Proof Planning: A Fresh Start?

Christoph Benzmiiller Andreas Meier Erica Melis Martin Pollet Volker
Sorge
Universitdt des Saarlandes, Fachbereich Informatik
66041 Saarbriicken, Germany
{chris|ameier|melis|pollet|sorge}@ags.uni-sb.de

No Institute Given

1 Introduction

Proof Planning [5,17] is a technique for automated (and interactive) theorem
proving that has been originally conceived as an extension of tactical theorem
proving. It is motivated by the fact that human mathematicians do not construct
proofs at pure logical calculus level but employ abstract inferences instead. Proof
methods therefore abbreviate mathematically motivated and recurring patterns
of calculus level inferences. Additional pre- and post-conditions model their ap-
plicability conditions. Proof planning searches for a plan of a theorem which
consists of applications of several proof methods. Thereby the search space for a
proof of a theorem can often be dramatically reduced. Proof methods should be
transparent and intuitive and the hope is that proof planning is a mathemati-
cally adequate approach to perform mathematics with a computer. Implementa-
tions of proof planning are the systems CLAM [6], ACLAM [20], and 2MEGA [2].
These systems have demonstrated the feasibility and usefulness of proof plan-
ning in different case studies. CLAM and ACLAM, for instance, have been used
for inductive theorem proving both in mathematical and software verification.
2MEGA’s planner has been successfully used for non-inductive theorem proving
in various mathematical domains such as analysis and finite algebra.

Despite its partial success proof planning has still various shortcomings.
In [4], for instance, Alan Bundy discusses problems of proof planning from the
perspective of the CLAM and ACLAM projects. His main critique concerns the
lack of generality of proof methods (i.e. methods are only applicable in a very
limited problem domain and proof plans can usually only be executed in one
particular calculus), the brittleness of the planning process (i.e. to restrict the
search space there are hardly calculus level methods available that can bridge
the gap between the application of abstract, specialized methods), the problem
to create adequate human oriented proof methods, and the impossibility to sep-
arate plan formation and execution (i.e. proof methods have to be executed in
order to generate the next planning state).

In this paper we want to address the aspect whether proof planning indeed
provides a suitable basis for the modeling of human mathematical reasoning
from the perspective of our experience with the {2MEGA system.

In 2MEGA we have solved the problem of separation of plan formation and
execution by specifying both pre- and postconditions of methods schematically in
MEGA’s simply typed higher order lambda calculus [8] together with an expan-
sion schema, or tactic that transforms the method into a calculus level subproof.
Thus, proof plans can be assembled on a high level without the need for inter-
mediate execution. Proof methods can also incorporate unreliable computations
in their proof steps. In order to ensure correctness, however, a complete plan
has to be expanded into 2MEGA’s basic calculus, a natural deduction (ND) cal-
culus [10]. The expansion of a proof plan to a calculus-level proof is executed
locally, that is, each method is expanded separately. In this process, the abstract
step is replaced by a sub-proof of its conclusions from its premises using less
abstract steps (tactics, or basic calculus level steps).

Despite its advantage for abstract plan formation the requirement of local
expandability has some severe drawbacks: The necessary tied coupling of ab-
stract methods with underlying calculus has the effect that certain constraints
the underlying ND calculus imposes have to be respected also on the planning
level. For instance, the order of variable elimination and hypotheses introduction
can be crucial for the success of a later expansion. The intermediate subgoals
constructed during the plan formation correspond essentially to proof lines on
the calculus level. The method execution provides only more detailed subproofs
to justify the single derivations. This deprives us of the possibility to use a more
intuitive and maybe mathematically more adequate language on the planning
layer.

In the following we shall discuss these problems in more detail and speculate
a possible solution which consists of the total separation of the planning and
the calculus level. We give up the local expandability of methods as well as
the direct correspondence of a method to a sequence of calculus level steps. We
instead shift the expansion to a general transformation problem from a proof
plan to a calculus level proof. This enables us to adopt a more constraint based
approach to proof planning and, moreover, to choose a more appropriate and
mathematically more intuitive representation of our problem.

2 Some Speculations and the Modeling of Mathematical
Reasoning

There are two possible ways in modeling mathematical reasoning. The machine-
oriented approach, that exploits the capabilities of computers to do millions of
simple computations. And the human-oriented approach, which tries to imitate
the reasoning done by mathematicians.

Without doubt, the machine-oriented approach was quite successful. In some
domains, like chess, computers reached and excel human capabilites with a
methodology that is surely different from the way humans play chess. Also in
automated theorem proving systems have reached an impressive power. Never-
theless, ATPs are so far away from mathematical problem solving, that their
existence isn’t even noticed by most of the mathematicians.

The human-oriented approach has to face the question which paradigm, that
is feasible to implement comes closest to human reasoning. A look into Polya’s
famous “How to Solve It” could suggest an approach based on the detection
of similarities and different levels of analogy together with ‘auxiliary subprob-
lems’ [19], where each of them is still challenging in AT for their own. Another
aspect is, that the ‘data structure’ of humans and computers are to different
to reach a full imitation. When Minsky says that a CD-ROM would contain
enough commonsense knowledge [21], because a computer can easily remember
ten books by heart what is rather difficult for humans, we see the difference.
Humans can remember the content of more than ten books easily while they get
not stuck in the details of thousands of words. We think that this kind of com-
pression of knowledge also appears in mathematics. Since the solution for this
sort of questions is surely outside of todays Al technology, we have to look for a
compromise: proof planning based on the well-explored AI planning paradigm.

The two basic arguments supporting the thesis that proof planning can model
the reasoning of human mathematician adequately are (cf. [9])

— Mathematicians use abstract proving methods, which can be domain specific
and whose application is triggered not only by the problem at hand but also
by the experience of the mathematician.

— Mathematicians use a plan based approach when proving theorems starting
with an abstract sketch, which is successively refined.

3 Problems with Logic-Oriented Proof Planning

In this section we present examples to illustrate problems caused by the logic-
biased setting in which proof planning in {2MEGA is done. The logic-biased set-
ting affects both, the search for proofs and the modeling of reasoning techniques
used by mathematicians. First we take a look at principles of the ND calculus
that are inherited by methods. Then we present problems caused by the formal
representation of mathematical objects.

3.1 Order of Steps

As the word ‘natural’ indicates, Gentzen’s intention was to set up a calculus that
comes close to the actual human reasoning. ND therefore is a good choice for
the base calculus. Unfortunately proof in ND depends on the order of forward
and backward steps. Since in the current {2MEGA approach proof plans can be
expanded to ND proofs locally, this drawback also affects the method-level. This
will be illustrated with the following examples.

A Simple Example Consider the proof situation given in Fig. 1. In this ex-
ample an existentially quantified goal 3zP[z] A Q[z] (line L;g) should be using
the hypothesis zP'[z] A Q'[z] (line L;) where P, P',Q,Q’ represent arbitrary

L1.L - 3zP'[z] A Q'[z] (Hyp)

La.Ly = P'[c] A Q'[¢] (Hyp)
{MV — ¢} ?
Le.L1, Ly b P[MV] (R) T
|
L7.Ly - P[MV] (3E Lg Ly) Ls.L1 - Q[MV] (277)

7

Lo.L1 - PIMV]AQ[MV] (A Lg L7)
|
Lyo.L1 + 3zPz] A Q[z] (3 L)

Fig. 1. Problems with explicit hypotheses treatment

complex formulas. Moreover, P,P' and @,Q' are chosen such that P[t] follows
from P'[t] and Q[t] follows from Q'[t] for each term ¢.

A backward search proceeds in the following way. The formula in L;q is
decomposed in two steps to the subgoals P[MV] (line L7) and Q[MV] (line Lg).
For the existentially quantified variable in L;y a meta-variable MV is inserted.
This invokes a middle-out-reasoning [14] process to postpone the instantiation for
the quantified variable until a witness term is found during the planning process,
that can be inserted for the meta-variable. After splitting P[MV]A Q[MV] into
the two subgoals P[MV] and Q[MV] the planner focuses first on P[MV]. A
meta-reasoning process could detect that the hypothesis L; contains in P'[z]
parts relevant for this subgoal. Hence, steps are employed to unwrap these parts.
For this the existential quantifier in L, is eliminated, introducing a new constant
¢ and a new hypothesis as line Lo. Since the unwrap process was done for the
open line Ly, only this line is in the scope of the hypothesis L, (indicated by the
box in Fig. 1).

Problems with the Eigenvarable condition The next steps to justify P[MV]
should instantiate MV by ¢ and derive P[MV — c¢] from P'[c]. Unfortunately, it
is not possible to instantiate MV by ¢, since this would violate the Eigenvariable
condition for the application of the ND-rule 3E. The Eigenvariable condition
that forbids that the new constant occurs in the conclusion of the step or in
the hypotheses of the conclusion. When MV would be instantiated by ¢ the IE
step becomes incorrect. During the proof planning process such Eigenvariable
conditions are collected, therefore the instantiation MV — c¢ is forbidden and
the planner fails to justify P[MV].

Problems with hypothesis scope Let us assume that there is a some kind of repair
mechanism for the Eigenvariable condition of the last paragraph, and the planner
was able to instantiate MV by ¢ and to justify line L7. Then the proof planner

would focus on the remaining open goal Q[M V] in Lg. Since MV is instantiated
to ¢ the goal has become Q[c]. A meta-reasoning process could detect that the
hypothesis L, contains in Q'[z] parts relevant for this subgoal. But it is not
possible to use Q'[¢] in L to derive Qc] since Lg is outside of the scope of Ls.
Also the application of 3E to Lg and Ly would not result in a successful proof
because 3E would introduce a new constant ¢’ such that @Q[¢'] but not Q[c] would
be inferable.

The only possibility to construct a correct proof is to perform IE as first
step. So that neither the later instantiation of the meta-variable MV violates
the Eigenvariable condition nor the scope of the introduced hypothesis is too
restricted. We used a simple example where rules of the ND calculus were used
as methods. The same problems may occur whenever the expansion of a complex
method contains rules that introduce new constants or hypotheses. In order to
enable the local expansion of methods, the introduction of hypotheses and the
Eigenvariable conditions have to be respected at the method level. Therefore the
order of steps becomes important for proof planning.

The Cont-If-Deriv Theorem Another example which is closer to mathemat-
ical reality is the Cont-If-Deriv theorem. It says that a function f is continuous
at point a if it has a derivative F' at point a. More formally, from the assumption
lim,_,, W = F follows lim,_,, f(z) = f(a). In the proof planning process
the definition of lim in the goal and the assumption is replaced first by the
e-0-criterion. Further decomposition of the goal formula results in the new goal
|f(MVy)— f(a)| < ce for an arbitrary constant c.. The decomposition of the as-
sumption results in |w — F| < MV,. Indeed, the goal can then be closed
under this assumption (thereby the mapping {MV, — ¢, MV, — ¢} is ap-
plied). Unfortunately, a further subgoal ¢, # a is created during the application
of the assumption and there is no assumption to close this goal. To deal with this
goal a case split has to be introduced. That is, the goal | f(MV, — ¢;)—f(a)| < c.
has to be proven twice: one time assuming ¢, = a — then the goal follows triv-
ially since |f(MV, — ¢;) — f(a)| =0 < ¢, holds for every positive ¢ — and one
time assuming ¢, # a — then the goal follows from the initial assumption as
explained above. The subgoal ¢, # a can now be closed with by the hypothesis
¢y 7 a of the case split. The crucial point is: When should this case split be
introduced? From mathematical intuition it should be introduced when the goal
¢y # a is created and cannot be closed, but logical calculus requires the intro-
duction before the assumption is decomposed, such that the goals created during
the decomposition of the assumption depend on the hypothesis of the case split.
Such an introduction is completely counter-intuitive. The only possibility to deal
in 2MEGA with such a problem is to realize the need for a case split when the
unsolvable goal is reached, then to intelligent backtrack as much as necessary
and to introduce the case split at the logical suitable position. Afterwards, the
backtracked proof parts have to be performed again.

Analysis Let us analyze the situation:

— Proof planning is goal centered, and therefore backward reasoning is pre-
ferred. The proof construction in ND consist of an interplay of forward and
backward steps, the order of steps is important for a successful proof.

— Because of the expansion of methods to ND-level, the method-level inherits
the dependency on the order of steps at the ND-level. This leads to counter-
intuitive introductions of order-relevant steps. In particular, the necessity of
promising forward steps is detected when the goal is already decomposed.

— The requirements of the ND calculus affect the design of methods and the
heuristics to control the proof search. Hence, the danger is that the motiva-
tion to capture the reasoning of mathematicians becomes secondary.

We will discuss possible solutions in Sec. 4.

3.2 Representation of Mathematical Objects

One aspect of knowledge-based proof planning is the imitation of mathematical
proof construction by encoding typical reasoning steps as methods. In this section
the representation of mathematical objects by a logic-biased language such as
in 2MECA is addressed. We use logic-biased formulations at the plan level since
with the current expansion mechanism im (?MEGA the formulas are inherited
from one abstraction level to the next; that is, the formulas at the plan level
are also in the calculus level. Hence, the formalization at the plan level are the
same as at the calculus level. However, our thesis is that although methods allow
to incorporate mathematical knowledge into the proof construction process, the
logic-oriented language in which the methods and the formula of the proof plan
are expressed is not knowledge-based enough such that important mathematical
information is lost. In the following we give evidence for this thesis.

Knowledge-Based Notations in Mathematics Mathematicians have spent
a lot of time and thoughts in the development of adequate representations of
mathematical objects. Representation of mathematical objects starts with nota-
tional aspects. For example, the use of the letters z,y, z denoting the ‘unknown’
is today common practice. Historians credit the first use of symbols for variables
in algebraic equations to Francois Vieta. This invention influenced the under-
standing of the concept of variables and allows a simple treatment for formulas
containing different ‘unknown’ terms like polynomials with multiple variables.

Mathematical notations allow to store a lot of available knowledge about the
expressed concepts in a compact and intuitive way. For instance, a mapping o
that is a binary operation on finite structures can be expressed by a multiplica-
tion table:

What kind of information does this representation provide?

1. o is a well-defined function if all d; are different,

2. o has domain {di,...,d,} x {di,...,d,} and codomain {¢11,...,¢nn},
3. o is a mapping with only finitely many values and a finite domain.

4. the value of d; o d; is ¢y,

5. ois closed if {¢11,...,¢nn} C {d1,...,dn}.

All these facts about the mapping o can be looked up from the multiplication
table directly. As opposed thereto, how can we formalize the same mapping o in
a logical language?

— Axiomatic: extend the signature with a function constant o and add the
hypothesis dy od; = c11 A ... Adyody = cpn-

— With description operator:! the function is given by
o= Azay.(z = (di,di) ANy =c11) V...V (z = (dn,dn) Ny = Cpn)-

In both formalizations information is lost that is available in the multiplica-
tion table. In the axiomatic formalization, well-definedness cannot be checked in
the object-level (a not well-defined function leads to a contradiction). Moreover,
domain and codomain are hard to retrieve. In the formalization with the de-
scription operator, each application of this function results in a proof nontrivial
obligation?.

Of course, there exist more possible formalizations of o than the two formal-
izations mentioned. However, in all logic-oriented formalizations it seems to be
difficult to reconstruct simple properties of o such as: o is a function, the domain
of ois {di,...,d,} x{d1,...,d,} and the codomain of o is {¢11,...,¢nn}. These
formalizations lack to allow information retrieval because they are logic-biased
and not knowledge-based as mathematical notations.

Object Orientation in Mathematics In mathematics usually an elegant and
minimalistic definition of concepts is preferred. However, the basic properties
are introduced right afterwards and ‘attached’ to the object. For instance, a
group can be defined as a structure that consists of a non-empty set G and an
associative operation o : G x G — G such that there exists a right unit in G’ and
for every element of G exists the right inverse in G. Additional properties such
as the existence of a left unit and the identity of left and right unit do not have
to be part of the definition but can be introduced as lemmas. However, such
‘additional’ properties become part of the concept group. So mathematicians
structure their knowledge object centered.

In contrast, logical formalizations are fact-based. That is, additional proper-
ties are stated as lemmas or theorems and become part of a general database.

! The description operator ¢ returns the element of a singleton. ty.P[y] denotes the
unique element ¢ such that P[c] holds.

2 When applying the function to an element (d;, d;) the existence of a unique c;; has
to be proved such that the description operator ¢ can return this c¢;;.

Hence they are not closely related to the concept anymore. To a certain degree
the retrieval and collection of needed and suitable facts is just a database connec-
tion problem (when requesting the database for all available information relevant
for a certain situation, does it return too much information, too less information,
the right information?). However, in mathematics some facts are closer related to
concepts than others (thereby the grade of relationship can vary from different
points of view) and the difference in the grade of relationship is also part of the
mathematical reasoning. That is, facts closely related to a concept will be tried
before other facts, moreover when applying a fact closely related to a concept
result often in justifications like follows by definition, whereas the application of
other facts is handled more explicitly.

To store logical facts just in a database and to express no differences in
their relationship to certain concepts is another source of loss of mathematical
information.

Example: Representation Shifts One important mathematical aspect typi-
cally closely related with a concept are different representations for the same con-
cept. Mathematicians are able to switch their viewpoint whenever this seems to
be useful. That is, the formalization of a problem does not exists. Rather math-
ematical problem solving exploits flexible switching between obviously equal
representations. In the large these shifts are for instance the shift from solving
equations to merely structural investigations in algebra, or the arithmetic rep-
resentation of geometry (due to Descartes). In the small, these shifts consist, for
instance, in the choice of suitable representations for terms.

How important such representation shifts are in mathematics is demonstrated
on the proof of the following theorem:

Given two normal subgroups A and B of a group G with G = A-B and AUB
contains only the unit of G. Then G is isomorphic to the direct product A x B.

For the proof of this theorem, a mapping h is needed that maps elements
z € G to element y € A x B such that h is bijective and a homomorphism.
A possible candidate for h (which is indeed the right choice) becomes obvious
when the available information about G and A, B is used to represent z,y in a
more suitable way: = a-b and y = (a,b). With this representation it is obvious
to choose h(a - b) = (a,b). For this h it is easy to prove that it is bijective and a
homomorphism.

The logic-biased proof planning in (?MEGA that exploits no strong relation-
ship between different representations for x,y would tackle the subproblems
directly. That is for a not specified h (represented by a meta-variable) the proof
planner would try to prove the properties injectivity, surjectivity, and homomor-
phism. Thereby, the proof planner would try to collect constraints about h that
would allow at the end to determine a suitable h. Unfortunately, the subprob-
lems injectivity, surjectivity, and that it is a homomorphism do not provide any
structural information that would allow to synthesize the needed h. The proof
plan attempt would fail.

Analysis Let us analyze the situation:

— Mathematical notations are knowledge-based. They allow to represent many
informations about the denoted concept in a compact and intuitive manner.

— Mathematics is object oriented. Facts that belong together are centered
around concepts.

— Logical formalizations of mathematical concepts cover typically only a part
of the information contained in the mathematical notations. Moreover, the
object centering is lost.

— Because of the loss of mathematical information, operations that are trivial
for mathematicians are difficult to perform in proof planning.

Possible solutions are discussed in the next section.

4 Mathematically-Biased Proof Planning: First Ideas

In the last section we described some problems we encountered in the logic-
biased proof planning in 2MEGA. In particular we described ordering problems
and formalization problems that are inconsistent with the aim of 2MEGA’s proof
planning to imitate mathematical theorem proving. In the following we first
point to work and approaches that partially address our problems. Then we
present our first ideas how we intend to make the proof planning in ZMEGA
more mathematically-biased and less logic-biased.

4.1 Discussion of Some (Partial) Solutions

How to deal with ordering problems inherited from the ND calculus? The first
possibility is to accept the influence of the calculus on the planning level in
favor of a simple and local expansion of methods. In order to assure a finitary
and successful planning process, the methods have to be specified according to
a normal form that respects the requirements of the base calculus. For pure
ND calculus itself a normal form that allows for proof search has been given by
Byrnes [7]. In the setting of an extensible repertoire of methods, this problem
will need to be addressed with every new method. Human mathematical problem
solving, however, is independent of such technical details.

The next consideration could be the use of another calculus without the
shortcomings of ND. Clause normal form together with Skolemization is out of
the question as it destroys structural information we want to employ in proof
planning. There are good chances to establish a calculus with the desired prop-
erties. For the sequence calculus exist already results that overcome the order
dependency of the standard Skolemization rule (cf. the simultaneous quantifier
elimination rule [1]). But generally, by choosing another calculus we still cannot
catch the conceptional difference between methods and calculus rules. Even with
a calculus that allows for more freedom, the calculus-level will have an impact
on the planning-level.

How to deal with formalization problems? We could try to employ a more expres-
sive formal system. By using sorts, for instance, we get a representation that is
more natural with respect to the mathematical notation. And clearly additional
sort information has a positive effect on the proof search. This seems to be the
right direction, but unfortunately, a sort system that is strong enough to express
sorts of every definable function, requires a mechanism for the well-formedness
of terms that has to be as powerful as the theorem proving mechanism itself. So
it seems that an approach that tries to fix a hierarchy between trivialities and
hard problems into syntax is not in accordance with the mathematical reality.

A contrasting idea is not to use any feature of the language at all. The richness
of mathematical representations could be encoded instead into the object-level of
the formal language itself. For each representation (like a multiplication table) a
constant with the appropriate arguments (like domain, codomain, a list of lists)
could be added to the signature together with a formal definition. Now that the
object is made explicit in this way, a set of methods that model the use of this
construct can be added. On one hand, we can retrieve all informations for our
method-level, on the other hand this seems to misuse the formal system just for
data storage, because basic features, like evaluation of an application (that is
built-in in A-calculus) and equality have to be made explicit.

Between these extreme positions lies the idea of an enhancement of the usual
formalizations by additional information in form of annotations (for terms and
their sub-terms) and the application of annotated reasoning techniques [11].

4.2 Owur Proposal

Currently, methods and tactics in ZMEGA are expanded locally. That is, a com-
plex step such as a method or tactic application can be expanded to a proof tree
with the conclusion of the complex step as root and the premises of the complex
step as leaves. Hence, the conclusion and the premises of the complex step are
not changed, only the complex justification between them is replaced by a more
fine-grained justification in form of a whole proof tree. The expansion is done
either by interpreting a pattern or calling a small procedure. A proof plan is
expanded to a ND proof by successively expanding all complex steps until ND
steps are reached.

The expansion of proof plans to ND proofs is important because complex
steps can be incorrect. Only at the ND calculus level the correctness of a proof
object can be checked. However, the analysis of the problems described in Sec. 3
shows that, indeed all problems rest more or less on the direct connection of
the plan level with the calculus level. Firstly, the ordering problems at the plan
level are directly inherited from the ordering mechanisms at the calculus level.
Secondly, since all formulas and term used and introduced at the plan level are
kept during the expansions, the concepts used at the plan level have to be the
same as at the calculus level.

Hence, we suggest to separate the plan level and the calculus level completely
and to give up the local expandability of plan steps. We do not want to lose the
possibility to expand our proof plans to calculus level proofs. But instead of the

strong connection of a local expandability, we suggest to replace the expansion
problem by a more general transformation problem in its own right. This separa-
tion provides at the plan level the freedom to perform more flexible planning as
well as to have own not logic-biased formalizations. In the following we discuss
our first ideas about how to exploit this freedom at the plan level and how a
more general transformation-expansion can work.

Towards more flexible Proof Planning In AI planning almost every plan-
ner employs the idea of successively accumulating and validating constraints. For
instance, nonlinear planner (see [15]) use causal links or protection intervals to
constrain the temporal orderings of plan steps. Most planner perform just passive
constraint postponement; that is, constraints are used to postpone decisions, but
they are not employed in the further planning process. As opposed thereto, in
active postponement the posted constraints are used in the subsequent planning
process to guide the search. For instance, the Descartes system [12] is a planner
that performs active postponement by representing every planning decision with
constrained variables, and posting constraints that represent the correctness cri-
teria for the plan. The variables and constraints, taken by themselves, describe a
constraint satisfaction problem (CSP). Thus, a problem can be viewed as either a
planning problem or a CSP. This duality paradigm is called dual-representation
planning in [12].

Similar to this approach, we suggest to combine proof planning with con-
straint solving. First approaches have been already studied in the limit do-
main where constraints about meta-variables are collected and used later on
to compute suitable instantiations for the meta-variables [18]. Also other ‘side-
conditions’ or ‘side-computations’ should be postponed into constraints. For in-
stance, sort informations about constants and meta-variables can be expressed in
constraints; then suitable constraints solvers can be applied to check the sorts of
terms (instead of holding these checks as subproblems in the proof plan). More-
over, ordering restrictions existing in corresponding ND proofs can be expressed
at the planning level with according ordering constraints. The accumulated con-
straints can be used twofold:

1. During the planning process to guide the search according to the active
constraint postponement. In particular, to preserve the planner from steps
that result in inconsistent constraint states (preserve the planner to continue
on points of the search space from whose no proof plan can be found).

2. During the global expansion of a proof plan to guide the construction of the
calculus level proof by at least partially ordering the proof methods.

Towards Knowledge-Based/Object-Centered Representation In Sec. 3
we have discussed two kind of problems: Firstly that certain mathematical ob-
jects cannot be adequately represented without loosing their intuitive meaning.
And secondly that mathematical concepts consist of more than just their pure
definition.

For the latter, we have to assign more information to an object. In [13] Ker-
ber suggests a frame representation of mathematical objects. He distinguishes
frames for axioms, definitions and theorems. A frame contains besides the for-
malization itself slots for equivalent formulas, examples, superconcepts, simple
properties etc. The frames allow for an object centered encoding of mathematical
knowledge. Unfortunately the additional information has to be given manually.
An automation is more than questionable, as also mathematicians have to invest
efforts (like analysis of given examples and theorems and exercises) to establish
a useful hierarchy of knowledge.

Nevertheless, we might reduce the effort of encoding methods by representing
mathematical entities as frames. This enables to represent equivalent definition
of the same concept in the same frame. Methods having pre- and postconditions
implemented with a frame representation are then be applicable in problems
that use different formalizations of the same mathematical concept. This leads
to a more robust proof planning behavior.

Moreover, the frame representation enables to store important properties
directly with the definition of certain mathematical concepts and entities. A
method can thus contain a variety of additional knowledge on the concepts it is
concerned with and, depending of the state and context of the planning process,
might be able to inject some of this knowledge into the proof planning process.

For the first problem, we can at least give a specification of the desired
properties:

— It should keep the information of the mathematical representation.
— Allow introduction of mathematical representations.
— The use of specialized representation should ease planning.

Towards a General Transformation-Expansion Today’s theorem proving
systems (automatic and interactive ones) have reached a considerable strength.
However, it has become clear that no single system is capable of handling all
sorts of deduction tasks. Therefore, it is a well-established approach to delegate
subgoals to other (specialist) systems. To use the results of other systems medi-
ators are needed that transform the proofs in the formalism of the one system
into proofs in the formalism of the other system (i.e., [16] describes the TRAMP
system that transforms the output of several first order ATPs into proof objects
in PMEGA’s ND calculus).

In this transformation context, we suggest to view the expansion problem
as a transformation problem in its own right. More precisely, a proof plan is
considered as an object that has to be transformed into a pure ND calculus level
proof object?. The transformation from the plan level to a calculus level has to
perform two things:

3 With respect to the fact that we use the calculus level proofs only for verification
issues, a transformation into a ND calculus level proof is not obligatory. When un-
derstanding the expansion problem as a transformation problem it is also possible
to have several underlying calculi such that different transformation algorithms can
produce the proof objects in the different calculi.

1. Mapping the formulas in the formalization of the plan level into formulas in
formalization of the calculus level.

2. Mapping the steps/justifications at the plan level to steps/justifications at
the calculus level.

Concretely, our idea is that first the formulas of the plan level are transformed
into corresponding formulas at the calculus level. These formulas provide isles.
Then the gaps between the islands are closed at the calculus level by other
reasoning mechanisms that work at the calculus level. Moreover, the plan level
could provide information to the reasoning mechanisms at the calculus level such
as which inference rules are (probably) needed for closing a gap corresponding
to a certain plan step as well as further control information. Hence, for closing
the gaps we suggest a parameterizable mechanism (for instance, in 2MEGA the
2ANTS mechanism (see [3] for a description of how the 2ANTS mechanism can
be used as a parameterizable inference machine).

5 Final Remarks

From our perspective the future of automated deduction lies in a further ori-
entation towards the style of reasoning actually performed by mathematicians.
Knowledge-based proof planning is one first step in this direction. In this paper
we illustrated that proof planning is still too restricted because of its logic ori-
entation. The idea is to liberate proof planning from logic oriented reasoning as
far as possible, but to keep the transformability to logical arguments for proof
checking purposes. This idea is rather new and its success is not guaranteed.

References

1. S. Autexier, H. Mantel, and W. Stephan. Simultaneous quantifier elimination. In
Proceedings of the 22. annual German Conference on Al Springer, Germany, 1998.

2. C. Benzmiiller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Kerber,
M. Kohlhase, K. Konrad, E. Melis, A. Meier, W. Schaarschmidt, J. Siekmann, and
V. Sorge. 2Mega: Towards a Mathematical Assistant. In W. McCune, editor, Pro-
ceedings of CADE-14, volume 1249 of LNAI pages 252-255. Springer, Germany,
1997.

3. C. Benzmiiller, A. Meier, M. Pollet, and V. Sorge. Proof transformation and
expansion with a parameterizable inference machine. In Proc. of Fighth Workshop
on Automated Reasoning held at AISB’01, 2001.

4. A. Bundy. A critique of proof planning. Submitted.

5. A. Bundy. The Use of Explicit Plans to Guide Inductive Proofs. In Proceedings of
CADE-9, pages 111-120, 1988.

6. A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The OYSTER-CLAM system.
In M. E. Stickel, editor, Proceedings of the 10th International Conference on Auto-
mated Deduction (CADE-10), volume 449 of LNCS, pages 647-648, Kaiserslautern,
Germany, 1990. Springer Verlag, Berlin, Germany.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

J. Byrnes. Proof Search and Normal Forms in Natural Deduction. PhD thesis,
Department of Philosophy, Carnegie Mellon University, Pittsburgh, Pennsylvania,
USA, 1999.

A. Church. A Formulation of the Simple Theory of Types. The Journal of Symbolic
Logic, 5:56-68, 1940.

G. Faltings and U. Deker. Interview: Die Neugier, etwas ganz genau wissen zu
wollen. bild der wissenschaft, 10:169-182, 1983.

G. Gentzen. Untersuchungen iiber das Logische Schlieflen I und II. Mathematische
Zeitschrift, 39:176-210, 405-431, 1935.

D. Hutter. Automated reasoning. Annals of Mathematics and Artificial Intelli-
gence. Special Issue on Strategies in Automated Deduction, 2000.

D. Joslin and M. Pollack. Passive and active decision postponement in plan gen-
eration. In New Directions in AI Planning, pages 37-48. I0S Press, 1996.

M. Kerber. On the Representation of Mathematical Concepts and their Translation
into First Order Logic. PhD thesis, Fachbereich Informatik, Universitdt Kaiser-
slautern, Kaiserslautern, Germany, 1992.

I. Kraan, D. Basin, and A. Bundy. Middle-Out Reasoning for Logic Program
Synthesis. Technical Report MPI-1-93-214, Max-Planck-Institut, Im Stadtwald,
Saarbriicken, Germany, 1993.

D. McAllester and D. Rosenblitt. Systematic nonlinear planning. In Proceedings
of 9th National Conference on Artificial Intellgence, pages 634 — 639, 1991.

A. Meier. TRAMP: Transformation of Machine-Found Proofs into Natural De-
duction Proofs at the Assertion Level. In Proceedings of the 17th Conference on
Automated Deduction (CADE-17), pages 460-464. Springer Verlag, Berlin, Ger-
many, 2000.

E. Melis and J. Siekmann. Knowledge-based proof planning. Artificial Intelligence,
115(1):65-105, November 1999.

E. Melis, J. Zimmer, and T. Mueller. Extensions of constraint solving for proof
planning. In Proceedings of ECAI-2000, 2000.

A. Newell. The Heuristic of George Polya and its Relation to Arti ficial Intel-
ligence. Technical Report CMU-CS-81-133, Carnegie-Mellon-University, Dept. of
Computer Science, Pittsburgh, Pennsylvania, U.S.A., 1981.

J. Richardson, A. Smaill, and I. Green. System description: Proof planning in
higher-order logic with AClam. In C. and H. Kirchner, editor, Proceedings of
the 15th Conference on Automated Deduction (CADE-15), volume 1421 of LNAI
pages 129-133, Lindau, , Germany, July 1998. Springer Verlag, Berlin, Germany.
R. Sabbatini. The mind, artificial intelligence and emotions - interview with marvin
minsky. Brain & Mind Magazine, 9, September/November 1998.

