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Abstract

Most interactive proof development environments are insufficient to handle the complexity
of the information to be conveyed to the user and to support his orientation in large-scale
proofs. In this paper we present a distributed client-server extension of the Q2MEGA proof
development system, focusing on the LOUZ (Lovely QMEGA User Interface) client. This
graphical user interface provides advanced communication facilities through an adaptable
proof tree visualization and through various selective proof object display methods. Some of
LOUT’s main features are the graphical display of co-references in proof graphs, a selective
term browser, and support for dynamically adding knowledge to partial proofs — all based
upon and implemented in a client-server architecture.

1 Introduction

One (of several) reasons, why current deduction systems have not found a wider acceptance in
mathematical practice is that they are too inconvenient to use. The QMEGA system [BCFT97] —
an interactive, plan-based deduction system with the ultimate goal of supporting theorem proving
in main-stream mathematics and mathematics education must address this, in order to reach its
goal. In order to provide a conceptually structured, understandable and easily usable front-end,
the interface LOUT of the OMEGA system is designed with respect to the following requirements:

e In any proof state the system should display the proof information to the user at different
levels of abstraction and detail and furthermore in different modes (e.g. as a proof tree, as
a linearized proof, or in verbalization mode, etc.).

e The system should minimize the necessary interaction by suggesting commands and pa-
rameters to the user in each proof step. Optimally, the system should be able to do all
straight-forward steps autonomously.

e The interface should work reasonably fast, and its installation in other environments should
be possible with minimal effort and storage requirement.

These issue are elaborated in detail in the following three sections. We will only discuss the
QMEGA proof system (the current system consists of a proof planner and an integrated collection
of tools for formulating problems, proving subproblems, and proof presentation) where it becomes
necessary to understand the interface issues.
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Figure 1: A linearized proof and its graphical tree-representation in LOUZ

2 Multi-modal Views: Proof Tree Visualization and Proof
Content Display

The QOMEGA system provides different techniques to analyze partial or complete proofs. As in
traditional theorem proving systems, LOUT can present a proof in a linearized form, in our case
as a higher-order variant of Gentzen’s Natural Deduction (ND) calculus (see figure 1). For long
proofs, such a presentation lacks transparency and structure. Therefore LOUT offers two additional
ways of representing proofs: as a tree that models the logical dependencies between the different
proof lines and as a text in natural language, as it would appear in a mathematical textbook.
Before we go into details let us look at an example:

Ezample 2.1 (Proof Representations in LUAT). The left window in figure 1 shows the lin-
earized ND format of a simple proof of the transitivity of the subset relation, while the right
window shows LOUT’s main window with a tree representation of the proof. Below, we have a
natural-language representation of the same proof that has been automatically generated by the
(MEGA system.

Assumptions: Proof:
(1) aCb.
2)bcCe.
Theorem: a C c.

Let x € a. That implies that we have z € b. That leads to
xz €c. Wehavea C csinceVz. £ €a =z € c. O

2.1 Hierarchical Plan Data Structure

The entire process of theorem proving in (MEGA can be viewed as an interleaving process of proof
planning, plan execution, and verification that is centered around the so-called Proof Plan Data
Structure (PDS).

The hierarchical data structure represents a (partial) proof at different levels of abstraction
(called proof plans). It is represented as a directed acyclic graph, where the nodes are justified
by methods. Conceptually, each justification represents a proof plan (the expansion of the justi-
fication) at a lower level of abstraction that is computed when the method is expanded. A proof
plan can be recursively expanded, until a fully explicit proof on the calculus level (ND) has been
reached. In QOMEGA, we keep the original proof plan in an expansion hierarchy. Thus the PDS
makes explicit the hierarchical structure of proof plans and retains it for further applications such
as proof explanation or analogical transfer of plans.

Once a proof plan is completed, its justifications can successively be expanded to verify the
well-formedness of the ensuing PDS. When the expansion process is completed, the establishment
of correctness of the ND proof relies solely on the correctness of the verifier and the calculus. This
approach also provides a basis for a controlled integration of external reasoning components — such



as an automated theorem prover or a computer algebra system — if each reasoner’s results can (on
demand) be transformed into a sub-PDS.

A PDS can be constructed by automated or mixed-initiative planning, or by pure user in-
teraction. In particular, new pieces of the PDS can be added by directly calling tactics, by
inserting facts from a data base, or by calling some external reasoner. Automated proof planning
is only adequate for problem classes for which method and control knowledge have already been
established.

2.2 Visualization — Proofs as Trees

In the main display window of LOQUTZ, the structure of proofs is shown in a pure tree format,
independently of the logical terms associated with the nodes (see the central part in Figure 1).
Since logical proofs are in general acyclic directed graphs and not trees, LOUT represents nodes
with multiple predecessors (i.e. subproofs used more than once) as co-reference nodes: The
subproof is displayed only in one place, and the other occurrences are represented as a special
node — the co-reference node — that points to the root of the displayed subproof. Thus the
resulting structure is a proper tree, which is displayed in such a way that node categories are
expressed by color and shape (see the front panel of the window in the right part of figure 1):

Terminal nodes are represented by triangles, with assumptions, assertions, and hypotheses dis-
tinguished according to their color (green, yellow, and violet).

Intermediate nodes are represented as circles, with ground, expanded, unexpanded, and open
nodes distinguished according to their color (dark blue, bright blue, yellow, and red).

Untested nodes are represented by red squares. A node is considered untested in case IMEGA
assumes an external reasoner to be able to solve the associated sub-problem but the assump-
tion is not yet verified.

Co-reference nodes, which may or may not be terminal nodes, are represented by diamonds and
uniquely colored in orange.

The categories of intermediate nodes need some explanation. While open nodes are subject
to further derivations, the other nodes are distinguished by their respective level of abstraction in
the PDS. Ground nodes are at the ND level, while all others are on higher levels of abstraction;
Expanded nodes are nodes, where the expansion to the natural deduction level is known, but not
displayed. The user has the following possibilities to manipulate the appearance of the proof tree:

zooming between tree overviews and enlarged tree parts,
scrolling to a desired tree part,
focusing on a subtree by cutting off the remaining tree parts,

abstracting away from details of a subtree derivation by hiding the display of that subtree, which
then appears as a double-sized red triangle.

2.3 Term and Proof Content Display

The design decision to separate the tree structure from the terms associated with individual
nodes enables the display of large trees without crowds of annotations. The connection between
the tree structure and the associated content can be selectively re-established by the user. One
possibility to achieve this is the introduction of annotations by clicking at a node, so that a yellow
box enclosing a label and a justification appears besides that node (four such boxes appear in
Figure 1). Another possibility is to apply the term browser (see the smaller window beside of the
proof tree in Figure 1): by double-clicking at some node the associated term is displayed in the
term browser. Nodes whose terms appear in the term browser are numbered dynamically in the



displayed proof tree. Pointing to either a node or a term leads to both objects being highlighted
in their respective windows. Co-references are not handled by the term browser. Instead, pointing
to a co-reference node leads to the temporary appearance of a line between the co-reference node
and the node it co-refers to.

2.4 Proofs in Natural Language: PROVERB

QIMEGA uses an extension of the PROVERB system [HF97] developed in our group that presents
proofs and proof plans in natural language. In order to produce coherent texts that resemble
those found in mathematical textbooks, PROVERB employs state-of-the-art techniques of natural
language processing and generation.

Due to the possibly hierarchical nature of PDS proofs, these can be verbalized at more than
one level of abstraction, which can be selected by the user. Since a user will normally want to vary
the level of abstraction in the course of a proof, the current verbalization facility will be extended
to one that explains proofs to users guided by their feedback.

3 Controlling OMEGA

OMEGA’s main functionality — especially including those commands and facilities important for
interactive proof development — is available via the structured menu bar in LOUZ’s main window.
Its entries reflect the conceptually different facilities of the QMEGA-system. For instance, there
are a menu entities Black-box and Planner providing all useful commands of these conceptual
categories to the user.

For non-experts and especially for novices, a graphical user interface has many advantages
over a purely command-shell based user interface, as it provides a steady overview on the — mostly
unknown — system commands to the user and thus relieves him from searching for appropriate
commands in an interactive shell. Experts, who are familiar with nearly all of the commands, may
prefer the interaction via a command-shell. Therefore, LOUT also provides a command shell for
expert users (see the bottom-right part of the figure).
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In the following subsections, we illustrate the connection of LOUZ to major parts of QMEGA.
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Theories In OMEGA, mathematical knowledge is structured with respect to mathematical do-
mains and is therefore organized in a hierarchy of theories. Theories represent signature extensions,
axioms, definitions, theorems, lemmata, and the basic means to construct proofs, namely rules,
tactics, planning methods, and control knowledge for guiding the proof planner. Each theorem 7T
has its home theory and therefore a proof of 7 can use the theory’s signature extensions, axioms,



definitions, and lemmata without explicitly introducing them. A simple inheritance mechanism
allows the user to incrementally build larger theories.

The user can both use and manage (2MEGA’s knowledge base through LOUZ. In particular,
it is possible to load theories or their single components incrementally and separately, browse
through available assertions and import them into the active proof. Furthermore, if a problem has
been proven by constructing and verifying a proof it can be stored into the theory where it was
proven.

Rules, Tactics and Methods The hierarchic organization of theories and their incremental
importation does not only affect their availability for a proof but also LQUZ’s menu structure.
Since theories contain rules, tactics and planning methods, these are also incrementally loaded.
To each inference method there is an attached command which is not statically contained in the
interface but is dynamically appended to the menu structure. Commands for inference methods
are inserted into the respective menu topic for rules, tactics, and methods. Within these topics,
the commands are ordered in additional sub-menus. Since rules are always defined in (2MEGA’s
base theory, they are just sorted by their type: elimination rules, introduction rules, structural
rules, etc. The menus for both, methods and tactics, are divided into sub-menus according to the
theories the inference methods belong to. These sub-menus can be further divided by categories
specified within these theories. Moreover, each inference method can be listed in several subtopics
in the menus.

Inference rules are applied by executing the at-

L —lande |
tached commands. In general, it is necessary to | 41 ode
provide some arguments for the application of a Conjunction to spiit [&7 ﬂ ﬁ
rule, which can be specified inside a generic com- | —
mand window. The command window adjusts it- Lott conjunct E M
self automatically to the number of required argu- | =
ments and provides some help for the requested ) . F—
parameters. The user can then specify the ar- Fight soniunet NIL E M
guments either by manually entering them or by m| clear Al | cancel |

referring to certain nodes with a mouse-click.

In order to provide further support for interactive proof development, QMEGA uses a multi-
layered focusing technique to compute suitable default values for rule applications [BS98]. These
default values are suggested to the user as arguments in the command window.

Planner (MEGA’s proof planner is based on an extension of the well-known STRIPS algorithm.
It constructs a proof plan for a node g (the goal node) from a set I of supporting nodes (the
initial state) using a set Ops of proof planning operators, called methods. The plans found by
this procedure can be incorporated into the PDS as a separate level of abstraction. Furthermore,
the proof planner also stores the reasons for its decisions for later use in proof explanation and
analogy.

The QMEGA commands for evoking the planner and changing some settings relevant to the
planner are provided by LQUT as menu items, such as applying the planner step by step, to do a
certain number of planning steps, or to change the list of the proof operators (methods) considered
by the planner. When the planner succeeds to find a plan, one can apply this plan to the PDS.
The graphical representation of the resulted PDS in LOUTL shows the proof part of the PDS
constructed by the planner.

In the near future, we intend to extend the planner so that it can be run in a reactive modus,
i.e. reacting to user suggestions, such as to consider a given task next, or to take back some planner
decision, and to continue with the next possible alternative. For this, the graphical representation
of the PDS in LOAUT must reflect the progress of the planner. Furthermore, the current agenda
of planning goals must be displayed in parallel. This extension is facilitated by the client-server
architecture (see section 4) of OMEGA that allows the user to enter suggestions to the planning
process asynchronically with the help of appropriate Po-pup-menus.



External Systems - Automated Theorem Provers and Computer Algebra Systems
QOMEGA employs several automated theorem provers and computer algebra systems (for details
cf. [KKS98]) as modules that can be applied to special-purpose proof problems. QMEGA uses for
example OTTER [McC94], an automated theorem prover based on first order clause set resolution.
We have described the integration of OTTER in [HKK*94] and the proof transformation necessary
for incorporation of the result into the PDS in [HF96]; the methods described there also apply
for the other theorem provers (Spass, PROTEIN, and LEO) available in QMEGA. These systems
can prove first-order theorems using various flags that control the search and the proof strategies.
If for instance OTTER is called from Q2MEGA, some of these flags are set automatically, but others
must be set by the user individually every time he uses OTTER.

To set these flags directly in (IMEGA is laborious because it is necessary to know all valid
values. LOUT provides an input mask that contains all flags with short descriptions of their valid
values and what they will affect. Additionally, LOUT stores the last settings and offers it as a
default value in the next call. LOUT controls several such “computational modules” by mapping
their interface functionality into flexible input masks.

4 The Client-Server Architecture

A client-server architecture that separates QMEGA’s logical kernel from its graphical user interface
has increased its efficiency and maintainability.

In local computer networks the situation is quite common that users have relatively low-speed
machines on their desktop, whereas some high-speed servers that are accessible for everyone operate
in the background. Running the user interface on the local machine uses the local resources that
are sufficient for this task while the more powerful servers can be exploited for the really complex
task of actually proving theorems.

The maintenance advantage applies to both the user’s and the developer’s side. 2MEGA is
a rather large system (roughly 17 MB of CoMmMON Lisp (CLOS) code for the main body in
the current version), comprising numerous associated modules (such as the integrated automated
theorem provers and a small computer algebra system) from different original sources, written in
various programming languages. For the user it is a difficult task to install the complete system. In
particular successful installation depends on the presence of (proprietary) compilers or interpreters
for the respective programming languages.

In the current client-server architecture, the user only has to install the LOQUZ client, which
connects to the main system and exchanges data with it via the Internet. Thus the user interacts
with the client, which can be physically anywhere in the world, while the OMEGA kernel is still
on our server (here in Saarbriicken, where it is maintained and developed). Since LQUZ is imple-
mented in the Oz programming language [Saa98], which is freely available for various platforms,
including UNIX and Windows95, this keeps the software and hardware requirements of the user
moderate. The installation of the client is further simplified by the possibility of running LOUT as
a Netscape applet, i.e. LOUT is automatically downloaded via the Internet. Thus we are able to
provide current versions of QMEGA and LOQUT without need for re-installation at the user’s site.

Technical Realization LQU7 is realized via a distributed programming system, called MOZART,
which is an interactive distributed implementation of Oz. Mozart provides the full infrastructure
to write distributed applications. Its main strength comes from its network transparency and
network awareness.

Network transparency means that the semantics of Oz programs does not change if you dis-
tribute computations among different sites. For example, the programmer can use lexical scoping,
logical variables, objects, etc. in distributed applications.

Network awareness means that the programmer has full control over the network operations.
The language provides mobile and stationary objects, i.e. methods are executed locally (the
object moves) or remotely (the message moves). The programmer has control over structure copy-
ing among sites. Structures may be copied eagerly or lazily. To reduce the bandwidth needed



for communication, IMEGA implements an incremental approach based on SMALLTALK’s MVC
triad®, which only transmits the parts of the PDS that are changed by a user action. This not
only improves response times for low-bandwidth Internet connection but also focuses the user’s
attention to the effects of an action.

The Omega Client/Server Network A ser-
vice called OMEGA is established on the server
side, to which clients in form of LOQUT applets OMEGA-
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Internet sockets. When a connection is found on one of its sockets, it decides what service the
socket corresponds to, and invokes a program to service the request. Therefore, each client using
the OMEGA service, has its own QMEGA daemon and LISP process running. As mentioned the
whole communication between the client and the server process is realized via Internet sockets
using strings. The above figure illustrates the client-server architecture.

Since the presentation of the proof tree is defined by a context-free grammar, it should be easy
to connect LOUZL to different kind of provers. In this sense LOUZ can be seen as a generic proof
viewer.

Distributing OMEGA TUp to this point, we have considered a client-server network with one
server that is dedicated to IMEGA itself and several clients that use this server. In reality, a
QOMEGA network may consist of several servers that can be accessed via a gateway service. The
gateway daemon runs on one machine that provides the OQMEGA service. It can start the actual
OMEGA process and its the associated modules on any of the servers, depending on their current
work load. In this way, we are able to employ the whole computational power of a local area
network with a background of several larger servers.

5 Related Work

User interfaces for theorem provers are credited with increasing importance in the field. These
interfaces comprise graphical illustrations of proof structures and their elements, and facilities to
set up commands in the proof environment.

Some special modes of proof types express part of the semantics of proof steps by graphical ob-
jects and annotations. Examples of this sort of visualization are binary decision diagrams for first-
order deduction systems [PS95], which have special display facilities for the relation between quan-
tified formulae and their instantiation, and natural deduction displays of sequent proofs [Bor97]
where the scoping structure of the proof is visualized by adjacent and by nested boxes enclosing
segments of proof lines. Another presentation technique displays proof steps in an appropriately
formatted and interactive way. [BJKT97] is able to present a proof in natural language, to a
certain level of detail with deeper levels indented. In addition, levels of detail temporarily hidden
can be exposed by clicking on the corresponding root proof line. A rather elaborate presentation
system is CTCoqQ [BKT94] which distributes the information about a proof over three sections of
a multi-paned window: a Command window records the script of commands sent to the proof en-
gine, a State window contains the current goals to be proved, and a Theorems window contains the
results of queries into the proof engine’s theorem database. Some other approaches put particular

1See for instance http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html for an overview.



emphasis on visualization by making the tree format of proof structures explicit in the display.
The user interface for the SEAMLESS system [EM97] provides display facilities for a proof graph
at different levels of abstraction in a framed window: a variety of lay-out operations including
zooming and reuse of multiple appearances of lemmas. The user interface of INKA [HS96] allows
for the display of induction proof sketches at varying levels of detail. Its features include status
information, typically expressed by different coloring, and context-sensitive menus of possible user
actions.

In comparison to these systems, (IMEGA in some sense combines features of SEAMLESS and
CtCoQ. Its graphical display is similar to that of SEAMLESS, but the set of node categories and
their display is fixed to the particular proof environment. However, LOUZ’s tree visualization can
easily be adapted to a different set of node categories and display options. Its status information
display is similar to that of CtCoq, but the database window is handled differently. Apart from
that, the strict separation of visualizing the proof tree structure and browsing the terms associated
with individual nodes selectively, handling of co-references, and the client-server architecture are
unique features in OMEGA.
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