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1 Introduction

The vision of computer-based mathematical assistance
systems providing integrated support for all work phases
of a mathematician (see Figure 1 from [12]) has fasci-
nated researchers in artificial intelligence, particularly
the deduction systems area, and in mathematics for a
long time. The dream of mechanizing mathematical rea-
soning dates back to Gottfried Wilhelm Leibniz in the
18th century. In the beginning of the 20th century mod-
ern mathematical logic was born and an important mile-
stones in the formalization of mathematics are Hilbert’s
program and the 20th century Bourbakism.

After the enthusiasm of the 50s and the 60s the deduc-
tion systems area increasingly fragmented into several
subareas which all developed their specific approaches
and systems similar to the Artificial Intelligence area in
general. It is only very recently that this trend is re-
versed, with the Calculemus and Mkm communities
as driving forces of this movement. In Calculemus

the viewpoint is bottom-up, starting from existing tech-
niques and tools developed in the community. Mkm

approaches the goal of revolutionizing computer-based
mathematics in the new millennium by a complemen-
tary top-down approach starting from existing, mainly
pen and paper based mathematical practice down to sys-
tem support.

The Ωmega project of Jörg Siekmann at Saarland
University is an innovative force in this field since the
early 90s. At the heart of this project is the Ωmega sys-
tem [10; 33], which today integrates several modules and
subsystems addressing various of the aspects illustrated
in Figure 1.

In this paper we first provide a compact overview
and the main references on subsequent developments in
the Ωmega project w.r.t. the long-term goal of building
a powerful mathematical assistant (MA) and we then
point to current research directions and some novel ideas.

∗This work is supported by the SFB 378 at Saarland Uni-
versity, Saarbrücken, and the EU training network CAL-
CULEMUS (HPRN-CT-2000-00102) funded in the EU 5th
framework.

Figure 1: Calculemus illustration of different chal-
lenges of a mathematical assistance system

2 Mathematical Assistant In-the-small

Knowledge-based Proof Planning Ωmega has
been born in the early 90s as a result of the paradigm
shift in Jörg Siekmanns research group from classical
automated theorem proving (ATP) in first-order logic
(FOL) to knowledge-based proof planning (PP) [29] in
classical higher-order logic (HOL) [16]: after many years
of experience in building classical ATPs the cumulative
conviction was that that this approach alone is insuf-
ficient w.r.t. the ambitious goal of powerful MAs. PP
in Ωmega is on the one hand inspired by the work of
Alan Bundy [14], on the other hand it contributed some
novel aspects: it provides declarative meta-level control
structures (control rules and strategies; see [27]), it is
based on an expressive HOL framework, it supports un-
derspecified pre-conditions in the proof operators and
sound and non-sound proof plans can be explicitly rep-
resented, and it guarantees soundness of proof plans via
plan operator expansion to and verification at its base
calculus (OMEGA-ND) [9], which is a HOL variant of
Gentzen’s natural deduction calculus.

Interaction The Ωmega group is convinced that a
symbiosis of interaction and automation is required in



MAs. However, initially there was no tight integration
of both paradigms in the project and the system sim-
ply offered in addition to PP a tactic based approach
for interactive proof construction (IP) in HOL; see [35].
The differences to the Edinburgh LCF approach [20] in-
clude: potentially non-sound tactics are supported (cf.
planning operators above), tactic-level proofs can be ex-
plicitly represented and their soundness is guaranteed
only if a non-failing expansion to OMEGA-ND is pos-
sible. Recently the group has investigated a decalara-
tive style of interactive proof based on the idea of island
planning [35]. In this approach the user provides a net-
work of proof islands and the gaps between these island
are then ideally automatically refined by the system to
OMEGA-ND.

Proof Data Structure Ωmega’s proof expansion ap-
proach is supported by its hierarchical proof data struc-
ture (PDS) developed since the mid 90s [15]. It allows to
maintain proof developments (sound or non-sound, see
above) at different albeit connected levels of granularity.

Proof Verbalization In the early 90s the proof ver-
balization tool Proverb [21] has been developed; the
successor of Proverb is P.rex [17; 18]. These sys-
tems lift any proof in the PDS to the assertion level and
then create — after macro-planning the text structure
and micro-planning the sentence structure and linguis-
tic realization — a natural language representation of
it. Proverb and P.rex assume that respective domain
specific linguistic information is provided in the knowl-
edge base.

User Interface The graphical user interface Loui [34]
developed since the mid 90s provides different views on
proofs maintained in Ωmega’s PDS — including lin-
earized ND, proof tree, and natural language. Loui fur-
thermore supports the different hierarchical layers in the
PDS.

Mathematical Knowledge Hierarchically struc-
tured mathematical knowledge (an ontology of math-
ematical theories providing among others axioms,
theorems, and lemmas, i.e assertions) has initially been
stored in Ωmegas hardwired mathematical knowledge
base (MKB). This MKB was later (end of the 90s) out-
sourced which fostered the development of the MBase

MKB [19]. Ωmega nowadays assumes that an MKB
ideally also supports maintenance of its domain specific
control rules, strategies, and linguistic knowledge.

External Reasoners Despite the Ωmega project’s
initial shift from classical FOL-ATP — which in the au-
thors’ view sweeps towards a local maximum w.r.t. the
goal of powerful MAs — to HOL-PP and HOL-IP the
project from the very beginning fostered the integration
of FOL-ATPs as one species of external specialist rea-
soners (SR) into MAs. Early versions of Ωmega already

support the transformation of HOL subproofs (proof goal
together with its local and global assumptions) by em-
ploying a HOL-2-FOL translation mechanism [23] into
pure FOL representations; thereby relevant information
on the translation mappings are memorized. The result-
ing FOL proof problems can be tackled, for instance, by
Otter. White-box integration is supported by Tramp

[28], which is capable of retranslating machine-oriented
FOL proof objects into assertion level proof representa-
tions in Ωmega using the memorized translation map-
pings above. This way proof verbalization and inde-
pendent proof checking becomes available for SRs called
within Ωmega. Today Ωmega has access to more than
twenty different SRs (and to many of them in white-
box style). This includes computer algebra systems like
Maple or Mathematica exploiting the CAS-Ωmega-
translator SAPPER [36], the HOL-ATP Tps [1] exploit-
ing a tactic based proof translator [6], model generators,
and the constraint-solver Cosie [30].

Modularization In the mid of the 90s Ωmegas initial
monolithic architecture got subsequently replaced by a
modular concept for MAs. This move started with the
outsourcing of the previously hardwired external rea-
soners. It has resulted in the MathWeb-SB software
bus, which in addition to the various SRs offered by
MathWeb-SB connects Ωmega with the outsourced
systems Loui and MBase.

Agent-based Theorem Proving The symbiosis of
IP, ATP, and SRs is supported in Ωmega by the agent-
based suggestion and reasoning mechanism ΩAnts [8;
37]. The initial motivation for ΩAnts was to turn
the thitherto passive Ωmega system into a pro-active
counter-player of the user which — in cooperation with
and competition to the user — autonomously exploits
available resources to reason on possible directions for
continuing the proof under construction.

The ΩAnts solution provides societies of pro-active
agents in a hierarchical blackboard architecture that dy-
namically and concurrently generate suggestions on ap-
plicable proof operators. These ΩAnts agents may also
call SRs [31] or perform search in MKBs [7]. The ap-
proach has furthermore been applied to realize agent-
based ATP [13] and interactive PP [32].

3 Mathematical Assistant In-the-large

Current and future research of the Ωmega project is
concerned with widening the frontiers of the system such
that it integrates more smoothly into the spectrum of
usual tasks of a mathematician. In addition to the above
to-date streams of research this comprises the following
new aspects:

• Mathematical knowledge management: there is an
increasing interest in (i) MA independent represen-
tation of mathematical knowledge such as theory



definitions and domain specific proof search strate-
gies, and (ii) improved support for the distribution
and exchange of mathematical knowledge.

• Proof development in-the-large: we aim at (i) lift-
ing the argumentative level of proof construction in
MAs in order to support more natural proof styles
in combination with possibly underspecified proof
steps, (ii) the combination of different proof search
paradigms, and (iii) the integration of various kinds
of available structured mathematical knowledge into
the assisted proof construction process.

• Other mathematical activities: we want to support
additional activities such as (i) writing mathemat-
ical publication and (ii) tutoring for mathematics
students.

Mathematical knowledge management. Mathe-
matical knowledge in the envisioned mathematical assis-
tant consists not only of structured formal mathemati-
cal theories, but also of domain specific proof knowledge
such as tactics and proof operators. This spurred the
development of the OmDoc-language [25] for the repre-
sentation of mathematical theories. Furthermore, math-
ematical activities are distributed over different physical
locations such that there is a need for remote access of
mathematical knowledge and provide knowledge to third
parties on the other hand. Last not least the mathemat-
ical activity is an evolutionary process which requires
a sophisticated management of change combined with
origin tracking and version control. This spurred the
development of the MBase-system [19] designed for dis-
tributed mathematical knowledge, which is currently ex-
tended to manage domain specific proof knowledge and
incorporate techniques and tools like Maya [5] for man-
agement of change and version control developed in the
context of formal software development.

Proof development in-the-large. A challenge is to
enlarge the size of the individual proof steps that are
directly supported by the proof engine. Taking up the
notion of assertion level proof steps coined in the area
of proof presentation we envision to support direct ap-
plication of assertions. The CoRe-system [2], whose
calculus directly supports the determination and appli-
cation of available assertions to sub-formulas, is cur-
rently integrated as the uniform basis [22] in Ωmega for
proof construction. CoRe shall also support the inte-
gration and combination of the different proof construc-
tion paradigms [4], which is the second aspect of in-the-
large proof development. Indeed, the experience in the
Ωmega-system showed that each kind of proof search
paradigm, namely ATP, IP, and PP have complemen-
tary strengths. Thus, rather than being tailored to one
type of proof knowledge, we envision their collaboration
on the common basis provided by CoRe. Finally, work
is devoted to linking more closely the structured math-
ematical theories with the proof construction process.
For instance [39] presents a technique based on CoRe

employing the Ωants idea for concurrently searching
for applicable assertions in a MKB. On a more global
scale the MathWeb-SB is currently redesigned to ac-
commodate existing standards of multi-agent system de-
sign, to support more high-level problem descriptions
and incorporate limited automated problem solving ac-
tivities via automated coordination of the SRs provided
in MathWeb-SB. This also shall allow for a better in-
tegration of SRs into a proof construction process.

Support for specific mathematical activities.
Proof construction is usually only part of a much wider
range of mathematical activities an ideal MA should sup-
port; see also Figure 1. Therefore the Ωmega system is
currently extended to directly support additional aspects
in a mathematicians usual task spectrum. The focus of
our current research is on writing mathematical publica-
tions and advising students during proof construction.

With respect to the former we envision that a mathe-
matician writes a new paper in some specific mathemati-
cal domain using a LaTeX-like environment. The defini-
tions, lemmas, theorems and especially their proofs give
rise to extensions of the original theory and the writing of
some proof goes along with an interactive proof construc-
tion in Ωmega. As a result this allows the development
of mathematical documents in a publishable style which
in addition are formally validated by Ωmega, hence ob-
taining certified mathematical documents. A first step in
that direction is currently under development by link-
ing the WYSIWYG mathematical editor TeXmacs [38]
with the Ωmega proof assistant.

As a second mathematical activity we consider the
tutoring of students, which consists of advising a stu-
dent to develop a proof. Thereby the interaction with
the student should be conducted via a textual dialog.
This scenario is currently under investigation in the Di-

alog-project [11] and, aside from all linguistic analysis
problems, gives rise to the problem of underspecification
in proofs. Although this problem already occurs in the
writing of mathematical documents, it is much more dis-
tinctive in this scenario. We expect that this will spur a
lot research, on which we initially report in [3].

4 Lessons Learned

Instead of a conclusion we briefly discuss a few lessons
learned aspects:

• The modularization of the Ωmega system was an
important move fostering a mutual scientific stim-
ulation and a strongly increasing join of resources,
e.g. within the Calculemus Network, in the build-
up of MAs. This addresses not only the tool devel-
opment level but also the actual research level and,
for instance, comprises the joint development of the
MKB MBase, the joint employment of SRs within
MathWeb-SB, and the current joint development
of an increasingly platform independent user inter-
face. These joint developments in turn depend on



and at the same time foster common communication
standards such as the OmDoc language.

• It is a waste of time to fight over proof search
or proof construction paradigms. Concerning the
goal of powerful MAs it is instead useful to develop
frameworks in which different of these paradigms
may coexist and ideally even mutually benefit from
each others strengths as well as share and exploit
common components (e.g. user interfaces).

• The lack of a long-term employed software engineer
and the imposed suboptimal application and moni-
toring of high quality software engineering principles
is one of the Ωmega projects biggest problems. The
current funding structure of the Ωmega group is due
to the given funding and employment principles of
the German academic system based only on short-
term research projects and contracts which impede
such a position. This unfortunately imposes a big
challenge for a sustainable software development
and also for organizing optimal transfer of knowl-
edge from one generation of Ωmega researcher to
the next one.

• Due to the heterogeneity of research directions in
the Ωmega project and the beforehand mentioned
problem the Ωmega group is strongly depending on
but also benefitting from its teamwork spirit.
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