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Abstract

We report on the integration of TPS as an external reasoning compo-
nent into the mathematical assistant system (QMEGA. Thereby TPs can
be used both as an automatic theorem prover for higher order logic as
well as interactively employed from within the 2MEGA environment. TPS
proofs can be directly incorporated into {JMEGA on a tactic level enabling
their visualization and verbalization. Using an example we show how TPs
proofs can be inserted into QMEGA’s knowledge base by expanding them
to calculus level using both QMEGA’s tactic mechanism and the first order
theorem prover OTTER. Furthermore we demonstrate how the facts from
QOMEGA’s knowledge base can be used to build a TPs library.

1 Introduction

Current theorem provers, whether automatic or interactive ones, usually
have strength in some specific domains while lacking reasoning power in
others. Therefore there have been several attempts in recent years to
combine two or more provers in order to enhance their power and facil-
ities. On one hand these combinations have been done for the purpose
of sharing databases between different systems and thereby avoiding the
duplication of work by constructing analogous databases for all systems in-
volved [FH97]. On the other hand there are attempts to integrate several
existing provers into a single architecture to make use of various kinds of
reasoning strategies and proof procedures in a cooperate system [GPT96].
Furthermore, in some interactive systems, external reasoning components
— usually first order automatic theorem provers — are used to support the
user when proving a theorem interactively, by automatically justifying sim-
ple open subgoals [Mei97].

In this paper we report on an experiment of integrating the higher
order theorem proving system TPs [ABIT96] into the mathematical assis-
tant QMEGA [BCF197] for the benefit of both systems. The integration



of higher order reasoning components is highly desirable for QMEGA as
its database of mathematical theories consists mainly of higher order con-
cepts, so that many problems formulated using this database lie naturally
beyond the capabilities of the already integrated first order theorem provers
Spass [WGRY6], OTTER [McC94] and PROTEIN [BF94]. TPS on the other
hand gains a graphical proof display and a component for proof verbaliza-
tion from its integration with QMEGA. Furthermore TPS can in principal
be extended in order to integrate proofs passed from QOMEGA, such that
both systems can be integrated on the same level, perhaps sharing a com-
mon knowledge base. We want to emphasize that the work presented in
this paper is essentially an extension of the (QMEGA system in order to
integrate TPS as a powerful external reasoning component.

Remarks on TPs TPs is a higher order theorem proving system for
classical type theory (Church’s typed A-calculus) that can be used either
as fully automatic prover or as an interactive proof development envi-
ronment based on an (extended) variant of Gentzen’s natural deduction
calculus (ND) [Gen35]. Even in interactive mode the automatic compo-
nent can be called on subproblems. It uses the mating method (connec-
tion method) [And89] as reasoning technique and provides several built-in
search strategies as well as many options to adjust these strategies inter-
actively or even automatically. Furthermore the automatic prover has the
ability of selectively expanding definitions [BA98] based on a dual instan-
tiation strategy. This strategy provides an effective way to decide which
abbreviations to instantiate when searching for a proof. The system also
allows the user to interrupt the automatic proof process in order to analyze
it and to influence further mating search. A very important feature of TPS
for our integration is that each proof found by its automatic component
gets automatically transformed into a natural deduction proof based on
the work of [Mil84, Pfe87]. Furthermore TPS provides comprehensive li-
brary facilities for the maintenance of different kinds of objects, such as
problems, (polymorphic) definitions, theorems, rewrite rules or even modes
specifying flag-settings connected to previously proven theorems.

Remarks on OMEGA The QMEGA-system [BCF197] for classical type
theory (Church’s typed A-calculus) is designed as an interactive mathe-
matical assistant system, aimed at supporting proof development in main-
stream mathematics. It consists of a variety of tools including a proof plan-
ner [HKRS94], a graphical user interface LOUI [SHB198], the PROVERB
system [HF97] for translating proofs into natural language and a variety of
external systems, such as computer algebra systems [KKS98], constraint
solvers and automated theorem provers [Mei97].

The basic calculus underlying QMEGA is similar to TPS’, i.e., a variant
of ND. However the set of rules in QMEGA is smaller then the one in
Tps. This stems from the necessity of keeping TPs proofs concise for



displaying then in a user-friendly fashion. Therefore certain rules abstract
over small subproofs (such as RuleP over proofs in propositional logic,
cf. section 3.1). In QMEGA however the set of basic ND-rules is just
large enough to ensure completeness and all extensions to the basic ND-
calculus (e.g. equality substitution) are defined as tactics. Nevertheless,
proofs can be both constructed and displayed on several abstract levels by
using a three-dimensional data structure® for representing (partial) proofs.
The structure on the one hand enables the user to freely switch back and
forth between different abstract levels and on the other hand provides a
means for directly integrating results of external reasoners while leaving
the expansion to the calculus level to Q2MEGA’s tactic mechanism.

We demonstrate the integration of TPS and {2MEGA with a simple ex-
ample from set theory, which we will solve for demonstration purposes
partly interactive within QMEGA while passing two subproblems to Tps?.
In order to gain a checkable OMEGA calculus level proof, the original TPs
proof is inserted on a tactic level and expanded via several levels of abstrac-
tion and with the help of the first order theorem prover OTTER. While
discussing the example we exhibit the advantageous side effects for TPs,
(1) that the proof can be directly visualized and (2) its structure displayed
graphically in QMEGA’s user interface LOUI, and (3) with the available
different abstraction levels it can be verbalized by the PROVERB system.
We show the first two effects with the help of several screen-shots and
exemplify the latter by giving a short verbalization of a subproof of our
theorem. In order to efficiently make use of TPs’ ability to selectively ex-
pand definitions we describe in section 4 an algorithm that automatically
imports definitions and recursively also imports all necessary subconcepts
from the OMEGA knowledge base to TPs. To explain the working scheme
of this algorithm we use another example from set theory.

2 Integrating TpPs with (OMEGA

The integration of TPS into 2MEGA provides two different modes for its
use. One mode is to call Tps as black box system for proving a given
subproblem, similar to the use of the first order theorem provers already
integrated in OQMEGA. A second mode offers the possibility of employing
TPs as an interactive theorem proving environment itself. While in the first
mode the proof search of TPs as a black box can only be influenced by
elementary flag settings adjustable as (dMEGA command parameters , e.g.
flags specifying a concrete mating search procedure instead of the standard
uniform search strategy, the user may take advantage of all interactive
features of TPS when calling it in interactive mode. For both types of

LOMEGA’s proof datastructure stores the (partial) proof on basic ND-level as well as the
more abstract levels containing nodes which are justified with tactics and or methods and
which correspond to certain parts of the proof on the underlying level.

2This problem can be solved by TPS even without any interaction.



integration we currently use a file based communication between the two
systems.

2.1 Black Box Integration

We demonstrate the black box integration of TPs into (2MEGA by using
the following example: “If there exists no mapping from a set set! into a
set set2 then set2 is the empty set.” Using IMEGA’s theory naive-set this
theorem can be formalized as®:

assumption =3f,e YU, u € setl = Jv,.. v € set2 A\ (f u) =v
theorem set2 =)

where the following polymorphic definitions are provided by the naive-set
theory*: € = Aeg. Amog. me and () = Azg. L. Even though TPs is able to
solve this problem automatically we prove this theorem for demonstration
purposes partially interactive with (2MEGA and partially automatic with
TpPs. We begin with introducing the following lemma in QMEGA:

lemma (=Fw,. w € set2) = set2 =)

Next we apply the implication elimination rule (modus ponens) backwards
using the theorem as succedent which splits the original proof problem
into two subproblems: (a) showing that —3w,. w € set2 follows from the
assumption =3f,. Yu,. u € setl = Jv,. v € set2 A (f u) = v and (b)
showing that the newly introduced lemma is valid. This proof situation is
visualized in figure 1.

Before applying TPS we need to eliminate in a preliminary step the
defined construct € in both the assumption (node 1) and the subgoal (node
5). This is necessary as € is a definition from 2MEGA’s knowledge base
that is unknown to TPS. We can now call TPS thereby closing the left
branch in the proof tree.

The original proof generated by TPs (see figure 3; for detailed infor-
mation about the occurring TPs-justifications we refer to [AIN197]) can
be displayed within OMEGA by applying the command show-tps-proof on
node 7. The idea of the indirect proof is to derive a contradiction from
Jw,- w € set2 and the above assumption by showing that there indeed
exists an f,,, such that Vu,. u € setl = Jv,. v € set2 A (f u) = v, namely
by choosing f to be the constant function Au,. w,.

We now concentrate on the introduced lemma in node 3 and first apply
implication introduction rule. This introduces the assumption —3Jw,. w €
set2 as a hypothesis from which we have to derive that set2 = (). On

3We use a TPs-like notation. Types are printed as subscripts and we write functional types
as fa instead of using the more common notation & — 3. The types o and ¢ denote the sets
of propositions and individuals. Dots bracket as far to the right as consistent with structure of
the formula and the logical connectives.

4Sets are represented as characteristic functions and | denotes false.
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Figure 1: The partial proof tree displayed in reverse order. The original proof
goal (node 2) is presented at the top and the assumption (triangle-node 1) at the
bottom. The formula contents of all numbered nodes are displayed in the term
browser. A nodes status is symbolized via the nodes shape and color, e.g. assump-
tions and hypotheses are represented as green and magenta triangles, whereas all
other nodes are represented as colored circles. Although this print may be black and
white, we assume that the reader might be able to notice at least different shades
and shapes of the nodes in the presented figures. Red circles (e.g. nodes 3 and 5)
denote open subgoals and light or dark blue ones already justified nodes. Whereas
the dark blue color indicates that a node is grounded, i.e. justified by a ND-Rule
(node 2 and 4), a light blue color indicates that a node is justified by a tactic,
which can be further expanded by QYMEGA's tactic mechanism in order to obtain a
completely ND-Rule based proof. Rhombi indicate coreferences to whole subtrees
of a given partial proof in order to omit redundancy in the graphical display.

this open subgoal we apply the functional extensionality principle (two
functions are equal, iff they are equal with respect to all of their arguments)
introducing Vz,. (set2 z) = (0 z) (node 10) as new open node. The
tactic equiv2= (see the justification in figure 2), which implements the
extensionality principle on truth values (equality relation coincides with
equivalence relation on truth values), can now be applied backwards to the
subterm (set2 z) = () z) introducing the open proof line Vz,. (set2 z) =
(0 z). Note that the remaining subproblem, namely to show that the latter
proof line can be derived from the assumption —3w,. w € set2, is a first
order problem, provided the definition of () is expanded: Vz,. (set2 z) = L.
Thus we could also close this subproblem by calling a first order prover,
but again we use TPs. The complete proof on an abstract proof level is
shown in figure 2 while the original TPS proof for node 13, that can also
be displayed within 2MEGA, is presented in figure 4.
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Figure 2: The completed proof: Note that the subgoals in node 7 and node 13
are now justified by QMEGA's black box tactic TPS. The light blue color of this
nodes indicate that they can be further expanded into proofs on a more detailed
level. The paramater in the TPS-justification of node 13 refers to a file containing
the proof output generated by TPs.
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Figure 3: The original TPs-proof for node 7.
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Figure 4: The original TPs-proof for node 13.
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2.2 Tps as an Interactive Prover

TPs can also be used as an interactive theorem proving environment con-
nected to OMEGA. For that TPS can be invoked from within QMEGA in
a separate window and initialized with a specified subproblem. When a
proof or a partial proof has been constructed within TPS, the user can send
it back to the QMEGA-system, where the results are integrated as subproof
into the overall QMEGA proof.

As the TPs system provides plenty of very interesting interactive fea-
tures for a user making it possible to solve many non-trivial problems
either fully automatic or with little interaction. The (QMEGA system will
gain much from the integration of TPS as an interactive theorem proving
environment of its own right.

Note that the power of TPS in proving theorems fully automatically
is heavily influenced by availability of a comprehensive library providing
useful information such as definitions and proof problems in connection
to appropriate modes (lists of flag settings). Thus, a steady enrichment
and maintenance of a TPs-library closely connected to QMEGA’s theory
database can steadily increase the power of TPS in proving problems as an
automatic tool in QMEGA. In section 4 we present a way of providing TPS
with information from OMEGA’s knowledge base.

3 A Tactic-Based Proof integration

QOMEGA’s main philosophy is that all integrated systems have to generate
enough protocol information, such that either a proof or proof plan, i.e. a
proof on an abstract level, can be extracted from this information. Proof
plans can then be expanded into a pure and checkable ND-level proof. For
instance when calling a first order automated theorem prover, returned
proofs are transformed into an intermediate data structure, the refutation
graph, which is then translated into a high level QMEGA-proof plan, con-
sisting of methods, tactics or rules. These proof plans are sound if they
can be expanded successfully onto ND-rule level.

The integration of TPs is based on a much simpler proof transformation
approach, which becomes possible as TPs itself transforms the automati-
cally generated connections into a TPS-ND-level proof. This means that
most but not all justifications refer to a standard ND-rule. There exist
for instance justifications such as RuleP or RuleC where the first abbre-
viates simple derivations in propositional logic, while the latter is a slight
modification of the standard exists elimination rule.

3.1 Integration and Expansion

The general idea is to define a new theory TPS in IMEGA which provides
exactly one QQMEGA-tactic for each possible TPs-justification. Using the
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Figure 5: The original TPs-proof for the first subproblem.

tactics of this special theory each proof generated by TPS can now be
mapped one to one onto an XMEGA proof. As a consequence each TPs-
ND-proof can be visualized in its original form within Q2MEGA’s graphical
user interface LOUI. For instance by expanding the TPSs-justified node 7 of
figure 2 the original TPs-proof can be visualized in 2MEGA. See figure 5 in
comparison to the original TPs-proof in figure 3. Note that the TPs-proof
is now embedded as a subproof into the whole proof. Thus line 2 is no
longer a hypothesis but a derived line itself and line 20 is used to justify
other proof lines.

Each Tps-tactic of QMEGA’s TPS theory contains an expansion infor-
mation, which maps this TPs-tactic to a derivation build upon the rules
and tactics in QMEGA’s base theory. The (2MEGA system allows to exe-
cute this transformation interactively line by line or at once for all lines.
Furthermore the expansion of a line is reversible, meaning in every stage
of the expansion one can get back to the original TPs proof (or even the
state before the TPs proof was inserted), by unexpanding nodes.

We now discuss the different types of mappings:



3.1.1 1:1 mapping

Clearly for many TPs-justifications there exist direct counterparts among
OMEGA’s ND-rules and tactics. For instance tps*Neglntro is mapped to
the ND-rule NotI and tps*Imp-Disj is mapped to the QMEGA-tactic Equivl
which itself can be further expanded on QMEGA’s ND-rule level. Such
simple mappings are the standard case as many justifications used in TPS
have direct counterparts among QMEGA’s ND-rules or tactics.

3.1.2 Mappings with case distinctions

As a typical example we consider the TPS justification Neg, which is used
as justification for an PushNeg application (pushing an outermost negation
symbol inside a term) as well as for an PullNeg application (pulling a nega-
tion symbol at outermost position). Thus, depending on +the structure of
the premise and conclusion line the justification tps*Neg gets translated in
one of the OMEGA-tactics PushNeg or Pullneg.

3.1.3 Restructuring mapping

The TPs-rule RuleC is a slight modification of the standard exists elimina-
tion rule, which roughly explained does not introduce the concrete instance
of the existentially quantified line as a new hypotheses but instead intro-
duces an analogous derived line justified with a special judgment. The
point is that in this case, it is necessary to slightly manipulate the proof
data structure while mapping RuleC to QMEGA’s rule EztFE, i.e. the status
of the instantiated line and some dependencies between proof lines have to
be modified.

3.1.4 External system mapping

Proof lines in TPS justified with RuleP abbreviate simple derivations in
propositional logic which are trivial and would rather worsen the readabil-
ity of the whole proof. Examples for the usage of RuleP are given in the
two subproofs automatically proven by TPS in figures 3 and 4.

One approach to translate lines justified by RuleP into an (QMEGA-
proof would be to implement a simple propositional logic proof procedure
as a recursive tactic (or better tactical) in Q@MEGA. While this is certainly
possible it would contradict one important aspect of QMEGA. The aspect is
to make use of other probably more specialized external reasoning systems
as soon as this seems to be appropriate and thus to avoid unnecessary
reimplementations. Hence instead of implementing the translation we just
call another one of the integrated automated theorem provers to expand
lines justified by RuleP. As at the present time there is no theorem prover
purely specialized on propositional logic integrated in QMEGA. We choose
to use OTTER as one of the available first order provers. Therefore the



Justification: TPS*RULEP

Justification: OTTER
Parameters. (T)

Figure 6: Expansion of the TPS*RuleP tactic.

RuleP tactic is mapped as expansion onto a tactic specifying the call of
OTTER which in turn produces a subproof when executed.

Figure 6 shows the expansion of RuleP via OTTER into the AndLrule.
In this case of a trivial derivation it seems to be an overkill to call an
external reasoner. But firstly not all RuleP applications are that simple.
One might consider line 7 in figure 4 as a more complicate situation. And
on the other hand calls of OTTER are fast enough, even with respect to all
necessary translations, that they do not slow down the expansion process
considerably.

The described transformation approach based on IMEGA’s tactic mech-
anism allows to integrate arbitrary proofs generated by TPS into QMEGA.
The whole proof finally can be expanded on (QMEGA’s ground level, i.e. a
derivation using only rules assigned to 2MEGA’s basic ND-calculus. The
grounded proof for our example consists of more than 300 nodes and is
shown in figure 7. This large number of single lines is due to the fact
that OMEGA’s basic ND-calculus is rather small — in fact the idea is to
minimize the basic calculus while upholding completeness. For example
the basic calculus does not a priori include equality as this is a concept
defined via Leibniz-equality, i.e. two functions are equal, iff they share the
same properties. Therefore some tactics like equality substitution =subst
expand into very large and tedious ground level derivations. Furthermore
there is currently no advanced cleanup function available, which restruc-
tures the proof while eliminating most of the redundant and superfluous
nodes in the proof tree. This is due to the fact that the problems aris-
ing from such deletions inside the three-dimensional proof data structure
and their effects on the reuse of information from proof constructions in a
planning scenario have not yet been completely solved.

3.2 Verbalization

Besides the possibility of graphically displaying proofs, as another fea-
ture from its integration with QOMEGA TPS gains the chance of verbalizing
its proofs. The verbalization is done with the help of the PROVERB sys-
tem [HF97] which is connected to XMEGA and can be called within the
graphical user interface. PROVERB was originally developed to translate
proofs in first order logic into natural language and is currently extended
to cover higher order logic as well. For that reason some of the verbalized
higher order logic proofs still lack conciseness.

10
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Figure 7: The grounded proof tree

We demonstrate the use of PROVERB by giving the automatically gen-
erated natural language proof for the subproblem shown in figure 3.
Assumptions:

(1) Af. Yu. set;(u) =Tv. setz(v) and f(u) = v.

Theorem: Azx. sefy(z). Proof: Let 3z. seto(z). Let 2’ be such z.

V. Xu. sety(u) =3v. sety(v) and f(u) = v because Af. Yu. set;(u)
=3Jv. sety(v) and f(u) = v. We choose A z.z' for f. Xu. set;(u) =3Tv.
set2(v) and z' = v since Xu. set;(u) =3v. sety(v) and (A z.2")u = v.

Let set(u) A3v. sety(v) and ' = v.

It isn’t the case that we have setz(z') and 2/ = z’. 2/ = z’. We have a
contradiction since we have sety(z’) and 2’ = 2.

Az. sety(z) since we have a contradiction. ]

Although comparable textbook proofs might be much shorter we point
out that considering the size of the actual ground-level proof it is already
a rather concise and abstract presentation. Moreover the verbalization
models the overall proof idea to derive a contradiction by instantiating f
depending on z’ as an element of sets.

4 Using (2MEGA’s Knowledgebase

One of the features allowing TPs to automatically prove many theorems
in higher order logic is the ability of selectively instantiating definitions.
Indeed some theorems containing definitions can be proved with TPS us-
ing the dual instantiation strategy, whereas they cannot be automatically
proven when all definitions are fully expanded [BA9S].

11



In OMEGA mathematical knowledge is structured into a hierarchy of
theories where a theory can inherit from one or several parent theories.
Each theory contains declarations of signature, axioms and definitions,
where the latter can be viewed as abbreviations of more complex con-
cepts. Moreover tactics, planning methods, linguistic knowledge and con-
trol strategies guiding the planner can be associated with each theory.
Theorems are always declared within the context of a theory and can be
presented concisely when using given definitions.

In order to enable TPS to prove certain subgoals containing concepts
unknown to TPs it would be necessary to expand those definitions com-
pletely before sending the problem to TPS. Yet this would not only mean
that the respective formulas might grow to a size intractable by TPs but
we would also prevent TPs from using its mechanism for selectively in-
stantiating definitions. Thus it is necessary to transfer definitions of used
concepts from 2MEGA to TPS. This can be achieved by using TPs’ built-in
library mechanism.

While in QMEGA all objects, i.e. axioms, definitions, theorems, tactics,
etc., a priori are associated with an existing theory, in TPs theories are
created in order to group objects — thereby also creating hierarchies by
specifying one theory as object of another — but a single object does not
necessarily depend on a theory. Therefore we can map Q2MEGA definitions
onto corresponding TPS abbreviations by either

(A) transferring single concepts together with all related definitions and
axioms into the TPs library, or by

(B) constructing a TPs library that mirrors both hierarchical structure
and objects of the QMEGA knowledgebase.

So far we have implemented an ad hoc version of approach (A). The un-
derlying algorithm is stated in figure 8. However, we believe that with an
extension of this algorithm goal (B), i.e. the transfer of the whole QMEGA
knowledgebase into a TPsS library, can also be achieved. With the algo-
rithm new definitions are stepwise expanded and inserted, together with
their underlying concepts, into the library.

In order to demonstrate the working scheme of the algorithm and ex-
emplify the translation of concepts, we consider the example theorem

VX0 € P(X). (1)

(1) contains three definitions from {2MEGA’s theory naive-set. Explicitly
these are (), €, and 3, where () and € are defined as in section 2 and ‘3,
specifying the powerset of a set X, can be expressed as the polymorphic
A-term:

P = AX,5AY,5.Y C X

As both () and € do not depend on any further definitions or axiomati-
zation they can directly be translated into the TPs library. The definition
of P8 however depends on C which expresses the concept that Y is a subset

12



1. get all concepts used in the IMEGA formula
2. for each concept C do:

e if concept C already exists in the TPs library proceed with next
concept
e if it does not yet exist, then:
— get definition of C from the QMEGA knowledge base

— extract all concepts Cy,...,C, occurring in definition of C

— retrieve all axioms Ay, ..., A, revering to C from the QMEGA
knowledge base and insert them as formulas into the TPs li-
brary

— insert TPS abbreviation of C into the TPs library specifying
the dependency with respect to Cy,...,C, and Ay,..., An

— apply step 2 to {C1,...,Cpn}
— proceed with next concept

Figure 8: Algorithm for transferring QMEGA definitions into TPs libraries

of X. Therefore the abbreviation for powerset in the TPS library is defined
with respect to the concept of subset, which in turn fetched from (2MEGA’s
knowledge base®. There C is defined by

C= AX,p. \Y 3.V Z5. X (Z) = Y (Z)

and, as it neither contains any other abbreviations nor there exist axioms
referring to it, can be translated into the TPS library.

5 Conclusion and Future Work

We reported about the integration of the higher order theorem prover TPS
into the mathematical assistant system (QMEGA. As a result TPS can now
be used to either automatically or interactively construct proofs, which
then get translated and integrated into QMEGA’s proof data structure. The
tactic based proof transformation approach makes use of a special OMEGA
theory TPS providing (2MEGA-tactics for each possible TPs-justification.
These tactics can subsequently be expanded onto QMEGAs calculus level,
thereby enabling the graphical representation and the verbalization of TPS
proofs on different levels of abstraction. In order to use TPS’ reasoning
power most efficiently we presented a way of translating and importing
facts from 2MEGAs knowledge base into TPS libraries. All those features
have been presented in this paper with small examples.

5Both powerset and subset are already built-in abbreviations of Tps. Yet we used them
here for the sake of simplifying the examples.
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We admit that the translation of RuleP by mapping it to a call of
the first order theorem prover OTTER is somewhat an overkill. Even if
it costs only a little additional time and is done fully automatically, we
should at least intercept very trivial cases by mapping those immediately
to appropriate tactics or rules. Furthermore we should replace OTTER by
a pure propositional logic prover such as SATO [Zha97] as soon as it is
integrated in 2MEGA. Nevertheless we want to point out that this transla-
tion strategy demonstrates an interesting feature of 2MEGA in general: All
external reasoners already integrated in YMEGA can be used to support the
integration of new systems, e.g. to close gaps when translating protocols
of the new systems. Consequently as more specialized systems are being
integrated with QOMEGA the less detailed protocols may be required from
the new systems.

The integration work we have done so far is essentially restricted to
modifications of the QYMEGA system and it seems to be promising to modify
TPs as well, probably enabling a bidirectional communication between
the two systems. As TPs also provides a tactic mechanism it seems to
be plausible that an analogous translation from one of OMEGA’s abstract
proof levels into a TPS proof can be developed. Thereby external reasoners
integrated to (XMEGA as well as its internal facilities, would automatically
become available to TPS. Surely TPS does not provide a three-dimensional
proof data structure and hence QMEGA proofs cannot be mirrored in their
original form within TPS, but this should not impose a serious problem for
the cooperation of both systems.

Although the question about an intelligent automatic cooperation be-
tween both systems is open a combined system will at least gain additional
deductive power when used in an interactive mode where the user controls
the overall strategy. Certainly the development of an advanced common
theory and library mechanism will be an important task for a bidirectional
integration of both systems.

Two other interesting questions are: First, if TPS’ automatic search
process and QMEGA’s built-in logical engine LEO [BK98], which is a res-
olution based higher order theorem prover specialized in an appropriate
treatment of the extensionality principles, could cooperate successfully.
And second, whether both higher order theorem provers could be a promis-
ing support for XMEGA’s proof planner.
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