tutorial manager. This is necessary to keep the tutorial manager’s model
up to date, for instance, of which concepts have been given away, or how many
hints have been given.

5.2 Information Flow

The input rules described in the previous section give rise to a strict flow of
information for each system turn. This is illustrated in Figure 4. The diagram
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shows that when the user’s utterance contains no domain contribution, that is,
when the user makes no statement about the proof itself, the proof manager,
domain information manager (PSM 8 ) and tutorial manager are not called for
the system response. This reflects the fact that when an utterance has no
proof relevant content, there is no need to involve the modules which deal
with respective domain knowledge. It suffices to create the system response
solely based on discourse level knowledge, which is encoded in the dialogue
manager, the input analyser, dialogue move recogniser, and the NL generator.

What is not so clear from the information flow diagram is that each arrow
is actually a transfer of control facilitated by the dialogue manager’s com-
munication function. As mentioned above, each rule in the dialogue model
embodies an “input, process data, output” step, and these steps are shown
in the diagram as arrows connecting modules. For instance, when the dia-
logue move recogniser outputs data, the dialogue manager performs the “is
domain contribution?” test, and based on this, passes control to either the
proof manager or to itself.

6 Discussion

6.1 Module Simulation

Because the Dialog demonstrator is at a relatively early stage of develop-
ment, a number of modules which are not yet fully implemented had to be
simulated. The natural language generation module had to be simulated be-
cause the foreseen generation system, P.rex , has not yet been adapted for the
Dialog system, or for German language output. The generation module uses
a “canned–text” style. It contains a mapping of dialogue moves to strings,
and given a set of dialogue moves, returns the corresponding utterance(s).

The domain information manager receives the linguistic meaning and the
user proof step from the sentence analyser, as well as the evaluation of the
proof step from the proof manager. It matches these together against hard–
coded lists of input, and outputs the assigned values for the specification of
the task dimension of the dialogue move.

The dialogue move recogniser receives the linguistic meaning from the sen-
tence analyser and returns the dialogue move that corresponds to that utter-
ance by matching against 5 possible types of linguistic meaning. These are:
domain contribution, request for assistance, and uninterpretable utterance due
to bad grammar, parenthesis mismatch, or a word which is not in the lexicon.

The wrapper communication with the Rubin server made module simu-
lation quite straightforward, since the matching algorithms could be imple-
mented directly in the wrapper class. When a module is then later imple-
mented, it is easy to build it in to the system, because the wrapper already
exists. In this way internal changes in modules are insulated away from the di-

8 Proof step manager, a previous name for the domain information manager.
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alogue manager itself, and only the output function needs to be reimplemented
to interface with the new real module.

6.2 Implementation Issues

A difficulty in achieving a stable, running demonstrator program was inter-
facing between programming languages in order to connect all modules to the
dialogue manager. Rubin, and therefore the dialogue manager built on it, is
written in Java, which means that any module to be connected as a device
must interface with Java. The GUI and the simulated modules are already
written in Java, but the sentence analyser is written in both Java and Perl,
and the tutorial manager and proof manager, as well as the mathematical
proof assistant Ωmega–Core are written in LISP.

The solution we decided on for communication with the dialogue manager
was to use socket communication, in a similar way to the connection between
Rubin and its devices. Using sockets a string can be written to a stream in
one programming language and then read from the same stream in another
language running as a different process. This allows any two languages to
exchange data as long as they support streams and sockets. The disadvantage
of this solution is that only strings can be passed through a socket. Each
piece of data must be first translated into a string by the sender and then
parsed by the receiver, adding an extra layer of complexity to the inter-module
communication.

An implementation issue with the sentence analyser was the use of OpenCCG
in Linux. Development of the sentence analyser was done in a Microsoft Win-
dows development environment. When we attempted to move the application
to Suse GNU/Linux for use with the demonstrator, the use of Java user prefer-
ences in the OpenCCG package led to runtime errors in the sentence analyser.
As a consequence of this the sentence analyser was run separately to the rest
of the system for demonstration purposes.

6.3 Advantages using Rubin

Since Rubin is written in Java, it is easy to design prototypes for modules,
and to connect modules to the dialogue manager. It also runs on any platform
on which the Java 2 JVM is installed. Rubin supports rapid prototyping, and
makes it possible to quickly set up a basic dialogue manager which contains an
information state, dialogue plans, grammar and update rules, and is therefore
suited to a system like Dialog which is still at an early development stage.

6.4 What have we learned?

Our experience in building the demonstrator has made us aware of a number of
“desiderata” for dialogue applications in the area of natural language tutorial
dialogue based on the characteristics of the demonstrator:
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Dialog differs from other user interfaces to ATPs in that it aims to sup-
port flexible natural language input and output to the tutorial system and
therefore to the ATP. This means that a very tight interplay of NLU and
proof management must take place, and this should be supported by the dia-
logue manager. The intelligence of the Dialog system is distributed between
its subsystems, and thus there must be sophisticated communication between
for instance tutorial management, mathematical knowledge management, and
natural language generation.

We now mention some of the requirements of a dialogue manager for the
Dialog project which we have identified.

Direct IS access

Modules use the information state to share the information they need to com-
pute results. This can work optimally when each module has read and write
access to the IS, and leads to better use of concurrent execution. Modules
should also be notified of changes in the IS by triggers attached to slots.

In Rubin this is not possible. That is, there is no way to state, “When slot
A is updated, broadcast this event to all devices” so that they can all read
the new value. If rules of this type were available, it would obviate the need
to pass control to some module at the end of each update rule. Instead, each
module could simply watch the IS until all the information it needs is there
(i.e. has been updated since the last system utterance), and then execute.

With IS update triggers it would also be possible for modules to use partial
information to concurrently compute partial results without having to take full
control of system execution. In this situation input rules would simply write
values to the IS, and pro-active modules, or “agents” acting on their behalf,
would be the main guides of system behaviour.

Runtime flexibility

We see runtime flexibility as an important feature in the future development
of the dialogue manager. It would be possible for example to rearrange the
ordering of input rules, alter the IS constraints in the header of a rule, or to
register new modules or exchange modules at runtime. This could be a very
useful feature for a tutorial dialogue system, as it would then be possible for
instance to change language from German to English by replacing the natural
language generation module, or to dynamically add and remove mathematical
databases depending on the domain which is being taught.

In Rubin the dialogue model is static. The IS, input rules and all other
definitions that make up the dialogue model are specified before runtime, and
thereafter cannot be changed. That means it is not possible to make runtime
changes to how the dialogue manager behaves.

Another consequence of this relates to dialogue plans. These are also
statically defined and cannot be changed at runtime, which is not suitable
for the genre of tutorial dialogue. In a dialogue system where information is
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elicited, such as timetable queries, Rubin’s plans allow a degree of adaptivity
in that the same information will not be requested twice. This is done by
specifying a precondition on the plan such as “IS slot x is undefined”, so that
if the required information is already in slot x, the plan will not execute.
However for tutorial dialogue, this does not offer enough flexibility. In the
theorem proving dialogues conducted by the Dialog demonstrator, IS slots
are repeatedly overwritten, so the “undefined” test on slots is not a reliable
indication of what the student has said. Since it is impossible to know or
predict the whole range of possible student utterances, it is a much more viable
approach to begin a tutorial dialogue with a sketchy high-level dialogue plan
which places as few as possible constraints on the course of the dialogue [37].
We see the provision for flexible dialogue planning as an important addition
to the dialogue manager.

Meta-level control

To achieve a more flexible and adaptable control over rule firing, we believe a
meta-level is necessary in which more sophisticated criteria that the ordering
of rules could be used to choose the most appropriate next rule. This contrasts
with Rubin, where rules fire based solely on their constraints and place in the
dialogue model. Such a meta-level would bring a number of benefits to the
Dialog system:

Heuristic control Heuristics for controlling overall system execution could
be implemented in the meta-level, for instance, the decision of what module
to invoke at what time.

Comparison of IS updates A meta-level could compare different possible
IS updates which are triggered by module input. In this situation, an IS
update would not simply be made when the first rule fires, rather a number
of updates could be computed and compared for appropriateness based on
heuristics in the meta-level. The heuristically most appropriate one would
then be selected.

Decoupling of IS updates from information flow Since information flow
(i.e. what module to call after an IS update) would be determined solely in
the meta-level, the definition of IS updates could be made without needing
to also define in the rule the effect that the update has on overall system
execution. This would greatly simplify the design of input rules, because
there would be no need to decide on the “next step” of the system within
the rule itself.

Flexible flow of control

Since system action is triggered by input from a module which causes an input
rule to fire, then if there is no input and no plans on the plan stack, the system
stops. This means that in each input rule, the dialogue manager has to pass
control to some module which it knows will return some data, and forces a
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Fig. 5. A section of the information flow, showing (a) scientifically less well moti-
vated input rules and (b) the equivalent well-motivated input rules.

design in which each input rule finishes with a call to output some data to a
module so that execution does not stop. The set of input rules thus forms a
chain of invocations, and at all times only one module is executing, and all
others must wait to be sent information from the dialogue manager before they
can execute, even if the information they require has already been assembled
within the IS.

We believe a more flexible control of information flow and execution would
benefit use of resources and effiency of computation, as well as helping to
facilitate the features mentioned above.

An example of the inflexibility of the input rules is shown in Figure 5. In
the figure, an arrow from X to Y represents an input rule which fires on input
from module X, and finishes by making a call to module Y, thus forming a
link in the chain of module invocations. Part (a) shows the rules as used in
the dialogue model for the demonstrator. Here the input from the dialogue
move recogniser triggers the invocation of either the domain information man-
ager, the NL generator or the proof manager, depending on the category of
the student’s utterance. For instance, if the utterance was unparsable, the
NL generator is called immediately to signal non-understanding. If there is
no proof step addressed in the utterance, the proof manager does not need
to be called. If the student has made a request for assistance, the domain
information manager can be called directly. This conditional branching takes
place in the input rule for the dialogue move recogniser. However, this decision
is not based on the input from the dialogue move recogniser, but rather on
information which came from the input analyser, and could have taken place
in the input rule for the input analyser. In this sense the rule for the dialogue
move recogniser is not well motivated, and the conditional branching should
take place in the rule for the input analyser.
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Part (b) shows the scientifically better motivated structure, including rules
which it was not possible to use in the demonstrator. For instance, the proof
manager could have been called directly after the input analyser. This was not
possible because the results of the input analyser have two effects: a call to the
proof manager and a call to the dialogue move recogniser. Due to the strict
information flow in the dialogue model one of these modules has to “wait” for
the other to return before it can be called, leading to the non-motivated rule
in (a). So although the computation that the proof manager carries out is not
dependent on the results of the dialogue move recogniser, it is forced to wait
until this module finishes its computation.

Overall, this restriction on input rules forces the designer of the dialogue
manager to mix information state updates with declarations about the flow of
control, since input rules must encode both at the same time. A more intuitive
way to define system behaviour would be to declare rules for information state
updates and rules for controlling system execution separately, thereby making
the definition of both simpler.

6.5 Summary and Further Work

In this paper we have presented the design and implementation of a dia-
logue manager based on Rubin for the Dialog demonstrator program. The
dialogue manager facilitates a natural language interface to the tutorial sys-
tem, which in turn accesses the ATP Ωmega–Core, tutorial management and
stored mathematical knowledge. As a motivation for the implemented version
we described the basic functionality the dialogue manager should provide, and
described its role in the overall system. We introduced the Rubin tool and
its characteristics, and presented the implementation of the dialogue manager
within this framework. In the final section we discussed some aspects of the
concrete system and the Rubin platform.

Motivated by the results of the development of the demonstrator, we are
investigating the use of agent-based techniques to build a new platform for
dialogue management. This should provide the same functionality as Rubin,
while also allowing the concurrency and flexibility which we have identified as
being necessary for such a dialogue application.
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[18] Hübner, M., S. Autexier, C. Benzmüller and A. Meier, Interactive theorem
proving with tasks, Electronic Notes in Theoretical Computer Science 103

(2004), pp. 161–181.

[19] Kohlhase, M. and A. Franke, Mbase: Representing knowledge and context
for the integration of mathematical software systems, Journal of Symbolic
Computation; Special Issue on the Integration of Computer Algebra and
Deduction Systems 32 (2001), pp. 365–402.

[20] McTear, M., Modelling spoken dialogues with state transition diagrams:
Experiences with the CSLU toolkit., in: Proceedings of the 5th International
Conference on Spoken Language Processing, Sydney, Australia, 1998.

[21] Melis, E., E. Andres, A. Franke, G. Goguadse, M. Kohlhase, P. Libbrecht,
M. Pollet and C. Ullrich, A generic and adaptive web-based learning
environment, in: Artificial Intelligence and Education, 2001, pp. 385–407.

[22] openCCG, http://openccg.sourceforge.net/.

[23] Pinkal, M., J. Siekmann and C. Benzmüller, Dialog: Tutorial dialog with an
assistance system for mathematics (2004), project report in the Collaborative
Research Centre SFB 378 on Resource-adaptive Cognitive Processes.
URL www.ags.uni-sb.de/~chris/papers/R28.pdf

[24] Pinkal, M., J. Siekmann, C. Benzmüller and I. Kruijff-Korbayova, Dialog:
Natural language-based interaction with a mathematics assistance system

27

http://openccg.sourceforge.net/
www.ags.uni-sb.de/~chris/papers/R28.pdf


Buckley and Benzmüller

(2004), project proposal in the Collaborative Research Centre SFB 378 on
Resource-adaptive Cognitive Processes.
URL www.ags.uni-sb.de/~chris/papers/R30.pdf

[25] project, Siridus., http://www.ling.gu.se/projekt/siridus/.

[26] project., Trindi., http://www.ling.gu.se/research/projects/trindi/.

[27] Ranta, A., Grammatical framework — a type-theoretical grammar formalism,
Journal of Functional Programming 14 (2004), pp. 145–189.

[28] Siekmann, J. and C. Benzmüller, Omega: Computer supported mathematics, in:
Proceedings of the 27th German Conference on Artificial Intelligence (KI 2004),
Ulm, Germany, 2004.

[29] Sprachtechnologie, C., http://www.clt-st.de/.

[30] Toolkit, C., http://cslu.cse.ogi.edu/toolkit/.

[31] Traum, D., J. Bos, R. Cooper, S. Larsson, I. Lewin, C. Matheson and M. Poesio,
A model of dialogue moves and information state revision, Technical report
TRINDI project deliverable D2.1, University of Gothenburg (1999).

[32] Traum, D. and S. Larsson, The information
state approach to dialogue management, in: J. van Kuppevelt and R. Smith,
editors, Current and new directions in discourse and dialogue, Kluwer, 2003
http://www.ict.usc.edu/~traum/Papers/traumlarsson.pdf.

[33] Tsovaltzi, D. and E. Karagjosova, A view on dialogue move taxonomies for
tutorial dialogues, in: Proceedings of 5th SIGdial Workshop on Discourse and
Dialogue, Boston, USA, 2004.

[34] Vo, Q. B., C. Benzmüller and S. Autexier, Assertion application in theorem
proving and proof planning, in: G. Gottlob and T. Walsh, editors, Proceedings of
the International Joint Conference on Artificial Intelligence (IJCAI), Acapulco,
Mexico, 2003, iSBN 0-127-05661-0.

[35] Wenzel, M., Isar — a generic interpretative approach to readable formal proof
documents, in: Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin and L. Théry,
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