
Cumulative Habilitation Script

Faculty 6 - Natural Sciences and Technology I

Saarland University

HD Dr. Christoph Benzmüller

Frankfurt am Main, 8. September 2006

1

Cumulative Habilitation Script: HD Dr. Christoph Benzmüller

5 Cumulative Habilitation Script

5.1 Introduction

Since more than a decade my main research interests are:

1. The (collaborative) development of large and integrated mathematics assistance systems in
the emerging mathematical semantic web. These systems shall fruitfully support education
(e.g., e-learning) and research in mathematics, formal methods, and engineering.

2. The study of the theoretical foundations (model theory and proof theory) of higher-order
logic.

3. The improvement of automated theorem proving techniques in higher-order logic.

Higher-order logic constitutes the base representation framework of many leading mathematics
assistance systems (e.g., Isabelle1, HOL2, PVS3, and our own OMEGA system4). Furthermore,
many mathematical textbooks naturally employ higher-order logic constructs. Therefore it is
not surprising that the currently fast evolving repositories of formalized mathematics contain a
significant amount of higher-order logic encodings. Thus, topics (2) and (3) can be characterized
as important subtopics for the overall research goal (1).

The envisioned all-embracing assistance systems for mathematics cover a wide range of typical
characteristics an ambitious, integrated AI system shall have. Therefore, research goal (1) in
addition to (2) and (3) requires the combination of techniques from several subfields of AI including
knowledge representation and reasoning, cognitive architectures and multi-agent systems, human
computer interaction and user interfaces, machine learning, intelligent tutor systems, and dialog
systems and natural language processing.

My PhD thesis has concentrated on tasks (2) and (3). Parallel to my PhD work and in
particular adjacent to it I have performed and supervised research (e.g., as PostDoc and Research
Fellow in Germany, the UK, and the USA, as head of the OMEGA project of Jörg Siekmann,
and as principal investigator of two projects in the SFB 378 in Saarbrücken) in the wider range
of research topics as required for goal (1). These research activities are documented by a wide
range of journal, conference, and workshop publications (see the selected recent publications in
Section 1, my complete list of publications in Section 3, and the selected publications for this
cumulative habilitation document as given below) as well as by my activities as organizer and PC
member of various related conferences and workshops, as scientific coordinator of the EU RTN
Calculemus (2000-2004) and my recent editorship of a special issue in the Journal of Applied Logic
on mathematics assistance systems. The following text, which addresses the challenge of building
mathematics assistance systems and which I present here as a personal research statement, has
been adopted from my editorial of this special issue (see [J13-06] in Section 3).

What is an assistance system for mathematics and what is it good for?

The notion of an assistance system for mathematics adopted here characterizes an integrated envi-
ronment of tools supporting a wide range of typical research, publication and knowledge manage-
ment activities. Examples of mathematical activities are computing, proving, solving, modeling,
verifying, structuring, maintaining, searching, inventing, paper writing, explaining, illustrating,
and possibly others. Clearly, some of them require a high amount of human ingenuity while oth-
ers do not. An assistance system for mathematics should support activities for which practical
and robust solutions exist, that is, at the moment predominantly those which require less human
ingenuity.

1www.cl.cam.ac.uk/Research/HVG/Isabelle
2hol.sourceforge.net
3pvs.csl.sri.com
4www.ags.uni-sb.de/~omega/

2

Cumulative Habilitation Script: HD Dr. Christoph Benzmüller

Meanwhile an impressive range of mathematical support tools is actually available, for in-
stance, computer algebra systems (e.g., Maple and Mathematica), interactive proof assistants
(e.g., Isabelle/HOL and Coq), automated theorem provers (e.g., Vampire and Otter), model
checkers (e.g., Smv), partially integrated hybrid systems (e.g. Omega), search engines (e.g.,
Google), and publishing and typesetting packages (e.g., LaTeX). The integration of one or sev-
eral of these tools within a uniform environment leads to our notion of an integrated mathematics
assistance system. The overall idea, however, is not to replace the mathematician (or engineer or
teacher) but instead to support a fruitful symbiosis of human and machine intelligence in which
the computer takes over tedious routine parts thus setting precious resources free for the human
user.

An obvious and very prominent approach to the development of an assistance system for math-
ematics is the integration of off-the-shelf tools, for instance, automated theorem provers, decision
procedures, and computer algebra systems, into interactive proof assistants. An important issue
in this approach is the provision of transformational mappings between the different representa-
tions employed in the combined tools. Furthermore, the maintenance and effective management
of formalized bits of mathematical knowledge in structured (and probably distributed and shared)
knowledge bases has to be addressed. Syntactic and semantic search facilities are required for
retrieving knowledge from these knowledge sources. Bridging the gap between informal multi-
modal mathematical texts and fully formalized representations is just as important as the com-
bination with powerful publication and typesetting packages. In order to reduce the duplication
and multiplied encoding effort as currently still required in computer-supported mathematics,
we need a smooth and formal transition from technical developments within an assistance sys-
tem back and forth to high-quality publications. Another important issue is the development of
powerful, uniform look-and-feel as well as effective user interfaces which preferentially support a
human-oriented rather than a machine-oriented interaction with the system. They should hide the
minute representational and operational details of the integrated tools. Many support tools and
the mathematical knowledge sources can ideally be shared between different assistance systems
through the development of a mathematical semantic web.

And who needs assistance systems for mathematics?

Computer algebra systems and publishing tools, for example, are already routinely employed in
mathematical research and practice today. Furthermore, interactive proof assistants and model
checkers are nowadays used in industrial applications for formal software and hardware verification
and quality assurance. On the other hand mathematics has existed for thousands of years without
computer support and it is perfectly valid to doubt, as many working mathematicians actually
do, that the immediate impact of the envisioned assistance systems will be overwhelming for the
frontiers of mathematical research.

In recent years, however, we can observe a small but increasing number of success stories
in computer aided mathematics. For example, the four color theorem has been proven in 1976
by Appel and Haken with significant computer support. This proof had a dubious status for a
long time because a verification of it (by hand) seemed impossible. Recently, however, a formal
verification within the assistance system Coq was reported by Georges Gonthier at Microsoft
Research. Another success story is the verification of a proof of the prime number theorem with
the system Isabelle by Jeremy Avigad at Carnegie Mellon University in 2004.

Presumably the most important recent example is the computer supported proof of Kepler’s
conjecture by Thomas Hales at Pittsburgh University. Kepler’s conjecture is a problem in discrete
geometry which has been unsolved for nearly 400 years. The submission of his results to the Annals
of Mathematics resulted in an interesting and controversial debate. Robert D. MacPherson, the
editor in chief of the Annals of Mathematics, gave a presentation at the symposium ‘The nature
of mathematical proof’ of the British Royal Society in London in Fall 2004 in which he revealed
how difficult it is to review results of this nature: a refereeing board of 12 mathematicians had
finally given up to fully verify the proof after 4 years! They could still validate Hales’ reduction of
the original problem to a wide range of subproblems. However, they were not able to verify (nor

3

Cumulative Habilitation Script: HD Dr. Christoph Benzmüller

to refute) the many subcriteria that Hales solved with significant computer algebra support. This
happened for the first time in the history of mathematics! As Hilbert’s famous perpetual call from
the heart exemplifies: “Da ist das Problem, suche die Lösung. Du kannst sie durch reines Denken
finden, denn in der Mathematik gibt es keinen Ignorabimus”5, mathematicians have always held
the belief that in principle we know – although we may err – if something is the case or not.

While mathematicians have thus given up on verifying the proof, Hales has started the Flyspeck
project. The aim of this project is to reconstruct, formalize, and fully verify Hales complete proof
in the assistance system Hol-light. This is an a posteriori attempt to apply assistance systems in
a research frontier of mathematics and due to the complexity of the problem and the comparative
mathematical and practical immaturity of today’s mathematical assistance systems this endeavor
will certainly require several years of persistent work.

In the long run, however, the envisioned fully integrated assistance systems will support this
new style of mathematics not a posteriori but from the very start, ideally with far less effort as
currently still required and also at a more human-friendly interaction level.

Is there some low hanging fruit?

Yes, there is. Even in case of a failure of the ambitious Flyspeck project, the existing systems are
already successfully used in less ambitious mathematics such as formal verification in computer
science. In particular students who want to learn mathematics or engineers who want to apply
mathematics – both groups are typically confronted with far less ambitious mathematical prob-
lems than Hales – may well and actually do already benefit from current mathematics assistance
systems. In fact, proof assistants and model checkers have been widely used in applications for
software and hardware verification. Also e-learning environments with integrated support tools
increasingly attract attention in academia as well as in public applications.

Why is it so difficult to build an integrated assistance system for mathematics?

The challenge is to attack the scientific and technological gap between the targeted ideal mathe-
matics assistance environments and the many weaknesses and shortcomings of the current systems.
This requires in particular the combination of techniques and expertise from several research ar-
eas. Research progress and good research training in this multidisciplinary area can currently
probably be best achieved by joining forces in research networks. One example is the European
Calculemus research training network (2000-2004), which has put an emphasis on the training
of young researchers in the areas of computer algebra and deduction systems.

Actually, there are relatively few research groups which have sufficient expertise, background
and critical mass to cover the whole spectrum of relevant research issues to build an all embracing
assistance system for mathematics. This problem is actually analogous to the development of
large and all-encompassing AI systems in general; in fact, these assistance systems can be seen
as an instance of an ambitious, integrated and general AI system, which researchers claim also in
other more common subfields of AI.6 However, a broad research expertise is only one of the many
essential requirements. Availability of human resources, in particular, talented and enthusiastic
PhD students with strong implementational skills is another. In fact, most of the existing attempts
at large and integrated assistance systems have been predominantly achieved with the help of
generations of PhD students and postdocs.7 Such a student-based development strategy imposes
several challenges, not least of which is the software maintenance problem, which is particularly

5Engl.: There is the problem. Seek its solution. You can find it by pure reason, for in mathematics there is no

ignorabimus.
6In their invited talks at this years AAAI-05 conference in Pittsburgh both Ronald J. Brachman and Mar-

vin Minsky argued for building and analyzing large, integrated AI systems. I should think that the envisioned

all-embracing assistance systems for mathematics actually cover a wide range of these typical characteristics an

ambitious, integrated AI system will have as well.
7An example is Peter Andrews’ Tps system, which is based on the contributions of a row of students such as

Dale Miller, Frank Pfenning, Dan Nesmith, Sunil Issar, Hongwei Xi, Matthew Bishop, and Chad Brown. Another

example is our own Omega project with its long sequence of PhDs and postdocs.

4

Cumulative Habilitation Script: HD Dr. Christoph Benzmüller

difficult for those groups which do not have the support of an experienced and long-term employed
software engineer to control and guarantee a persistent high quality software development along
uniform conventions. Probably even harder is the organization of a smooth knowledge transfer
in order to pass crucial system expertise from one generation of students to the next. PhD
students and researchers in the area of mathematics assistance systems need in addition to scientific
talent and implementational skills a broad research interest, excellent communication skills, social
competence and teamwork spirit.

An important challenge is to identify the best of todays achievements and to integrate them
into a single best practice environment. In order to achieve significant progress in our research
area the best research strategy is debatable. Two options are “Let the best system win” and
“Cooperate, modularize, and exchange components”. I personally advocate the latter – however,
time will tell.

5.2 Selected Publications

The following selected publications well document my personal research activities on Higher-
Order Logics and Mathematics Assistance Systems in the last decade. The given percentages are
estimations of my personal contribution to each paper.

Higher-Order Semantics

[50%] C. Benzmüller and C. Brown, A Structured Set of Higher-Order Problems.
TPHOLs 2005, no.3606 in LNAI, pp.66-81, Oxford, UK, 2005. c©Springer.

[33%] C. Benzmüller, C. Brown, and M. Kohlhase. Higher-Order Semantics and Exten-

sionality. Journal of Symbolic Logic, 69(4):1027–1088, 2004. c©JSTOR.

Higher-Order Proof Theory

[40%] C. Benzmüller, C. Brown, and M. Kohlhase, Cut-Simulation in Impredicative Log-

ics. IJCAR’06, no.4130 in LNAI, pp.220-314, Seattle, USA, 2006. c©Springer.

Higher-Order Theorem Proving

[100%] C. Benzmüller. Comparing Approaches to Resolution based Higher-Order The-

orem Proving. Synthese, An International Journal for Epistemology, Methodology and
Philosophy of Science, 133(1-2):203–235, 2002. c©Kluwer.

[100%] C. Benzmüller. Extensional Higher-Order Paramodulation and RUE-

Resolution. CADE-16, no.1632 in LNAI, pp.399–413, Trento, Italy, 1999. c©Springer.

[60%] C. Benzmüller and M. Kohlhase. Extensional Higher-Order Resolution. CADE-15,
no.1421 in LNAI, pp.56–71, Lindau, Germany, 1998. c©Springer.

Intergration of Reasoning Systems

[60%] C. Benzmüller, V. Sorge, M. Jamnik, and M. Kerber, Can a Higher-Order and a

First-Order Theorem Prover Cooperate? LPAR-11, no.3452, pp.415-431, Mon-
tevideo, Uruguay, 2005. c©Springer.

[50%] C. Benzmüller and V. Sorge. OANTS – An Open Approach at Combining Interac-

tive and Automated Theorem Proving. In Symbolic Computation and Automated
Reasoning, pp.81–97, 2000. c©A.K.Peters.

[50%] C. Benzmüller, M. Bishop and V. Sorge. Integrating TPS and OMEGA. Journal of

Universal Computer Science, 5:188–207, 1999. c©Springer.

5

Cumulative Habilitation Script: HD Dr. Christoph Benzmüller

Mathematics Assistance Systems

[40%] J. Siekmann, C. Benzmüller, and S. Autexier, Computer Supported Mathematics

with OMEGA. Special Issue on Mathematics Assistance Systems, Journal of Applied
Logic. c©Elsevier. In print, 2006.

[40%] J. Siekmann, C. Benzmüller, A. Fiedler, A. Meier, I. Norma and M. Pollet, Proof

Development in OMEGA – The Irrationality of Square Root of 2. In Thirty Five
Years of Automating Mathematics, pp.271–314, 2003. c©Kluwer Applied Logic Series,
Volume 28.

Tutorial Dialog with Mathematics Assistance Systems

[60%] C. Benzmüller and Q.B. Vo, Mathematical Domain Reasoning Tasks in Tutorial

Natural Language Dialog on Proofs. AAAI-05, Pittsburgh, Pennsylvania, 2005.
USA. c©AAAI Press / The MIT Press.

[40%] M. Buckley and C. Benzmüller, An Agent-based Architecture for Dialogue Sys-

tems. Perspectives of System Informatics (PSI’06), Novosibirsk, Akademgorodok, Rus-
sia, 2006. c©Springer LNAI. In print.

[25%] C. Benzmüller, H. Horacek, H. Lesourd, I. Kruijff-Korbayova, M. Schiller, M. Wolska,
DiaWOz-II - A Tool for Wizard-of-Oz Experiments in Mathematics. KI 2006,
Bremen, Germany, 2006. c©Springer LNAI. In print.

6

A Structured Set of Higher-Order Problems

Christoph E. Benzmüller and Chad E. Brown

Fachbereich Informatik, Universität des Saarlandes, Saarbrücken, Germany
www.ags.uni-sb.de/{˜chris, ˜cebrown}

Abstract. We present a set of problems that may support the development of cal-
culi and theorem provers for classical higher-order logic. We propose to employ
these test problems as quick and easy criteria preceding the formal soundness and
completeness analysis of proof systems under development. Our set of problems
is structured according to different technical issues and along different notions of
semantics (including Henkin semantics) for higher-order logic. Many examples
are either theorems or non-theorems depending on the choice of semantics. The
examples can thus indicate the deductive strength of a proof system.

1 Motivation: Test Problems for Higher-Order Reasoning Systems

Test problems are important for the practical implementation of theorem provers as well
as for the preceding theoretical development of calculi, strategies and heuristics. If the
test theorems can be proven (resp. the non-theorems cannot) then they ideally provide
a strong indication for completeness (resp. soundness). Examples for early publications
providing first-order test problems are [21,29,23]. For more than decade now the TPTP
library [28] has been developed as a systematically structured electronic repository of
first-order test problems. This repository together with the yearly CASC theorem prover
competitions [24] significantly supported the improvement of first-order and proposi-
tional reasoning systems. Unfortunately, a respective library of higher-order test prob-
lems is not yet available.

This paper presents a small set of significant test problems for classical higher-
order logic that may guide the development of higher-order proof systems. These test
problems are relevant for both automated and interactive higher-order theorem proving.
Even some of our simpler theorems may be difficult to prove interactively. Examples are
our problems 15(a): po→o (ao∧bo) ⇒ p (b∧a) and 16: (po→o ao)∧(p bo) ⇒ (p (a∧b)).

Most of the examples presented here are chosen to be a simple representative of
some particular technical or semantical point. We also include examples illustrating
real challenges for higher-order theorem provers. Our work is relevant in the first place
for theorem proving in classical higher-order logic. However, many of our examples
also carry over to other logics such as intuitionistic higher-order logic. Most of the
presented test problems evolved from experience gained in the development of the
higher-order theorem provers TPS [5] and LEO [10,7]. Some of the examples and (many
others) have been also discussed in other publications on classical higher-order logic,
e.g. [15,17,6,1,4]. The novel contribution of this paper is not the test problems per se,
but the connection of these examples with the particular model classes in which they
are valid (resp. invalid) and their assemblage into a comprehensive set.

J. Hurd and T.F. Melham (Eds.): 2005, LNCS 3603, pp. 66–81, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

TPHOLs

A Structured Set of Higher-Order Problems 67

We structure many of our examples along two dimensions. The examples are theo-
rems or non-theorems depending on these dimensions.

Extensionality provides one dimension in which we can vary semantics. Assuming
Henkin semantics, for instance, most of our examples denote theorems. If we choose
a weaker semantics, for instance, by omitting Boolean extensionality, then some test
problems become non-theorems providing a test case for soundness with respect to this
more general notion of semantics (in which fewer propositions are valid). By varying
extensionality, we have defined a landscape of eight higher-order model classes and
developed abstract consistency methods and model existence results in [8,9]. This land-
scape of higher-order model classes and the corresponding abstract consistency frame-
work provides much needed support for the theoretical analysis of the deductive power
of calculi for higher-order logic. The test problems we introduce in this paper provide
quick and easy test criteria for the soundness and completeness of proof systems with
respect to these model classes. Testing a proof system with our examples should thus
precede a formal, theoretical soundness and completeness analysis with the abstract
consistency methodology introduced in [8,9].

Set comprehension provides another dimension along which one can vary seman-
tics. In [14] different model classes are defined depending on the logical constants
which occur in the signature. Since many sets are only definable in the presence of
certain logical constants, this provides a way of varying the sets which exist in a model.
In this paper, we provide examples of theorems which are only provable if one can use
certain logical constants for instantiations. In implementations of the automated theo-
rem provers TPS and LEO the problem of instantiating set variables corresponds to the
use of primitive substitutions described in [14,2,3].

Section 2 introduces the syntax of classical higher-order logic following Church
[15]. Section 3 presents some first test problems for pre-unification and quantifier de-
pendencies. In Section 4 we review a landscape of higher-order semantics that distin-
guishes higher-order models with respect to various combinations of Boolean exten-
sionality, three forms of functional extensionality and different signatures of logical
constants. Section 5 provides test problems that are structured according to the intro-
duced landscape of model classes. Section 6 presents some more complex test problems.

2 Classical Higher-Order Logic

As in [15], we formulate higher-order logic (HOL) based on the simply typed λ-calculus.
The set of simple types T is freely generated from basic types o and ι using the function
type constructor →.

For formulae we start with a set V of (typed) variables (denoted by Xα, Y, Z, . . .)
and a signature Σ of (typed) constants (denoted by cα, fα→β , . . .). We let Vα (Σα)
denote the set of variables (constants) of type α. A signature Σ of constants may include
logical constants from the set Σ defined by

{�o, ⊥o, ¬o→o, ∧o→o→o, ∨o→o→o, ⇒o→o→o, ⇔o→o→o}

∪ {Πα
(α→o)→o

∣
∣ α ∈ T } ∪ {Σα

(α→o)→o

∣
∣ α ∈ T } ∪ {=α

α→α→o

∣
∣ α ∈ T }.

68 C.E. Benzmüller and C.E. Brown

Other constants in a signature are called parameters. The constants Πα and Σα are used
to define ∀ and ∃ (see below) without introducing a binding mechanism other than λ.
The set of HOL-formulae (or terms) over Σ are constructed from typed variables and
constants using application and λ-abstraction. We let wffα(Σ) be the set of all terms of
type α and wff(Σ) be the set of all terms. We use A,B, . . . to denote terms in wffα(Σ).

We use vector notation to abbreviate k-fold applications and abstractions as AUk

and λXk A, respectively. We also use Church’s dot notation so that stands for a (miss-
ing) left bracket whose mate is as far to the right as possible (consistent with given
brackets). We use infix notation A ∨ B for ((∨A)B) and binder notation ∀Xα A for
(Πα(λXα Ao)). While one can consider ∧, ⇒ and ⇔ to be defined (as in [8]), we con-
sider these members of the signature Σ. We also use binder notation ∃X A as shorthand
for Σα(λX A) if Σα is a constant in Σ. We let (Aα=̇αBα) denote the Leibniz equation
∀Pα→o (PA) ⇒ PB.

Each occurrence of a variable in a term is either free or bound by a λ. We use
free(A) to denote the set of free variables of A (i.e., variables with a free occurrence
in A). We consider two terms to be equal (written A ≡ B) if the terms are the same up
to the names of bound variables (i.e., we consider α-conversion implicitly). A term A
is closed if free(A) is empty. We let cwffα(Σ) denote the set of closed terms of type
α and cwff(Σ) denote the set of all closed terms. Each term A ∈ wffo(Σ) is called a
proposition and each term A ∈ cwffo(Σ) is called a sentence.

We denote substitution of a term Aα for a variable Xα in a term Bβ by [A/X]B.
Since we consider α-conversion implicitly, we assume the bound variables of B avoid
variable capture.

Two common relations on terms are given by β-reduction and η-reduction. A β-
redex (λX A)B β-reduces to [B/X]A. An η-redex (λX CX) (where X /∈ free(C))
η-reduces to C. For A,B ∈ wffα(Σ), we write A≡βB to mean A can be converted
to B by a series of β-reductions and expansions. Similarly, A≡βηB means A can be
converted to B using both β and η. For each A ∈ wff(Σ) there is a unique β-normal
form (denoted A↓β) and a unique βη-normal form (denoted A↓βη). From this fact we
know A≡βB (A≡βηB) iff A↓β ≡ B↓β (A↓βη ≡ B↓βη).

A non-atomic formula in wffo(Σ) is any formula whose β-normal form is (cAn)
where c is a logical constant. An atomic formula is any other formula in wffo(Σ).

Many of the example problems in this paper employ equality, e.g. ¬(a = ¬a). We
have different options for the encoding of equality. We can either use primitive equality
(i.e., equality as a logical constant) or use some definition of equality in terms of other
logical constants. A common definition is Leibniz equality (∀Pα→o (PA) ⇒ PB),
but others are possible (see Exercise X5303 in [4]). In many examples we will denote
equality by

∗= (e.g., ¬(a ∗= ¬a)). For each different interpretation of equality, we obtain
a different example. We will discuss conditions under which different choices lead to
theorems and which choices lead to non-theorems.

For some types, one can also define equality extensionally. For example, one can use

equivalence instead of equality at type o. Similarly, at any type α → o, we introduce
set=

to denote set equality, i.e.,
set= is an abbreviation for

λUα→oλVα→o∀Xα UX ⇔ V X.

A Structured Set of Higher-Order Problems 69

In some cases, the use of an extensional definition of equality yields a theorem which
can be proven without assuming extensionality. We will not use the notation

∗= to refer
to any extensional definition of equality. Interpreting

∗= extensionally would signifi-
cantly change some of the discussion below.

3 Test Problems for Pre-unification and Quantifier Dependencies

Higher-order pre-unification (see [26]) and higher-order Skolemization (see [22]) are
important basic ingredients for building an automated higher-order theorem prover.
They are largely independent of the chosen semantics for higher-order logic with one
exception:β versus βη. As noted in [18] the unification problem relative to β-conversion
is different from the unification problem relative to βη-conversion.

3.1 Pre-unification

Implementing a sound, complete and efficient pre-unification algorithm for the simply
typed λ-calculus is a highly non-trivial task. Since higher-order pre-unification extends
standard first-order unification all first-order test problems in the literature also apply to
the higher-order case.

Some specific higher-order test problems can be obtained from the literature on
higher-order unification and pre-unification, for example [26,25]. We will now illustrate
how further challenging test examples can be easily created using Church numerals.

Church numerals are usually employed in the context of the untyped λ-calculus to
encode the natural numbers. This encoding can be partly transformed in a simply typed
or polymorphic typed λ-calculus. This includes the definition of successor, addition and
multiplication which we employ in or test problems.

Iteration is the key concept to encode natural numbers as Church numerals. For each
type α, we can define the Church numeral nα by (λFα→αλYα (FnY))(α→α)→(α→α)
where (FnY) is shorthand for (F (F . . . (F

︸ ︷︷ ︸

n−times

Y))). We will often write n instead of nα,

leaving the dependence on the type implicit. Omitting types1, the successor function s
can be defined as λNλFλY F (NFY), addition + as λMλNλFλY MF (NFY) and
multiplication × as λMλNλFλZ N(MF)Z . To ease notation, we write + and × in
infix.

Arithmetic equations on Church numerals such as 3×4 ∗= 5+7 or (((1̄0×1̄0)×1̄0) ∗=
((1̄0×5̄)+(5̄×1̄0))×1̄0)) provide highly suited test problems for the efficiency of
β-conversion or βη-conversion in the proof system. Of course, in order to correctly
implement β- and η-conversion, one must first properly implement α-conversion.

We obtain more challenging test problems if we employ pre-unification for synthe-
sizing Church numerals and arithmetical operations.

Example 1. (Solving arithmetical equations using pre-unification) The following ex-
amples are provable using pre-unification for β-conversion.

1 N, M are of type (α → α) → (α → α), F is of type α → α, and Y, Z are of type α.

70 C.E. Benzmüller and C.E. Brown

(a) ∃N(ι→ι)→ι→ι ((N×1) ∗= 1) (There are two solutions, 1 and (λFι ι F), if one only
assumes β-conversion. There is one solution assuming βη-conversion.)

(b) ∃N (N×4) ∗= 5+7
(c) ∃H (((H 2̄)3̄) ∗= 6̄) ∧ (((H 1̄)2̄) ∗= 2̄))
(d) ∃N, M (N×4) ∗= 5+M (There are infinitely many solutions to this problem.)

3.2 Quantifier Dependencies

In proof search with tableaux and expansion proofs, variable conditions can be used
to encode quantifier dependencies. Of course, one must be careful to obtain a sound
framework. For instance, the variable conditions added with each eliminated existential
quantifier in the framework used in [20] allow (incorrect) proofs of the following first-
order non-theorems:

Example 2. (First-order non-theorems)

(a) (Example 2.9 in [30]) (∃Xι∀Yι qι→ι→oXY) ∨ (∃Uι∀Vι ¬qV U)
(b) (Example 2.50 in [30]) ∃Yι∀Xι ((∀Zι qι→ι→oXZ) ∨ (¬qXY))

In [19] an attempt was made to use variable conditions in the context of resolution
theorem proving (for a sorted extension of higher-order logic) instead of introducing
Skolem terms. However, the system was unsound as it allowed a resolution refutation
proving the following non-theorem:

Example 3. (Non-Theorem: Every function has a fixed point) ∀Fα→α ∃Xα F X=̇X .
The idea is that one obtains two single-literal clauses (Pι→o(FX)) and ¬(PY) using
clause normalization and variable renaming (where X and Y can be instantiated). One
then obtains the empty clause by unifying Y with (FX).

Skolem terms avoid incorrect proofs of such theorems since the Skolem terms will
preserve the relationship between renamed variables in different clauses. In particular,
if S is a Skolem function, we would obtain single-literal clauses (Sι→ι→oX(FX)) and
¬(Sι→ι→oY Y) which cannot be resolved and unified.

There is a relationship between Skolemization and the axiom of choice in the first-
order case which becomes more delicate in the higher-order case. Consider formulas
∀xι∃yιϕ(x, y) and ∀xιϕ(x, (fι→ιx)). In first-order logic, the two formulas are equiva-
lent with respect to satisfiability whenever f does not occur in ϕ. The equivalence fol-
lows from the fact that any first-order model (with domain Dι) satisfying ∀x∃yϕ(x, y)
can be extended to interpret f as a function g : Dι −→ Dι such that ∀xϕ(x, (fx))
holds. In general, the axiom of choice (at the meta-level) is required to conclude the
function g exists. The situation is different in the higher-order case. As we shall see
when we consider higher-order models, we would need to interpret f not simply as a
function from Dι to Dι, but as a member of a domain Dι→ι. Existence of an appropri-
ate function from Dι to Dι follows from the axiom of choice at the meta-level, but the
existence of an appropriate element of Dι→ι would only follow from a choice property
internal to the higher-order model.

Dale Miller has shown that a naive adaptation of standard first-order Skolemization
to higher-order logic allows one to prove particular instances of the axiom of choice.

A Structured Set of Higher-Order Problems 71

For example, naive Skolemization permits an easy proof of the following version of the
axiom of choice:

Example 4. (Choice) (∀X∃Y rXY) ⇒ (∃F∀X rX(FX))

However, naive Skolemization does not provide a complete method for reasoning with
choice. The following example is equivalent to the axiom of choice (essentially Axiom
11 in [15]) but is not provable using naive Skolemization.

Example 5. (Choice) ∃E(ι→o)→ι∀P (∃Y PY) ⇒ P (EP)

Thus standard first-order Skolemization is unsound in higher-order logic as it partly
introduces choice into the proof system. Dale Miller has fixed the problem by adding
further conditions (see [22]): any Skolem function symbol fn with dependency arity n
(the existentially bound variable to be eliminated by a new Skolem term headed by f is
depending on n universial variables) may only occur in formulas fnAn, where none of
the Ai contains a variable that is bound outside of the term fnAn.

4 Semantics for HOL

In [8] we have re-examined the semantics of classical higher-order logic with the pur-
pose of clarifying the role of extensionality. For this we have defined eight classes of
higher-order models with respect to various combinations of Boolean extensionality
and three forms of functional extensionality. One can further refine these eight model
classes by varying the logical constants in the signature Σ as in [14].

A model of HOL is given by four objects: a typed collection of nonempty sets
(Dα)α∈T , an application operator @: Dα→β ×Dα −→ Dβ , an evaluation function E for
terms and a valuation function υ: Do −→ {T, F}. A pair (D, @) is called a Σ-applicative
structure (see [8](3.1)). If E is an evaluation function for (D, @) (see [8](3.18)), then
we call the triple (D, @, E) a Σ-evaluation. If υ satisfies appropriate properties, then we
call the tuple (D, @, E , υ) a Σ-model (see [8](3.40 and 3.41)).

Given an applicative structure (D, @), an assignment ϕ is a (typed) function from
V to D. An evaluation function E maps an assignment ϕ and a term Aα ∈ wffα(Σ) to
an element Eϕ(A) ∈ Dα. Evaluation functions E are required to satisfy four properties
given in [8](3.18)). If A is closed and E is an evaluation function, then Eϕ(A) cannot
depend on ϕ and we write E(A).

A valuation υ: Do −→ {T, F} is required to satisfy a property Lc(E(c)) for every
logical constant c ∈ Σ (see [8](3.40)). For each logical constant c, Lc(a) is defined to
hold if a is an object of a domain Dα satisfying the characterizing property of the logical
constant c. For example, L¬(n) holds for n ∈ Do→o iff for every a ∈ Do, υ(n@a) is T iff
υ(a) is F. Likewise, L=α(q) holds for q ∈ Dα→α→o if for every a, b ∈ Dα, υ(q@a@b)
is T iff a equals b.

Given a model M := (D, @, E , υ), an assignment ϕ and a proposition A (or set of
propositions Φ), we say M satisfies A (or Φ) and write M |=ϕ A (or M |=ϕ Φ) if
υ(Eϕ(A)) ≡ T (or υ(Eϕ(A)) ≡ T for each A ∈ Φ). If A is closed (or every member of
Φ is closed), then we simply write M |= A (or M |= Φ) and say M is a model of A
(or Φ). We also consider classes M of Σ-models and say a proposition A is valid in M
if M |=ϕ A for every M ∈ M and assignment ϕ.

72 C.E. Benzmüller and C.E. Brown

In order to define model classes which correspond to different notions of exten-
sionality, we define five properties of models (see [8](3.46, 3.21 and 3.5)). For each
Σ-model M := (D, @, E , υ), we say M satisfies property

q iff for all α ∈ T there is a qα ∈ Dα→α→o with L=α(qα).
η iff (D, @, E) is η-functional (i.e., for each A ∈ wffα(Σ) and assignment ϕ, Eϕ(A) ≡

Eϕ(A↓βη)).
ξ iff (D, @, E) is ξ-functional (i.e., for each M,N ∈ wffβ(Σ), X ∈ Vα and assignment

ϕ, Eϕ(λXα Mβ) ≡ Eϕ(λXα Nβ) whenever Eϕ,[a/X](M) ≡ Eϕ,[a/X](N) for every
a ∈ Dα).

f iff (D, @) is functional (i.e., for each f, g ∈ Dα→β , f ≡ g whenever f@a ≡ g@a for
every a ∈ Dα).

b iff υ is injective.

For each ∗ ∈ {β,βη,βξ,βf,βb,βηb, βξb,βfb} and each signature Σ we define M∗(Σ)
to be the class of all Σ-models M such that M satisfies property q and each of the
additional properties {η, ξ, f, b} indicated in the subscript ∗ (see [8](3.49)). We always
include β in the subscript to indicate that β-equal terms are always interpreted as iden-
tical elements. We do not include property q as an explicit subscript; q is treated as a
basic, implicit requirement for all model classes. See [8](3.52) for a discussion on why
we require property q. (We also briefly explore models which do not satisfy property
q in the context of Example 8 and again in Subsection 5.3.) Since we are varying four
properties, one would expect to obtain 16 model classes. However, we showed in [8]
that f is equivalent to the conjunction of ξ and η. Note that, for example, Mβf(Σ) is
a larger class of models than Mβfb(Σ), hence fewer propositions are valid in Mβf(Σ)
than are valid in Mβfb(Σ). In our examples we try to indicate the largest of our model
classes in which the proposition is valid. Implicitly, this means the proposition is also
valid in smaller (more restricted) model classes and may not be valid in larger (less
restricted) ones.

5 Test Problems for Higher-Order Theories

Unless stated otherwise, we assume the signature includes Σ (see p. 67) and write
M∗ for M∗(Σ). Many of the examples could be considered in the context of smaller
signatures. In the following discussion, we only consider smaller signatures in order to
make particular points. (Note that if the signature becomes too small, Leibniz equality,
for example, is no longer expressible.)

5.1 Properties of Equality

There are many useful first-order test problems on equality reasoning in the literature.
For instance, in [12] the following clause set is given to illustrate the incompleteness of
the RUE-NRF resolution approach as introduced in [16]:

{g(f(a)) = a, f(g(X)) �= X}

A Structured Set of Higher-Order Problems 73

Here, X is a free variable (i.e., implicitly universially quantified) and f, g are unary
function symbols. In [12] it is shown that this inconsistent clause set cannot be refuted
in the first-order RUE-NRF approach.

We now present some higher-order test problems addressing properties of equality.
Some of them apply to many possible notions of equality while others describe specific
properties of individual notions or relate different notions to each other.

Example 6. Equality is an equivalence relation in Mβ . These particular examples should
be theorems even if one replaces

∗= with an extensional definition of equality (e.g., ⇔
at type o or

set= at any type α → o).

(a) ∀Xα X
∗= X

(b) ∀Xα∀Yα X
∗= Y ⇒ Y

∗= X
(c) ∀Xα∀Yα∀Zα (X ∗= Y ∧ Y

∗= Z) ⇒ X
∗= Z

Example 7. Equality obeys the congruence property (substitutivity property) in Mβ .

(a) ∀Xα∀Yα∀Fα→α X
∗= Y ⇒ (FX) ∗= (FY)

(b) ∀Xα∀Yα∀Pα→o (X ∗= Y) ∧ (PX) ⇒ (PY)

Example 8 relates the Leibniz definition of equality to primitive equality.

Example 8. (aα=̇αbα) ⇒ (a =α b).

One could legitimately debate whether Example 8 should be a theorem. On the one
hand, if Example 8 is not a theorem, then one should not consider Leibniz equality to
be a definition of real equality. Semantically, Henkin’s first (quite natural) definitions
of models allowed models in which Leibniz equality (e.g., at type ι) does not evaluate
to equality of objects in the model. Such a model M is constructed in [1]. This model
M is a Σ-model in the sense of this paper (if one assumes =α /∈ Σ for every type α),
but is not in any model class M∗(Σ) since property q fails. There is a slight technical
problem with saying M provides a counter-model for Example 8 since one cannot
express Example 8 without =ι∈ Σ. As in [14], one can distinguish between internal
and external uses of equality (as well as ⇒ and ∀) and determine that M is (in a sense
that can be made precise) a countermodel for Example 8.

If a model satisfies property q, then Example 8 is valid for any type α. If a logical
system is intended to be complete for one of our model classes M∗(Σ), then Exam-
ple 8 should be a theorem. For the complete natural deduction calculi in [8], there is
an explicit rule which derives primitive equality from Leibniz equality. In some sense,
requiring property q semantically corresponds to explicitly requiring that Example 8 be
provable.

Also, if =α∈ Σ, then Example 8 (for this particular type α) is valid in any Σ-
model. A proof using primitive equality could instantiate the Leibniz variable Pα→o

with (λZα a = Z). The important point is that = must be available for instantiations
during proofs (not simply for expressing the original sentence).

Extensionality is the distinguishing property motivating our different model classes.
For both, functional and Boolean extensionality, we distinguish between a trivial and a
non-trivial direction.

74 C.E. Benzmüller and C.E. Brown

Example 9. The trivial directions of functional and Boolean extensionality are valid
in Mβ .

(a) ∀Fα→β∀Gα→β F
∗= G ⇒ (∀Xα (FX) ∗= (GX))

(b) ∀Ao∀Bo A
∗= B ⇒ (A ⇔ B)

The other directions are not valid in Mβ . They become theorems only relative to
more restricted model classes in our landscape.

Example 10. (discussed in [15]; Axiom 10 in [17]) ∀Ao∀Bo (A ⇔ B) ⇒ A
∗= B is

valid in Mβb. This is the non-trivial direction of Boolean extensionality.

Example 11. ([15,17], Axiom 10βα) ∀Fα→β∀Gα→β (∀Xα (FX) ∗= (GX)) ⇒ F
∗=

G is valid in Mβf. This is the non-trivial direction of functional extensionality. (Property
q is also relevant to this example as is discussed in [8].)

5.2 Extensionality

We next present examples that illustrate distinguishing properties of the different model
classes with respect to extensionality. In the preceding sections we have already men-
tioned several test problems that are independent of the “amount of extensionality” and
which are theorems in Mβ . We additionally refer to all first-order test problems as, for
instance, provided in the TPTP library.

η-equality is usually realized as part of the pre-unification algorithm in a higher-
order reasoning system. It is important to note that η-equality should not be confused
with full extensionality. In literature on higher-order rewriting, for instance [25], the
notion of extensionality is usually only associated with η-conversion which is far less
than full extensionality.

Example 12. (p(ι→ι)→o(λXι fι→ιX))⇒(p(ι→ι)→of) is essentially 21 from [15] which
expresses η-equality using Leibniz equality. It is valid in Mβη but not in Mβ .

Property ξ together with η gives us full functional extensionality.

Example 13. Validity of (∀Xι (fι→ιX) ∗= X) ∧ p(λXιX) ⇒ p(λXι fX) only de-
pends on ξ, not on η. It is thus valid in Mβξ (but not in model classes which do not
require either ξ or f).

Example 14. (∀Xι (fι→ιX) ∗= X)∧ p(λXιX) ⇒ pf is valid in Mβf, but not in model
classes which do not require f.

As in Example 11, property q is important for validity of Example 13 in Mβξ and
validity of Example 14 in Mβf.

Example 15. ([7]) (a) po→o (ao ∧ bo) ⇒ p (b ∧ a) and (b) ao ∧ bo ∧ (po→oa) ⇒ (pb)
are valid iff we require Boolean extensionality as in Mβb.

Example 16. (po→o ao) ∧ (p bo) ⇒ (p (a ∧ b)) is a theorem of Mβb which is slightly
more complicated to mechanize in some calculi; see [7] for more details.

A Structured Set of Higher-Order Problems 75

Example 17. ¬(a = ¬a) is valid in Mβb. As discussed in [7] this example motivates
specific inference rules for the mechanization of primitive equality.

The following is a tricky example introduced in [14].

Example 18. (ho→ι((h�) ∗= (h⊥))) ∗= (h⊥) is valid in Mβb, but not in model classes
which do not require property b.

Many people do not immediately accept that Example 18 is a theorem. A simple
informal argument is helpful. Either (h�) ∗= (h⊥) is true or false. If the equation
holds, then Example 18 reduces to (h�) ∗= (h⊥) which we have just assumed. If the
equation is false, then Example 18 reduces to (h⊥) ∗= (h⊥), an instance of reflexivity.

Example 19 combines Boolean extensionality with η-equality.

Example 19. p(ι→ι)→o(λXι fo→ι→ι(a(ι→ι)→o(λXι fboX)∧b)X) ⇒ p(f(b∧ a(fb)))
is valid in Mβηb, but is not valid if properties b and η are not assumed.

By DeMorgan’s Law, we know X ∧Y is the same as ¬(¬X ∨¬Y). In Example 20,
we vary the notion of “is the same as” to obtain several examples which are only prov-
able with some amount of extensionality. Note that if we only assume property ξ, we
can only conclude the η-expanded form of ∧ is equal to (λXλY ¬(¬X ∨ ¬Y)).

Example 20. Consider the following examples.

(a) ∀X∀Y X ∧ Y ⇔ ¬(¬X ∨ ¬Y) is valid in Mβ .
(b) ∀X∀Y X ∧ Y

∗= ¬(¬X ∨ ¬Y) is valid in Mβb.
(c) (λUλV U ∧ V) ∗= (λXλY ¬(¬X ∨ ¬Y)) is valid in Mβξb.
(d) ∧ ∗= (λXλY ¬(¬X ∨ ¬Y)) is valid in Mβfb.

Finally we reach Henkin semantics which is characterized by full extensionality,
i.e. the combination of Boolean and functional extensionality. Example 20(d) already
provided one example valid only in Mβfb.

Example 21. The following theorem in Mβfb characterizes the fact that in all Henkin
models we have exactly four functions mapping truth values to truth values.

((p λXo Xo) ∧ (p λXo ¬Xo) ∧ (p λXo ⊥) ∧ (p λXo �)) ⇒ ∀Yo→o (p Y)

Example 22. As exploited in [11], set theory problems can be concisely and elegantly
formulated in higher-order logic when using λ-abstraction to encode sets as character-
istic functions. For instance, given a predicate pα→o the set of all objects of type α that
have property p is denoted as λXα (pX). We then define set operations as follows (we
give only some examples):

set operation defined by
∈α→(α→o)→o λZαλXα→o(XZ)
{.}α→(α→o) λUα(λZα Z

∗= U)
∅α→o (λZα⊥)
∩(α→o)→(α→o)→(α→o) λXα→oλYα→o(λZα Z ∈ X ∧ Y ∈ Y)
∪(α→o)→(α→o)→(α→o) λXα→oλYα→o(λZα Z ∈ X ∨ Y ∈ Y)
⊆(α→o)→(α→o)→o λXα→oλYα→o(∀Zα Z ∈ X ⇒ Y ∈ Y)
℘(α→o)→((α→o)→o) λXα→o(λYα→o Y ⊆ X)

76 C.E. Benzmüller and C.E. Brown

We can now formulate some test problems on sets:

(a) aα→o ∪ (bα→o ∩ cα→o)
set= (a ∪ b) ∩ (a ∪ c) is valid in Mβ .

(b) aα→o ∪(bα→o ∩cα→o)
∗= (a∪b)∩(a∪c) is valid in Mβξb but not in model classes

without ξ and b.
(c) ℘(∅α→o)

set= {∅α→o} is valid in Mβfb but not in model classes without f and b.
The example is not valid in Mβ due to the embedded equation introduced by the
definition of a singleton set {.}.

(d) and ℘(∅α→o)
∗= {∅α→o} is valid in Mβfb but not in model classes without f and b.

These examples motivate pre-processing in higher-order theorem proving in which
the definitions are fully expanded and in which the extensionality principles are em-
ployed es early as possible. After pre-processing, many problems of this kind can be
automatically translated from their concise and human readable higher-order represen-
tation into first-order or even propositional logic representations to be easily checked
by respective specialist systems.

5.3 Set Comprehension

One of the advantages of Church’s type theory is that instead of assuming compre-
hension axioms one can simply use terms defining sets for set instantiations. Such set
instantiations make use of logical constants in the signature Σ. As in [14] one can vary
the signature of logical constants in order to vary the set comprehension assumed in
Σ-models. With different amounts of set comprehension, different examples will be
valid.

Generating set instantiations is one of the toughest challenges for the automation of
higher-order logic. (In fact set instantiations can be employed to simulate the cut-rule
as soon as one of the following prominent axioms of higher-order logic is available
in the search space: comprehension, induction, extensionality, choice, description.) Set
instantiations are often generated during automated search using an enumeration tech-
nique involving primitive substitutions.

For each example below, we note restrictions on the signature Σ under which the
example is either valid or not valid. Since we would like to distinguish between sig-
natures which contain primitive equality (at various types) and those which do not, we
consider classes of models which do not necessarily satisfy property q. In particular,
let M−q

β (Σ) be the set of all Σ-models and let M−q
βfb(Σ) be the set of all Σ-models

satisfying properties f and b (without requiring property q).
As in Example 8 one can focus on the use of logical constants in Σ for instantia-

tions and ignore certain uses of logical constants to express the formula. For example,
suppose A ∈ cwffo(Σ), M is a Σ-model and ¬ /∈ Σ. While (¬A) /∈ wffo(Σ), we can
consider (¬A) to be a Σ-external proposition and define M |= ¬A to mean M �|= A.
Intuitively, the negation is used externally in (¬A). We can inductively define the set
of Σ-external propositions M and the meaning of M |= M for Σ-models M. After
doing so, most of the examples below are Σ-external propositions even if Σ contains
no logical constants. Only Examples 30 and 33 in this section make nontrivial uses of
certain logical constants to express the propositions. Due to space considerations, we
refer the reader to [14] for details.

A Structured Set of Higher-Order Problems 77

If Σ is sufficiently small, then one can construct two trivial models in M−q
βfb(Σ)

where Do is either simply {T} or {F}. (This possibility was ruled out in [8] since we
assumed ¬ ∈ Σ.)

Example 23. ∃PP is valid in M−q
β (Σ) if either � ∈ Σ or ¬ ∈ Σ. The example is not

valid in M−q
βfb(Σ) if Σ ⊆ {⊥, ∧, ∨} ∪ {Πα, Σα|α ∈ T }. (Any proof must use a set

instantiation involving either �, ¬, ⇒, ⇔ or some primitive equality.)

Example 24. ¬∀PP is valid in M−q
β (Σ) if either ⊥ ∈ Σ or ¬ ∈ Σ. The example is

not valid in M−q
βfb(Σ) if Σ ⊆ (Σ \ {⊥, ¬}). (Any proof must use a set instantiation

involving either ⊥ or ¬.)

Example 25 characterizes when an instantiation satisfying the property of nega-
tion is possible. This can be either because the signature supplies negation or supplies
enough constants to define negation.

Example 25. ∃No→o∀Po NP ⇔ ¬P is valid in M−q
β (Σ) if ¬ ∈ Σ. The example is

also valid in M−q
β (Σ) if ⊥ ∈ Σ and {⇒, ⇔} ∩ Σ �= ∅ since one can consider either

the term λXo X ⇒ ⊥ or the term λXo X ⇔ ⊥. The example is not valid in M−q
βfb(Σ)

if Σ ⊆ {�, ⊥, ∧, ∨} ∪ {Πα, Σα|α ∈ T }.

One possibility we did not cover in Example 25 is if Σ is {⊥, =o}. Consider the
term (λXo X =o ⊥). This only defines negation if we assume Boolean extensionality.
Hence we obtain the interesting fact that Example 25 is valid in M−q

βfb({⊥, =o}), but is

not valid in M−q
β ({⊥, =o}).

One can modify Example 25 in a way that requires not only a set instantiation for
negation, but also extensionality.

Example 26. ¬∀Fo→o∃X (FX) ∗= X is valid in M−q
βfb(Σ) if ¬ ∈ Σ. The example is

not valid in M−q
β (Σ) regardless of the signature Σ. Also, the example is not valid in

M−q
βfb(Σ) if Σ ⊆ {�, ⊥, ∧, ∨} ∪ {Πα, Σα|α ∈ T }.

Example 27 characterizes when an instantiation can essentially define disjunction
and Example 28 characterizes when an instantiation can essentially define the univer-
sal quantifier at type α. Clearly one can modify these examples for any other logical
constant.

Example 27. ∃Do→o→o∀Po∀Qo DPQ ⇔ (P ∨ Q) is valid in M−q
β (Σ) if ∨ ∈ Σ. The

example is also valid in M−q
β (Σ) if {¬, ∧} ⊆ Σ.

Example 28. ∃Q(α→o)→o)∀Pα→o QP ⇔ ∀Xα PX is valid in M−q
β (Σ) if Πα ∈ Σ.

Recall that Example 8 already provided an example in which one might require a
set instantiation involving primitive equality (depending on how the calculus relates
Leibniz equality to primitive equality).

A few interesting set instantiations involve no logical constants, but do make use of
projections (see [18]). Sometimes such projections can be obtained from higher-order
unification, as in Example 29.

78 C.E. Benzmüller and C.E. Brown

Example 29. ∃No→o∀Po NP ⇔ P is valid in M−q
β (∅).

However, one cannot expect higher-order unification to always provide projection
terms when they are needed. Example 30 was studied extensively in [2] (see THM104)
in order to demonstrate this fact. In this example, we make use of the abbreviation
{.} which was defined in Example 22. If the definition of {.} makes use of primitive
equality, one must assume =ι∈ Σ to express the proposition. If {.} is defined using
Leibniz equality, then one must assume ¬, Πι→o ∈ Σ to express the proposition.

Example 30. ∀Xι∀Zι {X}=̇{Z} ⇒ X=̇Z is valid in M−q
β (Σ) so long as Σ is suffi-

cient to express the proposition.

The examples above are straightforward examples designed to ensure completeness
of theorem provers with respect to set comprehension. A more natural theorem which
requires set instantiations is Cantor’s Theorem. Two forms of Cantor’s Theorem were
studied with respect to set comprehension in [14]. Example 31 is the surjective form of
Cantor’s Theorem discussed in [4].

Example 31. (Surjective Cantor Theorem) ¬∃Gα→α→o∀Fα→o∃Jα GJ =α→o F is
valid in M−q

βfb(Σ) if ¬ ∈ Σ. The example is not valid in M−q
βfb(Σ) if Σ ⊆ {�, ⊥, ∧, ∨}∪

{Πα, Σα|α ∈ T } (see Theorem 6.7.8 in [14]).

An alternative formulation of Cantor’s Theorem (see [5,14]) is the injective form
shown in Example 32. Almost any higher-order theorem prover complete for the cor-
responding model class should be capable of proving the previous examples in this
subsection. Example 32 is far more challenging. At the present time, no theorem prover
has found a proof of Example 32 automatically.

Example 32. (Injective Cantor Theorem) ¬∃H(ι→o)→ι∀Pι→o∀Qι→o HP =ι HQ ⇒
P =ι→o Q is valid in M−q

βfb(Σ) if {¬, ∧, =ι, Πι→o} ⊆ Σ (see Lemma 6.7.2 in [14]).

The example is not valid in M−q
βfb(Σ) if Σ ⊆ {�, ⊥, ¬, ∧, ∨, ⇒, ⇔, Πι, Σι, =ι→o}.

(This fact follows from the results in Section 6.7 of [14].)

One of the difficulties of proving Example 32 is that certain set instantiations seem
to be needed beneath other set instantiations (see [5]). The next family of examples
illustrates that nontrivial set instantiations can occur within set instantiations with an
arbitrary number of iterations.

Example 33. Assume Σ contains ¬ and Πα for every type α. Fix a constant cι. We will
define a theorem Dn

o for each natural number n. By induction on n, define simple types
τn and abbreviations An

τn→o as follows.

(a) Let τ0 be the type ι and τn+1 be τn → o for each natural number n.
(b) Let A0

ι→o be λZ (Z=̇cι) ∧ � and An+1 be λZτn+1 (Z=̇An) ∧ ∃Tτn ZT for each
natural number n.

Finally, for each n, let Dn
o be ∃SτnAnS. Each Dn is a valid in M−q

β (Σ). The constant
cι is the obvious witness for D0. For each n, An is the witness for Dn+1. Note that
a subgoal of showing An is the witness for Dn+1 involves showing An is nonempty
(which was Dn). Hence this proof of Dn+1 involves all the previous instantiations
A0, . . . ,An.

A Structured Set of Higher-Order Problems 79

6 More Complex Examples

Here we present technically or proof theoretically challenging examples. First we con-
sider a class of hard problems simply involving β-reduction.

Example 34. Let α0 be ι and αn+1 be (αn → αn) for each n. Note that the Church

numeral 2αn

has type αn+2. For any n we can form the term (2αn

2αn−1

· · · 2α0

) of type
(ι → ι) → ι → ι. The size of the β-normal form of this term is approximately of size

2(2···
2)

containing n + 1 ‘2s’. (This is a well-known example, mentioned in [27].) For

n ≥ 4 it becomes infeasible to β-normalize such a term (since 2222
2

is 265536, a number
much larger than google). One can express relatively simple theorems using this term
such as

(2αn

2αn−1

· · · 2α0

)(λXιX) ∗= (λXιX).

If one avoids eager β-normalization and allows lemmas, then there is a reasonably short
proof using higher-order logic. We first define the set Cα

2 of Church numerals (over α)
greater than or equal to 2:

λN(α→α)→α→α∀P (P2α ∧ (∀M PM ⇒ P (sM))) ⇒ PN.

(Technically, (0 2) is β-equal to (λFι→ιF), which is not equal to 1. We work with the
set of Church numerals greater than or equal to 2 to avoid this problem.) One can prove
two results with little trouble (where the lengths of the proofs do not depend on the
type α):

(a) ∀N((α→α)→α→α)→(α→α)→α→α Cα→α
2 N ⇒ Cα

2 (N2α)
(b) ∀N(α→α)→α→α Cα

2 N ⇒ (N(λXα X)) = (λXαX)

Using (a) at several types and (b) at type ι, we can prove, e.g.,

(2α4

2α3

2α2

2α1

2α0

)(λXιX) ∗= (λXιX)

in higher-order logic without β-normalizing.

In [13, Chapter 25, p. 376–382] Boolos presents a related example of a first-order
problem which has only a very long (practically infeasible) derivation in first-order
logic, but which has a short derivation in a second-order logic, by making use of com-
prehension axioms.

Example 35. (Boolos’ Curious Inference)

(∀n f(n, 1) = s(1) ∧ ∀x f(1, s(x)) = s(s(f(1, x)))
∧ ∀n ∀x f(s(n), s(x)) = f(n, f(s(n), x))
∧ D(1) ∧ ∀x (D(x) ⇒ D(s(x))))

⇒ D(f(s(s(s(s(1)))), s(s(s(s(1))))))

If there were an appropriate (first-order) induction principle available, then there
should be a short proof of this example. Note that the example specifies f to be the Ack-
ermann function which grows extremely fast and hence f(s(s(s(s(1)))), s(s(s(s(1)))))

80 C.E. Benzmüller and C.E. Brown

is a very big number. Actually, there is long first-order proof which is relatively easy

to describe. Boolos argues that any first-order proof must be of size at least 2(2···
2)

containing 64K ‘2s’ in all (far more enormous than the number 264K in Example 34).
There is no chance of formally representing such a proof with all computation power
ever. Boolos presents a short alternative proof in second-order logic that makes use of
higher-order lemmas obtained from comprehension axioms. Formulating the appropri-
ate lemmas (as with the lemmas in Example 34) requires human ingenuity that goes
beyond the capabilities of what can be supported with primitive substitution and lemma
speculation techniques in current theorem proving approaches.

As discussed in [3], there is a family of theorems A1,A2, . . . which are all of the
same low order such that An is not provable unless one uses set instantiations involving
nth-order quantifiers. To obtain concrete examples from the argument, one must use
Gödel numbering. A family of simpler examples displaying this phenomenon would
likely be enlightening.

7 Conclusion

We have presented a first set of higher-order test examples that may support the develop-
ment of higher-order proof systems. This set of examples has been structured according
to technical aspects and the semantic properties of extensionality and set comprehen-
sion. Future work is to add examples and include them in either the TPTP library or
an appropriate higher-order variant. Many more examples are particularly needed to
illustrate properties of different forms of equality.

References

1. P. B. Andrews. General models and extensionality. J. of Symbolic Logic, 37(2):395–397,
1972.

2. P. B. Andrews. On Connections and Higher Order Logic. J. of Automated Reasoning, 5:257–
291, 1989.

3. P. B. Andrews. Classical type theory. In A. Robinson and A. Voronkov, editors, Handbook
of Automated Reasoning, volume 2, chapter 15, pages 965–1007. Elsevier Science, 2001.

4. P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth Through
Proof. Kluwer Academic Publishers, second edition, 2002.

5. P. B. Andrews, M. Bishop, and C. E. Brown. TPS: A theorem proving system for type
theory. In D. McAllester, editor, Proc. of CADE-17, number 1831 in LNAI, pages 164–169,
Pittsburgh, USA, 2000. Springer.

6. Peter B. Andrews. Resolution in type theory. J. of Symbolic Logic, 36(3):414–432, 1971.
7. C. Benzmüller. Equality and Extensionality in Automated Higher-Order Theorem Proving.

PhD thesis, Saarland University, 1999.
8. C. Benzmüller, C. Brown, and M. Kohlhase. Higher-order semantics and extensionality. J.

of Symbolic Logic, 69(4):1027–1088, 2004.
9. C. Benzmüller, C. E. Brown, and M. Kohlhase. Semantic techniques for higher-

order cut-elimination. SEKI Technical Report SR-2004-07, Saarland University,
Saarbrücken, Germany, 2004. Available at: http://www.ags.uni-sb.de/∼chris/
papers/R37.pdf.

http://www.ags.uni-sb.de/~chris/
papers/R37.pdf

A Structured Set of Higher-Order Problems 81

10. C. Benzmüller and M. Kohlhase. LEO – a higher order theorem prover. In C. Kirchner
and H. Kirchner, editors, Proc. of CADE-15, number 1421 in LNAI, pages 139–144, Lindau,
Germany, 1998. Springer.

11. C. Benzmüller, V. Sorge, M. Jamnik, and M. Kerber. Can a higher-order and a first-order
theorem prover cooperate? In F. Baader and A. Voronkov, editors, Proc. of LPAR 2004,
volume 3452 of LNAI, pages 415–431. Springer, 2005.

12. M. P. Bonacina and J. Hsiang. Incompleteness of the RUE/NRF inference systems. Newslet-
ter of the Association for Automated Reasoning, No. 20, pages 9–12, 1992.

13. G. Boolos. Logic, Logic, Logic. Harvard University Press, 1998.
14. C. E. Brown. Set Comprehension in Church’s Type Theory. PhD thesis, Department of

Mathematical Sciences, Carnegie Mellon University, 2004.
15. A. Church. A formulation of the simple theory of types. J. of Symbolic Logic, 5:56–68, 1940.
16. V. J. Digricoli. Resolution by unification and equality. In W. H. Joyner, editor, Proc. of

CADE-4, Austin, Texas, USA, 1979.
17. Leon Henkin. Completeness in the theory of types. J. of Symbolic Logic, 15(2):81–91, 1950.
18. G. P. Huet. A unification algorithm for typed λ-calculus. Theoretical Computer Science,

1:27–57, 1975.
19. M. Kohlhase. A Mechanization of Sorted Higher-Order Logic Based on the Resolution Prin-

ciple. PhD thesis, Saarland University, 1994.
20. M. Kohlhase. Higher-order tableaux. In Proc. of TABLEAUX 95, number 918 in LNAI, pages

294–309. Springer, 1995.
21. J.D. McCharen, R.A. Overbeek, and L.A. Wos. Problems and Experiments for and with

Automated Theorem-Proving Programs. IEEE Transactions on Computers, C-25(8):773–
782, 1976.

22. D. Miller. Proofs in Higher-Order Logic. PhD thesis, Carnegie-Mellon Univ., 1983.
23. F.J. Pelletier. Seventy-five Problems for Testing Automatic Theorem Provers. J. of Automated

Reasoning, 2(2):191–216, 1986.
24. F.J. Pelletier, G. Sutcliffe, and C.B. Suttner. The Development of CASC. AI Communica-

tions, 15(2-3):79–90, 2002.
25. C. Prehofer. Solving Higher-Order Equations: From Logic to Programming. Progress in

Theoretical Computer Science. Birkhäuser, 1998.
26. W. Snyder and J. Gallier. Higher-Order Unification Revisited: Complete Sets of Transforma-

tions. J. of Symbolic Computation, 8:101–140, 1989.
27. R. Statman. The typed λ-calculus is not elementary recursive. Theoretical Computer Science,

9:73–81, 1979.
28. G. Sutcliffe and C. Suttner. The TPTP Problem Library: CNF Release v1.2.1. J. of Automated

Reasoning, 21(2):177–203, 1998.
29. G.A. Wilson and J. Minker. Resolution, Refinements, and Search Strategies: A Comparative

Study. IEEE Transactions on Computers, C-25(8):782–801, 1976.
30. C.-P. Wirth. Descente infinie + Deduction. Logic J. of the IGPL, 12(1):1–96, 2004.

www.ags.uni-sb.de/∼cp/p/d/welcome.html.

www.ags.uni-sb.de/~cp/p/d/welcome.html

The Journal of Symbolic Logic

Volume 69, Number 4, Dec. 2004

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY

CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

Abstract. In this paper we re-examine the semantics of classical higher-order logic with the purpose

of clarifying the role of extensionality. To reach this goal, we distinguish nine classes of higher-order

models with respect to various combinations of Boolean extensionality and three forms of functional

extensionality. Furthermore, we develop a methodology of abstract consistency methods (by providing the

necessary model existence theorems) needed to analyze completeness of (machine-oriented) higher-order

calculi with respect to these model classes.

§1. Motivation. In classical first-order predicate logic, it is rather simple to assess
the deductive power of a calculus: first-order logic has a well-established and
intuitive set-theoretic semantics, relative towhich completeness can easily be verified
using, for instance, the abstract consistency method (cf. the introductory textbooks
[6, 22]). This well understoodmeta-theoryhas supported the development of calculi
adapted to special applications—such as automated theorem proving (cf. [16, 47]
for an overview).
In higher-order logics, the situation is rather different: the intuitive set-theoretic
standard semantics cannot give a sensible notion of completeness, since it does
not admit complete (recursively axiomatizable) calculi [24, 6]. There is a more
general notion of semantics [26], the so-called Henkin models, that allows complete
(recursively axiomatizable) calculi and therefore sets the standard for deductive
power of calculi.
Peter Andrews’ Unifying Principle for Type Theory [1] provides a method of
higher-order abstract consistency that has become the standard tool for complete-
ness proofs in higher-order logic, even though it can only be used to show complete-
ness relative to a certain Hilbert style calculus Tâ . A calculus C is called complete
relative to a calculus Tâ iff (if and only if) C proves all theorems of Tâ . Since Tâ is
not complete with respect to Henkin models, the notion of completeness that can
be established by this method is a strictly weaker notion thanHenkin completeness.
The differences between these notions of completeness can largely be analyzed in
terms of availability of various extensionality principles, which can be expressed
axiomatically in higher-order logic.
As a consequence of the limitations of Andrew’s Unifying Principle, calculi for
higher-order automated theorem proving [1, 32, 33, 34, 42, 36, 37] and the cor-
responding theorem proving systems such as Tps [7, 8], or earlier versions of the
Leo [14] system are not complete with respect to Henkin models. Moreover, they

Received February 23, 1998; final version March 29, 2004.

c© 2004, Association for Symbolic Logic

0022-4812/04/6904-0004/$7.20

1027

1028 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

are not even sound with respect to Tâ , since they (for the most part) employ
ç-conversion, which is not admissible in Tâ . In other words, their deductive power
lies somewhere between Tâ and Henkin models. Characterizing exactly where re-
veals important theoretical properties of these calculi that have direct consequences
for the adequacy in various application domains (see the discussion in section 8.1).
Unlike calculi without computational concerns, calculi for mechanized reasoning
systems cannot be made complete by simply adding extensionality axioms, since
the search spaces induced by their introduction grow prohibitively. Being able to
compare and characterize the methods and computational devices used instead is a
prerequisite for further development in this area.
In this situation, the aim of this article is to provide a semantical meta theory
that will support the development of higher-order calculi for automated theorem
proving just as the corresponding methodology does in first-order logic. To reach
this goal, we need to establish:

(1) classes ofmodels that adequately characterize the deductive power of existing
theorem-proving calculi (providing semantics with respect to which they are
sound and complete), and

(2) amethodology of abstract consistencymethods (by providing for thesemodel
classes the necessary model existence theorems, which extend Andrews’ Uni-
fying Principle), so that the completeness analysis for higher-order calculi
will become almost as simple as in first-order logic.

We fully achieve the first goal in this article, and take a large step towards the
second. In the model existence theorems presented in this article, we have to
assume a new condition called saturation, which limits their utility in completeness
proofs for machine-oriented calculi. Fortunately, the saturation condition can be
lifted by extensions of the methods presented in this article (see the discussion in
the conclusion 8.2 and [12]).
Due to the inherent complexity of higher-order semantics we first give an informal
exposition of the issues covered and the techniques applied. In Section 4, we will
investigate the properties of the model classes introduced in Section 3 in more detail
and corroborate them with example models in Section 5. We prove model existence
theorems for the model classes in Section 6. Finally, in Section 7 we will apply
the model existence theorems from Section 6 to the task of proving completeness
of higher-order natural deduction calculi. Section 8 concludes the article with a
discussion of related work, possible applications, and the saturation assumption we
introduced for the model existence theorems.
The work reported in this article is based on [15] and significantly extends the
material presented there.

§2. Informal exposition. Before we turn to the exposition of the semantics in
Section 2.3, let us specify what we mean by “higher-order logic”: any simply typed
logical system that allows quantification over function and predicate variables.
Technically, we will follow tradition and employ a logical system HOL based on
the simply typed ë-calculus as introduced in [18]; this does not restrict the generality
of the methods reported in this article, since the ideas can be carried over. A related
logical system is discussed in detail in [6].

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1029

2.1. Simply typed ë-calculus. To formulate higher-order logic we start with a
collection of typesT. We assume there are some basic types inT and thatwhenever
α, â ∈ T, then the function type (α → â) is in T. Furthermore, we assume the
types are generated freely, so that (α1 → â1) ≡ (α2 → â2) implies α1 ≡ α2 and
â1 ≡ â2.
HOL -formulae (or terms) are built up from a set V of (typed) variables and
a signature Σ (a set of typed constants) as applications and ë-abstractions. We
assume the set Vα of variables of type α is countably infinite for each type α. The
set wffα(Σ) of well-formed formulae consists of those formulae which have type α.
The type of formula Aα will be annotated as an index, if it is not clear from the
context. We will denote variables with upper-case letters (Xα , Y, Z,X 1â , X

2
ã , . . .),

constants with lower-case letters (cα , fα→â , . . .) and well-formed formulae with
upper-case bold letters (Aα ,B,C1, . . .). Finally, we abbreviatemultiple applications

and abstractions in a kindof vector notation, so thatAUk denotesk-fold application

(associating to the left), ëX k A denotes k-fold ë-abstraction (associating to the
right) and we use the square dot ‘ ’ as an abbreviation for a pair of brackets, where
‘ ’ stands for the left one with its partner as far to the right as is consistent with the
bracketing already present in the formula. Wemay avoid full bracketing of formulas
in the remainder if the bracketing structure is clear from the context.
We will use the terms like free and bound variables or closed formulae in their
standard meaning and use free(A) for the set of free variables of a formula A. In
particular, alphabetic change of names of bound variables is built into HOL : we
consider alphabetic variants to be identical (viewing the actual representation as a
representative of an alphabetic equivalence class) and use a notion of substitution
that avoids variable captureby systematically renamingboundvariables.1 Wedenote
a substitution that instantiates a free variable X with a formula A with [A/X] and
write ó, [A/X] for the substitution that is identical with ó but instantiates X with
A. For any term A we denote by A[B]p the term resulting by replacing the subterm
at position p in A by B.
A structural equality relation ofHOL terms is induced by âç-reduction

(ëX A)B →â [B/X]A (ëX CX)→ç C

where X is not free in C . It is well-known that the reduction relations â , ç, and
âç are terminating and confluent on wff(Σ), so that there are unique normal forms
(cf. [9] for an introduction). We will denote the â-normal form of a term A by A



y

â
,

and the âç-normal form of A by A↓âç. If we allow both reduction and expansion
steps, we obtain notions of â-conversion, ç-conversion, and âç-conversion. We say
A and B are â-equal [ç-equal, âç-equal] (written A≡âB [A≡çB, A≡âçB]) when A is
â-convertible [ç-convertible, âç-convertible] to B.

2.2. Higher-order logic (HOL). InHOL , the set of base types is {o, é} for truth
values and individuals. We will call a formula of type o a proposition, and a sentence
if it is closed. We will assume that the signature Σ contains logical constants for
negation (¬o→o), disjunction (∨o→o→o), and universal quantification (Πα(α→o)→o) for

each type α. Optionally, Σ may contain primitive equality (=αα→α→o) for each type

1We could also have used de Bruijn’s indices [19] as a concrete implementation of this approach at
the syntax level.

1030 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

α. All other constants are called parameters, since the argumentation in this article
is parametric in their choice.
We write disjunctions and equations, i.e., terms of the form ((∨A)B) or ((= A)B),
in infix notation as A ∨ B and A = B. As we only assume the logical constants ¬,
∨, and Πα (and possibly =α) as primitive, we will use formulae of the form A ∧ B,
A⇒ B, and A⇔ B as shorthand for the formulae ¬((¬A) ∨ (¬B)), and (¬A) ∨ B,
and (A⇒ B)∧(B ⇒ A), respectively. For eachA ∈ wff o(Σ), the standardnotations
∀Xα A and ∃Xα A for quantification are regarded as shorthand for Πα(ëXα A) and
¬(Πα(ëXα ¬A)). Finally, we extend the vector notation for ë-binders to k-fold

quantification: we will use ∀X k A and ∃X k A in the obvious way.
We often need to distinguish between atomic andnon-atomic formulae inwff o(Σ).
A non-atomic formula is any formula whose â-normal form is either of the form
¬A,A∨B, orΠαC (whereA, B ∈ wffo(Σ) andC ∈ wffα→o(Σ)). An atomic formula
is any other formula in wffo(Σ)—including primitive equations A =α B in case of
the presence of primitive equality.
It is matter of folklore that equality can directly be expressed in HOL . A
prominent example is the Leibniz formula for equality

Qα := (ëXαYα ∀Pα→o PX ⇒ PY).

With this definition, the formula (QαAB) (expressing equality of two formulae A
andB of typeα) â-reduces to ∀Pα→o (PA)⇒ (PB), which can be read as: formulae
A andB are not equal iff there exists a discerning propertyP.2 In otherwords,A and
B are equal, if they are indiscernible. We will use the notationA

.
=α B as shorthand

for the â-reduct ∀Pα→o (PA) ⇒ (PB) of (QαAB) (where P /∈ free(A) ∪ free(B)).3

There are alternative ways to define equality in terms of the logical connectives
([6, p. 203]) and the techniques for equality introduced in this article carry over to
them (cf. Remark 4.4).
In this article we use several different notions of equality. In order to prevent
misunderstandings we explain these different notions together with their syntactical
representation here:
If we define a concept we use := (e.g., let D := {T, F}). ≡ represents identity.
We refer to a representative of the identity relation on Dα as an object of the
semantical domain Dα→α→o with qα . Note that we possibly have one, several, or
no qα in Dα→α→o for each domain Dα . The remaining two notions are related to
syntax. =α may occur as a constant symbol of type α → α → o in a signature Σ.
Finally,

.
=α andQα are used for Leibniz equality as described above.

2.3. Notions of models forHOL . Amodel ofHOL is a collection of non-empty
domains Dα for all types α together with a way of interpreting formulae. The
model classes discussed in this article will vary in the domains and specifics of
the evaluation of formulae. The relationships between these classes of models are
depicted as a cube in Figure 1. We will discuss the model classes from bottom to
top, from the most specific notion of standard models (ST) to the most general
notion of õ-complexes, motivating the respective generalizations as we go along. In
Section 3, where we develop the theory formally based on the intuitions discussed

2Note that this is symmetric by considering complements and hence it is sufficient to use⇒ instead
of⇔.
3Note that A

.
=α B is â-normal iff A and B are â-normal. The same holds for âç-equality.

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1031

ST

Mâfb ' H

MâçbMâîbMâf∇f

Mâî∇î Mâç ∇ç Mâb ∇b

Mâ ∇c ,∇â ,∇¬,∇∨,∇∧,∇∀,∇∃,∇sat

î

ç

ç

çî

f

î

f

b

b

b

b

îç

full

Figure 1. The landscape of higher-order semantics.

here, we will proceed the other way around, specializing the notion of a Σ-model
more and more.
The symbols in the boxes in Figure 1 denote model classes, the symbols labeling
the arrows indicate the properties inducing the corresponding specialization, and
the ∇-symbols next to the boxes indicate the clauses in the definition of abstract
consistency classes (cf. Definition 6.5) that are needed to establish amodel existence
theorem for this particular class of models (cf. Theorem 6.34).

2.3.1. Standard and Henkin models [ST,H,Mâfb]. A standard model (ST, cf.
Definition3.51) forHOL provides afixed setDé of individuals anda setDo := {T, F}
of truth values. All the domains for the function types are defined inductively: Dα→â
is the set of functionsf : Dα −→ Dâ . The evaluation function Eϕ with respect to an
assignment ϕ of variables is obtained by the standard homomorphic construction
that evaluates a ë-abstraction with a function.
One can reconstruct the key idea behind Henkin models (H isomorphic toMâfb,
cf. Definitions 3.50, and Theorem 3.68) by the following observation. If the setDé is
infinite, the setDé→o of sets of individualsmust be uncountably infinite. On the other
hand, any reasonable semantics of a languagewith a countable signature that admits

1032 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

sound and complete calculi must have countable models. Leon Henkin generalized
the class of admissible domains for functional types [26]. Instead of requiring
Dα→â (and thus in particular,Dé→o) to be the full set of functions (predicates), it is
sufficient to require thatDα→â has enough members that any well-formed formula
can be evaluated (in other words, the domains of function types are rich enough to
satisfy comprehension). Note thatwith this generalized notion of amodel, there are
fewer formulae that are valid in all models (intuitively, for any given formula there
are more possibilities for counter-models). The generalization to Henkin models
restricts the set of valid formulae sufficiently so that all of them can be proven by a
Hilbert-style calculus [26].
Of course our picture in Figure 1 is not complete here; we can axiomatically
require the existence of particular (classes of) functions, e.g., by assuming the de-
scription or choice operators. We will not pursue this here; for a detailed discussion
of the semantic issues raised by the presence of these logical constants see [3]. Note
that even though we can consider model classes with richer and richer function
spaces, we can never reach standard models where function spaces are full while
maintaining complete (recursively axiomatizable) calculi.

2.3.2. Models without boolean extensionality [Mâ ,Mâî ,Mâç ,Mâf]. The next gen-
eralization of model classes comes from the fact that we want to have logics where
the axiom of Boolean extensionality can fail. For instance, in the semantics of nat-
ural language we have so-called verbs and adjectives of “propositional attitude” like
believe or obvious . We may not want to commit ourselves to a logic where the sen-
tence “John believes that Phil is a woodchuck” automatically entails “John believes
that Phil is a groundhog” since John might not be aware that “woodchuck” is just
anotherword for “groundhog”. The axiom ofBoolean extensionality does just that;
it states that whenever two propositions are equivalent, they must be equal, and can
be substituted for each other. Similarly, the formulae obvious(O) and obvious(F)
where O := 2 + 2 = 4 and F := ∀n > 2 xn + yn = zn ⇒ x = y = z = 0 should
not be equivalent, even if their arguments are. (BothO and F are true over the nat-
ural numbers, but Fermat’s last theorem F is non-obvious to most people). These
phenomena have been studied under the heading of “hyper-intensional semantics”
in theoretical semantics; see [39] for a survey.
To account for this behavior, we have to generalize the class of Henkin models
further so that there are counter-models to the examples above. Obviously, this
involvesweakening the assumption thatDo ≡ {T, F} since this entails that the values
ofO and F are identical. We call the assumption thatDo has two elements property
b. In our Σ-models without property b (Mâ , Mâî , Mâç , Mâf, cf. Definitions 3.41
and 3.49) we only insist that there is a division of the truth values into “good” and
“bad” ones, which we express by insisting on the existence of a valuation õ of Do,
i.e., a function õ : Do −→ {T, F} that is coordinated with the interpretations of the
logical constants ¬, ∨, and Πα (for each type α). Thus we have a notion of validity:
we call a sentence A valid in such a model if õ(a) ≡ T, where a ∈ Do is the value
of the sentence A. For example, there is a Σ-model (see Examples 5.4 and 5.5)
where woodchuck(phil), groundhog(phil) and believe(john,woodchuck(phil)) are
all valid, but believe(john, groundhog(phil)) is not. In this model, the value of
woodchuck(phil) is different from the value of groundhog(phil) in Do.

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1033

2.3.3. Models without functional extensionality [Mâ , Mâç , Mâî , Mâb, Mâçb,
Mâîb]. In mathematics (and as a consequence in most higher-order model the-
ories), we assume functional extensionality, which states that two functions are
equal, if they return identical values on all arguments. In many applications we
want to use a logic that allows a finer-grained modeling of properties of functions.
For instance, if we want to model programs as (higher-order) functions, we might
be interested in intensional4 properties like run-time complexity. Consider for in-
stance the two functions I := ëX X and L := ëX rev(rev(X)), where rev is the
self-inverse function that reverses the order of elements in a list. While the identity
function has constant complexity, the function rev is linear in the length of its ar-
gument. As a consequence, even though L behaves like I on all inputs, they have
different time complexity. A logic with a functionally extensional model theory
(which is encoded as property f, cf. Definitions 3.5, 3.41 and 3.46) would conflate I
and L semantically and thus hide this difference rendering the logic unsuitable for
complexity analysis.
To arrive at a model theory which does not require functional extensionality
(which we will a call non-functional model theory in the remainder) we need to
generalize the notion of domains at function types and evaluation functions. This
is because the usual construction already uses sets of (extensional) functions for the
domains of function type and the property of functionality to construct values for
ë-terms.
We build on the notion of applicative structures (cf. Definition 3.1) to define Σ-
evaluations (cf.Definition 3.18), where the evaluation function is assumed to respect
application and â-conversion. In such models, a function is not uniquely deter-
mined by its behavior on all possible arguments. Such models can be constructed,
for example, by labeling for functions (e.g., a green and a red version of a func-
tion f) in order to differentiate between them, even though they are functionally
equivalent (cf. Example 5.6). Property b may or may not hold for non-functional
Σ-Models.
We can factor functional extensionality (property f) into two independent prop-
erties, property ç and property î. A model satisfies property ç if it respects ç-
conversion. Amodel satisfies property î if we can conclude the values of ëX M and
ëX N are identical whenever the values ofM andN are identical for any assignment
of the variable X . We will show that a model satisfies property f iff it satisfies both
property ç and property î (cf. Lemma 3.24).

2.3.4. Andrews’ models and õ-complexes [Mâ ,Mâç]. Peter Andrews has pio-
neered the construction of non-functional models with his õ-complexes in [1] based
on Kurt Schütte’s semi-valuation method [50]. These constructions, where both
functional and Boolean extensionality fail, are Σ-models as defined in Defini-
tion 3.41. (Typically they will not even satisfy the property that Leibniz equality
corresponds to identity in the model, but they will have a quotient by Theorem 3.62
which does satisfy this property.)

2.4. Characterizing the deductive power of calculi. These model classes discussed
in the previous section characterize the deductive power of many higher-order

4Just as in the linguistic application, theword“intensional” is used as a synonymfor “non-extensional”
even though totally different properties are intended.

1034 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

theorem provers on a semantic level. For example, Tps [8] can be used in modes
in which the deductive power is characterized byMâç (or evenMâ if ç-conversion
is disallowed). Note that in particular Tps is not complete with respect to Henkin
models. It is not even complete forMâçb, although it can be used in modes with
some ‘extensionality treatment’ built into the proof procedure.
The incompleteness of Tps for Henkin models5 can be seen from the fact that
it fails to refute formulae such as cAo ∧ ¬c(¬¬A), where c is a constant of type
o → o, or to prove formulae like p(ëXα BX ∧ AX) ⇒ p(ëXα AX ∧ BX), where
p is a constant of type (α → o) → o. The problem in the former example is that
the higher-order unification algorithm employed by Tps cannot determine that A
and ¬¬A denote identical semantic objects (by Boolean extensionality as already
mentioned before), and thus returns failure instead of success. In the second
example both functional and Boolean extensionality are needed in order to prove
the theorem.
[21] discusses a presentation of higher-order logic in a first-order logic based on
an approach called theorem proving modulo. It is easy to check that this approach
is also incomplete for model classes with property b. For instance the approach
cannot prove the formula

∀Po→oXoYo (PX ∧ PY)⇒ P(X ∧ Y)

which is valid in Henkin models and which requires b. As a result, the theorem
provingmodulo approach of representing higher-order logic in a first-order logic [21]
can only be used for logics without Boolean extensionality in its current form.

2.4.1. Model existence theorems. For all the notions of model classes (except,
of course, for standard models, where such a theorem cannot hold for recursively
axiomatizable logical systems) we present model existence theorems tying the differ-
entiating conditions of the models to suitable conditions in the abstract consistency
classes (cf. Section 6.3).
A model existence theorem for a logical system S (i.e., a logical language LS
together with a consequence relation |=S⊆ LS ×LS) is a theorem of the form:

If a set of sentences Φ of S is a member of an abstract consistency class
Γ, then there exists a S -model for Φ.

For the proof we can use the classical construction in all cases: abstract consistent
sets are extended to Hintikka sets (cf. Section 6.2), which induce a valuation on
a term structure (cf Definition 3.35). We then take a quotient by the congruence
induced by Leibniz equality in the term model.

2.4.2. Completeness of calculi. Given a model existence theorem as described
above we can show the completeness of a particular calculus C (i.e., the derivability
relation `S⊆ LS ×LS) by proving that the class Γ of sets of sentences Φ that are
C -consistent (i.e., cannot be refuted in C) is an abstract consistency class. Then the
model existence theorem tells us that C -consistent sets of sentences are satisfiable
in S . Now we assume that a sentence A is valid in S , so ¬A does not have a
S -model and is therefore C -inconsistent. Hence, ¬A is refutable in C . This shows

5In case the extensionality axioms are not available in the search space. Note that one can add
extensionality axioms to the calculus in order to achieve—at least in theory—Henkin completeness. But
this increases the search space drastically and is not feasible in practice.

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1035

refutation completeness of C . For many calculi C , this also shows A is provable,
thus establishing completeness of C .
Note that with this argumentation the completeness proof for C condenses to
verifying that Γ is an abstract consistency class, a task that does not refer to S -
models. Thus the usefulness of model existence theorems derives from the fact that
it replaces the model-theoretic analysis in completeness proofs with the verification
of some proof-theoretic conditions. In this respect a model existence theorem is
similar to a Herbrand Theorem, but it is easier to generalize to other logic systems
like higher-order logic. The technique was developed for first-order logic by Jaakko
Hintikka and Raymond Smullyan [29, 52, 53].

§3. Semantics for higher-order logic. In this section we will introduce the seman-
tical constructions and discuss their relationships. We will start out by defining
applicative structures and Σ-evaluations to give an algebraic semantics for the sim-
ply typed ë-calculus. To obtain a model for higher-order logic, we use a Σ-valuation
to determine whether propositions are true or false.

3.1. Applicative structures.

Definition 3.1 ((Typed) Applicative structure). A collection D := DT :=
{Dα | α ∈ T } of non-empty sets Dα , indexed by the set T of types, is called
a typed collection (of sets). Let DT and ET be typed collections, then a col-
lection f := { fα : Dα −→ Eα | α ∈ T } of functions is called a typed function
f : DT −→ ET . We will write F (A;B) for the set of functions from A to B and
FT (DT ;ET) for the set of typed functions. In the following we will also use the
notion of a typed function extended to the n-ary case in the obvious way.
We call the pair (D ,@) a (typed) applicative structure if D ≡ DT is a typed
collection of sets and

@ := {@αâ : Dα→â ×Dα −→ Dâ | α, â ∈ T }.

Each (non-empty) setDα is called the domain of type α and the family of functions
@ is called the application operator. We write simply f@a for f@αâa when f ∈ Dα→â
and a ∈ Dα are clear in context.

Remark 3.2. Often an applicative structure is defined to also include an inter-
pretation of the constants in a given signature (for example, in [44]). We prefer this
signature-independent definition (as in [30]) for our purposes.

Remark 3.3 (Currying). The application operator @ in an applicative structure
is an abstract version of function application. It is no restriction to exclusively use
a binary application operator, which corresponds to unary function application,
since we can define higher-arity application operators from the binary one by setting
f@(a1, . . . , an) := (. . . (f@a1) . . .@an) (“Currying”).

Definition 3.4 (Frame). An applicative structure (D ,@) is called a frame, if
Dα→â ⊆ F (Dα ;Dâ) and @

αâ is application for functions for all types α and â .

Definition 3.5 (Functional/full/standard applicative structures). Let A :=
(D ,@) be an applicative structure. We say that A is functional if for all types
α and â and objects f, g ∈ Dα→â , we have f ≡ g whenever f@a ≡ g@a for every

1036 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

a ∈ Dα .6 We sayA is full if for all types α and â and every function f : Dα −→ Dâ
there is an object f ∈ Dα→â such that f@a ≡ f(a) for every a ∈ Dα . Finally, we say
A is standard if it is a frame and Dα→â ≡ F (Dα ;Dâ) for all types α and â . Note
that these definitions impose restrictions on the domains for function types only.

Remark 3.6. It is easy to show that every frame is functional. Furthermore, an
applicative structure is standard iff it is a full frame.

Example 3.7 (Applicative singleton structure). We choose a single element a and
define Dα := {a} for all types α. The pair (DT ,@a), where a@aa = a is a (trivial)
example of a functional applicative structure. It is called the singleton applicative
structure.

Example 3.8 (Applicative term structures). If we define A@B := (AB) for A ∈
wffα→â(Σ) and B ∈ wffα(Σ), then @: wffα→â (Σ) × wffα(Σ) −→ wffâ(Σ) is a
total function. Thus (wff(Σ),@) is an applicative structure. The intuition behind
this example is that we can think of the formula A ∈ wffα→â(Σ) as a function
A : wffα(Σ) −→ wffâ(Σ) that maps B to (AB).
Analogously, we can define the applicative structure (cwff(Σ),@) of closed for-
mulae (when we ensure Σ contains enough constants so that cwffα(Σ) is non-empty
for all types α).

Definition 3.9 (Homomorphism). Let A 1 := (D 1,@1) and A 2 := (D 2,@2)
be applicative structures. A homomorphism from A 1 to A 2 is a typed function
κ : D 1 −→ D 2 such that for all types α, â ∈ T , all f ∈ D 1α→â , and a ∈ D 1α we have

κ(f)@2κ(a) ≡ κ(f@1a). We write κ : A 1 −→ A 2. The two applicative structures
A 1 and A 2 are called isomorphic if there are homomorphisms i : A 1 −→ A 2 and
j : A 2 −→ A 1 which are mutually inverse at each type.

The most important method for constructing structures (and models) with given
properties in this article is well-known for algebraic structures and consists of
building a suitable congruence and passing to the quotient structure. We will now
develop the formal basis for it.

Definition 3.10 (Applicative structure congruences). LetA := (D ,@)beanap-
plicative structure. A typed equivalence relation ∼ is called a congruence on A iff
for all f, f′ ∈ Dα→â and a, a′ ∈ Dα (for any types α and â), f ∼ f′ and a ∼ a′ imply
f@a ∼ f′@a′.
The equivalence class [[a]]∼ of a ∈ Dα modulo∼ is the set of all a′ ∈ Dα , such that

a ∼ a′. A congruence∼ is called functional iff for all types α and â and f, g ∈ Dα→â ,
we have f ∼ g whenever f@a ∼ g@a for every a ∈ Dα .

Lemma 3.11. The â-equality and âç-equality relations≡â and≡âç are congruences
on the applicative structures wff(Σ) and cwff .

Proof. The congruence properties are a direct consequence of the fact that âç-
reduction rules are defined to act on subterm positions. a

6This is called “extensional” in [44]. We use the term “functional” to distinguish it from other forms
of extensionality.

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1037

Definition 3.12 (Quotient applicative structure). Let A := (D ,@) be an ap-
plicative structure, ∼ a congruence on A , and D∼α := {[[a]]∼ | a ∈ Dα}. Further-
more, let @∼ be defined by [[f]]∼@∼[[a]]∼ := [[f@a]]∼. (To see that this definition
only depends on equivalence classes of ∼, consider f′ ∈ [[f]]∼ and a′ ∈ [[a]]∼. Then
f ∼ f′ and a ∼ a′ imply f@a ∼ f′@a′. Thus, [[f@a]]∼ ≡ [[f′@a′]]∼. So, @∼ is
well-defined.) A /∼ := (D

∼,@∼) is also an applicative structure. We call A /∼ the
quotient structure of A for the relation ∼ and the typed function ð∼ : A −→ A /∼
that maps a to [[a]]∼ its canonical projection.

Theorem 3.13. Let A be an applicative structure and let ∼ be a congruence onA ,
then the canonical projection ð∼ is a surjective homomorphism. Furthermore, A /∼ is
functional iff ∼ is functional.

Proof. Let A := (D ,@) be an applicative structure. To convince ourselves
that ð∼ is indeed a surjective homomorphism, we note that ð∼ is surjective by the
definition of D∼. To see that ð∼ is a homomorphism let f ∈ Dα→â , and a ∈ Dâ ,
then ð∼(f)@∼ð∼(a) ≡ [[f]]∼@∼[[a]]∼ ≡ [[f@a]]∼ ≡ ð∼(f@a).
The quotient construction collapses ∼ to identity, so functionality of ∼ is equiv-
alent to functionality of A /∼. Formally, suppose [[f]]∼ and [[g]]∼ are elements of
D∼α→â such that [[f]]∼@

∼[[a]]∼ ≡ [[g]]∼@∼[[a]]∼ for every [[a]]∼ in D∼α . This is equiv-
alent to [[f@a]]∼ ≡ [[g@a]]∼ for every a ∈ Dα and hence f@a ∼ g@a for all a ∈ Dα .
By functionality of ∼, we have f ∼ g. That is, [[f]]∼ ≡ [[g]]∼. a

Lemma 3.14. ≡âç is a functional congruence on wff(Σ). If Σα is infinite for all
types α ∈ T , then ≡âç is also functional on cwff .

Proof. By Lemma 3.11, ≡âç is a congruence relation. To show functionality let
A,B ∈ wffã→α(Σ) such that AC≡âçBC for all C ∈ wffã(Σ) be given. In particular,
for any variable X ∈ Vã that is not free in A or B, we have AX≡âçBX and
ëX AX≡âçëX BX . By definition we have A≡çëXã AX≡âçëXã BX≡çB.
To show functionality of âç-equality on closed formulae, suppose A and B are
closed. With the same variable X as above, letM andN be the âç-normal forms of
AX and BX , respectively. We cannot conclude thatM ≡ N since X is not a closed
term. Instead, choose a constant cã ∈ Σã that does not occur in A or B. (Such a
constant must exist, since we have assumed that Σã is infinite.) An easy induction
on the length of the âç-reduction sequence from AX to M shows that c does not
occur in M and Ac ≡ [c/X](AX) âç-reduces to [c/X]M . Similarly, c does not
occur in N and Bc âç-reduces to [c/X]N . Since c is a constant, substituting c for
X cannot introduce new redexes. So, simple inductions on the sizes of M and N
show [c/X]M and [c/X]N are âç-normal. By assumption, we know Ac≡âçBc.
Since normal forms are unique, we must have [c/X]M ≡ [c/X]N . Using the fact
that c does not occur in eitherM orN , an induction on the size ofM readily shows
M ≡ N . So, we have A≡çëXã AX≡âçëXãM ≡ ëXã N≡âçëXã BX≡çB a

Remark 3.15. Suppose we have a signature Σ with a single constant cé . In this
case, c is the only closed âç-normal form of type é. Since ëX X 6≡âç ëX c even
though (ëX X)c≡âçc≡âç(ëX c)c we have a counterexample to functionality of≡âç
on cwff . The problem here is that we do not have another constant dé to distinguish
the two functions. In wff(Σ) we could always use a variable.

1038 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

Remark 3.16 (Assumptions on Σ). From nowon, we assume Σα to be infinite for
each type α. Furthermore, we assume there is a particular cardinal ℵs such that Σα
has cardinality ℵs for every type α. Since V is countable, this implies wffα(Σ) and
cwffα have cardinality ℵs for each type α. Also, whether or not primitive equality
is included in the signature, there can only be finitely many logical constants in Σα
for each particular type α. Thus, the cardinality of the set of parameters in Σα is
also ℵs . In the countable case, ℵs is ℵ0.

3.2. Σ-evaluations. Σ-evaluations are applicative structures with a notion of eval-
uation for well-formed formulae in wff(Σ).

Definition 3.17 (Variable assignment). Let A := (D ,@) be an applicative
structure. A typed function ϕ : V −→ D is called a variable assignment into A .
Given a variable assignment ϕ, variable Xα , and value a ∈ Dα , we use ϕ, [a/X] to
denote the variable assignment with (ϕ, [a/X])(X) ≡ a and (ϕ, [a/X])(Y) ≡ ϕ(Y)
for variables Y other than X .

Definition 3.18 (Σ-evaluation). Let E : FT (V ;D) −→ FT (wff(Σ),D) be a
total function, where FT (V ;D) is the set of variable assignments andFT (wff(Σ),
D) is the set of typed functions mapping terms into objects in D. We will write the
argument of E as a subscript. So, for each assignment ϕ, we have a typed function
Eϕ : wff(Σ) −→ D. E is called an evaluation function for A if for any assignments
ϕ and ø into A , we have

(1) Eϕ
∣

∣

V
≡ ϕ.

(2) Eϕ(FA) ≡ Eϕ(F)@Eϕ(A) for any F ∈ wffα→â(Σ) and A ∈ wffα(Σ) and types
α and â .

(3) Eϕ(A) ≡ Eø(A) for any type α and A ∈ wffα(Σ), whenever ϕ and ø coincide
on free(A).

(4) Eϕ(A) ≡ Eϕ(A


y

â
) for all A ∈ wffα(Σ).

We callJ := (D ,@,E) a Σ-evaluation if (D ,@) is an applicative structure and E is
an evaluation function for (D ,@). We call Eϕ(Aα) ∈ Dα the denotation of Aα inJ
for ϕ. (Note that since E is a function, the denotation inJ is unique. However, for
a given applicative structure A , there may be many possible evaluation functions.)
If A is a closed formula, then Eϕ(A) is independent of ϕ, since free(A) = ∅. In
these cases we sometimes drop the reference to ϕ from Eϕ(A) and simply write
E (A).
We call a Σ-evaluationJ := (D ,@,E) functional [full, standard] if the applicative
structure (D ,@) is functional [full, standard]. We say J is a Σ-evaluation over a
frame if (D ,@) is a frame.

Σ-evaluations generalizeΣ-evaluationsover frames, whichare thebasis forHenkin
models, to the non-functional case. The existence of an evaluation function that
meets the conditions above seems to be theweakest situationwhere onewould like to
speak of a model. We cannot in general assume the evaluation function is uniquely
determined by its values on constants as this requires functionality. For example,
two evaluation functions E and E ′ on the same applicative structure may agree on
all constants, but give a different value to the term (ëXé X). Such an example is
constructed and discussed later in Remark 5.7.

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1039

Remark 3.19 (Σ-evaluations respect â-equality). Let J := (D ,@,E) be a Σ-
evaluation and A≡âB. For all assignments ϕ into (D ,@), we have Eϕ(A) ≡
Eϕ(A



y

â
) ≡ Eϕ(B



y

â
) ≡ Eϕ(B).

We can easily show Σ-evaluations satisfy a Substitution-Value Lemma.

Lemma 3.20 (Substitution-value lemma). Let J := (D ,@,E) be a Σ-evaluation
and ϕ be an assignment into J . For any types α and â , variables Xâ , and formulae
A ∈ wffα(Σ) and B ∈ wffâ(Σ), we have Eϕ,[Eϕ (B)/X](A) ≡ Eϕ([B/X]A).

Proof. Using the fact that E respects â-equality (cf. Remark 3.19) and the other
properties of E (cf. Definition 3.18), we can compute

Eϕ,[Eϕ (B)/X](A) ≡ Eϕ,[Eϕ (B)/X]((ëX A)X)

≡ Eϕ,[Eϕ (B)/X](ëX A)@Eϕ,[Eϕ(B)/X](X)

≡ Eϕ(ëX A)@Eϕ(B)

≡ Eϕ((ëX A)B)

≡ Eϕ([B/X]A). a

We will consider two weaker notions of functionality. These forms are often
discussed in the literature (cf. [28]).

Definition 3.21 (Weakly functional evaluations). Let J ≡ (D ,@,E) be a Σ-
evaluation. We say J is ç-functional if Eϕ(A) ≡ Eϕ(A↓âç) for any type α, formula

A ∈ wffα(Σ), and assignment ϕ. We say J is î-functional if for all α, â ∈ T ,
M ,N ∈ wffâ (Σ), assignments ϕ, and variables Xα , Eϕ(ëXαMâ) ≡ Eϕ(ëXα Nâ)
whenever Eϕ,[a/X](M) ≡ Eϕ,[a/X](N) for every a ∈ Dα .

We will now establish that functionality is equivalent to ç-functionality and î-
functionality combined. We prepare for this by first proving two lemmas about
functional Σ-evaluations.

Lemma 3.22. Let J := (D ,@,E) be a functional Σ-evaluation. For any assign-
ment ϕ into J and F ∈ wffα→â(Σ) where Xα /∈ free(F), we have

Eϕ(ëXα FX) ≡ Eϕ(F).

Proof. Let a ∈ Dα be given. Since Xα /∈ free(F), we have Eϕ,[a/X](F) ≡ Eϕ(F).
Since E respects â-equality (cf. Remark 3.19), we can compute

Eϕ(ëX FX)@a ≡ Eϕ,[a/X]((ëX FX)X) ≡ Eϕ,[a/X](FX) ≡ Eϕ(F)@a.

Generalizing over a, we conclude Eϕ(ëX FX) ≡ Eϕ(F) by functionality. a

Lemma 3.23. Let J := (D ,@,E) be a functional Σ-evaluation. If a formula A
ç-reduces to B in one step, then for any assignment ϕ into J , Eϕ(A) ≡ Eϕ(B).

Proof. We prove this by induction on the structure of the term A. For the
base case when A is the ç-redex which is reduced, we apply Lemma 3.22. When
A ≡ (FC), then the ç-reduction either occurs in F or C . So, B ≡ (GD) where F
ç-reduces to G in one step (or G ≡ F) and D ≡ C (or C ç-reduces to D in one
step). So, by induction we have Eϕ(F) ≡ Eϕ(G) and Eϕ(C) ≡ Eϕ(D). It follows
that Eϕ(A) ≡ Eϕ(B).
When A is a ë-abstraction, we must use functionality. Suppose for some type α,
A ≡ (ëXα C) (and this is not the ç-redex reduced to obtain B). Then B ≡ (ëXαD)

1040 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

where C ç-reduces in one step to D. By the induction hypothesis, for any a ∈ Dα ,
Eϕ,[a/X](C) ≡ Eϕ,[a/X](D). Since E is an evaluation function, we have

Eϕ(ëX C)@a ≡ Eϕ,[a/X]((ëX C)X) ≡ Eϕ,[a/X](C)

≡ Eϕ,[a/X](D) ≡ Eϕ,[a/X]((ëX D)X) ≡ Eϕ(ëX D)@a.

By functionality, Eϕ(A) ≡ Eϕ(ëX C) ≡ Eϕ(ëX D) ≡ Eϕ(B). a

Lemma 3.24 (Functionality). Let J := (D ,@,E) be a Σ-evaluation. Then J is
functional iff it is both ç-functional and î-functional.

Proof. The fact that functionality implies ç-functionality now follows from a
simple induction on the number of âç-reduction steps using Lemma 3.23 and
Remark 3.19.
To show functionality implies î-functionality, letM ,N ∈ wffâ(Σ), an assignment
ϕ and a variable Xα be given. Suppose Eϕ,[a/X](M) ≡ Eϕ,[a/X](N) for every a ∈ Dα .
We need to show Eϕ(ëX M) ≡ Eϕ(ëX N). This follows from functionality since

Eϕ(ëX M)@a ≡ Eϕ,[a,X]((ëX M)X) ≡ Eϕ,[a/X](M)

≡ Eϕ,[a/X](N) ≡ Eϕ,[a,X]((ëX N)X) ≡ Eϕ(ëX N)@a

for every a ∈ Dα .
To show functionality from ç-functionality and î-functionality, let f, g ∈ Dα→â
such that f@a ≡ g@a for all a ∈ Dα be given. We need to show that f ≡ g. Let
Fα→â , Gα→â and Xα be variables and ϕ be any assignment such that ϕ(F) ≡ f

and ϕ(G) ≡ g. Then for any a ∈ Dα we have Eϕ,[a/X](FX) ≡ f@a ≡ g@a ≡
Eϕ,[a/X](GX), and thus Eϕ(ëX FX) ≡ Eϕ(ëX GX) by î-functionality. Hence,

f ≡ Eϕ(F) ≡ Eϕ(ëX FX) ≡ Eϕ(ëX GX) ≡ Eϕ(G) ≡ g

by ç-functionality. a

Lemma 3.25 (î-functionality and replacement). LetJ := (D ,@,E)beaî-func-
tional Σ-evaluation and B,C ∈ wffâ(Σ). Suppose Eϕ(B) ≡ Eϕ(C) for every assign-
ment ϕ into J . Then for all formulae A ∈ wffα(Σ), positions p, and assignments ϕ
into J , Eϕ(A[B]p) ≡ Eϕ(A[C]p).

Proof. We show the assertion by an induction on the structure of A. If p is the
top position, we have

Eϕ(A[B]p) ≡ Eϕ(B) ≡ Eϕ(C) ≡ Eϕ(A[C]p).

In particular, if A is a constant or a variable, then p must be the top position and
we are done. Otherwise, assume p is not the top position. IfA is an application FD,
we have to consider two cases: A[B]p = F[B]qD and A[B]p = F(D[B]r) for some
positions q and r. Since the second case is analogous we only show the first case.
By the inductive hypothesis we have

Eϕ(A[B]p) ≡ Eϕ(F[B]qD) ≡ Eϕ(F[B]q)@Eϕ(D)

≡ Eϕ(F[C]q)@Eϕ(D) ≡ Eϕ(F[C]qD) ≡ Eϕ(A[C]p).

If A[B]p = ëXã D[B]q , then we get the assertion from î-functionality. By the induc-
tive hypothesis, we know Eø(D[B]q) ≡ Eø(D[C]p) for every assignment ø. In par-
ticular, for any assignmentϕ and c ∈ Dã , we haveEϕ,[c/X](D[B]q) ≡ Eϕ,[c/X](D[C]p).

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1041

By î-functionality, we have

Eϕ(A[B]p) ≡ Eϕ(ëX D[B]q) ≡ Eϕ(ëX D[C]q) ≡ Eϕ(A[C]p).

Thus we have completed all the cases and proven the assertion. a

Example 3.26 (Singleton evaluation). The singletonapplicative structure (cf.Ex-
ample 3.7) is a Σ-evaluation if for any assignment ϕ and formula A we take
Eϕ(A) ≡ a, where a is the (unique) member of Dα . Note that in this Σ-evaluation
E (ëX X) ≡ Eϕ(ëX Y) for any assignment ϕ.

For a detailed discussion on the closure conditions needed for the domains for
function types to be rich enough for evaluation functions to exist, we refer the reader
to [2, 4].
Note that the applicative term structure wff(Σ) fromExample 3.8 cannot be made
into a Σ-evaluation by providing an evaluation function. To see this, suppose E is
an evaluation function for wff(Σ) and F := E (ëXα X) ∈ wffα→α(Σ). Since E is
assumed to be an evaluation function, we must have

Eϕ(A) ≡ Eϕ((ëXα X)A) ≡ F@A ≡ FA

for every A ∈ wffα(Σ). In particular, for any constant aα ∈ Σα , we must have
Fa ≡ Eϕ(a) ≡ E ((ëXα X)a) ≡ E (ëXα X)@E (a) ≡ F(Fa). But clearly Fa 6≡
F(Fa) no matter what F ∈ wffα→α(Σ) we choose. In particular, the “obvious”
choice of E (ëXα X) ≡ (ëXα X) does not work. This example suggests that we need
to consider â-convertible terms equal before we can obtain a term evaluation (cf.
Definition 3.35).

Definition 3.27 (Σ-evaluation congruences). A congruence on a Σ-evaluation
J ≡ (D ,@,E) is a congruence on the underlying applicative structure (D ,@).
Given any two variable assignments ϕ and ø into (D ,@), we will use the notation
ϕ ∼ ø to indicate that ϕ(X) ∼ ø(X) for every variable X .

A typed equivalence relation was defined to be a congruence if it respects appli-
cation. In order to form a quotient of a Σ-evaluation, we must be able to define
an evaluation function E ∼ on the quotient structure. But E ∼ interprets all terms,
including ë-abstractions. It is not obvious that one can find a well-defined E ∼ that
is really an evaluation function. In fact, the property one needs in order to show
E ∼ will be a well-defined evaluation function is Eϕ(A) ∼ Eø(A) for all A ∈ wffα(Σ)
and assignments ϕ and ø with ϕ ∼ ø. One can show this by an easy induction
on the term A if the congruence ∼ is functional. However, without the assumption
that ∼ is functional, this direct proof will fail when A is a ë-abstraction. This is a
general problem with trying to prove properties of evaluations since many objects
in Dα→â may represent the same function from Dα to Dâ . Fortunately, there is a
way to use combinators to reduce such inductions to terms which only have very
special ë-abstractions.

Definition 3.28 (SK-combinatory formulae). For all typesα, â , and ã , we define
two families of closed formulae we call combinators:

Kα→â→α := ëXαYâ X

S(α→â→ã)→(α→â)→α→ã := ëUα→â→ãVα→âWα (UW (VW)).

1042 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

We define the set of SK-combinatory formulae to be the least subset of the set
⋃

α∈T wffα(Σ) containing every K and S, every constant c ∈ Σ and every variable,
that is closed under application.

As shown in [3], every formula canbeâ-expanded toanSK-combinatory formula.

Lemma 3.29. For every type α and A ∈ wffα(Σ), there is an SK-combinatory
formula A′ ∈ wffα(Σ) such that A′ â-reduces to A.

Proof. See Proposition 1 in [3]. Themain difference to this setup is the signature,
and this plays no role in the proof. a

Now, we can show Eϕ(A) ∼ Eø(A) for SK-combinatory A whenever ϕ ∼ ø.

Lemma 3.30. Let J ≡ (D ,@,E) be a Σ-evaluation, ∼ a congruence on J , and ϕ
and ø assignments into J with ϕ ∼ ø. For every SK-combinatory formula A, we
have Eϕ(A) ∼ Eø(A).

Proof. The proof is by induction on the SK-combinatory formula A. If A is
a variable X , we have Eϕ(X) ≡ ϕ(X) ∼ ø(X) ≡ Eø(X). If A is closed (e.g., a
constant in Σ or a combinator), then Eϕ(A) ≡ Eø(A), so certainly Eϕ(A) ∼ Eø(A).
Finally, if A is an application of two SK-combinatory formulae F and B, then by
the inductive hypothesis we have Eϕ(F) ∼ Eø(F) and Eϕ(B) ∼ Eø(B). Since ∼
respects application, Eϕ(FB) ≡ Eϕ(F)@Eϕ(B) ∼ Eø(F)@Eø(B) ≡ Eø(FB). a

We can use this result to show the same property holds for all formulae.

Lemma 3.31. Let J ≡ (D ,@,E) be a Σ-evaluation, ϕ and ø assignments into J
withϕ ∼ ø, and∼ a congruence onJ . For every formulaA, we haveEϕ(A) ∼ Eø(A).

Proof. Let A ∈ wffα(Σ) for some type α. By Lemma 3.29 there is an SK-
combinatory formula A′ that â-reduces to A. By Remark 3.19 and Lemma 3.30,
we have Eϕ(A) ≡ Eϕ(A′) ∼ Eø(A′) ≡ Eø(A). a

Remark 3.32 (Correspondence with logical relations). Lemma3.31 is essentially
an instance of the “Basic Lemma” for logical relations (Lemma 8.2.5 in [44]). In
fact, ∼ is functional, iff ∼ is a logical relation over the applicative structure. If ∼
is not functional, it still satisfies this “Basic Lemma” property, which makes it a
pre-logical relation in the sense of [31].

Definition 3.33 (Quotient Σ-evaluation). LetJ ≡ (D ,@,E) be aΣ-evaluation,
∼ a congruence on J and let (D∼,@∼) be the quotient applicative structure of
(D ,@) with respect to ∼.
For each A ∈ D∼α , we choose a representative A∗ ∈ A. So, [[A∗]]∼ ≡ A. Note
that [[a]]∗∼ ∼ a for every a ∈ Dα . For any assignment ϕ into J /∼, let ϕ∗ be the
assignment into J given by ϕ∗(X) := ϕ(X)∗. Note that ϕ ≡ ð∼ ◦ ϕ∗. So we can
define E∼ϕ as ð∼ ◦Eϕ∗ , and callJ /∼ := (D∼,@∼,E ∼) the quotient Σ-evaluation of

J modulo∼. (By Lemma 3.31, the definition of E ∼ does not depend on the choice
of representatives.)

This definition is justified by the following theorem.

Theorem 3.34 (Quotient Σ-evaluation theorem). If J is a Σ-evaluation and ∼ is
a congruence on J , then J /∼ is a Σ-evaluation.

Proof. We prove that E ∼ is an evaluation function by verifying the conditions
in Definition 3.18. For any assignment ϕ into the quotient applicative structure, let

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1043

ϕ∗ be the assignment with ϕ ≡ ð∼ ◦ ϕ∗ as in Definition 3.33. First, we compute
E ∼ϕ

∣

∣

V
≡ (ð∼ ◦ Eϕ∗)

∣

∣

V
≡ ð∼ ◦Eϕ∗

∣

∣

V
≡ ð∼ ◦ϕ∗ ≡ ϕ. Since ð∼ is a homomorphism

we have

E∼ϕ (FA) ≡ ð∼(Eϕ∗(FA))

≡ ð∼(Eϕ∗(F)@Eϕ∗(A))

≡ ð∼(Eϕ∗(F))@∼ð∼(Eϕ∗(A))

≡ E ∼ϕ (F)@
∼E∼ϕ (A).

If ϕ and ø coincide on free(A), then E ∼ϕ (A) ≡ [[Eϕ∗(A)]]∼ ≡ [[Eø∗(A)]]∼ ≡ E∼ø (A)

since this entails that ϕ∗ and ø∗ coincide on free(A) too (as we have chosen par-
ticular representatives for each equivalence class). Finally, E ∼ϕ (A) ≡ [[Eϕ∗(A)]]∼ ≡

[[Eϕ∗(A


y

â
)]]∼ ≡ E ∼ϕ (A



y

â
). a

Definition 3.35 (Term evaluations for Σ). Let cwff(Σ)


y

â
be the collection of

closed well-formed formulae in â-normal form and A@âB be (AB)


y

â
. For the

definition of an evaluation function let ϕ be an assignment into cwff(Σ)


y

â
. Note

that ó := ϕ
∣

∣

free(A)
is a substitution, since free(A) is finite. Thus we can choose

E
â
ϕ (A) := ó(A)



y

â
. We call TE(Σ)

â
:= (cwff



y

â
,@â ,E â) the â-term evaluation

for Σ.
Analogously, we can defineTE(Σ)

âç
:= (cwff↓âç ,@

âç,E âç) the âç-term evalua-
tion for Σ.

The name term evaluation in the previous definition is justified by the following
lemma.

Lemma 3.36. TE(Σ)
â
is a Σ-evaluation andTE(Σ)

âç
is a functional Σ-evaluation.

Proof. The fact that (cwff(Σ)


y

â
,@â) is an applicative structure is immediate:

For each type α, cwffα(Σ)


y

â
is non-empty (by the assumption in Remark 3.16) and

@â : cwffα→â(Σ)


y

â
× cwffα(Σ)



y

â
−→ cwffâ(Σ)



y

â
.

We next check that E â is an evaluation function.

(1) E âϕ (X) ≡ ϕ
∣

∣

free(X)
(X) ≡ ϕ(X).

(2) E âϕ respects application since ó(FA)


y

â
≡

(

ó(F)


y

â
ó(A)



y

â

)


y

â
where ó ≡

ϕ
∣

∣

free(FA)
.

(3) E âϕ (A) ≡
(

ϕ
∣

∣

free(A)
(A)

)

y

â
≡

(

ϕ′
∣

∣

free(A)
(A)

)

y

â
≡ E âϕ′(A) whenever ϕ and ϕ′

coincide on free(A).

(4) E âϕ (A) ≡ ó(A)


y

â
≡ ó(A



y

â
)


y

â
≡ E âϕ (A



y

â
) where ó ≡ ϕ

∣

∣

free(A)
.

A similar argument shows that TE(Σ)
âç
is a Σ-evaluation. Also, one can show

TE(Σ)
âç
is functional using an argument similar to Lemma 3.14 since Σ is infinite

at all types by Remark 3.16. (Alternatively, one can simply apply Lemma 3.14
and Theorem 3.13 to note that the applicative structure cwff(Σ)/≡âç is functional.
The applicative structure cwff(Σ)/≡âç is isomorphic to the applicative structure

1044 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

(cwff(Σ)


y

âç
,@âç). One can easily show that functionality is preserved under iso-

morphism.) a

Remark 3.37. Note that TE(Σ)
â
is not a functional Σ-evaluation since, for in-

stance, for any constant hã→ä ∈ Σ

(ëXã hã→äX)@
âCã ≡ h@

âC

for all C in TEã (Σ)
â
but ëX hX 6≡ h.

Remark 3.38. One can show that an evaluation function E for an applicative
structure (D ,@) is uniquely determined by its values E (c) on the constants c ∈ Σ
and its values E (S) and E (K) on the combinators S and K . When the applicative
structure is functional, even the values of each E (S) and E (K) are determined, so
that E is uniquely determined by its values E (c) for c ∈ Σ.

Definition 3.39 (Homomorphism on Σ-evaluations). Let J 1 := (D 1,@1,E 1)
and J 2 := (D 2,@2,E 2) be Σ-evaluations. A Σ-homomorphism is a typed function
κ : D 1 −→ D 2 such that κ is a homomorphism from the applicative structure
(D 1,@1) to the applicative structure (D 2,@2) and κ

(

E 1ϕ (A)
)

≡ E 2κ◦ϕ(A) for every

A ∈ wffα(Σ) and assignment ϕ for J 1.

3.3. Σ-models. The semantic notions so far are independent of the set of base
types. Now, we specialize these to obtain a notion ofmodels by requiring specialized
behavior on the type o of truth values. For this we use the notion of a Σ-valuation
which gives a truth-value interpretation to the domain Do of a Σ-evaluation con-
sistent with the intuitive interpretations of the logical constants. Since models are
semantic entities that are constructed primarily to make a statement about the truth
or falsity of a formula, the requirement that there exists a Σ-valuation is perhaps the
most general condition under which one wants to speak of a model. Thus we will
define ourmost general notion of semantics as Σ-evaluations that have Σ-valuations.

Definition 3.40. Fix two values T 6≡ F. Let J := (D ,@,E) be a Σ-evalua-
tion and õ : Do −→ {T, F} be a (total) function. We define several properties that
characterize logical operators with respect to õ in the table shown in Figure 2.

prop. where holds when for all

L¬(n) n ∈ Do→o õ(n@a) ≡ T iff õ(a) ≡ F a ∈ Do
L∨(d) d ∈ Do→o→o õ(d@a@b) ≡ T iff õ(a) ≡ T or õ(b) ≡ T a, b ∈ Do
L∧(c) c ∈ Do→o→o õ(c@a@b) ≡ T iff õ(a) ≡ T and õ(b) ≡ T a, b ∈ Do
L⇒(i) i ∈ Do→o→o õ(i@a@b) ≡ T iff õ(a) ≡ F or õ(b) ≡ T a, b ∈ Do
L⇔(e) e ∈ Do→o→o õ(e@a@b) ≡ T iff õ(a) ≡ õ(b) a, b ∈ Do
Lα
∀
(ð) ð ∈ D(α→o)→o õ(ð@f) ≡ T iff ∀a ∈ Dα õ(f@a) ≡ T f ∈ Dα→o

Lα∃(ó) ó ∈ D(α→o)→o õ(ó@f) ≡ T iff ∃a ∈ Dα õ(f@a) ≡ T f ∈ Dα→o
Lα=(q) q ∈ Dα→α→o õ(q@a@b) ≡ T iff a ≡ b a, b ∈ Dα

Figure 2. Logical properties in Σ-models.

Definition 3.41 (Σ-model). Let J := (D ,@,E) be a Σ-evaluation. A function
õ : Do −→ {T, F} is called a Σ-valuation for J if L¬(E (¬)) and L∨(E (∨)) hold,

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1045

and for every type α Lα∀(E (Π
α)) holds. In this case,M := (D ,@,E , õ) is called a

Σ-model.
For the case of (the optional) primitive equality, i.e., when =α∈ Σα→α→o for all
types α, we sayM is a Σ-model with primitive equality if Lα=(E (=

α)) holds for every
type α.
We say that ϕ is an assignment intoM if it is an assignment into the underlying
applicative structure (D ,@). Furthermore, ϕ satisfies a formula A ∈ wffo(Σ) inM
(we writeM |=ϕ A) if õ(Eϕ(A)) ≡ T. We say thatA is valid inM (andwriteM |= A)
ifM |=ϕ A for all assignments ϕ. When A ∈ cwffo(Σ), we drop the reference to the
assignment and use the notationM |= A. Finally, we say thatM is a Σ-model for a
set Φ ⊆ cwffo(Σ) (we writeM |= Φ) ifM |= A for all A ∈ Φ.
AΣ-modelM := (D ,@,E , õ) is called functional [full, standard] if the applicative
structure (D ,@) is functional [full, standard]. Similarly, M is called ç-functional
[î-functional] if the evaluation (D ,@,E) is ç-functional [î-functional]. We say M
is a Σ-model over a frame if (D ,@) is a frame.

Remark 3.42 (Adding primitive equality). In the definition of Σ-model above,
the addition of propertyLα=(E (=

α)) addressing the case of primitive equality above
has a purely practical motivation: calculi with a primitive treatment of equality,
see for instance [10, 11], may provide a more effective approach to equational
reasoning in higher-order logic than the exclusive use of Leibniz equality. Therefore
we enrich our theory to automatically also address the situationwhere (always built-
in) Leibniz equality and (optional) primitive equality are simultaneously present
in the language. The generalization to primitive equality is less trivial than the
generalization to other (optional) primitive logical connectives such as ∧ or ⇒.
This is the main reason why we built primitive equality directly into our theory
while we omit other logical primitives (cf. also Remarks 3.47 and 6.9).

Lemma 3.43 (Truth and falsity in Σ-models). Let M := (D ,@,E , õ) be a Σ-
model andϕ an assignment. LetTo := ∀Po P ∨ ¬P andFo := ¬To. Then õ(Eϕ(To))
≡ T and õ(Eϕ(Fo)) ≡ F.

Proof. LetP be a variable of type o. We have õ(Eϕ(To)) ≡ T, iff õ(Eϕ(P∨¬P)) ≡
T for every assignment ϕ. The properties of õ show that this statement is equivalent
to õ(ϕ(P)) ≡ T or õ(ϕ(P)) ≡ F, which is always true since õ maps into {T, F}. Note
further that õ(Eϕ(Fo)) ≡ F since õ(Eϕ(To)) ≡ T. a

Remark 3.44. Let M := (D ,@,E , õ) be a Σ-model. By Lemma 3.43, Do must
have at least the two elements Eϕ(To) and Eϕ(Fo), and õ must be surjective.

Remark 3.45. In contrast to the case of Henkin models, Definition 3.41 only
constrains the functional behavior of the values of the logical constants with respect
to õ. This does not fully specify these values since

• M need not be functional,
• and there can be more than two truth values.

We will now introduce semantical properties called q, ç, f, and b, which we will
use to characterize different classes of Σ-models.

Definition 3.46 (Properties q, ç, î, f and b). Given a Σ-model M := (D ,@,E ,
õ), we say thatM has property

1046 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

q: iff for all α ∈ T there is some qα ∈ Dα→α→o such that Lα=(q
α) holds.

ç: iffM is ç-functional.
î: iffM is î-functional.
f: iffM is functional. (This is generally associated with functional extensionality.)
b: iff Do has at most two elements. By Lemma 3.44 we can assume without loss
of generality that Do ≡ {T, F}, õ is the identity function, Eϕ(To) ≡ T and
Eϕ(Fo) ≡ F. (This is generally associated with Boolean extensionality.)

Remark 3.47 (Choice of logical constants). The work presented in this article is
based on the choice of the primitive logical constants ¬, ∨, and Πα . We have
also introduced shorthand for formulas constructed using ∧,⇒,⇔, and existential
quantification. One can (easily; cf. Lemma 3.48) verify that in any Σ-model M ≡
(D ,@,E , õ), each of the propertiesL∧(E (ëXoYo X ∧Y)), L⇒(E (ëXoYo X ⇒ Y)),
L⇔(E (ëXoYo X ⇔ Y)) and Lα∃(E (ëPα→o ∃Xα PX)) (for each type α) hold with
respect to õ. In this sense, our choice of logical constants and shorthand for
other logical constants is sufficient. However, Leibniz equality Qα will only satisfy
Lα=(E (Q

α)) for each type α iff the model satisfies property q (cf. Remark 3.52 and
Theorem 3.63).
On the other hand, in the absence of extensionality, one can gain some (limited)
expressive power by including extra logical constants such as ∧ in the signature.
This is the case since there may be several objects in c ∈ Do→o→o such that L∧(c)
holds. So, one could have a Σ-modelM ≡ (D ,@,E , õ) (where ∧ is also in Σ) such
that L∧(E (∧)) holds, but E (∧) 6≡ E (ëXoYo ¬(¬X ∨ ¬Y)). We will not investigate
this possibility here.
Our choice of logical constants differs from Andrews’ choice [6] who considers
primitive equality as the only logical primitive fromwhich all other logical operators
are defined using the definitions in Figure 3. For the sake of clarity, we write
qα for =α when =α is not being written in infix notation. For Henkin models,
the definitions in Figure 3 are appropriate. However, without extensionality, the
situation is quite different. SupposeJ ≡ (D ,@,E) is a Σ-evaluation where =α∈ Σ
for every type α. Let õ : Do −→ {T, F} be a function such thatLα=(E (=

α)) holds for
each typeα. The fact that õ(E (To)) ≡ T follows directly fromLo→o→o= (E (=o→o→o))
and reflexivity of (meta-level) equality. Unfortunately, this is the last definition
which is clearly appropriate without further assumptions. So long as Do has more
than one element, one can show õ(E (Fo)) ≡ F. So, let us explicitly assume Do

To := qo =o→o→o qo

Fo := (ëXo To) =o→o (ëXo X)
¬o→o := qoFo
Πα := qα→o(ëXα To)

∧o→o→o := ëXoYo (ëGo→o→o GToTo) =(o→o→o)→o (ëGo→o→o GXY)
⇒o→o→o := ëXoYo (X =o (X ∧ Y))
∨o→o→o := ëXoYo ¬(¬X ∧ ¬Y)
Σα := ëPα→o (¬ΠαëXα ¬(PX))

Figure 3. A definition of logical constants from equality in
Henkin models.

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1047

has more than one element, which is anyway met by Σ-models (cf. Remark 3.44).
Next, we investigate whether L¬(E (¬)) holds. Let a ∈ Do be given. By Lo=(E (=

o)),
we know õ(E (=o)@E (Fo)@a) ≡ T is equivalent to E (Fo) ≡ a. So, if õ(E (=o)@
E (Fo)@a) ≡ T, then õ(a) ≡ õ(E (Fo)) ≡ F. For the converse, suppose õ(a) ≡ F.
This, in general, does not imply E (Fo) ≡ a. However, if we assume a is the
unique member of Do such that õ(a) ≡ F, then we can conclude E (Fo) ≡ a. In
particular, ifDo has only two elements, then õmust be injective andwe can conclude
E (Fo) ≡ a. So, Boolean extensionality is required to ensure that L¬(E (¬)) holds
for this definition of ¬.
We now investigate whether Lα∀(E (Π

α)) holds for Πα defined as in Figure 3.
Let f ∈ Dα→o be given. Suppose õ(E (=α→o)@E (ëXα To)@f) ≡ T. Then, by
Lα→o= (E (=α→o)), we know E (ëXα To) ≡ f. This does guarantee E (To) ≡ f@a and
hence õ(f@a) ≡ T for every a ∈ Dα . However, showing the converse requires that
M is functional (i.e., strong functional extensionality is given). Suppose õ(E (=α)@
E (ëXα To)@f) ≡ F. We can conclude E (ëXα To) 6≡ f, but this is of little value. IfJ
is not functional, then these may be different representatives in Dα→o of the same
function. If J is functional, there must be some a ∈ Dα such that E (To) 6≡ f@a.
However, this still does not imply õ(f@a) ≡ F. IfDo has only two elements, then the
facts thatE (To) 6≡ f@a and E (To) 6≡ E (Fo) imply E (Fo) ≡ f@a, hence õ(f@a) ≡ F.
Similar observations apply to the other definitions in Figure 3. These definitions
do show that at least To and Fo are definable from primitive equality (so long asDo
has at least two elements). Furthermore, ifDo has exactly two elements¬ is definable
from primitive equality. We conjecture that this is asmuch as one can define in terms
of primitive equality without extensionality assumptions. That is, we conjecture
that without assumingDo has two elements, there may be no object n ∈ Do→o such
that L¬(n) holds. Furthermore, we conjecture that without assuming functionality
and thatDo has two elements, there may be no object d ∈ Do→o→o such that L∨(d)
holds, and there may be no object ð ∈ D(α→o)→o such that L

α
∀(ð) holds.

The next lemma formally verifies thatL⇔(E (ëXoYo X ⇔ Y)) holds with respect
to the valuation of a Σ-model, as indicated in the remark above.

Lemma 3.48 (Equivalence). Let M := (D ,@,E , õ) be a Σ-model, ϕ an assign-
ment intoM , and A,B ∈ wffo(Σ). õ(Eϕ(A⇔ B)) ≡ T iff õ(Eϕ(A)) ≡ õ(Eϕ(B)).

Proof. Suppose õ(Eϕ(A ⇔ B)) ≡ T. This implies õ(Eϕ(¬A ∨ B)) ≡ T and
õ(Eϕ(¬B∨A)) ≡ T. If õ(Eϕ(A)) ≡ T, then õ(Eϕ(¬A∨B)) ≡ T implies õ(Eϕ(B)) ≡ T,
so õ(Eϕ(A)) ≡ T ≡ õ(Eϕ(B)). If õ(Eϕ(A)) ≡ F, then õ(Eϕ(¬B ∨ A)) ≡ T implies
õ(Eϕ(B)) ≡ F, so õ(Eϕ(A)) ≡ F ≡ õ(Eϕ(B)). Since these are the only two possible
values for õ(Eϕ(A)), we have õ(Eϕ(A)) ≡ õ(Eϕ(B)).
Suppose õ(Eϕ(A)) ≡ õ(Eϕ(B)). Either õ(Eϕ(A)) ≡ õ(Eϕ(B)) ≡ T or õ(Eϕ(A)) ≡
õ(Eϕ(B)) ≡ F. An easy consideration of both cases verifies õ(Eϕ(¬A∨B)) ≡ T and
õ(Eϕ(¬B ∨ A)) ≡ T. Hence, õ(Eϕ(A⇔ B)) ≡ T. a

We next define classes of Σ-models in which certain properties hold. These classes
are denoted byM∗ where ∗ ∈ {â,âç,âî,âf,âb,âçb,âîb,âfb}. The subscript â is
always included to emphasize that â-equal terms are interpreted to be identical
elements in all models (cf. Remark 3.19). The subscripts ç, î, f and b indicate when
the corresponding properties must hold (cf. Definition 3.46). Note that we are not
including property q as an explicit subscript. The only Σ-models we need to consider

1048 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

which do not satisfy property q are term models. It will turn out (cf. Theorem 3.62)
thatwe canobtain amodel satisfying propertyq fromamodel that does notby taking
a quotient. However, this may not preserve properties î or f. Consequently, we omit
q as a subscript and define the setsM∗ (for ∗ ∈ {â,âç,âî,âf,âb,âçb,âîb,âfb}) so
that every model inM∗ satisfies property q. (This choice will be discussed further
in Remark 3.52.)

Definition 3.49 (Higher-order model classes). We will denote the class of Σ-
models that satisfy property q byMâ , and we will use subclasses ofMâ depending
on the validity of the properties ç, î, f, and b. We obtain the specialized classes
of Σ-models Mâç , Mâî , Mâf, Mâb, Mâçb, Mâîb, and Mâfb by requiring that the
properties specified in the index are valid.
If primitive equality is in the signature, i.e., if =α∈ Σα→α→o , then we require the
models to be Σ-models with primitive equality. Note that in this case property q is
automatically ensured.

We can group these eight classes in two dimensions as in Figure 4 based on the
“amount of extensionality” required.

functional

Boolean
none weak (ç) weak (î) strong (f)

none Mâ Mâç Mâî Mâf

b Mâb Mâçb Mâîb Mâfb

Figure 4. Extensional model classes.

Definition 3.50 (Σ-Henkin models). A Σ-Henkin model is a model M over a
frame with M ∈ Mâfb. We denote the class of all Σ-Henkin models by H. (Such
models are called general models in [2] and [6]. We avoid this terminology here since
we consider models which are more general than these.)

Definition 3.51 (Σ-standard models). A Σ-standard model is a Σ-Henkin model
that is also full (i.e., a model M ∈ Mâfb over a standard frame). The class of all
Σ-standard models is denoted by ST.

Remark 3.52 (Property q). The purpose of property q is to ensure that for all
types α there is an object qα in Dα→α→o representing meta equality for the do-
main Dα . This ensures the existence of objects representing unit sets {a} for each
a ∈ Dα in the domains Dα→o , which in turn makes Leibniz equality the intended
equality relation. This is because membership in these unit sets can be used as
an appropriately strong criterion to distinguish between different elements of Dα .
This aspect is discussed in detail by Peter Andrews in [2]. He notes that Leon
Henkin unintentionally introduced in [26] a class of models which need not satisfy
property q instead of the class of Henkin models in the sense above. As Andrews
shows, a consequence is that such a model may fail to satisfy the principle of strong
functional extensionality (cf. Definition 4.5) given by the formula

∀Fé→é ∀Gé→é (∀Xé FX
.
=
é
GX)⇒ F

.
=
é→é
G

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1049

even though the model (as a model over a frame) is functional. Andrews fixed
this problem by introducing property q. Here, we have followed this by requiring
property q in all our model classesM∗.

Now let us extend the notion of a quotient evaluation to Σ-models.

Definition 3.53 (Σ-model congruences). A congruence on a Σ-model M ≡ (D ,
@,E , õ) is a congruence on the underlying Σ-evaluation (D ,@,E) such that õ(a) ≡
õ(b) for all a, b ∈ Do with a ∼ b.

Definition 3.54 (Quotient Σ-model). LetM ≡ (D ,@,E , õ) be a Σ-model, ∼ be
a congruence onM , and (D∼,@∼,E ∼) be the quotient Σ-evaluation of (D ,@,E)
with respect to∼ (cf. Definition 3.33). Using the notation for representativesA∗ ∈ A

for A ∈ D∼α as in Definition 3.33, we define õ
∼ : D∼o −→ {T, F} by õ∼(A) := õ(A∗)

for every A ∈ D∼o . (Since õ(a) ≡ õ(b) whenever a ∼ b in Do, this definition
of õ∼ does not depend on the choice of representatives and õ∼([[a]]∼) ≡ õ(a) for
every a ∈ Do.) We callM/∼ := (D∼,@∼,E ∼, õ∼) the quotient Σ-model ofM with
respect to ∼.

Theorem 3.55 (Quotient Σ-model theorem). Let M ≡ (D ,@,E , õ) be a Σ-
model and∼ be a congruence onM . The quotientM/∼ is a Σ-model.
Furthermore, if for every type α, =α∈ Σα and we have õ(E (=α)@a@b) ≡ T iff

a ∼ b for every a, b ∈ Dα , thenM/∼ is a Σ-model with primitive equality.

Proof. We check the conditions of Definition 3.41, again using the A∗ notation
for representatives. To check condition L¬(E∼(¬)) for õ∼, for all A ∈ D∼o we
need to show that õ∼(E ∼(¬)@∼A) ≡ T iff õ∼(A) ≡ F. Let A ∈ D∼o be given.
Since M is a Σ-model we have õ(E (¬)@A∗) ≡ T iff õ(A∗) ≡ F. Since [[A∗]]∼ ≡ A

and [[E (¬)@A∗]]∼ ≡ E ∼(¬)@∼A, we have õ∼(E ∼(¬)@∼A) ≡ T iff õ∼(A) ≡ F.
Checking condition L∨(E ∼(∨)) for õ∼ is analogous.
To check condition Lα∀(E

∼(Πα)) for õ∼, suppose we have G ∈ D∼α→o . For every
A ∈ D∼α , õ

∼(G@∼A) ≡ õ(G∗@A∗). So, if õ∼(G@∼A) ≡ T for every A ∈ D∼α , then
õ(G∗@a) ≡ õ(G∗@[[a]]∗∼) ≡ T for every a ∈ Dα , and we conclude õ(E (Πα)@G∗) ≡
T. Hence, õ∼(E ∼(Πα)@∼G) ≡ T. Conversely, suppose õ∼(E∼(Πα)@G) ≡ T.
Then õ(E (Πα)@G∗) ≡ T and hence õ∼(G@A) ≡ õ(G∗@A∗) ≡ T for everyA ∈ D∼α .
Suppose primitive equality is in the signature and õ(E (=α)@a@b) ≡ T iff a ∼ b

for every a, b ∈ Dα . To verify Lα=(E
∼(=α)) holds for õ∼, we simply note that

õ∼(E ∼(=α)@∼A@∼B) ≡ T, iff õ(E (=α)@A∗@B∗) ≡ T, iff A∗ ∼ B∗, iff A ≡ B. a

We can define properties of a congruence analogous to those defined for models
in Definition 3.46.

Definition 3.56 (Properties ç, î, f and b for congruences). Given a Σ-model
M := (D ,@,E , õ) and a congruence ∼ onM , we say∼ has property

ç: iff Eϕ(A) ∼ Eϕ(A↓âç) for any type α, A ∈ wffα(Σ), and assignment ϕ.

î: iff for all α, â ∈ T , M ,N ∈ wffâ(Σ), assignment ϕ, and variables Xα ,
Eϕ(ëXαMâ) ∼ Eϕ(ëXα Nâ) whenever Eϕ,[a/X](M) ∼ Eϕ,[a/X](N) for every
a ∈ Dα .

f: iff ∼ is functional.
b: iff Do has at most two equivalence classes with respect to ∼. (By Remark 3.44
there are always at least two.)

1050 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

Remark 3.57. It follows trivially from reflexivity of congruences that if a model
satisfies property ç, then any congruence on themodel satisfies property ç. Similarly,
if a model has only two elements in Do, then Do can have at most two equivalence
classes with respect to any congruence ∼. So, if a model satisfies property b, then
any congruence on the model satisfies property b. This is not true for properties î
or f. For an example, we refer to the functional model (satisfying property f, hence
property î) constructed by Andrews in [2]. Using the results we prove below, one
can show Leibniz equality must induce a congruence failing to satisfy properties î
and f on this functional model.

Lemma 3.58. Let M be a Σ-model, Φ ⊆ cwffo(Σ), and ∼ be a congruence onM .
We have M/∼ |= Φ iff M |= Φ. Furthermore, if ∗ ∈ {ç, î, f, b} and ∼ satisfies
property ∗, thenM/∼ satisfies property ∗.

Proof. LetAo ∈ Φ. Since A is closed,M |= A, iff õ(E (A)) ≡ T, iff õ∼(E ∼(A)) ≡
T, iffM/∼ |= A. So,M |= Φ iffM/∼ |= Φ.
Suppose ∼ satisfies property ç. Let A ∈ wffα(Σ), and an assignment ϕ intoM/∼
be given. Let ϕ∗ be a corresponding assignment intoM (cf. Definition 3.33). Since
∼ satisfies property ç, we know Eϕ∗(A) ∼ Eϕ∗(A↓âç). Taking equivalence classes,

we have E∼ϕ (A) ≡ E
∼
ϕ (A↓âç).

Suppose ∼ satisfies property î. Let M ,N ∈ wffâ (Σ), a variable Xα and an
assignment ϕ into M/∼ be given. Again, let ϕ

∗ be a corresponding assignment
into M . Suppose E ∼ϕ,[A/X](M) ≡ E ∼ϕ,[A/X](N) for every A ∈ D∼α . This means

Eϕ∗,[A∗/X](M) ∼ Eϕ∗,[A∗/X](N) for every A ∈ D∼α . For any a ∈ Dα , using
Lemma 3.31, we know

Eϕ∗,[a/X](M) ∼ Eϕ∗,[A∗/X](M) ∼ Eϕ∗ ,[A∗/X](N) ∼ Eϕ∗,[a/X](N)

where A ∈ D∼α is the equivalence class of a. Since ∼ satisfies property î, we
know that Eϕ∗(ëX M) ∼ Eϕ∗(ëX N). Taking equivalence classes, we see that
E ∼ϕ (ëX M) ≡ E

∼
ϕ (ëX N).

If ∼ is functional (satisfies property f), we know M/∼ is functional (satisfies
property f) by Theorem 3.13.
Finally, if∼ satisfies property b, then clearlyD∼o has only two elements. So,M/∼
satisfies property b. a

Definition 3.59 (Congruence relation
.
∼). LetM ≡ (D ,@,E , õ) be a Σ-model.

Let qα ∈ Dα→α→o be E (Q
α), i.e., the interpretation of Leibniz equality at type α.

We define a
.
∼ b in Dα iff õ(qα@a@b) ≡ T.

Before checking
.
∼ is a congruence, we first show that it is at least reflexive.

Lemma 3.60. LetM be a Σ-model. For each type α and a ∈ Dα , we have a
.
∼ a.

Proof. We need to check õ(E (Qα)@a@a) ≡ T. Let Xα be a variable of type α
and ϕ be some assignment with ϕ(X) ≡ a. Let r := Eϕ(ëPα→o ¬(PX) ∨ PX)).
For any p ∈ Dα→o , since E is an evaluation function, we have

õ(r@p) ≡ õ(Eϕ,[p/P](¬(PX) ∨ PX)).

AsM is a Σ-model, we have õ(Eϕ,[p/P](¬(PX) ∨ PX)) ≡ T since either

õ(Eϕ,[p/P](PX)) ≡ T or õ(Eϕ,[p/P](¬(PX))) ≡ T.

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1051

So, again since M is a Σ-model, õ(E (Πα→o)@r) ≡ T. By the definitions of r and
.
=α , we have õ(Eϕ(X

.
=α X)) ≡ T. As X

.
=α X is a â-reduct of QαXX , we have

õ(Eϕ(Q
αXX)) ≡ T as well. Using ϕ(X) ≡ a, we see that õ(E (Qα)@a@a) ≡ T. a

In order to check that
.
∼ is a congruence, it is useful to unwind the definitions to

better characterize when a
.
∼ b for a, b ∈ Dα .

Lemma 3.61 (Properties of
.
∼). Let M be a Σ-model. For each type α and a, b ∈

Dα , the following are equivalent:

(1) a
.
∼ b.

(2) For all variables Xα and Yα and assignments ϕ such that ϕ(X) ≡ a and
ϕ(Y) ≡ b, we have õ(Eϕ(X

.
=
α
Y)) ≡ T.

(3) For every p ∈ Dα→o, õ(p@a) ≡ T implies õ(p@b) ≡ T.
(4) For every p ∈ Dα→o, õ(p@a) ≡ õ(p@b) .

Proof. At each type α, let qα ∈ Dα→α→o be the interpretation E (Q
α) of Leibniz

equality. By definition, a
.
∼ b iff õ(qα@a@b) ≡ T.

To show (1) implies (2), suppose a
.
∼ b and ϕ is an assignment with ϕ(Xα) ≡ a

and ϕ(Yα) ≡ b. Since õ(qα@a@b) ≡ T, we have õ(Eϕ(Q
αXY)) ≡ T. Since E

respects â-equality (cf. Remark 3.19), we have õ(Eϕ(X
.
=α Y)) ≡ T.

To show (2) implies (3), suppose õ(Eϕ(X
.
=
α
Y)) ≡ T whenever ϕ is an as-

signment with ϕ(X) ≡ a and ϕ(Y) ≡ b. Let X and Y be particular distinct
variables of type α and ϕ be any such assignment with ϕ(X) ≡ a and ϕ(Y) ≡ b.
Let p ∈ Dα→o with õ(p@a) ≡ T and a variable Pα→o be given. By assumption,
õ(Eϕ(∀Pα→o ¬(PX) ∨ (PY))) ≡ T. Since õ(Eϕ,[p/P](PX)) ≡ õ(p@a) ≡ T, we have
õ(p@b) ≡ õ(Eϕ,[p/P](PY)) ≡ T.
To show (3) implies (4), let p ∈ Dα→o be given. If õ(p@a) ≡ T, then we have
õ(p@b) ≡ T by assumption. So, õ(p@a) ≡ õ(p@b) in this case. Otherwise, we
must have õ(p@a) ≡ F. Let q := Eϕ(ëXα ¬(Pα→oX)) where ϕ is some assignment
with ϕ(P) := p. Since M is a model, õ(q@a) ≡ õ(E (¬)@(p@a)) ≡ T. Applying
the assumption to q, we have õ(q@b) ≡ T and so õ(E (¬)@(p@b)) ≡ T. Thus,
õ(p@b) ≡ F and õ(p@a) ≡ õ(p@b) in this case as well.
To show (4) implies (1), suppose õ(p@a) ≡ õ(p@b) for every p ∈ Dα→o. In par-
ticular, this holds for p := qα@a ∈ Dα→o. Since õ(q

α@a@a) ≡ T by Lemma 3.60,
we must have õ(qα@a@b) ≡ T. That is, a

.
∼ b. a

Theorem 3.62 (Properties ofM/.∼). LetM be a Σ-model. Then
.
∼ is a congruence

relation on the modelM andM/.∼ satisfies property q. Furthermore, if for every type
α, =α∈ Σα and õ(E (=α)@a@b) ≡ T iff a

.
∼ b for all a, b ∈ Dα , then M/.∼ is a

Σ-model with primitive equality.

Proof. We first verify that
.
∼ is an equivalence relation on each Dα . Reflexivity

was shown in Lemma 3.60. To check symmetry and transitivity we use condition
(4) in Lemma 3.61. For symmetry, let a

.
∼ b in Dα and p ∈ Dα→o be given. So,

õ(p@a) ≡ õ(p@b). Generalizing over p, we have b
.
∼ a. For transitivity, let a

.
∼ b

and b
.
∼ c in Dα and p ∈ Dα→o be given. So, õ(p@a) ≡ õ(p@b) ≡ õ(p@c).

Generalizing over p, we have a
.
∼ c.

We next verify that
.
∼ is a congruence. Suppose f

.
∼ g in Dα→â and a

.
∼ b ∈ Dα .

To show f@a
.
∼ g@b we use condition (3) in Lemma 3.61. Let p ∈ Dâ→o with

õ(p@(f@a)) ≡ T be given. Let ϕ be an assignment with ϕ(Pâ→o) ≡ p, ϕ(Xα) ≡ a

1052 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

and ϕ(Gα→â) ≡ g for variables P, X and G . We can use Lemma 3.61(3)
with Eϕ(ëFα→â (P(FX))) and f

.
∼ g to verify that õ(p@(g@a)) ≡ T. Using

Lemma 3.61(3) with Eϕ(ëXα (P(GX))) and a
.
∼ b verifies õ(p@(g@b)) ≡ T. So,

f@a
.
∼ g@b.
It remains to check that õ(a) ≡ õ(b) whenever a

.
∼ b for a, b ∈ Do. Let a

.
∼ b

in Do be given. Applying Lemma 3.61(4) to E (ëXo X) ∈ Do→o we have õ(a) ≡
õ(E (ëXo X)@a) ≡ õ(E (ëXo X)@b) ≡ õ(b) as desired. So,

.
∼ is a congruence

relation onM .
Now, we showM/.∼ satisfies property q. At each type α, let qα ∈ Dα→α→o be the
interpretation E (Qα) of Leibniz equality. To check property q, we show that [[qα]] .∼
is the appropriate object inD

.
∼
α→α→o for each α ∈ T . Let a, b ∈ Dα be given. Note

that [[a]] .∼ ≡ [[b]] .∼ is equivalent to a
.
∼ b.

Also, õ
.
∼([[qα]] .∼@

.
∼[[a]] .∼@

.
∼[[b]] .∼) ≡ T is equivalent to õ(qα@a@b) ≡ T. So, we

need to show that õ(qα@a@b) ≡ T if and only if a
.
∼ b. But this is precisely the

definition of
.
∼.

The statement for primitive equality follows immediately by Theorem 3.55. a

Now, we know that when one takes a quotient of a model M by
.
∼, one obtains

a model satisfying property q. It is worthwhile to note the following relationship
between

.
∼ and property q.

Theorem 3.63. LetM ≡ (D ,@,E , õ) be a Σ-model. The following are equivalent:

(1) M satisfies property q.
(2) For any congruence∼ onM , type α, and a, b ∈ Dα , a ∼ b implies a ≡ b.
(3) For any type α, and a, b ∈ Dα , a

.
∼ b implies a ≡ b.

(4) For any type α, Lα=(E (Q
α)) holds for õ.

Proof. To show (1) implies (2), supposeM satisfies q, ∼ is a congruence onM ,
and a ∼ b for a, b ∈ Dα . Let qα ∈ Dα→α→o be the object at type α guaranteed to
exist by property q. Since a ∼ b, we have (qα@a@a) ∼ (qα@a@b). By property q,
we have õ(qα@a@a) ≡ T (since a ≡ a). Since ∼ is a congruence on the model, we
have õ(qα@a@b) ≡ T. By property q, this means a ≡ b.
Since

.
∼ is a particular congruence onM , we know (2) implies (3).

To show (3) implies (4), we need to show Lα=(E (Q
α)) holds for each type α. By

the definition of
.
∼, for every a, b ∈ Dα we have õ(E (Q

α)@a@b) ≡ T, if and only if
a
.
∼ b, iff a ≡ b. The last equivalence holds by our assumption that a

.
∼ b implies

that a ≡ b, and by Lemma 3.60.
For each type α, Lα=(E (Q

α)) implies E (Qα) is the witness required to show
property q. So, we know (4) implies (1). a

Remark 3.64 (Congruences for Σ-models with primitive equality). Theorem
3.63 shows that once we have a model M which satisfies property q, there are no
nontrivial congruences on M . Hence, there are no nontrivial quotients of M . In
particular, the only possible congruence for a Σ-model with primitive equality is
the trivial congruence given by the identity relation ≡. Consequently, the quotient
construction in the case of a Σ-model with primitive equality leads to essentially the
same model again. We therefore do not consider quotients of models with primitive
equality.

3.4. Σ-models over frames. In this section, we define the notion of an isomor-
phism between two models and show every functional Σ-model is isomorphic to a

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1053

model over a frame. In particular, this shows that the model classMâfb is simply
the closure of the class H of Henkin models under isomorphism of Σ-models.

Definition 3.65 (Σ-model homomorphism/isomorphism). Let M 1 ≡ (D 1,@1,
E 1, õ1) and M 2 ≡ (D 2,@2,E 2, õ2) be Σ-models. A homomorphism from M 1 to
M 2 is a typed function κ : D 1 −→ D 2 such that κ is a homomorphism from the
evaluation (D 1,@1,E 1) to the evaluation (D 2,@2,E 2) and õ1(a) ≡ õ2(κ(a)) for
every a ∈ D 1o .
A homomorphism i fromM 1 toM 2 is called an isomorphism iff there is a homo-
morphism j fromM 2 toM 1 where jα : D 2α −→ D 1α is the inverse of iα : D

1
α −→ D 2α

at each type α. Two models are said to be isomorphic if there is such an isomor-
phism. (It is clear from the definition that this is a symmetric relationship between
models.)

Remark 3.66. The class H of Henkin models is not closed under isomorphism
of models. Neither is the class ST of standard models. This is because Henkin
and standard models require that the domains Dα→â consist of functions from
F (Dα ;Dâ). We may, however, take a given Henkin model and appropriately mod-
ify it to obtain an isomorphic model that is not in the class of Henkin models. For
example, we may choose D ′α→â := { (0, f) | f ∈ Dα→â } and define @ appropri-

ately (cf. Example 5.6 for a similar construction).

Lemma 3.67. LetM 1 andM 2 be isomorphic Σ-models.

(1) For any set of sentences Φ,M 1 |= Φ, iffM 2 |= Φ.
(2) IfM 1 is a Σ-model with primitive equality, thenM 2 is a Σ-model with primitive
equality.

(3) If ∗ ∈ {q, ç, î, f, b} andM 1 satisfies ∗, thenM 2 satisfies ∗.

In particular, each model classM∗ is closed under isomorphism of models.

Proof. Let i be a homomorphism from M 1 ≡ (D 1,@1,E 1, õ1) to M 2 ≡ (D 2,
@2,E 2, õ2) and j be its inverse.
LetΦbe a set of sentenceswithM 1 |= Φ. That is, for everyA ∈ Φ, õ1(E 1(A)) ≡ T.
So, for everyA ∈ Φ, õ2(E 2(A)) ≡ õ1(j(E 2(A))) ≡ õ1(E 1(A)) ≡ T (sinceA is closed,
we can ignore the variable assignment). This showsM 2 |= Φ; the other direction is
obtained by switching indices.
Suppose qα ∈ D 1α→α→o is such thatL

α
=(q

α) holds for õ1. We show thatLα=(i(q
α))

holds for õ2. Given a, b ∈ D 2α . We have a ≡ b, iff j(a) ≡ j(b), iff õ1(qα@1j(a)@1

j(b)) ≡ T, iff õ2(i(qα@1j(a)@1j(b))) ≡ T, iff õ2(i(qα)@2a@2b)) ≡ T.
In particular, suppose M 1 is a Σ-model with primitive equality. Then, we have

Lα=(E
1(=α)) for õ1 at each type α. So, Lα=(i(E

1(=α))) holds for õ2 at each type α.
Since i(E 1(=α)) ≡ E 2(=α), we knowM 2 is a Σ-model with primitive equality.
Next, supposeM 1 satisfies property q. Let α be a type and qα be the witness for
property q in M 1 at α. That is, Lα=(q

α) holds for õ1. We have shown Lα=(i(q
α))

holds for õ2. Hence,M 2 satisfies property q.
SupposeM 1 satisfies property ç. To showM 2 satisfies ç, let A ∈ wffα(Σ) and an
assignment ϕ intoM 2 be given. We compute

E 2ϕ (A) ≡ (i ◦ j)(E
2
ϕ (A)) ≡ i(E

1
j◦ϕ(A))

≡ i(E 1j◦ϕ(A↓âç)) ≡ (i ◦ j)(E
2
ϕ (A↓âç)) ≡ E

2
ϕ (A↓âç).

1054 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

So,M 2 satisfies property ç.
M 2 satisfies î, letM ,N ∈ wffâ (Σ), a variable Xα , and an assignment ø intoM

2

be given. Suppose E 2ø,[b/X](M) ≡ E
2
ø,[b/X](N) for all b ∈ D 2α . For any a ∈ D 1α , we

compute

E 1j◦ø,[a/X](M) ≡ j(E
2
i◦j◦ø,[i(a)/X](M)) ≡ j(E

2
ø,[i(a)/X](M))

≡ j(E 2ø,[i(a)/X](N)) ≡ E
1
j◦ø,[a/X](N).

Since M 1 satisfies property î, we know E 1j◦ø(ëX M) ≡ E
1
j◦ø(ëX N). Finally, we

compute

E 2ø(ëX M) ≡ i(E
1
j◦ø(ëX M)) ≡ i(E

1
j◦ø(ëX N)) ≡ E

2
ø(ëX N).

So,M 2 satisfies property î.
Suppose M 1 satisfies property f and we are given f, g ∈ D 2α→â for types α and

â . Suppose further that f@2b ≡ g@2b for every b ∈ D 2α . It is enough to show
j(f) ≡ j(g). This follows from property f inM 1 if we can show j(f)@1a ≡ j(g)@1a
for every a ∈ D 1α . So, let a ∈ D 1α be given. We finish the proof by computing

j(f)@1a ≡ j(f)@1(j ◦ i)(a) ≡ j(f@2i(a))

≡ j(g@2i(a)) ≡ j(g)@1(j ◦ i)(a) ≡ j(g)@1a.

Finally, ifM 1 satisfies property b, thenD 1o has two elements. Since io : D
1
o −→ D 2o

has inverse jo , D 2o must also have two elements. Thus,M
2 satisfies property b. a

Theorem 3.68 (Models over frames). LetM ≡ (D ,@,E , õ) be a Σ-model which
satisfies property f (i.e., M is functional). Then there is an isomorphic model M fr

over a frame.

Proof. We define the model Mfr := (Dfr ,@fr ,E fr , õfr) by defining its compo-
nents.
We first define the domainsDfr forMfr by induction on types. We simultaneously

define functions iα : Dα −→ Dfrα and jα : D
fr
α −→ Dα which will witness that the

two models are isomorphic. At each step of the definition, we check that iα and jα
are mutual inverses. For base types α ∈ {é, o} let D frα := Dα and iα and jα be the
identity functions (clearly mutual inverses).

Given two types α and â , we assume we haveD frα , mutual inverses iα : Dα → Dfrα
and jα : D

fr
α −→ Dα , as well as D

fr
â and mutual inverses iâ : Dâ → D

fr
â and

jâ : D
fr
â −→ Dâ . We define

D
fr
α→â :=

{

f : Dfrα −→ Dfrâ
∣

∣ ∃f ∈ Dα→â ∀a ∈ Dfrα f(a) ≡ iâ(f@jα(a))
}

.

Note thatDfrα→â ⊆ F (D
fr
α ;D

fr
â). To define themap iα→â : Dα→â −→ D

fr
α→â , we let

iα→â (f) be the function taking each a ∈ Dfrα to iâ(f@jα(a)). This choice for iα→â (f)

is clearly inDfrα→â by definition. To define the inverse map jα→â : D
fr
α→â −→ Dα→â ,

we must use the fact thatM is functional. Given anyf ∈ D frα→â , by definition there

is some f ∈ Dα→â such that f(a) ≡ iâ (f@jα(a)) for every a ∈ Dfrα . (Note that
the function f and object f are different in general.) By functionality and the fact
that the i and j at types α and â are already inverses, this f is unique, since if

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1055

iâ (f@jα(a)) ≡ iâ(g@jα(a)) for every a ∈ Dfrα , then f@jα(iα(a)) ≡ g@jα(iα(a))

for every a ∈ Dfrα . That is, f@a ≡ g@a for every a ∈ Dfrα . So, for every f ∈ Dfrα→â ,

we define jα→â(f) to be the unique f such that f(a) ≡ iâ(f@jα(a)). It is easy to
check that iα→â and jα→â are mutually inverse.

For the applicative structure (Dfr ,@fr) to be a frame, we are forced to let the

application operator @fr to be function application. That is, for every f ∈ D frα→â
and a ∈ Dfrα , f@fra := f(a). We define the evaluation function E fr simply by

E
fr
ϕ (A) := i(Ej◦ϕ(A)) for every A ∈ wffα(Σ) and assignment ϕ into the applicative

structure (Dfr ,@fr). Since Dfro ≡ Do, we can let õfr := õ.
We only sketch the remainder of the proof. First one can show that i and j
preserve application. One can use this fact to verify that E fr is an evaluation
function so that (Dfr ,@fr ,E fr) is a Σ-evaluation, and that õfr ≡ õ is a valuation
function for this evaluation. This verifiesMfr is a model. Finally, to verify one has
an isomorphism, one can easily check the remainder of the conditions for i and j
to be homomorphisms between the models. These are isomorphisms since they are
mutually inverse on the domains of each type. a

We can conclude that Mâfb is simply the closure of the class of H of Henkin
models under isomorphism. Given any M ∈ Mâfb, by Theorem 3.68, there is an
isomorphic modelMfr over a frame. By Lemma 3.67, this modelMfr satisfies q, f,
and b (since M does). Also, if primitive equality is present in the signature, by the
same lemma we knowMfr is a model with primitive equality. That is,Mfr ∈ H.

§4. Properties of model classes. In this section we discuss some properties of the
model classes introduced in section 3. Our interest is in the properties of Leibniz
equality and primitive equality.

Definition 4.1 (Extensionality for Leibniz equality). We call a formula of the
form

EXT
α→â
.
=

:= ∀Fα→â ∀Gα→â (∀Xα FX
.
=â GX)⇒ F

.
=α→â G

an axiom of (strong) functional extensionality for Leibniz equality, and refer to the
set

EXT→.= := {EXTα→â.
=

| α, â ∈ T }

as the axioms of (strong) functional extensionality for Leibniz equality. Note that
EXT→.= specifies functionality of the relation corresponding to Leibniz equality

.
=.

We call the formula

EXTo.= := ∀Ao ∀Bo (A⇔ B)⇒ A
.
=
o
B

the axiom of Boolean extensionality. We call the set EXT→.= ∪ {EXTo.=} the axioms
of (strong) extensionality for Leibniz equality.

In Examples 5.4 to 5.8 below we give concrete models in which EXTo.= and

EXTα→â.
=

fail in various ways. First, we prove relationships between properties q, b

and f and the statements EXTo.= and EXT
→.
= .

Lemma 4.2 (Leibniz equality in Σ-models). LetM := (D ,@,E , õ) be aΣ-model,
ϕ be an assignment, α ∈ T , and A, B ∈ wffα(Σ).

1056 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

(1) If Eϕ(A) ≡ Eϕ(B), then õ(Eϕ(A
.
=α B)) ≡ T.

(2) IfM satisfies property q and õ(Eϕ(A
.
=
α
B)) ≡ T, then Eϕ(A) ≡ Eϕ(B).

Proof. Let ϕ be any assignment into M . For the first part, suppose Eϕ(A) ≡
Eϕ(B). Given r ∈ Dα→o, we have either õ(r@Eϕ(A)) ≡ õ(r@Eϕ(B)) ≡ F or
õ(r@Eϕ(B)) ≡ õ(r@Eϕ(A)) ≡ T. In either case, for any variable Pα→o not in
free(A)∪ free(B), we have õ(Eϕ,[r/P](¬(PA)∨PB)) ≡ T. So, we have Eϕ(A

.
=
α
B) ≡

T.
To show the second part, suppose õ(Eϕ(A

.
=α B)) ≡ T. By property q, there is

some qα ∈ Dα→α→o such that for a, b ∈ Dα we have õ(qα@a@b) ≡ T iff a ≡ b.
Let r ≡ qα@Eϕ(A). From õ(Eϕ(A

.
=
α
B)) ≡ T, we obtain Eϕ,[r/P](¬PA ∨ PB) ≡ T

(where Pα→o /∈ free(A) ∪ free(B)). Since Eϕ,[r/P](PA) ≡ qα@Eϕ(A)@Eϕ(A) ≡ T,
we must have õ(Eϕ,[r/P](PB)) ≡ T. That is, õ(qα@Eϕ(A)@Eϕ(B)) ≡ T. By the
choice of qα , we have Eϕ(A) ≡ Eϕ(B). a

Theorem 4.3 (Extensionality in Σ-models). LetM ≡ (D ,@,E , õ) be a Σ-model.

(1) IfM satisfies property q but not property f, thenM 6|= EXT→.= .
(2) IfM satisfies property q but not property b, thenM 6|= EXTo.=.
(3) IfM satisfies properties q and f, thenM |= EXT→.= .
(4) IfM satisfies property b, thenM |= EXTo.=.

Thus we can characterize the different semantical structures with respect to Boolean
and functional extensionality by the table in Figure 5.7

in Mâ ,Mâç ,Mâî Mâf Mâb,Mâçb,Mâîb Mâfb

formula valid? by valid? by valid? by valid? by

EXT→.= — 1. + 3. — 1. + 3.
EXTo.= — 2. — 2. + 4.7 + 4.7

Figure 5. Extensionality in Σ-models.

Proof. SupposeM satisfies property q but does not satisfy property f. Then there
must be types α and â and objects f, g ∈ Dα→â such that f 6≡ g but f@a ≡ g@a

for every a ∈ Dα . Let Fα→â , Gα→â ∈ Vα→â be distinct variables, Xα ∈ Vα , and
ϕ be any assignment with ϕ(F) ≡ f and ϕ(G) ≡ g. For any a ∈ Dα , f@a ≡ g@a

implies õ(Eϕ,[a/X](FX
.
=
â
GX)) ≡ T by Lemma 4.2(1). Using the fact that õ is a

valuation, we have õ(Eϕ(∀X (FX
.
=â GX))) ≡ T. On the other hand, since f 6≡ g

and M satisfies property q, we have õ(Eϕ(F
.
=α→â G)) ≡ F by contraposition of

Lemma 4.2(2). This impliesM 6|= EXTα→â.
=
.

SupposeM satisfies property q but does not satisfy property b. Then, there must
be at least three elements in Do. Since õ maps into a two element set, there must
be two distinct elements a, b ∈ Do such that õ(a) ≡ õ(b). Let Ao, Bo ∈ Vo be
distinct variables and ϕ be any assignment into M with ϕ(A) ≡ a and ϕ(B) ≡ b.
By Lemma 3.48, we know õ(Eϕ(A ⇔ B)) ≡ T. Since a 6≡ b and property q holds,

7The cases in the figure corresponding toTheorem4.3(4) are actually special cases. InTheorem4.3(4),
we can infer a model satisfies EXTo.

=
even if property q does not hold. However, the models inMâb,

Mâçb,Mâîb andMâfb do satisfy property q by the definition of these model classes.

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1057

by contraposition of Lemma 4.2(2), we know õ(Eϕ(A
.
=o B)) ≡ F. It follows that

M 6|= EXTo.=.
Let ϕ be any assignment into M . From õ(Eϕ(∀Xα FX

.
= GX)) ≡ T we

know õ(Eϕ,[a/X](FX
.
= GX)) ≡ T holds for all a ∈ Dα . By Lemma 4.2(2)

we can conclude that Eϕ,[a/X](FX) ≡ Eϕ,[a/X](GX) for all a ∈ Dα and hence
Eϕ,[a/X](F)@Eϕ,[a/X](X) ≡ Eϕ,[a/X](G)@Eϕ,[a/X](X) for all a ∈ Dα . That is,
Eϕ,[a/X](F)@a ≡ Eϕ,[a/X](G)@a for all a ∈ Dα . Since X does not occur free in
F or G , by property f and Definition 3.18(3) we obtain Eϕ(F) ≡ Eϕ(G). This

finally gives us that õ(Eϕ(F
.
=
α→â

G)) ≡ T with Lemma 4.2(1). It follows that

M |= EXTα→â.
=

andM |= EXT→.= , since α and â were chosen arbitrarily. Note that

we certainly need the assumption that M satisfies property q (which is employed
within the application of Lemma 4.2(2). As explained in Remark 3.52, there is a
functional model in which property q fails and EXTé→é.= is not valid.
Let Ao, Bo ∈ Vo be distinct variables and ϕ be any assignment into M . Since
property b holds, we can assumeDo ≡ {T, F} and õ is the identity function. Suppose
õ(Eϕ(A ⇔ B)) ≡ T. By Lemma 3.48, we have Eϕ(A) ≡ õ(Eϕ(A)) ≡ õ(Eϕ(B)) ≡
Eϕ(B). By Lemma 4.2(1), we have õ(Eϕ(A

.
=o B)) ≡ T. It follows that M |=

EXTo.=. a

Remark 4.4 (Alternative definitions of equality). Leibniz equality is a very
prominent way of defining equality in higher-order logic. However, there are alter-
native definitions such as (cf. [6, p. 203])

..
=α := ëXαYα ∀Qα→α→o (∀Zα QZZ)⇒ QXY.

An important question is whether an alternative definition of equality is equivalent
to the Leibniz definition in particular model classes. As Remark 3.47 shows, this
has to be carefully investigated for each equality definition and each model class
in question. We can show that for all Aα ,Bα ∈ cwffα(Σ) A

..
= B and A

.
= B are

equivalent modulo õ for all M ∈ Mâ (and thus for all other model classes). That
is, we can show õ(E (A

..
=α B)) ≡ õ(E (A

.
=α B)). Note that this is weaker than

showing E (A
..
=α B) ≡ E (A

.
=
α
B). The key idea is to reduce the definition of

..
= to

.
= (and vice versa) by instantiating the universally quantified set variables Q and P
appropriately. We may, for instance, show A

..
=α B implies A

.
=α B by choosing the

instantiation [ëUαVα ∀Pα→o PU ⇒ PV] for Q and the converse by choosing the
instantiation [ëVα ∀Qα→α→o (∀Zα QZZ) ⇒ QAV] for P. As a consequence the
properties of Leibniz equality with respect to extensionality also apply to

..
=.

Definition 4.5 (Extensionality for primitive equality). Analogous to the exten-
sionality axioms for Leibniz equality, we can define the axioms of strong (functional
and Boolean) extensionality for primitive equality:

EXTα→â= := ∀Fα→â ∀Gα→â (∀Xα FX =
â GX)⇒ F =α→â G

EXTo= := ∀Ao ∀Bo (A⇔ B)⇒ A =o B.

As before we refer to the set EXT→= := {EXTα→â= | α, â ∈ T } as the axioms of
(strong) functional extensionality for primitive equality.

The following lemma shows that in a Σ-model with primitive equality for each
α ∈ T the denotations of =α and

.
=
α
are identical modulo õ.

1058 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

Lemma 4.6 (Primitive and Leibniz equality). If M := (D ,@,E , õ) ∈ M∗ is a
Σ-model with primitive equality where ∗ ∈ {â,âç,âî,âf,âb,âçb,âîb,âfb}, then we
have õ(Eϕ(A =α B)) ≡ õ(Eϕ(A

.
=
α
B)) for all assignments ϕ intoM , types α ∈ T ,

and A, B ∈ wffα(Σ).

Proof. Since property q holds forM ∈ M∗, by Lemma 4.2 parts (1) and (2), we
have õ(Eϕ(A

.
=α B)) ≡ T iff Eϕ(A) ≡ Eϕ(B). Since M is a Σ-model with primitive

equality, we know Eϕ(A) ≡ Eϕ(B) is equivalent to õ(E (=
α)@Eϕ(A)@Eϕ(B)) ≡ T,

and hence to õ(Eϕ(A =α B)) ≡ T. a

Remark 4.7. Lemma 4.6 implies that for all models in our model classesM∗ the
extensionality axioms for primitive equality are equivalent to the corresponding
extensionality axioms for Leibniz equality. Thus, the analysis for the Leibniz
versions applies directly to the versions using primitive equality. Also, Lemma 4.6
reinforces that (provided property q holds) we can indeed use Leibniz equality to
treat equality as a defined notion (relative to models inM∗). Thus, we principally
do not need to assume the constants =α to be in our signature. The critical part
in this choice is that for ensuring the correct meaning for Qα we have to require
the existence of an object representing the identity relation for each type in each
Σ-model (cf. [2] for a discussion in the context ofHenkinmodels). This requirement
is automatically met if we consider primitive equality. Hence it seems natural to
treat equality as primitive.

Remark 4.8 (Properties ç and î). We have shown, in the presence of property
q, a model M satisfies property f iff M |= EXT→.= . Similarly, we have shown that
property b corresponds to a model satisfying EXTo.=. A corresponding analysis can
be done for properties ç and î (cf. Definition 3.46). Assume M satisfies property
q. Then, M satisfies property ç iff M |= A

.
=
α
(A↓âç) for every type α and closed

formula A ∈ cwffα(Σ). Also,M satisfies property î iff

M |= ∀Fα→â ∀Gα→â (∀Xα FX
.
=â GX)⇒ (ëX FX)

.
=α→â (ëX GX)

for all types α and â .

§5. Example models. We now sketch the construction of models in the model
classesM∗ to demonstrate concretely how properties for Boolean, strong and weak
functional extensionality can fail. We need this to show that the inclusions (cf.
Figure 1) of the model classes defined in Section 3 are proper, and we indeed need
all of them.
We start with the simplest example of a Henkin model, which we will call the
singleton model, since the domain of individuals is a singleton. Note that the un-
derlying evaluation of this model is not the singleton evaluation from Example 3.26
since Do has two elements. In this model, all forms of extensionality are valid.

Example 5.1 (Singleton model—Mâfb ∈ ST ⊆ H ⊆ Mâfb). Let (D ,@) be the
full frame with Do := {T, F} and Dé := {∗}. One can easily define an evaluation
function E for this frame by induction on terms, using functions to interpret ë-
abstractions. The identity function õ : Do −→ {T, F} is a valuation, assuming the
logical constants are interpreted in the standard way (including primitive equality,
if present in Σ). So, Mâfb := (D ,@,E , õ) defines a model. This model clearly

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1059

satisfies all our properties b, f (hence ç and î) and q (since the frame is full). So,
Mâfb ∈ ST ⊆ H ⊆ Mâfb.

Remark 5.2. In particular, all our model classes are non-empty. By parts (3)
and (4) of Theorem 4.3, we haveMâfb |= EXTo.= andM

âfb |= EXT→.= .

We can use the singleton model Mâfb to construct another model which makes
the importance of property q clear.

Remark 5.3. Let Mâfb ≡ (D ,@,E , õ) as above and TE(Σ)
â
≡ (D â ,@â ,E â)

be the â-term evaluation as defined in Definition 3.35. Let õ′ : D âo −→ {T, F}
be the function õ′(A) := õ(E (A)) for every A ∈ cwffo(Σ)



y

â
. One can show

M ′ := (D â ,@â ,E â , õ′) is a Σ-model such that M ′ |= A iff Mâfb |= A for every
sentence A. In particular,M ′ |= EXTo.= andM

′ |= EXT→.= .
Nevertheless,M ′ fails to satisfy properties q, b, ç and f. Property b does not hold

since D âo ≡ cwffo(Σ)


y

â
is infinite. Property ç does not hold since, for example,

E â (ëFé→éXé FX) ≡ ëFé→éXé FX 6≡ ëFé→é F ≡ E â(ëFé→é F).

Property f cannot hold since property ç does not hold. (On the other hand, property
î does hold since the underlying evaluation is a term evaluation.)
We know now by Theorem 4.3, either part (1) or part (2), that property q must
not hold. A concrete way to see that property q fails is to consider two distinct
constants aé , bé ∈ Σé . We must haveMâfb |= a

.
=é b (sinceDé has only one element),

and soM ′ |= a
.
=
é
b. On the other hand a and b are distinct elements (as distinct

â-normal forms) in D âé .
The modelM ′ shows that property q is needed in the proofs of parts (1) and (2)
of Theorem 4.3.

Example 5.4 (Failure of b—Mâf ∈ Mâf \ Mâfb). Let (D ,@) be the full frame
with Do = {a, b, c} and Dé = {0, 1}. We define an evaluation function E for
this frame by defining E (¬), E (∨), and E (Πα) to be the functions given in the
following table:

E (¬) a b c

c c a

E (∨) a b c

a a a a

b a a a

c a a c

E (Πα)@f =

{

a, if f@g ∈ {a, b} for all g ∈ Dα ,
c, if f@g = c for some g ∈ Dα .

We can choose E (w) to be arbitrary for parameters w ∈ Σ. Since the applicative
structure (D ,@) is a frame, hence functional, this uniquely determines E on all
formulae. Also, since the frame is full, we are guaranteed that there will be enough
functions to interpret ë-abstractions.
Let the map õ : Do −→ {T, F} be defined by õ(a) := T, õ(b) := T and õ(c) := F.
It is easy to check that Mâf := (D ,@,E , õ) is indeed a Σ-model. Since this is a
model over a frame, we automatically know it satisfies property f. Since the frame
is full, we know property q holds. (By the same argument, if primitive equality is
in the signature, we can ensure E (=α) is interpreted appropriately for each type

1060 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

α.) Clearly property b fails, so we have Mâf ∈ Mâf \ Mâfb. By Theorem 4.3(2),

Mâf 6|= EXTo.=.

In this model one can easily verify, if d := Eϕ(Do) and e := Eϕ(Eo), then the
values Eϕ(D ∧ E), Eϕ(D⇒ E), and Eϕ(D⇔ E) are given by the following tables:

e :
E (D ∧ E) a b c

d : a a a c

b a a c

c c c c

e :
E (D⇒ E) a b c

d : a a a c

b a a c

c a a a

e :
E (D⇔ E) a b c

d : a a a c

b a a c

c c c a

Note that one can properly model the woodchuck / groundhog example from [39]
referred to in the introduction inMâf.

Example 5.5 (Groundhogs and woodchucks). Let Mâf be given as above and
suppose woodchucké→o, groundhogé→o, johné , and philé are in the signature Σ. Let
E (phil) := 0 and E (john) := 1. Let E (woodchuck) be the function w ∈ Dé→o
with w(0) ≡ b and w(1) ≡ c. Let E (groundhog) be the function g ∈ Dé→o with
g(0) ≡ a and g(1) ≡ c. One can show that the sentence ∀Xé (woodchuckX) ⇔
(groundhogX) is valid. Also, E (woodchuckphil) ≡ b and E (groundhogphil) ≡ a,
so the propositions (woodchuck phil) and (groundhogphil) are valid. Next, sup-
pose believeé→o→o ∈ Σ and E (believe) is the (Curried) function bel ∈ Dé→o→o such
that bel(1)(b) ≡ b and bel(1)(a) ≡ bel(1)(c) ≡ bel(0)(a) ≡ bel(0)(b) ≡ bel(0)(c) ≡
c (Intuitively, John believes propositions with value b, but not those with value a or
c). So, believes john(woodchuck phil) is valid, while believes john(groundhogphil)
is not.

As we have seen, Boolean extensionality fails when one has more than two values
in Do. We can generalize the construction defining Do := {F} ∪ B , where B is
any set with T ∈ B and F /∈ B . The model will satisfy Boolean extensionality iff
B ≡ {T}. In this way, we can easily construct models for the case with property b

and the casewithout property b simultaneously. Wewill use this idea to parameterize
the remaining model constructions byB . These semantic constructions are similar
to those in multi-valued logics, which have been studied for higher-order logic
in [38]. In contrast to these logics where the logical connectives are adapted to talk
about multiple truth values, in our setting we are mainly interested in multiple truth
values as diverse õ-pre-images of T and F.

Example 5.6 (Failure of f and ç—Mâîb ∈ Mâîb \ Mâfb). We start by construct-
ing a non-functional applicative structure by attaching distinguishing labels to func-
tions without changing their applicative behavior. Let B be any set with T ∈ B
and F /∈ B . Let Do := {F} ∪B and Dé := {∗} with ∗ as singleton element. For
each function type α → â , let

Dα→â := { (i, f) | i ∈ {0, 1} and f : Dα −→ Dâ }.

Technically, we should write DB for D , but to ease the notation, we wait until
the model is defined to make its dependence on B explicit. We define application
by (i, f)@a := f(a) whenever (i, f) ∈ Dα→â and a ∈ Dα . It is easy to see that
(D ,@) is an applicative structure and is not functional. Consider, for example, the

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1061

unique function u : Dé −→ Dé . For both (0, u), (1, u) ∈ Dé→é we have (i, u)@∗ ≡ ∗,
although (0, u) 6≡ (1, u).
We can define an evaluation function by induction on terms. We must be-
gin by interpreting the constants. For the logical constants, let E (¬) := (0, n)
where n(b) := F for every b ∈ B and n(F) := T. Let E (∨) := (0, d) where
d (b) := (0, kT) for every b ∈ B , d (F) := (0, id), kT is the constant T function and
id is the identity function from Do to Do. For each type α, let d (Πα) := (0, ðα)
where for each (i, f) ∈ Dα→o, ðα((i, f)) := T if f(a) ∈ B for all a ∈ Dα and
ðα(i, f) := F otherwise. For each type α, let qα := (0, qα) ∈ Dα→α→o where
qα(a) := (0, sa) and sa(b) := T if a ≡ b and sa(b) := F otherwise. If primitive
equality is present in the signature, let E (=α) := qα . Let E (w) ∈ Dα be arbitrary
for parameters w ∈ Σα .
For variables, we must define Eϕ(X) := ϕ(X). Similarly, for application, we
must define Eϕ(FA) := Eϕ(F)@Eϕ(A). For ë-abstractions, we have a choice. To
be definite, we choose Eϕ(ëXα Bâ) := (0, f) where f : Dα −→ Dâ is the function
such that f(a) ≡ Eϕ,[a/X](B) for all a ∈ Dα .
With some work (which we omit), one can show that this E is an evaluation
function. Furthermore, taking õ to be the function such that õ(b) := T for ev-
ery b ∈ B and õ(F) := F, one can easily show that this is a valuation. Hence,
MB := (D ,@,E , õ) is a Σ-model.
The objects qα witness property q for MB (and also show that this is a model
with primitive equality, when primitive equality is in the signature). Note that the
objects (1, qα) also witness property q. So, in the non-functional case suchwitnesses
are not unique.
We have already noted that property f fails, since the applicative structure is
not functional. One may question whether properties ç or î hold. In fact, prop-
erty ç does not, as one may verify by computing, for example, E (ëFα→â F) and
E (ëFα→âXα FX) for types α and â . We have E (ëFα→â F) ≡ (0, id) where id is
the identity function from Dα→â to Dα→â . However, E (ëFα→âXα FX) ≡ (0, p)
where p is the function from Dα→â to Dα→â such that p((i, f)) ≡ (0, f) for each
f : Dα −→ Dâ . Property î does hold.

8 The reason is that if Eϕ,[a/X](M) ≡
Eϕ,[a/X](N) for every a ∈ Dα , then Eϕ(ëXαM) ≡ (0, f) ≡ Eϕ(ëX N) where
f(a) ≡ Eϕ,[a/X](M) ≡ Eϕ,[a/X](N) for every a ∈ Dα .

Since MB is satisfies property q but not property f, by Theorem 4.3(1) we have

MB 6|= EXTα→â.
=

for some types α and â . (One can easily check that, in fact,

MB 6|= EXTα→â.
=

for all types α and â by considering the witnesses (0, f) and

(1, f) in Dα→â where f : Dα −→ Dâ is any function.)

If B ≡ {T}, then the model Mâîb :=M {T} satisfies property b. So, we know
Mâîb ∈ Mâîb \ Mâfb. On the other hand, if b is any value with b /∈ {T, F}, and

B ≡ {T, b}, then the model Mâî :=M {T,b} does not satisfy property b. In this
case, we knowMâî ∈ Mâî \ (Mâf ∪ Mâîb).

8This construction is an example of how one constructs models for the simply typed ë-calculus using
retractions. Such constructions will always yield models satisfying property î, but only yield models
satisfying property ç when each retraction is an isomorphism, in which case the applicative structure is
functional.

1062 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

Remark 5.7. LetMB be the Σ-model (D ,@,E , õ) constructed in Example 5.6.
We can define an alternative evaluation function E ′ by induction on terms. For
all w ∈ Σ, let E ′(w) := E (w). For variables, we define E ′ϕ(X) := ϕ(X). For

application, we must define E ′ϕ(FA) := E
′
ϕ(F)@E

′
ϕ(A). For ë-abstractions, we

chooseE ′ϕ(ëXα Bâ) := (1, f) wheref : Dα −→ Dâ is the function such thatf(a) ≡

Eϕ,[a/X](B) for all a ∈ Dα . We omit checking E ′ is an evaluation function, but the
verification is that same is checking E is an evaluation function. Notice that E and
E ′ agree on all constants (by definition). However, they are different evaluation
functions. For example,

E (ëXé X) ≡ (0, id) 6≡ (1, id) ≡ E
′(ëXé X)

where id : Dé −→ Dé is the identity function.This example shows that evaluation
functions are not uniquely determinedby their values on constants in non-functional
models.

In Lemma 3.14, we have shown that âç-equality induces a functional congruence
if the Σα is infinite for all types α. As a result, with such signatures, the term

evaluation TE(Σ)
âç
is functional (cf. Lemma 3.36). As noted in Remark 3.15, if Σ

is finite, we cannot show that functionality holds. Nevertheless, even if Σ is finite,

the evaluation TE(Σ)
âç
interprets âç-convertible terms the same. We can use this

idea to construct non-functional models which satisfy property ç.

Example 5.8 (Failure of î—Instances ofMâ ,Mâç ,Mâb,Mâçb). Again, letB be
any set with T ∈ B and F /∈ B . Choose constants cé , co ∈ Σ and let Σ′ := {cé, co}.
By induction on types, we define C ′α ∈ cwffα(Σ

′)


y

âç
⊆ cwffα(Σ

′)


y

â
. At base types,

let C ′é := cé and C
′
o := co. At function types, let C

′
α→â := ëXα C

′
â . (Thus each C

′
α

is of the form ëX câ where â ∈ {é, o}.) In particular, cwffα(Σ′)


y

âç
and cwffα(Σ′)



y

â

are non-empty for each type α.
We can now inductively define a map ñ from wffα(Σ) to wffα(Σ′) which collapses
terms to the smaller signature. For variables, let ñ(X) := X . For constantswα ∈ Σ
(including logical constants), let ñ(wα) := C ′α . For application and ë-abstraction,
we simply use ñ(FA) := ñ(F)ñ(A) and ñ(ëX A) := ëX ñ(A). By induction on
the formula A, one can show [ñ(B)/X]ñ(A) ≡ ñ([B/X]A) for any A ∈ wffα(Σ),
B ∈ wffâ(Σ) and Xâ . From this, one can show ñ(A)≡âçñ(B) whenever A≡âçB for
every A,B ∈ wffα(Σ). Note also that ñ(A′) ≡ A′ for every A′ ∈ wffα(Σ′).
We can construct a non-functional applicative structure using an indexing tech-
nique similar to Example 5.6. In this case, instead of indexing with i ∈ {0, 1}, we
use terms in cwffα(Σ′)↓∗ as indices. (Here A↓∗ means the â-normal form if ∗ ≡ â
and the âç-normal form if ∗ ≡ âç.) In essence, this index records some informa-
tion about the “implementation” of the function. Note that cwff é(Σ′)↓∗≡ {cé} and
cwffo(Σ

′)↓
∗
≡ {co}. LetDé := {(cé, 0)} andDo := {(co, F)}∪{(co, b) | b ∈ B}. For

function types, let Dα→â be the set of pairs (F
′
α→â , f), where F

′ ∈ cwffα→â(Σ
′)↓

∗

andf : Dα −→ Dâ is any function such thatf(A
′, a) ≡ ((F ′A′)↓

∗
, b) for some value

b. Application is defined as in Example 5.6: (F, f)@a := f(a). The construction
of this applicative structure closely follows Andrews’ õ-complexes in [1], except we
have a very restricted signature Σ′ which does not include logical constants.

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1063

To show that each domain is non-empty, we construct a particular element cα ∈
Dα for each type α. (This element will also be used to interpret parameters.) Let
cé := (cé , 0), co := (co, F), and cα→â := (C ′α→â , k) where k : Dα −→ Dâ is the

constant function k(a) := câ for every a ∈ Dα . The fact that c
α→â ∈ Dα→â follows

from (C ′α→âA)↓∗≡ C
′
â .

One can see that the applicative structure is non-functional by noting (ëXé X,f)
and (ëXé cé , f) are distinct members ofDé→é , where f is the unique function taking
Dé into itself. However, (ëXé X,f)@cé ≡ cé ≡ (ëXé cé, f)@cé . In fact, once we
define the evaluation function, this same example will show that property î will fail.
Let õ : Do −→ {T, F} be õ((co , F)) := F and õ((co , b)) := T for each b ∈ B . This
will be the valuation function on the model.
We only sketch the definition of the evaluation function E and the proof that this
gives amodelM ∗,B := (D ,@,E , õ). We can define E by induction on terms. First,
we interpret parameters wα ∈ Σ by E (wα) := cα . For logical constants aα ∈ Σ, we
choose the first component of E (aα) to be C ′α and the second component to be an
appropriate function. We can define the witnesses qα in a similar way and use these
to interpret primitive equality, if it is present in the signature.
We are forced to let Eϕ(X) := ϕ(X) and Eϕ(FA) := Eϕ(F)@Eϕ(A). For the ë-
abstraction step, we choose Eϕ(ëXα Bâ) := ((ó(ñ(ëX B)))↓∗, f), where f : Dα −→
Dâ satisfies f(a) ≡ Eϕ,[a/X](B) for all a ∈ Dα and ó is the substitution defined by
letting ó(Y) be the first component of ϕ(Y) for each Y ∈ free(ëX B). In order
to show E is well-defined, one shows the first component of Eϕ(A) is (ó(ñ(A)))↓∗
(where ó is the substitution for free(A) defined from the first components of the
values of ϕ) for every formula A.
The fact that E evaluates variables and application properly is immediate from
the definition. The fact that Eϕ(A) depends only the free variables in A follows by
an induction on the definition of E . To show E respects â-conversion if ∗ ≡ â and
âç-conversion if ∗ ≡ âç (so that the model will also satisfy property ç), one first
shows E respects a single â[ç]-reduction, then does an induction on the position of
the redex, and finally does an induction on the number of â[ç]-reductions.
Once these details are checked, we knowM ∗,B is amodel (with primitive equality,
if present) satisfying property q. We alreadyknow themodelwill not satisfy property
f since the applicative structure is not functional. We can also check that the
model will not satisfy property î by considering E (ëXé X) and E (ëXé cé). We
know E (ëXé X) 6≡ E (ëXé cé) since the first components ((ëXé X) and (ëXé cé)) are
not equal. However, Dé has only one element, cé ≡ (cé , 0). So, we must have
Eϕ,[a/X](X) ≡ cé ≡ Eϕ,[a/X](cé) for every a ∈ Dé . This shows property î fails.
If ∗ ≡ âç, then we have noted above that E respects âç-conversion. So, in
this case, the model satisfies property ç. If ∗ ≡ â , then we can easily check
E (ëFé→éXé FX) 6≡ E (ëFé→é F) since the first components will differ. So, in this
case, the model does not satisfy property ç.
As in Example 5.6, ifB ≡ {T}, thenMâb :=M â,{T} andMâçb :=M âç,{T} satisfy
property b. So, we knowMâb ∈ Mâb \ (Mâçb ∪ Mâîb) andM

âçb ∈ Mâçb \Mâfb. If

B ≡ {T, b} where b is any value with b /∈ {T, F}, then the models Mâ :=M â,{T,b}

andMâç :=M âç,{T,b} do not satisfy property b, soMâ ∈ Mâ \ (Mâç ∪Mâî ∪Mâb)
andMâç ∈ Mâç \ (Mâf ∪ Mâçb).

1064 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

In particular, the modelsMâç andMâçb show that respecting ç-conversion does
not guarantee strong functional extensionality.

Thus we have given (sketches of) concrete models that distinguish model classes
and shown that the inclusions between theM∗ model classes in Figure 1 are proper.

§6. Model existence. In this section we present the model existence theorems
for the different semantical notions introduced in Section 3. The model existence
theorems have the following form, where ∗ ∈ {â,âç,âî,âf,âb,âçb,âîb,âfb}:

Theorem (Model existence). For a given abstract consistency class ΓΣ ∈ Acc∗ (cf.
Definition 6.7) and a set Φ ∈ ΓΣ there is a Σ-modelM of Φ, such thatM ∈ M∗ (cf.
Definition 3.49).

The most important tools used in the proofs of the model existence theorems are
the so-called Σ-Hintikka sets. These sets allow computations that resemble those in
the considered semantical structures (e.g., Henkinmodels) and allowus to construct

appropriate valuations for the term evaluation TE(Σ)
â
defined in Definition 3.35.

The key step in the proof of the model existence theorems is an extension lemma,
which guarantees a Σ-Hintikka setH for any sufficiently Σ-pure set of sentences Φ
in ΓΣ.

6.1. Abstract consistency. Let us now review a few technicalities thatwe will need
for the proofs of the model existence theorems.

Definition 6.1 (Compactness). Let C be a class of sets.

(1) C is called closed under subsets if for any sets S and T , S ∈ C whenever
S ⊆ T and T ∈ C .

(2) C is called compact if for every set S we have S ∈ C iff every finite subset of
S is a member of C .

Lemma 6.2. If C is compact, then C is closed under subsets.

Proof. Suppose S ⊆ T and T ∈ C . Every finite subset A of S is a finite subset
of T , and since C is compact we know that A ∈ C . Thus S ∈ C . a

We will now introduce a technical side-condition that ensures that we always have
enough witness constants.

Definition 6.3 (Sufficiently Σ-pure). Let Σ be a signature and Φ be a set of Σ-
sentences. Φ is called sufficiently Σ-pure if for each type α there is a setPα ⊆ Σα of
parameters with equal cardinality to wffα(Σ), such that the elements of Pα do not
occur in the sentences of Φ.

This can be obtained in practice by enriching the signature with spurious param-
eters. Another way would be to use specially marked variables (which may never
be instantiated) as in [36]. Note that for any set to be sufficiently Σ-pure, Σα must
be infinite for each type α, since we have assumed that Vα ⊆ wff(Σ) are infinite.
Recall that in Remark 3.16we assumed every Σα has a common (infinite) cardinality
ℵs for every type α. (One could easily show that no set of Σ-sentences could be
sufficiently pure if, for example, Σé is countable while Σé→é is uncountable. In such a
case wffα(Σ) is uncountable for every type α so one could not satisfy the sufficient
purity condition at type é.)

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1065

Notation 6.4. For reasons of legibility we will write S ∗ a for S ∪ {a}, where S
is a set. We will use this notation with the convention that ∗ associates to the left.

Definition 6.5 (Properties for abstract consistency classes). Let ΓΣ be a class of
sets of Σ-sentences. We define the following properties of ΓΣ, where Φ ∈ ΓΣ, α,
â ∈ T , A, B ∈ cwffo, F ∈ cwffα→o, and G , H , (ëXαM), (ëXα N) ∈ cwffα→â are
arbitrary.

∇c : If A is atomic, then A /∈ Φ or ¬A /∈ Φ.
∇¬: If ¬¬A ∈ Φ, then Φ ∗ A ∈ ΓΣ.
∇â : If A≡âB and A ∈ Φ, then Φ ∗ B ∈ ΓΣ.
∇ç : If A≡âçB and A ∈ Φ, then Φ ∗ B ∈ ΓΣ.
∇∨: If A ∨ B ∈ Φ, then Φ ∗ A ∈ ΓΣ or Φ ∗ B ∈ ΓΣ.
∇∧: If ¬(A ∨ B) ∈ Φ, then Φ ∗ ¬A ∗ ¬B ∈ ΓΣ.
∇∀: If ΠαF ∈ Φ, then Φ ∗ FW ∈ ΓΣ for eachW ∈ cwffα .
∇∃: If ¬Π

αF ∈ Φ, then Φ ∗ ¬(Fw) ∈ ΓΣ for any parameter wα ∈ Σα which does
not occur in any sentence of Φ.

∇b: If ¬(A
.
=
o
B) ∈ Φ, then Φ ∗ A ∗ ¬B ∈ ΓΣ or Φ ∗ ¬A ∗ B ∈ ΓΣ.

∇î : If ¬(ëXαM
.
=α→â ëXα N) ∈ Φ, then Φ ∗ ¬([w/X]M

.
=â [w/X]N) ∈ ΓΣ for

any parameter wα ∈ Σα which does not occur in any sentence of Φ.

∇f: If ¬(G
.
=α→â H) ∈ Φ, then Φ ∗ ¬(Gw

.
=â Hw) ∈ ΓΣ for any parameter

wα ∈ Σα which does not occur in any sentence of Φ.
∇sat : Either Φ ∗ A ∈ ΓΣ or Φ ∗ ¬A ∈ ΓΣ.

For the optional case of primitive equality, i.e., when =α∈ Σα→α→o for all types
α, we now add a set of further properties. While our first choice will be to combine
the∇r= property with∇

.
=
= , we will later show that other pair combinations from this

set are equivalent.

Definition 6.6 (Properties for abstract consistency classes). Suppose =α ∈
Σα→α→o for all types α. Let ΓΣ be a class of sets of Σ-sentences. We define for
Φ ∈ ΓΣ, A,B ∈ cwffα and F ∈ cwffo where F has a subterm of type α at position p:

∇r=: ¬(A =
α A) /∈ Φ.

∇s= : If F[A]p ∈ Φ and A =
α B ∈ Φ, then Φ ∗ F[B]p ∈ ΓΣ.9

∇
.
=
= : If A =

α B ∈ Φ, then Φ ∗ A
.
=
α
B ∈ ΓΣ.

∇=.
=
: If A

.
=α B ∈ Φ, then Φ ∗ A =α B ∈ ΓΣ.

∇
.
=−

=− : If ¬(A =α B) ∈ Φ, then Φ ∗ ¬(A
.
=
α
B) ∈ ΓΣ.

∇=
−

.
=− : If ¬(A

.
=
α
B) ∈ Φ, then Φ ∗ ¬(A =α B) ∈ ΓΣ.

Definition 6.7 (Abstract consistency classes). Let Σ be a signature and ΓΣ be a
class of sets of Σ-sentences that is closed under subsets. If ∇c ,∇¬,∇â ,∇∨,∇∧,∇∀
and ∇∃ are valid for ΓΣ, then ΓΣ is called an abstract consistency class for Σ-models.
Furthermore, when =α∈ Σα→α→o for all types α and the properties ∇r= and ∇

.
=
=

are valid then ΓΣ is called an abstract consistency class with primitive equality. In
the following we often simply use the phrase abstract consistency class to refer to
an abstract consistency class with or without primitive equality. We will denote

9Although this resembles Lemma 3.25 which required property î, it is far weaker sinceA and B must
be closed.

1066 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

the collection of abstract consistency classes (with primitive equality) by Accâ .
Similarly, we introduce the following collections of specialized abstract consistency
classes (with primitive equality): Accâç, Accâî , Accâf, Accâb, Accâçb, Accâîb, Accâfb,
where we indicate by indices which additional properties from {∇ç,∇î ,∇f,∇b} are
required.

Remark 6.8. If primitive equality is not in the signature, Accâ corresponds to
the abstract consistency property discussed by Andrews in [1]. The only (technical)
differences correspond to αâ-conversion. In [1], α-conversion is handled in the ∇â
rule using α-standardized forms. Also, we have defined the ∇â rule to work with
â-conversion instead of â-reduction. We prefer this stronger version of∇â over the
weaker option “If A ∈ Φ, then Φ ∗ A



y

â
∈ ΓΣ” since it helps to avoid the use of ∇sat

in several proofs below. (Note that ∇â follows from the weaker option and ∇sat .)
Furthermore, in practical applications, e.g., proving completeness of calculi, the
stronger property is typically as easy to validate as the weaker one. An analogous
argument applies to ∇ç.

Remark 6.9. While the work presented in this article is based on the choice of
the primitive logical connectives ¬,∨, and Πα (and possibly primitive equality), a
means to generalize the framework over the concrete choice of logical primitives
is provided by the uniform notation approach as, for instance, given in [22]. It is
clearly possible to achieve such a generalization for our framework as well. This
can be done in straightforward manner: ∇∧ becomes an α-property, ∇∨ becomes a
â-property,∇∀ becomes a ã-property, and∇∃ becomes a ä-property. Thus they will
have the following form:

α-case: If α ∈ Φ, then Φ ∗ α1 ∗ α2 ∈ ΓΣ.
â-case: If â ∈ Φ, then Φ ∗ â1 ∈ ΓΣ or Φ ∗ â2 ∈ ΓΣ.
ã-case: If ã ∈ Φ, then Φ ∗ ãW ∈ ΓΣ for eachW ∈ cwffα .
ä-case: If ä ∈ Φ, then Φ ∗ äw ∈ ΓΣ for any parameter wα ∈ Σ which does not occur

in any sentence of Φ.

We often refer to property ∇c as “atomic consistency”. The next lemma shows
that we also have the corresponding property for non-atoms.

Lemma 6.10 (Non-atomic consistency). Let ΓΣ be an abstract consistency class
and A ∈ cwffo(Σ), then for all Φ ∈ ΓΣ we have A /∈ Φ or ¬A /∈ Φ.

Proof following a similar argument in [1], Lemma 3.3.3. If for some Φ ∈ ΓΣ and
A ∈ cwffo(Σ) we have A ∈ Φ and ¬A ∈ Φ, then {A,¬A} ∈ ΓΣ since ΓΣ is closed
under subsets. Furthermore, using ∇â and closure under subsets we can assume
such an A is â-normal. We prove {A,¬A} /∈ ΓΣ for any â-normal A ∈ cwffo(Σ) by
induction on the number of logical constants in A.
IfA is atomic (which includes primitive equations), this follows immediately from

∇c . Suppose A ≡ ¬B for some B ∈ cwffo(Σ) and {¬B,¬¬B} ∈ ΓΣ. By ∇¬ and
closure under subsets, we have {¬B,B} ∈ ΓΣ, contradicting the induction hypothesis
for B. Suppose A ≡ B ∨ C for some B,C ∈ cwffo(Σ) and {B ∨ C ,¬(B ∨ C)} ∈ ΓΣ.
By∇∨,∇∧ and closure under subsets, we have either {B,¬B} ∈ ΓΣ or {C ,¬C} ∈ ΓΣ,
contradicting the induction hypotheses for B and C . Suppose A ≡ ΠαB for some
B ∈ cwffα→o(Σ) and {ΠαB,¬(ΠαB)} ∈ ΓΣ. Since Σα is assumed to be infinite (by
Remark 3.16), there is a parameter wα ∈ Σα which does not occur in A. Since

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1067

w is a parameter, the sentence Bw clearly has one less logical constant than ΠαB.
However, we cannot directly apply the induction hypothesis as Bw may not be
â-normal. Since B is â-normal, the only way Bw can fail to be â-normal is if B
has the form ëXα C for some C ∈ wffo(Σ) where free(C) ⊆ {Xα}. In this case, it
is easy to show that the reduct [w/X]C is â-normal and contains the same number
of logical constants as B. In either case, we can let N be the â-normal form of Bw
and apply the induction hypothesis to obtain {N ,¬N} /∈ ΓΣ. On the other hand,
∇∃, ∇∀, ∇â and closure under subsets implies {N ,¬N} ∈ ΓΣ, a contradiction. a

Remark 6.11. Note that for the connectives ∨ and Πα there is a positive and a
negative condition given in the definition above, namely∇∨/∇∧ for∨ and∇∀/∇∃ for

Πα . For
.
=o and

.
=α→â the situation is different since we need only conditions for

the negative cases. Positive counterparts can be inferred by expanding the Leibniz
definition of equality (cf. Lemma 6.12).

Lemma 6.12 (Leibniz equality). Let ΓΣ be an abstract consistency class. The fol-
lowing properties are valid for all Φ ∈ ΓΣ, A,B ∈ cwffo(Σ), C ∈ cwffα(Σ) and
F,G ∈ cwffα→â (Σ).

∇r.
=
: ¬(C

.
=α C) /∈ Φ.

∇→.
=
: If F

.
=
α→â

G ∈ Φ, then Φ ∗ FW
.
=
â
GW ∈ ΓΣ for any closedW ∈ cwffα(Σ).

∇o.
=
: If A

.
=o B ∈ Φ, then Φ ∗ A ∗ B ∈ ΓΣ or Φ ∗ ¬A ∗ ¬B ∈ ΓΣ.

Proof. To show∇r.
=
, assume¬(C

.
= C) ∈ Φ. By subset closure {¬(C

.
= C)} ∈ ΓΣ

and by ∇∃ with some parameter p which does not occur in C and ∇â we get
{¬(C

.
= C),¬(¬pC ∨pC)} ∈ ΓΣ. The contradiction follows by∇∧,∇¬ and∇c . So,

∇r.
=
holds.

To show∇→.
=
, suppose F

.
=
α→â

G ∈ Φ. By application of∇∀ with ëXα→â FW
.
=

XW and ∇â we have Φ ∗ (¬(FW
.
= FW) ∨ FW

.
= GW) ∈ ΓΣ. By ∇∨ and subset

closure we get Φ ∗ ¬(FW
.
= FW) ∈ ΓΣ or Φ ∗ FW

.
= GW ∈ ΓΣ. The latter proves

the assertion since the first option is ruled out by∇r.
=
(shown above).

To show ∇o.
=
, suppose A

.
=
o
B ∈ Φ. Applying ∇∀ with ëY Y we have Φ ∗

(ëPo→o ¬PA ∨ PB)(ëY Y) ∈ ΓΣ. By ∇â and subset closure we get Φ ∗ ¬A ∨ B ∈
ΓΣ. Similarly, we further derive by ∇∀ with ëY ¬Y , ∇â , and subset closure that
Φ ∗ ¬A ∨ B ∗ ¬¬A ∨ ¬B ∈ ΓΣ. By applying ∇∨ twice and subset closure we get
the following four options: (i) Φ ∗ ¬A ∗ ¬¬A ∈ ΓΣ, (ii) Φ ∗ ¬A ∗ ¬B ∈ ΓΣ, (iii)
Φ ∗ B ∗ ¬¬A ∈ ΓΣ, or (iv) Φ ∗ B ∗ ¬B ∈ ΓΣ. Cases (i) and (iv) are ruled out by
non-atomic consistency. In case (iii) we furthermore get by ∇¬ and subset closure
that Φ ∗ B ∗ A ∈ ΓΣ. Thus, Φ ∗ ¬A ∗ ¬B ∈ ΓΣ or Φ ∗ B ∗ A ∈ ΓΣ. a

We could easily add respective properties for symmetry, transitivity, and congru-
ence to the previous lemma. They can be shown analogously, i.e., they also follow
from the properties of Leibniz equality.
In contrast to [1], we work with saturated abstract consistency classes in order
to simplify the proofs of the model existence theorems. For a discussion of the
consequences of this decision, see Section 8.2.

Definition 6.13 (Saturatedness). We call an abstract consistency class ΓΣ satu-
rated if it satisfies∇sat .

1068 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

Remark 6.14. Clearly, not all abstract consistency classes are saturated, since the
empty set is one that is not (cwffo(Σ) is certainly non-empty since∀Po P ∈ cwffo(Σ)).

Remark 6.15. The saturation condition ∇sat can be very difficult to verify in
practice. For example, showing that an abstract consistency class induced from a
sequent calculus (as in [1]) is saturated corresponds to showing cut-elimination (cf.
[12]). Since Andrews [1] did not use saturation, he could use his results to give a
model-theoretic proof of cut-elimination for a sequent calculus. We cannot use the
results of this article to obtain similar cut-elimination results.

We now investigate derived properties of primitive equality.

Lemma 6.16 (Primitive equality). LetΓΣ be an abstract consistency classwith prim-
itive equality, i.e., =α∈ Σα→α→o for all types α ∈ T , where ∇r= and ∇

.
=
= hold. Then

∇=.
=
and∇s= are valid. Furthermore,∇

.
=−

=− and∇=
−

.
=− are valid if ΓΣ is saturated.

Proof. To show∇=.
=
we derive from (A

.
=α B) ∈ Φ by ∇∀ with ëXα A =α X , ∇â ,

and subset closure that Φ ∗ ¬(A = A) ∨ A = B ∈ ΓΣ. By ∇∨ and subset closure we
get Φ ∗ ¬(A = A) ∈ ΓΣ or Φ ∗ A = B ∈ ΓΣ. The assertion follows from the latter
option since the former is ruled out by∇r=.

In order to show ∇s= let F[A]p ∈ Φ, we derive from A =α B ∈ Φ by ∇
.
=
= that

Φ ∗ (A
.
= B) ∈ ΓΣ. By ∇∀ with ëX F[X]p (where X ∈ Vα does not occur bound in

F[A]p), ∇â , and subset closure we furthermore get that Φ ∗ (¬F[A]p ∨ F[B]p) ∈ ΓΣ.
Application of∇∨ and subset closure gives usΦ∗¬F[A]p ∈ ΓΣ orΦ∗F[B]p ∈ ΓΣ. The
assertion follows from the latter option since the former is ruled out by F[A]p ∈ Φ
and non-atomic consistency.

The straightforward proof for ∇=
−

.
=− employs saturation, ∇

.
=
= , and non-atomic

consistency. Similarly, the proof for ∇
.
=−

=− employs saturation, ∇=.= , and atomic
consistency. a

The next theorem provides some alternatives to our choice of ∇
.
=
= and ∇r= in

the definition of abstract consistency classes with primitive equality provided that
saturation holds. In practical applications the user may therefore choose the com-
bination that suits best.

Theorem 6.17 (Alternative properties for primitive equality). Let ΓΣ be an ab-
stract consistency class and let =α∈ Σα→α→o for all types α ∈ T . If ΓΣ is saturated
and validates one of the following combinations of properties, then it also validates∇

.
=
=

and∇r=. The combinations are:

(1) ∇s= and∇
r
=.

(2) ∇
.
=
= and∇

=.
=
.

(3) ∇
.
=−

=− and∇=
−

.
=− .

Proof. To prove (1) we only have to show ∇
.
=
= . Let (A = B) ∈ Φ and suppose

Φ ∗ (A
.
= B) /∈ ΓΣ. Then by saturation Φ ∗ ¬(A

.
= B) ∈ ΓΣ and by application of∇

s
=

we get a contradiction to ∇r.
=
(cf. Lemma 6.12).

To prove (2) we only have to show∇r=. Since Φ ∗ ¬(A
.
= A) /∈ ΓΣ by∇r.= we get by

saturation Φ ∗A
.
= A ∈ ΓΣ. By∇=.= and subset closure, we have Φ ∗A = A ∈ ΓΣ. By

atomic consistency, we have ¬(A = A) /∈ Φ.

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1069

For (3) we first show ∇r=. Suppose ¬(A = A) ∈ Φ. Then by ∇
.
=−

=− we get

Φ ∗ ¬(A
.
= A) ∈ ΓΣ contradicting ∇r.=. To show ∇

.
=
= let A = B ∈ Φ and suppose

Φ ∗ A
.
= B /∈ ΓΣ. By saturation we get Φ ∗ ¬(A

.
= B) ∈ ΓΣ and by application of

∇=
−

.
=− we get a contradiction to atomic consistency. a

Lemma 6.18 (Compactness of abstract consistency classes). For eachabstract con-
sistency classΓΣ there exists a compact abstract consistency classΓ′Σ satisfying the same
∇∗ properties such that ΓΣ ⊆ Γ′Σ .

Proof (following and extending [6], Proposition 2506). We choose Γ′Σ := {Φ ⊆
cwffo | every finite subset of Φ is in ΓΣ }. Now suppose that Φ ∈ ΓΣ. ΓΣ is closed
under subsets, so every finite subset of Φ is in ΓΣ and thus Φ ∈ Γ′Σ . Hence ΓΣ ⊆ Γ

′
Σ .

Next let us show that Γ′Σ is compact. Suppose Φ ∈ Γ′Σ and Ψ is an arbitrary
finite subset of Φ. By definition of Γ′Σ all finite subsets of Φ are in ΓΣ and therefore
Ψ ∈ Γ′Σ . Thus all finite subsets of Φ are in Γ

′
Σ whenever Φ is in Γ

′
Σ . On the other

hand, suppose all finite subsets of Φ are in Γ′Σ . Then by the definition of Γ
′
Σ the finite

subsets of Φ are also in ΓΣ, so Φ ∈ Γ′Σ . Thus Γ
′
Σ is compact. Note that by Lemma 6.2

we have that Γ′Σ is closed under subsets.
Next we show that if ΓΣ satisfies∇∗, then Γ′Σ satisfies∇∗.

∇c : Let Φ ∈ Γ′Σ and suppose there is an atom A, such that {A,¬A} ⊆ Φ. {A,¬A}
is clearly a finite subset of Φ and hence {A,¬A} ∈ ΓΣ contradicting ∇c for ΓΣ.

∇¬: Let Φ ∈ Γ′Σ , ¬¬A ∈ Φ, Ψ be any finite subset of Φ ∗A, and Θ := (Ψ \ {A}) ∗
¬¬A. Θ is a finite subset of Φ, so Θ ∈ ΓΣ. Since ΓΣ is an abstract consistency
class and ¬¬A ∈ Θ, we get Θ ∗A ∈ ΓΣ by∇¬ for ΓΣ. We know that Ψ ⊆ Θ ∗A
and ΓΣ is closed under subsets, so Ψ ∈ ΓΣ. Thus every finite subset Ψ of Φ ∗A
is in ΓΣ and therefore by definition Φ ∗ A ∈ Γ′Σ .

∇â ,∇ç ,∇∨,∇∧,∇∀,∇∃: Analogous to∇¬.

∇î : Let Φ ∈ Γ′Σ , ¬(ëXαM
.
=
α→â

ëX N) ∈ Φ and Ψ be any finite subset of

Φ∗¬([w/X]M
.
=
â
[w/X]N), wherew ∈ Σα is a parameter thatdoes not occur

in any sentence ofΦ. We show thatΨ ∈ ΓΣ. ClearlyΘ := (Ψ\{¬([w/X]M
.
=â

[w/X]N)}) ∗ ¬(ëX M
.
=
α→â

ëX N) is a finite subset of Φ and therefore

Θ ∈ ΓΣ. Since ΓΣ satisfies ∇î and ¬(ëX M
.
=α→â ëX N) ∈ Θ, we have

Θ ∗ ¬([w/X]M
.
=â [w/X]N) ∈ ΓΣ. Furthermore, Ψ ⊆ Θ ∗ ¬([w/X]M

.
=â

[w/X]N) and ΓΣ is closed under subsets, so Ψ ∈ ΓΣ. Thus every finite subset

Ψ of Φ∗¬([w/X]M
.
=â [w/X]N) is in ΓΣ, and therefore by definition we have

Φ ∗ ¬([w/X]M
.
=
α
[w/X]N) ∈ Γ′Σ .

∇f: Analogous to∇î .
∇b: Let Φ ∈ Γ′Σ with ¬(A

.
= B) ∈ Φ. Assume Φ∗A∗¬B /∈ ΓΣ and Φ∗¬A∗B /∈ ΓΣ.

Then there exists finite subsets Φ1 and Φ2 of Φ, such that Φ1 ∗ A ∗ ¬B /∈ ΓΣ
and Φ2 ∗¬A ∗B /∈ ΓΣ. Now we choose Φ3 := Φ1 ∪Φ2 ∗¬(A

.
= B). Obviously

Φ3 is a finite subset of Φ and therefore Φ3 ∈ ΓΣ. Since ΓΣ satisfies∇b, we have
that Φ3 ∗ A ∗ ¬B ∈ ΓΣ or Φ3 ∗ ¬A ∗ B ∈ ΓΣ. From this and the fact that ΓΣ is
closed under subsets we get that Φ1 ∗A ∗ ¬B ∈ ΓΣ or Φ2 ∗ ¬A ∗ B ∈ ΓΣ, which
contradicts our assumption.

∇sat : Let Φ ∈ Γ′Σ . Assume neither Φ ∗ A nor Φ ∗ ¬A is in Γ′Σ . Then there are
finite subsets Φ1 and Φ2 of Φ, such that Φ1 ∗ A /∈ ΓΣ and Φ2 ∗ ¬A /∈ ΓΣ.
As Ψ := Φ1 ∪ Φ2 is a finite subset of Φ, we have Ψ ∈ ΓΣ. Furthermore,

1070 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

Ψ ∗A ∈ ΓΣ or Ψ ∗ ¬A ∈ ΓΣ because ΓΣ is saturated. ΓΣ is closed under subsets,
so Φ1 ∗ A ∈ ΓΣ or Φ2 ∗ ¬A ∈ ΓΣ. This is a contradiction, so we can conclude
that if Φ ∈ Γ′Σ , then Φ ∗ A ∈ Γ′Σ or Φ ∗ ¬A ∈ Γ′Σ .

In case primitive equality is present in the signature, we check the corresponding
properties.

∇r=: Let Φ ∈ Γ′Σ and assume ¬(A =
α A) ∈ Φ. {¬(A =α A)} is clearly a finite

subset of Φ and hence {¬(A =α A)} ∈ ΓΣ contradicting∇r= in ΓΣ.

∇
.
=
= ,∇

s
= ,∇

=.
=
,∇
.
=−

=− ,∇=
−

.
=− Analogous to ∇¬. a

6.2. Hintikka sets. Hintikka sets connect syntax with semantics as they provide
the basis for the model constructions in the model existence theorems. We have
defined eight different notions of abstract consistency classes by first defining prop-
erties ∇∗, then specifying which should hold in Acc∗. Similarly, we define Hintikka
sets by first defining the desired properties.

Definition 6.19 (Σ-Hintikka properties). LetH be a set of sentences. We define
the following properties which H may satisfy, where A,B ∈ cwff o, C ,D ∈ cwffα ,
F ∈ cwffα→o , and (ëXαM), (ëX N),G ,H ∈ cwffα→â :

~∇c : A /∈ H or ¬A /∈ H .
~∇¬: If ¬¬A ∈ H , then A ∈ H .
~∇â : If A ∈ H and A≡âB, then B ∈ H .
~∇ç : If A ∈ H and A≡âçB, then B ∈ H .
~∇∨: If A ∨ B ∈ H , then A ∈ H or B ∈ H .
~∇∧: If ¬(A ∨ B) ∈ H , then ¬A ∈ H and ¬B ∈ H .
~∇∀: If ΠαF ∈ H , then FW ∈ H for eachW ∈ cwffα .
~∇∃: If ¬Π

αF ∈ H , then there is a parameter wα ∈ Σα such that ¬(Fw) ∈ H .
~∇b: If ¬(A

.
=o B) ∈ H , then {A,¬B} ⊆ H or {¬A,B} ⊆ H .

~∇î : If ¬(ëXαM
.
=
α→â

ëX N) ∈ H , then there is a parameter wα ∈ Σα such that

¬([w/X]M
.
=â [w/X]N) ∈ H .

~∇f: If¬(G
.
=
α→â

H) ∈ H , then there is a parameterwα ∈ Σα such that¬(Gw
.
=
â

Hw) ∈ H .
~∇sat : Either A ∈ H or ¬A ∈ H .
~∇r=: ¬(C =

α C) /∈ H .
~∇
.
=
= : If C =

α D ∈ H , then C
.
=α D ∈ H .

Definition 6.20 (Σ-Hintikka set). A set H of sentences is called a Σ-Hintikka
set if it satisfies ~∇c , ~∇¬, ~∇â , ~∇∨, ~∇∧, ~∇∀ and ~∇∃. When primitive equality is present

in the signature and H is a Hintikka set satisfying ~∇r= and ~∇
.
=
= we call H a Σ-

Hintikka set with primitive equality. We define the following collections of Hin-
tikka sets (with primitive equality): Hintâ , Hintâç , Hintâî , Hintâf, Hintâb, Hintâçb,
Hintâîb, and Hintâfb, where we indicate by indices which additional properties from

{~∇ç, ~∇î , ~∇f, ~∇b} are required. If primitive equality is in the signature, we require
H ∈ Hint∗ to be a Hintikka set with primitive equality.

We will construct Hintikka sets as maximal elements of abstract consistency
classes. To obtain a Hintikka set, we must explicitly show the property ~∇∃ (and ~∇î

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1071

or ~∇f whenappropriate). Thiswill ensure thatHintikka sets have enoughparameters
which act as witnesses.

Lemma 6.21 (Hintikka lemma). Let ΓΣ be an abstract consistency class in Acc∗.
Suppose a setH ∈ ΓΣ satisfies the following properties:

(1) H is subset-maximal in ΓΣ (i.e., for each sentenceD ∈ cwffo such thatH ∗D ∈
ΓΣ, we already have D ∈ H).

(2) H satisfies ~∇∃.
(3) If ∗ ∈ {âî,âîb}, then ~∇î holds inH .

(4) If ∗ ∈ {âf,âfb}, then ~∇f holds inH .

Then,H ∈ Hint∗. Furthermore, if ΓΣ is saturated, thenH satisfies ~∇sat .

Proof. H satisfies ~∇∃ by assumption. Also, if ∗ ∈ {âî,âîb} (∗ ∈ {âf,âfb}), then

we have explicitly assumed H satisfies ~∇î (~∇f). The fact that H ∈ ΓΣ satisfies ~∇c
follows directly from non-atomic consistency (Lemma 6.10). Similarly, if primitive
equality is in the signature, then H satisfies ~∇r= since H ∈ ΓΣ and ΓΣ satisfies ∇r=.

Every other ~∇∗ property follows directly from the corresponding ∇∗ property and
maximality of H in ΓΣ. For example, to show ~∇¬, suppose ¬¬A ∈ H . By ∇¬,
we know H ∗ A ∈ ΓΣ. By maximality of H , we have A ∈ H . Checking ~∇â , ~∇ç
(if ∗ ∈ {âç,âçb}), ~∇∧, ~∇∀, and ~∇

.
=
= hold for H follows exactly this same pattern.

Checking ~∇∨, ~∇b (if ∗ ∈ {âb,âçb,âfb}) and ~∇sat (if ΓΣ is saturated) follows a

similar pattern, but with a simple case analysis. For example, to check ~∇sat , given
A ∈ cwffo(Σ), ∇sat implies H ∗ A ∈ ΓΣ or H ∗ ¬A ∈ ΓΣ. So, either A ∈ H or
¬A ∈ H . a

It is worth noting that the converse of ~∇
.
=
= also holds in Hintikka sets with

primitive equality.

Lemma 6.22. Suppose primitive equality is in the signature and H is a Hintikka
set with primitive equality. Then, we have the following property for every type α and
A,B ∈ cwffα(Σ):

∇
.
=
= : A =

α B ∈ H iff A
.
=
α
B ∈ H .

Proof. If A =α B ∈ H , then A
.
=
α
B ∈ H by ~∇

.
=
= . For the converse direction

assume that A
.
=α B ∈ H . From this we get by ~∇∀ with ëX A = X and ∇â that

¬(A = A) ∨ A = B ∈ H . Since¬(A = A) /∈ H by ~∇r=, ~∇∨ impliesA =
α B ∈ H . a

It is helpful to note the following properties of Leibniz equality in Hintikka sets.

Lemma 6.23. Suppose H is a Hintikka set. For any F,G ∈ cwffα→â(Σ) and
A,B,C ∈ cwffα(Σ) (for types α and â), we have the following:
~∇r.
=
: ¬(A

.
=α A) /∈ H .

~∇tr.
=
: If A

.
=α B ∈ H and B

.
=α C ∈ H , then A

.
=α C ∈ H .

~∇→.
=
: If (F

.
=
α→â

G) ∈ H and (A
.
=
α
B) ∈ H , then (FA

.
=
â
GB) ∈ H .

Proof. To show ~∇r.
=
, suppose ¬(A

.
=
α
A) ∈ H . By ~∇∃ and ~∇â , there must be

some parameter qα→o such that ¬(¬qA ∨ qA) ∈ H . By ~∇∧, we have ¬¬qA ∈ H
and ¬qA ∈ H , contradicting ~∇c .
To show ~∇tr.

=
, suppose A

.
=α B ∈ H and B

.
=α C ∈ H . Let Qα→o be the

closed formula (ëXα A
.
=
α
X). Applying ~∇∀ to B

.
=
α
C ∈ H and Q, we know

1072 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

¬(QB)∨QC ∈ H . By ~∇∨, we know¬(QB) ∈ H orQC ∈ H . If ¬(QB) ∈ H , then
¬(A

.
=
α
B) ∈ H by ~∇â , contradicting ~∇c . So, QC ∈ H and hence A

.
=
α
C ∈ H as

desired.
To show ~∇→.

=
, let P(α→â)→o be the closed formula (ëHα→â FA

.
=â HA), Applying

~∇∀ to (F
.
=α→â G) ∈ H and P, we have ¬(PF) ∨ PG ∈ H . By ~∇∨, we know

¬(PF) ∈ H or PG ∈ H . If ¬(PF) ∈ H , then ¬(FA
.
=â FA) ∈ H by ~∇â , which

contradicts ~∇r.
=
. So, we must have PG ∈ H and hence (FA

.
=â GA) ∈ H . LetQα→o

be the closed formula (ëXα FA
.
=
â
GX). Applying ~∇∀ and ~∇∨ to (A

.
=
α
B) ∈ H ,

we know ¬(QA) ∈ H or QB ∈ H . If ¬(QA) ∈ H , then ¬(FA
.
=â GA) ∈ H by ~∇â ,

contradicting ~∇c . So, QB ∈ H and hence (FA
.
=
â
GB) ∈ H as desired. a

Whenever a Hintikka set satisfies ~∇sat , we can prove far more closure properties.
For example, we can prove converses of ~∇¬, ~∇â , ~∇∨, ~∇∧, ~∇∀, ~∇∃ and ~∇

.
=
= (when

primitive equality is in the signature). Also, if any of ~∇ç , ~∇b, ~∇î or ~∇f hold, we can

prove the corresponding converse. (We could call these properties
←

∇∗.) The proofs
of the stronger properties ∇¬ and∇∨ in Lemma 6.25 indicate how one would prove
any of these converse properties.

Definition 6.24 (Saturated set). We say a set of sentences H is saturated if it
satisfies ~∇sat .

ByLemma6.21, anyHintikka set constructed as amaximalmember of a saturated
abstract consistency class will be saturated. However, it is also possible for a
maximal member of an abstract consistency class ΓΣ to be saturated without ΓΣ
being saturated.

Lemma 6.25 (Saturated sets lemma). SupposeH is a saturatedHintikka set. Then
we have the following properties for every A,B ∈ cwff o(Σ), F ∈ cwffα→o(Σ), and
C ∈ cwffα(Σ) (for any type α):

∇¬: ¬A ∈ H iff A /∈ H .
∇∨: (A ∨ B) ∈ H iff A ∈ H or B ∈ H .
∇∀: (ΠαF) ∈ H if and only if FD ∈ H for every D ∈ cwffα(Σ).

∇
â

∀ : (Π
αF) ∈ H iff (FD)



y

â
∈ H for every D ∈ cwffα(Σ)



y

â
.

∇r : (C
.
=
α
C) ∈ H .

Proof. If ¬A ∈ H , then A /∈ H by ~∇c . If A /∈ H , then ¬A ∈ H since H is
saturated. So, ∇¬ holds.
If (A ∨ B) ∈ H , then A ∈ H or B ∈ H by ~∇∨. We prove the converse by
contraposition. Suppose (A ∨ B) /∈ H . By saturation we have ¬(A ∨ B) ∈ H , and
by ~∇∧ we get ¬A ∈ H and ¬B ∈ H . So, by ~∇c , A /∈ H and B /∈ H . Thus, ∇∨
holds.
One direction of∇∀ is ~∇∀. For one direction of∇

â

∀ , note that if (Π
αF) ∈ H , then

for any D ∈ cwffα(Σ)


y

â
we have (FD)



y

â
∈ H by ~∇∀ and ~∇â .

Suppose (ΠαF) /∈ H . By saturation, ¬(ΠαF) ∈ H . By ~∇∃, there is a parameter
wα ∈ Σα such that ¬(Fw) ∈ H . By ~∇c , we know (Fw) /∈ H . This shows the other
direction of∇∀. Furthermore, by ~∇â we know ¬(Fw)



y

â
∈ H and so (Fw)



y

â
/∈ H .

Since w is â-normal, we also have the other direction of∇
â

∀ .

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1073

Finally, ∇r follows directly from saturation and ~∇r.=. a

Lemma 6.26 (Saturated sets lemma for b). Suppose H ∈ Hint∗ where ∗ ∈ {âb,
âçb,âîb,âfb}. If H is saturated, then the following property holds for all A,B ∈
cwffo(Σ).

∇b: A
.
=
o
B ∈ H or A

.
=
o
¬B ∈ H .

Proof. Suppose (A
.
=o B) /∈ H and (A

.
=o ¬B) /∈ H . By saturation, ¬(A

.
=o

B) ∈ H and ¬(A
.
=o ¬B) ∈ H . By ~∇b, we must have {A,¬B} ⊆ H or {¬A,B} ⊆

H . We must also have {A,¬¬B} ⊆ H or {¬A,¬B} ⊆ H . Each of the four cases

leads to an immediate contradiction to ~∇c . a

Lemma 6.27 (Saturated sets lemma for ç). Suppose H ∈ Hint∗ where ∗ ∈ {âç,
âçb}. If H is saturated, then the following property holds for every type α and
A ∈ cwffα(Σ):

∇ç: (A
.
=α A↓âç) ∈ H .

Proof. If (A
.
= A↓âç) /∈ H , then by saturation ¬(A

.
= A↓âç) ∈ H . So, by ~∇ç we

have ¬(A↓âç
.
=
α
A↓âç) ∈ H . But this contradicts ~∇

r.
=
. a

Lemma 6.28 (Saturated sets lemma for î). Suppose H ∈ Hint∗ where ∗ ∈ {âî,
âîb}. If H is saturated, then the following properties hold for all α, â ∈ T and
(ëXαM), (ëX N) ∈ cwffα→â(Σ):

∇î : (ëX M
.
=
α→â

ëX N) ∈ H iff ([A/X]M
.
=
â
[A/X]N) ∈ H for every A ∈

cwffα(Σ).

∇
â

î : (ëX M
.
=α→â ëX N) ∈ H iff ([A/X]M

.
=â [A/X]N)



y

â
∈ H for every A ∈

cwffα(Σ)


y

â
.

Proof. Suppose (ëX M
.
=α→â ëX N) ∈ H and A ∈ cwffα(Σ). We can apply ~∇∀

and ~∇â using the closed formula (ëKα→â [A/X]M
.
=
â
KA) to obtain

(¬([A/X]M
.
=
â
[A/X]M) ∨ [A/X]M

.
=
â
[A/X]N) ∈ H .

Since ¬([A/X]M
.
=â [A/X]M) /∈ H (by ~∇r.

=
), we know ([A/X]M

.
=â [A/X]N) ∈

H . This shows one direction of ∇î . By ~∇â we have ([A/X]M
.
=â [A/X]N)



y

â
∈ H .

Since this holds in particular for any A ∈ cwffα(Σ)


y

â
, this shows one direction of

∇
â

î .

Suppose (ëX M
.
=α→â ëX N) /∈ H . We show that there is a (â-normal) A ∈

cwffα(Σ) with [A/X]M
.
=â [A/X]N /∈ H . By saturation,¬(ëX M

.
=α→â ëX N) ∈

H . By ~∇î , there is a parameter wα ∈ Σα such that ¬([w/X]M
.
=â [w/X]N) ∈ H .

By ~∇c , [w/X]M
.
=â [w/X]N /∈ H . Choosing A := w we have the other direction

of∇î . Since w is â-normal and ([w/X]M
.
=
â
[w/X]N)



y

â
/∈ H (using ~∇â), we have

the other direction of∇
â

î . a

Lemma 6.29 (Saturated sets lemma for f). SupposeH ∈ Hint∗ where∗ ∈ {âf,âfb}.
If H is saturated, then the following property holds for any types α and â and
G ,H ∈ cwffα→â (Σ).

∇f: G
.
=
α→â

H ∈ H iff GA
.
=
â
HA ∈ H for every A ∈ cwffα(Σ).

1074 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

∇
â

f : G
.
=α→â H ∈ H iff (GA

.
=â HA)



y

â
∈ H for every A ∈ cwffα(Σ)



y

â
.

Proof. Suppose (G
.
=
α→â

H) ∈ H and A ∈ cwffα(Σ). Since (A
.
=
α
A) ∈ H by

∇r we have (GA
.
=
â
HA) ∈ H by ~∇→.

=
(cf. Lemma 6.23). This shows one direction

of ∇f. By ~∇â we have (GA
.
=
â
HA)



y

â
∈ H . Since this holds in particular for any

A ∈ cwffα(Σ)


y

â
, this shows one direction of ∇

â

f .

Suppose (G
.
=
α→â

H) /∈ H . By saturation, ¬(G
.
=
α→â

H) ∈ H . By ~∇f, there is

a parameter wα ∈ Σα such that ¬(Gw
.
=
â
Hw) ∈ H . By ~∇c , (Gw

.
=
â
Hw) /∈ H .

Choosing A := w we have the other direction of ∇f. Since w is â-normal and

(Gw
.
=â Hw)



y

â
/∈ H (using ~∇â), we have the other direction of∇

â

f . a

In Lemma 3.24, we compared properties ç, î and f of models by showing f

is equivalent to ç plus î. Similarly, Theorem 6.31 compares ~∇ç , ~∇î , and ~∇f as

properties of Hintikka sets. Showing ~∇f implies ~∇ç requires saturation and must be
shown in several steps reflected by Lemma 6.30.

Lemma 6.30. Let H be a saturated Hintikka set satisfying ~∇f.

(1) For all F ∈ cwffα→â we have (ëXα FX)
.
=α→â F ∈ H .

(2) For all A,B ∈ cwffα(Σ), if A ç-reduces to B in one step, then A
.
=α B ∈ H .

(3) For all A ∈ cwffα(Σ), A
.
=
α
A↓âç ∈ H .

(4) For all A ∈ cwffo(Σ), if A ∈ H , then A↓âç ∈ H .

Proof. To show part (1), suppose (ëXα FX)
.
=
α→â

F /∈ H . By saturation,

¬((ëXα FX)
.
=α→â F) ∈ H . By ~∇f, there is a parameter wα such that

¬(((ëXα FX)w)
.
=â (Fw)) ∈ H .

By ~∇â , ¬((Fw)
.
=
â
(Fw)) ∈ H , which contradicts ~∇r.

=
(cf. Lemma 6.23).

We prove part (2) by induction on the position of the ç-redex in A. If A is the ç-
redex reduced to obtain B, then this follows from part (1). Suppose A ≡ (Fã→αCã)
and B ≡ (Gã→αC) where F ç-reduces to G in one step. By induction, we know

F
.
=ã→α G ∈ H . By ∇r , C

.
=ã C ∈ H . By ~∇→.

=
, we have (FC)

.
=α (GC) ∈ H as

desired. The case in which A ≡ (Fã→αCã) and B ≡ (FDã) where C ç-reduces to D
in one step is analogous.
Suppose A ≡ (ëYâ Cã) and B ≡ (ëYâ Dã) where C ç-reduces to D in one

step. Let p be the position of the redex in C . Assume A
.
=â→ã B /∈ H . By

saturation, ¬(A
.
=
â→ã

B) ∈ H . By ~∇f, there is some parameter wâ such that

¬(Aw
.
=ã Bw) ∈ H . By ~∇â , we know ¬([w/Y]C

.
=ã [w/Y]D) ∈ H . Note that

[w/Y]C ç-reduces to [w/Y]D in one step by reducing the redex at position p in
[w/Y]C . So, by the induction hypothesis, [w/Y]C

.
=
ã
[w/Y]D ∈ H , contradicting

~∇c .
Part (3) follows by induction on the number of âç-reductions from A to A↓âç . If

A is âç-normal, we have A
.
=α A ∈ H by ∇r . If A reduces to A↓âç in n + 1 steps,

then there is some Bα such that A reduces to B in one step and B reduces to A↓âç in

n steps. By induction, we have B
.
=α A↓âç ∈ H . If A â-reduces to B in one step,

then A
.
=
α
B ∈ H by∇r and ~∇â . If A ç-reduces to B in one step, then A

.
=
α
B ∈ H

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1075

by part (2). Using ~∇tr.
=
, A
.
=α B ∈ H and B

.
=α A↓âç ∈ H imply A

.
=α A↓âç ∈ H

as desired.
Finally, to show part (4), suppose A ∈ H . By part (3), A

.
=
o
A↓âç ∈ H . By ~∇∀,

¬(ëXo X)A ∨ (ëXo X) A↓âç ∈ H . By ~∇â and ~∇∨, we have ¬A ∈ H (contradicting
~∇c) or A↓âç ∈ H . Hence, A↓âç ∈ H . a

Theorem 6.31. LetH be a Hintikka set.

(1) IfH satisfies ~∇ç and ~∇î , thenH satisfies ~∇f.

(2) IfH satisfies ~∇f, thenH satisfies ~∇î .

(3) IfH is saturated and satisfies ~∇f, thenH satisfies ~∇ç .

Proof. Suppose H satisfies ~∇ç and ~∇î . Assume ¬(F
.
=α→â G) ∈ H . By ~∇ç,

¬((ëXα FX)
.
=
α→â

(ëX GX)) ∈ H . By ~∇î , there is a parameter wα such that

¬((Fw)
.
=
â
(Gw)) ∈ H . Thus, ~∇f holds.

Suppose H satisfies ~∇f and ¬(ëXαM
.
=
α→â

ëX N) ∈ H . By ~∇f, there is

a parameter wα such that ¬((ëXαM)w
.
=â (ëX N)w) ∈ H . By ~∇â , we have

¬([w/X]M
.
=
â
[w/X]N) ∈ H . Thus, ~∇î holds.

Suppose H is saturated and satisfies ~∇f. Assume A ∈ H , B ∈ cwffo(Σ), A≡âçB
and B /∈ H . By saturation, we know ¬B ∈ H . By Lemma 6.30(4), we know
A↓âç ∈ H and ¬ B↓âç ∈ H . Since A↓âç ≡ B↓âç, this contradicts ~∇c . a

6.3. Model existence theorems. We shall now present the proof of the abstract
extension lemma, which will nearly immediately yield themodel existence theorems.
For the proof we adapt the construction of Henkin’s completeness proof from [26,
27].

Lemma 6.32 (Abstract extension lemma). Let Σ be a signature, ΓΣ be a compact
abstract consistency class in Acc∗, where ∗ ∈ {â,âç,âî,âf,âb,âçb,âîb,âfb}, and let
Φ ∈ ΓΣ be sufficiently Σ-pure. Then there exists a Σ-Hintikka set H ∈ Hint∗, such
thatΦ ⊆ H . Furthermore, if ΓΣ is saturated, thenH is saturated.

Proof. In the following argument, note that α, â , and ã are types as usual, while
ä, å, ó and ô are ordinals.
By Remark 3.16, there is an infinite cardinal ℵs which is the cardinality of Σα for
each type α. This easily implies cwffα(Σ) is of cardinality ℵs for each type α. Let
å be the first ordinal of this cardinality. (In the countable case, å is ù.) Since the
cardinality of cwffo(Σ) is ℵs , we can use the well-ordering principle to enumerate
cwffo(Σ) as (Aä)ä<å .
Let α be a type. For each ä < å, let U äα be the set of constants of type α which
occur in a sentence in the set {Aó | ó ≤ ä }. Since ä < å, the set {Aó | ó ≤ ä }
has cardinality less than ℵs . Hence, U äα has cardinality less than ℵs . By sufficient
purity, we know there is a set of parameters Pα ⊆ Σα of cardinality ℵs such that
the parameters in Pα do not occur in the sentences of Φ. So, Pα \ U äα must have
cardinality ℵs for any ä < å. Using the axiom of choice, we can find a sequence
(wäα)ä<å where for each ä < å, w

ä
α ∈ Pα \ (U äα ∪ {wóα | ó < ä }). That is, for each

type α, we know wäα is a parameter of type α which does not occur in any sentence
in Φ ∪ {Aó | ó ≤ ä }. As a consequence, if wäα occurs in A

ó , then ä < ó. Also, we
have ensured that if wäα ≡ wóα , then ä ≡ ó for any ä, ó < å.

1076 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

The parameters wäα are intended to serve as witnesses. To ease the argument,
we define two sequences of witnessing sentences related to the sequence (Aä)ä<å .
For each ä < å, let Eä := ¬(Bwäα) if A

ä is of the form ¬(ΠαB), and let Eä := Aä

otherwise. If ∗ ∈ {âf,âfb} andAä is of the form¬(F
.
=
α→â

G), letXä := ¬(Fwäα
.
=
â

Gwäα). If ∗ ∈ {âî,âîb} and Aä is of the form ¬((ëXαM)
.
=
α→â

(ëX N)), let

Xä := ¬([wäα/X]M
.
=â [wäα/X]N). Otherwise, let X

ä := Aä . (Notice that any

sentence ¬(F
.
=α→â G) is also of the form ¬(ΠãB), where ã is (α → â) → o. So,

whenever Xä 6≡ Aä , we must also have Eä 6≡ Aä .)
We constructH by inductively constructing a transfinite sequence (H ä)ä<å such
thatH ä ∈ ΓΣ for each ä < å. Then the Σ-Hintikka set isH :=

⋃

ä<åH
ä . We define

H 0 := Φ. For limit ordinals ä, we defineH ä :=
⋃

ó<ä H
ó .

In the successor case, ifH ä ∗Aä ∈ ΓΣ, then we letH ä+1 := H ä ∗Aä ∗Eä ∗Xä . If
H ä ∗ Aä /∈ ΓΣ, we letH ä+1 := H ä .
We show by induction that for every ä < å, type α and parameter w ôα which
occurs in some sentence in H ä , we have ô < ä. The base case holds since no w ôα
occurs in any sentence in H 0 ≡ Φ. For any limit ordinal ä, if wôα occurs in some
sentence in H ä , then by definition of H ä , wôα already occurs in some sentence in
H ó for some ó < ä. So, ô < ó < ä.
For any successor ordinal ä +1, suppose wôα occurs in some sentence inH

ä+1. If
it already occurred in a sentence inH ä , then we have ô < ä < ä+1 by the inductive
assumption. So, we need only consider the case where w ôα occurs in a sentence in
H ä+1 \H ä . Note that (H ä+1 \H ä) ⊆ {Aä ,Eä ,Xä}. In any case, note that if ô is ä,
then we are done, since ä < ä + 1. If wôα is any parameter with ô 6≡ ä and occurs in
Eä or Xä , then it must also occur in Aä (by noting thatwôα 6≡ wäα and inspecting the
possible definitions of Eä and Xä), in which case ô < ä < ä + 1.
In particular, we now know wäα does not occur in any sentence of H

ä for any
ä < å and type α.
Next we show by induction that H ä ∈ ΓΣ for all ä < å. The base case holds by
the assumption that H 0 ≡ Φ ∈ ΓΣ. For any limit ordinal ä, assume H ó ∈ ΓΣ for
every ó < ä. We haveH ä ≡

⋃

ó<ä H
ó ∈ ΓΣ by compactness, since any finite subset

ofH ä is a subset ofH ó for some ó < ä.
For any successor ordinal ä + 1, we assume H ä ∈ ΓΣ. We have to show that
H ä+1 ∈ ΓΣ. This is trivial in caseH ä ∗Aä /∈ ΓΣ (for all abstract consistency classes)
since H ä+1 ≡ H ä . SupposeH ä ∗ Aä ∈ ΓΣ. We consider three sub-cases:

(i) If Eä ≡ Aä and Xä ≡ Aä , thenH ä ∗ Aä ∗ Eä ∗ Xä ∈ ΓΣ since H ä ∗ Aä ∈ ΓΣ.
(ii) If Eä 6≡ Aä and Xä ≡ Aä , then Aä is of the form ¬ΠαB and Eä ≡ ¬Bwäα .
We conclude that H ä ∗ Aä ∗ Eä ∈ ΓΣ by ∇∃ since wäα does not occur in A

ä

or any sentence of H ä . Since Xä ≡ Aä , this is the same as concluding
H ä ∗ Aä ∗ Eä ∗ Xä ∈ ΓΣ.

(iii) If Xä 6≡ Aä , then ∗ ∈ {âî,âf,âîb,âfb} (by the definition of X ä). H ä ∗ Aä ∗
Eä ∈ ΓΣ by ∇∃ since wä(α→â)→o does not occur in A

ä or any sentence in H ä .

Now,wäα (which is different fromw
ä
(α→â)→o

since it has a different type) does

not occur in any sentence inH ä ∗ Aä ∗ Eä . We haveH ä ∗ Aä ∗ Eä ∗ Xä ∈ H
by∇î (if ∗ ∈ {âî,âîb}) or by∇f (if ∗ ∈ {âf,âfb}).

Since ΓΣ is compact, we also haveH ∈ ΓΣ.

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1077

Now we know that our inductively defined setH is indeed in ΓΣ and that Φ ⊆ H .
In order to apply Lemma 6.21, we must check H is maximal, satisfies ~∇∃, ~∇î (if

∗ ∈ {âî,âîb}), and ~∇f (if ∗ ∈ {âf,âfb}). It is immediate from the construction

that ~∇∃ holds since if ¬(ΠαF) ∈ H , then ¬(Fwäα) ∈ H where ä is the ordinal

such that Aä ≡ ¬(ΠαF). If ∗ ∈ {âî,âîb}, then we have ensured ~∇î holds since

¬([wäα/X]M
.
=â [wäα/X]N) ∈ H whenever ¬((ëXαM)

.
=α→â (ëX N)) ∈ H

where ä is the ordinal such that Aä ≡ ¬((ëXαM)
.
=α→â (ëX N)). Similarly, we

have ensured ~∇f holds when ∗ ∈ {âf,âfb} since ¬(Fwäα
.
=
â
Gwäα) ∈ H whenever

¬(F
.
=
α→â

G) ∈ H where ä is the ordinal such that Aä ≡ ¬(F
.
=
α→â

G).
It only remains to show thatH is maximal in ΓΣ. So, letA ∈ cwffo andH ∗A ∈ ΓΣ
be given. Note that A ≡ Aä for some ä < å. Since H is closed under subsets we
know that H ä ∗ Aä ∈ ΓΣ. By definition of H ä+1 we conclude that Aä ∈ H ä+1 and
hence A ∈ H .
So, Lemma 6.21 implies H ∈ Hint∗ andH is saturated if ΓΣ is saturated. a

We now use the Σ-Hintikka sets, guaranteed by Lemma 6.32, to construct a
Σ-valuation for the Σ-term evaluation that turns it into a model.

Theorem 6.33 (Model existence theorem for saturated sets). For all ∗ ∈ {â,âç,
âî,âf,âb,âçb,âîb,âfb} we have: IfH is a saturated Hintikka set in Hint∗ (cf. Defi-
nition 6.20), then there exists a modelM ∈ M∗ (cf. Definition 3.49) that satisfiesH .
Furthermore, each domainDα ofM has cardinality at most ℵs .

Proof. We start with the construction of a Σ-model MH1 for H based on the

term evaluation TE(Σ)
â
. This model may not be in the model classM∗ as it may

not satisfy property q. However, we will be able to use Theorem 3.62 to obtain a
model ofH which is.
Note that since H is saturated, by Lemma 6.25,H satisfies∇¬, ∇∨, and∇

â

∀ .

The domain of type α of the evaluation TE(Σ)
â
(cf. Definition 3.35 and

Lemma 3.36) is cwffα(Σ)


y

â
, which has cardinality ℵs . To constructMH1 , we simply

need to give a valuation function for this evaluation. This valuation function should
be a function õ : cwffo(Σ)



y

â
−→ {T, F}. We define

õ(A) :=

{

T if A ∈ H ,
F if A /∈ H .

To show õ is a valuation, we must check the logical constants are interpreted
appropriately. For each A ∈ cwffo(Σ)



y

â
, we have õ(¬A) ≡ T iff õ(A) ≡ F since

¬A ∈ H iff A /∈ H by ∇¬. For each A,B ∈ cwffo(Σ)


y

â
, we have õ(A ∨ B) ≡ T iff

õ(A) ≡ T or õ(B) ≡ T, since (A ∨ B) ∈ H iff A ∈ H or B ∈ H by ∇∨. Finally,

for each type α and F ∈ cwffα→o(Σ)


y

â
, ∇

â

∀ implies (Π
αF) ∈ H iff (FA)



y

â
∈ H

for every A ∈ cwffα(Σ)


y

â
. Thus, we have õ(ΠαF) ≡ T iff õ(F@âA) ≡ T for every

A ∈ cwffα(Σ)


y

â
.

This verifies MH1 := (cwff


y

â
,@â ,E â , õ) is a Σ-model. Clearly, MH1 |= H since

õ(A) ≡ T for every A ∈ H by definition.
By Theorem 3.62, we have a congruence relation

.
∼ on MH1 induced by Leibniz

equality. Note that by Lemma 3.61 in the term model MH1 , for every type α and

1078 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

every A,B ∈ cwffα(Σ)


y

â
, we have Aα

.
∼ Bα , iff õ(A

.
= B) ≡ T, iff (A

.
=α B) ∈ H .

Furthermore, if primitive equality is in the signature, thenH ∈ Hint∗ is a Hintikka

set with primitive equality. Hence,H satisfies∇
.
=
= by Lemma 6.22. We have A

.
∼ B,

iff (A
.
=α B) ∈ H , iff (by ∇

.
=
=) (A =

α B) ∈ H , iff õ(E â(=α)@âA@âB) ≡ T.
Let M :=MH1 /.∼. Each domain of this model has cardinality at most ℵs as it
is the quotient of a set of cardinality ℵs . By Theorem 3.62, we know the quotient
model M models H , satisfies property q, and is a model with primitive equality
(if primitive equality is in the signature). Hence, M ∈ Mâ . Now, we can use
Lemma 3.58 to checkM ∈ M∗ by checking certain properties of

.
∼.

When ∗ ∈ {âb,âçb,âîb,âfb}, we must check that
.
∼ has only two equivalence

classes inD âo . To show this, first note that∇b holds forH by Lemma 6.26. Choose
any â-normal B ∈ H . By ~∇c , ¬B /∈ H . By ∇b, for every A ∈ cwffo(Σ)



y

â
either

(A
.
=o B) or (A

.
=o ¬B). That is, inMH1 , for every A ∈ cwffo(Σ)



y

â
we either have

A
.
∼ B or A

.
∼ ¬B. So, we knowM satisfies property b.

When ∗ ∈ {âç,âçb}, the fact that
.
∼ satisfies property ç follows from ∇ç which

holds forH by Lemma 6.27.
When ∗ ∈ {âî,âîb}, we must show that

.
∼ satisfies property î. Let M ,N ∈

wffâ(Σ), an assignment ϕ and a variable Xα be given. Suppose E
â
ϕ,[A/X](M)

.
∼

E
â
ϕ,[A/X](N) for every A ∈ cwffα(Σ)



y

â
. Let è be the substitution defined by

è(Y) := ϕ(Y) for each variable Y ∈ (free(M) ∪ free(N)) \ {X}. So, for each
A ∈ cwffα(Σ)



y

â
,

([A/X]è(M))


y

â
≡ E âϕ,[A/X](M)

.
∼ E âϕ,[A/X](N) ≡ ([A/X]è(N))



y

â
.

That is, ([A/X]è(M)
.
=â [A/X]è(N))



y

â
∈ H for every A ∈ cwffα(Σ)



y

â
. By ∇

â

î

(Lemma 6.28), we have ((ëX è(M))
.
=
α→â

ëX è(N))


y

â
∈ H . So,

E âϕ (ëX M) ≡ (ëX è(M))


y

â

.
∼ (ëX è(N))



y

â
≡ E âϕ (ëX N).

Thus,
.
∼ satisfies î as desired.

When ∗ ∈ {âf,âfb}, we must show
.
∼ is functional. Let α and â be types and

G ,H ∈ cwffα→â (Σ)


y

â
. We need to show G

.
∼ H iff (GA)



y

â

.
∼ (HA)



y

â
for every

A ∈ cwffα(Σ)


y

â
. This follows directly from ∇

â

f .

This verifies the fact thatM ∈ M∗ wheneverH ∈ Hint∗. a

Theorem 6.34 (Model existence theorem). Let ΓΣ be a saturated abstract con-
sistency class and let Φ ∈ ΓΣ be a sufficiently Σ-pure set of sentences. For all
∗ ∈ {â,âç,âî,âf,âb,âçb,âîb,âfb} we have: If ΓΣ is an Acc∗ (cf. Definition 6.7),
then there exists a modelM ∈ M∗ (cf. Definition 3.49) that satisfiesΦ. Furthermore,
each domain ofM has cardinality at most ℵs .

Proof. Let ΓΣ be an abstract consistency class. We can assume without loss of
generality (cf. Lemma 6.18) that ΓΣ is compact, so the preconditions of Lemma 6.32
are met. Therefore, there exists a saturated Hintikka set H ∈ Hint∗ with Φ ⊆ H .
The proof is completed by a simple appeal to the Theorem 6.33. a

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1079

Theorem 6.35 (Model existence for Henkin models). Let ΓΣ be a saturated ab-
stract consistency class inAccâfb and letΦ ∈ ΓΣ be a sufficiently Σ-pure set of sentences.
Then there is a Henkin model (cf. Definition 3.50) that satisfiesΦ. Furthermore, each
domain of the model has cardinality at most ℵs .

Proof. By Theorem 6.34, there is a model M ∈ Mâfb with M |= Φ. By Theo-
rem 3.68, there is a Henkin model Mfr ∈ Mâfb isomorphic to M . By the isomor-
phism, we haveMfr |= Φ and that each domain ofMfr has the same cardinality as
the corresponding domain ofM . a

Remark 6.36. The model existence theorems show there are “enough” models
in each class M∗ to model sufficiently pure sets in saturated abstract consistency
classes in Acc∗. These results are abstract forms of completeness. To complete the
analysis, we can show abstract forms of soundness. One way to show this is to
define a class of sentences

Γ∗Σ := {Φ ⊆ cwffo | ∃M ∈ M∗M |= Φ }

for each ∗ ∈ {â,âç,âî,âf,âb,âçb,âîb,âfb} and show Γ∗Σ is a (saturated) Acc∗. We
only sketch the proof here.
The fact that each Γ∗Σ satisfy∇c , ∇â , ∇¬, ∇∨, ∇∧, ∇∀, and∇sat is straightforward.
The proof that ∇∃ holds has the technical difficulty that one must modify the
evaluation of a parameter. Showing ∇b [∇ç] holds when considering models with
property b [ç] is also easy.

When showing∇f holds in Γ
âf
Σ [Γ

âfb
Σ], one sees the importance of assuming prop-

erty q holds. Suppose Φ ∈ ΓâfΣ [Γ
âfb
Σ] and ¬(F

.
=
α→â

G) ∈ Φ. Then there
is a model M ≡ (D ,@,E , õ) ∈ Mâf [Mâfb] such that M |= Φ. This implies

M |= ¬(F
.
=α→â G). Without using property q, it follows by Lemma 4.2(1) that

E (F) 6≡ E (G). By functionality, there is an a ∈ Dα such that E (F)@a 6≡ E (G)@a.
Let ϕ be any assignment intoM . Then Eϕ,[a/X](FX) 6≡ Eϕ,[a/X](GX). Now, using

property q, we can concludeMϕ,[a/X] |= ¬((FX)
.
=
â
(GX)) by Lemma 4.2(2). Let

wα ∈ Σ be a parameter that does not occur in any sentence of Φ. With some
technical work which we omit, one can change the evaluation function to E ′ so that
E ′(A) ≡ E (A) for allA ∈ Φ, and E ′(w) ≡ a. In the newmodelM ′ ≡ (D ,@,E ′, õ),

we haveM ′ |= Φ andM ′ |= ¬(Fw
.
=
â
Gw). Also,M ′ ∈ Accâf [Accâfb]. This shows

Φ ∗ ¬(Fw
.
=â Gw) ∈ ΓâfΣ [Γ

âfb
Σ]. The proof that∇î holds in Γ

âî
Σ [Γ

âîb
Σ] is analogous.

We have now established a set of proof-theoretic conditions that are sufficient to
guarantee the existence of a model.

§7. Characterizing higher-order natural deduction calculi. In this sectionwe apply
the model existence theorems above to prove some classical higher-order calculi of
natural deduction sound and complete with respect to the model classes introduced
in Section 3. The first calculus for such a formulation of higher-order logic was a
Hilbert-style system introduced by Alonzo Church in [18]10. Leon Henkin proves
completeness (with respect to Henkin models) for a similar calculus with full exten-
sionality in [26]. Peter Andrews introduced a weaker calculus Tâ [1], which lacks all

10Church included functional extensionality axioms but only mentions the Boolean extensionality
axiom as an option.

1080 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

A ∈ Φ
NK(Hyp)

Φ `̀ A

A≡âB Φ `̀ A
NK(â)

Φ `̀ B

Φ ∗ A `̀ Fo
NK(¬I)

Φ `̀ ¬A

Φ `̀ ¬A Φ `̀ A
NK(¬E)

Φ `̀ C

Φ `̀ A
NK(∨IL)

Φ `̀ A ∨ B

Φ `̀ B
NK(∨IR)

Φ `̀ A ∨ B

Φ `̀ A ∨ B Φ ∗ A `̀ C Φ ∗ B `̀ C
NK(∨E)

Φ `̀ C

Φ `̀ Gwα w parameter not occurring in Φ or G
NK(ΠI)

w

Φ `̀ ΠαG

Φ `̀ ΠαG
NK(ΠE)

Φ `̀ GA

Φ ∗ ¬A `̀ Fo
NK(Contr)

Φ `̀ A

Figure 6. Inference rules forNKâ .

forms of extensionality. This calculus has been widely used as a syntactic measure
of completeness for machine-oriented calculi [1, 32, 33, 34, 42, 36, 37].
Instead of applying our methods to Hilbert-style calculi, we will use a collection
of natural deduction calculi to avoid the tedious details of proving a deduction
theorem and propositional completeness. Moreover, natural deduction calculi are
more relevant in practice. They form the logical basis for semi-automated theorem
proving systems such asHOL [25], Isabelle [46], or Ωmega [51].

Definition 7.1 (The calculi NK∗). The calculus NKâ consists of the inference
rules11 in Figure 6 for the provability judgment `̀ between sets of sentences Φ and
sentences A. (We write `̀ A for ∅ `̀ A.) The rule NK(â) incorporates â-equality
into `̀ . The others characterize the semantics of the connectives and quantifiers.
For ∗ ∈ {âç,âî,âf,âb,âçb,âîb,âfb} we obtain the calculus NK∗ by adding the
rules shown in Figure 7 when specified in ∗.

Remark 7.2. It is worth noting that there is a derivation of `̀ To (i.e., `̀ ∀P0
P ∨ ¬P) which only uses the rules in Figure 6. Let p be a parameter of type o. A
derivation of ¬(p ∨ ¬p) `̀ (p ∨ ¬p) is shown in Figure 8. Using NK(Hyp) and

11Recall that Fo is defined to be¬(∀Po (P∨¬P)) andM 6|= Fo for each Σ-modelM (cf. Lemma 3.43).

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1081

A≡âçB Φ `̀ A
NK(ç)

Φ `̀ B

Φ `̀ ∀XαM
.
=
â
N

NK(î)
Φ `̀ (ëXαM)

.
=α→â (ëXα N)

Φ `̀ ∀Xα GX
.
=â HX

NK(f)
Φ `̀ G

.
=
α→â

H

Φ ∗ A `̀ B Φ ∗ B `̀ A
NK(b)

Φ `̀ A
.
=o B

Figure 7. Extensional inference rules.

NK(Hyp)
¬(p ∨ ¬p), p `̀ ¬(p ∨ ¬p)

NK(Hyp)
¬(p ∨ ¬p), p `̀ p

NK(∨IL)
¬(p ∨ ¬p), p `̀ (p ∨ ¬p)

NK(¬E)
¬(p ∨ ¬p), p `̀ Fo

NK(¬I)
¬(p ∨ ¬p) `̀ ¬p

NK(∨IR)
¬(p ∨ ¬p) `̀ (p ∨ ¬p)

Figure 8. Derivation of ¬(p ∨ ¬p) `̀ (p ∨ ¬p).

NK(¬E), we obtain ¬(p ∨ ¬p) `̀ Fo. So, we can conclude `̀ (p ∨ ¬p) using
NK(Contr). Finally, we obtain a derivation of `̀ To usingNK(ΠI)

p
. Hence, `̀ To

is derivable in each calculus NK∗ where ∗ ∈ {â,âç,âî,âf,âb,âçb,âîb,âfb}. Also,
we can apply the rule NK(ΠE) to the end of this derivation with any sentence A to
derive `̀ (A ∨ ¬A).

Note that NKâ and NKâfb correspond to the extremes of the model classes dis-
cussed in Section 3 (cf. Figure 1 in the introduction). Standardmodels do not admit
(recursively axiomatizable) calculi that are sound and complete, NKâfb is complete
for Henkin models, andNKâ is complete forMâ . We will now show soundness and
completeness of each NK∗ with respect to each corresponding model classM∗ by
using the model existence theorems in Section 6.

Theorem 7.3 (Soundness). NK∗ is sound for M∗ for ∗ ∈ {â,âç,âî,âf,âb,âçb,
âîb,âfb}. That is, if Φ `̀NK∗

C is derivable, then M |= C for all models M ≡
(D ,@,E , õ) inM∗ such thatM |= Φ.

Proof. This can be shown by a simple induction on the derivation of Φ `̀NK∗
C .

We distinguish based on the last rule of the derivation. The only base case is
NK(Hyp), which is trivial sinceM |= C wheneverM |= Φ and C ∈ Φ.

1082 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

NK(â): Suppose Φ `̀ C follows from Φ `̀ A and A≡âC . Let M ∈ M∗ be a
model of Φ. By induction, we know M |= A and so M |= C using
Remark 3.19.

NK(Contr): SupposeM ∈ M∗,M |= Φ and Φ `̀ C follows from Φ ∗ ¬C `̀ Fo. By
Lemma 3.43,M 6|= Fo. So, we must haveM 6|= ¬C . Hence,M |= C .

NK(¬I): Analogous to NK(Contr).
NK(¬E): Suppose Φ `̀ C follows from Φ `̀ ¬A and Φ `̀ A. By induction, any

model inM∗ of Φ would have to model both A and ¬A. So, there is
no such model of Φ and we are done.

NK(∨IL): Suppose M ∈ M∗, M |= Φ, C is (A ∨ B) and Φ `̀ C follows from
Φ `̀ A. By induction,M |= A and soM |= (A ∨ B).

NK(∨IR): Analogous to NK(∨IL).
NK(∨E): Suppose Φ `̀ C follows from Φ `̀ (A∨B), Φ ∗A `̀ C and Φ ∗B `̀ C .

LetM ∈ M∗ be a model of Φ. By induction,M |= A ∨ B. IfM |= A,
then by induction M |= C since Φ ∗ A `̀ C . If M |= B, then by
inductionM |= C since Φ ∗ B `̀ C . In either case, Φ `̀ C .

NK(ΠI): Suppose C is (ΠαG) and Φ `̀ (ΠαG) follows from Φ `̀ Gw where
wα is a parameter which does not occur in any sentence of Φ or in G .
Let M ≡ (D ,@,E , õ) ∈ M∗ be a model of Φ. Assume M 6|= ΠαG .
Then there must be some a ∈ Dα such that õ(E (G)@a) ≡ F. From
the evaluation function E , one can define another evaluation function
E ′ such that E ′(w) ≡ a and E ′ϕ(Aα) ≡ Eϕ(Aα) if w does not occur in

A. Let M ′ := (D ,@,E ′, õ). One can check M ′ ∈ M∗ using the fact
thatM ∈ M∗. SinceM ′ |= Φ, by induction we haveM ′ |= Gw. This
contradicts õ(E ′(G)@a) ≡ õ(E (G)@a) ≡ F. Thus,M |= ΠαG .

NK(ΠE): Suppose C is (GA) and Φ `̀ C follows from Φ `̀ (ΠαG). Let M ≡
(D ,@,E , õ) ∈ M∗ be a model of Φ. By induction, M |= (ΠαG) and
thus õ(E (G))@a ≡ T for every a ∈ Dα . In particular,M |= GA.

We now check soundness of the rules in Figure 7 with respect to their model classes:

NK(ç): Analogous to NK(â) using property ç.

NK(î): Suppose C is (ëXαM)
.
=
α→â

(ëXα N) and Φ `̀ C follows from Φ `̀

∀XαM
.
=â N . Let M ≡ (D ,@,E , õ) ∈ M∗ be a model of Φ. By

induction, we have M |= ∀XαM
.
=
â
N . So, for any assignment ϕ

and a ∈ Dα , M |=ϕ,[a/X] M
.
=â N . Note that property q holds in M

sinceM ∈ M∗ (cf. Definition 3.49). By Lemma 4.2(2), Eϕ,[a/X](M) ≡
Eϕ,[a/X](N). By property î, Eϕ(ëXαM) ≡ Eϕ(ëXα N) and thusM |=
C by Lemma 4.2(1).

NK(f): SupposeC isG
.
=α→â H andΦ `̀ C follows fromΦ `̀ ∀Xα GX

.
=â HX .

Let M ∈ M∗ be a model of Φ. By induction, we know M |=

∀Xα GX
.
=â HX . Note that property q holds for M since M ∈ M∗.

By Theorem 4.3(3), we must haveM |= (G
.
=
α→â

H).
NK(b) SupposeC isA

.
=o B andΦ `̀ C follows fromΦ∗A `̀ B andΦ∗B `̀ A.

LetM ≡ (D ,@,E , õ) ∈ M∗ be a model of Φ. IfM |= A, thenM |= B
by induction. IfM |= B, thenM |= A by induction. These facts imply
õ(E (A)) ≡ õ(E (B)). By Lemma 3.48, we have M |= (A ⇔ B). By
Theorem 4.3(4), we must haveM |= (A

.
=
o
B). a

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1083

Definition 7.4 (NK∗-consistent). A set of sentences Φ is NK∗-inconsistent if
Φ `̀NK∗

Fo, andNK∗-consistent otherwise.

Now, we use the model existence theorems for HOL to give short and elegant
proofs of completeness forNK∗.

Lemma 7.5. The class Γ∗Σ := {Φ ⊆ cwffo | Φ is NK∗-consistent} is a saturated
Acc∗.

Proof. Obviously Γ∗Σ is closed under subsets, since any subset of an NK∗-
consistent set is NK∗-consistent. We now check the remaining conditions. We
prove all the properties by proving their contrapositive.

∇c : Suppose A,¬A ∈ Φ. We have Φ `̀ Fo byNK(Hyp) andNK(¬E).
∇â : Let A ∈ Φ, A≡âB and Φ ∗ B be NK∗-inconsistent. That is, Φ ∗ B `̀ Fo. By

NK(¬I), we know Φ `̀ ¬B. Since A ∈ Φ, we know Φ `̀ B by NK(Hyp) and
NK(â). Using NK(¬E), we know Φ `̀ Fo and hence Φ is NK∗-inconsistent.

∇¬: Suppose ¬¬A ∈ Φ and Φ ∗ A is NK∗-inconsistent. From Φ ∗ A `̀ Fo and
NK(¬I), we have Φ `̀ ¬A. Since ¬¬A ∈ Φ, we can apply NK(Hyp) and
NK(¬E) to obtain Φ `̀ Fo.

∇∨: Suppose (A ∨ B) ∈ Φ and both Φ ∗ A and Φ ∗ B are NK∗-inconsistent. By
NK(Hyp) andNK(∨E), we have Φ `̀ Fo.

∇∧: Suppose ¬(A ∨ B) ∈ Φ and Φ ∗ ¬A ∗ ¬B is NK∗-inconsistent. By NK(Contr)
and NK(∨IR), we have Φ,¬A `̀ A ∨ B. Using NK(¬E) with ¬(A ∨ B) ∈ Φ,
we have Φ,¬A `̀ Fo. ByNK(Contr) andNK(∨IL), we have Φ `̀ A∨B. Using
NK(¬E) with ¬(A ∨ B) ∈ Φ, Φ is NK∗-inconsistent.

∇∀: Suppose (ΠαG) ∈ Φ and Φ ∗ (GA) is NK∗-inconsistent. By NK(¬I), Φ `̀
¬(GA). By NK(Hyp) and NK(ΠE), Φ `̀ GA. Finally, NK(¬E) implies
Φ `̀ Fo.

∇∃: Suppose ¬(ΠαG) ∈ Φ, wα is a parameter which does not occur in Φ, and
Φ ∗ ¬(Gw) is NK∗-inconsistent. By NK(Contr), Φ `̀ Gw. By NK(ΠI)

w
,

Φ `̀ (ΠαG). Using NK(¬E) with ¬(ΠαG) ∈ Φ, Φ is NK∗-inconsistent.
∇sat : LetΦ∗A andΦ∗¬AbeNK∗-inconsistent. We show thatΦ isNK∗-inconsistent.

UsingNK(¬I), we knowΦ `̀ ¬A andΦ `̀ ¬¬A. ByNK(¬E), we haveΦ `̀ Fo.

Thus we have shown that ΓâΣ is saturated and in Accâ . Now let us check the
conditions for the additional properties ç, î, f, and b.

∇ç : If ∗ includes ç, then the proof proceeds as in∇â above, but with the ruleNK(ç).

∇î : Suppose ∗ includes î, ¬(ëX M
.
=α→â ëX N) ∈ Φ, and Φ ∗ ¬([w/X]M

.
=â

[w/X]N) isNK∗-inconsistent for some parameterwα which does not occur in

any sentence of Φ. By NK(Contr), we have Φ `̀ ([w/X]M
.
=â [w/X]N). By

NK(â), we have Φ `̀ ((ëX M
.
=
â
N)w). By NK(ΠI), Φ `̀ (∀X M

.
=
â
N).

ByNK(î), Φ `̀ (ëX M
.
=α→â ëX N). By NK(¬E), Φ is NK∗-inconsistent.

∇f: This case is analogous to the previous one, generalizing ëX M
.
= ëX N to

arbitrary G
.
= H and using the extensionality rule NK(f) instead of NK(î).

∇b: Suppose ∗ includes b. Assume that ¬(A
.
=o B) ∈ Φ but both Φ ∗¬A ∗B /∈ Γ∗Σ

and Φ ∗ A ∗ ¬B /∈ Γ∗Σ . So both are NK∗-inconsistent and we have Φ ∗ A `̀ B
and Φ ∗ B `̀ A by NK(Contr). By NK(b), we have Φ `̀ (A

.
=o B). Since

¬(A
.
=
o
B) ∈ Φ, Φ is NK∗-inconsistent. a

1084 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

Theorem 7.6 (Henkin’s theorem forNK∗). Let ∗ ∈ {â,âç,âî,âf,âb,âçb,âîb,
âfb}. Every sufficiently Σ-pureNK∗-consistent set of sentences has anM∗-model.

Proof. Let Φ be a sufficiently Σ-pure NK∗-consistent set of sentences. By The-
orem 7.5 we know that the class of sets of NK∗-consistent sentences constitute a
saturated Acc∗, thus the Model Existence Theorem (Theorem 6.34) guarantees an
M∗ model for Φ. a

Corollary 7.7 (Completeness theorem forNK∗). Let Φ be a sufficiently Σ-pure
set of sentences, A be a sentence, and ∗ ∈ {â,âç,âî,âf,âb,âçb,âîb,âfb}. If A is
valid in all modelsM ∈ M∗ that satisfyΦ, then Φ `̀NK∗

A.

Proof. Let A be given such that A is valid in allM∗ models that satisfy Φ. So,
Φ ∗ ¬A is unsatisfiable in M∗. Since only finitely many constants occur in ¬A,
Φ ∗ ¬A is sufficiently Σ-pure. So, Φ ∗ ¬A must be NK∗-inconsistent by Henkin’s
theorem above. Thus, Φ `̀NK∗

A by NK(Contr). a

Finally we can use the completeness theorems obtained so far to prove a com-
pactness theorem for our semantics.

Corollary 7.8 (Compactness theorem forNK∗). Let Φ be a sufficiently Σ-pure
set of sentences and ∗ ∈ {â,âç,âî,âf,âb,âçb,âîb,âfb}. Φ has an M∗-model iff
every finite subset of Φ has anM∗-model.

Proof. If Φ has noM∗-model, then by Theorem 7.6Φ isNK∗-inconsistent. Since
everyNK∗-proof is finite, this means some finite subset Ψ of Φ isNK∗-inconsistent.
Hence, Ψ has noM∗-model. a

Remark 7.9 (Calculi with primitive equality). If primitive equality is included in
the signature, a simple way of extending the calculi NK∗ in a sound and complete
way is to include the rules NK(=r) and NK(=l) in Figure 9. These rules are clearly
sound for models with primitive equality. One can argue completeness by showing
Γ∗Σ := {Φ ⊆ wffo(Σ) | Φ is NK∗-consistent} is a saturated Acc∗ with primitive
equality. By Lemma 7.5, we already know Γ∗Σ is a saturated Acc∗. To show the
conditions for primitive equality, one can show Γ∗Σ satisfies ∇

r
= using NK(=r) and

∇
.
=
= usingNK(=l).

NK(=r)
Φ `̀ A =α A

Φ `̀ C =α D
NK(=l)

Φ `̀ C
.
=α D

Figure 9. Primitive equality in NK∗.

§8. Conclusion. In this article, we have given an overview of the landscape of
semantics for classical higher-order logics. We have differentiated nine different
possible notions and have tied the discerning properties to conditions of corre-
sponding abstract consistency classes. The practical relevance of these notions has
been illustrated by pointing to application scenarios within mathematics, program-
ming languages, and computational linguistics.

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1085

Our model existence theorems are strong proof tools connecting syntax and
semantics. A standard application is in completeness analysis of higher-order
calculi. A calculus C is shown to be complete for a model class M∗ by showing
that the class of C -consistent or C -irrefutable sets of sentences is in Acc∗. Then
completeness follows from the model existence results. We have given an example
of this by showing completeness for natural deduction calculi in Section 7.

8.1. Applications and related work. The generalized model classesM∗ havemany
possible applications. An example is higher-order logic programming [45] where
the denotational semantics of programs can induce non-standard meanings for
the classical connectives. For instance, given an SLD-like search strategy as in
ë-PROLOG [43], conjunction is not commutative any more. Therefore, various au-
thors have proposed model-theoretic semantics where property b fails. David Wol-
fram, for instance, uses Andrews’ õ-complexes [58] as a semantics for ë-PROLOG
and Gopalan Nadathur uses “labeled structures” for the same purpose in [45].
Mary DeMarco [20] also develops a model theory for intuitionistic type theory
and ë-prolog in which property b may fail (James Lipton and Mary DeMarco are
continuing this work). Till Mossakowski and Lutz Schröder have been studying
non-functional Henkin models for a partial ë-calculus in the context of the Has-
Casl specification language [48, 49]. It is plausible to assume that the results of this
article will be useful for further development in this direction. Further relevance
of model-theoretic semantics where property q fails, however, is not sufficiently
investigated yet, but seems a promising line of research.
The article also provides a basis for the investigation of hyper-intensional seman-
tics of natural languages. In fact early versions of this article have already influenced
the work of Lappin and Pollard [40]. Hyper-intensional semantics provide theories
for logics where Boolean extensionality (and thus the substitutability of equivalents)
can fail. Linguistically motivated theories like the ones presented in [56, 17, 41, 40]
introduce intensional (non-standard) variants of the connectives and quantifiers
acting on a generalized domain of truth values. Interestingly, only [41] and [40]
present formal model-theoretic semantics. The model construction in [41] strongly
resembles Peter Andrew’s õ-complexes (semantic objects are paired with syntactic
representations; in this case linguistic parse trees). In [40], Do is taken to be a
pre-Boolean algebra, and possible worlds are associated with ultrafilters. A direct
comparison is aggravated by the fact that Lappin and Pollard’s work is situated in a
Montague-style intensional (i.e., modal) context. A generalization of our work by
techniques from [23] seems the way to go here.

8.2. Relaxing the saturation assumption. Unfortunately, the model existence the-
orems presented in this article do not support completeness proofs for most higher-
order machine-oriented calculi, such as higher-order resolution [33, 13], higher-
order paramodulation [11], or tableau-based calculi [5, 37]. This is because we had
to assume saturation of abstract consistency classes to prove the model existence
theorems. The problem is that machine oriented calculi are typically, in some sense,
cut-free. This makes saturation very difficult to show.
For the same reason the results of this article also do not apply to another
prominent application of model existence theorems: relatively simple (but non-
constructive) cut-elimination theorems. In [1] Peter Andrews applies his “Unifying
Principle” to cut-elimination in a cut-free non-extensional sequent calculus, by

1086 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

proving the calculus complete (relative to Tâ). He concludes that cut-elimination
is valid for this calculus. Again, the saturation condition prevents us from obtain-
ing variants of the extensional cut-elimination theorems in [54, 55] by Andrews’
approach using our model existence theorem for Henkin models. In fact one can
prove (cf. [12]) that the problem of showing that an abstract consistency class can
be extended to a saturated one is equivalent to showing cut elimination for certain
sequent or resolution calculi.
To account for the saturation problem we have additionally investigated model
existence for the model classes presented in this article using an extension of Peter
Andrews’ õ-complexes (cf. [12]). The model construction in this technique requires
an abstract consistency class to satisfy certain acceptability conditions which are
much weaker than saturation. (For example, the acceptability conditions can be
shown to hold for abstract consistency classes obtained from certain cut-free sequent
calculi.) Because this technique is muchmore complex and subtle than the relatively
simple quotients of term evaluations used in this article, we did not include the
extended results here. The unsaturated model existence theorems imply that every
acceptable abstract consistency class can be extended to a saturated one. Armed
with this fact, we can use the model existence theorems presented here to rescue the
general completeness and cut elimination results mentioned above. To show, for
example, completeness of a higher-ordermachine-oriented calculus C , we define the
class Γ ofC -irrefutable sentences and show that it is an acceptable (but unsaturated)
abstract consistency class. By the extension result in [12] there is a saturatedabstract
consistency class Γ′ ⊇ Γ. By application of saturated model existence from this
article we obtain a suitable model for every (sufficiently Σ-pure) Φ ∈ Γ′ and thus for
every (sufficiently Σ-pure) Φ ∈ Γ. This immediately gives us completeness. Hence,
the leverage added by this article together with [12] is that we can now extend
non-extensional cut-elimination results to extensional cases.

Acknowledgments. The work presented in this paper has been supported by the
“Deutsche Forschungsgemeinschaft” (DFG) under Grant SI 372/4 Hotel, the
National Science Foundation under Grant CCR-0097179 and a DFG Heisenberg
stipend (Ko-1370/6-1) to the third author. The authors would like to thank Peter
Andrews and Frank Pfenning for stimulating discussions and Claus-Peter Wirth
and Andrey Paskevich for proof reading. We furthermore thank the referee of this
article for his very fruitful comments.

REFERENCES

[1] Peter B. Andrews, Resolution in type theory, this Journal, vol. 36 (1971), no. 3, pp. 414–432.
[2] , General models and extensionality, this Journal, vol. 37 (1972), no. 2, pp. 395–397.
[3] , General models descriptions and choice in type theory, this Journal, vol. 37 (1972), no. 2,

pp. 385–394.
[4] , letter to Roger Hindley dated January 22, 1973.
[5] , On connections and higher order logic, Journal of Automated Reasoning, vol. 5 (1989),

pp. 257–291.
[6] , An introduction to mathematical logic and type theory: To truth through proof, second ed.,

Kluwer Academic Publishers, 2002.
[7] Peter B. Andrews, Matthew Bishop, and Chad E. Brown, TPS: A theorem proving system for

type theory, Proceedings of the 17th international conference on automated deduction (Pittsburgh, USA)
(David McAllester, editor), Lecture Notes in Artifical Intelligence, no. 1831, Springer-Verlag, 2000,
pp. 164–169.

HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1087

[8] Peter B. Andrews, Matthew Bishop, Sunil Issar,DanNesmith, Frank Pfenning, andHong-
wei Xi, TPS: A theorem proving system for classical type theory, Journal of Automated Reasoning, vol. 16
(1996), no. 3, pp. 321–353.
[9] Henk P. Barendregt, The lambda calculus, North-Holland, 1984.
[10] Christoph Benzmüller, Equality and extensionality in automated higher-order theorem proving,

Ph.D. thesis, Saarland University, 1999.
[11] , Extensional higher-order paramodulation and RUE-resolution, Proceedings of the 16th

international Conference on Automated Deduction (Trento, Italy) (Harald Ganzinger, editor), Lecture
Notes in Artificial Intelligence, vol. 1632, Springer-Verlag, 1999, pp. 399–413.
[12] Christoph Benzmüller, Chad E. Brown, and Michael Kohlhase, Semantic techniques

for higher-order cut-elimination, manuscript, http://www.ags.uni-sb.de/∼chris/papers/R19.pdf,
2002.
[13] Christoph Benzmüller andMichaelKohlhase,Extensional higher order resolution, in Kirch-

ner and Kirchner [35], pp. 56–72.
[14] , LEO—a higher order theorem prover, in Kirchner and Kirchner [35], pp. 139–144.
[15] , Model existence for higher-order logic, SEKI-Report SR-97-09, Saarland University,

1997.
[16] Wolfgang Bibel and Peter Schmitt (editors), Automated deduction—a basis for applications,

Kluwer, 1998.
[17] Gennaro Chierchia and Raymond Turner, Semantics and property theory, Linguistics and

Philosophy, vol. 11 (1988), pp. 261–302.
[18] Alonzo Church, A formulation of the simple theory of types, this Journal, vol. 5 (1940),

pp. 56–68.
[19] Nicolaas Govert de Bruijn, Lambda calculus notation with nameless dummies, a tool for auto-

matic formula manipulation, with an application to the Church-Rosser theorem, Indagationes Mathemati-
cae, vol. 34 (1972), no. 5, pp. 381–392.
[20]MaryDeMarco, Intuitionistic semantics for heriditarily harrop logic programming, Ph.D. thesis,

Wesleyan University, 1999.
[21] Gilles Dowek, Thérèse Hardin, and Claude Kirchner, HOL-ëó an intentional first-order

expression of higher-order logic, Mathematical Structures in Computer Science, vol. 11 (2001), no. 1,
pp. 1–25.
[22]Melvin Fitting, First-order logic and automated theorem proving, second ed., Graduate Texts in

Computer Science, Springer-Verlag, 1996.
[23] , Types, tableaus, and Gödel’s God, Kluwer, 2002.
[24] Kurt Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und verwandter

Systeme I,Monatshefte derMathematischen Physik, vol. 38 (1931), pp. 173–198, English version in [57].
[25]M. J. C. Gordon and T. F. Melham, Introduction to HOL—a theorem proving environment for

higher order logic, Cambridge University Press, 1993.
[26] LeonHenkin,Completeness in the theory of types, this Journal, vol. 15 (1950), no. 2, pp. 81–91.
[27] , The discovery of my completeness proofs, The Bulletin of Symbolic Logic, vol. 2 (1996),

no. 2, pp. 127–158.
[28] Roger J. Hindley and Jonathan P. Seldin, Introduction to combinators and lambda-calculs,

Cambridge University Press, Cambridge, 1986.
[29] K. J. J. Hintikka, Form and content in quantification theory, Acta Philosophica Fennica, vol. 8

(1955), pp. 7–55.
[30] Furio Honsell and Marina Lenisa, Coinductive characterizations of applicative structures,

Mathematical Structures in Computer Science, vol. 9 (1999), pp. 403–435.
[31] Furio Honsell and Donald Sannella, Pre-logical relations, Proceedings of computer science

logic (CSL ’99), Lecture Notes in Computer Science, vol. 1683, Springer-Verlag, 1999, pp. 546–561.
[32] Gérard P. Huet, Constrained resolution: A complete method for higher order logic, Ph. D. thesis,

Case Western Reserve University, 1972.
[33] , A mechanization of type theory, Proceedings of the 3rd international joint conference on

artificial intelligence (Donald E. Walker and Lewis Norton, editors), 1973, pp. 139–146.
[34] D. C. Jensen and Thomasz Pietrzykowski, A complete mechanization of (ù)-order type theory,

Proceedings of the ACM annual conference, vol. 1, 1972, pp. 82–92.
[35] Claude Kirchner and Hélène Kirchner (editors), Proceedings of the 15th Conference on Auto-

mated Deduction, Lecture Notes in Artificial Intelligence, vol. 1421, Springer-Verlag, 1998.

1088 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

[36]MichaelKohlhase,Amechanization of sorted higher-order logic based on the resolution principle,
Ph. D. thesis, Saarland University, 1994.
[37] ,Higher-order tableaux,Theoremprovingwith analytic tableauxand relatedmethods (Peter

Baumgartner, Reiner Hähnle, and Joachim Posegga, editors), Lecture Notes in Artificial Intelligence,
vol. 918, Springer-Verlag, 1995, pp. 294–309.
[38]Michael Kohlhase and Ortwin Scheja, Higher-order multi-valued resolution, Journal of Ap-

plied Non-Classical Logics, vol. 9 (1999), no. 4, pp. 155–178.
[39] Shalom Lappin and Carl Pollard, Strategies for hyperintensional semantics, manuscript,

King’s College, London and Ohio State University, 2000.
[40] , A higher-order fine-grained logic for intensional semantics, manuscript, 2002.
[41] Richard Larson andGabriel Segal, Knowledge of meaning, MIT Press, 1995.
[42] Dale Miller, Proofs in higher-order logic, Ph. D. thesis, Carnegie-Mellon University, 1983.
[43] , A logic programming language with lambda-abstraction, function variables, and simple

unification, Journal of Logic and Computation, vol. 4 (1991), no. 1, pp. 497–536.
[44] John C. Mitchell, Foundations for programming languages, Foundations of Computing, MIT

Press, 1996.
[45] Gopalan Nadathur andDale Miller,Higher-order logic programming, Technical Report CS-

1994-38, Department of Computer Science, Duke University, 1994.
[46] TobiasNipkow, LawrenceC.Paulson, andMarkusWenzel, Isabelle/HOL—aproof assistant

for higher-order logic, Lecture Notes in Computer Science, vol. 2283, Springer-Verlag, 2002.
[47] J. AlanRobinson andAndrei Voronkov,Handbook of automated reasoning, MIT Press, 2001.
[48] L. Schröder and T. Mossakowski, Hascasl: towards integrated specification and development

of functional programs, Algebraic methodology and software technology, Lecture Notes in Computer
Science, vol. 2422, Springer-Verlag, 2002, pp. 99–116.
[49] Lutz Schröder, Henkin models for the partial ë-calculus, manuscript, http://www.

informatik.uni-bremen.de/∼lschrode/hascasl/henkin.ps, 2002.
[50] Kurt Schütte, Semantical and syntactical properties of simple type theory, this Journal, vol. 25

(1960), pp. 305–326.
[51] Jörg Siekmann, Christoph Benzmüller, et al., Proof development with OMEGA, Proceedings

of the 18th international conference on automated deduction (Copenhagen, Denmark) (Andrei Voronkov,
editor), Lecture Notes in Artificial Intelligence, vol. 2392, Springer-Verlag, 2002, pp. 144–149.
[52] RaymondM.Smullyan,Aunifying principle for quantification theory, Proceedings of theNational

Academy of Sciences, vol. 49 (1963), pp. 828–832.
[53] , First-order logic, Springer-Verlag, 1968.
[54]Moto-o Takahashi, Cut-elimination in simple type theory with extensionality, Journal of the

Mathematical Society of Japan, vol. 19 (1967), pp. 399–410.
[55] Gaisi Takeuti, Proof theory, North-Holland, 1987.
[56] R.Tomason,Amodel theory for proposistional attitudes,Linguistics andPhilosophy, vol. 4 (1980),

pp. 47–70.
[57] Jean van Heijenoort, From Frege to Gödel: a source book in mathematical logic 1879–1931,

3rd printing, 1997 ed., Source books in the history of the sciences series, Harvard University Press,
Cambridge, MA, 1967.
[58] DavidA.Wolfram,A semantics for ë-PROLOG,Theoretical Computer Science, vol. 136 (1994),

no. 1, pp. 277–289.

DEPARTMENTOF COMPUTER SCIENCE

SAARLANDUNIVERSITY

SAARBRÜCKEN, GERMANY

E-mail: chris@ags.uni-sb.de
URL: http://www.ags.uni-sb.de/∼chris

DEPARTMENTOFMATHEMATICS

CARNEGIEMELLONUNIVERSITY

PITTSBURGH, PA 15213, USA

E-mail: cebrown@andrew.cmu.edu
URL: http://www.andrew.cmu.edu/∼cebrown/

SCHOOL OF ENGINEERING AND SCIENCES

INTERNATIONALUNIVERSITY BREMEN

BREMEN, GERMANY

and

SCHOOLOF COMPUTER SCIENCE

CARNEGIEMELLONUNIVERSITY

PITTSBURGH, USA

E-mail: m.kohlhase@iu-bremen.de
URL: http://www.cs.cmu.edu/∼kohlhase

Cut-Simulation in Impredicative Logics

Christoph E. Benzmüller1, Chad E. Brown1, and Michael Kohlhase2

1 Saarland University, Saarbrücken, Germany (chris|cebrown@ags.uni-sb.de)
2 International University Bremen, Bremen, Germany (m.kohlhase@iu-bremen.de)

Abstract. We investigate cut-elimination and cut-simulation in impred-
icative (higher-order) logics. We illustrate that adding simple axioms
such as Leibniz equations to a calculus for an impredicative logic — in
our case a sequent calculus for classical type theory — is like adding cut.
The phenomenon equally applies to prominent axioms like Boolean- and
functional extensionality, induction, choice, and description. This calls
for the development of calculi where these principles are built-in instead
of being treated axiomatically.

1 Introduction

One of the key questions of automated reasoning is the following: “When does a
set Φ of sentences have a model?” In fact, given reasonable assumptions about
calculi, most inference problems can be reduced to determining (un)-satisfiability
of a set Φ of sentences. Since building models for Φ is hard in practice, much
research in computational logic has concentrated on finding sufficient conditions
for satisfiability, e.g. whether there is a Hintikka set H extending Φ.

Of course in general the answer to the satisfiability question depends on the
class of models at hand. In classical first-order logic, model classes are well-
understood. In impredicative higher-order logic, there is a whole landscape of
plausible model classes differing in their treatment of functional and Boolean
extensionality. Satisfiability then strongly depends on these classes, for instance,
the set Φ := {a, b, qa,¬qb} is unsatisfiable in a model class where the universes
of Booleans are required to have at most two members (see property b below),
but satisfiable in the class without this restriction.

In [5] we have shown that certain (i.e. saturated) Hintikka sets always have
models and have derived syntactical conditions (so-called saturated abstract con-
sistency properties) for satisfiability from this fact. The importance of abstract
consistency properties is that one can check completeness for a calculus C by
verifying proof-theoretic conditions (checking that C-irrefutable sets of formulae
have the saturated abstract consistency property) instead of performing model-
theoretic analysis (for historical background of the method in first-order logic,
cf. [10, 13, 14]). Unfortunately, the saturation condition (if Φ is abstractly con-
sistent, then one of Φ ∪ {A} or Φ ∪ {¬A} is as well for all sentences A) is very
difficult to prove for machine-oriented calculi (indeed as hard as cut elimination).

In this paper we investigate further the relation between the lack of the
subformula property in the saturation condition (we need to “guess” whether

to extend Φ by A or ¬A on our way to a Hintikka set for all sentences A) and
the cut rule (where we have to “guess, i.e. search for in an automated reasoning
setting” the cut formula A). A side result is the insight that there exist “cut-
strong” formulae which support the effective simulation of cut in calculi for
impredicative logics.

In Section 2, we will fix notation and review the relevant results from [5]. We
define in Section 3 a basic sequent calculus and study the correspondence be-
tween saturation in abstract consistency classes and cut-elimination. In Section 4
we introduce the notion of “cut-strong” formulae and sequents and show that
they support the effective simulation of cut. In Section 5 we demonstrate that
the pertinent extensionality axioms are cut-strong. We develop alternative ex-
tensionality rules which do not suffer from this problem. Further rules are needed
to ensure Henkin completeness for this calculus with extensionality. These new
rules correspond to the acceptability conditions we propose in Section 6 to en-
sure the existence of models and the existence of saturated extensions of abstract
consistence classes.

2 Higher-Order Logic

In [5] we have re-examined the semantics of classical higher-order logic with the
purpose of clarifying the role of extensionality. For this we have defined eight
classes of higher-order models with respect to various combinations of Boolean
extensionality and three forms of functional extensionality. We have also devel-
oped a methodology of abstract consistency (by providing the necessary model
existence theorems) needed for instance, to analyze completeness of higher-order
calculi with respect to these model classes. We now briefly summarize the main
notions and results of [5] as required for this paper. Our impredicative logic of
choice is Church’s classical type theory.

Syntax: Church’s Simply Typed λ-Calculus. As in [9], we formulate higher-order
logic (HOL) based on the simply typed λ-calculus. The set of simple types T is
freely generated from basic types o and ι using the function type constructor →.

For formulae we start with a set V of (typed) variables (denoted by Xα, Y, Z,
X1

β , X2
γ . . .) and a signature Σ of (typed) constants (denoted by cα, fα→β , . . .).

We let Vα (Σα) denote the set of variables (constants) of type α. The signature
Σ of constants includes the logical constants ¬o→o, ∨o→o→o and Πα

(α→o)→o for

each type α; all other constants in Σ are called parameters. As in [5], we assume
there is an infinite cardinal ℵs such that the cardinality of Σα is ℵs for each type
α (cf. [5](3.16)). The set of HOL-formulae (or terms) are constructed from typed
variables and constants using application and λ-abstraction. We let wffα(Σ) be
the set of all terms of type α and wff(Σ) be the set of all terms.

We use vector notation to abbreviate k-fold applications and abstractions as
AUk and λXk A, respectively. We also use Church’s dot notation so that stands
for a (missing) left bracket whose mate is as far to the right as possible (consistent
with given brackets). We use infix notation A ∨ B for ((∨A)B) and binder

notation ∀Xα A for (Πα(λXα Ao)). We further use A ∧ B, A ⇒ B, A ⇔ B
and ∃Xα A as shorthand for formulae defined in terms of ¬, ∨ and Πα (cf. [5]).
Finally, we let (Aα

.
=

α
Bα) denote the Leibniz equation ∀Pα→o (PA) ⇒ PB.

Each occurrence of a variable in a term is either bound by a λ or free. We
use free(A) to denote the set of free variables of A (i.e., variables with a free
occurrence in A). We consider two terms to be equal if the terms are the same
up to the names of bound variables (i.e., we consider α-conversion implicitly).
A term A is closed if free(A) is empty. We let cwffα(Σ) denote the set of
closed terms of type α and cwff(Σ) denote the set of all closed terms. Each term
A ∈ wffo(Σ) is called a proposition and each term A ∈ cwffo(Σ) is called a
sentence.

We denote substitution of a term Aα for a variable Xα in a term Bβ by
[A/X]B. Since we consider α-conversion implicitly, we assume the bound vari-
ables of B avoid variable capture.

Two common relations on terms are given by β-reduction and η-reduction.
A β-redex (λX A)B β-reduces to [B/X]A. An η-redex (λX CX) (where X /∈
free(C)) η-reduces to C. For A,B ∈ wffα(Σ), we write A≡βB to mean A can
be converted to B by a series of β-reductions and expansions. Similarly, A≡βηB
means A can be converted to B using both β and η. For each A ∈ wff(Σ) there
is a unique β-normal form (denoted A↓β) and a unique βη-normal form (denoted
A↓βη). From this fact we know A≡βB (A≡βηB) iff A↓β ≡ B↓β (A↓βη ≡ B↓βη).

A non-atomic formula in wffo(Σ) is any formula whose β-normal form is of
the form [cAn] where c is a logical constant. An atomic formula is any other
formula in wffo(Σ).

Semantics: Eight Model Classes. For each ∗ ∈ {β,βη,βξ,βf,βb,βηb,βξb,βfb} (the
latter set will be abbreviated by in the remainder) we define M∗ to be the class
of all Σ-models M such that M satisfies property q and each of the additional
properties {η, ξ, f, b} indicated in the subscript ∗ (cf. [5](3.49)). Special cases of
Σ-models are Henkin models and standard models (cf. [5](3.50 and 3.51)). Every
model in Mβfb is isomorphic to a Henkin model (see the discussion following
[5](3.68)).

Saturated Abstract Consistency Classes and Model Existence. Finally, we review
the model existence theorems proved in [5]. There are three stages to obtain-
ing a model in our framework. First, we obtain an abstract consistency class
ΓΣ (usually defined as the class of irrefutable sets of sentences with respect to
some calculus). Second, given a (sufficiently pure) set of sentences Φ in the ab-
stract consistency class ΓΣ we construct a Hintikka set H extending Φ. Third,
we construct a model of this Hintikka set (and hence a model of Φ).

A Σ-abstract consistency class ΓΣ is a class of sets of Σ-sentences. An abstract
consistency class is always required to be closed under subsets (cf. [5](6.1)).
Sometimes we require the stronger property that ΓΣ is compact, i.e., a set Φ is
in ΓΣ iff every finite subset of Φ is in ΓΣ (cf. [5](6.1,6.2)).

To describe further properties of abstract consistency classes, we use the
notation S ∗ a for S ∪ {a} as in [5]. The following is a list of properties a class
ΓΣ of sets of sentences can satisfy with respect to arbitrary Φ ∈ ΓΣ (cf. [5](6.5)):

∇c If A is atomic, then A /∈ Φ or ¬A /∈ Φ.

∇¬ If ¬¬A ∈ Φ, then Φ ∗ A ∈ ΓΣ .

∇β If A≡βB and A ∈ Φ, then Φ ∗ B ∈ ΓΣ .

∇η If A≡βηB and A ∈ Φ, then Φ ∗ B ∈ ΓΣ .

∇∨ If A ∨ B ∈ Φ, then Φ ∗ A ∈ ΓΣ or Φ ∗ B ∈ ΓΣ .

∇∧ If ¬(A ∨ B) ∈ Φ, then Φ ∗ ¬A ∗ ¬B ∈ ΓΣ .

∇∀ If ΠαF ∈ Φ, then Φ ∗ FW ∈ ΓΣ for each W ∈ cwffα(Σ).

∇∃ If ¬ΠαF ∈ Φ, then Φ ∗ ¬(Fw) ∈ ΓΣ for any parameter wα ∈ Σα which does
not occur in any sentence of Φ.

∇b If ¬(A
.
=

o
B) ∈ Φ, then Φ ∗ A ∗ ¬B ∈ ΓΣ or Φ ∗ ¬A ∗ B ∈ ΓΣ .

∇ξ If ¬(λXα M
.
=

α→β
λXα N) ∈ Φ, then Φ ∗ ¬([w/X]M

.
=

β
[w/X]N) ∈ ΓΣ for

any parameter wα ∈ Σα which does not occur in any sentence of Φ.

∇f If ¬(G
.
=

α→β
H) ∈ Φ, then Φ ∗ ¬(Gw

.
=

β
Hw) ∈ ΓΣ for any parameter

wα ∈ Σα which does not occur in any sentence of Φ.

∇sat Either Φ ∗ A ∈ ΓΣ or Φ ∗ ¬A ∈ ΓΣ .

We say ΓΣ is an abstract consistency class if it is closed under subsets and
satisfies ∇c,∇¬,∇β ,∇∨,∇∧,∇∀ and ∇∃. We let Accβ denote the collection of all
abstract consistency classes. For each ∗ ∈ we refine Accβ to a collection
Acc∗ where the additional properties {∇η,∇ξ,∇f,∇b} indicated by ∗ are required
(cf. [5](6.7)). We say an abstract consistency class ΓΣ is saturated if ∇sat holds.

Using ∇c (atomic consistency) and the fact that there are infinitely many
parameters at each type, we can show every abstract consistency class satisfies
non-atomic consistency. That is, for every abstract consistency class ΓΣ , A ∈
cwffo(Σ) and Φ ∈ ΓΣ , we have either A /∈ Φ or ¬A /∈ Φ (cf. [5](6.10)).

In [5](6.32) we show that sufficiently Σ-pure sets in saturated abstract con-
sistency classes extend to saturated Hintikka sets. (A set of sentences Φ is suffi-
ciently Σ-pure if for each type α there is a set Pα of parameters of type α with
cardinality ℵs and such that no parameter in P occurs in a sentence in Φ.)

In the Model Existence Theorem for Saturated Sets [5](6.33) we show that
these saturated Hintikka sets can be used to construct models M which are mem-
bers of the corresponding model classes M∗. Then we conclude (cf. [5](6.34)):

Model Existence Theorem for Saturated Abstract Consistency Classes:
For all ∗ ∈ , if ΓΣ is a saturated abstract consistency class in Acc∗ and Φ ∈ ΓΣ
is a sufficiently Σ-pure set of sentences, then there exists a model M ∈ M∗ that
satisfies Φ. Furthermore, each domain of M has cardinality at most ℵs.

In [5] we apply the abstract consistency method to analyze completeness
for different natural deduction calculi. Unfortunately, the saturation condition
is very difficult to prove for machine-oriented calculi (indeed as we will see in
Section 3 it is equivalent to cut elimination), so Theorem [5](6.34) cannot be
easily used for this purpose directly.

In Section 6 we therefore motivate and present a set of extra conditions for
Accβfb we call acceptability conditions. The new conditions are sufficient to
prove model existence.

Basic Rules
A atomic (and β-normal)

G(init)
∆ ∗A ∗ ¬A

∆ ∗ A
G(¬)

∆ ∗ ¬¬A

∆ ∗ ¬A ∆ ∗ ¬B
G(∨−)

∆ ∗ ¬(A ∨ B)

∆ ∗ A ∗ B
G(∨+)

∆ ∗ (A ∨ B)

∆ ∗ ¬ (AC)
?

y

β
C ∈ cwffα(Σ)

G(ΠC

−)
∆ ∗ ¬Π

α
A

∆ ∗ (Ac)
?

y

β
cα ∈ Σ new

G(Π c
+)

∆ ∗ Π
α
A

Inversion Rule
∆ ∗ ¬¬A

G(Inv¬)
∆ ∗A

Weakening and Cut Rules
∆

G(weak)
∆ ∪ ∆

′

∆ ∗ C ∆ ∗ ¬C
G(cut)

∆

Fig. 1. Sequent Calculus Rules

3 Sequent Calculi, Cut and Saturation

We will now study cut-elimination and cut-simulation with respect to (one-sided)
sequent calculi.

Sequent Calculi G. We consider a sequent to be a finite set ∆ of β-normal
sentences from cwffo(Σ). A sequent calculus G provides an inductive definition
for when ⊢⊢G ∆ holds. We say a sequent calculus rule

∆1 · · · ∆n
r

∆

is admissible in G if ⊢⊢G ∆ holds whenever ⊢⊢G ∆i for all 1 ≤ i ≤ n. For any
natural number k ≥ 0, we call an admissible rule r k-admissible if any instance
of r can be replaced by a derivation with at most k additional proof steps. Given
a sequent ∆, a model M, and a class M of models, we say ∆ is valid for M (or
valid for M), if M |= D for some D ∈ ∆ (or ∆ is valid for every M ∈ M). As
for sets in abstract consistency classes, we use the notation ∆ ∗A to denote the
set ∆ ∪ {A} (which is simply ∆ if A ∈ ∆). Figure 1 introduces several sequent
calculus rules. Some of these rules will be used to define sequent calculi, while
others will be shown admissible (or even k-admissible).

Abstract Consistency Classes for Sequent Calculi. For any sequent calculus G
we can define a class ΓG

Σ of sets of sentences. Under certain assumptions, ΓG
Σ is

an abstract consistency class. First we adopt the notation ¬Φ and Φ↓β for the
sets {¬A|A ∈ Φ} and {A↓β |A ∈ Φ}, resp., where Φ ⊆ cwffo(Σ). Furthermore,
we assume this use of ¬ binds more strongly than ∪ or ∗, so that ¬Φ∪∆ means
(¬Φ) ∪ ∆ and ¬Φ ∗ A means (¬Φ) ∗ A.

Definition 1 Let G be a sequent calculus. We define ΓG
Σ to be the class of all

finite Φ ⊂ cwffo(Σ) such that ⊢⊢G ¬ Φ↓β does not hold.

In a straightforward manner, one can prove the following results (see [7]).

Lemma 2 Let G be a sequent calculus such that G(Inv¬) is admissible. For any
finite sets Φ and ∆ of sentences, if Φ ∪ ¬∆ /∈ ΓG

Σ , then ⊢⊢G ¬ Φ↓β ∪ ∆↓β holds.

Theorem 3 Let G be a sequent calculus. If the rules G(Inv¬), G(¬), G(weak),
G(init), G(∨−), G(∨+), G(Π C

−) and G(Π c
+) are admissible in G, then ΓG

Σ ∈ Accβ.

We can furthermore show the following relationship between saturation and
cut (see [7]).

Theorem 4 Let G be a sequent calculus.

1. If G(cut) is admissible in G, then ΓG
Σ is saturated.

2. If G(¬) and G(Inv¬) are admissible in G and ΓG
Σ is saturated, then G(cut)

is admissible in G.

Since saturation is equivalent to admissibility of cut, we need weaker condi-
tions than saturation. A natural condition to consider is the existence of satu-
rated extensions.

Definition 5 (Saturated Extension) Let ∗ ∈ and ΓΣ , Γ ′
Σ ∈ Acc∗ be ab-

stract consistency classes. We say Γ ′
Σ is an extension of ΓΣ if Φ ∈ Γ ′

Σ for every
sufficiently Σ-pure Φ ∈ ΓΣ. We say Γ ′

Σ is a saturated extension of ΓΣ if Γ ′
Σ is

saturated and an extension of ΓΣ .

There exist abstract consistency classes Γ in Accβfb which have no saturated
extension.

Example 6 Let ao, bo, qo→o ∈ Σ and Φ := {a, b, (qa),¬(qb)}. We construct an
abstract consistency class ΓΣ from Φ by first building the closure Φ′ of Φ under
relation ≡β and then taking the power set of Φ′. It is easy to check that this ΓΣ is
in Accβfb. Suppose we have a saturated extension Γ ′

Σ of ΓΣ in Accβfb. Then Φ ∈ Γ ′
Σ

since Φ is finite (hence sufficiently pure). By saturation, Φ ∗ (a
.
=

o
b) ∈ Γ ′

Σ or
Φ ∗¬(a

.
=

o
b) ∈ Γ ′

Σ. In the first case, applying ∇∀ with the constant q, ∇∨ and ∇c

contradicts (qa),¬(qb) ∈ Φ. In the second case, ∇b and ∇c contradict a, b ∈ Φ.

Existence of any saturated extension of a sound sequent calculus G implies
admissibility of cut. The proof uses the model existence theorem for saturated
abstract consistency classes (cf. [5](6.34)). The full proof is in [7].

Theorem 7 Let G be a sequent calculus which is sound for M∗. If ΓG
Σ has a

saturated extension Γ ′
Σ ∈ Acc∗, then G(cut) is admissible in G.

Sequent Calculus Gβ. We now study a particular sequent calculus Gβ defined by
the rules G(init), G(¬), G(∨−), G(∨+), G(Π C

−) and G(Π c
+) (cf. Figure 1). It is

easy to show that Gβ is sound for the eight model classes and in particular for
class Mβ .

The reader may easily prove the following Lemma.

Lemma 8 Let A ∈ cwffo(Σ) be an atom, B ∈ cwffα(Σ), and ∆ be a sequent.
In Gβ

1. ∆ ∗ A ⇔ A := ∆ ∗ ¬(¬(¬A ∨ A) ∨ ¬(¬A ∨ A)) is derivable in 7 steps and
2. ∆ ∗ B

.
=

α
B := ∆ ∗ Πα(λPα→o ¬(PB) ∨ (PB) is derivable in 3 steps.

The proof of the next Lemma is by induction on derivations and is given in
[7].

Lemma 9 The rules G(Inv¬) and G(weak) are 0-admissible in Gβ.

Theorem 10 The sequent calculus Gβ is complete for the model class Mβ and
the rule G(cut) is admissible.

Proof: By Theorem 3 and Lemma 9, Γ
Gβ

Σ ∈ Accβ . Suppose ⊢⊢Gβ
∆ does not

hold. Then ¬∆ ∈ Accβ by Lemma 2. By the model existence theorem for Accβ
(cf. [6](8.1)) there exists a model for ¬∆ in Mβ . This gives completeness of Gβ .
We can use completeness to conclude cut is admissible in Gβ .

Andrews proves admissibility of cut for a sequent calculus similar to Gβ in [1].
The proof in [1] contains the essential ingredients for showing completeness.

We will now show that G(cut) actually becomes k-admissible in Gβ if certain
formulae are available in the sequent ∆ we wish to prove.

4 Cut-Simulation

Cut-Strong Formulae and Sequents. k-cut-strong formulae can be used to effec-
tively simulate cut. Effectively means that the elimination of each application of
a cut-rule introduces maximally k additional proof steps, where k is constant.

Definition 11 Given a formula A ∈ cwffo(Σ), and an arbitrary but fixed num-
ber k > 0. We call formula A k-cut-strong for G (or simply cut-strong) if the
cut rule variant

∆ ∗ C ∆ ∗ ¬C
G(cutA)

∆ ∗ ¬A

is k-admissible in G.

Our examples below illustrate that cut-strength of a formula usually only
weakly depends on calculus G: it only presumes standard ingredients such as
β-normalization, weakening, and rules for the logical connectives.

We present some simple examples of cut-strong formulae for our sequent
calculus Gβ . A corresponding phenomenon is observable in other higher-order
calculi, for instance, for the calculi presented in [1, 4, 8, 11].

Example 12 Formula ∀Po P := Πo(λPo P) is 3-cut-strong in Gβ . This is jus-
tified by the following derivation which actually shows that rule G(cutA) for this
specific choice of A is derivable in Gβ by maximally 3 additional proof steps. The
only interesting proof step is the instantiation of P with formula D := ¬C∨C in
rule G(Π D

−). (Note that C must be β-normal; sequents such as ∆∗C by definition
contain only β-normal formulae.)

∆ ∗ C

∆ ∗ ¬¬C
G(¬)

∆ ∗ ¬C

∆ ∗ ¬(¬C ∨ C)
G(∨−)

∆ ∗ ¬Πo(λPo P)
G(ΠD

−)

Clearly, ∀Po P is not a very interesting cut-strong formula since it implies false-
hood, i.e. inconsistency.

Example 13 The formula ∀Po P ⇒ P := Πo(λPo ¬P ∨ P) is 3-cut-strong in
Gβ. This is an example of a tautologous cut-strong formula. Now P is simply
instantiated with D := C in rule G(Π D

−). Except for this first step the derivation
is identical to the one for Example 12.

Example 14 Leibniz equations M
.
=

α
N := Πα(λP ¬PM ∨ PN) (for arbi-

trary formulae M,N ∈ cwffα(Σ) and types α ∈ T) are 3-cut-strong in Gβ. This
includes the special cases M

.
=

α
M. Now P is instantiated with D := λXα C in

rule G(Π D
−). Except for this first step the derivation is identical to the one for

Example 12.

Example 15 The original formulation of higher-order logic (cf. [12]) contained
comprehension axioms of the form C := ∃Pα1→···→αn→o∀Xn PXn ⇔ Bo where
Bo ∈ wffo(Σ) is arbitrary with P /∈ free(B). Church eliminated the need for such
axioms by formulating higher-order logic using typed λ-calculus. We will now
show that the instance CI := ∃Pι→o ∀Xι PX ⇔ X

.
=

ι
X is 16-cut-strong in Gβ

(note that G(weak) is 0-admissible). This motivates building-in comprehension
principles instead of treating comprehension axiomatically.

3 steps; see Lemma 8
....

∆ ∗ ¬(pa ⇒ a
.
=

ι
a) ∗ a

.
=

ι
a

∆ ∗ ¬(pa ⇒ a
.
=

ι
a) ∗ ¬¬(a

.
=

ι
a)

G(¬)
D

∆ ∗ ¬(pa ⇒ a
.
=

ι
a) ∗ ¬(¬(a

.
=

ι
a) ∨ pa)

G(∨−)

∆ ∗ ¬(pa ⇒ a
.
=

ι
a) ∨ ¬(a

.
=

ι
a ⇒ pa)

G(∨+)

∆ ∗ ¬¬(¬(pa ⇒ a
.
=

ι
a) ∨ ¬(a

.
=

ι
a ⇒ pa))

G(¬)

∆ ∗ ¬Πι(λXι pX ⇔ X
.
=

ι
X)

G(Π aι
−

)

∆ ∗ Πι→o(λP ι→o ¬Πι(λXι pX ⇔ X
.
=

ι
X))

G(Π pι→o
+)

∆ ∗ CI
G(¬)

Derivation D is:

∆ ∗ pa ∗ ¬pa
G(init)

∆ ∗ ¬¬pa ∗ ¬pa
G(¬)

∆ ∗ C ∆ ∗ ¬C
.... 3 steps; see Example 14

∆ ∗ ¬(a
.
=

o
a)

∆ ∗ ¬(a
.
=

ι
a) ∗ ¬pa

G(weak)

∆ ∗ ¬(¬pa ∨ a
.
=

ι
a) ∗ ¬pa

G(∨−)

As we will show later, many prominent axioms for higher-order logic also
belong to the class of cut-strong formulae.

Next we define cut-strong sequents.

Definition 16 A sequent ∆ is called k-cut-strong (or simply cut-strong) if
there exists a a k-cut-strong formula A ∈ cwffo(Σ) such that ¬A ∈ ∆.

Cut-Simulation. The cut-simulation theorem is a main result of this paper. It
says that cut-strong sequents support an effective simulation (and thus elimina-
tion) of cut in Gβ . Effective means that the size of cut-free derivation grows only
linearly for the number of cut rule applications to be eliminated.

We first fix the following calculi: Calculus Gcut
β extends Gβ by the rule G(cut)

and calculus GcutA

β extends Gβ by the rule G(cutA) for some arbitrary but fixed
cut-strong formula A.

Theorem 17 Let ∆ be a k-cut-strong sequent such that ¬A ∈ ∆ for some k-
cut-strong formula A. For each derivation D: ⊢⊢Gcut

β
∆ with d proof steps there

exists an alternative derivation D′: ⊢⊢
GcutA

β

∆ with d proof steps.

Proof: Note that the rules G(cut) and G(cutA) coincide whenever ¬A ∈ ∆.
Intuitively, we can replace each occurrence of G(cut) in D by G(cutA) in order
to obtain a D′ of same size. Technically, in the induction proof one must weaken
to ensure ¬A stays in the sequent and carry out a parameter renaming to make
sure the eigenvariable condition is satisfied.

Theorem 18 Let ∆ be a k-cut-strong sequent such that ¬A ∈ ∆ for some k-cut-
strong formula A. For each derivation D: ⊢⊢

GcutA

β

∆ with d proof steps and with

n applications of rule G(cut) there exists an alternative derivation D′: ⊢⊢Gβ
∆

with maximally d + nk proof steps.

Proof: A is k-cut-strong so by definition G(cutA) is k-admissible in Gβ .
This means that G(cutA) can be eliminated in D and each single elimination
of G(cutA) introduces maximally k new proof steps. Now the assertion can be
easily obtained by a simple induction over n.

Corollary 19 Let ∆ be a k-cut-strong sequent. For each derivation D: ⊢⊢Gcut
β

∆

with d proof steps and n applications of rule G(cut) there exists an alternative
cut-free derivation D′: ⊢⊢Gβ

∆ with maximally d + nk proof steps.

5 The Extensionality Axioms are Cut-Strong

We have shown comprehension axioms can be cut-strong (cf. Example 15). Fur-
ther prominent examples of cut-strong formulae are the Boolean and functional
extensionality axioms. The Boolean extensionality axiom (abbreviated Bo in the
remainder) is

∀Ao ∀Bo (A ⇔ B) ⇒ A
.
=

o
B

The infinitely many functional extensionality axioms (abbreviated Fαβ) are pa-
rameterized over α, β ∈ T .

∀Fα→β ∀Gα→β (∀Xα FX
.
=

β
GX) ⇒ F

.
=

α→β
G

These axioms usually have to be added to higher-order calculi to reach
Henkin completeness, i.e. completeness with respect to model class Mβfb. For
example, Huet’s constrained resolution approach as presented in [11] is not
Henkin complete without adding extensionality axioms. For instance, the need
for adding Boolean extensionality is actually illustrated by the set of unit liter-
als Φ := {a, b, (qa),¬(qb)} from Example 6. As the reader may easily check, this
clause set Φ, which is inconsistent for Henkin semantics, cannot be proven by
Huet’s system without, e.g, adding the Boolean extensionality axiom. By relying
on results in [1], Huet essentially shows completeness with respect to model class
Mβ as opposed to Henkin semantics.

We will now investigate whether adding the extensionality axioms to a machine-
oriented calculus in order to obtain Henkin completeness is a suitable option.

Theorem 20 The Boolean extensionality axiom Bo is a 14-cut-strong formula
in Gβ.

Proof: The following derivation justifies this theorem (ao is a parameter).

7 steps; see Lemma 8
....

∆ ∗ a ⇔ a

∆ ∗ ¬¬(a ⇔ a)
G(¬)

∆ ∗C ∆ ∗ ¬C
.... 3 steps; see Example 14

∆ ∗ ¬(a
.
=

o
a)

∆ ∗ ¬(¬(a ⇔ a) ∨ a
.
=

o
a)

G(∨−)

∆ ∗ ¬Bo

2 × G(Π a
−)

Theorem 21 The functional extensionality axioms Fαβ are 11-cut-strong for-
mulae in Gβ.

Proof: The following derivation justifies this theorem (fα→β is a parameter).

3 steps; see Lemma 8
....

∆ ∗ fa
.
=

β
fa

∆ ∗ (∀Xα fX
.
=

β
fX)

G(Π aα
+)

∆ ∗ ¬¬∀Xα fX
.
=

β
fX

G(¬)

∆ ∗C ∆ ∗ ¬C
.... 3 steps; see Example 14

∆ ∗ ¬(f
.
=

α→β
f)

∆ ∗ ¬(¬(∀Xα fX
.
=

β
fX) ∨ f

.
=

α→β
f)

G(∨−)

∆ ∗ ¬Fαβ
2 × G(Π f

−
)

∆ ∗ ¬Fαβ α → β ∈ T
G(Fαβ)

∆

∆ ∗ ¬Bo
G(B)

∆

Fig. 2. Axiomatic Extensionality Rules

In [4] and [8] we have already argued that the extensionality principles should
not be treated axiomatically in machine-oriented higher-order calculi and there
we have developed resolution and sequent calculi in which these principles are
built-in. Here we have now developed a strong theoretical justification for this
work: Theorems 20, 21 and 19 tell us that adding the extensionality principles
Bo and Fαβ as axioms to a calculus is like adding a cut rule.

In Figure 2 we show rules that add Boolean and functional extensionality in
an axiomatic manner to Gβ . More precisely we add rules G(Fαβ) and G(B) allowing
to introduce the axioms for any sequent ∆; this way we address the problem
of the infinitely many possible instantiations of the type-schematic functional
extensional axiom Fαβ . Calculus Gβ enriched by the new rules G(Fαβ) and G(B)
is called GE

β . Soundness of the the new rules is easy to verify: In [5](4.3) we show
that G(Fαβ) and G(B) are valid for Henkin models.

Replacing the Extensionality Axioms. In Figure 3 we define alternative exten-
sionality rules which correspond to those developed for resolution and sequent
calculi in [4] and [8]. Calculus Gβ enriched by G(f) and G(b) is called G−

βfb. Sound-
ness of G(f) and G(b) for Henkin semantics is again easy to show.

Our aim is to develop a machine-oriented sequent calculus for automating
Henkin complete proof search. We argue that for this purpose G(f) and G(b) are
more suitable rules than G(Fαβ) and G(B).

Our next step now is to show Henkin completeness for GE
β . This will be

relatively easy since we can employ cut-simulation. Then we analyze whether
calculus G−

βfb has the same deductive power as GE
β .

First we extend Theorem 3. The proof is given in [7].

Theorem 22 Let G be a sequent calculus such that G(Inv¬) and G(¬) are ad-
missible.

1. If G(f) and G(Π c
+) are admissible, then ΓG

Σ satisfies ∇f.

2. If G(b) is admissible, then ΓG
Σ satisfies ∇b.

Theorem 23 The sequent calculus GE
β is Henkin complete and the rule G(cut)

is 12-admissible.

Proof: G(cut) can be effectively simulated and hence eliminated in GE
β by

combining rule G(Fαβ) with the 11-step derivation presented in the proof of
Theorem 21.

Let Γ
G

E
β

Σ be defined as in Definition 1. We prove Henkin completeness of

GE
β by showing that the class Γ

G
E
β

Σ is a saturated abstract consistency class in

∆ ∗ (∀Xα AX
.
=

β
BX)

?

?

y

β

G(f)
∆ ∗ (A

.
=

α→β
B)

∆ ∗ ¬A ∗B ∆ ∗ ¬B ∗A
G(b)

∆ ∗ (A
.
=

o
B)

Fig. 3. Proper Extensionality Rules

Accβfb. We here only analyze the crucial conditions ∇b, ∇f and ∇sat. For the
other conditions we refer to Theorem 3. Note that 0-admissibility of G(Inv¬)
and G(weak) can be shown for GE

β by a suitable induction on derivations as in
Lemma 9.

∇f G(Π c
+) is a rule of GE

β and thus admissible. According to Theorem 22 it is

thus sufficient to ensure admissibility of rule G(f) to show ∇f. This is justified

by the following derivation where N := A
.
=

α→β
B and M := (∀Xα AX

.
=

β

BX)


y

β
(for β-normal A,B).

∆ ∗ (∀Xα AX
.
=

β
BX)

?

?

y

β

∆ ∗ N ∗M
G(weak)

∆ ∗ N ∗ ¬¬M
G(¬)

derivable....
∆ ∗N ∗ ¬N

∆ ∗ N ∗ ¬(¬M ∨ N)
G(∨−)

∆ ∗N ∗ ¬Fαβ
G(ΠA

−),G(ΠB

−)

∆ ∗ A
.
=

α→β
B

G(Fαβ)

∇b With a similar derivation using G(B) we can show that G(b) is admissible.
We conclude ∇b by Theorem 22.

∇sat Since G(cut) is admissible we get saturation by Theorem 4.

Does G−

βfb have the same deductive strength as GE
β ? I.e., is G−

βfb Henkin com-
plete? We show this is not yet the case.

Theorem 24 The sequent calculus G−

βfb is not complete for Henkin semantics.

We illustrate the problem by a counterexample.

Example 25 Consider the sequent ∆ := {¬a,¬b,¬(qa), (qb)} where ao, bo,
qo→o ∈ Σ are parameters. For any M ≡ (D, @, E , υ) ∈ Mβfb, either υ(E(a)) ≡ F,
υ(E(b)) ≡ F or E(a) ≡ E(b) by property b. Hence sequent ∆ is valid for every
M ∈ Mβfb. However, ⊢⊢

G
−

βfb
∆ does not hold. By inspection, ∆ cannot be the

conclusion of any rule.

In order to reach Henkin completeness and to show cut-elimination we thus
need to add further rules. Our example motivates the two rules presented in
Figure 4. G(Init

.
=) introduces Leibniz equations such as qa

.
=

o
qb as is needed in

our example and G(d) realizes the required decomposition into a
.
=

o
b.

∆ ∗ (A
.
=

o
B) (†)

G(Init
.
=)

∆ ∗ ¬A ∗B

∆ ∗ (A1 .
=

α1 B
1) · · · ∆ ∗ (An .

=
αn B

n) (‡)
G(d)

∆ ∗ (hAn .
=

β
hBn)

(†) A,B atomic (‡) n ≥ 1, β ∈ {o, ι}, hαn
→β ∈ Σ parameter

Fig. 4. Additional Rules G(Init
.
=) and G(d)

We thus extend sequent calculus G−

βfb to Gβfb by adding the decomposition

rule G(d) and the rule G(Init
.
=) which generally checks if two atomic sentences

of opposite polarity are provably equal (as opposed to syntactically equal).
Is Gβfb complete for Henkin semantics? We will show in the next Section that

this indeed holds (cf. Theorem 28).
With GE and Gβfb we have thus developed two Henkin complete calculi and

both calculi are cut-free. However, as our exploration shows “cut-freeness” is
not a well-chosen criterion to differentiate between their suitability for proof
search automation: GE inherently supports effective cut-simulation and thus
cut-freeness is meaningless.

The criterion we propose for the analysis of calculi in impredicative logics is
“freeness of effective cut-simulation”.

Other Rules for Other Model Classes. In [6] we developed respective complete
and cut-free sequent calculi not only for Henkin semantics but for five of the eight
model classes. In particular, no additional rules are required for the β, βη and
βξ case. Meanwhile, the βf case requires additional rules allowing η-conversion.
The limited space does not allow us to present and analyze these cases here.

6 Acceptability Conditions

We now turn our attention again to the existence of saturated extension of
abstract consistency classes.

As illustrated by the Example 6, we need some extra abstract consistency
properties to ensure the existence of saturated extensions. We call these extra
properties acceptability conditions. They actually closely correspond to ad-
ditional rules G(Init

.
=) and G(d).

Definition 26 (Acceptability Conditions) Let ΓΣ be an abstract consistency
class in Accβfb. We define the following properties:

∇m If A,B ∈ cwffo(Σ) are atomic and A,¬B ∈ Φ, then Φ ∗ ¬(A
.
=

o
B) ∈ ΓΣ.

∇d If ¬(hAn .
=

β
hBn) ∈ Φ for some types αi where β ∈ {o, ι} and hαn→β ∈ Σ is

a parameter, then there is an i (1 ≤ i ≤ n) such that Φ∗¬(Ai .
=

αi

Bi) ∈ ΓΣ.

We now replace the strong saturation condition used in [5] by these accept-
ability conditions.

Definition 27 (Acceptable Classes) An abstract consistency class
ΓΣ ∈ Accβfb is called acceptable in Accβfb if it satisfies the conditions ∇m and
∇d.

One can show a model existence theorem for acceptable abstract consis-
tency classes in Accβfb (cf. [6](8.1)). From this model existence theorem, one can
conclude Gβfb is complete for Mβfb (hence for Henkin models) and that cut is
admissible in Gβfb.

Theorem 28 The sequent calculus Gβfb is complete for Henkin semantics and
the rule G(cut) is admissible.

Proof: The argumentation is similar to Theorem 10 but here we employ the
acceptability conditions ∇m and ∇d.

One can further show the Saturated Extension Theorem (cf. [6](9.3)):

Theorem 29 There is a saturated abstract consistency class in Accβfb that is
an extension of all acceptable ΓΣ in Accβfb.

Given Theorem 7, one can view the Saturated Extension Theorem as an
abstract cut-elimination result.

The proof of a model existence theorem employs Hintikka sets and in the
context of studying Hintikka sets we have identified a phenomenon related to
cut-strength which we call the Impredicativity Gap. That is, a Hintikka set
H is saturated if any cut-strong formula A (e.g. a Leibniz equation C

.
= D)

is in H. Hence we can reasonably say there is a “gap” between saturated and
unsaturated Hintikka sets. Every Hintikka set is either saturated or contains no
cut-strong formulae.

7 Conclusion

We have shown that adding cut-strong formulae to a calculus for an impredica-
tive logic is like adding cut. For machine-oriented automated theorem proving
in impredicative logics — such as classical type theory — it is therefore not rec-
ommendable to naively add cut-strong axioms to the search space. In addition
to the comprehension principle and the functional and Boolean extensionality
axioms as elaborated in this paper the list of cut-strong axioms includes:

Other Forms of Defined Equality Formulas A
..
=

α
B are 4-cut-strong in Gβ

where
..
=

α
is λXα λYα ∀Qα→α→o (∀Zα (Q Z Z)) ⇒ (Q X Y) (cf. [3]).

Proof: Instantiate Q with λXα λYα C.

Axiom of Induction The axiom of induction for the naturals ∀Pι→o P0 ∧
(∀Xι PX ⇒ P (sX)) ⇒ ∀Xι PX is 18-cut-strong in Gβ . (Other well-founded
ordering axioms are analogous.)
Proof: Instantiate P with λXι a

.
=

o
a for some parameter ao.

Axiom of Choice ∃I(α→o)→o ∀Qα→o ∃Xα QX ⇒ Q(IQ) is 7-cut-strong in Gβ .
Proof: Instantiate Q with λXα C.

Axiom of Description The description axiom ∃I(α→o)→o ∀Qα→o (∃1Yα QY) ⇒
Q(IQ) (see [2]), where ∃1Yα QY stands for ∃Yα QY ∧ (∀Zα QZ ⇒ Y

.
= Z)

is 25-cut-strong in Gβ .
Proof: Instantiate Q with λXα a

.
=

α
X for some parameter aα.

As Example 15 shows, comprehension axioms can be cut-strong. Church’s for-
mulation of type theory (cf. [9]) used typed λ-calculus to build comprehension
principles into the language. One can view Church’s formulation as a first step in
the program to eliminate the need for cut-strong axioms. For the extensionality
axioms a start has been made by the sequent calculi in this paper (and [6]),
for resolution in [4] and for sequent calculi and extensional expansion proofs
in [8]. The extensional systems in [8] also provide a complete method for us-
ing primitive equality instead of Leibniz equality. For improving the automation
of higher-order logic our exploration thus motivates the development of higher-
order calculi which directly include reasoning principles for equality, extension-
ality, induction, choice, description, etc., without using cut-strong axioms.

References

1. P. B. Andrews. Resolution in type theory. Journal of Symbolic Logic, 36(3):414–
432, 1971.

2. P. B. Andrews. General models and extensionality. Journal of Symbolic Logic,
37(2):395–397, 1972.

3. P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth

Through Proof. Kluwer Academic Publishers, second edition, 2002.
4. C. E. Benzmüller. Equality and Extensionality in Automated Higher-Order Theo-

rem Proving. PhD thesis, Saarland University, 1999.
5. C. E. Benzmüller, C. E. Brown, and M. Kohlhase. Higher-order semantics and

extensionality. Journal of Symbolic Logic, 69(4):1027–1088, 2004.
6. C. E. Benzmüller, C. E. Brown, and M. Kohlhase. Semantic techniques for higher-

order cut-elimination. Seki Report SR-2004-07, Saarland University, 2004.
7. C. E. Benzmüller, C. E. Brown, and M. Kohlhase. Cut-simulation in impredicative

logics (extended version). Seki Report SR-2006-01, Saarland University, 2006.
8. C. E. Brown. Set Comprehension in Church’s Type Theory. PhD thesis, Depart-

ment of Mathematical Sciences, Carnegie Mellon University, 2004.
9. A. Church. A formulation of the simple theory of types. Journal of Symbolic Logic,

5:56–68, 1940.
10. K. J. J. Hintikka. Form and content in quantification theory. Acta Philosophica

Fennica, 8:7–55, 1955.
11. G. P. Huet. A mechanization of type theory. In Proceedings of the 3rd International

Joint Conference on Artificial Intelligence, pages 139–146, 1973.
12. B. Russell. Mathematical logic as based on the theory of types. American Journal

of Mathematics, 30:222–262, 1908.
13. R. M. Smullyan. A unifying principle for quantification theory. Proc. Nat. Acad

Sciences, 49:828–832, 1963.
14. R. M. Smullyan. First-Order Logic. Springer, 1968.

CHRISTOPH BENZMÜLLER

COMPARING APPROACHES TO RESOLUTION BASED
HIGHER-ORDER THEOREM PROVING

ABSTRACT. We investigate several approaches to resolution based automated theorem
proving in classical higher-order logic (based on Church’s simply typed λ-calculus) and
discuss their requirements with respect to Henkin completeness and full extensionality.
In particular we focus on Andrews’ higher-order resolution (Andrews 1971), Huet’s con-
strained resolution (Huet 1972), higher-order E-resolution, and extensional higher-order
resolution (Benzmüller and Kohlhase 1997). With the help of examples we illustrate the
parallels and differences of the extensionality treatment of these approaches and demon-
strate that extensional higher-order resolution is the sole approach that can completely
avoid additional extensionality axioms.

1. INTRODUCTION

It is a well known consequence of Gödel’s first incompleteness theorem
that there cannot be complete calculi for higher-order logic with respect to
standard semantics. However, Henkin (1950) showed that there are indeed
complete calculi if one gives up the intuitive requirement of full function
domains in standard semantics and considers Henkin’s general models in-
stead. For higher-order calculi therefore Henkin completeness constitutes
the most interesting notion of completeness.

A very challenging task for a calculus aiming at Henkin-completeness
is to provide a suitable extensionality treatment. Unfortunately the im-
portance of full extensionality in higher-order theorem proving, i.e., the
suitable combination of functional and Boolean extensionality, has widely
been overlooked so far. This might be due to the fact that (weak) func-
tional extensionality is already built-in in the pure simply typed λ-calculus
and that Boolean extensionality or the subtle interplay between Boolean
and functional extensionality does simply not occur in this context. How-
ever, the situation drastically changes as soon as one is interested in a
higher-order logic based on the simply typed λ-calculus, as now Boolean
extensionality is of importance too.

We therefore investigate the extensionality treatment of several resolu-
tion based approaches to Henkin complete higher-order theorem proving:

Synthese 133: 203–235, 2002.
© 2002 Kluwer Academic Publishers. Printed in the Netherlands.

204 CHRISTOPH BENZMÜLLER

Andrews’ higher-order resolution (Andrews 1971), Huet’s constrained
resolution (Huet 1972), higher-order E-resolution, and extensional higher-
order resolution (Benzmüller and Kohlhase 1998a). In order to ease the
comparison we present them in a uniform way. Even though we focus on
the resolution method in this paper the main results on the feasibility of
extensionality reasoning in higher-order theorem proving do nevertheless
apply to other theorem proving approaches as well.

For Andrews’ and Huet’s approach it is well known that generally infin-
itely many extensionality axioms are required in the search space in order
to reach Henkin completeness. With the help of rather simple examples
we will point out the shortcomings of this kind of extensionality treat-
ment; namely a fair amount of non-goal directed search which contrasts
the general idea of resolution based theorem proving.

Whereas the use of higher-order E-unification (cf. Snyder 1990; Nip-
kow and Qian 1991; Wolfram 1993; Qian and Wang 1996) instead of
simple syntactical higher-order unification partially improves the situation,
this idea nevertheless fails to provide a general solution and still requires
additional extensionality axioms to ensure Henkin completeness.

The first calculus that generally takes into account, that higher-order
theory unification with respect to theories including full extensionality is
as hard as Henkin complete higher-order theorem proving itself, is the
extensional higher-order resolution approach (Benzmüller and Kohlhase
1998a). This calculus very closely integrates higher-order unification and
resolution by allowing for mutual recursive calls (instead of hierarchical
calls solely from resolution to unification as in first-order). With its close
integration of unification and resolution this approach ensures Henkin
completeness without requiring additional extensionality axioms. With the
help of our examples we show that this aspect is not only of theoretical but
also of practical importance as proof problems requiring non-trivial exten-
sionality reasoning can be solved in the extensional higher-order resolution
approach in a more goal directed way.

As a theoretical result the paper presents Henkin completeness proofs
for the resolution approaches of Andrews and Huet which have been ex-
amined in literature so far only with respect to Andrews’ rather weak
semantical notion of V -complexes.

The paper is organised as follows: Syntax and semantics of higher-order
logic and a proof theoretic tool for analysing Henkin completeness are
sketched in Section 2. Various resolution based calculi are then introduced
in Sections 3 and their extensionality treatment is investigated with the
help of examples in Section 4. Related work is addressed in Section 5, and
Section 6 concludes the paper.

APPROACHES TO HIGHER-ORDER THEOREM PROVING 205

2. SYNTAX AND SEMANTICS OF HIGHER-ORDER LOGIC

2.1. Classical Type Theory

We consider a higher-order logic based on Church’s simply typed λ-
calculus (Church 1940) and choose BT := {ι, o} as base types, where ι

denotes the set of individuals and o the set of truth values. Functional
types are inductively defined over BT . A signature 	 contains for each
type an infinite set of variables and constants, and particularly it provides
the logical constants ¬o→o, ∨o→o→o, and
(α→o)→o for every type α. As
all other logical operators can be defined (e.g., A ∧ B := ¬(¬A ∨ ¬B),
∀Xα P X :=
((α→o)→o)(λXα P X), and ∃Xα P X := ¬∀Xα ¬(P X)))
the given logical constants are sufficient to define a classical higher-order
logic.

The set of all 	-terms (closed 	-terms) of type α is denoted by wffα
(cwffα). Variables are printed as upper-case (e.g., Xα), constants as lower-
case letters (e.g., cα), and arbitrary terms appear as bold capital letters (e.g.,
Tα). If the type of a symbol is uniquely determined by the given context we
omit it. We abbreviate function applications by hα1→···→αn→β Un

αn
, which

stands for (· · · (hα1→···→αn→β U1
α1
) · · · Un

αn
). For α-, β-, η-, βη-conversion

and the definition of β-normal, βη-normal, long βη-normal, and head-
normal form we refer to Barendregt (1984) as well as for the definition of
free variables, closed formulas (also called sentences), and substitutions.
Substitutions are represented as [T1/X1, . . . ,Tn/Xn] where the Xi spe-
cify the variables to be replaced by the terms Ti . The application of a
substitution σ to a term (resp. literal or clause) C is printed Cσ .

Higher-order unification and sets of partial bindings GBh
γ are well

explained in Snyder and Gallier (1989).
A calculus R provides a set of rules {rn| 0 < n ≤ i} defined on clauses.

We write � �rn C (C ′ �rn C) iff clause C is the result of a one step
application of rule rn ∈ R to premise clauses C ′

i ∈ � (to C ′ respectively).
Multiple step derivations in calculus R are abbreviated by �1 �R �k (or
C1 �R Ck).

2.2. Clauses, Literals, and Unification Constraints

The approaches studied in this paper are presented using a uniform nota-
tion for clauses, literals, and unification constraints (the notation is due to
Kohlhase (1994)). Literals, e.g., [A]µ, consist of a literal atom A and a
polarity µ ∈ {T , F }. For all rules presented in this paper we assume that
the polarity specifiers µ, ν ∈ {T , F } refer to complementary polarities,
i.e., µ �= ν. In particular we distinguish between proper literals and pre-
literals. The (normalised) atom of a pre-literal has a logical constant at

206 CHRISTOPH BENZMÜLLER

head position, whereas this must not be the case for proper literals. For
instance, [A ∨ B]T is a pre-literal and [po→o (A ∨ B)]T is a proper literal.
Furthermore a literal is called flexible if its atom contains a variable at head
position.

A unification problem between two terms T1 and T2 (between n terms
T1, . . . ,Tn) generated during the refutation process is called an unification
constraint and is represented as [T1 �=? T2] (resp. [�=? (T1, . . . ,Tn)]). A
unification constraint is called a flex-flex pair if both unification terms have
flexible heads, i.e., variables at head position.

Clauses consist of disjunctions of literals or unification constraints. The
unification constraints specify conditions under which the other literals are
valid. For instance the clause [pα→β→o T1

α T2
β]T ∨[T1

α �=? S1
α]∨[T2

β �=? S2
β]

can be informally read as: if T1 is unifiable with S1 and T2 with S2 then
(p T1 T2) holds. We implicitly treat the disjunction operator ∨ in clauses
as commutative and associative, i.e., we abstract from the particular or-
der of the literals. Additionally we presuppose commutativity of �=? and
implicitly identify any two α-equal constraints or literals. Furthermore we
assume that any two clauses have disjoint sets of free variables, i.e., for
each freshly generated clause we choose new free variables.

If a clause contains at least one pre-literal we call it a pre-clause, other-
wise a proper clause. A clause is called empty, denoted by �, if it consists
only of (possibly none) flex-flex pairs.

An important aspect of clause normalisation is Skolemisation. In
this paper we employ Miller’s sound adaptation of traditional first-order
Skolemisation (Miller 1983), which associates with each Skolem func-
tion the minimum number of arguments the Skolem function has to be
applied to. Higher-order Skolemisation becomes sound, if any Skolem
function f n only occurs in a Skolem term, i.e., a formula S ≡ f nAn,
where none of the Ai contains a bound variable. Thus the Skolem terms
only serve as descriptions of the existential witnesses and never ap-
pear as functions proper. Without this additional restriction the calculi
do not really become unsound, but one can prove an instance of the
axiom of choice. Andrews (1973) investigates the following instance:
∃E(ι→o)→o ∀Pi→o (∃Xι P X) ⇒ P (E P)), which we want to treat as an
optional axiom for the resolution calculi presented in this paper; for further
details we refer to Miller (1983).

2.3. Standard and Henkin Semantics

A standard model for HOL provides a fixed set Dι of individuals, and a set
Do := {�,⊥} of truth values. The domains for functional types are defined
inductively: Dα→β is the set of all functions f : Dα → Dβ . Henkin models

APPROACHES TO HIGHER-ORDER THEOREM PROVING 207

only require that Dα→β has enough members that any well-formed formula
can be evaluated. Thus, the generalisation to Henkin models restricts the
set of valid formulas sufficiently, such that complete calculi are possible.
The following figure illustrates the sketched connection between standard-
and Henkin semantics.

In Henkin and standard semantics Leibniz equality (which is defined as
.=α := λXα λYα ∀Pα→o P X ⇒ P Y) denotes the intuitive identity relation
and the (type parameterised) functional extensionality principles

∀Mα→β ∀Nα→β (∀X M X
.= N X) ⇒ (M

.= N)

as well as the Boolean extensionality principle

∀Po ∀Qo (P ⇔⇒ (P
.= Q)

are valid (cf. Benzmüller 1999a; Benzmüller and Kohlhase 1997). Satis-
fiability and validity (M |= F or M |= �) of a formula F or set of formulas
� in a model M are defined as usual.

We want to point out that the above statements on equality and exten-
sionality do not apply to general models as originally introduced by Henkin
(1950). Andrews (1972) showed that the sets Dα→o may be so sparse in
Henkin’s original notion of general models that Leibniz equality may de-
note a relation, which does not fulfil the functional extensionality principle.
Due to lack of space we cannot present this general model here but refer to
Andrews (1972) for further details. The solution suggested by Andrews is
to presuppose the presence of the intuitive identity relations in all domains
Dα→α→o, which ensures the existence of unit sets {a} ∈ Dα→o for all
elements a ∈ Dα . The existence of these unit sets in turn ensures that
Leibniz equality indeed denotes the intended (fully extensional) identity
relation.

In this paper, “Henkin semantics” means the corrected version of
Henkin’s original notion as given in Andrews (1972).

208 CHRISTOPH BENZMÜLLER

2.4. Proving Completeness

The abstract consistency proof principle (also called unifying principle)
is a strong tool supporting the analysis of the connection between syntax
and semantics for higher-order calculi. This proof principle has originally
been introduced by Smullyan (1963) for first-order logic and has been
adapted to higher-order logic by Andrews (1971). However, Andrews’
adaptation allows completeness proofs only for the rather weak semantical
notion of V -complexes (in which the axioms of extensionality may fail, cf.
Benzmüller 1991; Benzmüller and Kohlhase 1997).

The following proof principle adapts Andrews abstract consistency
proof principle to Henkin semantics.

DEFINITION 1 (Acc for Henkin Models). Let 	 be a signature and ,	
a class of sets of 	-sentences. If the following conditions hold for all
A,B ∈ cwffo, F,G ∈ cwffα→β , and � ∈ ,	 , then we call ,	 an abstract
consistency class for Henkin models, abbreviated by Acc. (We want to
point out that we assume an implicit treatment of α-convertibility here,
whereas Andrews treats α-convertibility explicit in his notion of η-wffs;
cf. Andrews (1971, 3.1.2, 2.7.5).)

saturated � ∪ {A} ∈ ,	 or � ∪ {¬A} ∈ ,	 .

∇c If A is atomic, then A /∈ � or ¬A /∈ �.

∇¬ If ¬¬A ∈ �, then � ∪ {A} ∈ ,	 .

∇β If A ∈ � and B is the β-normal form of A, then � ∪ {B} ∈ ,	 .

∇η If A ∈ � and B is the η-long form of A, then � ∪ {B} ∈ ,	 .

∇∨ If A ∨ B ∈ �, then � ∪ {A} ∈ ,	 or � ∪ {B} ∈ ,	 .

∇∧ If ¬(A ∨ B) ∈ �, then � ∪ {¬A,¬B} ∈ ,	 .

∇∀ If
αF ∈ �, then � ∪ {F W} ∈ ,	 for each W ∈ cwffα.

∇∃ If ¬
αF ∈ �, then �∪{¬(F w)} ∈ ,	 for any new constant w ∈ 	α .

∇b If ¬(A .=o B) ∈ �, then � ∪ {A,¬B} ∈ ,	 or � ∪ {¬A,B} ∈ ,	 .

∇q If ¬(F .=α→β G) ∈ �, then �∪{¬(F w
.=β G w)} ∈ ,	 for any new

constant w ∈ 	α .

APPROACHES TO HIGHER-ORDER THEOREM PROVING 209

This definition extends Andrews notion of abstract consistency classes
for V -complexes by the new requirements saturated, ∇η, ∇b, and ∇q . Satur-
atedness turns the partial V -complexes into total structures and the latter
two conditions ensure that Leibniz equality indeed denotes a fully exten-
sional relation (which may not be the case in V -complexes, where Leibniz
equality simply not necessarily denotes the intended identity relation; cf.
Benzmüller 1991; Benzmüller and Kohlhase 1997).

The following model existence theorem is due to Andrews (1971).

THEOREM 2 (Henkin Model Existence (Andrews 1971)). Let � be a set
of closed 	-formulas, ,	 be an abstract consistency class for V -complexes
(i.e., ,	 fulfils ∇c, ∇¬, ∇β , ∇∨, ∇∧, ∇∀, ∇∃), and let � ∈ ,	 . There exists a
V -complex M, such that M |= �.

The following related theorem addressing Henkin semantics (and ad-
ditional ones addressing several notions in between Henkin semantics
and V -complexes) is presented in Benzmüller (1999a); Benzmüller and
Kohlhasse (1997).

THEOREM 3 (Henkin Model Existence (Benzmüller and Kohlhase
1998)). Let � be a set of closed 	-formulas, ,	 be an abstract consistency
class for Henkin models, and let � ∈ ,	 . There exists a Henkin model M,
such that M |= �.

The complicated task of proving Henkin completeness for a given (res-
olution) calculus R can now be reduced to showing that the set of all sets
� containing R-consistent closed formulas is an abstract consistency class
for Henkin models, i.e., to verify the (syntactically checkable) conditions
given in Definition 1.

3. HIGHER-ORDER RESOLUTION

In this section we introduce several higher-order resolution calculi. Ad-
ditional approaches not mentioned here are briefly sketched and related to
the presented ones in Section 5. The sketched approaches will be compared
with respect to their extensionality treatment in Section 4.

3.1. Andrews’ Higher-Order Resolution R

We transform Andrews’ higher-order resolution calculus (Andrews 1971)
in our uniform notation. In the remainder of this paper we refer to this
calculus with R. Extending Andrews (1971) we show that R is Henkin

210 CHRISTOPH BENZMÜLLER

complete if one adds infinitely many extensionality axioms into the search
space.

λ-Conversion. Calculus R provides two explicit rules addressing α-
conversion and β-reduction (cf. Andrews 1971, 5.1.1) but does not provide
a rule for η-conversion. Consequently η-equality of two terms (e.g., fι→ι

.=
λXι f X) cannot be proven in this approach without employing the
functional extensionality axiom of appropriate type; cf. Section 4.1.

In our presentation we omit explicit rules for α- and β-convertibility
and instead treat them implicitly, i.e., we assume that the presented rules
operate on input and generate output in β-normal form and we automatic-
ally identify terms which differ only with respect to the names of bound
variables.

Clause Normalisation. R introduces only four rules belonging to clause
normalisation: negation elimination, conjunction elimination, existential
elimination, and universal elimination (cf. Andrews 1971, 5.1.4.–5.1.7.).
As our presentation of clauses in contrast to Andrews (1971) explicitly
mentions the polarities of clauses and brackets the literal atoms we have to
provide additional structural rules, e.g., the rule ∨T .

• Negation elimination:
C ∨ [¬A]T
C ∨ [A]F ¬T

C ∨ [¬A]F
C ∨ [A]T ¬F

• Conjunction1/disjunction elimination:

C ∨ [A ∨ B]T
C ∨ [A]T ∨ [B]T ∨T

C ∨ [A ∨ B]F
C ∨ [A]F ∨F

l

C ∨ [A ∨ B]F
C ∨ [B]F ∨F

r

• Existential2/universal elimination:

C ∨ [
αA]T
C ∨ [A Xα]T
T

C ∨ [
αA]F
C ∨ [A sα]F
F

Xα is a new free variable and sα is a new Skolem term

Additionally Andrews presents rules addressing commutativity and as-
sociativity of the ∨-operator connecting the clauses literals (cf. Andrews
1971, 5.1.2.). We have already mentioned the implicit treatment of these
aspects in Section 2.2.

In the remainder of this paper Cnf(A) denotes the set of clauses ob-
tained from formula A by clause normalisation. It is easy to verify that
clauses produced with Andrews’ original normalisation rules can also be
obtained with the rules presented here (and vice versa).

APPROACHES TO HIGHER-ORDER THEOREM PROVING 211

Resolution and Factorisation. Instead of a resolution and a factorisation
rule – which work in connection with unification – Andrews presents a
simplification and a cut rule. The cut rule is only applicable to clauses with
two complementary literals which have identical atoms. Similarly Sim is
defined only for clauses with two identical literals. In order to generate
identical literal atoms during the refutation process these two rules have to
be combined with the substitution rule Sub presented below.

• Simplification:
[A]µ ∨ [A]µ ∨ C

[A]µ ∨ C Sim

• Cut: [A]µ ∨ C [A]ν ∨ D
C ∨ D Cut

Unification and Primitive Substitution. As higher-order unification was
still an open problem in 1971 calculus R employs the British Museum
Method instead, i.e., it provides a substitution rule that allows to blindly
instantiate free variables by arbitrary terms. As the instantiated terms
may contain logical constants, instantiation of variables in proper clauses
may lead to pre-clauses, which must be normalised again with the clause
normalisation rules.

• Substitution of arbitrary terms:
C

C[Tα/Xα]
Sub

Xα is a free variable occurring in C.

Extensionality Treatment. Calculus R does not provide rules addressing
the functional and/or Boolean extensionality principles. Instead R as-
sumes that the following extensionality axioms are (in form of respective
clauses) explicitly added to the search space. And since the functional
extensionality principle is parameterised over arbitrary functional types
infinitely many functional extensionality axioms are required3.

EXT
.=
α→β : ∀Fα→β ∀Gα→β (∀Xβ F X

.= G X) ⇒ F
.= G

EXT
.=
o : ∀Ao ∀Bo (A ⇔ B) ⇒ A

.=o
B

These are the crucial directions of the extensionality principles and the
backward directions are not needed. The extensionality clauses derived
from the extensionality axioms have the following form (note the many
free variables, especially at literal head position, that are introduced into
the search space – they heavily increase the amount of blind search in any
attempt to automate the calculus):

212 CHRISTOPH BENZMÜLLER

E
α→β
1 : [p (F s)]T ∨ [Q F]F ∨ [Q G]T

E
α→β
2 : [p (G s)]F ∨ [Q F]F ∨ [Q G]T

Eo
1 : [A]F ∨ [B]F ∨ [P A]F ∨ [P B]T

Eo
2 : [A]T ∨ [B]T ∨ [P A]F ∨ [P B]T

pβ→o, sα are Skolem terms and P(α→β)→o, Q(α→β)→o are new free
variables.

Proof Search. Initially the proof problem is negated and normalised. The
main proof search then starts with the normalised clauses and applies
the cut and simplification rule in close connection with the substitution
rule. An intermediate application of the clause normalisation rules may be
needed to normalise temporarily generated pre-clauses. The extensionality
treatment in R simply assumes to add at the beginning of the refutation
process the above clauses obtained from the extensionality axioms.

When abstracting from the initial and intermediate normalisations the
proof search can be illustrated as follows:

Completeness Results. Andrews (1971) gives a completeness proof for
calculus R with respect to the semantical notion of V -complexes. As
the extensionality principles are not valid in this rather weak semantical
structures, the extensionality axioms are not needed in this completeness
proof.

THEOREM 4 (V -completeness of R). The calculus R is complete with
respect to the notion of V -complexes.

Proof. We sketch the proof idea: 4(i) First show that the set of non-
refutable sentences in R is an abstract consistency class for V -complexes.
4(ii) Then prove completeness of R with respect to V -complexes in
an indirect argument: assuming non-completeness of R leads to an
contradiction by 4(i) and Theorem 3. �

We now extend this result and prove Henkin completeness of calculus
R.

THEOREM 5 (Henkin completeness of R). The calculus R is com-
plete with respect to Henkin semantics provided that the infinitely many
extensionality axioms are given.

Proof. 5(i) The crucial aspect is to prove that the set of non-refutable
sentences in R enriched by the extensionality axioms is an abstract con-

APPROACHES TO HIGHER-ORDER THEOREM PROVING 213

sistency class for Henkin models. 5(ii) An indirect argument analogous to
4(ii) employing 5(i) and Theorem 3 ensures completeness.

In order to show 5(i) we have to verify the additional abstract con-
sistency properties saturated, ∇η, ∇b, and ∇q as specified in Definition
1.

saturated We show that � ∪ {A} ��R � or � ∪ {¬A} ��R �. Assume
� ��R � but � ∪ {A} �R � and � ∪ {¬A} �R �. By Lemma 6
(cf. below) we get �{A ∨ ¬A} �ER �, and hence, since A ∨ ¬A is
a tautology, it must be the case that � �ER �, which contradicts our
assumption.

∇η Assuming A ∈ � and � ∪ {B} �R �, we get � �R � by Lemma 7
(cf. below). This ensures the assertion by contraposition.

∇b We first apply rule Sub and instantiate the variables A and B in the
Boolean extensionality axioms Eo

1 and Eo
2 with terms A and B. Now

assume that ¬(A .=o B) ∈ � and � ∪ {A,¬B} �R � and � ∪
{¬A,B} �R �. Employing the instantiated Boolean extensionality
axioms it is easy to see that � �R �, which ensures the assertion by
contraposition.

∇q Can be shown analogously to ∇b when appropriately instantiating the
functional extensionality axioms Eα→β

1 ,Eα→β

2 .

LEMMA 6. Let � be a set of sentences and A,B be sentences. If � ∪
{A} �R � and � ∪ {B} �R �, then � ∪ {A ∨ B} �R �.

Proof. We first verify that Cnf(� ∗ A ∨ B) = Cnf(�) ∪ (Cnf(A) �
Cnf(B)), where ,�3 = := {C∨D|C ∈ Cnf(A)},D ∈ Cnf(B)}. Then we
use that �∪(,1�,2) �R �, provided that �∪,1 �R � and �∪,2 �R �.
�

LEMMA 7. Let � be a set of sentences and let A,B be sentences in β-
normal form, such that A can be transformed into B by (i) a one step η-
expansion or (ii) a multiple step η-expansion. Then �∪ {B} �R � implies
� ∪ {A} �R �.

Proof. Case (ii) can be proven by induction on the number of η-
expansion steps employing (i) in the base case. To prove case (i) note that
A and B differ (apart from α-equality) only with respect to a single subterm
Tα→β . More precisely, A[(λX T X)/T] is equal to B. Normalising sentences
A (resp. B) may result in several clauses A1, . . . ,An (resp. B1, . . . ,Bn)

214 CHRISTOPH BENZMÜLLER

with duplicated occurrences of subterm T (resp. λX T X). We appro-
priately instantiate the functional extensionality axioms Eα→β

1 ,Eα→β

2 and
derive the (Leibniz equation) clauses C1 : [Q f]T ∨ [Q (λX f X)]F and
C2 : [Q′ f]F ∨ [Q′ (λX f X)]T (the latter can be obtained from the
former by substituting λX ¬Q′ X for Q). Obviously, we can derive for
each 1 ≤ i ≤ n the clause Bi from its counterpart Ai with the help of C1

and C2 (formally we apply an induction on the occurrences of term T in
Ai). �

3.2. Huet’s Higher-Order Constrained Resolution CR

In this section we transform Huet’s constrained resolution approach (Huet
1972, 1973a) to our uniform notation. The calculus here is the unsor-
ted fragment of the variant of Huet’s approach as presented in Kohlhase
(1994). In the remainder of this paper we refer to this calculus as CR. We
extend (Huet 1972, 1973a) and show that CR is Henkin complete if we
add infinitely many extensionality axioms to the search space.

λ-Conversion. Like R calculus CR assumes that terms, literals, and
clauses are implicitly reduced to β-normal form. Furthermore we assume
that α-equality is treated implicitly, i.e., we identify all terms that differ
only with respect to the names of bound variables.

Clause Normalisation. Huet (1972) does not present clause normalisation
rules but assumes that they are given. Here we employ the rules ¬T , ¬F ,
∨T , ∨F

l , ∨F
r ,
T , and
F as already defined for calculus R in Section 3.1.

Resolution and Factorisation. As first-order unification is decidable and
unitary it can be employed as a strong filter in first-order resolution
(Robinson 1965). Unfortunately higher-order unification is not decid-
able (cf. Lucchesi 1972; Huet 1973b; Goldfarb 1981) and thus it can
not be applied in the sense of a terminating side computation in higher-
order theorem proving. Huet therefore suggests in Huet (1972, 1973a) to
delay the unification process and to explicitly encode unification prob-
lems occurring during the refutation search as unification onstraints. In
his original approach Huet presented a hyper-resolution rule which sim-
ultaneously resolves on the resolution literals A1, . . .An (1 ≤ n) and
B1, . . .Bm (1 ≤ m) of two given clauses and adds the unification constraint
[�=? (A1, . . .An,B1, . . .Bm)] to the resolvent.

[A1]µ ∨ . . . ∨ [An]µ ∨ C[B1]µ ∨ . . . ∨ [Bm]µ ∨ D
C ∨ D ∨ [�=? (A1, . . .An,B1, . . .Bm)] Hres

APPROACHES TO HIGHER-ORDER THEOREM PROVING 215

In order to ease the comparison with the two other approaches discussed
in this paper we instead employ a resolution rule Res and a factorisation
rule Fac. Like Hres both rules encode the unification problem to be solved
as a unification constraint.

• Constrained resolution:
[A]µ ∨ C [B]ν ∨ D
C ∨ D ∨ [A �=? B] Res

• Constrained factorisation:
[A]µ ∨ [B]µ ∨ C

[A]µ ∨ C ∨ [A �=? B]F Fac

One can easily prove by induction on n + m that each proof step
applying rule Hres can be replaced by a corresponding derivation employ-
ing Res and Fac. For a formal proof note that the unification constraint
[�=? (A1, . . .An,B1, . . .Bm)] is equivalent to [A1 �=? A2] ∨ [A2 �=?

A3] ∨ . . . ∨ [An−1 �=? An] ∨ [An �=? B1] ∨ [B1 �=? B2] ∨ [B2 �=?

B3] ∨ . . . ∨ [Bn−1 �=? Bn].
Unification and Splitting. Huet (1975) introduces higher-order unifica-
tion and higher-order pre-unification and shows that higher-order pre-
unification is sufficient to verify the soundness of a refutation in which
the occurring unification problems have been delayed until the end. The
higher-order pre-unification rules presented here are discussed in detail
in Benzmüller (1999a). They furthermore closely reflect the rules as
presented in Snyder and Gallier (1989).

• Elimination of trivial pairs: C ∨ [A �=? A]
C Triv

• Decomposition
C ∨ [Aα→β Cα �=? Bα→β Dα]

C ∨ [A �=? B] ∨ [C �=? D] Dec

• Elimination of λ-binders:
(weak functional extensionality)

C ∨ [Mα→β �=? Nα→β]
C ∨ [M sα �=? N sα] Func

sα is a new Skolem term.

• Imitation of rigid heads:
C ∨ [Fγ Un �=? h Vm] G ∈ GBh

γ

C ∨ [F �=? G] ∨ [F Un �=? h Vm] FlexRigid

GBh
γ is the set of partial bindings of type γ for head h as defined in

Snyder and Gallier (1989).

Huet points to the usefulness of eager unification to filter out clauses
with non-unifiable unification constraints or to back-propagate the solu-
tions of easily solvable constraints (e.g., in case of first-order unification

216 CHRISTOPH BENZMÜLLER

problems occurring during the proof search). Many of the higher-order uni-
fication problems occurring in practice are decidable and have only finitely
many solutions. Hence, even though higher-order unification is generally
not decidable it is sensible in practice to apply the unification algorithm
with a particular resource4, such that only those unification problems
which may have further solutions beyond this bound need to be delayed.
In our presentation of calculus CR we explicitly address the aspect of
eager unification and substitution by rule Subst. This rule back-propagates
eagerly computed unifiers to the literal part of a clause.

• Eager unification and substitution:

C ∨ [X �=? A] X /∈ free(A)

C[A/X]
Subst

Rule Subst is applicable provided that [X �=? A] is solved with respect
to the other unification constraints in C, i.e., that there is no conflict
with other unification constraints.

The literal heads of our clauses may consist of set variables and it may
be necessary to instantiate them with terms introducing new logical con-
stant at head position in order to find a refutation. Unfortunately not all
appropriate instantiations can be computed with the calculus rules presen-
ted so far. To address this problem Huet’s approach provides the following
splitting rules:

1. Instantiate set variables:
[P A]T ∨ C

[Q]T ∨ [R]T ∨ C ∨ [P A �=? (Qo ∨ Ro)] ST
∨

[P A]µ ∨ C

[Q]ν ∨ C ∨ [P A �=? ¬Qo]
ST F¬

[P A]F ∨ C

[Q]F ∨ C ∨ [P A �=? (Qo ∨ Ro)] SF∨

[R]F ∨ C ∨ [P A �=? (Qo ∨ Ro)]
[P Aα→o]T ∨ C

[Mα→o Z]T ∨ C ∨ [P A �=?
αM] ST

[P Aα→o]F ∨ C

[Mα→o s]F ∨ C ∨ [P A �=?
αM] SF

ST

 and SF

 are infinitely branching as they are parameterised over
type α. Qo,Ro,Mα→o, Zα are new variables and sα is a new Skolem
constant.

A theorem which is not refutable in CR if the splitting rules are not
available is ∃Ao.A. After negation this statement normalises to clause C1 :
[A]F , such that none but the splitting rules are applicable. With the help of

APPROACHES TO HIGHER-ORDER THEOREM PROVING 217

rule ST F
¬ and eager unification, however, we can derive C2 : [A′]T which

is then successfully resolvable against C1.

Extensionality Treatment. On the one hand η-convertibility is built-in in
higher-order unification, such that calculus CR already supports func-
tional extensionality reasoning to a certain extent. On the other hand CR
nevertheless fails to address full extensionality as it does not realise the re-
quired subtle interplay between the functional and Boolean extensionality
principles. For example, without employing additional Boolean and func-
tional extensionality axioms CR cannot prove the rather simple Examples
presented in Sections 4.2, 4.3, and 4.4.

Proof Search. Initially the proof problem is negated and normalised. The
main proof search then operates on the generated clauses by applying the
resolution, factorisation, and splitting rules. Despite the possibility of eager
unification CR generally foresees to delay the higher-order unification
process in order to overcome the undecidability problem. When deriv-
ing an empty clause CR then tests whether the accumulated unification
constraints justifying this particular refutation are solvable. Like R, the
extensionality treatment of CR requires the addition of infinitely many
extensionality axioms to the search space. The following figure graphically
illustrates the main ideas of the proof search in CR.

Completeness Results. Huet (1972, 1973a) analyses completeness of CR
only with respect to Andrews V -complexes, i.e., Huet verifies that the set
of non-refutable sentences in CR is an abstract consistency class for V -
complexes.

THEOREM 8 (V -completeness of CR). The calculus CR is complete with
respect to the notion of V -complexes.

We now extend this result and prove Henkin completeness of calculus
CR.

THEOREM 9 (Henkin completeness of CR). The calculus CR is complete
wrt. Henkin semantics provided that the infinitely many extensionality
axioms are given.

218 CHRISTOPH BENZMÜLLER

Proof. Analogously to the proof of Theorem 5 we can reduce the prob-
lem to verifying that the set of non-refutable sentences in R enriched by
the extensionality axioms is an abstract consistency class for Henkin mod-
els. The assertion then follows in an indirect argument employing Theorem
3. In addition to the abstract consistency properties already examined in
Huet (1972, 1973a) for Theorem 8 we have to verify saturatedness, ∇η,
∇b, and ∇q as specified in Definition 1. The proofs of all four statements
are analogous to the corresponding parts in the proof of Theorem 5. For
saturatedness and ∇η we use analogues of Lemmas 6 and 7.

LEMMA 10. Let � be a set of sentences and A,B be sentences. If � ∪
{A} �CR � and � ∪ {B} �CR �, then � ∪ {A ∨ B} �CR �

Proof. Analogous to the proof of Lemma 6. �

LEMMA 11. Let � be a set of sentences and let A,B be sentences in
β-normal form, such that A can be transformed into B by (i) a one step η-
expansion or (ii) a multiple step η-expansion. Then �∪{B} �CR � implies
� ∪ {A} �CR �.

Proof. The proof is analogous to Lemma 7. The main difference is
with regard to the derivability of the clauses Bi from its counterparts Ai

with the help of C1 and C2 obtained from the (suitably instantiated) func-
tional extensionality axioms. It might be the case that the terms T occur
inside flexible literals of the clauses Ai . Resolving these flexible literals
against C1 and C2 results then in flex-flex pairs that cannot be solved
eagerly but have to be delayed. E.g., let Aj (1 ≤ j ≤ n) be of form
[R (p T)]ν ∨ D . Instead of Bj := [R (p (λX T X))]ν ∨ D we can derive
only B ′

j := [Q (λX T X)]ν ∨ D ∨ [Q T �=? R (p (λX T X))]. Hence,
we have to show (in a technically rather complicated inductive proof on the
length of the derivation) that each refutation employing B ′

j can be replaced
by a corresponding one employing Bj . �

3.3. Higher-Order E-Resolution CRE

Some more recent approaches to higher-order theorem proving employ
equational higher-order unification instead of syntactical higher-order uni-
fication in order to ease and shorten proofs on the resolution layer by
relocating particular computation or reasoning tasks to the unification
process. For instance, equational higher-order unification has been invest-
igated within the contexts of higher-order rewriting and narrowing (cf.
Nipkow and Prehofer 1998; Prehofer 1998), and within the context of
restricted higher-order E-resolution (Wolfram 1993).

APPROACHES TO HIGHER-ORDER THEOREM PROVING 219

In this Section we will sketch a higher-order E-resolution approach
based on calculus CR. In contrast to the other investigated calculi the aim
thereby is not to provide a detailed description of the particular rules and
the functioning of the calculus, but to provide a sufficient basis for the in-
vestigation to what extent equational higher-order unification can improve
the extensionality reasoning in a higher-order theorem prover.

Generally unification of two (or several) terms S and T aims at comput-
ing sets of unifiers, i.e., substitutions σ , such that Sσ equals Tσ (Sσ = Tσ).
Equational unification thereby extends syntactical unification in the sense
that it tries to equalise Sσ and Tσ modulo a fixed equational theory E

(written as Sσ =E Tσ) instead of equalising them syntactically. A survey to
unification theory is given in Baader and Siekmann (1994), and Siekmann
(1989).

Within our higher-order context we assume that an equational theory E

is defined by a fixed set of equations between closed λ-terms. For instance,
equations expressing commutativity and associativity of the ∧-operator are
(λXo λYo X∧Y) = (λXo λYo Y∧X) and (λXo λYo λZo (X∧Y)∧Z) =
(λXo λYo λZo X ∧ (Y ∧ Z)).

And within this particular theory E (to be more precise modulo the
congruence relation defined by this equations) the following two terms are
unifiable by [a/X]: (po→o (bo ∧ Xo) ∧ (Xo ∧ bo)) and (po→o ao ∧ (ao ∧
(bo ∧ bo))).

We want to point out that Huet’s unification approach as presented for
calculus CR is of course not a pure syntactical one as it already takes αβη-
equality into account. We nevertheless call Huet’s approach syntactical
higher-order unification in this paper in order to distinguish it from equa-
tional higher-order unification in the sense of this Subsection, where the
theory E may contain additional higher-order equations.

Several, often restricted, approaches to higher-order E-unification have
been discussed in literature. Wolfram (1993) a general higher-order E-
unification approach which employs higher-order rewriting techniques. An
approach restricted to first-order theories is given in Snyder (1990) and an-
other restricted one, where as much computation as possible is pushed to a
first-order E-unification procedure, is discussed in Qian and Wang (1996)
and Nipkow and Qian (1991). Dougherty and Johann (1992) presents a
restricted combinatory logic approach.

We now sketch our higher-order E-resolution approach CRE .

Clause Normalisation, Resolution and Factorisation, and Splitting. We
assume that calculus CRE coincides with calculus CR in all but the uni-

220 CHRISTOPH BENZMÜLLER

fication part. Thus CR provides the clause normalisation, resolution and
factorisation, and splitting rules as introduced in Section 3.2.

Equational Unification. Instead of presenting a concrete set of rules for
higher-order E-unification we refer to the respective approaches given in
Snyder (1990), Nipkow and Qian (1991), Wolfram (1993), and Qian and
Wang (1996). For our investigation of CRE it will be of minor importance
which particular approach we choose and how general this approach is.

Whereas higher-order E-unification can indeed partially improve the
extensionality treatment in CRE , we will present simple theorems in
Section 4 which cannot be proven in CRE (or in any of the related
approaches mentioned above) without additional extensionality axioms.
These counterexamples do not depend on the concrete choice of an
equational theory E.

3.4. Extensional Higher-Order Resolution ER

We now present the extensional higher-order resolution approach as intro-
duced in Benzmüller and Kohlhase (1998a), Benzmüller (1991a). In the
remainder of this paper we refer to this calculus as ER. ER is Henkin
complete without requiring additional extensionality axioms.

λ-Conversion. In contrast to R and CR calculus ER assumes that all terms,
literals, and clauses are implicitly reduced to long βη-normal form.

Clause Normalisation, Resolution and Factorisation, and Unification and
Splitting. ER employs the normalisation rules ¬T ,¬F ,∨T ,∨F

l , ∨F
r ,

T ,

F , the resolution and factorisation rules Res, Fac, and the unification
rules Triv, Dec, Func, FlexRigid, Subst as already defined for calculus CR
in Section 3.2.

Additionally ER employs the infinitely branching unification rule
FlexFlex, which guesses instances in case of flex-flex pairs (cf. Conjecture
13 in Section 3.4).

• Guess
C ∨ [Fγn→α Un = Hδm→α Vm]F G ∈ GBh

γ n→α

C ∨ [F Un = H Vm]F ∨ [F = G]F FlexFlex

GBh

γ n→α
is the set of partial bindings of type γ for a constant h in the

given signature.

The splitting rules presented for CR in Section 3.2 are replaced in
ER by the more elegant primitive substitution rule as first introduced by
Andrews (1989).

APPROACHES TO HIGHER-ORDER THEOREM PROVING 221

• Primitive substitution
[Qγ Uk]α ∨ C P ∈ GB{¬,∨}∪{
β |β∈T }

γ

[Qγ Uk]α ∨ C ∨ [Q = P]F Prim

GB{¬,∨}∪{
β |β∈T }
γ is the set of partial bindings of type o for a logical

constant in the signature.

Extensionality Treatment. Instead of adding infinitely many extensional-
ity axioms to the search space CR provides two new extensionality rules
which closely connect refutation search and eager unification. The idea
is to allow for recursive calls from higher-order unification to the over-
all refutation process. This turns the rather weak syntactical higher-order
unification approach considered so far into a most general approach for
dynamic higher-order theory unification.

• Unification and equivalence:
C ∨ [Mo �=? No]
C ∨ [Mo ⇔ No]F Equiv

• Unification and Leibniz equality:
C ∨ [Mα �=? Nα]

C ∨ [∀Pα→o P M ⇒ P N]F Leib

Proof Search. Initially the proof problem is negated and normalised. The
main proof search then closely interleaves the refutation process on res-
olution layer and unification, i.e., the main proof search rules Res, Fac,
and Prim and the unification rules are integrated at a common conceptual
level. The calls from unification to the overall refutation process with rules
Leib and Equiv introduce new clauses into the search space which can be
resolved against already given ones.

This close interplay between unification and refutation search com-
pensates the infinitely many extensionality axioms required in R and CR
by a more goal-directed approach to full extensionality reasoning.

The following picture graphically illustrates the main ideas of the proof
search in ER.

Completeness Results. Henkin completeness of the presented approach
with rule FlexFlex is analysed in detail in Benzmüller (1999a) and
Benzmüller and Kohlhase (1998a). Here we only mention the main result:

THEOREM 12 (Henkin completeness of ER). The calculus ER is com-
plete with respect to Henkin semantics.

222 CHRISTOPH BENZMÜLLER

Benzmüller (1999a) presents but does not prove the following interest-
ing claims which are of major practical importance as they will lead to an
enormous reduction of the search spaces in ER.

CONJECTURE 13 (FlexFlex-rule is not needed). Rule FlexFlex can be
avoided in ER without affecting Henkin completeness.

CONJECTURE 14 (Base type restriction of rule Leib). Rule Leib can be
restricted to base types α in ER without affecting Henkin completeness.

4. EXAMPLES

In this section we compare the extensionality treatment provided by the
calculi R, CR, CRE , and ER with the help of simple examples. Des-
pite their simplicity the latter two of these examples are nevertheless
challenging with respect to their automisation in a higher-order theorem
prover.

4.1. η-Equality

EXAMPLE 15. fι→ι
.= λXι f X

Solution in R. In order to prove Example 15, which normalises after
negation and expansion of Leibniz equality to C1 : [q f]F and C2 :
[q (λX f X)]T where q(ι→ι)→o is a new Skolem term, we first have to
appropriately instantiate the two functional extensionality clauses Eα→β

1

and Eα→β

2 with the help of rule Sub:

E ι→ι
1 : [p (f s)]T ∨ [Q f]F ∨ [Q (λX f X)]T

E ι→ι
2 : [p (f s)]F ∨ [Q f]F ∨ [Q (λX f X)]T

Employing cut and simplification we can derive

C3 : [Q f]F ∨ [Q (λX f X)]T

which corresponds to the Leibniz equation between f and (λX f X).
With rule Sub we then substitute the term λMι→ι ¬(q M) for the predicate
variable Q, re-normalise the generated pre-clause, and obtain

C4 : [q f]T ∨ [q (λX f X)]F

APPROACHES TO HIGHER-ORDER THEOREM PROVING 223

By applying the cut rule to C4,C1, and C2 we then derive �.

Solution in CR, CRE , and ER. We first sketch the proof of Example 15
in CR. Initially we resolve on C1 : [q f]F and C2 : [q (λX f X)]T and
thereby obtain the unification constraint C3 : �∨[f �=? (λX f X)]F . The
η-equality of the two unification terms is shown with the help of the uni-
fication rule Func which derives the trivial unification constraint C4 : � ∨
[f s �=? f s]F (where sι is new Skolem term). This unification constraint
can be subsequently eliminated with rule Triv. Our examples illustrates
higher-order unification already addresses weak functional extensionality
(η-equality).

An analogous refutation can clearly be employed in calculus CRE as
weak functional extensionality is built-in in higher-order E-unification as
well.

Example 15 is trivially solvable in ER due to the fact that we implicitly
assume all terms to be in long βη-normal form, i.e., the clauses to be
refuted are C1 : [q(λX fX)]F and C2 : [q(λX fX)]T . Clearly, when
considering long βη-normal forms instead of β-normal forms the problem
is trivially solvable in calculi R, CR, and CRE as well.

4.2. Set Descriptions

In higher-order logic sets can be elegantly encoded by characteristic func-
tions. An interesting problem then is to investigate whether two encodings
describe the same set. The following trivial example demonstrates the
importance of the extensionality principles for this purpose.

EXAMPLE 16. The set of all red balls equals the set of all balls that are
red: {X|red X ∧ ball X} = {X|ball X ∧ red X}. This problem can be
encoded as (λXι red X ∧ ball X) = (λXι ball X ∧ red X).

Negation, expansion of Leibniz equality, and clause normalisation leads
to the following clauses (where p(ι→o)→o is a new Skolem constant):

C1 : [p (λX red X ∧ ball X)]F C2 : [p (λX ball X ∧ red X)]T

Solution in R. As no rule is applicable to C1 and C2 Example 16 is not
refutable in R without employing extensionality axioms. The only way to
derive a contradiction is to employ suitable instances of the extensionality
clauses in a rather complicated derivation:

1. With rule Sub instantiate the Boolean extensionality axioms Eo
1 and Eo

2
with the terms (red Y ∧ ball Y) and (ball Y ∧ red Y) for variables A

224 CHRISTOPH BENZMÜLLER

and B. By normalising and employing simplification exhaustively to
the resulting pre-clauses we obtain among others:

C3 : [red Y]F ∨ [ball Y]F ∨ [P F1]F ∨ [P G1]T
C4 : [red Y]T ∨ [P F1]F ∨ [P G1]T
C5 : [ball Y]T ∨ [P F1]F ∨ [P G1]T

where F1 stands for the term (red Y ∧ ball Y) and G1 for (ball Y ∧
red Y).
From C3–C5 we derive C6 : [P F1]F ∨ [P G1]T by cut and
simplification, where C6 corresponds to the clause normal form of
∀Y ((λX red X ∧ ball X) Y)

.= ((λX ball X ∧ red X) Y).
2. With rule Sub we now instantiate the functional extensionality axioms

E ι→o
1 and E ι→o

2 with terms F2 := (λX red X ∧ ball X) for variable F

and G2 := (λX ball X ∧ red X) for variable G.

C7 : [q (red s ∧ ball s)]T ∨ [Q F2]F ∨ [Q G2]T
C8 : [q (ball s ∧ red s)]F ∨ [Q F2]F ∨ [Q G2]T

3. Applying substitution [(λZ q Z)/P, s/Y] with rule Sub to clause C6

leads to:

C9 : [q (red s ∧ ball s)]F ∨ [q (ball s ∧ red s)]T

Applying cut and simplification we combine the results of the above
steps and derive from C7, C8, and C9

C10 : [Q (λX red X ∧ ball X)]F ∨ [Q (λX ball X ∧ red X)]T

which represent the Leibniz equation between (λX red X ∧ ball X)

and (λX ball X ∧ red X). With the help of C1 and C2 we can now
derive � after appropriately instantiating C10 with [p/Q].

Note that in Steps 1 and 2 we had to guess the right instantiations of the
extensionality axioms and to apply non-goal directed forward reasoning.

Solution in CR. The only rule that is applicable to C1 and C2 in calculus
CR is the resolution rule Res leading to the following unification constraint

C3 : � ∨ [p (λX red X ∧ ball X) �=? p (λX ball X ∧ red X)]
As this unification constraint is obviously not solvable by syntactical
higher-order unification we cannot find a refutation on this derivation path.

As in calculus R the only way to find a refutation is to guess appropri-
ate instances of the extensionality axioms and to derive from them clause
C10 representing the Leibniz equation between (λX red X ∧ ball X) and

APPROACHES TO HIGHER-ORDER THEOREM PROVING 225

(λX ball X ∧ red X). A concrete derivation can be carried out analog-
ously to the above derivation in R. The only difference is that we employ
resolution and factorisation instead of cut and simplification. In contrast
to R we thereby gain additional guidance with respect to finding some
of the required instantiations when combining the resolution/factorisation
steps with eager unification attempts. But note that this only holds for the
instantiation of non-formulas, e.g., as given in Step 3. The key step in
the proof, namely the instantiation of the extensionality axioms in Step 1
with appropriate formulas as arguments, is not supported by unification.
Instead the splitting rules have to be employed in order to guess the right
instances. The problem with the splitting rules (or analogously the primit-
ive substitution rule) is that each application introduces new clauses with
flexible literals into the search space (in case of ST

 and SF

 even infinitely

many) such that the splitting rules become recursively applicable to the
new clauses as well.

Consequently, the extensionality treatment in CR is analogously to the
one in R rather hard to guide in practice. Overwhelming the search space
with extensionality clauses and applying forward reasoning to them fur-
thermore principally contrasts the intended character of resolution based
theorem proving.

Solution in CRE . Analogous to the unsuccessful initial attempt in CR we
first resolve between C1 and C2 and obtain

C3 : � ∨ [p (λX red X ∧ ball X) �=? p (λX ball X ∧ red X)]

Whereas syntactical unification as employed in CR clashes on this uni-
fication constraint, calculus CRE can solve this E-unification problem
provided that the employed E-unification algorithm covers associativity
of the ∧-operator (i.e., E |= (λXo λYo X ∧ Y) = (λXo λYo Y ∧ X)).

Hence, depending on the peculiarity of unification theory E calculus
CRE can provide more goal directed solutions to particular examples and
avoid applications of the extensionality axioms. However, the examples
below will demonstrate that E-unification does not provide a general
solution.

Solution in ER. Calculus ER provides another goal directed solution
avoiding the extensionality axioms. Instead of employing equational uni-
fication calculus ER analyses the unifiability of the unification constraint
C3 with the help of a recursive call from within its unification algorithm
to its own overall refutation process. Clearly, this idea can be seen as a
very general form of equational unification, namely equational unification

226 CHRISTOPH BENZMÜLLER

modulo the theory defined by the given clause context and full higher-order
logic.

Like above we initially resolve between C1 and C2 and obtain clause
C3. Then we transform C3 with the unification rules Dec and Func into

C4 : � ∨ [red s ∧ ball s �=? ball s ∧ red s]

and apply a recursive call to the overall refutation process with the
Boolean extensionality rule Equiv. After normalisation and elimination of
identical literals we thereby obtain the following trivially refutable set of
propositional clauses

C5 : [red s]F ∨ [ball s]F C6 : [red s]T C7 : [ball s]T

4.3. Reasoning with Classical Logic

The following theorem states that all unary logical operators Oo→o which
map the propositions a and b to � consequently also map a ∧ b to �.

EXAMPLE 17. ∀Oo→o (O ao) ∧ (O bo) ⇒ (O (ao ∧ bo)).

Negation and normalisation leads to (oo→o is a Skolem constant for O)

C1 : [o a]T C2 : [o b]T C3 : [o (a ∧ b)]F

Solution in R. Obviously there is no rule applicable to C1 – C3. As in
Section 4.2 we are forced to appropriately instantiate the extensionality
axioms. In particular we employ the following two instantiations of the
Boolean extensionality principle EXT

.=
o :

(a ⇔ (a ∧ b)) ⇔ (a
.=o

(a ∧ b))

and

(b ⇔ (a ∧ b)) ⇔ (b
.=o

(a ∧ b))

That means we guess the substitutions [a/A, (a∧b)/B], [b/A, (a∧b)/B]
and then instantiate the Boolean extensionality clauses Eo

1 and Eo
2 with rule

Sub. From the instantiated clauses we can now derive

C4 : [P a]F ∨ [P (a ∧ b)]T ∨ [Q b]F ∨ [Q (a ∧ b)]T

APPROACHES TO HIGHER-ORDER THEOREM PROVING 227

which represents that (a
.= (a ∧ b)) ∨ (b

.= (a ∧ b)). By instantiating P

and Q with o and simplification we obtain:

C5 : [o a]F ∨ [o b]F ∨ [o (a ∧ b)]T

Resolving against C1, C2, and C3 leads to �.

Solution in CR and CRE . There are only two possible proof steps at
the very beginning: resolve between C1 and C3 and between C2 and C3.
Thereby we get

C4 : � ∨ [p a �=? p (a ∧ b)] C5 : � ∨ [p b �=? p (a ∧ b)]

Both unification constraints are neither solvable by syntactical higher-
order unification nor by higher-order E-unification.

Successful refutations in CR and CRE therefore require the application
of appropriately instantiated extensionality clauses as demonstrated within
the refutation in calculus R above. Note that higher-order (E-)unification
does not even provide any support for choosing the right instantiations of
the extensionality axioms.

Hence both calculi, CR as well as CRE , cannot be Henkin complete
without additional extensionality axioms.

Solution in ER. ER allows for a straightforward refutation of the clauses
C1 – C3. Like in CR and CRE the only possible steps at the beginning are
to resolve between C1 and C3 and between C2 and C3. Thereby we get

C4 : � ∨ [p a �=? p (a ∧ b)] C5 : � ∨ [p b �=? p (a ∧ b)]

Decomposing both the unification constraints in both clauses leads to

C6 : � ∨ [a �=? (a ∧ b)] C7 : � ∨ [b �=? (a ∧ b)]

When regarding both unification constraints isolated they are obviously
neither syntactically nor semantically solvable. When considering them
simultaneously, however, it is easy to see that at least one of both uni-
fication constraints must be solvable. Such a non-constructive reasoning
on the simultaneous solvability/non-solvability of unification constraints
is handled in ER by recursive calls from unification to the overall proof
search. In this sense ER intuitively first assumes that the unification
constraints are simultaneously not solvable and then tries to refute this
assumption. More concretely, the recursive calls with rule Equiv applied

228 CHRISTOPH BENZMÜLLER

to C6 and C7 introduce after normalisation and factorisation the follow-
ing clauses into the search space (note the importance of the fact that the
generated clauses are analysed in a common context):

C5 : [a]F ∨ [b]F C6 : [a]T ∨ [b]T C7 : [a]T C8 : [b]T

Clauses C5–C8 can be refuted immediately, which contradicts the as-
sumption of the simultaneous semantical non-unifiability of the unification
constraints in C6 and C7. Hence, either C6 or C7 must already be the empty
clause, which justifies the proof.

4.4. Mappings from Booleans to Booleans

We already mentioned in Section 2.3 that in Henkin semantics the do-
main Do of all Booleans contains exactly the truth values ⊥ and �.
Consequently the domain of all mappings from Booleans to Booleans
contains exactly5 the denotations of the following four functions: λXo Xo,
λXo ¬Xo , λXo ⊥, and λXo �. This theorem can be formulated as follows
(where fo→o is a constant):

(f = λXo Xo) ∨ (f = λXo ¬Xo) ∨ (f = λXo ⊥) ∨ (f = λXo �)

By unfolding the definition of Leibniz equality, negating the theorem,
and applying clause normalisation we obtain the following clauses (where
p1, . . . , p4 are Skolem constants):

D1 : [p1 f]T D2 : [p1 λXo Xo]F D3 : [p2 f]T D4 : [p2 λXo ¬Xo]F

D5 : [p3 f]T D6 : [p3 λXo ⊥]F D7 : [p4 f]T D8 : [p4 λXo �]F

Solution in R, CR, and CRE . As the reader may easily check, none of the
applicable resolution steps leads to a unification constraint that is solvable
by higher-order unification or higher-order E-unification (independent
from theory E).

In order to find a refutation appropriate instances of the extensionality
principles are needed, just as illustrated in the previous example. Because
of lack of space we do not present the quite lengthy refutation here.

Solution in ER. In ER we can find the following goal directed refutation
of the clauses D1, . . . ,D8. We first resolve between the related clauses
D1 and D2, D3 and D4, D5 and D6, and D7 and D8, and immediately

APPROACHES TO HIGHER-ORDER THEOREM PROVING 229

decompose the head symbols in the unification pairs. Thereby we obtain
the following four clauses consisting of exactly one unification constraint.

C1 : [p = λx x]F C2 : [p = λx ¬x]F C3 : [p = λx ⊥]F

C4 : [p = λx �]F

Whereas none of these unification constraints is solvable taken alone
(even not by E-unification), it is possible in calculus ER to refute the
assumption that these unification constraints are simultaneously not solv-
able. Like in the previous example the idea of the following derivation is to
show that always one of these unification constraints must be solvable even
though one cannot specify which one. The proof presented here has been
automatically generated by the prototypical higher-order theorem prover
LEO (Benzmüller and Kohlhase 1998b) (which implements calculus ER)
within 25 seconds on a Pentium II with 400MHz. Each line presented be-
low introduces a new clause (the line numbering thereby corresponds to the
clause numbering) by applying the specified calculus rules to previously
derived clauses. For instance, line 32 describes that clause C32 is derived
from clauses C17 and C16 by resolution with rule Res and immediate elim-
ination of trivial unification constraints with rule Triv. In the proof below
s1, . . . , s4 are new Skolem constants of Boolean type introduced by the
functional extensionality rule Func at the very beginning of the refutation.

5 : Func(C4) C5 : [(p s3) = �]F
6 : Func(C3) C6 : [(p s2) = ⊥]F
7 : Func(C2) C7 : [(p s4) = (¬ s4)]F
8 : Func(C1) C8 : [(p s1) = s1)]F

10 : Equiv+Cnf(C5) C10 : [(p s3)]F
13 : Equiv+Cnf(C6) C13 : [(p s2)]T
16 : Equiv+Cnf(C7) C16 : [s4]T ∨ [(p s4)]F
17 : Equiv+Cnf(C7) C17 : [(p s4)]T ∨ [s4]F
20 : Equiv+Cnf(C8) C20 : [(p s1)]F ∨ [s1]F
21 : Equiv+Cnf(C8) C21 : [s1]T ∨ [(p s1)]T
32 : Res+Triv(C17; C16) C32 : [(p s4)]T ∨ [(p s4)]F
36 : Res(C20;C17) C36 : [s4]F ∨ [s1]F ∨ [(p s1) = (p s4)]F
42 : Dec(C36) C42 : [s1]F ∨ [s4]F ∨ [s1 = s4]F
56 : Equiv+Cnf(C42) C56 : [s1]F ∨ [s4]F

230 CHRISTOPH BENZMÜLLER

76 : Res(C32;C21) C76 : [s1]T ∨ [(p s4)]T ∨ [(p s4) = (p s1)]F
85 : Dec(C76) C85 : [(p s4)]T ∨ [s1]T ∨ [s4 = s1]F
134 : Equiv+Cnf(C85) C134 : [(p s4)]T ∨ [s1]T ∨ [s4]T
141 : Res+Triv(C56; C16) C141 : [(p s4)]F ∨ [s1]F
144 : Res+Triv(C56; C21) C144 : [(p s1)]T ∨ [s4]F
163 : Res+Triv(C141;C21) C163 : [(p s1)]T ∨ [(p s4)]F
211 : Res(C163;C13) C211 : [(p s1)]T ∨ [(p s4) = (p s2)]F
237 : Dec(C211) C237 : [(p s1)]T ∨ [s4 = s2]F
250 : Res+Triv(C134;C16) C250 : [s4]T ∨ [s1]T
255 : Res+Triv(C134;C17) C255 : [s1]T ∨ [(p s4)]T
387 : Res+Triv(C255;C20) C387 : [(p s4)]T ∨ [(p s1)]F
458 : Res(C387;C10) C458 : [(p s1)]F ∨ [(p s4) = (p s3)]F
459 : Res(C387;C13) C459 : [(p s4)]T ∨ [(p s1) = (p s2)]F
492 : Dec(C458) C492 : [(p s1)]F ∨ [s4 = s3]F
493 : Dec(C459) C493 : [(p s4)]T ∨ [s1 = s2]F
519 : Equiv+Cnf(C493) C519 : [(p s4)]T ∨ [s1]F ∨ [s2]F
523 : Equiv+Cnf(C492) C523 : [(p s1)]F ∨ [s4]F ∨ [s3]F
558 : Res+Triv(C519;C141) C558 : [s2]F ∨ [s1]F
592 : Res+Triv(C558;C21) C592 : [(p s1)]T ∨ [s2]F
610 : Res+Triv(C558;C250) C610 : [s4]T ∨ [s2]F
664 : Res(C592;C10) C664 : [s2]F ∨ [(p s1) = (p s3)]F
706 : Dec(C664) C706 : [s2]F ∨ [s1 = s3]F
783 : Res+Triv(C523;C144) C783 : [s3]F ∨ [s4]F
820 : Res+Triv(C783;C610) C820 : [s2]F ∨ [s3]F
824 : Res+Triv(C783;C16) C824 : [(p s4)]F ∨ [s3]F
912 : Res(C824;C13) C912 : [s3]F ∨ [(p s4) = (p s2)]F
952 : Dec(C912) C952 : [s3]F ∨ [s4 = s2]F
1078 : Equiv+Cnf(C952) C1078 : [s2]T ∨ [s4]T ∨ [s3]F
1144 : Res+Triv(C1078;C783) C1144 : [s2]T ∨ [s3]F
1218 : Res+Triv(C1144;C820) C1218 : [s3]F
1302 : Equiv+Cnf(C706) C1302 : [s3]T ∨ [s1]T ∨ [s2]F

APPROACHES TO HIGHER-ORDER THEOREM PROVING 231

1363 : Res+Triv(C1302;C558) C1363 : [s3]T ∨ [s2]F
1377 : Res+Triv(C1363;C1218) C1377 : [s2]F
1454 : Equiv+Cnf(C237) C1454 : [(p s1)]T ∨ [s2]T ∨ [s4]T
1502 : Res+Triv(C1454;C144) C1502 : [s2]T ∨ [(p s1)]T
1521 : Res+Triv(C1502;C1377) C1521 : [(p s1)]T
1560 : Res(C1521;C10) C1560 : [(p s1) = (p s3)]F
1565 : Res+Triv(C1521;C20) C1565 : [s1]F
1576 : Dec(C1560) C1576 : [s1 = s3]F
1643 : Equiv+Cnf(C1576) C1643 : [s3]T ∨ [s1]T
1646 : Res+Triv(C1643;C1218) C1646 : [s1]T
1655 : Res+Triv(C1646;C1565) C1655 : �

4.5. Additional Examples and Case Studies

Benzmüller (1999a) discusses several additional examples that require full
extensionality reasoning – such as the following example on sets:

℘(∅) = {∅}
It furthermore reports on case studies with the higher-order theorem prover
LEO (Benzmüller and Kohlhase 1998) that demonstrate the feasibility of
calculus ER in practice.

5. RELATED WORK

Related to calculus CR is the higher-order resolution approach of Jensen
and Pietrzykowski (1972, 1976) which also employs a higher-order uni-
fication algorithm in order to guide the proof search. The undecidability
problem of higher-order unification is thereby tackled by dove-tailing the
generation of resolvents. Like CR this approach requires the extensionality
axioms in the search space to ensure Henkin completeness.

Kohlhase (1994) presents a sorted variant of Huet’s constrained resolu-
tion approach. Kohlhase (1995) discusses a higher-order tableaux calculus
that is quite closely related to calculus ER, as it already introduces addi-
tional calculus rules in order to improve its extensionality treatment. As
is illustrated in detail in Benzmüller (1999a) the presented extensionality
rules are unfortunately not sufficient to completely avoid additional exten-
sionality axioms. The first sufficient set of extensionality rules in this sense

232 CHRISTOPH BENZMÜLLER

is presented in Benzmüller (1997), which introduces a variant of calculus
ER as presented here.

The theorem proving modulo approach described in Dowek et al. (1998)
is a way to remove computational arguments from proofs by reasoning
modulo a congruence on propositions that is handled via rewrite rules and
equations. In their paper the authors present a higher-order logic as a theory
modulo.

Equality is usually treated as a defined notion in approaches and
systems for automated higher-order theorem proving. This is probably
the main reason why the problem of mechanising primitive equality in
higher-order logic while preserving Henkin completeness has rarely been
addressed in literature so far. Approaches to integrate primitive equality in
a Henkin complete higher-order theorem proving approach are discussed
in Snyder and Lynch (1991), Benzmüller (1999a, b). Of course, the field
of higher-order term rewriting and narrowing (Prehofer 1998; Nipkow and
Prehofer 1998; Nipkow 1995) is very active. But calculi developed in this
context typically only address functional extensionality and do not focus
on the subtle interplay between functional and Boolean extensionality that
is required in a Henkin complete theorem proving approach.

The most powerful automated higher-order theorem prover currently
available is (to the best knowledge of the author) the TPS-system (Andrews
1996) which employs the mating method (Andrews 1976) as inference
mechanism. TPS employs a clever extensionality pre-processing mechan-
ism which transforms embedded equations in input formulas into more
appropriate ones in order to avoid later applications of the extensionality
axioms. However, this does not provide a general solution and many theor-
ems requiring non-trivial extensionality reasoning, such as Examples 3.4
and 4.4, cannot be proven this way.

6. CONCLUSION

In this paper we investigated four approaches to resolution based higher-
order theorem proving: Andrews’ higher-order resolution approach R,
Huet’s constrained resolution approach CR, higher-order E-resolution
CRE , and extensional higher-order resolution ER. Thereby we focused
on the extensionality treatment of these approaches and pointed to the
crucial role of full extensionality for ensuring Henkin completeness. The
investigated examples demonstrate that simply adding (infinitely many)
extensionality axioms to the search space – as suggested for R and CR
– increases the amount of blind search and is thus rather infeasible in
practice.

APPROACHES TO HIGHER-ORDER THEOREM PROVING 233

Whereas higher-order E-unification and E-resolution indeed improves
the situation in particular contexts, it does still not provide a general
solution.

Calculus ER is the sole studied approach that can completely avoid
the extensionality axioms. It’s extensionality treatment is based on goal
directed extensionality rules which closely connect the overall refutation
search with unification by allowing for mutual recursive calls. This suitably
extends the higher-order E-unification and E-resolution idea, as it turns
the unification mechanism into a most general, dynamic theory unifica-
tion mechanism. Unification may now itself employ a Henkin complete
higher-order theorem prover as a subordinated reasoning system and the
considered theory (which is defined by the sum of all clauses in the actual
search space) dynamically changes. Due to the close connection of unific-
ation and refutation search it is even possible in ER to realise a kind of
non-constructive reasoning on E-unifiability, as was demonstrated in this
paper.

ACKNOWLEDGEMENTS

I want to thank Volker Sorge and the anonymous referee of this paper
for their useful comments and contributions. I am also grateful to Mi-
chael Kohlhase for many fruitful discussions on extensional higher-order
theorem proving.

NOTES

1. Conjunction elimination is provided by the rules ∨F
l and ∨F

r . We note that conjunction
is defined with the help of disjunction and negation; cf. Section 2.1.

2. Existential elimination is realised by the rule
F . For this note that existential
quantification is defined with the help of universal quantification (and universal
quantification with the help of
); cf. Section 2.1.

3. It is still an open problem whether it is possible to restrict the required instances of the
functional extensionality axioms in dependence of a given proof problem.

4. One may choose a bound on the allowed number of nested branchings in the search
tree with rule FlexRigid.

5. Since Do contains two elements, Do→o contains in each Henkin model at most four
elements. And because of the requirement, that the function domains in Henkin models
must be rich enough such that every term has a denotation, it follows that Do→o

contains exactly the pairwise distinct denotations of the four presented function terms.

REFERENCES

Andrews, P, B.: 1971, ‘Resolution in Type Theory’, Journal of Symbolic Logic 36, 414–
432.

234 CHRISTOPH BENZMÜLLER

Andrews, P. B.: 1972, ‘General Models and Extensionality’, Journal of Symbolic Logic 37,
395–397.

Andrews, P. B.: 1973, Letter to Roger Hindley dated January 22.
Andrews, P. B.: ‘Refutations by Matings’, IEEE Transactions on Computers C-25, 801–

807.
Andrews, P. B.: 1989, ‘On Connections and Higher Order Logic’, Journal of Automated

Reasoning 5, 257–291.
Andrews, P. B., Bishop, M., Issar, S., Nesmith, D., Pfenning, F., and Xi, H.: 1996, ‘TPS: A

Theorem Proving System for Classical Type Theory’, Journal of Automated Reasoning
16, 321–353.

Barendregt, H. P.: 1984, The Lambda Calculus – Its Syntax and Semantics, Studies in Logic
and the Foundations of Mathematics 103, Amsterdam.

Benzmüller, C.: 1997, A calculus and a System Architecture for Extensional Higher-order
Resolution, Research Report 97-198, Department of Mathematical Sciences, Carnegie
Mellon University.

Benzmüller, C.: 1999a, Equality and Extensionality in Automated Higher-Order Theorem
Proving, Ph.D. thesis, Technische Fakultät, Universität des Saarlandes.

Benzmüller, C.: 1999b, in H. Ganzinger (ed.), Proceedings of the 16th Conference on
Automated Deduction, Lecture Notes in Artificial Intelligence 1632, pp. 399–413,
Springer.

Benzmüller, C. and Kohlhase, M.: 1997, ‘Model Existence for Higher-Order Logic’, SEKI-
Report SR-97-09, Fachbereich Informatik, Universität des Saarlandes.

Benzmüller, C. and Kohlhase, M.: 1998a, ‘Extensional Higher-order Resolution’, in Kirch-
ner and Kirchner (eds.), Proceedings of the 15th Conference on Automated Deduction,
Lecture Notes in Artificial Intelligence 1421, pp.56–72, Springer.

Benzmüller, C. and Kohlhase, M. 1998b, ‘LEO – A Higher-order Theorem Prover,
in Kirchner and Kirchner (eds.), Proceedings of the 15th Conference on Automated
Deduction, Lecture Notes in Artificial Intelligence 1421, pp. 139–144, Springer.

Baader, F. and Siekmann, J.: 1994, ‘Unification Theory’, in D. M. Gabbay, C. J. Hog-
ger, J. A. Robinson (eds.), Handbook of Logic in Artificial Intelligence and Logic
Programming, Volume 2: Deduction Methodologies, Oxford, Chapter 2.2

Church, A.: 1940, ‘A formulation of the Simple Theory of Types’, Journal of Symbolic
Logic 5, 56–68.

Dowek, G., Hardin, T., and Kirchner, C.: 1998, Theorem Proving Modulo, Rapport de
Recherche 3400, Institut National de Recherche en Informatique et en Automatique.

Dougherty, D. and Johann, P.: 1992, ‘A Combinatory Logic Approach to Higher-order
E-unification’, in D. Kapur (ed.), Proceedings of the 11th Conference on Automated
Deduction, Lecture Notes in Artificial Intelligence 607, pp. 79–93, Springer.

Goldfarb, W. D. 1981, ‘The Undecidability of the Second-order Unification Problem’,
Theoretical Computer Science 13, 225–230.

Henkin, L.: 1950, ‘Completeness in the Theory of Types’, Journal of Symbolic Logic 15,
81–91.

Huet, G. P.: 1972, Constrained Resolution: A Complete Method for Higher Order Logic,
Ph.D. thesis, Case Western Reserve University.

Huet, G. P.: 1973, ‘A Mechanization of Type Theory’, in D. E. Walker and L. Norton
(eds.), Proceedings of the 3rd International Joint Conference on Artificial Intelligence,
pp. 139–146.

Huet, G. P.: 1973, ‘The Undecidability of Unification in Third Order Logic’, Information
and Control 22, 257–267.

APPROACHES TO HIGHER-ORDER THEOREM PROVING 235

Huet, G. P.: 1975, ‘A Unification Algorithm for Typed λ-calculus’, Theoretical Computer
Science 1, 27–57.

Jensen, D. C. and Pietrzykowski, T.: 1972, ‘A Complete Mechanization of ω-order Type
Theory’, in Proceedings of the ACM annual Conference, volume 1, 89–92.

Jensen, D. C. and Pietrzykowski, T.: 1976, ‘Mechanizing ω-order Type Theory through
Unification’, Theoretical Computer Science 3, 123–171.

Kohlhase, M.: 1994, A Mechanization of Sorted Higher-Order Logic Based on the
Resolution Principle, Ph.D. thesis, Fachbereich Informatik, Universität des Saarlandes.

Kohlhase, M.: 1995, ‘Higher-Order Tableaux’, in P. Baumgartner, R. Hähnle, and J. Pose-
gga (eds.), Theorem Proving with Analytic Tableaux and Related Methods, Lecture Notes
in Artificial Intelligence 918, pp. 294–309, Springer.

Lucchesi, C. L.: 1972, The Undecidability of the Unification Problem for Third Order
Languages, Report CSRR 2059, University of Waterloo, Waterloo, Canada.

Miller, D.: 1983, Proofs in Higher-Order Logic, Ph.D. thesis, Carnegie Mellon University.
Nipkow, T.: 1995, ‘Higher-order Rewrite Systems’, in J. Hsiang (ed.), Rewriting Tech-

niques and Applications, 6th International Conference, Lecture Notes in Computer
Science 914, Springer.

Nipkow, T. and Prehofer, C.: 1998, ‘Higher-order Rewriting and Equational Reasoning’,
in W. Bibel and P. Schmitt (eds.), Automated Deduction – A Basis for Applications,
Dordrecht, Applied Logic Series, pp. 399–430.

Nipkow, T. and Qian, Z,: 1991, ‘Modular Higher-order E-unification’, in R. V. Book
(ed.), Proceedings of the 4th International Conference on Rewriting Techniques and
Applications, Lecture Notes in Artificial Intelligence 488, pp. 200–214, Springer.

Prehofer, C.: 1998, Solving Higher-Order Equations: From Logic to Programming,
Progress in theoretical computer science, Birkhäuser.

Qian, Z. and Wang K.: 1996, ‘Modular Higher-order Equational Preunification’, Journal
of Symbolic Computation 22, 401–424.

Robinson, J. A.: 1965, ‘A Machine-oriented Logic Based on the Resolution Principle’,
Journal of the Association for Computing Machinery 12, 23–41.

Siekmann, J. H.: 1989, ‘Unification Theory’, Journal of Symbolic Computation 7, 207–
274.

Smullyan, R. M. 1963, ‘A Unifying Principle for Quantification Theory’, Proceedings of
the National Acadamy of Sciences, USA 49, pp. 828–832.

Snyder, W.: 1990, ‘Higher Order E-unification’, in M. Stickel (ed.), Proceedings of the
10th Conference on Automated Deduction, Lecture Notes in Artificial Intelligence 449,
pp. 573–578, Springer.

Snyder, W. and Gallier, J.: 1989, ‘Higher-order Unification Revisited: Complete Sets of
Transformations’, Journal of Symbolic Computation 8, 101–140.

Snyder, W. and Lynch, C.: 1991, ‘Goal-directed Strategies for Paramodulation’, in R. V.
Book (ed.), Proceedings of the 4th International Conference on Rewriting Techniques
and Applications, Lecture Notes in Artificial Intelligence 488, pp. 200–214, Springer.

Wolfram, D. A.: 1993, The Clausal Theory of Types, Cambridge, Cambridge Tracts in
Theoretical Computer Science 21.

Fachbereich Informatik,
Universität des Saarlandes
D-66041 Saarbrücken
Germany
E-mail: chris@ags.uni-sb.de

Extensional Higher-Order Paramodulation
and RUE-Resolution

Christoph Benzmüller

Fachbereich Informatik, Universität des Saarlandes
chris@ags.uni-sb.de

Abstract. This paper presents two approaches to primitive equality
treatment in higher-order (HO) automated theorem proving: a calculus
EP adapting traditional first-order (FO) paramodulation [RW69] , and
a calculus ERUE adapting FO RUE-Resolution [Dig79] to classical type
theory, i.e., HO logic based on Church’s simply typed λ-calculus. EP and
ERUE extend the extensional HO resolution approach ER [BK98a]. In
order to reach Henkin completeness without the need for additional ex-
tensionality axioms both calculi employ new, positive extensionality rules
analogously to the respective negative ones provided by ER that operate
on unification constraints. As the extensionality rules have an intrinsic
and unavoidable difference-reducing character the HO paramodulation
approach loses its pure term-rewriting character. On the other hand ex-
amples demonstrate that the extensionality rules harmonise quite well
with the difference-reducing HO RUE-resolution idea.

1 Introduction

Higher-Order (HO) Theorem Proving based on the resolution method has been
first examined by Andrews [And71] and Huet [Hue72]. Whereas the former avoids
unification the latter generally delays the computation of unifiers and instead
adds unification constraints to the clauses in order to tackle the undecidability
problem of HO unification. More recent papers concentrate on the adaption of
sorts [Koh94] or theory unification [Wol93] to HO logic. Common to all these
approaches is that they do not sufficiently solve the extensionality problem in
HO automated theorem proving, i.e., all these approaches require the exten-
sionality axioms to be added into the search space in order to reach Henkin
completeness (which is the most general notion of semantics that allows com-
plete calculi [Hen50]). This leads to a search space explosion that is awkward
to manage in practice. A solution to the problem is provided by the extensional
HO resolution calculus ER [BK98a]. This approach avoids the extensionality ax-
ioms and instead extends the syntactical (pre-)unification process by additional
extensionality rules. These new rules allow for recursive calls during the (pre-)
unification process to the overall refutation search whenever pure syntactical
HO unification is too weak to show that two terms can be equalised modulo the
extensionality principles. ER has been implemented in Leo [BK98b] and case
studies have demonstrated its suitability, especially for reasoning about sets.

There are many possibilities to improve the extensional HO resolution ap-
proach and the probably most promising one concerns the treatment of equal-
ity. ER assumes that equality is defined by the Leibniz principle (two things

H. Ganzinger (Ed.): CADE-16, LNAI 1632, pp. 399–413, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

400 Christoph Benzmüller

are equal iff they have the same properties) or by any other valid definition
principle, and thus provides no support for primitive equality. But a primitive
equality treatment seems to be more appropriate as it avoids the many flexi-
ble literals introduced when using defined equality, which unfortunately increase
the amount of blind search with ER’s primitive substitution rule Prim. There-
fore we adapt two well known first-order (FO) approaches to primitive equality:
the paramodulation approach [RW69] (the basis of many successful refinements
such as the superposition approach) and the RUE-resolution approach [Dig79]
(a generalisation of E-resolution [Dar68]). The main goal thereby is to preserve
Henkin completeness. We will show that therefore positive extensionality rules
are needed (which operate on positive equation literals) as in contrast to FO
logic single positive equations can be contradictory by themselves in HO logic.1

This paper summarises the Chapt. 6, 7, and 8 of [Ben99] and because of lack
of space the preliminaries and the formal proofs can only be sketched here.

The preliminaries are concisely presented in Sect. 2 and calculus ER is re-
viewed in 3. Section 4 discusses interesting aspects on primitive and defined equa-
lity, before the extensional HO paramodulation calculus EP and the extensional
HO RUE-resolution approach ERUE are discussed in 5 and 6. Both approaches
are briefly compared by examples in 7 and the conclusion is presented in 8.

2 Higher-Order (HO) Logic

We consider a HO logic based on Church’s simply typed λ-calculus [Chu40] and
choose BT := {ι, o} as base types, where ι denotes the set of individuals and
o the set of truth values. Functional types are inductively defined over BT . A
signature Σ (Σ=) contains for each type an infinite set of variables and con-
stants and provides the logical connectives ¬o→o, ∨o→o→o, and Π(α→o)→o (ad-
ditionally =α := =α→α→o) for every type α. The set of all Σ-terms (closed
Σ-terms) of type α is denoted by wffα (cwffα). Variables are printed as upper-
case (e.g. Xα), constants as lower-case letters (e.g. cα) and arbitrary terms
appear as bold capital letters (e.g. Tα). If the type of a symbol is uniquely
determined by the given context we omit it. We abbreviate function applica-
tions by hα1→···→αn→β Un

αn
, which stands for (· · · (hα1→···→αn→β U1

α1
) · · ·Un

αn
).

For α-, β-, η-, βη-conversion and the definition of βη- and head-normal form
(hnf) for a term T we refer to [Bar84] as well as for the definition of free vari-
ables, closed formulas, and substitutions. Unification and sets of partial bind-
ings ABh

γ are well explained in [SG89]. An example for a pre-clause, i.e., not
in proper clause normal form, consisting of a positive literal, a negative lit-
eral, and a special negative equation literal (also called unification constraint)
is C : [¬(Pι→o Tι)]T ∨ [hγ→o Y n

γn
]F ∨ [Qι→ι aι = Yι→ι bι]F . The corresponding

proper clause, i.e., properly normalised, is C′ : [P T]F ∨ [h Y n]F ∨ [Q a = Y b]F .
The unification constraint in C and C′ is called a flex-flex pair as both unification
terms have flexible heads. A clause is called empty, denoted by �, if it consists
1 Consider, e.g. the positive literal [ao = ¬ao]

T or [G X = f]T (resulting from the
following formulation of Cantor’s theorem: ¬∃Gι→ι→o ∀Pι→o ∃Xι G X = P).

Extensional Higher-Order Paramodulation and RUE-Resolution 401

only of flex-flex unification constraints. A clause C1 generalises a clause C2, iff
there is a substitution σ, such that the βη-normal form of σ(C1) is an α-variant
of the βη-normal form of C2.

A calculus R provides a set of rules {rn| 0 < n ≤ i} defined on clauses. We
write Φ �rn C (C′ �rn C) iff clause C is the result of an one step application of rule
rn ∈ R to premise clauses C′

i ∈ Φ (to C′ respectively). Multiple step derivations
in calculus R are abbreviated by Φ1 �R Φk (or C1 �R Ck).

A standard model for HOL provides a fixed set Dι of individuals, and a set
Do := {�,⊥} of truth values. The domains for functional types are defined in-
ductively: Dα→β is the set of all functions f :Dα → Dβ. Henkin models only
require that Dα→β has enough members that any well-formed formula can be
evaluated. Thus, the generalisation to Henkin models restricts the set of valid
formulae sufficiently, such that complete calculi are possible. In Henkin and
standard semantics Leibniz equality (.

=
α

:= λXα λYα ∀Pα→o PX ⇒ PY) de-
notes the intuitive equality relation and the functional extensionality principles
(∀Mα→β ∀Nα→β (∀X (MX) = (NX)) ⇔ (M = N)) as well as the Boolean exten-
sionality principle (∀Po ∀Qo (P = Q) ⇔ (P ⇔ Q)) are valid (see [Ben99,BK97]).
Satisfiability and validity (M |= F or M |= Φ) of a formula F or set of formulas
Φ in a model M is defined as usual.

The completeness proofs employ the abstract consistency method of [BK97]&
[Ben99] which extends Andrews’ HO adaptation [And71] of Smullyan’s approach
[Smu63] to Henkin semantics. Here we only mention the two main aspects:

Definition 1 (Acc for Henkin Models). Let Σ be a signature and ΓΣ a class
of sets of Σ-sentences. If the following conditions (all but ∇∗

e) hold for all A, B ∈
cwffo, F, G ∈ cwffα→β, and Φ ∈ ΓΣ, then we call ΓΣ an abstract consistency
class for Henkin models with primitive equality, abbreviated by Acc=

(resp. abstract consistency class for Henkin models, abbreviated by Acc).

Saturated Φ ∪ {A} ∈ ΓΣ or Φ ∪ {¬A} ∈ ΓΣ .

∇c If A is atomic, then A /∈ Φ or ¬A /∈ Φ.

∇¬ If ¬¬A ∈ Φ, then Φ ∪ {A} ∈ ΓΣ .

∇f If A ∈ Φ and B is the βη-normal form of A, then Φ ∪ {B} ∈ ΓΣ .

∇∨ If A ∨ B ∈ Φ, then Φ ∪ {A} ∈ ΓΣ or Φ ∪ {B} ∈ ΓΣ .

∇∧ If ¬(A ∨ B) ∈ Φ, then Φ ∪ {¬A,¬B} ∈ ΓΣ .

∇∀ If ΠαF ∈ Φ, then Φ ∪ {F W} ∈ ΓΣ for each W ∈ cwffα.

∇∃ If ¬ΠαF ∈ Φ, then Φ ∪ {¬(F w)} ∈ ΓΣ for any new constant w ∈ Σα.

∇b If ¬(A
.
=

o
B) ∈ Φ, then Φ ∪ {A,¬B} ∈ ΓΣ or Φ ∪ {¬A,B} ∈ ΓΣ .

∇q If ¬(F
.
=

α→β
G) ∈ Φ, then Φ ∪ {¬(F w

.
=

β
G w)} ∈ ΓΣ for any new constant

w ∈ Σα.

∇r
e ¬(Aα = A) /∈ Φ. ∇s

e If F[A]p ∈ Φ and A = B ∈ Φ, then Φ ∪ {F[B]p} ∈ ΓΣ.2

Theorem 1 (Henkin Model Existence). Let Φ be a set of closed Σ-formulas
(Σ=-formulas), ΓΣ (ΓΣ=) be an Acc (Acc=) and Φ ∈ ΓΣ. There exists a Henkin
model M, such that M |= Φ.

402 Christoph Benzmüller

C ∨ [A ∨ B]T

C ∨ [A]T ∨ [B]T
∨T

C ∨ [A ∨ B]F

C ∨ [A]F
∨F

l

C ∨ [A ∨ B]F

C ∨ [B]F
∨F

r

C ∨ [¬A]T

C ∨ [A]F
¬T

C ∨ [¬A]F

C ∨ [A]T
¬F

C ∨ [ΠγA]T Xγ new variable

C ∨ [A X]T
ΠT

C ∨ [ΠγA]F skγ is a Skolem term for this clause

C ∨ [A skγ]F
ΠF

Fig. 1. Clause Normalisation Calculus CNF

Clause Normalisation: D C ∈ CNF(D)

C Cnf

Resolution: (defined on proper clauses only)

[A]α ∨ C [B]β ∨ D α 	= β

C ∨ D ∨ [A = B]F
Res

[A]α ∨ [B]α ∨ C α ∈ {T, F}
[A]α ∨ C ∨ [A = B]F

Fac

[Qγ Uk]α ∨ C P ∈ AB{¬,∨}∪{Πβ|β∈T k}
γ , α ∈ {T, F}

[Qγ Uk]α ∨ C ∨ [Q = P]F
Prim

Extensional (Pre-)Unification:

C ∨ [Mγ→β = Nγ→β]F sγ Skolem term for this clause

C ∨ [M s = N s]F
Func

C ∨ [Aγ→β Cγ = Bγ→β Dγ]F

C ∨ [A = B]F ∨ [C = D]F
Dec

C ∨ [A = A]F

C
Triv

C ∨ [X = A]F X does not occur in A

C{A/X}
Subst

C ∨ [Fγ Un = h Vm]F G ∈ ABh
γ

C ∨ [F Un = h Vm ∨ [F = G]F]F
F lexRigid

C ∨ [Mo = No]
F

C ∨ [Mo ⇔ No]
F

Equiv
C ∨ [Mγ = Nγ]F

C ∨ [∀Pγ→o P M ⇒ P N]F
Leib

(
C ∨ [Fγn→γ Un = Hδm→γ Vm]F G ∈ ABh

γn→γ
for a constant hτ

C ∨ [F Un = H Vm]F ∨ [F = G]F
F lexF lex

)

ABh
γ specifies the set of partial bindings of type γ for head h as defined in [SG89]

Fig. 2. Extensional HO Resolution Calculus ER

Extensional Higher-Order Paramodulation and RUE-Resolution 403

3 ER: Extensional HO Resolution

Figure 1 presents calculus CNF := {∨T ,∨F
l ,∨F

r ,¬T ,¬F , ΠT , ΠF} for clause nor-
malisation. These rules are defined on (pre-)clauses and are known to preserve
validity or satisfiability with respect to standard semantics.3

The syntactical unification rules (cf. Fig. 2) provided by ER which operate on
unification constraints are UNI := {Func, Dec, Triv, Subst, F lexRigid}. These
rules realise a sound and complete approach to HO pre-unification. Note the
double role of extensionality rule Func: on the one hand this rule works as a
syntactical unification rule and subsumes the α- and η-rule as, e.g. presented
in [BK98a]; on the other hand Func applies the functional extensionality prin-
ciple if none of the two terms is a λ-abstraction. Apart from rule Func, ER
provides the extensionality rules Equiv and Leib (cf. Fig. 2). The former applies
the Boolean extensionality principle and the latter simply replaces a negative
unification constraint (encoded as a negative equation) by a negative Leibniz
equation. The extensionality rules operate on unification constraints only and
do in contrast to the respective axioms not introduce flexible heads into the
search space.

The main proof search is performed by the resolution rule Res and the fac-
torisation rule Fac. It is furthermore well known for HO resolution, that the
primitive substitution rule Prim is needed to ensure Henkin completeness.

For the calculi presented in this paper we assume that the result of each rule
application is transformed into hnf4, where the hnf of unification constraints is
defined special and requires both unification terms to be reduced to hnf. A set
of formulas Φ is refutable in calculus R, iff there is a derivation ∆ : Φcl �R �,
where Φcl := {[F′]T |F′ hnf of F ∈ Φ} is the clause-set obtained from Φ by simple
pre-clausification. More details on ER are provided by [BK98a,Ben99].

Whereas completeness of ER has already been analysed in [BK98a] this paper
(and [Ben99]) presents an alternative completeness proof for a slightly extended
version of ER (this version, e.g. employs the instantiation guessing FlexFlex-
rule). The new proof is motivated as follows: (i) it eases the proof of the lifting
lemma and avoids the quite complicated notion of clause isomorphisms as used
in [BK98a,Koh94], (ii) it can be reused to show the completeness for calculi EP
and ERUE as well, (iii) it prepares the analysis of non-normal form resolution
calculi, and (iv) it emphasises interesting aspects on rule FlexFlex, unification,
and clause normalisation wrt. ER, EP, and ERUE.

One such interesting aspect is that different to Huet [Hue72] eager unification
is essential within our approach. This is illustrated by the argumentations for ∇b

and ∇q in the completeness proofs (cf. [Ben99,BK98a]) as well as the examples
presented in Sec. 7 or [Ben99]. However, we claim that rule FlexFlex can still be
delayed until the end of a refutation, i.e., FlexFlex can be completely avoided.

The author has not been able to prove the latter claim yet. And thus the
completeness proofs for ER (and EP, ERUE) still depends on the FlexFlex-rule.
2 A does not contain free variables.
3 For Skolemisation we employ Miller’s sound HO correction [Mil83].
4 One may also βη-normal form here.

404 Christoph Benzmüller

We now sketch the main results on ER as discussed in detail in [Ben99].

Definition 2 (Extensional HO Resolution). We define three calculi:
ER := {Cnf, Res, Fac, P rim}∪ UNI ∪ {Equiv, Leib} employs all rules

(except FlexFlex) displayed in Fig. 2.
ERf := ER ∪ {F lexF lex} uses full HO unification instead of pre-unification.
ERfc := (ERf\{Cnf}) ∪ CNF employs unfolded and stepwise clause normali-

sation instead of exhaustive normalisations with rule Cnf.
These calculi treat equality as a defined notion only (e.g. by Leibniz equality) and
primitive equations are not allowed in problem formulations. Although unification
constraints are encoded as negative equation literals, no rule but the unification
rules are allowed to operate on them.

Theorem 2 (Soundness). The calculi ER, ERf , and ERfc are Henkin-sound
(H-sound).

Proof. Preservation of validity or satisfiability with respect to Henkin semantics
is proven analogously to the standard FO argumentation. For Skolemisation
(employed in rule ΠF and Func) we use Miller’s sound HO version [Mil83].
Soundness of the extensionality rules Equiv, Func, and Leib is obvious as they
simply apply the valid extensionality principles.

Lemma 1 (Lifting of ERfc). Let Φ be clause set, D1 a clause, and σ a substi-
tution. If σ(Φ) �ERfc D1, then Φ �ERfc D2 for a clause D2 generalising D1.

Proof. One can easily show that each instantiated derivation can be reused on
the uninstantiated level as well. In blocking situations caused by free variables
at literal head position or at unification term head position, either rule Prim or
rule FlexFlex can be employed in connection with rule Subst to introduce the
missing term structure. The rather unintuitive clause isomorphisms of [BK98a]
or [Koh94] are thereby avoided.

Theorem 3 (Completeness). Calculus ERfc is Henkin complete.

Proof. Analogously to the proof in [BK98a] we show that the set of closed for-
mulas that are not refutable in ERfc (i.e., ΓΣ := {Φ ⊆ cwffo|Φcl ��ERfc

�}) is a
saturated abstract consistency class for Henkin models (cf. Def. 1). This entails
Henkin completeness for ERfc by Thm. 1.

Lemma 2 (Theorem Equivalence). The calculi ERfc and ERf are theorem
equivalent, i.e., for each clause set Φ holds that Φ �ERfc

� iff Φ �ERf
�.

Proof. We can even prove a more general property: For each proper clause C
holds Φ �ERfc

C implies Φ �ERf
C. The proof idea is to show that the unfolded

clause normalisations can be grouped together and then replaced by rule Cnf.

Question 1 (Theorem Equivalence). The author claims that the calculi ER and
ERfc (or ERf) are theorem equivalent. A formal proof has not been carried
out yet. Some evidence is given by the case studies carried out with the Leo-
prover [BK98b] and the direct completeness proof for ER in [BK98a].

Extensional Higher-Order Paramodulation and RUE-Resolution 405

4 Primitive Equality

Treating equality as a defined notion in HO logic (e.g. by the Leibniz principle)
is convenient in theory, but often inefficient and unintuitive in practical appli-
cations as many free literal heads are introduced into the search space, which
increases the degree of blind search with primitive substitution rule Prim.5 This
is the main motivation for the two approaches to primitive equality presented in
the next sections. Before we discuss these approaches in detail we point to the
following interesting aspects of defined equality in HO logic:

– There are infinitely many different valid definitions of equality in HO logic.6

For instance: Leibniz equality (.
=

α
:= λXα λYα ∀Pα→o PX ⇒ PY), Reflex-

ivity definition7 (..
=

α
:= λXα λYα ∀Qα→α→o (∀Zα (Q Z Z)) ⇒ (Q X Y)),

and infinitely many artificial modifications to all valid definitions (e.g., ...
=

α

:= λXα λYα ∀Pα→o ((ao ∨ ¬ ao) ∧ P X) ⇒ ((bo ∨ ¬ bo) ∧ P Y)). The latter
definition is obviously equivalent to Leibniz definition as it just adds some
tautologies to the embedded formulas.

– The artificially modified definitions demonstrate, that it is generally not
decidable whether a formula is a valid definition of equality (as the set of
tautologies is not decidable). Hence, it is not decidable whether an input
problem to one of our proof procedures contains a valid definition of equality,
and we cannot simply replace all valid definitions embedded in a problem
formulation by primitive equations as one might wish to.

If we are interested in Henkin completeness, we therefore have to ensure that the
paramodulation and RUE-resolution approaches presented in the next sections
can handle all forms of defined equality (like the underlying calculus ER) and
can additionally handle primitive equality.8

5 EP: Extensional HO Paramodulation

In this section we adapt the well known FO paramodulation approach [RW69]
to our HO setting and examine Henkin completeness. A straightforward adap-
tation of the traditional FO paramodulation rule is given by rule Para in Fig. 3.
Analogous to the ER rules Res and Fac, (pre-)unification is delayed by encoding
the respective unification problem (its solvability justifies the rewriting step) as
5 This is illustrated by the examples that employ defined equality in [BK98a] and the

examples that employ primitive equality in Sect. 7.
6 For this statement we assume Henkin or standard semantics as underlying seman-

tical notion. In weaker semantics things get even more complicated as, e.g., Leibniz
equality does not necessary denote the intended equality relation. For a detailed
discussion see [Ben99,BK97].

7 As presented in Andrews textbook [And86], p. 155.
8 The author admits, that in practice one is mainly interested in finding proofs rather

than in the theoretical notion of Henkin completeness. Anyhow, our motivation in
this paper is to clarify the theoretical properties of our approaches.

406 Christoph Benzmüller

[A[Tγ]]α ∨ C [Lγ = Rγ]T ∨ D

[A[R]]α ∨ C ∨ D ∨ [T = L]F
Para

[A]α ∨ C [Lγ = Rγ]T ∨ D

[Pγ→o R]α ∨ C ∨ D ∨ [A = P L]F
Para′

We implicitly assume the symmetric application of [Lγ = Rγ]T .
T (in Para) does not contain free variables which are bound outside of T.

Fig. 3. Adapted Paramodulation Rule and a HO specific reformulation

a unification constraint. Rule Para’ is an elegant HO specific reformulation9 of
paramodulation that has a very simple motivation: It describes the resolution
step with the clause [P L]F ∨ [P R]T ∨ D, i.e., the clause obtained when re-
placing the primitive equation [L = R]T by its Leibniz definition. Note that the
paramodulant of Para’ encodes all possible single rewrite steps, all simultane-
ous rewrite-steps with rule Para, and in some sense even the left premise clause
itself. This is nicely illustrated by the following example: C1 : [p (f (f a))]T and
C2 : [f = h]T , where pι→o, fι→ι, hι→ι are constants. Applying rule Para’ to C1

and C2 from left to right leads to C3 : [P(ι→ι)→ι h]T ∨[p (f (f a)) = P(ι→ι)→ι f]F .
Eager unification computes the following four solutions for P , which can be back-
propagated to literal [P h]T with rule Subst :
[λZι→ι p (f (f a))/P] the pure imitation solution encodes C1 itself.
[λZι→ι p (Z (f a))/P] encodes the rewriting of the first f ([p (h (f a))]T).
[λZι→ι p (f (Z a))/P] encodes the rewriting of the second f ([p (f (h a))]T).
[λZι→ι p (Z (Z a))/P] encodes the simult. rewr. of both f ([p (h (h a))]T).

Rule Para’ introduces flexible literal heads into the search space such that rule
Prim becomes applicable. Thus, a probably suitable heuristics in practice is to
avoid all primitive substitution steps on flexible heads generated by rule Para’.

Note that reflexivity resolution10 and paramodulation into unification con-
straints11 are derivable in our approach and can thus be avoided.

9 This rule was first suggested by Michael Kohlhase.
10 In FO a reflexivity resolution rule is needed to refute negative equation literals

[T1 = T2]
F if T1 and T2 are unifiable. As such literals are automatically treated as

unification constraints reflexivity resolution is not needed in our approach.
11 Let C1 : C ∨ [A[T] = B]F and C2 : [L = R]T ∨ D. The rewriting step Para(C1, C2) :

C3 : C ∨ D ∨ [A[R] = B]F ∨ [L = T]F can be replaced by derivation Leib(C1) :

C4 : [p A[T]]T ∨ C, C5 : [p B]F ∨ C; Para(C4 , C2) : C6 : [p A[R]]T ∨ C ∨ D ∨ [L =
T]F ; Res(C6, C5), Fac,Triv : C7 : C∨D∨ [p A[R] = p B]F ∨ [L = T]F ; Dec(C7) : C3.
Notational remark: Res(C6, C5), Fac, Triv describes the application of rule Res to
C6 and C5, followed by applications of Fac and Triv to the subsequent results.

Extensional Higher-Order Paramodulation and RUE-Resolution 407

In the following discussion we will use the traditional paramodulation rule
Para only.12 As Para’ is obviously more general than Para we obtain analogous
completeness results if we employ Para’ instead.

Definition 3 (Simple HO Paramodulation). EPnaive := ER ∪ {Para} ex-
tends the extensional HO resolution approach by rule Para. Primitive equations
in input problems are no longer expanded by Leibniz definition. Para operates on
proper clause only and omits paramodulation into unification constraints.

Whereas soundness of rule Para can be shown analogously to the FO case,
it turns out that our simple HO paramodulation approach is incomplete:

Theorem 4 (Incompleteness). Calculus EPnaive is Henkin incomplete.

Proof. Consider the following counterexamples: EPara
1 : ¬∃Xo (X = ¬X), i.e.,

the negation operator is fix-point free, which is obviously the case in Henkin
semantics. Negation and clause normalisation leads to clause C1 : [a = ¬a]T ,
where ao is a new Skolem constant. The only rule that is applicable is self-
paramodulation at positions 〈1〉, 〈2〉, and 〈〉, leading to the following clauses
(including the symmetric rewrite steps):
Para(C1, C1) at 〈1〉 : C2 : [a = ¬a]T ∨ [¬a = a]F , C3 : [¬a = ¬a]T ∨ [a = a]F

Para(C1, C1) at 〈2〉 : C4 : [a = ¬a]T ∨ [a = ¬a]F , C5 : [a = a]T ∨ [¬a = ¬a]F
Para(C1, C1) at 〈〉 : C6 : [a]T ∨ [¬a = (a = ¬a)]F , C7 : [a]F ∨ [a = (a = ¬a)]F

A case distinction on the possible denotations {�,⊥} for a shows that all clauses
are tautologous, such that no refutation is possible in EPnaive. Additional ex-
amples are discussed in [Ben99], e.g. EPara

2 : [G X = p]T , which stems from a
simple version of cantor’s theorem ¬∃Gι→ι→o ∀Pι→o ∃Xι G X = P , or example
EPara

3 : [M = λXo ⊥]T , which stems from ∃Mo→o M �= ∅.
The problem is that in HO logic even single positive equation literals can be

contradictory. And the incompleteness is caused as the extensionality principles
are now also needed to refute such positive equation literals.13 Hence, we add
the positive counterparts Func’ and Equiv’ (cf. Fig. 4) to the already present
negative extensionality rules Func and Equiv. The completeness proof and the
examples show that a positive counterpart for rule Leib can be avoided.

Definition 4 (Extensional HO Paramodulation). Analogously to the ex-
tensional HO resolution case we define the calculi EP := ER ∪ {Para, Equiv′,
Func′}, EPf := EP ∪ {F lexF lex}, and EPfc := (EPf\{Cnf}) ∪ CNF .

Theorem 5 (Soundness). The calculi EP, EPf , and EPfc are H-sound.

12 It has been pointed out by a unknown referee of this paper that rule Para’ already
captures full functional extensionality and should therefore be preferred over Para.

Example Efunc
1 discussed in Sec. 10.6 of [Ben99] illustrates that this is generally not

true.
13 In contrast to EP , the underlying calculus ER does not allow positive equation liter-

als as the equality symbol is only used to encode unification constraints. Therefore
the pure extensional HO resolution approach ER does not require a positive exten-
sionality treatment.

408 Christoph Benzmüller

C ∨ [Mo = No]
T

C ∨ [Mo ⇔ No]
T

Equiv′ C ∨ [Mγ→β = Nγ→β]T X new variable

C ∨ [M Xγ = N Xγ]T
Func′

Fig. 4. Positive Extensionality Rules

Proof. Soundness of rule Para with respect to Henkin semantics can be proven
analogously to the FO case and soundness of Equiv’ and Func’ is obvious, as they
simply apply the extensionality principles, which are valid in Henkin semantics.

Lemma 3 (Lifting of EPfc). Let Φ be a clause set, D1 a clause, and σ a sub-
stitution. If σ(Φ) �ERfc D1, then Φ �EPfc D2 for a clause D2 generalising D1.

Proof. Analogous to Lemma 1. The additional rules do not cause any problems.

The main completeness theorem 6 for EPfc below is proven analogously to
Thm. 3, i.e., we employ the model existence theorem for Henkin models with
primitive equality (cf. Thm. 1). As primitive equality is involved, we additionally
have to ensure the abstract consistency properties ∇r

e and ∇s
e (cf. Def. 1), i.e.,

the reflexivity and substitutivity property of primitive equality. Whereas the
reflexivity property is trivially met, we employ the following admissible14 — and
moreover even weakly derivable (i.e., modulo clause normalisation and lifting)
— paramodulation rule to verify the substitutivity property.

Definition 5 (Generalised Paramodulation). The generalised paramodula-
tion rule GPara is defined as follows:

[T[Aβ]]α ∨ C [Aβ = Bβ]T

[T[B]]α ∨ C
GPara

This rule extends Para as it can be applied to non-proper clauses and it restricts
Para as it can only be applied in special clause contexts, e.g. the second clause
has to be a unit clause. GPara is especially designed to verify the substitutivity
property of primitive equality ∇s

e in the main completeness theorem 6.

Weak derivability (which obviously implies admissibility) of GPara is shown
with the help of the following weakly derivable generalised resolution rules.

Definition 6 (Generalised Resolution). The generalised resolution rules
GRes1, GRes2, and GRes3 are defined as follows (for all rules we assume
α, β ∈ {T, F } with α �= β, and for GRes2 we assume that Y n /∈ free(A)):
14 Rule r is called admissible (derivable) in R, iff adding rule r to calculus R does not

increase the set of refutable formulas (iff each application of rule r can be replaced
by an alternative derivation in calculus R).

Extensional Higher-Order Paramodulation and RUE-Resolution 409

[Aγ→o Tn
γ]α ∨ C [Aγ→o Xn

γ]β ∨ D

(C ∨ D)[Tn/Xn]

GRes1

[Aγ Y n]α ∨ C [Xγ Tn]β ∨ D

(C ∨ D)[A/X,Tn/Y n]

GRes2

[Aγ Tn]α ∨ C [Xγ Y n]β ∨ D

(C ∨ D)[A/X,Tn/Y n]

GRes3

These rules extend Res as they can be applied to non-proper clauses, and they
restrict Res as they are only defined for special clause contexts. The rules are
designed just strong enough to prove weak derivability of GPara.

Lemma 4 (Weak Derivability of GRes1,2,3). Let C1, C2, C3 be clauses and
r ∈ {GRes1, GRes2, GRes3}. If {C1, C2} �r C3 �CNF C4 for a proper clause C4,
then {C1, C2} �EPfc

C5 for a clause C5 which generalises C4.

Proof. The proof is by induction on the number of logical connectives in the
resolution literals. It employs generalised (and weakly derivable) versions of the
factorisation rule Fac and primitive substitution rule Prim (see [Ben99]), which
are not presented here because lack of space. GRes2 and GRes3 are needed to
prove weak derivability for GRes1. As the rules Para, Equiv’, Func’ are not
employed in the proof, this lemma analogously holds for calculus ERfc.

Lemma 5 (Weak Derivability of GPara). Let C1 : [T[A]p]α∨D1 , C2 : [A =
B]T , C3 : [T[B]p]α∨D1 be clauses. If ∆ : {C1, C2} �GPara C3 �CNF C4 for a proper
clause C4, then {C1, C2} �EPfc

C5 for a clause C5 generalising C4.

Proof. The proof is by induction on the length of ∆ and employs the (weakly
derivable) generalised resolution rule GRes1 and the standard paramodulation
rule Para in the quite complicated base case.

Theorem 6 (Completeness). Calculus EPfc is Henkin complete.

Proof. Let ΓΣ be the set of closed Σ-formulas that cannot be refuted with cal-
culus EPfc (i.e., ΓΣ := {Φ ⊆ cwffo|Φcl ��EPfc

�}). We show that ΓΣ is a saturated
abstract consistency class for Henkin models with primitive equality (cf. Def. 1).
This entails completeness by the model existence theorem for Henkin models
with primitive equality (cf. Thm. 1).

First we have to verify that ΓΣ validates the abstract consistency properties
∇c, ∇¬, ∇β, ∇∨, ∇∧, ∇∀, ∇∃, ∇b, ∇q and that ΓΣ is saturated. In all of these cases
the proofs are identical to the corresponding argumentations in Thm. 3.

Thus, all we need to ensure is the validity of the additional abstract consis-
tency properties ∇r

e and ∇s
e for primitive equality:

(∇r
e) We have that [A =α A]F �Triv �, and thus ¬(A =α A) cannot be in Φ.

(∇s
e) Analogously to the cases in Sec. 3 we show the contrapositive of the asser-

tion, and thus we assume that there is derivation ∆ : Φcl∪{[F[B]]T} �EPfc �. Now
consider the following EPfc-derivation: ∆′ : Φcl ∪ {[F[A]]T , [A = B]T } �GPara

Φcl∪{[F[A]]T, [A = B]T , [F[B]]T} �EPfc
�. By Lemma 5 GPara is weakly deriv-

able (hence admissible) for calculus EPfc, such that there is a EPfc-derivation
∆′′ : Φcl ∪ {[F[A]]T , [A = B]T } �EPfc

Φcl ∪ {[F[A]]T , [A = B]T , [F[B]]T} �EPfc
�

which completes the proof.

410 Christoph Benzmüller

Lemma 6 (Theorem Equivalence). EPfc and EPf are theorem equivalent.

Proof. Analogous to Lemma 2. The additional rules do not cause any problems.

Question 2 (Theorem Equivalence). The author claims that the calculi EP and
EPfc (or EPf) are theorem equivalent. The formal proof will most likely be anal-
ogous to the one for question 1.

6 ERUE : Extensional HO RUE-Resolution

In this section we will adapt the Resolution by Unification and Equality ap-
proach [Dig79] to our higher-order setting. The key idea is to allow the resolu-
tion and factorisation rules also to operate on unification constraints (which is
forbidden in ER and EP). This implements the main ideas of FO RUE-resolution
directly in our higher-order calculus. More precisely our approach allows to com-
pute partial E-unifiers with respect to a specified theory E by resolution on
unification constraints within the calculus itself (if we assume that E is specified
in form of an available set of unitary or even conditional equations in clause
form). This is due to the fact that the extensional higher-order resolution ap-
proach already realises a test calculus for general higher-order E-pre-unification
(or higher-order E-unification in case we also add the rule FlexFlex). Further-
more, each partial E-(pre-)unifier can be applied to a clause with rule Subst,
and, like in the traditional FO RUE-resolution approach, the non-solved unifica-
tion constraints are encoded as (still open) unification constraints, i.e., negative
equations, within the particular clauses.
Definition 7 (Extensional HO RUE-Resolution). We now allow the fac-
torisation rule Fac and resolution rule Res to operate also on unification con-
straints and define the calculi ERUE := ER∪ {Equiv′, Func′}, ERUEf := ERUE ∪
{F lexF lex}, and ERUEfc := (ERUEf\{Cnf}) ∪ CNF .

Theorem 7 (Soundness). The calculi ERUEfc, ERUEf , and ERUE are H-sound.

Proof. Unification constraints are encoded as negative literals, such that sound-
ness of the extended resolution and factorisation rules with respect to Henkin
semantics is obvious.

Lemma 7 (Lifting of ERUEfc). Let Φ be a clause set, D1 a clause, and σ a
substitution. If σ(Φ) �ERfc

D1, then Φ �ERUEfc D2 for a clause D2 generalising D1.

Proof. Analogous to Lemmata 1 and 3.

Within the main completeness proof we proceed analogously to previous sec-
tion and employ the generalised paramodulation rule GPara to verify the crucial
substitutivity property ∇s

e . Thus, we need to show that GPara is admissible in
calculus ERUEfc. Note that in Lemma 5 we were even able to show a weak deriv-
ability property of rule GPara for calculus EPfc. Whereas GPara is not weakly
derivability for calculus ERUEfc, we can still prove admissibility of this rule here.
As in Lemma 5, we employ the generalised resolution rules which are weakly
derivable in ERUEfc as well.

Extensional Higher-Order Paramodulation and RUE-Resolution 411

Lemma 8 (Weak Derivability of GRes1,2,3). Let C1, C2, C3 be clauses and
r ∈ {GRes1, GRes2, GRes3}. If {C1, C2} �r C3 �CNF C4 for a proper clause C4,
then {C1, C2} �ERUEfc C5 for a clause C5 which generalises C4.

Proof. Analogous to Lemma 4.

Lemma 9 (Admissibility of GPara). Let Φ be a clause set, such that ∆ : Φ
�GPara Φ′ �ERUEfc �, then there exists a refutation Φ �ERUEfc �.

Proof. The proof is (analogous to Lemma 5) by induction on the length of ∆
and employs the weakly derivable generalised resolution rule GRes1. The ap-
plications of rule Para in the proof of Lemma 5 are replaced by corresponding
derivations employing resolution and factorisation on unification constraints.
The latter causes the loss of the weak derivability property.

Theorem 8 (Completeness). Calculus ERUEfc is Henkin complete.

Proof. Analogously to Lemma 6 we show that the set of closed Σ-formulas which
cannot be refuted by the calculus ERUEfc (i.e., ΓΣ := {Φ ⊆ cwffo|Φcl ��ERUEfc �}) is
a saturated abstract consistency class for Henkin models with primitive equality
(cf. Def. 1). This entails the assertion by Thm. 1.

The proof is analogous to Lemma 6. Even the abstract consistency properties
∇r

e and ∇s
e are proven analogously by employing the generalised paramodulation

rule GPara, which is by Lemma 9 admissible in ERUEfc.

Lemma 10 (Theorem Equiv.). ERUEfc and ERUEf are theorem equivalent.

Proof. Analogous to Lemma 2. The additional or modified rules do not cause
any problems.

Question 3 (Theorem Equivalence). The author claims that the calculi ERUE
and ERUEfc (or ERUEf) are theorem equivalent. A formal proof will most likely
be analogous to questions 1 and 2.

7 Examples

The first (trivial FO) example illustrates the main ideas of EP and ERUE: aι ∈
mι→o ∧ a = b ⇒ b ∈ m. Sets are encoded as characteristic functions and
∈ := λXα, Mα→o M X, such that the negated problem normalises to: C1 : [m a]T ,

C2 : [a = b]T , C3 : [m b]F . An obvious term-rewriting refutation in EP: Para(C1, C2),

Triv : C4 : [m b]T ; Res(C3, C4), Triv : �.15 A difference-reducing refutation in ERUE:
Res(C1, C3) : C4 : [m a = m b]F ; Dec(C4), Triv : C5 : [a = b]F ; Res(C2, C5), Triv : �.

We now examine the examples mentioned in Thm. 4 in calculus EP: EPara
2 :

[(G Xι) = pι→o]
T (Cantor’s theorem) Func′(EPara

2), Equiv′ : C1 : [G X Yι]
F ∨

15 Notation (as already used before): Res(C6, C5), Fac describes a paramodulation step
between C6 and C5 followed by factorisation of the resulting clause. Prim(C1|C2)
denotes the parallel application of rule Prim to Cj and Ck.

412 Christoph Benzmüller

[p Yι]
T , C2 : [G X Yι]

T ∨ [p Yι]
F ; Prim(C1|C2), Subst : C3 : [G′ X Y]T ∨ [p Y]T , C4 :

[G′′ X Y]F ∨ [p Y]F ; Fac(C3|C4),UNI : C5 : [p Y]T , C6 : [p Y]F ; Res(C5, C6), UNI :

C7 : �. EPara
1 and EPara

3 can be proven analogously. The key idea is to employ
the positive extensionality rules first. As paramodulation rule is not employed,
these proofs are obviously also possible in ERUE.

Example Eset
2 focuses on reasoning about sets: ({X | odd X ∧ num X} =

{X | ¬ ev X ∧ num X}) ⇒ (2{X| odd X∧X>100∧num X} = 2{X| ¬ ev X∧X>100∧num X}),

where the powerset-operator is defined by λNα→o λMα→o ∀Xα M X ⇒ N X .

CNF(Eset
2), Func, Func′ : C1 : [(odd X ∧ num X) = (¬ ev X ∧ num X)]T and

C2 : [(∀X n X ⇒ ((odd X∧X > 100)∧num X)) = (∀X n X ⇒ ((¬ ev X∧X > 100)∧
num X))]F where n is a Skolem constant. The reader may check that an applica-
tion of rule Para does not lead to a successful refutation here as the terms in the
powerset description do unfortunately not have the right structure. Instead of fol-
lowing the term-rewriting idea we have to proceed with difference-reduction and
a recursive call to the overall refutation search from within the unification pro-
cess: Dec(C2), Triv, Func,Dec, Triv : C3 : [((odd s∧s > 100)∧num s) = ((¬ ev s∧s >

100)∧num s)]F ; Equiv(C3), CNF , Fac,UNI : C4 : [odd s]T ∨[ev s]F , C5 : [s > 100]T , C6 :

[num s]T , C7 : [odd s]F ∨ [s > 100]F ∨ [num s]F ∨ [ev s]T ; Equiv′(C1), CNF , Fac,UNI :

C8 : [odd X]F ∨ [num X]F ∨ [ev X]F , C9 : [odd X]T ∨ [num X]F ∨ [ev X]T . The rest of
the refutation is a straightforward resolution proof on C4−C9. It is easy to check
that an elegant term-rewriting proof is only possible if we put the succedent of
Eset

2 in the right order : 2{X| (odd X∧num X)∧X>100} = 2{X| (¬ ev X∧num X)∧X>100}.
Thus this example nicely illustrates the unavoidable mixed term-reducing and
difference-reducing character of extensional higher-order paramodulation.

On the other hand a very interesting goal directed proof is possible within
the RUE-resolution approach ERUE by immediately resolving between C1 and
the unification constraint C2 and subsequently employing syntactical unification
in connection with recursive calls to the overall refutation process (with the
extensionality rules) when syntactical unification is blocked.

[Ben99] provides a more detailed discussion of these and additional examples.

8 Conclusion

We presented the two approaches EP and ERUE for extensional higher-order
paramodulation and RUE-resolution which extend the extensional higher-order
resolution approach ER [BK98a] by a primitive equality treatment. All three
approaches avoid the extensionality axioms and employ more goal directed ex-
tensionality rules instead. An interesting difference to Huet’s original constraint
resolution approach [Hue72] is that eager (pre-)unification becomes essential and
cannot be generally delayed if an extensionality treatment is required.

Henkin completeness has been proven for the slightly extended (by the ad-
ditional rule FlexFlex) approaches ERf , EPf and ERUEf . The claim that rule
FlexFlex is admissible in them has not been proven yet. All three approaches
can be implemented in a higher-order set of support approach as presented
in [Ben99]. [Ben99] also presents some first ideas how the enormous search space

Extensional Higher-Order Paramodulation and RUE-Resolution 413

of the introduced approaches can be further restricted in practice, e.g. by intro-
ducing redundancy methods.

It has been motivated that some problems cannot be solved in the paramod-
ulation approach EP by following the term-rewriting idea only, as they unavoid-
ably require the application of the difference-reducing extensionality rules. In
contrast to EP the difference-reducing calculus ERUE seems to harmonise quite
well with the difference-reducing extensionality rules (or axioms), and thus this
paper concludes with the question: Can HO adaptations of term-rewriting ap-
proaches be as successful as in FO, if one is interested in Henkin completeness
and extensionality, e.g., when reasoning about sets, where sets are encoded as
characteristic functions? Further work will be to examine this aspect with the
help of the Leo-system [BK98b] and to investigate the open questions of this
paper.

Acknowledgements. The work reported here was funded by the Deutsche
Forschungsgemeinschaft under grant HOTEL. The author is grateful to M. Kohlhase,
F. Pfenning, P. Andrews, V. Sorge and S. Autexier for stimulating discussions and
support.

References

And71. P. B. Andrews. Resolution in type theory. JSL, 36(3):414–432, 1971.
And86. P. B. Andrews. An Introduction to Mathematical Logic and Type Theory: To

Truth Through Proof. Academic Press, 1986.
Bar84. H. P. Barendregt. The Lambda-Calculus: Its Syntax and Semantics. North-

Holland, 2nd edition 1984.
Ben99. C. Benzmüller. Equality and Extensionality in Automated Higher-Order The-

orem Proving. PhD thesis, FB 14, Universität des Saarlandes, 1999.
BK97. C. Benzmüller and M. Kohlhase. Model existence for higher-order logic. Seki-

Report SR-97-09, FB 14, Universität des Saarlandes, 1997, submitted to JSL.
BK98a. C. Benzmüller and M. Kohlhase. Extensional higher-order resolution. In

Kirchner and Kirchner [KK98], pages 56–72.
BK98b. C. Benzmüller and M. Kohlhase. LEO — a higher-order theorem prover. In

Kirchner and Kirchner [KK98], pages 139–144.
Chu40. A. Church. A formulation of the simple theory of types. JSL, 5:56–68, 1940.
Dar68. J. L. Darlington. Automatic theorem proving with equality substitutions and

mathematical induction. Machine Intelligence, 3:113–130, 1968.
Dig79. V. J. Digricoli. Resolution by unification and equality. In W. H. Joyner,

editor, Proc. of the 4th Workshop on Automated Deduction, Austin, 1979.
Hen50. L. Henkin. Completeness in the theory of types. JSL, 15(2):81–91, 1950.
Hue72. G. P. Huet. Constrained Resolution: A Complete Method for Higher Order

Logic. PhD thesis, Case Western Reserve University, 1972.
KK98. C. Kirchner and H. Kirchner, editors. Proc. of the 15th Conference on Auto-

mated Deduction, number 1421 in LNAI, Springer, 1998.
Koh94. M. Kohlhase. A Mechanization of Sorted Higher-Order Logic Based on the

Resolution Principle. PhD thesis, Universität des Saarlandes, 1994.
Mil83. D. Miller. Proofs in Higher-Order Logic. PhD thesis, Carnegie-Mellon Uni-

versity, 1983.
RW69. G. A. Robinson and L. Wos. Paramodulation and TP in first order theories

with equality. Machine Intelligence, 4:135–150, 1969.
SG89. W. Snyder and J. H. Gallier. Higher-Order Unification Revisited: Complete

Sets of Transformations. Journal of Symbolic Computation, 8:101–140, 1989.
Smu63. Raymond M. Smullyan. A unifying principle for quantification theory.

Proc. Nat. Acad Sciences, 49:828–832, 1963.
Wol93. D. Wolfram. The Clausal Theory of Types. Cambridge University Press, 1993.

C. Kirchner and H. Kirchner (Eds.): Automated Deduction, CADE-15

LNAI 1421, pp. 56–71, 1998. c© Springer–Verlag Berlin Heidelberg 1998

Extensional Higher-Order Resolution

Christoph Benzmüller and Michael Kohlhase

Fachbereich Informatik, Universität des Saarlandes, Germany
chris|kohlhase@cs.uni-sb.de

Abstract. In this paper we present an extensional higher-order resolu-
tion calculus that is complete relative to Henkin model semantics. The
treatment of the extensionality principles – necessary for the complete-
ness result – by specialized (goal-directed) inference rules is of practical
applicability, as an implentation of the calculus in the Leo-System shows.
Furthermore, we prove the long-standing conjecture, that it is sufficient
to restrict the order of primitive substitutions to the order of input for-
mulae.

1 Introduction
The history of building automated theorem provers for higher-order logic is al-
most as old as the field of deduction systems itself. The first successful attempts
to mechanize and implement higher-order logic were those of Huet [Hue73] and
Jensen and Pietrzykowski [JP76]. They combine the resolution principle for
higher-order logic (first studied in [And71]) with higher-order unification. The
unification problem in typed λ-calculi is much more complex than that for first-
order terms, since it has to take the theory of αβη-equality into account. In
particular the higher-order unification problem is undecidable and sets of so-
lutions need not to have most general elements that represent them. Thus the
calculi for higher-order logic have to take special measures to circumvent the
problems posed by the theoretical complexity of higher-order unification.

Experiments like the Tps system [And89,ABI+96] (which uses a higher-order
matings calculus) or our own Leo system [BK98,Ben97] (which uses a variant of
Huet’s resolution calculus [Hue73]) have shown the practical feasibility of higher-
order automated theorem proving based on these ideas. Establishing complete-
ness for higher-order calculi is more problematic than in first-order logic. The
intuitive set-theoretic standard semantics cannot give a sensible notion of com-
pleteness, since it does not admit complete calculi [Göd31]. But there is a more
general notion of semantics due to Henkin [Hen50] that allows complete calculi
and therefore sets the standard for the deductive power of calculi.

The core of higher-order resolution (HORES , see [Hue73,Koh94] for details)
is a simple extension of the first-order resolution method to the higher-order
language: the only significant difference is that βη-equality has to be build in
by keeping formulae in normal form and that first-order unification has to be
replaced by higher-order unification (i.e. unification with respect to the theory

Extensional Higher-Order Resolution 57

of βη-equality). Since this is a semi-decidable search process itself, it cannot
simply be used as a sub-procedure that is invoked during the application of
the resolution or factoring rules. Rather resolution and factorization rules are
modified, so that they record the induced unification problem in a unification
constraint instead of trying to compute a complete set of unifiers. Furthermore,
the calculus is augmented with the inference rules of higher-order unification
that are lifted to act on the unification constraints of clauses. With this trick
the search for empty clauses and that for higher-order unifiers are interleaved,
which alleviates the undecidability problem.

Unfortunately, neither HORES nor the Tps procedure are complete with
respect to Henkin semantics, since they fail to capture substitutivity of equiva-
lence. In [Koh95], the first author has presented a higher-order tableau calculus
that addresses the problem with a new inference rule that uses substitutivity of
equivalence in a goal-oriented way, but still fails to capture functional extension-
ality of Leibniz equality.

For our extensional higher-order resolution calculus ER we extend higher-
order resolution by ideas from [Koh95] and a suitable treatment of Leibniz
equality and prove the resulting calculus sound and complete with respect to
Henkin’s general model semantics [Hen50]. Furthermore, we show that we can
restrict the set of primitive substitutions that are necessary for flexible literals
to a finite set.

Before we begin with the exposition, let us specify what we mean by “higher-
order logic”: any simply typed logical system that allows quantification over
function variables. In this paper, we will employ a system HOL, which is based on
the simply typed λ-calculus; for an introduction see for instance [And86,Bar84].

2 Higher-Order Logic (HOL)
The set wffα(Σ) of well-formed formulae of type α is build up from the
set V of variables, and the signature Σ (a set of typed constants) as appli-
cations and λ-abstractions. We will denote variables with upper-case letters
(Xα, Y, Z, X1

β, X2
γ . . .), constants with lower-case letters (cα, fα→β, . . .), and well-

formed formulae with upper-case bold letters (Aα,B,Ci, . . .)1. Furthermore, we
abbreviate multiple applications and abstractions in a kind of vector notation,
so that AUk denotes k-fold application (associating to the left) and λXk A de-
notes k-fold λ-abstraction (associating to the right) and use the square dot as
an abbreviation for a pair of brackets, where stands for the left one with its
partner as far to the right as is consistent with the bracketing already present
in the formula.

We will use the terms like free and bound variables in their standard meaning
and we use Free(A) for the set of free variables of a formula A. In particular
alphabetic change of names of bound variables is build into our HOL: we con-
sider alphabetic variants to be identical (viewing the actual representation as a
representative of an alphabetic equivalence class) and use a notion of substitu-
tion that avoids variable capture, systematically renaming bound variables. We

1 We will denote the types of formulae as indices, if it is not clear from the context.

58 Christoph Benzmüller and Michael Kohlhase

could also have used de Bruijn’s indices [dB72] as a concrete implementation of
this approach at the syntax level.

By wffcl
α (Σ) ⊆ wffα(Σ) we denote the set of all closed well-formed formulae,

i.e. which contain no free variables and we call the members of wffo(Σ) sentences.
We denote a substitution that instantiates a variable X with a formula A

with [A/X] and write σ, [A/X] for the substitution that is identical with σ but
instantiates X with A.

The structural equality relation of HOL is induced by βη-reduction

(λX A)B −→β [B/X]A (λX CX) −→η C

where X is not free in C. It is well-known, that the reduction relations β, η, and
βη are terminating and confluent, so that there are unique normal forms.

In HOL, the set of base types is {o, ι} for truth values and individuals, and the
signature Σ contains logical constants for negation ¬o→o, conjunction ∧o→o→o,
and quantification2 Πα

(α→o)→o. All other constants are called parameters, since
the argumentation in this paper is parametric in their choice3.

It is matter of folklore that equality can directly be expressed in HOL e.g.
by the Leibniz definition, so that a primitive notion of equality (expressed by a
primitive constant = in Σ) is not strictly needed; we will use this observation
in this paper to treat equality as a defined notion. Leibniz equality defines two
terms to be equal, iff they have the same properties. Hence equality can be
defined as

.=α := λXα λYα ∀Pα→o PX ⇒ PY

A standard model for HOL provides a fixed set Dι of individuals, and a set
Do := {T, F} of truth values. All the domains for the complex types are defined
inductively: Dα→β is the set of functions f :Dα → Dβ. The evaluation Iϕ with
respect to an interpretation I: Σ → D of constants and an assignment ϕ of
variables is obtained by the standard homomorphic construction that evaluates
a λ-abstraction with a function, whose operational semantics is specified by β-
reduction.

Henkin models only require that Dα→β has enough members that any
well-formed formula can be evaluated4. Note that with this generalized notion
of a model, there are less formulae that are valid in all models (intuitively, for
any given formulae there are more possibilities for counter-models). Thus the
generalization to Henkin models restricts the set of valid formulae sufficiently,
so that all of them can be proven by the resolution calculus presented in this
paper. For our completeness proofs, we will use the abstract consistency method
first introduced by Raymond Smullyan in [Smu63] for first-order logic and later

2 With this quantification constant, standard quantification of the form ∀Xα A can be
regained as an abbreviation for Πα(λXα A).

3 In particular, we do not assume the existence of description or choice operators. For
a detailed discussion of the semantic issues raised by the presence of these logical
constants see [And72].

4 In other words: the functional universes are rich enough to satisfy the comprehension
axioms.

Extensional Higher-Order Resolution 59

extended to higher-order logic by Peter Andrews [And71]. The model existence
theorem below is a variant of the latter for Henkin models. For the proof we
refer to [BK97].

Theorem 1 (Henkin Model Existence). Let ΓΣ be a saturated abstract con-
sistency class for Henkin models (see the definition below), and Φ ∈ ΓΣ, then
there is a Henkin model M such that M |= Φ.

Definition 1 (Abstract Consistency Class for Henkin Models). We call
a class ΓΣ of sets of sentences an abstract consistency class for Henkin
Models, iff ΓΣ is closed under subsets and such that for all sets Φ ∈ ΓΣ (we use
Φ ∗ A as an appreviation for Φ ∪ {A}):

∇c If A is atomic, then A /∈ Φ or ¬A /∈ Φ.
∇¬ If ¬¬A ∈ Φ, then Φ ∗ A ∈ ΓΣ.
∇βη If A ∈ Φ and B is the βη-normal form of A, then B ∗ Φ ∈ ΓΣ.
∇∨ If A ∨ B ∈ Φ, then Φ ∗ A ∈ ΓΣ or Φ ∗ B ∈ ΓΣ.
∇∧ If ¬(A ∨ B) ∈ Φ, then Φ ∗ ¬A ∗ ¬B ∈ ΓΣ.
∇∀ If ΠαF ∈ Φ, then Φ ∗ FG ∈ ΓΣ for each G ∈ wffcl

α (Σ).
∇∃ If ¬ΠαF ∈ Φ, then Φ ∗ ¬(Fw) ∈ ΓΣ for a fresh parameter wα ∈ Ωα.
∇b If ¬(A .=o B) ∈ Φ, then Φ ∪ {A,¬B} ∈ ΓΣ or Φ ∪ {¬A,B} ∈ ΓΣ.
∇q If ¬(F .=α→β G) ∈ Φ, then Φ ∗ ¬(Fw

.=β Gw) ∈ ΓΣ for a fresh parameter
wα ∈ Ωα.

We will call ΓΣ saturated, iff for all sentences A ∈ wffo(Σ) we have Φ ∗A ∈ ΓΣ
or Φ ∗ ¬A ∈ ΓΣ.

Remark 1 (Counterparts for ∇b,∇q). In Definition 1 positive counterparts for the
two conditions ∇b,∇q are not needed, since these conditions are automatically met
(note that .= is a defined construct). For details see [BK97].

In this paper the extensionality principles will play a major role. These for-
malize fundamental mathematical intuitions about functions and truth values.
The functional extensionality principle says, that two functions are equal,
iff they are equal on all arguments. This principle can be formulated by the
following schematic λ-term:

∀Mα→β ∀Nα→β (∀X (MX) .= (NX)) ≡ (M .= N)

The extensionality principle for truth values states that on the set of truth
values equality and equivalence relation coincide: ∀Po ∀Qo (P .= Q) ≡ (P ≡ Q).
Note that in Henkin models both extensionality principles are valid and that
Leibniz equality indeed denotes equality relation (see [BK97] for details).

60 Christoph Benzmüller and Michael Kohlhase

3 The Calculus ER
Now we introduce the higher-order resolution calculus ER. Therefore we will re-
view standard higher-order resolution HORES and use the extensionality prin-
ciples to discuss why it is not complete. From the deficiencies we will develop the
necessary extensions and give an intuition by exhibiting refutations that become
possible.

HORES is a refutation calculus that manipulates sets of clauses, i.e. sets
(which we will represent as disjunctions) of literals (e.g. C := [qα→oXα]T ∨
[pα→oXα]F ∨ [cα = Xα]F).

Definition 2 (Literal). Literals are atomic propositions labeled with an in-
tended truth value. We call a literal a unification constraint, iff it is negative
(i.e. annotated by the truth value F) and the head is =, all the others we call
proper literals. Clauses existing entirely of unification constraints are called
almost empty. Since instantiation of a head variable will convert a literal into a
general labeled propositions, we will sometimes call these pre-literals.

Clause normalization is very similar to the first-order case, except for the treat-
ment of existential quantification. Therefore, we will not present the transfor-
mation rules here, but simply discuss the differences and assume that each given
higher-order proof problem P can be transformed into a set of clauses CNF(P).
A naive treatment with Skolemization results in a calculus that is not sound with
respect to Henkin models, since Skolem functions are special choice functions5,
which are not guaranteed to exist in Henkin models. A solution due to [Mil83]
is to associate with each Skolem constant the minimum number of arguments
the constant has to be applied to. Skolemization becomes sound, if any Skolem
function fn only occurs in a Skolem term, i.e. a formula S = fnAn, where
none of the Ai contains a bound variable. Thus the Skolem terms only serve as
descriptions of the existential witnesses and never appear as functions proper.
When we speak of a Skolem term Sα for a clause C, where {X1

α1 · · ·Xn
αn} is

the set of free variables occurring in C, then Sα is an abbreviation for the term
(fn

α1→···→αn→αX1 · · ·Xn), where f is a new constant from Cα1→···→αn→α and n
specifies the number of necessary arguments for f .

Remark 2 (Leibniz Equality). We assume that before applying clause normal-
ization each primitive equality symbol is replaced by its corresponding Leibniz
definition. Hence after normalizing a given input problem, the resulting clause
set does not contain any equality symbol. However, during the refutation process,
equality symbols may be introduced again as we code unification constraints by
negated equation literals.

3.1 Higher-Order Unification in ER
Higher-order unification is a process of recursive deterministic simplification
(rules α, η, Dec, Triv, and Subst in figure 1) and non-deterministic variable
binding (rule Flex/Rigid). The rules α and η are licensed by the functional
5 They choose an existential witness from the set of possible witnesses for an existential

formula.

Extensional Higher-Order Resolution 61

C ∨ [(λXα A) = (λYα B)]F sα Skolem term for this clause

C ∨ [[s/X]A = [s/Y]B]F
α

C ∨ [(λXα A) = B]F sα Skolem term for this clause

C ∨ [[s/X]A = (Bs)]F
η

C ∨ [hUn = hVn]F

C ∨ [U1 = V1]F ∨ . . . ∨ [Un = Vn]F
Dec

C ∨ [A = A]F

C
Triv

C ∨ E E solved for C
CNF(substE(C))

Subst

C ∨ [FγUn = hV]F G ∈ GBh
γ

C ∨ [F = G]F ∨ [FU = hV]F
F lex/Rigid

Fig. 1. Lifted Higher-Order (pre-)unification rules

extensionality principle and eliminate the top λ-binder in unification constraints
of functional type. The Skolem term sα is an existential witness for the fact
that the functions are different. Since clauses are implicitly universally quanti-
fied, this witness may depend on the values of all free variables occurring in the
clauses, so it must be a Skolem term for this clause. Decomposition (rule Dec)
is analogous to the first-order case and the rule Triv allows to remove reflexivity
pairs. Rule Dec will be discussed again in connection with the extensionality
rules in section 3.3.

The rule Subst eliminates variables that are solved in a clause: we call a
unification constraint U := [Xα = Nα]F or U := [Nα = Xα]F solved iff Xα is
not free in Nα. In this case X is called the solved variable of U . Let C := L1∨
· · · ∨ Ln ∨ U1 ∨ · · · ∨ Um be a clause with unification constraints U1 ∨ · · · ∨ Um

(1 ≤ m). Then a disjunction U i1 ∨ · · · ∨ U ik (ij ∈ {1, · · · , m}; 1 ≤ j ≤ k)
of solved unification constraints occurring in C is called solved for C iff for
every U ij (1 ≤ j ≤ k) holds: the solved variable of U ij does not occur free in
any of the U il for l
= j; 1 ≤ l ≤ k. Note that each solved set of unification
constraints E for a clause C can be associated with a substitution substE which
is the most general unifier of E. Thus the rule Subst essentially propagates the
information from the unification constraints to the proper clause parts. Since the
instantiation of flexible literals (i.e. literals, where the head is a free variable)
may result in pre-literals, the result of this propagation may cease to be a clause,
therefore it needs to be reduced to clause normal form.

Remark 3 (Eager Unification). The set of rules described up to now is termi-
nating and confluent, so that higher-order unification applies it eagerly to filter

62 Christoph Benzmüller and Michael Kohlhase

out all clauses with an unsolvable unification constraint6. It leads to unification
constraints, where both sides are applications and where at least one side is flex-
ible, i.e. where the head is a variable. In this case, the higher-order unification
problem can be reduced to the problem of finding most general formulae of a
given type and a given head symbol.

Definition 3 (General Binding). Let α = (βl → γ), and h be a constant
or variable of type (δm → γ) in Γ, then G := λX l

βl hVm is called a general

binding of type α and head h, if Vi = HiX l
βl

. The Hi are new variables of
types βl → δi]. It is easy to show that general bindings indeed have the type and
head claimed in the name and are most general in the class of all such terms.

General bindings, where the head is a bound variable Xj
βj

are called projec-
tion bindings (we write them as Gj

α) and imitation bindings (written Gh
α)

else. Since we need both imitation and projection bindings for higher-order uni-
fication, we collect them in the set of approximating bindings for h and α
(GBh

α := {Gh
α} ∪ {Gj

α

∣
∣ j ≤ l}).

Since there are only finitely many general bindings (one imitation binding
and at most l projection bindings) the Flex/Rigid rule is finitely branching. We
never have to consider the so-called Flex/Flex literals7, since Flex/Flex equa-
tions can always be solved by instantiating the head variables with suitable con-
stant functions that absorb their arguments. This observation is due to Gérard
Huet [Hue73] and defines higher-order pre-unification, a computationally more
feasible (but still undecidable) variant of higher-order unification. However, even
if Flex/Flex pairs are solvable, we cannot simply delete them like trivial pairs,
since one or both of the heads may be instantiated making the term rigid, so
that the pair has to be subject to pre-unification again.

3.2 Higher-Order Resolution
Definition 4 (Higher-Order Resolution). The higher-order resolution
calculus HORES consists of the inference rules in figure 2 together with the
unification rules in figure 1. We call a clause empty, iff it consists entirely of
Flex/Flex unification constraints and say hat a HORES-derivation of an empty
clause from a set Φ of clauses is a refutation of Φ. For a sentence Ao we call
a refutation of CNF(¬A) a refutation for A.

As in first-order we have resolution and factorization rules Res and Fac. But
instead of solving the unification problems immediately within a rule application
we delay their solution and incorporate them explicitly as unification constraints
in the resulting clauses. Note that the resolution rule as well as the factorization
rule are allowed to operate on unification constraints.
6 As we will see later this solution is too strong if we want to be complete in Henkin

models since an unsolvable unification constraint might be solvable by using the
extensionality rules.

7 For a refutation, we do not need to enumerate all unifiers for a given unification
problem but to seek for one possible instantiation of a given problem which leads to
the contradiction.

Extensional Higher-Order Resolution 63

[N]α ∨ C [M]β ∨ D α �= β

C ∨ D ∨ [N = M]F
Res

[N]α ∨ [M]α ∨ C α ∈ {T, F}
[N]α ∨ C ∨ [N = M]F

Fac

[QγUk]α ∨ C P ∈ GB{¬,∨}∪{Πβ|β∈T k}
γ

[QγUk]α ∨ C ∨ [Q = P]F
Primk

Fig. 2. Higher-order resolution rules

To find a refutation for a given problem we may have to instantiate the head
variables of flexible literals by material that contains logical constants. Unfor-
tunately these instantiations cannot be generated by the unification rules, since
all logical constants have been eliminated from the clause set by normalization,
thus they enter the refutation by unification. Therefore the rule Prim allows
to instantiate head variables Qγ by general bindings P of type γ and head in
{¬,∨} ∪ {Πβ|β ∈ T }. Thus the necessary logical constants are introduced into
the refutation one by one, hence the name primitive substitutions.

For instance the sentence A := ∃Xo X is valid in all Henkin models, but
CNF(¬A) = {[X]F} cannot be refuted without some kind of a primitive sub-
stitution rule, since none of the other rules apply. With Prim, we can deduce
[X]F ∨ [X = ¬H]F and then [Y]T by Subst. These two unit literals can be re-
solved to [X = Y]F , which is an empty clauses, since [X = Y]F is a Flex/Flex
unification constraint.

The primitive substitution rules have originally been introduced by Peter
Andrews in [And89] (Gérard Huet uses a set of so-called “splitting rules” for
the same purpose in [Hue73]). Note that the set of general bindings is infinite,
since we need one for every quantifier Πα and the set of types is infinite. Thus
in contrast to the goal-directed search for instantiations in unification, the rule
Prim performs blind search and even worse, is infinitely branching. Therefore,
the problem of finding instantiations for predicate variables is conceived as the
limiting factor to higher-order automated theorem proving.

It has been a long-standing conjecture that in machine-oriented calculi it is
sufficient to restrict the order of primitive quantifier substitutions to the order
of the input formulae. In [BK97], we have established a finer-grained variant
of theorem 1 that we can use as a basis to prove this conjecture. Let us now
introduce the necessary definitions.

Definition 5 (Order). For a type α ∈ T , we define the order ord(α) of α as
ord(ι) = ord(o) = 0, and ord(α → β) = max{ord(α),ord(β)} + 1. Note that
the set T k = {α ∈ T

∣
∣ ord(α) ≤ k} is finite for any order k. We will take the

order of a formula to be the highest order of any type of any of its subterms, and
the order of a set of formulae to be the maximum of the orders of its members.

64 Christoph Benzmüller and Michael Kohlhase

Theorem 2 (Model Existence with Order). The model existence theorem
holds even if we weaken the condition ∇∀ of an abstract consistency class to

∇k
∀ If ΠαF ∈ Φ, then Φ ∗ FG ∈ ΓΣ for each G ∈ wffcl

α (Σ) with ord(G) ≤
ord(Φ).

In [BK97] we establish this theorem for arbitrary well-founded orderings on
types such that ord(α),ord(β) ≤ ord(α → β). This allows us to restrict in-
stantiation in ER to formulae of the order of the input formulae. Note that this
only effects the primitive substitution rule, since all other instantiations are per-
formed by unification, which is order-restricted by construction. In particular,
the non-standard definition of order above ensures finite branching of the primi-
tive substitution rule. This ordering, that takes the lengths of argument lists into
account leads to an increased order of the input set compared to the standard
definition of order (ord(αn → β) = maxn{αi} + 1) and effectively restricts the
number of necessary instantiations.

Our result justifies the practice of higher-order theorem provers to restrict
the search for primitive substitutions and gives a road-map towards complete
procedures. Of course there is still a lot of room for experimentation with the
respective orderings.

3.3 Extensionality
The higher-order resolution calculus HORES defined above is not complete with
respect to Henkin models, as the following example will show.

Example 1. The following formulae E1-E58 are not provable in HORES without
using additional axioms for functional extensionality and/or extensionality on
truth values.

E1 ao ≡ bo ⇒ (∀Po→o Pa ⇒ Pb)
This is the non-trivial direction of the extensionality property for truth val-
ues: if ao is equivalent to bo then ao is equal to bo (ao ≡ bo ⇒ a = b).

E2 ∀Po→o P (ao ∧ bo) ⇒ P (b ∧ a).
Any property which holds for a ∧ b also holds for b ∧ a (or simply that
a ∧ b = b ∧ a).

E3 (po→oao ∧ pbo) ⇒ p(b ∧ a)
In other words, an arbitrary property po→o which coincidently holds for ao

and bo also holds for their conjunction.
E4 (∀Xι ∀Pι→o (P (mι→ιX) ⇒ P (nι→ιX))) ⇒ (∀Q(ι→ι)→o Q(λXι mX) ⇒

Q(λXι nX))
This formula can be interpreted as an instance of the ξ-rule (∀Xι mι→ιX =
nι→ιX) ⇒ (λXι mX) = (λXι nX) (See for instance [Bar84]).

E5 (∀Xι ∀Pι→o P (mι→ιX) ⇒ P (nι→ιX)) ⇒ (∀Q(ι→ι)→o Qm ⇒ Qn)
This is an instance of the non-trivial direction of the functional extensionality
axiom for type ι → ι: (∀Xι (mι→ιX) = (nι→ιX) ⇒ m = n).

8 In Problems E1, E2, E4, and E5 we have used Leibniz definition of equality to remove
the intuitive equality symbols.

Extensional Higher-Order Resolution 65

C ∨ [Mo = No]
F

CNF(C ∨ [Mo ≡ No]
F)

Equiv
C ∨ [Mα = Nα]F α ∈ {o, ι}

CNF(C ∨ [∀Pα→o PM ⇒ PN]F)
Leib

C ∨ [Mα→β = Nα→β]F sα Skolem term for this clause

C ∨ [Ms = Ns]F
Func

Fig. 3. Extensionality rules

For a proof of E1 note that the clause normal form of the succedent consists
of the two unit clauses [p0a]F and [p0b]T , where p0 is the Skolem constant for
the variable P . These can be resolved upon to obtain the clause [p0a = p0b]F ,
which can be decomposed to [ao = bo]F . Obviously, this unification constraint
cannot be solved by higher-order unification, and hence the refutation fails. In
this situation, we need the principle of extensionality on truth values, which
allows to replace each negated equality on type o by an equivalence. This leads
to the clause normal form of [ao ≡ bo]F , which contradicts the antecedent of E1
and finally gives us the refutation.

Similar investigations show that the other examples cannot be proven by
HORES too.

Our aim is to find an extension of HORES, which is both Henkin-complete
and adequate for an implementation. Surely, the introduction of axioms for the
extensionality principles can solve the completeness problem in theory, but this
will lead to an explosion of the search space which has to be avoided in prac-
tice. In particular, we do not change the purely negative spirit of the resolution
calculus by introducing axioms but introduce special inference rules.

Definition 6 (Extensional Higher-Order Resolution). The extensional
higher-order resolution calculus ER is HORES extended with the inference
rules in figure 3.

The Rule Leib instantiates the equality symbol by its Leibniz definition and
applies clause normalization. Rule Equiv is directly motivated by the proof at-
tempt of E1 discussed in example 1. Thus rule Equiv reflects the extensionality
property for truth values but in a negative way: if two formulas are not equal
then they are also not equivalent. Rule Func does the same for functional ex-
tensionality: if two functions are not equal then there exists an argument sα on
which these functions differ. To ensure soundness sα has to be a new Skolem
term which contains all the free variables occurring in the given clause.

The new rules strongly connect the unification part of our calculus with
the resolution part. In some sense, they make the unification part extensional,
since they allow to modify unification problems, which are not solvable by pre-
unification alone in an extensional appropriate way and to translate them back
into usual literals, such that we can try to find the right argumentation for

66 Christoph Benzmüller and Michael Kohlhase

the solvability of the unification constraints in the general refutation process by
possibly respecting the additionally given clauses in the search space.

Remark 4 (Rule Func). Note that we have already introduced two rules – α and
η in unification (see figure 1) – which are very similar to this one. In fact we can
restrict rule Func to the case were N and M are non-abstractions or vice-versa,
we can remove the α and η rules from simplification as they are subsumed by
the rule Func as purely type-based and apply β-reduction to both sides of the
modified unification constraint.

Remark 5 (Unification Constraints). We have lifted the unification constraints
to clause level by coding them into negated equation literals. Hence the question
arises whether or not resolution and factorization rules are allowed to be applied
on these unification constraints. In order to obtain a Henkin complete calculus
this is not necessary – as our completeness proof shows – if we add the three ex-
tensionality rules discussed in the next subsection. Consequently the unification
constraints do not necessarily have to be coded as negative equation literals, any
other form will work as well.

The coding of unification constraints as negated equation literals becomes
important if one considers an alternative version of extensional higher order
resolution – which we will also motivate below –, where the rule Leib is avoided.

Note that none of the three new extensionality rules introduces any flexible
literal and even better, they introduce no new free variable at all; even if they
heavily increase the search space for refutations, they behave much better –
as experiments show with the LEO theorem prover [BK98,Ben97] – than the
extensionality axioms, which introduce lots of flexible literals in the refutation
process.

3.4 Examples
We now demonstrate the idea of the extensional resolution calculus on examples
E3 and E5:

E3 ∀Po→o (Pao ∧ Pbo) ⇒ P (a ∧ b)

CNF(¬E3) (po→o is a new Skolem constant):
c1: [pa]T c2: [pb]F c3: [p(a ∧ b)]F

Res(c3,c1): c4: [p(a ∧ b) = pa]F

Res(c3,c2): c5: [p(a ∧ b) = pb]F

Dec(c4): c6: [(a ∧ b) = a]F

Dec(c5): c7: [(a ∧ b) = b]F

Equiv(c6): c8: [a]F ∨ [b]F c9: [a]T ∨ [b]T c10: [a]T

Equiv(c7): c11: [a]F ∨ [b]F c12: [a]T ∨ [b]T c13: [b]T

The rest is obvious: Resolve c10 and c13 against c8 (or c11). �

Extensional Higher-Order Resolution 67

E5 (∀Xι ∀Pι→o P (mι→ιX) ⇒ P (nι→ιX)) ⇒ (∀Q(ι→ι)→o Qm ⇒ Qn)

CNF(¬E5) (q is a new Skolem constant):
c1: [P (mX)]F ∨ [P (nX)]T c2: [qm]T c3: [qn]F

Res(c2,c3): c4 : [qm = qn]F

Dec(c4): c5 : [m = n]F

Func(c5) (sι is a new Skolem constant): c6 : [ms = ns]F

Leib(c6) (pι→o is a new Skolem constant): c7 : [p(ms)]T c8 : [p(ns)]F

Note that resolving c2 and c3 immediately against c1 does not lead to a solv-
able unification constraint. Instead we made a detour to the pre-unification
part of the calculus and modified the clauses c2 and c3 in an extensionally
appropriate way. Now c2 and c3 have their counterparts in c7 and c8, but
in contrast to c2 and c3 the new clauses can successfully be resolved against
c1. �

The proofs of the other examples are discussed in [Ben97].

Remark 6 (Optimization of Extensionality). Note the order in which the ex-
tensionality rules were applied in the examples above. For a practical imple-
mentation these examples suggest the following extensionality treatment of
unification constraints: First decompose the unification constraint as much as
possible. Then use rule Func to add as many arguments as possible to both
hand sides of the resulting unification constraints. And last use rule Leib and/or
Equiv to finish the extensionality treatment. In this sense the above rules can
be combined to form only one rule Ext-Treat.

Remark 7 (Rule Leib). Due to an idea of Frank Pfenning every refutation which
uses rule Leib can possibly be done without this rule by resolving against the
extensional modified unification constraint instead, and hence rule Leib may be
superfluous. For example the application of rule Leib in the proof of example E5
can be replaced by an immediate resolution step between clause c1 and c6 :
c7 : [P (mX)]F∨[P (nX) = (ms = ns)]F . And by pre-unification (P ← λYι (ms =
Y) and X ← s) we immediately get the empty clause. Note that in this case it
is essential that unification constraints are encoded as negative equality literals
(see Remark 5).

However, there are two reasons why rule Leib seems to be very appropriate.
First the completeness proof with respect to Henkin models seems to be more
complicated without rule Leib and isn’t done yet. Additionally the experience
from the implementation work of the system Leo is, that rule Func eases the
implementation and the integration of heuristics. See [Ben97] for a more detailed
discussion.

68 Christoph Benzmüller and Michael Kohlhase

4 Soundness and Completeness
Theorem 3 (Soundness of ER). The calculus ER is sound with respect to
Henkin semantics.

Proof. The soundness of HORES is discussed in detail in [Koh94], the only
major difference to the first-order case is the treatment of Skolemization, which
has been discussed in [Mil83].

The soundness of the three new extensionality rules are obvious, as they do
only apply the two extensionality principles and the Leibniz definition, which
are valid in Henkin models.

For the completeness result, we will need a series of disjunction Lemmata,
which are well-known for first-order logic, and which can be proven with the same
techniques, only considering the extra inference rules of ER in the inductions.

Lemma 1. Let Φ, ∆, Γ1, Γ2 ⊆ wffcl(Σ) and A,B ∈ wffcl(Σ). We have

1. If CNF(Φ∗A) �ER � and CNF(Φ∗B) �ER �, then CNF(Φ∗A∨B) �ER �

2. If CNF(Φ∗¬A∗B) �ER � and CNF(Φ∗A∗¬B) �ER �, then CNF(Φ∗¬(A ≡
B)) �ER �

Proof. For the proof of the first assertion we first verify that CNF(Φ ∗A∨B) =
CNF(Φ) ∪ CNF(A) � CNF(B), where Γ � ∆ = := {C ∨ D|C ∈ CNF(A)},D ∈
CNF(B)}. Then we use that Φ∪Γ1�Γ2 �ER �, provided that Φ∪Γ1 �ER � and
Φ ∪ Γ2 �ER �. The second involves a tedious but straightforward calculation.

Lemma 2 (Lifting Lemma). Let Φ be a set of clauses and σ a substitution,
then Φ is refutable by ER, provided that θ(Φ) is.

Proof. The claim is proven by an induction on the structure of the refutation
Dθ: θ(Φ) �ER � be a refutation of θ(Φ) constructing a refutation D for Φ that
is isomorphic to Dθ.

For this task it is crucial to maintain a tight correspondence ω: Φ −→ θ(Φ)
between the respective clause sets. This is formalized by a clause set isomor-
phism, i.e. a bijection of clause sets, that corresponding clauses are isomorphic,
i.e. for a ω respects literal polarities and is compatible with θ, i.e. for any lit-
eral Nα we have ω(N) = θ(N). The main difficulty with lifting properties in
higher-order logic is the fact that due to the existence of predicate variables at
the head of formulae, the propositional structure of formulae can change during
instantiation. For instance if θ(F) = λXα GX ∨ p, and AT = FaT, then the
pre-literal θ(F) is split Dθ but not in the ER-derivation already constructed.
The solution of this problem is to apply the rule Prim with a suitable general
binding G∨

α→o = λXα (H1X) ∨ (H2X) and obtain a pre-literal (H1a ∨ H2a)T,
to which can be split in order to regain a clause set isomorphism. Since G∨

α→o

is more general than θ(F) there is a substitution ρ, such that θ(F) = ρ(G∨
α→o),

therefore ω((H1a ∨ H2a)T) = θ′((H1a ∨ H2a)T) where θ′ = θ ∪ ρ.

Extensional Higher-Order Resolution 69

Theorem 4 (Completeness of ER). The calculus ER is complete with respect
to Henkin semantics.

Proof. Let ΓΣ be the set of Σ-sentences which cannot be refuted by calculus ER
(ΓΣ := {Φ ⊆ wffcl

o (Σ)|CNF(Φ)
�ER �}), then we show that ΓΣ is a saturated
abstract consistency class for Henkin models. This entails completeness of ER
by theorem 1.

Let Φ ∈ ΓΣ. We show that Φ mets the conditions required in definition 1:

∇c Suppose that A,¬A ∈ Φ. Since A is atomic we have CNF(Φ ∗A ∗ ¬A) =
CNF(Φ) ∗ [A]T ∗ [A]F and hence we can derive � with Res and Triv. This
contradicts our assumption.

In all of the remaining cases, we show the contrapositive, e.g. in the next case
we prove, that for all Φ ∈ ΓΣ, if Φ ∗ ¬¬A ∗ A /∈ ΓΣ, then Φ ∗ ¬¬A /∈ ΓΣ, which
entails the assertion.

∇¬ If CNF(Φ ∗ ¬¬A ∗ A) �ER �, then also CNF(Φ ∗ ¬¬A) �ER �, since
CNF(Φ ∗ ¬¬A ∗ A) = CNF(Φ ∗ ¬¬A).

∇βη Analog to ∇¬, since CNF(Φ ∗ A ∗ A↓βη
) = CNF(Φ ∗ A).

∇∨ If CNF(Φ ∗ A ∨ B ∗ A) �ER � and CNF(Φ ∗ A ∨ B ∗ B) �ER �, then
CNF(Φ ∗ A ∨ B) �ER � by lemma 1(3).

∇∧ If CNF(Φ ∗¬(A∨B) ∗¬A ∗¬B) �ER �, then CNF(Φ ∗ ¬(A∨B)) �ER �,
since CNF(Φ ∗ ¬(A ∨ B) ∗ ¬A ∗ ¬B) = CNF(Φ ∗ ¬(A ∨ B)).

∇∀ By the lifting lemma 2.
∇∃ Let CNF(Φ ∗ ¬ΠF ∗ ¬Fw) �D

ER � and note that CNF(Φ ∗ ¬ΠF ∗ ¬Fw) =
CNF(Φ ∗¬Fw′ ∗¬Fw). Now let w′′ be any new constant symbol which does
not occur in Φ or F. Since also w and w′ do not occur in Φ or F it is
easy to verify that their is a derivation CNF(Φ ∗ ¬Fw′′) �D′

ER �, where each
occurrence of ¬Fw′ or ¬Fw is replaced by ¬Fw′′. Hence CNF(Φ∗¬ΠF) �ER
�.

∇b We show that if CNF(Φ∗¬(A .=o B)∗¬A∗B) �ER � and CNF(Φ∗¬(A .=o

B) ∗ A ∗ ¬B) �ER �, then CNF(Φ ∗ ¬(A .= B) �ER �. Note that CNF(Φ ∗
¬(A .= B)) = CNF(Φ∗¬Π(λP ¬PA∨PB)) = CNF(Φ)∗ [rA]T ∗ [rB]F , with
Skolem constant ro→o. Now consider the following derivation

[rA]T [rB]F

[rA .= rB]F
Res

[A .= B]F
Dec

CNF(¬(A ≡ B))
Equiv

Hence CNF(Φ ∗ ¬(A .= B)) �ER CNF(Φ ∗ ¬(A .= B)) ∪ CNF(¬(A ≡ B))
and we get the conclusion as a simple consequence of lemma 1(4).

∇q We show that if CNF(Φ ∗ ¬(F .=α→β G) ∗ ¬(Fw
.=β Gw)) �ER �, then

CNF(Φ∗¬(F .= G)) �ER �. Note that CNF(Φ∗¬(F .= G)∗¬(Fw
.= Gw)) =

CNF(Φ∗¬Π(λQ¬QF∨QG)∗¬Π(λP ¬P (Fw)∨P (Gw))) = CNF(Φ)∗[qF]T ∗
[qG]F ∗[p(Fw)]T ∗[p(Gw)]F and that CNF(Φ∗¬(F .= G)) = CNF(Φ)∗[rF]T ∗
[rG]F , where pβ→o, q(α→β)→o and r(α→β)→o are new Skolem constants. Now
consider the following derivation:

70 Christoph Benzmüller and Michael Kohlhase

[rF]T [rG]F

[rF .= rG]F
Res

[F .= G]F
Dec

[Fs
.= Gs]F

Func

[t(Fs)]T
Leib

[t(Gs)]F

Here again sα and tβ→o are new Skolem constants. Hence CNF(Φ) ∗ [rF]T ∗
[rG]F �ER CNF(Φ) ∗ [rF]T ∗ [rG]F ∗ [t(Fs)]T ∗ [t(Gs)F .
Now the conclusion follows from the assumption since s, t and r are only
renamings of the Skolem symbols w, p and q and all do not occur in Φ.

To see that ΓΣ is saturated let A ∈ wffo(Σ) and Φ ⊆ wffcl
o (Σ) with Φ
�ER �. We

have to show that Φ∗A
�ER � or Φ∗¬A
�ER �. For that suppose Φ
�ER �, but
Φ ∗A �ER � and Φ ∗¬A �ER �. By lemma 1(3) we get that Φ ∗A∨¬A �ER �,
and hence, since A∨¬A is a tautology, it must be the case that Φ �ER �, which
contradicts our assumption.

5 Conclusion
We have presented an extensional higher-order resolution calculus that is com-
plete relative to Henkin model semantics. The treatment of the extensionality
principles – necessary for the completeness result – by specialized (goal-directed)
inference rules practical applicability, as an implentation of the calculus in the
Leo-System [BK98] shows.

Acknowledgments The work reported here was funded by the Deutsche
Forschungsgemeinschaft under grant HOTEL. The authors are grateful to Peter
Andrews and Frank Pfenning for stimulating discussions.

References
ABI+96. Peter B. Andrews, Matthew Bishop, Sunil Issar, Dan Nesmith, Frank Pfen-

ning, and Hongwei Xi. TPS: A theorem proving system for classical type
theory. Journal of Automated Reasoning, 16(3):321–353, 1996.

And71. Peter B. Andrews. Resolution in type theory. Journal of Symbolic Logic,
36(3):414–432, 1971.

And72. Peter B. Andrews. General models descriptions and choice in type theory.
Journal of Symbolic Logic, 37(2):385–394, 1972.

And86. Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory:
To Truth Through Proof. Academic Press, 1986.

And89. Peter B. Andrews. On Connections and Higher Order Logic. Journal of
Automated Reasoning, 5:257–291, 1989.

Bar84. H. P. Barendregt. The Lambda Calculus. North Holland, 1984.
Ben97. Christoph Benzmüller. A calculus and a system architecture for extensional

higher-order resolution. Research Report 97-198, Department of Mathemat-
ical Sciences, Carnegie Mellon University, Pittsburgh,USA, June 1997.

BK97. Christoph Benzmüuller and Michael Kohlhase. Model existence for higher-
order logic. SEKI-Report SR-97-09, Universität des Saarlandes, 1997.

Extensional Higher-Order Resolution 71

BK98. Christoph Benzmüller and Michael Kohlhase. LEO, a higher-order theorem
prover. to appear at CADE-15, 1998.

dB72. Nicolaas Govert de Bruijn. Lambda calculus notation with nameless dum-
mies, a tool for automatic formula manipulation, with an application to the
Church-Rosser theorem. Indagationes Mathematicae, 34(5):381–392, 1972.

Göd31. Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica
und verwandter Systeme I. Monatshefte der Mathematischen Physik, 38:173–
198, 1931.

Hen50. Leon Henkin. Completeness in the theory of types. Journal of Symbolic
Logic, 15(2):81–91, 1950.

Hue73. Gérard P. Huet. A mechanization of type theory. In Donald E. Walker and
Lewis Norton, editors, Proc. IJCAI’73, pages 139–146, 1973.

JP76. D. C. Jensen and T. Pietrzykowski. Mechanizing ω-order type theory through
unification. Theoretical Computer Science, 3:123–171, 1976.

Koh94. Michael Kohlhase. A Mechanization of Sorted Higher-Order Logic Based on
the Resolution Principle. PhD thesis, Universität des Saarlandes, 1994.

Koh95. Michael Kohlhase. Higher-Order Tableaux. In P. Baumgartner, et al. eds,
TABLEAUX’95, volume 918 of LNAI, pages 294–309, 1995.

Mil83. Dale Miller. Proofs in Higher-Order Logic. PhD thesis, Carnegie-Mellon
University, 1983.

Smu63. Raymond M. Smullyan. A unifying principle for quantification theory. Proc.
Nat. Acad Sciences, 49:828–832, 1963.

Can a Higher-Order and a First-Order Theorem
Prover Cooperate?�

Christoph Benzmüller1, Volker Sorge2, Mateja Jamnik3, and Manfred Kerber2

1 Fachbereich Informatik, Universität des Saarlandes
66041 Saarbrücken, Germany (www.ags.uni-sb.de/~chris)

2 School of Computer Science, The University of Birmingham
Birmingham B15 2TT, England, UK (www.cs.bham.ac.uk/~{vxs|mmk})

3 University of Cambridge Computer Laboratory
Cambridge CB3 0FD, England, UK (www.cl.cam.ac.uk/~mj201)

Abstract. State-of-the-art first-order automated theorem proving sys-
tems have reached considerable strength over recent years. However, in
many areas of mathematics they are still a long way from reliably prov-
ing theorems that would be considered relatively simple by humans. For
example, when reasoning about sets, relations, or functions, first-order
systems still exhibit serious weaknesses. While it has been shown in the
past that higher-order reasoning systems can solve problems of this kind
automatically, the complexity inherent in their calculi and their ineffi-
ciency in dealing with large numbers of clauses prevent these systems
from solving a whole range of problems.
We present a solution to this challenge by combining a higher-order and a
first-order automated theorem prover, both based on the resolution prin-
ciple, in a flexible and distributed environment. By this we can exploit
concise problem formulations without forgoing efficient reasoning on first-
order subproblems. We demonstrate the effectiveness of our approach on
a set of problems still considered non-trivial for many first-order theorem
provers.

1 Introduction

When dealing with problems containing higher-order concepts, such as sets, func-
tions, or relations, today’s state-of-the-art first-order automated theorem provers
(ATPs) still exhibit weaknesses on problems considered relatively simple by hu-
mans (cf. [14]). One reason is that the problem formulations use an encoding
in a first-order set theory, which makes it particularly challenging when trying
to prove theorems from first principles, that is, basic axioms. Therefore, to aid
ATPs in finding proofs, problems are often enriched by hand-picked additional
lemmata, or axioms of the selected set theory are dropped leaving the theory
incomplete. This has recently motivated extensions of state-of-the-art first-order
� This work was supported by EPSRC grant GR/M22031 and DFG-SFB 378 (first

author), EU Marie-Curie-Fellowship HPMF-CT-2002-01701 (second author), and
EPSRC Advanced Research Fellowship GR/R76783 (third author).

F. Baader and A. Voronkov (Eds.): LPAR 2004, LNAI 3452, pp. 415–431, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

www.ags.uni-sb.de/~chris
www.cl.cam.ac.uk/~mj201

416 C. Benzmüller et al.

calculi and systems, as for example presented in [14] for the Saturate system.
The extended Saturate system can solve some problems from the SET domain
in the TPTP [24] which Vampire [21] and E-Setheo’s [23] cannot solve.

While it has already been shown in [6,2] that many problems of this nature
can be easily proved from first principles using a concise higher-order represen-
tation and the higher-order resolution ATP Leo, the combinatorial explosion
inherent in Leo’s calculus prevents the prover from solving a whole range of
possible problems with one universal strategy. Often higher-order problems re-
quire only relatively few but essential steps of higher-order reasoning, while the
overwhelming part of the reasoning is first-order or even propositional level. This
suggests that Leo’s performance could be improved when combining it with a
first-order ATP to search efficiently for a possible refutation in the subset of
those clauses that are essentially first-order.

The advantages of such a combination — further discussed in Sec. 2 — are
not only that many problems can still be efficiently shown from first principles
in a general purpose approach, but also that problems can be expressed in a
very concise way. For instance, we present 45 problems from the SET domain
of the TPTP-v3.0.1, together with their entire formalisation in less than two
pages in this paper, which is difficult to achieve within a framework that does
not provide λ-abstraction. We use this problem set, which is an extension of the
problems considered in [14], in Sec. 4 to show the effectiveness of our approach.
While many of the considered problems can be proved by Leo alone with some
strategy, the combination of Leo with the first-order ATP Bliksem [11] is not
only able to show more problems, but also needs only a single strategy to solve
them. Several of our problems are considered very challenging by the first-order
community and five of them (of which Leo can solve four) have a TPTP rating
of 1.00, saying that they cannot be solved by any TPTP prover to date.

Technically, the combination — described in more detail in Sec. 3 — has been
realised in the concurrent reasoning system Oants [22,8] which enables the co-
operation of hybrid reasoning systems to construct a common proof object. In
our past experiments, Oants has been successfully employed to check the valid-
ity of set equations using higher-order and first-order ATPs, model generation,
and computer algebra [5]. While this already enabled a cooperation between
Leo and a first-order ATP, the proposed solution could not be classified as a
general purpose approach. A major shortcoming was that all communication of
partial results had to be conducted via the common proof object, which was
very inefficient for hard examples. Thus, the solved examples from set theory
were considered too trivial, albeit they were often similar to those still consid-
ered challenging in the TPTP in the first-order context. In this paper we now
present a novel approach to the cooperation between Leo and Bliksem inside
Oants by decentralising communication. This leads not only to a higher overall
efficiency — Sec. 4 details our results — but also to a general purpose approach
based on a single strategy in Leo.

Can a Higher-Order and a First-Order Theorem Prover Cooperate? 417

2 Why Linking Higher-Order and First-Order?

Existing higher-order ATPs generally exhibit deficits in efficiently reasoning with
first-order problems for several reasons. Unlike in the case of first-order provers,
for which sophisticated calculi and strategies, as well as advanced implementa-
tion techniques, such as term indexing [19], have been developed, fully mech-
anisable higher-order calculi are still at a comparably early stage of develop-
ment. Some problems are much harder in higher-order, for instance, unification
is undecidable, strong constraining term- and literal-orderings are not available,
extensionality reasoning and set variable instantiation has to be addressed. Nev-
ertheless, for some mathematical problem domains, such as naive set theory, for
instance, automated higher-order reasoning performs very well.

We motivate the need for linking higher-order and first-order ATPs with some
examples from Table 1. It contains a range of challenging problems taken from
the TPTP, against which we will evaluate our system in Sec. 4. The problems are
given by the identifiers used in the SET domain of the TPTP, and are formalised
in a variant of Church’s simply typed λ-calculus with prefix polymorphism. In
classical type theory terms and all their sub-terms are typed. Polymorphism
allows the introduction of type variables such that statements can be made for
all types. For instance, in problem SET014+4 the universally quantified variable
Xoα denotes a mapping from objects of type α to objects of type o. We use
Church’s notation oα, which stands for the functional type α → o. The reader is
referred to [1] for a more detailed introduction. In the remainder, o will denote
the type of truth values, and small Greek letters will denote arbitrary types.
Thus, Xoα (resp. its η-longform λyα Xy) is actually a characteristic function
denoting the set of elements of type α, for which the predicate associated with
X holds. As further notational convention, we use capital letter variables to
denote sets, functions, or relations, while lower case letters denote individuals.
Types are usually only given in the first occurrence of a variable and omitted if
inferable from the context.

The problems in Table 1 employ defined concepts that are specified in a
knowledge base of hierarchical theories that Leo has access to. All concepts
necessary for defining our problems in Table 1 are given in Table 2. Concepts are
defined in terms of λ-expressions and they may contain other, already specified
concepts. For presentation purposes, we use customary mathematical symbols
∪,∩, etc., for some concepts like union, intersection, etc., and we also use infix
notation. For instance, the definition of union on sets can be easily read in
its more common mathematical representation A ∪ B := {x|x ∈ A ∨ x ∈ B}.
Before proving a problem, Leo always expands — recursively, if necessary — all
occurring concepts. This straightforward expansion to first principles is realised
by an automated preprocess in our current approach.

SET171+3 We first discuss example SET171+3 to contrast our formalisation to
a standard first-order one. After recursively expanding the input problem, that is,
completely reducing it to first principles, Leo turns it into a negated unit clause.
Since this initial clause is not in normal form, Leo first normalises it with explicit

418 C. Benzmüller et al.

Table 1. Problems from TPTP for the evaluation of Oants

SET Problem Formalisation

014+4 ∀Xoα, Yoα, Aoα [[X ⊆ A ∧ Y ⊆ A] ⇒ (X ∪ Y) ⊆ A]
017+1 ∀xα, yα, zα [UnOrderedPair(x, y) = UnOrderedPair(x, z) ⇒ y = z]
066+1 ∀xα, yα [UnOrderedPair(x, y) = UnOrderedPair(y, x)
067+1 ∀xα, yα [UnOrderedPair(x, x) ⊆ UnOrderedPair(x, y)]
076+1 ∀xα, yα ∀Zoα x ∈ Z ∧ y ∈ Z ⇒ UnOrderedPair(x, y) ⊆ Z
086+1 ∀xα ∃yα [y ∈ Singleton(x)]
096+1 ∀Xoα, yα [X ⊆ Singleton(y) ⇒ [X = ∅ ∨ X = Singleton(y)]]
143+3 ∀Xoα, Yoα, Zoα [(X ∩ Y) ∩ Z = X ∩ (Y ∩ Z)]
171+3 ∀Xoα, Yoα, Zoα [X ∪ (Y ∩ Z) = (X ∪ Y) ∩ (X ∪ Z)]
580+3 ∀Xoα, Yoα, uα [u ∈ ExclUnion(X, Y) ⇔ [u ∈ X ⇔ u
∈ Y]]
601+3 ∀ Xoα, Yoα, Zoα[(X ∩ Y) ∪ ((Y ∩ Z) ∪ (Z ∩ X)) = (X ∪ Y) ∩ ((Y ∪ Z) ∩ (Z ∪ X))]
606+3 ∀Xoα, Yoα [X\(X ∩ Y) = X\Y]
607+3 ∀Xoα, Yoα [X ∪ (Y \X) = X ∪ Y]
609+3 ∀Xoα, Yoα, Zoα [X\(Y \Z) = (X\Y) ∪ (X ∩ Z)]
611+3 ∀Xoα, Yoα [X ∩ Y = ∅ ⇔ X\Y = X]
612+3 ∀Xoα, Yoα, Zoα [X\(Y ∪ Z) = (X\Y) ∩ (X\Z)]
614+3 ∀Xoα, Yoα, Zoα [(X\Y)\Z = X\(Y ∪ Z)]
615+3 ∀Xoα, Yoα, Zoα [(X ∪ Y)\Z = (X\Z) ∪ (Y \Z)]
623+3 ∀Xoα, Yoα, Zoα [ExclUnion(ExclUnion(X, Y), Z) = ExclUnion(X, ExclUnion(Y, Z))]
624+3 ∀Xoα, Yoα, Zoα [Meets(X, (Y ∪ Z)) ⇔ [Meets(X, Y) ∨ Meets(X, Z)]]
630+3 ∀Xoα, Yoα [Misses(X ∩ Y, ExclUnion(X, Y))]
640+3 ∀Roβα, Qoβα [Subrel(R, Q) ⇒ Subrel(R, (λuα �) × (λvβ �))]
646+3 ∀xα, yβ [Subrel(Pair(x, y), (λuα �) × (λvβ �))]
647+3 ∀Roβα, Xoα [(RDom(R) ⊆ X) ⇒ Subrel(R, X × RCodom(R))]
648+3 ∀Roβα, Yoβ [(RCodom(R) ⊆ Y) ⇒ Subrel(R, RDom(R) × Y)]
649+3 ∀Roβα, Xoα, Yoβ [[RDom(R) ⊆ X ∧ RCodom(R) ⊆ Y] ⇒ Subrel(R, X × Y)]
651+3 ∀Roβα [RDom(R) ⊆ Aoα ⇒ Subrel(R, A × (λuβ �))]
657+3 ∀Roβα [Field(R) ⊆ ((λuα �) ∪ (λvβ �))]
669+3 ∀Roαα [Subrel(Id(λuα �), R) ⇒ [(λuα �) ⊆ RDom(R) ∧ (λuα �) = RCodom(R)]]
670+3 ∀Zoα, Roβα, XoαYoβ [IsRelOn(R, X, Y) ⇒ IsRelOn(RestrictRDom(R, Z), Z, Y)]
671+3 ∀Zoα, Roβα, Xoα, Yoβ [[IsRelOn(R, X, Y) ∧ X ⊆ Z] ⇒ RestrictRDom(R, Z) = R]
672+3 ∀Zoβ , Roβα, XoαYoβ [IsRelOn(R, X, Y) ⇒ IsRelOn(RestrictRCodom(R, Z), X, Z)]
673+3 ∀Zoβ , Roβα, Xoα, Yoβ [[IsRelOn(R, X, Y) ∧ Y ⊆ Z] ⇒ RestrictRCodom(R, Z) = R]
680+3 ∀Roβα, Xoα, Yoβ [IsRelOn(R, X, Y) ⇒

[∀uα u ∈ X ⇒ [u ∈ RDom(R) ⇔ ∃vβ v ∈ Y ∧ R(u, v)]]]
683+3 ∀Roβα, Xoα, Yoβ [IsRelOn(R, X, Y) ⇒

[∀vβ v ∈ Y ⇒ [v ∈ RCodom(R) ⇒ ∃uα u ∈ X ∧ u ∈ RDom(R)]]]
684+3 ∀Poβα, Roγβ , xα, zγ [RelComp(P, R)xz ⇔ ∃yβ Pxy ∧ Ryz]
686+3 ∀Zoα, Roγβ , xα [x ∈ InverseImageR(R, Z) ⇔ ∃yα Rxy ∧ x ∈ Z]
716+4 ∀Fβα, Gγβ [[Inj (F) ∧ Inj (G)] ⇒ Inj (G ◦ F)]
724+4 ∀Fβα, Gγβ , Hγβ [[F ◦ G = F ◦ H ∧ Surj (F)] ⇒ G = H]
741+4 ∀Fβα, Gγβ , Hαγ [[Inj ((F ◦ G) ◦ H) ∧ Surj ((G ◦ H) ◦ F) ∧ Surj ((H ◦ F) ◦ G)] ⇒ Bij (H)]
747+4 ∀Fβα, Gγβ , �1

oαα, �2
oββ , �3

oγγ [[IncreasingF(F, �1, �2) ∧ DecreasingF(G, �2, �3)] ⇒
DecreasingF(F ◦ G, �1, �3)]

752+4 ∀Xoα, Yoα, Fβα [ImageF(F, X ∪ Y) = ImageF(F, X) ∪ ImageF(F, Y)]
753+4 ∀Xoα, Yoα, Fβα [ImageF(F, X ∩ Y) ⊆ ImageF(F, X) ∩ ImageF(F, Y)]
764+4 ∀Fβα [InverseImageF(F, ∅) = ∅]
770+4 ∀Roβα, Qoβα [[EquivRel(R) ∧ EquivRel(Q)] ⇒

[EquivClasses(R) = EquivClasses(Q) ∨ Disjoint(EquivClasses(R), EquivClasses(Q))]]

clause normalisation rules to reach some proper initial clauses. In our concrete
case, this normalisation process leads to the following unit clause consisting of a
(syntactically not solvable) unification constraint (here Boα, Coα,Doα are Skolem
constants and Bx is obtained from expansion of x ∈ B):

[(λxα Bx ∨ (Cx ∧ Dx)) =? (λxα (Bx ∨ Cx) ∧ (Bx ∨ Dx))]

Note that negated primitive equations are generally automatically converted
by Leo into unification constraints. This is why [(λxα Bx ∨ (Cx ∧ Dx)) =?

Can a Higher-Order and a First-Order Theorem Prover Cooperate? 419

Table 2. Defined concepts occurring in problems from Table 1

Defined Notions in Theory Typed Set
∈ := λxα, Aoα [Ax]
∅ := [λxα ⊥]

⊆ := λAoα, Boα [∀xα x ∈ A ⇒ x ∈ B]
∪ := λAoα, Boα [λxα x ∈ A ∨ x ∈ B]
∩ := λAoα, Boα [λxα x ∈ A ∧ x ∈ B]

:= λAoα [λxα x /∈ A]
\ := λAoα, Boα [λxα x ∈ A ∧ x /∈ B]

ExclUnion(,) := λAoα, Boα [(A\B) ∪ (B\A)]
Disjoint(,) := λAoα, Boα [A ∩ B = ∅]

Meets(,) := λAoα, Boα [∃xα x ∈ A ∧ x ∈ B]
Misses(,) := λAoα, Boα [¬∃xα x ∈ A ∧ x ∈ B]

Defined Notions in Theory Relation
UnOrderedPair(,) := λxα, yα [λuα u = x ∨ u = y]

Singleton() := λxα [λuα u = x]
Pair(,) := λxα, yβ [λuα, vβ u = x ∧ v = y]

× := λAoα, Boβ [λuα, vβ u ∈ A ∧ v ∈ B]
RDom() := λRoβα [λxα ∃yβ Rxy]

RCodom() := λRoβα [λyβ ∃xα Rxy]
Subrel(,) := λRoβα, Qoβα [∀xα ∀yα Rxy ⇒ Qxy]

Id() := λAoα [λxα, yα x ∈ A ∧ x = y]
Field() := λRoβα [RDom(B) ∪ RCodom(R)]

IsRelOn(, ,) := λRoβα, Aoα λBoβ [∀xα, yβ Rxy ⇒ (x ∈ A ∧ x ∈ B)]
RestrictRCodom(,) := λRoβα, Aoα [λxα, yβ x ∈ A ∧ Rxy]

RelComp(,) := λRoβα, Qoγβ [λxα, zγ ∃yβ Rxy ∧ Ryz]
InverseImageR(,) := λRoβα, Boβ [λxα ∃yβ y ∈ B ∧ Rxy]

Reflexive() := λRoβα [∀xα Rxx]
Symmetric() := λRoβα [∀xα ∀yα Rxy ⇒ Ryx]
Transitive() := λRoβα [∀xα ∀yα ∀zα Rxy ∧ Ryz ⇒ Rxz]

EquivRel() := λRoβα [Reflexive(R) ∧ Symmetric(R) ∧ Transitive(R)]
EquivClasses() := λRoαα [λAoα ∃uα u ∈ A ∧ ∀vα v ∈ A ⇔ Ruv]

Defined Notions in Theory Function
Inj () := λFβα [∀xα, yβ F (x) = F (y) ⇒ x = y]

Surj () := λFβα [∀yβ ∃xα y = F (x)]
Bij () := λFβα Surj (F) ∧ Inj (F)

ImageF(,) := λFβα, Aoα [λyβ ∃xα x ∈ A ∧ y = F (x)]
InverseImageF(,) := λFβα, Boβ [λxα ∃yβ y ∈ B ∧ y = F (x)]

◦ := λFβα, Gγβ [λxα G(F (x))]
IncreasingF(, ,) := λFβα, �1

oαα, �2
oββ [∀xα, yα x �1 y ⇒ F (x) �2 F (y)]

DecreasingF(, ,) := λFβα, �1
oαα, �2

oββ [∀xα, yα x �1 y ⇒ F (y) �2 F (x)]

(λxα (Bx ∨ Cx) ∧ (Bx ∨ Dx))] is generated, and not [(λxα Bx ∨ (Cx ∧ Dx)) =
(λxα (Bx∨Cx)∧ (Bx∨Dx))]F . Observe, that we write [.]T and [.]F for positive
and negative literals, respectively. Leo then applies its goal directed functional
and Boolean extensionality rules which replace this unification constraint by the
negative literal (where x is a Skolem constant):

[(Bx ∨ (Cx ∧ Dx)) ⇔ ((Bx ∨ Cx) ∧ (Bx ∨ Dx))]F

This unit clause is again not normal; normalisation, factorisation and subsump-
tion yield the following set of clauses:

[Bx]F [Bx]T ∨ [Cx]T [Bx]T ∨ [Dx]T [Cx]F ∨ [Dx]F

This set is essentially of propositional logic character and trivially refutable. Leo

needs 0.56 seconds for solving the problem and generates a total of 36 clauses.
Let us consider now this same example SET171+3 in its first-order formula-

tion from the TPTP (see Table 3). We can observe that the assumptions provide

420 C. Benzmüller et al.

Table 3. TPTP problem SET171+3 — distributivity of ∪ over ∩

Assumptions: ∀B, C, x [x ∈ (B ∪ C) ⇔ x ∈ B ∨ x ∈ C] (1)

∀B, C, x [x ∈ (B ∩ C) ⇔ x ∈ B ∧ x ∈ C] (2)

∀B, C [B = C ⇔ B ⊆ C ∧ C ⊆ B] (3)

∀B, C [B ∪ C = C ∪ B] (4)

∀B, C [B ∩ C = C ∩ B] (5)

∀B, C [B ⊆ C ⇔ ∀x x ∈ B ⇒ x ∈ C] (6)

∀B, C [B = C ⇔ ∀x x ∈ B ⇔ x ∈ C] (7)

Proof Goal: ∀B, C, D [B ∪ (C ∩ D) = (B ∪ C) ∩ (B ∪ D)] (8)

only a partial axiomatisation of naive set theory. On the other hand, the specifi-
cation introduces lemmata that are useful for solving the problem. In particular,
assumption (7) is trivially derivable from (3) with (6). Obviously, clausal normal-
isation of this first-order problem description yields a much larger and more diffi-
cult set of clauses. Furthermore, definitions of concepts are not directly expanded
as in Leo. It is therefore not surprising that most first-order ATPs still fail to
prove this problem. In fact, very few TPTP provers were successful in proving
SET171+3. Amongst them are Muscadet 2.4. [20], Vampire 7.0, and Satu-

rate. The natural deduction system Muscadet uses special inference rules for
sets and needs 0.2 seconds to prove this problem. Vampire needs 108 seconds.
The Saturate system [14] (which extends Vampire with Boolean extension-
ality rules that are a one-to-one correspondence to Leo’s rules for Extensional
Higher-Order Paramodulation [3]) can solve the problem in 2.9 seconds while
generating 159 clauses. The significance of such comparisons is clearly limited
since different systems are optimised to a different degree. One noted difference
between the experiments with first-order provers listed above, and the experi-
ments with Leo and Leo-Bliksem is that first-order systems often use a case
tailored problem representation (e.g., by avoiding some base axioms of the ad-
dressed theory), while Leo and Leo-Bliksem have a harder task of dealing with
a general (not specifically tailored) representation.

For the experiments with Leo and the cooperation of Leo with the first-order
theorem prover Bliksem, λ-abstraction as well as the extensionality treatment
inherent in Leo’s calculus [4] is used. This enables a theoretically4 Henkin-
complete proof system for set theory. In the above example SET171+3, Leo gen-
erally uses the application of functional extensionality to push extensional unifi-
cation constraints down to base type level, and then eventually applies Boolean
extensionality to generate clauses from them. These are typically much simpler
and often even propositional-like or first-order-like (FO-like, for short), that is,
they do not contain any ‘real’ higher-order subterms (such as a λ-abstraction or

4 For pragmatic reasons, such as efficiency, most of Leo’s tactics are incomplete. Leo’s
philosophy is to rely on a theoretically complete calculus, but to practically provide
a set of complimentary strategies so that these cover a broad range of theorems.

Can a Higher-Order and a First-Order Theorem Prover Cooperate? 421

embedded equations), and are therefore suitable for treatment by a first-order
ATP or even a propositional logic decision procedure.

SET624+3 Sometimes, extensionality treatment is not required and the origi-
nally higher-order problem is immediately reduced to only FO-like clauses. For
example, after expanding the definitions, problem SET624+3 yields the following
clause (where Boα, Coα,Doα are again Skolem constants):

[(∃xα (Bx ∧ (Cx ∨ Dx)) ⇔ ((∃xα Bx ∧ Cx) ∨ (∃xα Bx ∧ Dx))]F

Normalisation results in 26 FO-like clauses, which present a hard problem for
Leo: it needs approx. 35 seconds (see Sec. 4) to find a refutation, whereas first-
order ATPs only need a fraction of a second.

SET646+3 Sometimes, problems are immediately refuted after the initial clause
normalisation. For example, after definition expansion in problem SET646+3 we
get the following clause (where Boα, Coα, xα are again Skolem constants):

[Ax ⇒ (∀yβ By ⇒ (∀uα ∀vβ (u = x ∧ v = y) ⇒ ((¬⊥) ∧ (¬⊥))))]F

Normalisation in Leo immediately generates a basic refutation (i.e., a clause
[⊥]T ∨ [⊥]T) without even starting proof search.

SET611+3 The examples discussed so far all essentially apply extensionality
treatment and normalisation to the input problem in order to immediately gen-
erate a set of inconsistent FO-like clauses. Problem SET611+3 is more compli-
cated as it requires several reasoning steps in Leo before the initially consistent
set of available FO-like clauses grows into an inconsistent one. After definition
expansion, Leo is first given the input clause:

[∀Aoα, Boα (λxα (Ax ∧ Bx)) = (λxα ⊥)) ⇔ (λxα (Ax ∧ ¬Bx)) = (λxα Ax)]F

which it normalises into:

[(λxα (Ax ∧ Bx)) =? (λxα ⊥)] ∨ [(λxα (Ax ∧ ¬Bx)) =? (λxα Ax)] (9)
[(λxα (Ax ∧ Bx)) = (λxα ⊥)]T ∨ [(λxα (Ax ∧ ¬Bx)) = (λxα Ax)]T (10)

As mentioned before, the unification constraint (9) corresponds to:

[(λxα (Ax ∧ Bx)) = (λxα ⊥)]F ∨ [(λxα (Ax ∧ ¬Bx)) = (λxα Ax)]F (11)

Leo has to apply to each of these clauses and to each of their literals appro-
priate extensionality rules. Thus, several rounds of Leo’s set-of-support-based
reasoning procedure are required, so that all necessary extensionality reasoning
steps are performed, and sufficiently many FO-like clauses are generated which
can be refuted by Bliksem.

In summary, each of the examples discussed in this section exposes a motiva-
tion for our higher-order/first-order cooperative approach to theorem proving.
In particular, they show that:

422 C. Benzmüller et al.

– Higher-order formulations allow for a concise problem representation which
often allows easier and faster proof search than first-order formulations.

– Higher-order problems can often be reduced to a set of first-order clauses
that can be more efficiently handled by a first-order ATP.

– Some problems are trivially refutable after clause normalisation.
– Some problems require in-depth higher-order reasoning before a refutable

first-order clause set can be extracted.

3 Higher-Order/First-Order Cooperation via Oants

The cooperation between higher-oder and first-order reasoners, which we inves-
tigate in this paper, is realised in the concurrent hierarchical blackboard archi-
tecture Oants [7]. We first describe in Sec. 3.1 the existing Oants architecture.
In order to overcome some of its problems, in particular efficiency problems, we
devised within Oants a new and improved cooperation method for the higher-
order ATP Leo and first-order provers (in particular, Bliksem) – we describe
this in Sec. 3.2. We address the question of how to generate the necessary clauses
in Sec. 3.3, and discuss soundness and completeness of our implementation of
the higher-order/first-order cooperation in Sec. 3.4.

3.1 Oants

Oants was originally conceived to support interactive theorem proving but was
later extended to a fully automated proving system [22,8]. Its basic idea is to
compose a central proof object by generating, in each proof situation, a ranked
list of potentially applicable inference steps. In this process, all inference rules,
such as calculus rules or tactics, are uniformly viewed with respect to three
sets: premises, conclusions, and additional parameters. The elements of these
three sets are called arguments of the inference rule and they usually depend
on each other. An inference rule is applicable if at least some of its arguments
can be instantiated with respect to the given proof context. The task of the
Oants architecture is now to determine the applicability of inference rules by
computing instantiations for their arguments.

The architecture consists of two layers. On the lower layer, possible instanti-
ations of the arguments of individual inference rules are computed. In particular,
each inference rule is associated with its own blackboard and concurrent pro-
cesses, one for each argument of the inference rule. The role of every process is
to compute possible instantiations for its designated argument of the inference
rule, and to record these on the blackboard. The computations are carried out
with respect to the given proof context and by exploiting information already
present on the blackboard, that is, argument instantiations computed by other
processes. On the upper layer, the information from the lower layer is used for
computing and heuristically ranking the inference rules that are applicable in
the current proof state. The most promising rule is then applied to the central

Can a Higher-Order and a First-Order Theorem Prover Cooperate? 423

proof object and the data on the blackboards is cleared for the next round of
computations.

Oants employs resource reasoning to guide search.5 This enables the con-
trolled integration (e.g., by specifying time-outs) of full-fledged external rea-
soning systems such as automated theorem provers, computer algebra systems,
or model generators into the architecture. The use of the external systems is
modelled by inference rules, usually one for each system. Their corresponding
computations are encapsulated in one of the independent processes in the ar-
chitecture. For example, an inference rule modelling the application of an ATP
has its conclusion argument set to be an open goal. A process can then place
an open goal on the blackboard, where it is picked up by a process that applies
the prover to it. Any computed proof or partial-proof from the external system
is again written to the blackboard from where it is subsequently inserted into
the proof object when the inference rule is applied. While this setup enables
proof construction by a collaborative effort of diverse reasoning systems, the co-
operation can only be achieved via the central proof object. This means that all
partial results have to be translated back and forth between the syntaxes of the
integrated systems and the language of the proof object. Since there are many
types of integrated systems, the language of the proof object — a higher-order
language even richer than Leo’s, together with a natural deduction calculus —
is expressive but also cumbersome. This leads not only to a large communication
overhead, but also means that complex proof objects have to be created (large
clause sets need to be transformed into large single formulae to represent them in
the proof object; the support for this in Oants to date is inefficient), even if the
reasoning of all systems involved is clause-based. Consequently, the cooperation
between external systems is typically rather inefficient [5].

3.2 Cooperation via a Single Inference Rule

In order to overcome the problem of the communication bottleneck described
above, we devised a new method for the cooperation between a higher-order
and a first-order theorem prover within Oants. Rather than modelling each
theorem prover as a separate inference rule (and hence needing to translate
the communication via the language of the central proof object), we model the
cooperation between a higher-order (concretely, Leo) and a first-order theorem
prover (in our case study Bliksem) in Oants as a single inference rule. The
cooperation between these two theorem provers is carried out directly and not via
the central proof object. This avoids translating clause sets into single formulae
and back. While in our previous approach the cooperation between Leo and
an FO-ATP was modelled at the upper layer of the Oants architecture, our
new approach presented in this paper models their cooperation by exploiting the
lower layer of the Oants blackboard architecture. This is not an ad hoc solution,

5
Oants provides facilities to define and modify the processes at run-time. But notice
that we do not use these advanced features in the case study presented in this paper.

424 C. Benzmüller et al.

but rather, it demonstrates Oants’s flexibility in modelling the integration of
cooperative reasoning systems.

Concretely, the single inference rule modelling the cooperation between Leo

and a first-order theorem prover needs four arguments to be applicable: (1) an
open proof goal, (2) a partial Leo proof, (3) a set of FO-like clauses in the
partial proof, (4) a first-order refutation proof for the set of FO-like clauses.
Each of these arguments is computed, that is, its instantiation is found, by
an independent process. The first process finds open goals in the central proof
object and posts them on the blackboard associated with the new rule. The
second process starts an instance of the Leo theorem prover for each new open
goal on the blackboard. Each Leo instance maintains its own set of FO-like
clauses. The third process monitors these clauses, and as soon as it detects a
change in this set, that is, if new FO-like clauses are added by Leo, it writes
the entire set of clauses to the blackboard. Once FO-like clauses are posted, the
fourth process first translates each of the clauses directly into a corresponding
one in the format of the first-order theorem prover, and then starts the first-order
theorem prover on them. Note that writing FO-like clauses on the blackboard is
by far not as time consuming as generating higher-order proof objects. As soon
as either Leo or the first-order prover finds a refutation, the second process
reports Leo’s proof or partial proof to the blackboard, that is, it instantiates
argument (2). Once all four arguments of our inference rule are instantiated, the
rule can be applied and the open proof goal can be closed in the central proof
object. That is, the open goal can be proved by the cooperation between Leo

and a first-order theorem prover. When computing applicability of the inference
rule, the second and the fourth process concurrently spawn processes running
Leo or a first-order prover on a different set of FO-like clauses. Thus, when
actually applying the inference rule, all these instances of provers working on
the same open subgoal are stopped.

The cooperation can be carried out between any first-order theorem prover
and Leo instantiated with any strategy, thus resulting in different instantiations
of the inference rule discussed above. While several first-order provers are inte-
grated in Oants and could be used, Bliksem was sufficient for the case study
reported in this paper (see Sec. 4). In most cases, more than one Bliksem pro-
cess was necessary. But as the problems were always concerned with only one
subgoal, only one Leo process had to be started.

Our approach to the cooperation between a higher-order and a first-order
theorem prover has many advantages. The main one is that the communication
is restricted to the transmission of clauses, and thus it avoids intermediate trans-
lation into the language of the central proof object. This significantly reduces
the communication overhead and makes effective proving of more involved theo-
rems feasible. A disadvantage of this approach is that we cannot easily translate
and integrate the two proof objects produced by Leo and Bliksem into the
central proof object maintained by Oants, as is possible when applying only
one prover per open subgoal. Providing such translation remains future work.
The repercussions will be discussed in more detail in Sec. 3.4.

Can a Higher-Order and a First-Order Theorem Prover Cooperate? 425

3.3 Extracting FO-Like Clauses from Leo

Crucial to a successful cooperation between Leo and a first-order ATP is obvi-
ously the generation of FO-like clauses. Leo always maintains a heap of FO-like
clauses. In the current Leo system this heap remains rather small since Leo’s
standard calculus intrinsically avoids primitive equality and instead provides
a rule that replaces occurrences of primitive equality with their corresponding
Leibniz definitions which are higher-order. The Leibniz principle defines equal-
ity as follows =oαα:= λxα λyα [∀Poα Px ⇒ Py]. Leo also provides a rule which
replaces syntactically non-unifiable unification constraints between terms of non-
Boolean base type by their respective representations that use Leibniz equality.
While the clauses resulting from these rules are still refutable in Leo, they are
not refutable by Bliksem without adding set theory axioms. We illustrate the
effect by the following simple example, where aι, bι, and fιι are constants:

a = b ⇒ f(a) = f(b)

Depending on whether we work with primitive equality or Leibniz equality this
problem is reduced to the clause sets in either (12) or (13) respectively (in the
latter Poι is a new free variable, and Qoι is a new Skolem constant):

[a = b]T [f(a) =? f(b)] (12)
[Pa]F ∨ [Pb]T [Q(f(a))]T [Q(f(b))]F (13)

While the former is obviously refutable in Bliksem, the latter is not. Leo, how-
ever, still finds a refutation for the latter and generates the crucial substitution
P ← λxα Q(f(x)) by higher-order pre-unification.

To circumvent this problem, we adapted the relevant rules in Leo. Instead
of immediately constructing Leibniz representation of clauses, an intermediate
representation containing primitive equality is generated and dumped on the
heap of FO-like clauses. As a consequence, additional useful FO-like clauses are
accumulated and the heap can become quite large, in particular, since we do
not apply any subsumption to the set of FO-like clauses (this is generally done
more efficiently by a first-order ATP anyway). Recent research has shown that
Leibniz equality is generally very bad for automating higher-order proof search.
Thus, future work in Leo includes providing support for full primitive equality
and avoiding Leibniz equations.

3.4 Soundness and Completeness of the Cooperation

Clearly, soundness and completeness properties depend on the corresponding
properties of the systems involved, in our case, of Leo and Bliksem.
Soundness: The general philosophy of Oants is to ensure the correctness of
proofs by the generation of explicit proof objects, which can be checked inde-
pendently from the proof generation. In particular, reasoning steps of ATPs have
to be translated into Oants’s natural deduction calculus via the Tramp proof

426 C. Benzmüller et al.

transformation system [17] to be machine-checkable. Since the cooperative proof
result of Leo-Bliksem cannot yet be directly inserted into the centralised proof
object, the generation of a machine-checkable proof object is not yet supported.
One possible solution is to insert Bliksem proofs into Leo proofs at the right
places. Then, the modified Leo proofs can be inserted into the centralised proof
object, and hence, explicit proof objects can be generated by Oants. In princi-
ple, there is no problem with this, however, it is not yet implemented.

While there are many advantages in guaranteeing correctness of proofs by
checking them, it is worth noting that the combination of Leo and Bliksem

is sound under the assumption that the two systems are sound. Namely, to
prove a theorem it is sufficient to show that a subset of clauses generated in
the proof is inconsistent. If Leo generates an inconsistent set of clauses, then
it does so correctly by assumption, be it a FO-like set or not. Assuming that
the translation from FO-like clauses to truly first-order clauses preserves consis-
tency/inconsistency, then a set of clauses that is given to Bliksem is inconsistent
only if Leo generated an inconsistent set of clauses in the first place. By the as-
sumption that Bliksem is sound follows that Bliksem will only generate the
empty clause when the original clause set was inconsistent.

Thus, soundness of our cooperative approach critically relies only on the
soundness of the selected transformational mapping from FO-like clauses to
proper first-order clauses. We use the mapping from Tramp, which has been
previously shown to be sound and is based on [16]. Essentially, it injectively maps
expressions such as P (f(a)) to expressions such as @1

pred(P,@1
fun(f, a)), where

the @ are new first-order operators describing function and predicate applica-
tion for particular types and arities. The injectivity of the mapping guarantees
soundness, since it allows each proof step to be mapped back from first-order to
higher-order. Hence, our higher-order/first-order cooperative approach between
Leo and Bliksem is sound.
Completeness: Completeness (in the sense of Henkin completeness) can in prin-
ciple be achieved in higher-order systems, but practically, the strategies used
are typically not complete for efficiency reasons. Let us assume that we use a
complete strategy in Leo. All that our procedure does is pass FO-like clauses
to Bliksem. Hence, no proofs can be lost in this process. That is, completeness
follows trivially from the completeness of Leo.

The more interesting question is whether particular cooperation strategies
will be complete as well. For instance, in Leo we may want to give higher
preference to real higher-order steps which guarantee the generation of first-
order clauses.

4 Experiments and Results

We conducted several experiments to evaluate our hybrid reasoning approach.
In particular, we concentrated on problems given in Table 1. We investigated
several Leo strategies in order to compare Leo’s individual performance with
the performance of the Leo-Bliksem cooperation. Our example set differs from

Can a Higher-Order and a First-Order Theorem Prover Cooperate? 427

the one in [14] in that it contains some additional problems, and it also omits
an entry for problem SET108+1. This problem addresses the universal class and
can therefore not be formalised in type theory in the same concise way as the
other examples, but only in a way very similar to the one given in TPTP.

Table 4 presents the results of our experiments. All timings given in the
table are in seconds. The first column contains the TPTP identifier of the prob-
lem. The second column relates some of the problems to their counterparts in the
Journal of Formalized Mathematics (JFM; see mizar.org/JFM) where they orig-
inally stem from. This eases the comparison with the results in [6,2], where the
problems from the JFM article Boolean Properties of Sets were already solved:
the problems are named with prefix ‘B:’. Prefix ‘RS1:’ stands for the JFM ar-
ticle Relations Defined on Sets. The third column lists the TPTP (v3.0.1 as of
20 January 2005, see http://www.tptp.org) difficulty rating of the problem,
which indicates how hard the problem is for first-order ATPs (difficulty rating
1.00 indicates that no TPTP prover can solve the problem).

The fourth, fifth and sixth columns list whether Saturate, Muscadet

(v2.4) and E-Setheo (csp04), respectively, can (+) or cannot (–) solve a prob-
lem. The seventh column lists the timing results for Vampire (v7). The results
for Saturate are taken from [14] (a ‘?’ in Table 4 indicates that the result
was not listed in [14] and is thus unavailable). The results for Muscadet and
E-Setheo are taken from the on-line version of the solutions provided with the
TPTP. Since the listed results were obtained from different experiments on dif-
ferent platforms, their run-time comparison would be unfair, and was thus not
carried out. The timings for Vampire, on the other hand, are based on private
communication with A. Voronkov and they were obtained on a computer with a
very similar specification as we used for the Leo-Bliksem timings. Note, that
the results for Vampire and E-Setheo reported in [14] differ for some of the
problems to the ones in TPTP. This is probably due to different versions of the
systems tested, for instance, the TPTP uses Vampire version 7, while the results
reported in [14] are based on version 5. The results in columns four through to
seven show that some problems are still very hard for first-order ATPs, as well
as for the special purpose theorem prover Muscadet. Column eight and nine
in Table 4 list the results for Leo alone and Leo-Bliksem, respectively. Each
of these two columns is further divided into sub-columns to allow for a detailed
comparison.

All our experiments (for the values of Leo and Leo-Bliksem) were con-
ducted on a 2.4 GHz Xenon machine with 1GB of memory and an overall time
limit of 100 seconds. For our experiments with Leo alone in column eight in
Table 4 we tested four different strategies. Mainly, they differ in their treat-
ment of equality and extensionality. This ranges from immediate expansion of
primitive equality with Leibniz equality and limited extensionality reasoning,
STANDARD (ST), to immediate expansion of primitive equality and moderate
extensionality reasoning, EXT, to delayed expansion of primitive equality and
moderate extensionality reasoning, EXT-INPUT (EI), and finally to delayed ex-
pansion of primitive equality and advanced recursive extensionality reasoning,

http://www.tptp.org

428 C. Benzmüller et al.

Table 4. Experimental data for the benchmark problems given in Table 1

TPTP- Mizar Diffi- Satu- Mus E-Se- Vamp- LEO LEO-Bliksem

Problem Problem culty rate cadet theo ire 7 Strat. Cl. Time Cl. Time FOcl FOtm GnCl
SET014+4 .67 + + + .01 ST 41 .16 34 6.76 19 .01 7
SET017+1 .56 – – + .03 EXT 3906 57.52 25 8.54 16 .01 74
SET066+1 1.00 ? – – – – – – 26 6.80 20 10 56
SET067+1 .56 + + + .04 ST 6 .02 13 .32 16 .01 12
SET076+1 .67 + – + .00 – – – 10 .47 18 .01 35
SET086+1 .22 + – + .04 ST 4 .01 4 .01 N/A N/A N/A
SET096+1 .56 + – + .03 – – – 27 7.99 14 .01 25
SET143+3 B:67 .67 + + + 68.71 EIR 37 .38 33 7.93 18 .01 19
SET171+3 B:71 .67 + + – 108.31 EIR 36 .56 25 4.75 19 .01 20
SET580+3 B:23 .44 + + + 14.71 EIR 25 .19 6 2.73 8 .01 13
SET601+3 B:72 .22 + + + 168.40 EIR 145 2.20 55 4.96 8 .01 13
SET606+3 B:77 .78 + – + 62.02 EIR 21 .33 17 10.8 15 .01 5
SET607+3 B:79 .67 + + + 65.57 EIR 22 .31 17 7.79 15 .01 6
SET609+3 B:81 .89 + + – 161.78 EIR 37 .60 26 6.50 19 10 17
SET611+3 B:84 .44 + – + 60.20 EIR 996 12.69 72 32.14 38 .01 101
SET612+3 B:85 .89 + – – 113.33 EIR 41 .54 18 3.95 6 .01 7
SET614+3 B:88 .67 + + – 157.88 EIR 38 .46 19 4.34 16 .01 17
SET615+3 B:89 .67 + + – 109.01 EIR 38 .57 17 3.59 6 .01 9
SET623+3 B:99 1.00 ? – – – EXT 43 8.84 23 9.54 10 .01 14
SET624+3 B:100 .67 + – + .04 ST 4942 34.71 54 9.61 46 .01 212
SET630+3 B:112 .44 + – + 60.39 EIR 11 .07 6 .08 8 10 4
SET640+3 RS1:2 .22 + – + 70.41 EIR 2 .01 2 .01 N/A N/A N/A
SET646+3 RS1:8 .56 + – + 59.63 EIR 2 .01 2 .01 N/A N/A N/A
SET647+3 RS1:9 .56 + – + 64.21 EIR 26 .15 13 .30 13 .01 15
SET648+3 RS1:10 .56 + – + 64.22 EIR 26 .15 14 .30 13 .01 16
SET649+3 RS1:11 .33 – – + 63.77 EIR 45 .30 29 5.49 12 .01 16
SET651+3 RS1:13 .44 – – + 63.88 EIR 20 .10 11 .16 10 10 11
SET657+3 RS1:19 .67 + – + 1.44 EIR 2 .01 2 .01 N/A N/A N/A
SET669+3 RS1:19 .22 – – + .34 EI 35 .22 35 .23 N/A N/A N/A
SET670+3 RS1:33 1.00 ? – – – EXT 15 .17 17 .36 16 .01 6
SET671+3 RS1:34 .78 – – + 218.02 EIR 78 .64 7 2.71 10 .01 14
SET672+3 RS1:35 1.00 ? – – – EXT 27 .4 30 .70 21 .01 11
SET673+3 RS1:36 .78 – – + 47.86 EIR 78 .65 14 5.66 14 .01 16
SET680+3 RS1:47 .33 + – + .07 ST 185 .88 29 4.61 18 .01 24
SET683+3 RS1:50 .22 + – + .06 ST 46 .20 35 8.90 18 10 24
SET684+3 RS1:51 .78 – – + .33 ST 275 2.45 46 5.95 26 .01 47
SET686+3 RS1:53 .56 – – + .11 ST 274 2.36 46 5.37 26 .01 46
SET716+4 .89 + + – – ST 39 .45 18 3.81 18 .01 118
SET724+4 .89 + + – – EXT 154 2.75 18 7.21 15 10 23
SET741+4 1.00 ? – – – – – – – – – – –
SET747+4 .89 – + – – ST 34 .46 25 1.11 18 10 10
SET752+4 .89 ? + – – – – – 50 6.60 48 .01 4363
SET753+4 .89 ? + – – – – – 15 3.07 12 10 19
SET764+4 .56 + + + .02 EI 9 .05 8 .04 N/A N/A N/A
SET770+4 .89 + + – – – – – – – – – –

EXT-INPUT-RECURSIVE (EIR). Column eight in Table 4 presents the fastest
strategy for a respective problem (Strat.), the number of clauses generated by
Leo (Cl.), and the total runtime (Time). While occasionally there were more
than one Leo strategy that could solve a problem, it should be noted that none
of the strategies was successful for all the problems solved by Leo.

In contrast to the experiments with Leo alone, we used only the EXT-INPUT
strategy for our experiments with the Leo-Bliksem cooperation. Column nine in
Table 4 presents the number of clauses generated by Leo (Cl.) together with the
time (Time), and in addition, the number of first-order clauses sent to Bliksem

(FOcl), the time used by Bliksem (FOtm), and the number of clauses generated

Can a Higher-Order and a First-Order Theorem Prover Cooperate? 429

by Bliksem (GnCl). Note, that we give the data only for the first instance that
Bliksem actually succeeded in solving the problem. This time also includes
the time needed to write and process input and output files over the network.
While Leo and instances of Bliksem were running in separate threads (each
run of Bliksem was given a 50 second time limit), the figures given in the
‘Time’ column reflect the overall time needed for a successful proof. That is,
it contains the time needed by all concurrent processes: Leo’s own process as
well as those processes administering the various instances of Bliksem. Since
all these processes ran on a single processor, there is potential to ameliorate the
overall runtimes by using real multiprocessing.

Note also, that the number of clauses in Leo’s search space is typically low
since subsumption is enabled. Subsumption, however, was not enabled for the
accumulation of FO-like clauses in Leo’s bag of FO-like clauses. This is why
there are usually more clauses in this bag (which is sent to Bliksem) than there
are available in Leo’s search space. Finally, observe that for some problems a
refutation was found after Leo’s clausal normalisation, and therefore Bliksem

was not applicable (N/A).
While Leo itself can solve a majority of the considered problems with some

strategy, the Leo-Bliksem cooperation can solve more problems and, moreover,
needs only a single Leo strategy. We can also observe that for many problems
that appear to be relatively hard for Leo alone (e.g., SET017+1, SET611+3,
SET624+3), the Leo-Bliksem cooperation solves them not only more quickly,
but also it sometimes reduces the problems to relatively small higher-order pre-
processing steps with subsequent easy first-order proofs, as for instance, in the
case of SET017+1.

From a mathematical viewpoint the investigated problems are trivial and,
hence, they should ideally be reliably and very efficiently solvable within a
proof assistant. This has been achieved for the examples in Table 4 (except for
SET741+4 and SET770+4) by our hybrid approach. While some of the proof
attempts now require slightly more time than when using Leo alone with a spe-
cialised strategy, they are, in most cases, still faster than when proving with a
first-order system.

5 Related Work and Conclusion

Related to our approach is the Techs system [12], which realises a coopera-
tion between a set of heterogeneous first-order theorem provers. Similarly to our
approach, partial results in Techs are exchanged between the different theo-
rem provers in form of clauses. The main difference to the work of Denzinger
et al. (and other related architectures like [13]) is that our system bridges be-
tween higher-order and first-order automated theorem proving. Also, unlike in
Techs, we provide a declarative specification framework for modelling exter-
nal systems as cooperating, concurrent processes that can be (re-)configured at
run-time. Related is also the work of Hurd [15] which realises a generic inter-
face between HOL and first-order theorem provers. It is similar to the solution

430 C. Benzmüller et al.

previously achieved by Tramp [17] in Omega, which serves as a basis for the
sound integration of ATPs into Oants. Both approaches pass essentially first-
order clauses to first-order theorem provers and then translate their results back
into HOL resp. Omega. Some further related work on the cooperation of Is-
abelle with Vampire is presented in [18]. The main difference of our work to
the related systems is that while our system calls first-order provers from within
higher-order proof search, this is not the case for [15,17,18].

One of the motivations for our work is to show that the cooperation of higher-
order and first-order automated theorem provers can be very successful and ef-
fective. The results of our case study provide evidence for this: our non-optimised
system outperforms related work on state-of-the-art first-order theorem provers
and their ad hoc extensions such as Saturate [14] on 45 mathematical problems
chosen from the TPTP SET category. Among them are four problems which
cannot be solved by any TPTP system to date. In contrast to the first-order
situation, these problems can in fact be proved in our approach reliably from
first principles, that is, without avoiding relevant base axioms of the underlying
set theory, and moreover, without the need to provide relevant lemmata and
definitions by hand.

The results of our case study motivate further research in the automation
of higher-order theorem proving and the experimentation with different higher-
order to first-order transformation mappings (such as the ones used by Hurd)
that support our hybrid reasoning approach. They also provide further evidence
for the usefulness of the Oants approach as described in [8,5] for flexibly mod-
elling the cooperation of reasoning systems.

Our results also motivate the need for a higher-order extension of the TPTP
library in which alternative higher-order problem formalisations are linked with
their first-order counterparts so that first-order theorem provers could also be
evaluated against higher-order systems (and vice versa).

Future work is to investigate how far our approach scales up to more complex
problems and more advanced mathematical theories. In less trivial settings as
discussed in this paper, we will face the problem of selecting and adding relevant
lemmata to avoid immediate reduction to first principles and to appropriately
instantiate set variables. Relevant related work for this setting is Bishop’s ap-
proach to selectively expand definitions as presented in [9] and Brown’s PhD
thesis on set comprehension in Church’s type theory [10].
Acknowledgements For advice and help we thank Chad Brown, Andreas
Meier, Andrei Voronkov, and Claus-Peter Wirth.

References

1. P. Andrews. An Introduction to mathematical logic and Type Theory: To Truth
through Proof. Number 27 in Applied Logic Series. Kluwer, 2002.

2. C. Benzmüller. Equality and Extensionality in Higher-Order Theorem Proving.
PhD thesis, Universität des Saarlandes, Germany, 1999.

3. C. Benzmüller. Extensional higher-order paramodulation and RUE-resolution.
Proc. of CADE-16, LNAI 1632, p. 399–413. Springer, 1999.

Can a Higher-Order and a First-Order Theorem Prover Cooperate? 431

4. C. Benzmüller. Comparing approaches to resolution based higher-order theorem
proving. Synthese, 133(1-2):203–235, 2002.

5. C. Benzmüller, M. Jamnik, M. Kerber, and V. Sorge. Experiments with an Agent-
Oriented Reasoning System.Proc. of KI 2001, LNAI 2174, p.409--424. Springer, 2001.

6. C. Benzmüller and M. Kohlhase. LEO – a higher-order theorem prover. Proc. of
CADE-15, LNAI 1421. Springer, 1998.

7. C. Benzmüller and V. Sorge. A Blackboard Architecture for Guiding Interactive
Proofs. Proc. of AIMSA’98, LNAI 1480, p. 102–114. Springer, 1998.

8. C. Benzmüller and V. Sorge. Oants – An open approach at combining Interactive
and Automated Theorem Proving. Proc. of Calculemus-2000. AK Peters, 2001.

9. M. Bishop and P. Andrews. Selectively instantiating definitions. Proc. of CADE-
15, LNAI 1421. Springer, 1998.

10. C. E. Brown. Set Comprehension in Church’s Type Theory. PhD thesis, Dept. of
Mathematical Sciences, Carnegie Mellon University, USA, 2004.

11. H. de Nivelle. The Bliksem Theorem Prover, Version 1.12. Max-Planck-Institut,
Saarbrücken, Germany, 1999.
http://www.mpi-sb.mpg.de/~bliksem/manual.ps.

12. J. Denzinger and D. Fuchs. Cooperation of Heterogeneous Provers. Proc. IJCAI-
16, p. 10–15. Morgan Kaufmann, 1999.

13. M. Fisher and A. Ireland. Multi-agent proof-planning. CADE-15 Workshop “Using
AI methods in Deduction”, 1998.

14. H. Ganzinger and J. Stuber. Superposition with equivalence reasoning and delayed
clause normal form transformation. Proc. of CADE-19, LNAI 2741. Springer, 2003.

15. J. Hurd. An LCF-style interface between HOL and first-order logic. Automated
Deduction — CADE-18, LNAI 2392, p. 134–138. Springer, 2002.

16. M. Kerber. On the Representation of Mathematical Concepts and their Translation
into First Order Logic. PhD thesis, Universität Kaiserslautern, Germany, 1992.

17. A. Meier. TRAMP: Transformation of Machine-Found Proofs into Natural Deduction
Proofs at the Assertion Level. Proc. of CADE-17, LNAI 1831. Springer, 2000.

18. J. Meng and L. C. Paulson. Experiments on supporting interactive proof using
resolution. Proc. of IJCAR 2004, LNCS 3097, p. 372–384. Springer, 2004.

19. R. Nieuwenhuis, Th. Hillenbrand, A. Riazanov, and A. Voronkov. On the evalua-
tion of indexing techniques for theorem proving. Proc. of IJCAR-01, LNAI 2083,
p. 257–271. Springer, 2001.

20. D. Pastre. Muscadet2.3 : A knowledge-based theorem prover based on natural
deduction. Proc. of IJCAR-01, LNAI 2083, p. 685–689. Springer, 2001.

21. A. Riazanov and A. Voronkov. Vampire 1.1 (system description). Proc. of IJCAR-
01, LNAI 2083, p. 376–380. Springer, 2001.

22. V. Sorge. OANTS: A Blackboard Architecture for the Integration of Reasoning Tech-
niques into Proof Planning. PhD thesis, Universität des Saarlandes, Germany, 2001.

23. G. Stenz and A. Wolf. E-SETHEO: An Automated3 Theorem Prover – System
Abstract. Proc. of the TABLEAUX’2000, LNAI 1847, p. 436–440. Springer, 2000.

24. G. Sutcliffe and C. Suttner. The TPTP Problem Library: CNF Release v1.2.1.
Journal of Automated Reasoning, 21(2):177–203, 1998.

http://www.mpi-sb.mpg.de/~bliksem/manual.ps

Integrating Tps and
mega

Christoph Benzm�uller
Fachbereich Informatik, Universit�at des Saarlandes, Germany

chris@cs.uni-sb.de

Matthew Bishop1

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, USA
mbishop+@cs.cmu.edu

Volker Sorge
Fachbereich Informatik, Universit�at des Saarlandes, Germany

sorge@ags.uni-sb.de

Abstract: This paper reports on the integration of the higher-order theorem proving
environment Tps [Andrews et al., 1996] into the mathematical assistant
mega [Benz-
m�uller et al., 1997]. Tps can be called from
mega either as a black box or as an
interactive system. In black box mode, the user has control over the parameters which
control proof search inTps; in interactive mode, all features of theTps-system are avail-
able to the user. If the subproblem which is passed to Tps contains concepts de�ned in

mega's database of mathematical theories, these de�nitions are not instantiated but
are also passed to Tps. Using a special theory which contains proof tactics that model
the ND-calculus variant of Tps within
mega, any complete or partial proof generated
in Tps can be translated one to one into an
mega proof plan. Proof transformation is
realised by proof plan expansion in
mega's 3-dimensional proof data structure, and
remains transparent to the user.

1 Introduction

Current theorem proving systems, whether automatic or interactive, are usually
strong in some domains while lacking reasoning power in others. Furthermore,
there are no standardised formats for databases of higher-order problems, as
there are for �rst-order problems [Sutcli�e et al., 1994], and so higher-order the-
orem provers are generally unable to share databases of problems. In recent years
there have been several attempts to combine two or more systems and hence
to allow various theorem provers with di�erent proof strategies to cooperate
on a problem [Giunchiglia et al., 1996], to allow users of an interactive system
to invoke an external automatic system on a subproblem [Slind et al., 1998a;
Slind et al., 1998b; Meier, 1997; Dahn et al., 1994] or to avoid duplication of
work by sharing databases [Felty and Howe, 1997].

In this paper we describe the integration of the higher-order theorem proving
system Tps into the mathematical assistant
mega, and discuss the bene�ts
that this provides for both systems. For a preliminary report on our work we
refer to [Benzm�uller and Sorge, 1998b].

1 Supported by the National Science Foundation under grant CCR-9624683.

Journal of Universal Computer Science, vol. 5, no. 3 (1999), 188-207
submitted: 1/11/98, accepted: 15/3/99, appeared: 28/3/99  Springer Pub. Co.

1.1 The Tps system

Tps [Andrews et al., 1996] is a higher-order theorem proving system for clas-
sical type theory (Church's simply-typed �-calculus). Proofs in Tps may be
constructed automatically using the matings method (connection method) [An-
drews, 1981], or interactively using an extended variant of Gentzen's natural
deduction calculus [Gentzen, 1935]. Automatic proofs may be translated into
natural deduction format [Miller, 1984; Pfenning, 1987], and hence the user may
interleave the automatic and interactive proof methods by, for example, invoking
the automatic component on a subproblem of a partially-completed interactive
proof. This translation between automatic and natural deduction proofs provides
the basis for the integration of Tps and
mega.

There are several built-in automatic search procedures in Tps, each of which
is governed by a set of parameters (known as
ags) which may be adjusted by
the user or even automatically by Tps itself. Furthermore Tps can expand de�-
nitions using the dual instantiation strategy described in [Bishop and Andrews,
1998]; this provides an e�ective way to decide which abbreviations to instanti-
ate during a proof. Tps provides a library for storing objects such as theorems,
de�nitions and modes (groups of
ag settings), and can also store and retrieve
�les containing sequences of commands (work �les) or natural deduction proofs
(proof �les). All of these facilities are also used in the integration of
mega and
Tps.

A more complete description of the capabilities of Tps is provided in [An-
drews et al., 1997], or online at http://www.cs.cmu.edu/~andrews/tps.html.

1.2 The
mega system

The
mega-system [Benzm�uller et al., 1997] is designed as an interactive mathe-
matical assistant system, aimed at supporting proof development in mainstream
mathematics. It consists of a variety of tools including a proof planner [Huang et
al., 1994], a graphical user interface L
UI [Siekmann et al., 1998], the Proverb
system [Huang and Fiedler, 1997] for translating proofs into natural language,
and a variety of external systems such as computer algebra systems [Kerber
et al., 1998], automated theorem provers [McCune, 1994; Baumgartner and Fur-
bach, 1994; Weidenbach et al., 1996] and constraint solvers.
mega also provides
the built-in higher-order theorem prover Leo [Benzm�uller and Kohlhase, 1998],
which specialises in reasoning about higher-order equality and extensionality.

mega is, like Tps, a theorem proving system for classical type theory
(Church's simply-typed �-calculus) which uses a ND calculus variant as its basic
inference mechanism. However the set of basic ND rules in Tps is larger than
that in
mega, in order to keep Tps proofs concise and readable. Therefore cer-
tain rules in Tps abstract over small subproofs (such as RuleP, which abstracts
over proofs in propositional logic, cf. Section 3). In
mega, however, the set of
basic ND-rules is just large enough to ensure completeness, and all extensions to
the basic ND-calculus (e.g. equality substitution) are de�ned as tactics. Never-
theless, proofs can be both constructed and displayed on several abstract levels
by using a 3-dimensional data structure (see Section 2) for representing (partial)
proofs. The structure on the one hand enables the user to freely switch back and
forth between di�erent abstract levels and on the other hand provides a means

189Benzmueller Ch., Bishop M., Sorge V.: Integrating TPS and Omega

for directly integrating results of external reasoners while leaving the expansion
to the calculus level to
mega's tactic mechanism.

Further information and an online version of
mega are available over the
Internet at http://www.ags.uni-sb.de/~omega/.

1.3 Bene�ts of integrating Tps and
mega

Both Tps and
mega use a higher-order logic based on Church's simply-typed
�-calculus, and both use a Gentzen-style natural deduction calculus; this makes
the integration somewhat easier and more natural than it might otherwise have
been. However, the two systems are still di�erent enough for each to bene�t
considerably from the other.

mega is designed to be a mathematical assistant, and so contains a small
basic set of natural deduction rules, plus many de�ned tactics.
mega provides
facilities such as a database of mathematical theories, a proof planner, proof
verbalisation, integration of computer algebra systems and �rst-order theorem
provers, and a graphical display in which the level of detail provided may be
varied by the user. Since many of the prede�ned theories contain higher-order
concepts, problems formulated in these theories will naturally lie beyond the
capabilities of the �rst-order theorem provers which have already been integrated
into
mega, and so the principal bene�t of the integration for
mega is the
addition of a powerful higher-order automated theorem prover as an external
reasoning component.

Tps, on the other hand, is designed to be a system for proving theorems in
a speci�c logic (as well as a tool for research into automated theorem proving).
Tps must keep its proofs as concise as possible, since it has a command-line
interface rather than the graphical interface of
mega, and so it contains a
larger range of natural deduction rules than
mega. Tps has comparatively
few prede�ned theories, since all but the smallest such theories contain far too
many axioms for any of its automatic search procedures to cope with. Further-
more, Tps cannot invoke any external reasoning components. For Tps, then,
the principal bene�ts of integration with
mega are the addition of a graphical
interface, proof verbalisation, and the ability to use external reasoning systems
(although the present integration does not allow Tps to call such systems itself,
it can in e�ect call them through
mega, since
mega can call both Tps and
the other systems, and any proof known to
mega can be passed to Tps).

2 Natural Deduction Proofs in
mega

The essential prerequisite for a smooth integration of Tps proofs into
mega
proofs is
mega's ability to expand abstract inference steps into inferences in
its own calculus. This enables the de�nition of abstract inference methods that
can incorporate both decision procedures and partial proofs from other systems.
In this section we will elaborate further on this issue by giving an overview of
the core of the
mega system.

The entire process of theorem proving in
mega can be viewed as an in-
terleaving process of proof planning, plan execution, and veri�cation, centred
around the so-called Proof Plan Data Structure (PDS). A PDS is a hierarchical
data structure which represents a (partial) proof at di�erent levels of abstraction

190 Benzmueller Ch., Bishop M., Sorge V.: Integrating TPS and Omega

check proof

Calculus-Level

Proof Rules (ND) Proof (ND)

composition
via different layers

Tactics, Methods Proof Plan (high-level)
controlled plan formation

expansion
via different layers

Calculus-Level

Figure 1:
mega's 3-dim. PDS

(called proof plans). It is represented as a directed acyclic graph, where the nodes
are justi�ed by tactics or methods. Conceptually, each justi�cation represents
a proof plan (the expansion of the justi�cation) at a lower level of abstraction
that is computed when the justi�cation is expanded. A proof plan can be recur-
sively expanded until a fully explicit proof on the calculus level (ND) has been
reached. In
mega, the original proof plan is kept in a 3-dimensional expansion
hierarchy (cf. Figure 1). Thus the PDS makes explicit the hierarchical structure
of proof plans and retains it for further applications such as proof explanation
or analogical transfer of plans.

Once a proof plan is completed, its justi�cations can successively be expanded
to verify the well-formedness of the resulting PDS. When the expansion process
is completed, the establishment of correctness of the ND proof relies solely on
the correctness of the veri�er and the calculus. This approach also provides a
basis for a controlled integration of external reasoning components { such as an
automated theorem prover or a computer algebra system { if each reasoner's
results can (on demand) be transformed into a sub-PDS.

A PDS can be constructed by automated or mixed-initiative planning, or
by pure user interaction. In particular, new pieces of the PDS can be added by
directly calling tactics, by inserting facts from a data base, or by calling some
external reasoner.

In order to demonstrate the basic expansion mechanism we consider the ND-
rule 8E and the simple tactic 8�E:

8x:A
[t=x]A

8E(t)
8x1; : : : ; xn:A

[t1=x1; : : : ; tn=xn]A
8�E(t1; : : : ; tn)

The application of the latter would be on an abstract level in the PDS and
its expansion to ND-level would result in a sequence of applications of the 8E-
rule. Besides providing a means for handling the application and expansion of
these rather small abstractions, the PDS is also the foundation for integrating
deductions from external reasoning components into
mega on a very abstract

191Benzmueller Ch., Bishop M., Sorge V.: Integrating TPS and Omega

insert proof
plan
=
insert original
TPS proof

OMEGA proof

OMEGA plan
datastructrure

plan
TPS (partial) proof

TPS problem

OMEGA ground
level proof

mappings
symbol + typesymbol

interactive proof
development in
ND-calculus

or

automatic proof search
with mating method
and backtranslation
in ND-calculus

Integration of TPS in OMEGA

C

B

A

extracted subproblem
& embedded definitions
& proof line mapping

1:1 translation of TPS proofs into OMEGA

one tactic for each TPS justification)
proof plans (TPS theory in OMEGA provides

proof transformation of
 TPS proofs
 OMEGA proofs
=
tactic expansion /
 unexpansion

D

E

Figure 2: The integration architecture

level. We exploit this possibility for the integration of Tps by specifying three
di�erent abstraction levels for Tps's deductions:

1. A single justi�cation expressing that a proof for a particular subproblem has
been found by Tps.

2. A second expansion level incorporates the original Tps proof into
mega's
PDS . On this level the justi�cations for the respective proof lines contain
the justi�cations of the original Tps proof.

3. A third level where the Tps justi�cations are mapped to corresponding

mega tactics. However, this level does not correspond to a proof on the
calculus level, as some of the tactics might need to be expanded even further.

3 The Integration

The general integration approach, as illustrated in Figure 2, is divided into �ve
steps A{E. Currently the integration is still one-directional; Tps can be used
from within
mega, but
mega cannot be used from within Tps. We start with
a partial proof plan, on an arbitrary abstraction level in
mega, that contains an
open subproblem we want to prove with Tps. In step A the focused subproblem
is extracted and, together with the relevant concepts from
mega's knowledge
base, translated into Tps syntax. In step B Tps reads the translated problem and
either tries to �nd a proof automatically (when called in automatic mode from

mega) or pops up its command interface for interactive proof development
(when called in interactive mode from
mega; see the screen-shot in Example 3

192 Benzmueller Ch., Bishop M., Sorge V.: Integrating TPS and Omega

in the appendix). The result is a complete or partial proof that is mirrored one-
to-one as an
mega proof plan in step C. In step D, this proof plan is inserted
into
mega's proof data structure (PDS) in order to �ll the given gap. Finally, a
Tps proof which has been modelled on
mega's proof tactic level is transformed
into a proper proof in
mega's basic ND-calculus by proof plan expansion in step
E. This transformation may require support from the other external reasoners
already integrated into
mega. Since all of the particular expansion steps in
the proof transformation are stored in
mega's 3-dimensional PDS ,
mega's
expansion/contraction mechanism for proof tactics allows the user to move freely
between the Tps proof on an abstract level, the proof on
mega's basic ND-
calculus level, and all of the intermediate levels of abstraction. This ensures that
proof transformation is transparent to the user, and remains so even as the user
examines the proof on di�erent levels of abstraction.

In the following we will discuss the particular integration steps in more detail,
using the following example as an illustration:

Example 1. (THM136) 8ro��:transitive (transitive-closure r)
This example states that the transitive closure of a relation is transitive2.

This problem is de�ned within
mega's theory RELATION, which also pro-
vides the recursively entailed de�ned concepts which are transitive-closure, tran-
sitive and sub-relation. These are de�ned as follows:
transitive-closure := �ro��:�x�:�y�:8qo��:

(sub-relation r q ^ transitive q)) q x y
transitive := �ro��:8x�; y�; z�:(r x y ^ r y z)) r x z
sub-relation := �ro��:�qo��:8x�; y�:r x y) q x y

3.1 A: Calling Tps from
mega

When calling Tps within
mega the user speci�es the subgoal to be proved,
some parameters which specify the proof heuristic to be used by Tps, and a time
limit for this proof attempt. Furthermore the user may specify de�nitions that
are entailed in the problem but which are not to be passed to Tps, in order to
force Tps to treat them as uninterpreted constants.

Firstly, the focused subproblem is extracted from
mega's PDS, by iden-
tifying the open subgoal explicitly mentioned as a parameter and determining
its support nodes. Then
mega computes the set of all de�ned concepts that
are recursively entailed in the extracted subproblem, and eliminates from this
set all those concepts which the user has explicitly prohibited from being passed
to Tps. Thus for THM136 we get exactly the three de�nitions shown above,
assuming that the user has permitted all de�nitions to be passed to Tps. In the
next step both this subproblem and the selected de�nitions are translated into
Tps syntax. As both systems implement a logic based upon Church's simply-
typed �-calculus, and even their representations of types are very similar, this
translation process is rather trivial, and we shall not discuss it in much detail.
However, there are some minor considerations to be taken care of:

2 Information on the syntax: In Tps the type (� ! �) !
 is denoted (
(��)). In
particular, the type o�� (i.e. ((o�)�)) is the type � ! � ! o of a binary relation
on objects of type �.

193Benzmueller Ch., Bishop M., Sorge V.: Integrating TPS and Omega

1. Tps uses a small set of constant symbols with a �xed semantics (e.g. the
logical connectives), and these symbols must not be rede�ned.

2. The polymorphic types which are allowed in
mega must usually be re-
named in order for Tps to interpret them correctly.

3. It is important to maintain a mapping between the initial Tps proof lines in
the translated subproblem and their counterparts in
mega's PDS.

Problems 1 and 2 are solved by setting up hash-tables within
mega which store
the necessary information about renamings of constant symbols (in 1) and the
correspondence between the polymorphic type-symbols (in 2). As the line num-
bering in Tps steadily changes, we can not use another hash-table for solving 3.
Fortunately, Tps allows the user to attach arbitrary additional information to
each proof line; we use this feature to mark the Tps proof lines in the translated
subproblem with the names of their counterparts on the
mega side.

Apart from the above-mentioned hash-tables, the most important results of
phase A are two �les containing all the necessary information for TPS. The
�rst �le | which we call the problem-�le | contains the information on the
subproblem in focus and the recursively embedded de�ned concepts. The second
�le | the command-�le | contains a sequence of commands to be executed by
Tps. These commands tell Tps to read the problem-�le, to set the proof tactic as
speci�ed by the user and, in the case that Tps is called in automatic mode (see
phase B), to invoke Tps's mating-search procedure. The problem-�le created by

mega for our example THM136 is presented in the appendix of this paper (see
Example 2).

3.2 B: Automatic or Interactive Proof Search in Tps

Tps can be called from
mega in either automatic or interactive mode. In the
former case the Tps core image is started as a black box and the only information
visible to the user is the time resource allocated to Tps's proof attempt. Tps
executes only the commands which are speci�ed in the command-�le created by

mega.

When Tps is called in interactive mode, an xterm with Tps's command user
interface pops up (see Example 3 in the appendix) and the interactive session
is initialised by the commands stored in the command-�le. The user can then
interactively use all the available features of Tps in order to construct a complete
or partial ND-style proof.

Tps's built-in proof transformation procedure [Miller, 1984; Pfenning, 1987]
translates mating proofs into ND-calculus such that, in both interactive and
automatic modes, the �nal result of the proof attempt is either a complete or
partial proof in Tps's ND-calculus variant. This (partial) proof is then stored in
a tps-output �le3 and passed back to
mega.

A very important feature of our approach is that Tps can use its mechanism
for dual instantiation [Bishop and Andrews, 1998] within its mating-search pro-
cedure. This is possible because we do not expand all de�ned concepts before

3 Actually there are two �les produced by Tps, one containing the (partial) proof in
ASCII format and one containing the same proof in a Lisp-like presentation. The
former is only used to present the original Tps proof within
mega and the latter,
which is the more important of the two, is used in phase C to translate the Tps
proof to
mega.

194 Benzmueller Ch., Bishop M., Sorge V.: Integrating TPS and Omega

passing the subproblem to Tps, but instead pass these concepts as additional
information and leave the subproblem as it is. Thus Tps can decide on its own
whether it is necessary to expand particular de�ned concepts or not. Example 1,
above, is a good example of a theorem which cannot be proven by Tps if all
the de�nitions are expanded before the mating-search procedure is called4. For
a detailed discussion see [Bishop and Andrews, 1998]. The proof generated by
Tps for THM136 is presented in Example 3 in the appendix.

3.3 C & D: Representing Tps Proofs as
mega-Proof Plans and
Insertion of Proof Plans

One main idea of our approach is to provide as transparent a translation mech-
anism as possible, by modelling Tps's ND-calculus variant on
mega's proof
tactic level. We implement this modelling by de�ning a special theory TPS in

mega's knowledge base. For each possible Tps ND justi�cation, the theory
TPS introduces a corresponding
mega-tactic; the expansion contents of some
of these tactics are presented in Example 5 in the appendix. There is one ad-
ditional black box tactic tps, which will be used to provide the most abstract
view of subproblems proven by Tps. The concrete proof translation proceeds as
follows:

1. A proof generated by Tps is mirrored one to one as a proof plan in
mega
by mapping the particular proof justi�cations in the Tps proof to the cor-
responding proof tactics provided by the special theory TPS in
mega's
knowledge base. In order to guarantee a correct mapping of the entailed
constants and type symbols, the translation process uses the hash-tables con-
structed by
mega in phase A. Furthermore, the correspondence between
the proof lines of the focused
mega-subproblem and the corresponding
Tps proof lines is given as explicit information in the Tps proof. The proof
plan we obtain for THM136 is presented as Example 4 in the appendix.

2. The resulting proof plan is then stored in
mega with a reference to the
subproblem on which Tps has been called. Some additional information
is also stored, such as the original Tps proof in ASCII format, the proof
parameters and some proof statistics.

In phase D the open line itself is �rst closed and justi�ed by using the special
black box tactic tps, thereby providing the most abstract view of the proof for
our subproblem in focus. By expanding this special tactic the corresponding
proof plan is inserted in
mega's PDS , and the structure of the original Tps
proof can be visualised in
mega's graphical user interface L
UI [Siekmann et
al., 1998]. Example 6 in the appendix presents the proof structure of the original
Tps proof for THM136 (see Examples 3 and 4), graphically visualised in L
UI.

3.4 E: Transparent Proof Transformation by Proof Plan Expansion

It remains to transform the abstract proof plan representing the Tps proof
into
mega's own basic ND-calculus variant. Such a proof transformation is

4 This theorem is still a challenging problem for current ATP's. Apart from a proof
constructed by
mega's proof planner using very special control information [Sehn,
1995], Tps is the only system known to the authors that can automatically �nd a
proof.

195Benzmueller Ch., Bishop M., Sorge V.: Integrating TPS and Omega

necessary, as
mega's philosophy on integrated systems is not to trust any
externally-produced proof until it can be transformed and proof checked on

mega's basic ND-calculus level. The transformation problem for Tps proofs
has a very simple solution since the ND-calculus variants of both systems are
very similar, and the other external reasoners already integrated to
mega
(e.g. Otter [McCune, 1994]) can fruitfully support the transformation in non-
trivial cases.

Proof transformation is realised via tactic expansion. Each proof tactic de-
�ned in
mega's special TPS theory contains speci�c expansion information
that maps any concrete application of this particular tactic onto a proof on a
lower, more detailed proof level in
mega's PDS. Thus, by stepwise tactic ex-
pansion, the original Tps proof mirrored in
mega can �nally be transformed
into
mega's basic ND-calculus level. A nice side e�ect of this approach is
that the original Tps proof, the corresponding
mega ND-proof and all inter-
mediate levels of the proof transformation process are permanently stored in

mega's PDS . Consequently the
exible tactic expansion/contraction mech-
anism in
mega allows users to analyse the proof on whatever level interests
them. Example 6 in the appendix presents two di�erent layers in
mega's PDS .

We distinguish four categories of expansion tactics de�ned in the TPS theory,
as follows:

I Simple mapping: Many rules of the ND-calculus variant of Tps have direct
counterparts in
mega. Examples are presented in Figure 3. Here tactic
tps*ForallE is mapped to
mega's basic ND-calculus rule 8E and the tactic
tps*Conj is mapped to the tactic ^E , which itself expands into the basic ND-
calculus rules ^El

and ^Er
. The expansion content of the tactic tps*ForallE

is presented in Example 5 in the appendix.
II Case Distinction: Some tactics of the TPS theory need case distinctions in

their expansion mapping. For example, the tactic tps*Neg justi�es applica-
tions of the push negation as well as the pull negation principle; see Figure 3.

mega provides the corresponding tactics Pushneg and Pullneg, and thus
the expansion of tps*Neg simply analyses the situation and maps to either
Pushneg or Pullneg, as appropriate. Both Pushneg and Pullneg are tactics
that expand with case distinction mappings to a lower level in
mega's
PDS . By subsequent tactic expansion we �nally get a medium-sized deriva-
tion in
mega's basic ND-calculus. The de�nition of the tactic tps*Neg is
presented in Example 5 in the appendix.

III Restructuring: Existential quanti�cation elimination in TPS (the particular
rule in TPS is called RuleC) structures a proof slightly di�erently from the
corresponding rule 9E in
mega; see Figure 3. Consequently the expansion
of the tactic tps*RuleC into rule 9E requires some simple restructuring of
the proof with respect to the dependencies between some proof lines.

IV External Reasoners: Tps abbreviates pure propositional logic derivations in
a complex ND proof with a single-step justi�cation, called RuleP, and hides
the boring details from the user. Thus both RuleP and the
mega-tactic
tps*RuleP mean that a particular proof line follows from some premise lines
by propositional logic. We need a way to expand this rather general justi�ca-
tion, with so little detailed information available, into a concrete derivation
in
mega's basic ND-calculus. An extravagant solution would be to imple-

196 Benzmueller Ch., Bishop M., Sorge V.: Integrating TPS and Omega

Cat. Tps tactic in
mega Expansion Mapping
mega's ND-calculus

I

....
8x:A

[x a]A
....

tps*Foralle(a)

....
8x:A

[x a]A
....

8E(a)

....
8x:A

[x a]A
....

8E(a)

I

....
A ^ B
A B....

tps*Conj

....
A ^ B
A B....

^E

....
A ^ B
A

^El

....
A ^ B
B

^Er

....

....
:A

A0

....

tps*Neg

....
:A

A0

....

Pushneg

....
:A

derivation D1

A0

....

II

....
A0

:A....

tps*Neg

....
A0

:A....

Pullneg

....
A0

derivation D2
:A....

III

....
9x:A

[[x a]A]1
tps*Choose(a)

....
B
B....

tps*RuleC1

....
9x:A

[[x a]A]1
....
B

B....

9E
1

....
9x:A

[[x a]A]1
....
B

B....

9E
1

IV

....
A

A0

....

tps*RuleP

....
A

A0

....

call-PL-ATP

....
A

derivation D3

A0

....

Figure 3: Transparent transformation of Tps proofs into
mega proofs, as re-
alised by
mega's tactic expansion mechanism.

197Benzmueller Ch., Bishop M., Sorge V.: Integrating TPS and Omega

ment a propositional logic prover in
mega and to employ this prover in the
expansion of tps*RuleP. Fortunately there are already several systems inte-
grated to
mega, such as the �rst-order provers Otter [McCune, 1994],
Spass [Weidenbach et al., 1996] or Protein [Baumgartner and Furbach,
1994], which can be used instead. In fact, Tps itself also provides a special
propositional logic mode that can be used to construct detailed proposi-
tional logic proofs. Hence no additional implementation e�ort with respect
to the expansion of tps*RuleP is necessary; we simply map tps*RuleP to a
recursive call of an arbitrary system, already integrated to
mega, that is
able to construct propositional logic derivations (see Figure 3). In the �rst
implementation we used Otter in connection with a special mapping from
higher-order to propositional logic. We can also map tps*RuleP back to a call
of Tps in propositional logic mode. Then, by expanding tps*RuleP,
mega's
tactic mechanism automatically performs a recursive call to Tps. The de�-
nition of the tactic tps*RuleP is presented in Example 5 in the appendix.

4 Examples

Our integration approach does not restrict the set of examples that can be proved
by Tps. If one introduces the necessary de�nitions in
mega's knowledge base
then generally all the theorems provable by Tps alone should be provable by
calling Tps from
mega as well. Among the Tps examples that have already
been proven by calling Tps from
mega (where they can be fully expanded and
proof checked) are5:
Cantor's theorem: 8go�:g <card (P g)
The cardinality of the powerset of a set g is greater than the cardinality of g.
THM15b: 8f��:(9g��:(iteratep+ f g)

^ (9x�:(g x) = x ^ (8z�:(g z) = z) z = x)
) (9y�:((f y) = y))

This theorem is discussed in detail in [Andrews et al., 1996]. It states that if
some positive iterate of f has a unique �xed point, then f has a �xed point.
THM48: 8f��:8g��:(injectivep f) ^ (injectivep g)) (injectivep (f � g))
The composition of injective functions is injective.
THM134: 8z�:8g��:(iteratep+ (�x�:z) g)) (8x�:(g x) = z)
The only positive iterate of a constant function is that function.
THM135: 8f��:8g

1
��:8g

2
��:(iteratep f g1)^(iteratep f g2)) (iteratep f (g1�g2))

The composition of two iterates of a function f is an iterate of f .

5 These examples from the Tps library are also discussed in [Andrews et al., 1996].The
de�nitions occurring in the above examples are de�ned in
mega's knowledgebase
(analogously to Tps's library) as follows:
<card := �go�:�ho�::9f��:(surjective g h f)
surjective := �fo�:�go�:�h��:8x�:(gx)) (9y�:(fy) ^ (x = (hy)))
P := superset, superset := �uo�:�vo�:8x�(u x)) (v x)
iteratep := �f��:�g��:8po��:(p (�u�:u) ^ (8j��:(p j)) (p (f � j))))) (p g)
iteratep+ := �f��:�g��:8po��:(p f) ^ (8j��:(p j)) (p (f � j)))) (p g)
injectivep := �f
� :8x�:8y� :((f x) = (f y))) (x = y)
� := �f
� :�g�
 :�x�:g (f x)

198 Benzmueller Ch., Bishop M., Sorge V.: Integrating TPS and Omega

THM270: 8f��:8g
�:8h
�: (8x�:h (f x) = g x) ^ (8y�:9x�:f x = y)
^ (8x�:8y�:f (x �1 y) = (f x) �2 (f y))
^ (8x�:8y�:g (x �1 y) = (g x) �3 (g y))
) (8x� :8y�:h (x �2 y) = (h x) �3 (h y))

If f is a surjective homomorphism, g is a homomorphism, and h is any function
such that for all x, h (f x) = g x, then h is a homomorphism.

In the following we present two examples, which are not automatically prov-
able in either Tps or
mega alone, and which motivate a cooperation between
the two systems.6

THM262: 8po(o�):partition p

) 9q(o��):equivalence-rel q ^ (equivalence-classes q) = p
This states that if p is a partition, then there is an equivalence relation q whose
equivalence classes are exactly the elements of p. We now demonstrate how a
partly interactive and partly automatic proof can be constructed, and show how
the integration of Tps and
mega can help with this task.

Suppose that the user begins by providing the appropriate instantiation for
q (namely �x�:�y�:9so�:p s^s x^s y).This reduces the problem to two subgoals:
proving that this lambda-term de�nes an equivalence relation, and proving that
the equivalence classes of this relation are exactly p. In both cases, we have the
hypothesis that p is a partition. The former subgoal can be proven automatically
by Tps in about 35 seconds. The latter subgoal is harder for Tps; however, by
using the interactive tactics for extensionality and universal generalisation, the
user can reduce it to (equivalence-classes (�x�:�y�:9s:p s ^ s x ^ s y) bo�) � p b.
This equivalence can in turn be reduced interactively to a pair of implications,
of which one (the right-to-left direction) can be proven automatically by Tps in
about 30 seconds. This leaves the left-to-right direction of the equivalence as the
only remaining subgoal to be proven. The automatic procedures of Tps cannot
produce a proof of this subgoal, due to the complexity of the equality reasoning
which is required, and so a user constructing this proof from within Tps would
have to complete the proof interactively. The proof of this subgoal is non-trivial,
and requires a signi�cant amount of work on the part of the user.

However, with the integrated system, the user can begin proving THM262
in
mega, exactly as above, calling Tps to complete two of the three subgoals
(none of the other systems integrated to
mega is known to be able to complete
either subproof). For the remaining subgoal, instead of laboriously constructing
an interactive proof, the user now has the additional option of invoking one of
the other automated provers which are integrated to
mega or to call
mega's
proof planner. It is very likely that an improved version of
mega0s own higher-
order theorem prover Leo, which specialises in reasoning about equality and
extensionality, will be able to �nd an automatic proof of this subgoal.7

6 The de�nitions used in this examples are as follows:
partition := �so(o�):(8po�:s p) (9:z�p z))^(8x�:9p:s p^p x^(8qo�:s q^q x) q = p))
equivalence-rel := �ro��:re
exive r ^ symmetric r ^ transitive r
equivalence-classes := �ro��:�so�:(9z�:s z) ^ (8x�:s x) (8y�:s y � r x y))
re
exive := �ro��:8x�:r x x symmetric := �ro��:8x�:8y�:r x y) r y x
transitive := �ro��:8x�:8y�:8z�:r x y ^ r y z) r x z ; := �X�:?

7 In principle Leo provides exactly the required extensionality treatment to solve this
subgoal, but due to its prototypical implementation Leo can still handle only small
search spaces; the search space de�ned by this problem is rather large because many
free predicate variables are involved. A technically improved and heuristically better-

199Benzmueller Ch., Bishop M., Sorge V.: Integrating TPS and Omega

The following statement (which we admit is rather contrived) serves to il-
lustrate some of the strengths and weaknesses of Tps and Leo, as it is only
provable when both systems cooperate.8

(9�ooo :>�>^:(?�?)^:(?�>)^:(>�?))^ (8moo:> 2 m � (>) >) 2 m)

The �rst conjunct claims the existence of the logical connective ^ which is spec-
i�ed by its truth table. In order to prove this statement primitive substitution9

has to be employed, which is strongly supported in Tps but widely avoided in
Leo. For the proof of the second statement, on the other hand, the uni�cation of
> 2 m and (>) >) 2 m requires a recursive call to the higher-order theorem
prover from within higher-order uni�cation. This most general form of exten-
sionality treatment is supported in Leo but not in Tps. Hence this conjunction
is provable in the combined system with three straightforward interactions.

Both examples illustrate that the integrated system of Tps and
mega al-
lows the user to complete some proofs in much fewer interactions than would be
required by either system alone. In fact, the few interactions which are required
are already supported by the suggestion mechanism in
mega [Benzm�uller and
Sorge, 1998a]. While this in itself is already a major bene�t to the user, it also
suggests that it should be possible to use the built-in proof planner of
mega to
oversee the cooperation of the various external systems, and to produce proofs
such as the one above without the necessity of user interaction.

5 Conclusion

Our objective was to integrate the two knowledge-based higher-order theorem
proving environments Tps and
mega in a way that would be as transparent to
the user as possible. We believe that the approach to integration described above,
although designed speci�cally for these two systems, provides some generally
interesting and elegant ideas.

Our work (see also [Benzm�uller and Sorge, 1998b]) is closely related to,
and was developed simultaneously with, the approach for integrating the proof
planner CLaM and the interactive theorem prover HOL [Slind et al., 1998a;
Slind et al., 1998b]. Although we must admit that our work was simpli�ed by
the fact that
mega and Tps are much more similar than are HOL and CLaM,
we believe that our approach provides some additional features, e.g. the commu-
nication of de�nitions between the two systems, and a more transparent proof
transformation process.

In conclusion, we now summarise some of the more interesting general prop-
erties of our integration method.

{ The integration of
mega and Tps also includes the communication of
system-speci�c knowledge de�ned in the systems' knowledge bases. Tps and

guided version of Leo, which is currently being re-implemented, will most likely be
able to �nd the proof.

8 Although this example looks rather trivial at �rst glance, to the knowledge of the
authors it is currently not automatically provable by any system.

9 The primitive substitution principle guesses instantiations for free predicate vari-
ables. In this case the prover has to guess the instantiation ^ for � and then to verify
the conditions speci�ed by the truth table.

200 Benzmueller Ch., Bishop M., Sorge V.: Integrating TPS and Omega

mega, which are both based on classical higher-order logic, do not need
to agree on common de�nitions, rules or other logical concepts (apart from
the logical connectives which are in any case identical in both systems), as
is necessary for the integration of, for example, CLaM and HOL [Slind et
al., 1998a; Slind et al., 1998b]. Instead,
mega need only communicate to
Tps all of the potentially important de�nitions and concepts belonging to
the the speci�c subproblem to be solved. Most importantly,
mega does not
expand any de�nition in the focused subproblem, but leaves the decision as
to whether this is useful or necessary to Tps, which can use its mechanism
for selectively instantiating de�nitions [Bishop and Andrews, 1998]. The user
may even actively prevent some de�ned concepts from being passed to Tps.

{ Tps is not only integrated as a fully automated black box system, but can
also be called as an interactive theorem prover. Thus
mega, with its hier-
archically structured knowledge base, can be seen in the integrated system as
a second user interface to the Tps system, with its own knowledge base. As
an automated black box system, Tps can be called from
mega either alone
or concurrently with other integrated theorem provers such as the �rst-order
systems Otter, Spass and Protein.

{ The
mega system models the particular ND-calculus variant used by Tps
by providing corresponding tactics in a special theory TPS which introduces
one
mega tactic for each Tps justi�cation. Hence any Tps proof can be
translated one to one into a corresponding
mega proof plan using the
tactics from theory TPS. As the structure of the resulting proof plans can be
visualised graphically in
mega's graphical user interface L
UI [Siekmann
et al., 1998] Tps thereby gains a visualisation tool and graphical interface
for free.

{ Proof transformation of Tps proofs (mirrored as proof plans in
mega)
into proofs in
mega's basic ND-calculus is realised by tactic expansion. As

mega's 3-dimensional proof data structure (PDS) permanently stores all
di�erent abstraction levels of a proof (the
mega basic ND-level proof at
the bottom layer, the mirrored Tps proof at an abstract level, and all in-
termediate abstraction levels between those), proof transformation becomes
and remains transparent to the user, who can freely move between di�erent
levels of abstraction in the proof.

{ Non-trivial tactic expansions (such as the one for RuleP) are supported by
other external reasoners that are already integrated to
mega, or even by
Tps itself. This saves us from having to de�ne and implement complicated
tactic expansions from scratch. Indeed, this can serve as a general approach
for a tactic-based proof transformation within a system like
mega that
already provides other integrated systems: as soon as a particular expan-
sion step seems overly complicated, one can recursively call other integrated
systems that are suited to support this particular expansion step.

{ The reuse of mirrored Tps proof plans within an analogy-based theorem
proving approach [Melis and Carbonell, 1998] is supported by our integra-
tion, as these proof plans are explicitly stored and thus available in
mega's
PDS . They can also be stored in
mega's knowledge base.

We are currently investigating whether Tps,
mega's own higher-order the-
orem prover Leo (which is specialised in reasoning about extensionality) and the
various �rst-order theorem provers which have been integrated with
mega can

201Benzmueller Ch., Bishop M., Sorge V.: Integrating TPS and Omega

fruitfully cooperate. We hope to use
mega's PDS as the central data structure
for the necessary information exchange between the cooperating systems, and

mega's planning mechanism to guide the cooperation between them.

References

[Andrews et al., 1996] P. B. Andrews, M. Bishop, S. Issar, D. Nesmith, F. Pfenning,
and H. Xi. Tps: A Theorem Proving System for Classical Type Theory. Journal of
Automated Reasoning, 16(3):321{353, 1996.

[Andrews et al., 1997] P. B. Andrews, S. Issar, D. Nesmith, F. Pfenning, H. Xi, and
M. Bishop. TPS3 Facilities Guide for Programmers and Users, 1997. 207+viii pp.

[Andrews, 1981] P. B. Andrews. Theorem Proving via General Matings. Journal of
the Association for Computing Machinery, 28(2):193{214, 1981.

[Baumgartner and Furbach, 1994] P. Baumgartner and U. Furbach. PROTEIN: A
PROver with a Theory Extension INterface. In Bundy [1994], pages 769{773.

[Benzm�uller and Kohlhase, 1998] C. Benzm�uller and M. Kohlhase. LEO, a higher-
order theorem prover. In Kirchner and Kirchner [1998], pages 139{143.

[Benzm�uller and Sorge, 1998a] C. Benzm�uller and V. Sorge. A blackboard architec-
ture for guiding interactive proofs. In F. Giunchiglia, editor, Proceedings of the 12th
International Conference on Automated Deduction, number 1480 in LNAI, pages
102{114, Sozopol, Bulgaria, 1998. Springer Verlag.

[Benzm�uller and Sorge, 1998b] C. Benzm�uller and V. Sorge. Integrating Tps with

mega. In J. Grundy and M. Newey, editors, Theorem Proving in Higher Order
Logics: Emerging Trends, Technical Report 98-08, Department of Computer Science,
pages 1{19, Canberra, Australia, 1998. The Australian National University.

[Benzm�uller et al., 1997] C. Benzm�uller, L. Cheikhrouhou, D. Fehrer, A. Fiedler,
X. Huang, M. Kerber, M. Kohlhase, K. Konrad, E. Melis, A. Meier, W. Schaar-
schmidt, J. Siekmann, and V. Sorge.
Mega: Towards a Mathematical Assistant.
In McCune [1997].

[Bishop and Andrews, 1998] M. Bishop and P. B. Andrews. Selectively Instantiating
De�nitions. In Kirchner and Kirchner [1998], pages 365{380.

[Bundy, 1994] A. Bundy, editor. Proceedings of CADE{12, volume 814 of LNAI.
Springer, Berlin, Germany, 1994.

[Dahn et al., 1994] B. I. Dahn, J. Gehne, T. Honigmann, L. Walther, and A. Wolf. In-
tegrating Logical Functions with ILF. Technical Report 94-10, Institut f�ur Mathe-
matik, Humboldt Universit�at zu Berlin, Germany, 1994.

[Felty and Howe, 1997] A. P. Felty and D. J. Howe. Hybrid Interactive Theorem Prov-
ing Using Nuprl and HOL. In McCune [1997], pages 351{365.

[Gentzen, 1935] G. Gentzen. Untersuchungen �uber das Logische Schlie�en I und II.
Mathematische Zeitschrift, 39:176{210, 405{431, 1935.

[Giunchiglia et al., 1996] F. Giunchiglia, P. Pecchiari, and C. Talcott. Reasoning The-
ories { Towards an Architecture for Open Mechanized Reasoning Systems. In
F. Baader and K. U. Schulz, editors, Frontiers of combining systems, volume 3 of
Applied logic series, pages 157 { 174, Dordrecht, The Netherlands, 1996. Kluwer
Academic Publishers.

[Huang and Fiedler, 1997] X. Huang and A. Fiedler. Proof Verbalization in
PROVERB. In Proceedings of the First International Workshop on Proof Trans-
formation and Presentation, pages 35{36, Schloss Dagstuhl, Germany, 1997.

[Huang et al., 1994] X. Huang, M. Kerber, J. Richts, and A. Sehn. Planning Mathe-
matical Proofs with Methods. Journal of Information Processing and Cybernetics
(formerly: EIK), 30(5/6):277{291, 1994.

[Kerber et al., 1998] Manfred Kerber, Michael Kohlhase, and Volker Sorge. Inte-
grating Computer Algebra Into Proof Planning. Journal of Automated Reasoning,
21(3):327{355, 1998.

202 Benzmueller Ch., Bishop M., Sorge V.: Integrating TPS and Omega

[Kirchner and Kirchner, 1998] C. Kirchner and H. Kirchner, editors. Proceedings of
CADE{15, volume 1421 of LNAI. Springer, Berlin, Germany, 1998.

[McCune, 1994] W. McCune. Otter 3.0 Reference Manual and Guide. Technical Re-
port ANL-94-6, Argonne National Laboratory, Argonne, Illinois 60439, USA, 1994.

[McCune, 1997] W. McCune, editor. Proceedings of CADE{14, volume 1249 of LNAI.
Springer, Berlin, Germany, 1997.

[Meier, 1997] A. Meier. �Ubersetzung automatisch erzeugter Beweise auf Faktenebene.
Master's thesis, Computer Science Department, Universit�at des Saarlandes, Saar-
br�ucken, Germany, 1997.

[Melis and Carbonell, 1998] E. Melis and J .G. Carbonell. An argument for deriva-
tional analogy. Advances in Analogy and Research, 1998.

[Miller, 1984] D. Miller. Expansion Tree Proofs and Their Conversion to Natural De-
duction Proofs. In R.E. Shostak, editor, Proceedings of CADE{7, volume 170 of
LNCS, pages 375{303. Springer, Berlin, Germany, 1984.

[Pfenning, 1987] F. Pfenning. Proof Transformations in Higher-Order Logic. PhD
thesis, Carnegie-Mellon University, Pittsburgh Pa., 1987.

[Sehn, 1995] A. Sehn. DECLAME { eine deklarative Sprache zur Repr�asentation von
Methoden. Master's thesis, Computer Science Department, Universit�at des Saarlan-
des, 1995.

[Siekmann et al., 1998] J. Siekmann, S. M. Hess, C. Benzm�uller, L. Cheikhrouhou,
D. Fehrer, A. Fiedler, M. Kohlhase, K. Konrad, E. Melis, A. Meier, and V. Sorge.
L
UI: A Distributed Graphical User Interface for the Omega Proof System. Inter-
national Workshop on User Interfaces for Theorem Provers, 1998.

[Slind et al., 1998a] K. Slind, M. Gordon, R. Boulton, and A. Bundy. An Interface
between CLAM and HOL. In Kirchner and Kirchner [1998], pages 134{138.

[Slind et al., 1998b] K. Slind, M. Gordon, R. Boulton, and A. Bundy. An Interface be-
tween CLAM and HOL. In J. Grundy and M. Newey, editors, Proceedings of the 11th
International Conference on Theorem Proving in Higher Order Logics (TPHOLs'98),
volume 1479 of LNCS, pages 87{104. Springer, Berlin, Germany, 1998.

[Sutcli�e et al., 1994] G. Sutcli�e, C. Suttner, and T. Yemenis. The TPTP Problem
Library. In Bundy [1994], pages 252{266.

[Weidenbach et al., 1996] Ch. Weidenbach, B. Gaede, and G. Rock. SPASS & FLOT-
TER, version 0.42. In M.A. McRobbie and J.K. Slaney, editors, Proceedings of
CADE{13, volume 1104 of LNAI. Springer, Berlin, Germany, 1996.

In the appendix we illustrate the integration architecture by presenting some con-
crete information on the interaction between
mega and Tps when proving THM136
(see Example 1).

A: Translating from
mega to Tps

Example 2 Problem-�le. This is the content of the problem-�le for THM136 generated
by
mega and passed to Tps. The line with keyword ASSERTION de�nes the theorem
to be proved and the line with keyword LINES introduces the initial partial proof to be
completed by Tps, which here consists only of one line. A reference to the corresponding
open proof line in
mega (the entry \(OMEGA-LABEL THM136)") and some further
information belonging to
mega can be found at the end of this proof line. Note that
the de�ned concepts transitive, transitive-closure and sub-relation are not expanded in
this initial partial proof; they are passed to Tps as de�ned abbreviations (in the three
lines with keyword DEF-ABBREV).

(DEFSAVEDPROOF OMEGA-SUBPROBLEM-THM136 (1998 9 30)

(ASSERTION

"[FORALL R(OaA)[TRANSITIVE(O(OAA))[TRANSITIVE-CLOSURE(OAA(OAA))R(OAA)]]] ")

(NEXT-PLAN-NO 2) (PLANS ((1)))

(LINES

(1 NIL "[FORALL R(OAA)[TRANSITIVE [TRANSITIVE-CLOSURE R(OAA)]]] "

203Benzmueller Ch., Bishop M., Sorge V.: Integrating TPS and Omega

PLAN1 NIL NIL "((OMEGA-LABEL THM136) (OMEGA-JUSTIFICATION OPEN))"))

0

((DEF-ABBREV TRANSITIVE (TYPE "O(OAA)") (TYPELIST ("A"))

(PRINTNOTYPE T) (FACE TRANSITIVE) (FO-SINGLE-SYMBOL T)

(DEFN

"[LAMBDA DC-50(OAA)

[FORALL DC-51(A)

[FORALL DC-52(A)

[FORALL DC-53(A)

[IMPLIES [AND [DC-50(OAA)DC-51(A)DC-52(A)] [DC-50(OAA)DC-52(A)DC-53(A)]]

[DC-50(OAA)DC-51(A)DC-53(A)]]]]]]")

(MHELP

"Definition of the predicate for transitivity. (transitive R) is true, iff Rxy and Ryz imply Rxz. "))

(DEF-ABBREV SUB-RELATION (TYPE "O(OAA)(OAA)") (TYPELIST ("A"))

(PRINTNOTYPE T) (FACE SUB-RELATION) (FO-SINGLE-SYMBOL T)

(DEFN

"[LAMBDA DC-54(OAA)

[LAMBDA DC-55(OAA)

[FORALL DC-56(A)

[FORALL DC-57(A)[IMPLIES [DC-54(OAA)DC-56(A)DC-57(A)] [DC-55(OAA)DC-56(A)DC-57(A)]]]]]]")

(MHELP

"Definition of the predicate for sub-relations. (sub-relation R R') is true, iff Rxy implies R'xy. "))

(DEF-ABBREV TRANSITIVE-CLOSURE (TYPE "OAA(OAA)") (TYPELIST ("A"))

(PRINTNOTYPE T) (FACE TRANSITIVE-CLOSURE) (FO-SINGLE-SYMBOL T)

(DEFN

"[LAMBDA DC-58(OAA)

[LAMBDA DC-59(A)

[LAMBDA DC-60(A)

[FORALL DC-61(OAA)

[IMPLIES [AND [SUB-RELATION(O(OAA)(OAA))DC-58(OAA)DC-61(OAA)] [TRANSITIVE DC-61(OAA)]]

[DC-61(OAA)DC-59(A)DC-60(A)]]]]]]")

(MHELP "Definition of the transitive closure as in TPS. ")))

(COMMENT "OMEGA proof (report problems to the OMEGA group)")

(LOCKED (1)))

B: Proof Construction in Tps

Example 3 Tps Proof. Figure 4 presents a screenshot of the Tps interface displaying
the Tps proof for THM136. This proof is discussed in detail in [Bishop and Andrews,
1998].

C & D: Translating from Tps to
mega and Inserting the Proof Plan

Example 4
mega Proof Plan.
mega's special theory TPS provides one proof tactic
for each Tps justi�cation. Thus the proof presented in Example 3 can be translated
one to one into a proof plan using the proof tactics of this theory. Tactics de�ned
in this special theory have the pre�x \TPS". The structure of this proof plan can
be graphically visualised in
mega's graphical user interface L
UI, as presented in
Example 6.

THM136 () ! (FORALL [R:(O BB BB)] TPS*UGEN: (R) (L23)

(TRANSITIVE (TRANSITIVE-CLOSURE R)))

L23 () ! (TRANSITIVE (TRANSITIVE-CLOSURE R)) TPS*EQUIVWFFS: (L22)

L22 () ! (FORALL [DC-51:BB,DC-52:BB,DC-53:BB] TPS*UGEN: (DC-51) (L21)

(IMPLIES

(AND (TRANSITIVE-CLOSURE R DC-51 DC-52)

(TRANSITIVE-CLOSURE R DC-52 DC-53))

(TRANSITIVE-CLOSURE R DC-51 DC-53)))

L21 () ! (FORALL [DC-52:BB,DC-53:BB] TPS*UGEN: (DC-52) (L20)

(IMPLIES

(AND (TRANSITIVE-CLOSURE R DC-51 DC-52)

(TRANSITIVE-CLOSURE R DC-52 DC-53))

(TRANSITIVE-CLOSURE R DC-51 DC-53)))

L20 () ! (FORALL [DC-53:BB] TPS*UGEN: (DC-53) (L19)

(IMPLIES

(AND (TRANSITIVE-CLOSURE R DC-51 DC-52)

(TRANSITIVE-CLOSURE R DC-52 DC-53))

(TRANSITIVE-CLOSURE R DC-51 DC-53)))

L19 () ! (IMPLIES TPS*DEDUCT: (L18)

(AND (TRANSITIVE-CLOSURE R DC-51 DC-52)

(TRANSITIVE-CLOSURE R DC-52 DC-53))

(TRANSITIVE-CLOSURE R DC-51 DC-53))

204 Benzmueller Ch., Bishop M., Sorge V.: Integrating TPS and Omega

Figure 4: Tps-Xterm with the proof of THM136

L18 (L1) ! (TRANSITIVE-CLOSURE R DC-51 DC-53) TPS*EQUIVWFFS: (L17)

L17 (L1) ! (FORALL [DC-61:(O BB BB)] TPS*UGEN: (DC-61) (L16)

(IMPLIES

(AND (SUB-RELATION R DC-61)

(TRANSITIVE DC-61))

(DC-61 DC-51 DC-53)))

L16 (L1) ! (IMPLIES TPS*DEDUCT: (L15)

(AND (SUB-RELATION R DC-61)

(TRANSITIVE DC-61))

(DC-61 DC-51 DC-53))

L15 (L1 L6) ! (DC-61 DC-51 DC-53) TPS*RULEP: (L7 L8 L12 L13 L14)

L14 (L1) ! (IMPLIES TPS*UI: (DC-61) (L4)

(AND (SUB-RELATION R DC-61)

(TRANSITIVE DC-61))

(DC-61 DC-52 DC-53))

L13 (L1) ! (IMPLIES TPS*UI: (DC-61) (L5)

(AND (SUB-RELATION R DC-61)

(TRANSITIVE DC-61))

(DC-61 DC-51 DC-52))

L12 (L6) ! (IMPLIES TPS*UI: (DC-53) (L11)

(AND (DC-61 DC-51 DC-52) (DC-61 DC-52 DC-53))

(DC-61 DC-51 DC-53))

L11 (L6) ! (FORALL [DC-53^1:BB] TPS*UI: (DC-52) (L10)

(IMPLIES

(AND (DC-61 DC-51 DC-52)

(DC-61 DC-52 DC-53^1))

(DC-61 DC-51 DC-53^1)))

L10 (L6) ! (FORALL [DC-52^1:BB,DC-53^1:BB] TPS*UI: (DC-51) (L9)

(IMPLIES

(AND (DC-61 DC-51 DC-52^1)

(DC-61 DC-52^1 DC-53^1))

(DC-61 DC-51 DC-53^1)))

205Benzmueller Ch., Bishop M., Sorge V.: Integrating TPS and Omega

L9 (L6) ! (FORALL [DC-51^1:BB,DC-52^1:BB,DC-53^1:BB] TPS*EQUIVWFFS: (L8)

(IMPLIES

(AND (DC-61 DC-51^1 DC-52^1)

(DC-61 DC-52^1 DC-53^1))

(DC-61 DC-51^1 DC-53^1)))

L8 (L6) ! (TRANSITIVE DC-61) TPS*RULEP: (L6)

L7 (L6) ! (SUB-RELATION R DC-61) TPS*RULEP: (L6)

L6 (L6) ! (AND (SUB-RELATION R DC-61) (TRANSITIVE DC-61)) TPS*HYP

L5 (L1) ! (FORALL [DC-61^1:(O BB BB)] TPS*EQUIVWFFS: (L2)

(IMPLIES

(AND (SUB-RELATION R DC-61^1)

(TRANSITIVE DC-61^1))

(DC-61^1 DC-51 DC-52)))

L4 (L1) ! (FORALL [DC-61^1:(O BB BB)] TPS*EQUIVWFFS: (L3)

(IMPLIES

(AND (SUB-RELATION R DC-61^1)

(TRANSITIVE DC-61^1))

(DC-61^1 DC-52 DC-53)))

L3 (L1) ! (TRANSITIVE-CLOSURE R DC-52 DC-53) TPS*RULEP: (L1)

L2 (L1) ! (TRANSITIVE-CLOSURE R DC-51 DC-52) TPS*RULEP: (L1)

L1 (L1) ! (AND (TRANSITIVE-CLOSURE R DC-51 DC-52) TPS*HYP

(TRANSITIVE-CLOSURE R DC-52 DC-53))

E: Transparent Proof Transformation by Proof Plan Expansion

Example 5 Modelling Tps's calculus in
mega's theory TPS . The tactics in
mega's
special theory Tps contain expansion information that allows proof plans constructed
in this theory to be mapped to
mega proofs on a lower abstraction level. We present
some sample expansions here. The simplest is tps*Conj, which is simply mapped to
the
mega tactic ande. The expansion of tps*Neg �rst analyses the given situation
and then maps either to Pushneg or Pullneg. tps*RuleP recursively invokes an external
propositional logic prover integrated to
mega.

(defun tpstac=expand-tps*Conj (outline parameters)

(tacl~init outline)

(tacl~apply 'ande outline nil)

(tacl~end))

(defun tpstac=expand-tps*Neg (outline parameters)

(tacl~init outline)

(cond ((tpstac=pushneg-a-p (node~formula (car outline)) (node~formula (cadr outline)))

(tacl~apply 'pushneg outline nil))

((tpstac=pullneg-a-p (node~formula (cadr outline)) (node~formula (car outline)))

(tacl~apply 'pullneg outline nil))

(t (warn "Something went wrong while expanding justification tps*Neg")))

(tacl~end))

(defun tpstac=expand-tps*RuleP (outline parameters)

(declare (ignore parameters))

(let* ((node (car outline))

(premises (just~premises (node~justification node))))

(tacl~init outline)

(tpstac=call-external-atp node premises)

(tacl~end)

(setf (pdsj~status (node~justification node)) "untested")))

Example 6
mega-proof. Finally, we present in �gure 5 the visualization of the original
Tps proof (as a proof plan) in
mega's graphical user interface L
UI. By expanding
all nodes exactly one step, we reach another layer in
mega's 3-dimensional PDS
which is visualized in the second screenshot. Here the squares represent the recursive
calls to a propositional theorem prover which are obtained by the expansion of tactic
tps*RuleP.

206 Benzmueller Ch., Bishop M., Sorge V.: Integrating TPS and Omega

Figure 5: Transparent proof transformation within
mega's 3-dimensional PDS.

207Benzmueller Ch., Bishop M., Sorge V.: Integrating TPS and Omega

ARTICLE IN PRESS

S1570-8683(05)00073-X/FLA AID:88 Vol.•••(•••) [DTD5] P.1 (1-27)
JAL:m1a v 1.50 Prn:17/11/2005; 11:16 jal88 by:Jolanta p. 1

l

to find
lauses.
atically,

ened up
employ

of the
ian as

ticular,
It is a
cluding

on
s

ing

nd
Journal of Applied Logic••• (••••) •••–•••
www.elsevier.com/locate/ja

Computer supported mathematics with�MEGA

Jörg Siekmann∗, Christoph Benzmüller, Serge Autexier

Universität des Saarlandes and DFKI Gmblt, Saarbrücken, Germany

Abstract

Classical automated theorem proving of today is based on ingenious search techniques
a proof for a given theorem in very large search spaces—often in the range of several billion c
But in spite of many successful attempts to prove even open mathematical problems autom
their use in everyday mathematical practice is still limited.

The shift from search based methods to more abstract planning techniques however op
a paradigm for mathematical reasoning on a computer and several systems of that kind now
a mix of interactive, search based as well as proof planning techniques.

The�MEGA system is at the core of several related and well-integrated research projects
�MEGA research group, whose aim is to develop system support for a working mathematic
well as a software engineer when employing formal methods for quality assurance. In par
�MEGA supports proof development at a human-oriented abstract level of proof granularity.
modular system with a central proof data structure and several supplementary subsystems in
automated deduction and computer algebra systems.�MEGA has many characteristics in comm
with systems like NUPRL, COQ, HOL, PVS, and ISABELLE. However, it differs from these system
with respect to its focus onproof planningand in that respect it is more similar to the proof plann
systems CLAM andλCLAM at Edinburgh.
 2005 Elsevier B.V. All rights reserved.

Keywords:Artificial intelligence; Computer-supported mathematics; Proof assistant systems; Interactive a
automated theorem-proving; Proof planning; Omega

* Corresponding author.
E-mail addresses:siekmann@dfki.de(J. Siekmann),chris@ags.uni-sb.de(C. Benzmüller),

autexier@ags.uni-sb.de(S. Autexier).
URLs:http://www-ags.dfki.uni-sb.de(J. Siekmann),http://www.ags.uni-sb.de/~chris(C. Benzmüller),

http://www.ags.uni-sb.de/~autexier(S. Autexier).
1570-8683/$ – see front matter 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.jal.2005.10.008

http://www.elsevier.com/locate/jal
mailto:siekmann@dfki.de
mailto:chris@ags.uni-sb.de
mailto:autexier@ags.uni-sb.de
http://www-ags.dfki.uni-sb.de
http://www.ags.uni-sb.de/~chris
http://www.ags.uni-sb.de/~autexier
http://dx.doi.org/10.1016/j.jal.2005.10.008

ARTICLE IN PRESS

S1570-8683(05)00073-X/FLA AID:88 Vol.•••(•••) [DTD5] P.2 (1-27)
JAL:m1a v 1.50 Prn:17/11/2005; 11:16 jal88 by:Jolanta p. 2

2 J. Siekmann et al. / Journal of Applied Logic••• (••••) •••–•••

inte-
archers
tly in

back to
so-
opriate
ry

mile-
ntury

argu-
ement

rmy
iving
on of
ewell.

of the
ation

field
niques

in the
f
n ap-

own to

and it
it

its
ems
w
nd
1. Introduction

The vision of computer-supported mathematics and a system which provides
grated support for all work phases of a mathematician has always fascinated rese
in artificial intelligence, particularly in the deduction systems area, and more recen
mathematics as well. The dream of mechanizing (mathematical) reasoning dates
Gottfried Wilhelm Leibniz in the 17th century with the touching vision that two philo
phers engaged in a dispute would one day simply code their arguments into an appr
formalism and thencalculate(Calculemus!) who is right. At the end of the 19th centu
modern mathematical logic was born with Frege’s Begriffsschrift and an important
stone in the formalization of mathematics was Hilbert’s program and the 20th ce
Bourbakism.

With the logical formalism for the representation and calculation of mathematical
ments emerging in the first part of the twentieth century it was but a small step to impl
these techniques now on a computer as soon as it was widely available.

In 1954 Martin Davis’ Presburger Arithmetic Program was reported to the US A
Ordnance and the Dartmouth Conference in 1956, which is not only known for g
birth to artificial intelligence in general but also more specifically for the demonstrati
the first automated reasoning programs for mathematics by Herb Simon and Alan N

However, after the early enthusiasm of the 1960s, in particular the publication
resolution principle in 1965[84], and the developments in the 70s a more sober realiz
of the actual difficulties involved in automating everyday mathematics set in and the
increasingly fragmented into many subareas which all developed their specific tech
and systems.1

It is only very recently that this trend appears to be reversed, with the CALCULE-
MUS2 and MKM 3 communities as driving forces of this movement. In CALCULEMUS

the viewpoint is bottom-up, starting from existing techniques and tools developed
computer-algebra and deduction systems communities. MKM 3 approaches the goal o
computer-based mathematics for the new millennium by a complementary top-dow
proach starting from existing, mainly pen and paper based mathematical practice d
system support.

The�MEGA project aims at an integrated approach since its start in the mid 80s
is deeply rooted in both initiatives. The�MEGA system is at the core of the project and
has many characteristics in common with systems like NUPRL [1], COQ [34], HOL [47],
PVS [79], and ISABELLE [80,78]. However, it differs from these systems with respect to
focus onproof planningand in that respect it is more similar to the proof planning syst
CLAM andλCLAM at Edinburgh[83,29]. In this article we shall first provide an overvie
of the main developments of the�MEGA project and then point to current research a
some future goals.

1 The history of the field is presented in a classical paper by Martin Davis[35] and also in[36] and more
generally in his history of the first electronic computers[37]. Another source is Jörg Siekmann[86] and more
recently[87].

2 http://www.calculemus.org.
3 http://www.mkm-ig.org.

http://www.calculemus.org
http://www.mkm-ig.org

ARTICLE IN PRESS

S1570-8683(05)00073-X/FLA AID:88 Vol.•••(•••) [DTD5] P.3 (1-27)
JAL:m1a v 1.50 Prn:17/11/2005; 11:16 jal88 by:Jolanta p. 3

J. Siekmann et al. / Journal of Applied Logic••• (••••) •••–••• 3

ssing
e en-

tured
rity is
nt of a
h

at a
is

ta, and
rch for
d

2. �MEGA

The�MEGA project represents one of the major attempts to build an all encompa
assistance tool for the working mathematician or for the formal work of a softwar
gineer. It is a representative of systems in the paradigm ofproof planningand combines
interactive and automated proof construction for domains with rich and well-struc
mathematical knowledge. The inference mechanism at the lowest level of granula
an interactive theorem prover based on a higher-order natural deduction (ND) varia
soft-sorted version of Church’s simply typedλ-calculus[33]. The logical language, whic
also provides some support for partial functions, is calledPOST , for partial functions
andorder sorted type theory. The search for a proof, however, is usually conducted
higher level of granularity defined bytacticsandmethods. Automated proof search at th
‘abstract’ (i.e., less granular) level is calledproof planning(see Section2.3). Proof con-
struction is also supported by already proven assertions, i.e., theorems and lemma
by calls to external systems to simplify or solve subproblems. Resource-guided sea
applicable tactics, methods, and external systems is conducted by�ANTS, an agent-base
reasoning system.

2.1. System overview

At the core of�MEGA is theproof plan data structurePDS [32], in whichproofsand
proof plansare represented at various levels of granularity (seeFig. 1). ThePDS is a di-

Fig. 1. The proof plan datastructurePDS is at the core of the�MEGA system.

ARTICLE IN PRESS

S1570-8683(05)00073-X/FLA AID:88 Vol.•••(•••) [DTD5] P.4 (1-27)
JAL:m1a v 1.50 Prn:17/11/2005; 11:16 jal88 by:Jolanta p. 4

4 J. Siekmann et al. / Journal of Applied Logic••• (••••) •••–•••

to
lans
in the

r

s been
d in the
e level
-tactics
s is
s, the

proof
an be
tyle
enerate

ew

l inde-
bus
-
as well.
usand
atically

cessing

d again
and

stems
require,
from

nts a
, the
edges
rected acyclic graph, whereopen nodesrepresent unjustified propositions that still need
be proved andclosed nodesrepresent propositions that are already proved. The proof p
are developed and classified with respect to a taxonomy of mathematical theories
mathematical knowledge base MBASE [42,56]. The user of�MEGA, or the proof planne
MULTI [73,64], or else the agent-based reasoning system�ANTS [19] modify thePDS
during proof development until a complete proof plan, where all nodes are closed, ha
found. They can also invoke external reasoning systems, whose results are include
PDS after appropriate transformation. Once a complete proof plan at an appropriat
of granularity has been found, this plan must be expanded by sub-methods and sub
into lower levels of granularity until finally a proof at the level of the logical calculu
established. After expansion of these high-level proofs to the underlying ND-calculu
PDS can be checked by�MEGA’s proof checker.

Hence, there are two main tasks supported by this system, namely (i) to find a
plan, and (ii) to expand this proof plan into a calculus-level proof; and both jobs c
equally difficult and time consuming. Task (ii) employs a combination of an LCF-s
tactic based expansion mechanism as well as deductive proof search in order to g
a lower-level proof object. It is a design objective of thePDS that variousproof levels
coexist with their respective dynamic relationships being maintained.

The graphical user interfaceL�UI [90] provides both a graphical and a tabular vi
of the proof under consideration, and the interactive proof explanation systemP.rex [40,
39,41]generates a natural language presentation of the proof (seeFigs. 5 and 6).

The previously monolithic system has been split up and separated into severa
pendent modules (seeFig. 2), which are connected via the mathematical software
MATHWEB-SB [99]. An important benefit is that MATHWEB-SB modules can be distrib
uted over the Internet and are then remotely accessible by other research groups
There is now a very active MathWeb user community with sometimes several tho
theorems and lemmata being proven per day. Many theorems are generated autom
as (currently non-reusable and non-indexed) subproblems in natural language pro
(see the Doris system4), proof planning and verification tasks.

2.2. Proof objects

The central data structure for the overall search is the proof plan data structurePDS
in Fig. 1 and the subsystems cooperate to construct a proof whose status is store
in thePDS . The facilities provided by the subsystems include support for interactive
mixed-initiative theorem proving by the user, the proof planner, and by external sy
such as automated theorem provers and computer algebra systems. These facilities
in particular, the representation of proof steps at different levels of granularity ranging
abstract, human-oriented reasoning to logic-level justifications.

Therefore�MEGA provides a hierarchical proof plan data structure that represe
(partial) proof at different levels of granularity (called partial proof plans). Technically
PDS is a directed acyclic graph consisting of nodes, justifications and hierarchical

4 http://www.cogsci.ed.ac.uk/~jbos/doris/.

http://www.cogsci.ed.ac.uk/~jbos/doris/

ARTICLE IN PRESS

S1570-8683(05)00073-X/FLA AID:88 Vol.•••(•••) [DTD5] P.5 (1-27)
JAL:m1a v 1.50 Prn:17/11/2005; 11:16 jal88 by:Jolanta p. 5

J. Siekmann et al. / Journal of Applied Logic••• (••••) •••–••• 5

ized and
by other
end,

sequent

l sys-
r
by

on,
, but at

ty us-

ate

and
in the
ines

r
ersion
Fig. 2. The vision of an all encompassing mathematical assistance environment: we have now modular
out-sourced many of the support tools (whose names are printed in red) such that they can also be used
systems via the MATHWEB-SB software bus. (For interpretation of the references in color in this figure leg
the reader is referred to the web version of this article.)

(see[32] for more details). Each node represents a sequent and can beopenor closed. An
open node corresponds to a sequent that is to be proved and a closed node to a
which is already proved or reduced to other sequents using an inference ruleR := A1...Ak

B
;

whereR may represent a calculus rule, a tactic, a method, or a call to an externa
tem. Such a rule denotes that we can concludeB from A1, . . . ,Ak or reading it the othe
way round thatB can be reduced toA1, . . .Ak . Thus, an inference step is represented
a justificationR which connects a nodenb containing the sequentB to nodesn1, . . . , nk

containing the sequentsA1, . . .Ak . If a node has more than one outgoing justificati
each of them represents a proof attempt of the sequent stored in the source node
different granularity. These justifications are ordered with respect to their granulari
ing hierarchical edges. A hierarchical edge connects two justificationsj1 andj2 with the
meaning that justificationj1 represents a more detailed proof attempt than justificationj2.
Thus,�MEGA’s PDS explicitly maintains the original proof plan as well as intermedi
expansion layers in an expansion hierarchy.

Normally, the user wants to see the proof only at a specific level of granularity
therefore he can chose the granularity by selecting the justification for each node
PDS . Fig. 3shows an example of how the selection of a justification of a node determ
the level of granularity. It shows a noden with two outgoing justificationsj1 andj2, which
are connected by a hierarchical edgeh from j1 to j2 indicating thatj1 is a more granula
justification thanj2. The user can decide whether he wants to see the more detailed v
of the proof given byj1 (and its subtreet1) or the more abstract version given byj2 (and

ARTICLE IN PRESS

S1570-8683(05)00073-X/FLA AID:88 Vol.•••(•••) [DTD5] P.6 (1-27)
JAL:m1a v 1.50 Prn:17/11/2005; 11:16 jal88 by:Jolanta p. 6

6 J. Siekmann et al. / Journal of Applied Logic••• (••••) •••–•••

ations

edi-
nt the
om
poned

m
d on
iously

ps and

well as
se the
ation,

nance

rther
r

Fig. 3. Representation of aPDS node with justifications at different levels of granularity.

Fig. 4. Possible views of proofs at different levels of granularity inside aPDS .

its subtreet2). The two different possible selections are shaded. Selecting the justific
for each node the user gets a view into thePDS-graph, called aPDS-view (seeFig. 4),
at the selected level of granularity.

Note that in contrast to the traditional LCF approach, it is not mandatory to imm
ately expand a high-level proof plan to a lower-level, because we explicitly represe
high-level proof plans in thePDS and thus conceptually separate plan formation fr
plan validation (by recursive expansion). Validation of proof plans can thus be post
and executed at any time later on. In case of an unsuccessful expansion attempt,�MEGA’s
PDS provides mechanisms which change the status of the affected proof nodes frojus-
tified, i.e.,closed, to openand then consistently clean up all structures, which depen
these nodes. Thus, failing expansion may in particular introduce new gaps into a prev
closed proof plan and hence proof planning has to start again in order to fill the ga
search for a new plan.

Because thePDS represents the dependencies among goals and subgoals as
between high-level inference rules and lower-level inference rules, we can traver
datastructure in many ways for different purposes like visualization, proof explan
natural language generation and dependency-directed pruning of the proof object.

In summary, coexistence of several granularity levels and the dynamical mainte
of their relationship is a central and distinguishing design objective of�MEGA’s PDS .
ThePDS makes the hierarchical structure of proof plans explicit and retains it for fu
applications such as proof expansion, proof explanation withP.rexor an analogical transfe
of plans.

ARTICLE IN PRESS

S1570-8683(05)00073-X/FLA AID:88 Vol.•••(•••) [DTD5] P.7 (1-27)
JAL:m1a v 1.50 Prn:17/11/2005; 11:16 jal88 by:Jolanta p. 7

J. Siekmann et al. / Journal of Applied Logic••• (••••) •••–••• 7

logical
soning
n with

report
eat de-
nd the
by the
udy

ty, i.e.,
ical or

ving,
oys
plan-
tacti-

based
The

proof
ex-

f the
al
athe-
math-
eneral-
-
The

corre-
ation.
behav-

eover,
one of

red
Currently, however, we cannot change the representationinsideof a proof node, which is
still something to be desired. For example, it would be nice to be able to change the
propositions in naive set theory into Venn diagrams such that a diagrammatic rea
system could be used. Support for representational shifts of this kind in combinatio
different levels of granularity is future work.

The proof object generated by�MEGA for the theorem “
√

2 is irrational”, which has
a well known human proof of less than a dozen lines, is recorded in a technical
[14], where the unexpanded and the expanded proof objects are presented in gr
tail: The most abstract proof at the level of the proof plan has about twenty steps a
fully expanded proof has about 750. The final proof in natural language generated
�MEGA-system is shown inFig. 6. A general presentation of this interesting case st
is [88].

2.3. Proof planning

�MEGA’s main focus is on knowledge-based proof planning[25,26,74], where proofs
are not conceived in terms of low-level calculus rules, but at a less detailed granulari
a more abstract level, that highlights the main ideas and de-emphasizes minor log
mathematical manipulations on formulae.

Knowledge-based proof planning is a paradigm in automated theorem pro
which swings its motivational pendulum back to the AI origins in that it empl
and further develops many AI principles and techniques such as hierarchical
ning, knowledge representation in frames and control rules, constraint solving,
cal theorem proving, and meta-level reasoning. It differs from traditional search
techniques in automated theorem proving not least in its level of granularity:
proof of a theorem is planned at an abstract-level where an outline of the
is found first. This outline, that is, the abstract proof plan, can be recursively
panded to construct a proof within a logical calculus provided the expansion o
proof plan does not fail. The plan operators, calledmethods, represent mathematic
techniques familiar to a working mathematician. While the knowledge of a m
matical domain as represented by methods and control rules is specific to the
ematical field, the representational techniques and reasoning procedures are g
purpose. For example, one of our first case studies[74] used the limit theorems pro
posed by Woody Bledsoe[23] as a challenge to automated reasoning systems.
general-purpose planner makes use of the mathematical domain knowledge ofε–δ-proofs
and of the guidance provided by declaratively represented control rules, which
spond to mathematical intuition about how to prove a theorem in a particular situ
These rules are the basis for our meta-level reasoning and the goal-directed
ior.

Domain knowledge is encoded into methods, control rules, and strategies. Mor
methods and control rules can employ external systems (e.g., one method is to call
the computer algebra systems) and make use of the knowledge in these systems.�MEGA’s
multi-strategy proof planner MULTI [73,64] searches then for a plan using the acqui
methods and strategies guided by the control knowledge in the control rules.

ARTICLE IN PRESS

S1570-8683(05)00073-X/FLA AID:88 Vol.•••(•••) [DTD5] P.8 (1-27)
JAL:m1a v 1.50 Prn:17/11/2005; 11:16 jal88 by:Jolanta p. 8

8 J. Siekmann et al. / Journal of Applied Logic••• (••••) •••–•••

ate that

l state

s
ally

tions
set of

rmulae
ble
ented
ng
ptions.
g
of the
.
d to a

ists of
state.

ethods
proof
ich all

d
es for
for the
,
g

straint
liar re-

or in-
ints and
or
2.3.1. AI principles in proof planning
A planning problemis a formal description of aninitial state, agoal, and someopera-

tors that can be used to transform the initial state via some intermediate states to a st
satisfies the goal. Applied to a planning problem, aplannerreturns a sequence ofactions,
that is, instantiated operators (i.e., methods), which reach a goal state from the initia
when executed. Such a sequence of actions is called asolution plan.

Proof planning considers mathematical theorems as planning problems[25]. The initial
state of a proof planning problem consists of the proofassumptionsof the theorem, wherea
the goal is thetheoremitself. The operators in proof planning are the methods, tradition
they are tactics augmented by pre- and postconditions.

In �MEGA, proof planning is the process that computes actions, that is, instantia
of methods, and assembles them sequentially in order to derive a theorem from a
assumptions. The effects and the preconditions of an action in proof planning are fo
in the higher-order languagePOST , where the effects are considered as logically infera
from the preconditions using this method. A proof plan under construction is repres
in the proof plan data structurePDS , which consists initially of an open node containi
the conjecture to be proven, and closed, i.e., justified nodes for the proof assum
The introduction of a method changes thePDS by adding new proof nodes and justifyin
the effects of the method by applications of the method to its premises. The aim
proof planning process is to reach aclosedPDS , that is, aPDS without open nodes
Thesolution proof planproduced is then a record of the sequence of actions that lea
closedPDS .

By allowing for forward and backward methods,�MEGA’s proof planner MULTI com-
bines forward and backward state-space planning. Thus, aplanning statein MULTI is a
pair of the current world state and the current goal state. The initial world state cons
the given proof assumptions and is transferred by forward methods into a new world
The goal state consists of the initial open node and is transferred by backward m
into a new goal state containing new open nodes. From this point of view the aim of
planning is to compute a sequence of actions that derives a current world state in wh
the goals are satisfied.

As opposed to precondition achievement planning (e.g., see[96]), effects of methods
in proof planning do not cancel each other. For instance, a method with effect¬F intro-
duced for an open nodeL1 does not threaten the effectF introduced by another metho
for an open nodeL2. Dependencies among open nodes result from shared variabl
witness terms and their constraints. Constraints can, for instance, be instantiations
variables but they can also be mathematical constraints such asx < c, which states that
whatever the instantiation forx is, it has to be smaller thanc. The constraints created durin
the proof planning process are collected in the constraint store of theCoSIE system[76,
100], which is a domain-independent extension of existing propagation-based con
solvers. The extension turned out to be necessary, since proof planning has pecu
quirements that are not met by off-the-shelf constraint solvers:CoSIE computes symbolic
constraint inferences while respecting the logical side-conditions of proof planning, f
stance, the Eigenvariable condition and the logical dependencies between constra
their context. The search procedure ofCoSIE computes logically correct instantiations f
the meta-variables.

ARTICLE IN PRESS

S1570-8683(05)00073-X/FLA AID:88 Vol.•••(•••) [DTD5] P.9 (1-27)
JAL:m1a v 1.50 Prn:17/11/2005; 11:16 jal88 by:Jolanta p. 9

J. Siekmann et al. / Journal of Applied Logic••• (••••) •••–••• 9

the
difficult

on the
to

lu-
ns
-

eded in
Sec-
more

proof
which
orre-
ods).
.
orem
soning

ferent

in

th
can be

ms,
d
ts

lize
A proof-planning method is applicable only if its constraints are consistent with
constraints collected so far. Dependencies among goals with shared variables are
to analyze and can cause various kinds of failures in a proof planning attempt (see[63] for
more details).

2.3.2. Methods, control rules, and strategies
Methodsare traditionally perceived as tactics in tactical theorem proving[78] aug-

mented with preconditions and effects, calledpremisesand conclusions, respectively.
A method represents a large inference of the conclusion from the premises based
body of the tactic. For instance,NotI-m is a (very low-level) method whose purpose is
prove a goalΓ � ¬P by contradiction. IfNotI-m is applied to a goalΓ � ¬P then it closes
this goal and introduces the new goal to prove falsity,⊥, under the assumptionP , that
is, Γ,P �⊥. Thereby,Γ � ¬P is the conclusion of the method, whereasΓ,P �⊥ is the
premise of the method.NotI-m is a backwardmethod, which reduces a goal (the conc
sion) to new goals (the premises).Forward methods, in contrast, derive new conclusio
from given premises. For instance,=Subst-m performs equality substitutions, for exam
ple, by deriving from the two premisesΓ � P [a] andΓ � a = b the conclusionΓ � P [b],
where an occurrence ofa is replaced by an occurrence ofb. Note thatNotI-m and=Subst-
m are simple examples of domain-independent, logic-related methods, which are ne
addition to domain-specific, mathematically motivated methods as illustrated below in
tion 2.3.3. Knowledge-based proof planning expands on these ideas and allows for
general mathematical methods to be encapsulated into the proof planningmethods.

Control rules represent mathematical knowledge about how to proceed in the
planning process. They can influence the planner’s behavior at choice points (e.g.,
goal to tackle next or which method to apply next) by preferring members of the c
sponding list of alternatives (e.g., the list of possible goals or the list of possible meth
This way promising search paths are preferred and the search space can be pruned

Strategiesemploy a fixed set of methods and control rules and, thus, tackle a the
by some mathematical standard that happens to be typical for this theorem. The rea
as to which strategy to employ on a problem is an explicit choice point in MULTI . In par-
ticular, MULTI can backtrack from a chosen strategy and commence search with dif
strategies.

Detailed discussions of�MEGA’s method and control rule language can be found
[63,65]. A detailed introduction to proof planning with multiple strategies is given in[73,
64] and more recently in[69]. In the following we briefly sketch how proof planning wi
generic and domain specific methods along with domain specific control strategies
applied to plan “irrationality ofj

√
l ”-conjectures for arbitrary natural numbersj andl (see

also[88]).

2.3.3. Exploiting domain specific knowledge: proof planningj
√

l-problems
�MEGA can successfully proof plan and proof/disprove the irrationality ofj

√
l for arbi-

trary natural numbersj andl. In order to find a general approach to tackle these proble
we first showed the challenge problem “

√
2 is irrational” (see[97]) and then analyze

proofs for statements such as
√

8,
√

(3 · 3) − 1, or 3
√

2. We found that some of the concep
and inference steps we used for

√
2 are particular to this problem and do not genera

ARTICLE IN PRESS

S1570-8683(05)00073-X/FLA AID:88 Vol.•••(•••) [DTD5] P.10 (1-27)
JAL:m1a v 1.50 Prn:17/11/2005; 11:16 jal88 by:Jolanta p. 10

10 J. Siekmann et al. / Journal of Applied Logic••• (••••) •••–•••

ms, and
m one

and

r

tential
on

h can
that

bers

ly

nown
m, we

).

o-

terms
tating

ating

le
erives
whereas others do. Thus, the analysis led to some generalized concepts, theore
proof steps, which we encoded into methods and control rules, which together for
planner strategyfor this kind of problems. We shall now discuss the acquired methods
control rules.

The essential idea of the proofs is as follows:

1. Use the MBASE-theoremRAT-CRITERION (it states that for each rational numberx,
there are integersy andz, such thatx · y = z, wherey andz have no common diviso
besides 1) and construct an indirect proof.

2. In order to derive the contradiction show that the two witnesses (i.e., the exis
variablesy and z) in RAT-CRITERION, which are supposed to have no comm
divisor, actually do have a common divisord .

3. In order to find a common divisor transform equations (for example,
√

2 · n = m →
2 · n2 = m2), derive new divisor statements (for example, from 2· n2 = m2 derive that
m2 has divisor 2, or from the statement thatm2 has divisor 2 derive thatm has divisor
2), and derive from given divisor statements new representations of terms, whic
be used again for equational transformations (for example, from the statementm

has divisor 2 derive thatm = 2 · k for somek).
Note that we are particularly interested in prime divisors, since only for prime num
d is it true that ifd is a divisor ofmj thend is also a divisor ofm. A corresponding
theorem is available in�MEGA’s knowledge base MBASE.

To realize the first idea (1), the planner MULTI has to decide for an indirect proof, app
the theoremRAT-CRITERION, and derivel · nj = mj for integersm andn, which are
supposed to have no common divisor. These steps are canonical for arbitraryj

√
l problems.

Hence, we could implement them all into one method. However, to avoid the well k
problem of over-fitting methods, i.e., to make them special just for a particular theore
decided to employ already existing methods from other domains:NotI-m (contradiction of
negated statements),MAssertion-m (apply a theorem or an axiom from the theory),ExistsE-
Sort-m (decompose existentially quantified formulae),AndE-m (decompose conjunctions

The application of the methodsExistsE-Sort-m, AndE-m, andNotI-m do not need any
further control, but the application ofMAssertion-m has to be guided by selecting the the
rem or axiom to be applied. This is achieved by a control ruleapply-ratcriterion,
which determines that the theoremRAT-CRITERION should be used forMAssertion-m,
whenever there is a goal formulaj

√
l.

The second idea (2) is realized with the methodContradictionCommonDivisor-m. When
MULTI tries to apply the method it searches first for an assumption stating that two
t1, t2 have no common divisor, and then it searches for two (derived) assumptions s
thatt1 andt2 both have a divisord . This method is not guided by control rules, but MULTI

tries to apply it to some derived assumptions in each planning cycle.
The third idea (3) of the proof technique is encoded into several collabor

methods:TransFormEquation-m, =Subst-m, PrimeFacsProduct-m, PrimeDivPower-m, and
CollectDivs-m. The methodTransFormEquation-m contains knowledge about suitab
equational transformations for our problem domain. It is applied to an equation and d
a new equation. For instance,TransFormEquation-m derivesl · nj = mj from j

√
l · n = m,

ARTICLE IN PRESS

S1570-8683(05)00073-X/FLA AID:88 Vol.•••(•••) [DTD5] P.11 (1-27)
JAL:m1a v 1.50 Prn:17/11/2005; 11:16 jal88 by:Jolanta p. 11

J. Siekmann et al. / Journal of Applied Logic••• (••••) •••–••• 11

ive

l

3.

-
e

-

s
en
e same

f
ks au-

ference
collec-

ses,
d
ule is
given

of

stan-
each

one for
ible in-
or it derivesn2 = 2 · k2 from 2 · n2 = (2 · k)2. The method=Subst-m performs equality
substitutions.

PrimeFacsProduct-m andPrimeDivPower-m encapsulate the knowledge of how to der
divisor statements.PrimeFacsProduct-m is applied to equationsx = l · y (or l · y = x)
and derives a new assumption which is a conjunction of statements thatx has particular
prime divisors. The method employs MAPLE to compute the prime divisors ofl using
MAPLE’s functionwith(numtheory, factorset). It derives thatx has to have al
prime divisors ofl. For instance, from 2· n2 = m2 PrimeFacsProduct-m derives thatm2

has the prime divisor 2, from 6· n2 = m2 it derives thatm2 has the prime divisors 2 and
PrimeDivPower-m is applied to an assumption that states thatyj has prime divisord and
derives thaty has prime divisord .

For a termt CollectDivs-m searches for assumptions stating thatt has some prime divi
sors. Then, it computes different possible representations oft based on the set of the prim
divisors{p1, . . . , pn}. That is, for each subset{p′

1, . . . , p
′
n′ } of {p1, . . . , pn} it adds a new

assumptiont = p′
1 · · ·p′

n′ · c′ for some integerc′.
TransFormEquation-m, PrimeFacsProduct-m andPrimeDivPower-m are applied when

ever possible and no guidance is required. The application of the methodCollectDivs-m,
however, is guided by the control ruleapply-collectdivs, which prefersCollectDivs-
m with respect to a termt as soon as there are assumptions stating thatt has some prime
divisors. The application of=Subst-m is guided by the control ruleapply-=subst,
which states that, after an application ofCollectDivs-m, the method=Subst-m should be
applied in order to use the equations resulting fromCollectDivs-m. When a method such a
=Subst-m, PrimeFacsProduct-m, or PrimeDivPower-m is applied to some premises, th
the same method is afterwards applicable again to the same premises, deriving th
result. To avoid endless loops of such methods, we added the control rulereject-loop,
which blocks the repeated application of a forward method to the same premises.

2.4. �ANTS: agent-oriented theorem proving

�ANTS has originally been developed to support interactive theorem proving[18] and
later its was extended to a fully automated reasoning system[19,92]. The basic idea o
�ANTS is to encapsulate each inference rule into a pro-active agent, which chec
tomatically for its own applicability. For each proof situation thePDS is continuously
checked by these agents and thus composes a ranked list of potentially applicable in
rules. In this process all calculus rules, tactics, external system calls and methods,
tively called inference rules, are uniformly viewed with respect to three sets: premi
conclusions, and additional parameters. The elements of these three sets are calleargu-
mentsof the inference rule and they usually depend on each other. An inference r
applicable if at least some of its arguments can be instantiated with respect to the
proof context. The task of the�ANTS-system is now to determine the applicability
inference rules by computing instantiations for their arguments.

The�ANTS-architecture consists of two layers. On the bottom layer, possible in
tiations of the arguments of individual inference rules are computed. In particular,
inference rule is associated with a blackboard and some concurrent processes,
each argument of the inference rule. The role of every process is to compute poss

ARTICLE IN PRESS

S1570-8683(05)00073-X/FLA AID:88 Vol.•••(•••) [DTD5] P.12 (1-27)
JAL:m1a v 1.50 Prn:17/11/2005; 11:16 jal88 by:Jolanta p. 12

12 J. Siekmann et al. / Journal of Applied Logic••• (••••) •••–•••

on the
t and
iations
r layer
ble in
entral
tation.
l
or model
urce
). The
. For ex-
ument
where
artial
ubse-
bles
tion is

back
nguage

ifficult
rating
ated

have
se, and

ms

give
incor-

also
now

a basic

pute
d, sec-
ize or
lated
stantiations for its designated argument of the inference rule, and to record these
blackboard. The computation is carried out with respect to the given proof contex
exploits the information already present on the blackboard, that is, argument instant
computed by other processes. On the upper layer, the information from the lowe
is used for computing and heuristically ranking the inference rules that are applica
the current proof state. The heuristically most promising rule is then applied to the c
proof object and the data on the blackboards is cleared for the next round of compu

�ANTS uses resource reasoning to guide the search[22]. The integration of externa
reasoning systems such as automated theorem provers, computer algebra systems,
generators into the architecture of�ANTS presupposes the declaration of some reso
limits these reasoning agents are allowed to spend (e.g., by specifying time-outs
external systems are encapsulated into inference rules, usually one for each system
ample, an inference rule modeling the application of an ATP has its conclusion arg
set as “open goal”. A process can then place this open goal onto the blackboard,
it is picked up by a process that applies the prover to it. Any computed proof or p
proof from the external system is again written onto the blackboard from where it is s
quently inserted into thePDS when the inference rule is applied. While this setup ena
proof construction by a collaborative effort of diverse reasoning systems, the coopera
achieved via the centralPDS . This means that all partial results have to be translated
and forth between the syntaxes of the integrated systems and the representation la
of thePDS . In some cases efficient communication between inference systems is d
to achieve[15]. Therefore we have recently developed an alternative model of coope
systems in�ANTS which has been successfully applied to the combination of autom
higher-order and first-order theorem provers[20].

2.5. External systems

Proof problems require many different skills for their solution and it is desirable to
access to several systems with complementary capabilities, to orchestrate their u
to integrate their results.�MEGA interfaces heterogeneous external systems such ascom-
puter algebra systems(CASs), higher- and first-orderautomated theorem proving syste
(ATPs), constraint solvers(CSs), andmodel generation systems(MGs).

Their use is twofold: they may provide a solution to a subproblem, or they may
hints for the control of the search for a proof. In the former case, the output of an
porated reasoning system is translated and inserted as a subproof into thePDS . This is
beneficial for interfacing systems that operate at different levels of granularity, and
for a human-oriented display and inspection of a partial proof. In particular we can
check the soundness of each contribution by expanding the inserted subproof to
logic-level proof in thePDS and then verify it by�MEGA’s proof checker.

Currently, the following external systems are integrated and used in�MEGA:

CASs provide symbolic computation, which can be used in two ways: first, to com
hints to guide the proof search (e.g., witnesses for existential variables), an
ond, to perform some complex algebraic computation such as to normal
simplify terms. In the latter case the symbolic computation is directly trans

ARTICLE IN PRESS

S1570-8683(05)00073-X/FLA AID:88 Vol.•••(•••) [DTD5] P.13 (1-27)
JAL:m1a v 1.50 Prn:17/11/2005; 11:16 jal88 by:Jolanta p. 13

J. Siekmann et al. / Journal of Applied Logic••• (••••) •••–••• 13

ns-

rs

s into

ith lit-

hich
proof

es for
e the

ver

nodes
ntation

els of
of

ropriate

is as-
er level

odule
y be

roofs
in
ompo-
ems.
into proof steps in�MEGA. CASs are integrated via the transformation and tra
lation module SAPPER [91]. Currently,�MEGA uses the systems MAPLE [30]
and GAP[85].

ATPs are employed to solve subgoals. Currently�MEGA uses the first-order prove
BLIKSEM [38], EQP[60], OTTER [61], PROTEIN [10], SPASS[95], WALD MEIS-
TER [50], the higher-order systems TPS [2], andLEO [16,11], and we plan to
incorporate VAMPIRE [82]. The first-order ATPs are connected via TRAMP [62],
which is a proof transformation system that transforms resolution-style proof
assertion-level ND-proofs which can then be integrated into�MEGA’s PDS . TPS

already provides ND-proofs, which can be further processed and checked w
tle transformational effort[12].

MGs provide either witnesses for free (existential) variables, or counter-models, w
show that some subgoal is not a theorem. Hence, they help to guide the
search. Currently,�MEGA uses the model generators SATCHMO [58] and SEM

[98].
CSs construct mathematical objects with theory-specific properties as witness

free (existential) variables. Moreover, a constraint solver can help to reduc
proof search by checking for inconsistencies of constraints. Currently,�MEGA

employsCoSIE [76,100], a constraint solver for inequalities and equations o
the field of real numbers.

2.6. Interface and system support

�MEGA’s graphical user interfaceL�UI [90] displays the currentPDS in multiple
modalities: a graphical map of the proof tree, a linearized presentation of the proof
with their formulae and justifications, a term browser, and a natural language prese
of the proof viaP.rex (seeFigs. 5 and 6).

When inspecting a part of a proof, the user can switch between alternative lev
granularity coexisting in thePDS , for example, by expanding an abstract justification
a proof node into its associated, less abstract partial subproof, which causes app
changes in the other presentation modes. Moreover, an interactive natural languageexpla-
nation of the proof is provided by the systemP.rex [40,39,41], which is adaptive in the
following sense: it explains a proof step at the most abstract level (which the user
sumed to know) and then reacts flexibly to questions and requests, possibly at a low
of granularity, for example, by detailing some ill-understood subproof.

Another system support is the guidance mechanism provided by the suggestion m
�ANTS (see Section2.4), which searches pro-actively for possible actions that ma
helpful in finding a proof and presents them in a preference list.

2.7. Case studies

Early developments of proof planning in Alan Bundy’s group at Edinburgh used p
by induction as their favorite case studies[25]. The �MEGA system has been used
several other case studies, which illustrate in particular the interplay of the various c
nents, such as proof planning supported by heterogeneous external reasoning syst

ARTICLE IN PRESS

S1570-8683(05)00073-X/FLA AID:88 Vol.•••(•••) [DTD5] P.14 (1-27)
JAL:m1a v 1.50 Prn:17/11/2005; 11:16 jal88 by:Jolanta p. 14

14 J. Siekmann et al. / Journal of Applied Logic••• (••••) •••–•••

mated
y

IM*,
lim-
this
tanti-
s
arith-
e
e
s taken

sidue
ucture

orphic

ange
Fig. 5. Multi-modal proof presentation in the graphical user interfaceL�UI .

A typical example for a class of problems that cannot be solved by traditional auto
theorem provers is the class ofε–δ-proofs[74,71]. This class was originally proposed b
Woody Bledsoe[23] as a challenge and it comprises theorems such as LIM+ and L
where LIM+ states that the limit of the sum of two functions equals the sum of their
its and LIM* makes the corresponding statement for multiplication. The difficulty of
domain arises from the need for arithmetic computation in order to find a suitable ins
ation of free (existential) variables (such as aδ depending on anε). Crucial for the succes
of �MEGA’s proof planning is the integration of suitable experts for these tasks: the
metic computation is done by the computer algebra system MAPLE, and an appropriat
instantiation forδ is computed by the constraint solverCoSIE . We have been able to solv
all challenge problems suggested by Bledsoe and many more theorems in this clas
from a standard textbook on real analysis[9].

Another class of problems we tackled with proof planning is concerned with re
classes[67,66]. In this domain we showed theorems such as: “the residue class str
(Z5, +̄) is associative”, “it has a unit element”, and similar properties, whereZ5 is the
set of all congruence classes modulo 5 (i.e.,{0̄5, 1̄5, 2̄5, 3̄5, 4̄5}) and+̄ is the addition on
residue classes. We have also investigated whether two given structures are isom
or not and altogether we have proved more than 10,000 theorems of this kind (see[92]).
Although the problems in this domain are not too difficult and still within the success r

ARTICLE IN PRESS

S1570-8683(05)00073-X/FLA AID:88 Vol.•••(•••) [DTD5] P.15 (1-27)
JAL:m1a v 1.50 Prn:17/11/2005; 11:16 jal88 by:Jolanta p. 15

J. Siekmann et al. / Journal of Applied Logic••• (••••) •••–••• 15

udy for
roofs

also
ble
lity of
f

mber
lution,
umber
e have
Fig. 6. Natural language proof presentation byP.rex in L�UI .

of a traditional automated theorem prover, it was nevertheless an interesting case st
proof planning, since multi-strategy proof planning generated substantially different p
based on entirely different proof ideas.

Another important proof technique is Cantor’s diagonalization technique and we
developed methods and strategies for this class[31]. Important theorems we have been a
to prove are the undecidability of the halting problem and Cantor’s theorem (cardina
the set of subsets), the non-countability of the reals in the interval[0,1] and of the set o
total functions, and similar theorems.

Finally, a good example for a standard proof technique is the excess-literal-nu
technique. This is routinely used for completeness proofs of refinements of reso
where the theorem is usually first shown at the ground level using the excess-literal-n
technique and then ground completeness is lifted to the predicate calculus level. W
done this for many refinements of resolution with�MEGA [45].

ARTICLE IN PRESS

S1570-8683(05)00073-X/FLA AID:88 Vol.•••(•••) [DTD5] P.16 (1-27)
JAL:m1a v 1.50 Prn:17/11/2005; 11:16 jal88 by:Jolanta p. 16

16 J. Siekmann et al. / Journal of Applied Logic••• (••••) •••–•••

ath-
iented

nge to
ve
have

y which
shift of
blems

ee dif-

to
mated
ion in

ot hide
uch a
rder

dely as

about

e
vides
roof
n
age of
rnal
e user
arison
d user-
fs in

y

chieved

e steps
However,�MEGA’s main aim is to become a proof assistant for the working m
ematician. Hence, it should support interactive proof development at a human-or
level of granularity. The already mentioned theorem that

√
2 is irrational, and its well-

known proof dating back to the School of Pythagoras, provides an excellent challe
evaluate whether this ambitious goal has been reached. In[97] seventeen systems that ha
solved the

√
2-problem show their results. The protocols of their respective sessions

been compared on a multi-dimensional scale in order to assess the “naturalness” b
real mathematical problems of this kind can be shown. This represents an important
emphasis in the field of automated deduction away from the somehow artificial pro
of the past—as represented, for example, in the test set of the TPTP library[93]—back to
real mathematical challenges. We participated in this case study essentially with thr
ferent contributions. Our initial contribution was an interactive proof in�MEGA without
adding any special domain knowledge to the system. This demonstrates the use of�MEGA

as a tactical theorem prover (see[14]). The most important albeit not entirely new lesson
be learned from this experiment is that the level of granularity common in most auto
and tactical theorem proving environments is far too low. While our proof representat
this first study is already an abstraction (called theassertion levelin [51]) from the calculus
level typical for most ATPs, it is nevertheless clear that as long as a system does n
all these excruciating details, no working mathematician will feel inclined to use s
system. In fact, this is in our opinion one of the critical impediments for using first-o
ATPs and one, albeit not the only one, of the reasons why they are not used as wi
computer algebra systems. This is the crucial issue of the�MEGA project and our main
motivation for departing from the classical paradigm of automated theorem proving
fifteen years ago.

Our second contribution to the case study of the
√

2-problem is based on interactiv
island planning[70], a technique that expects an outline of the proof, i.e., the user pro
main subgoals, calledislands, together with their assumptions. In fact, we are able to p
plan arbitrary j

√
l-problems as sketched in Section2.3.3. Hence, the user can write dow

his proof idea in a natural way with as many gaps as there are open at this first st
the proof. Closing the gaps is ideally fully automatic, in particular, by exploiting exte
systems. However, for difficult theorems it is necessary more often than not that th
provides additional information and applies the island approach recursively. In comp
to our first tactic-based solution the island style supports a much more abstract an
friendly interaction level. The proofs are now at a level of granularity similar to proo
mathematical textbooks.

Our third contribution to the case study of the
√

2-problem are fully automaticall
planned and expanded proofs ofj

√
l-problems for arbitrary natural numbersj and l. The

details of this important case study, that shows best what can (and what cannot) be a
with current proof planning technology are presented in[88,89,14].

2.8. Discussion

2.8.1. Proof-planning as an alternative approach to automated theorem proving?
The most important question to ask here is: Can we find the essential and creativ

automatically, for example, for the
√

2-problem discussed in Section2.3.3? The answer is

ARTICLE IN PRESS

S1570-8683(05)00073-X/FLA AID:88 Vol.•••(•••) [DTD5] P.17 (1-27)
JAL:m1a v 1.50 Prn:17/11/2005; 11:16 jal88 by:Jolanta p. 17

J. Siekmann et al. / Journal of Applied Logic••• (••••) •••–••• 17

a-
, which

found
an
d write
order
e

s
other
terac-
pts.
riate-

rules?

t the

. The
prises

other
xtreme,

f into
he next
roof

all but
are the

step
appro-
ieved.
yes, as we have shown in[88]. However, while we can answer the question in the affirm
tive, not every reader may be convinced, as our solution touches upon a subtle point
opens the Pandora Box of critical issues in the paradigm of proof planning[28]: It is always
easy to write some specific methods, which perform just the steps in the interactively
proof and then calls the proof planner MULTI to fit the methods together into a proof pl
for the given problem. This, of course, shows nothing of substance: Just as we coul
down all the definitions and theorems required and sufficient for the problem in first-
predicate logic and then hand them to a first-order prover,5 we would just hand-code th
final solution into appropriate methods.

Instead, the goal of the game is to findgeneralmethods for a whole class of theorem
within some theory that can solve not only this particular problem, but also all the
theorems in that class. While our approach essentially follows the proof idea of the in
tively constructed proof for the

√
2-problem, it relies essentially on more general conce

However, this is certainly not the end of the story. In order to evaluate the approp
ness of a proof planning approach we suggest the following four criteria:

(1) How general and how rich in mathematical content are the methods and control
(2) How much search is involved in the proof planning process?
(3) What kind of proof plans, that is, what kind of proofs, can we find?
(4) If the proof planning procedure fails on some given conjecture, how likely is it tha

given conjecture is not a theorem?

These criteria should allow us to judge how general and how robust our solution is
art of proof planning is to acquire domain knowledge that, on the one hand, com
meaningful mathematical techniques and powerful heuristic guidance, and, on the
hand, is general enough to tackle a broad class of problems. For instance, as one e
we could have methods that encode�MEGA’s ND-calculus and we could run MULTI with-
out any control. This approach would certainly be very general, but MULTI would fail to
prove any interesting problems. As the other extreme, we could cut a known proo
pieces, and code the pieces as methods. Guided by control rules that always pick t
right piece of the proof, MULTI would assemble the methods again to the original p
without performing any search. However, in that case if MULTI fails to find a proof then it
is not unlikely that the conjecture is nevertheless a theorem.

2.8.2. What lessons have we learned?
The problem domains on which proof planning has been applied so far are sm

nevertheless typical. Some interesting observations gained from this experience
following:

(1) The devil is in the detail, that is, it is always possible to hide the crucial creative
(represented as a specific method or represented in the object language by an
priate lemma) and to pretend a level of generality that has not actually been ach

5 This was done when OTTER tackled the
√

2-problem; see[97] for the original OTTER case study and[14] for
its replay with�MEGA.

ARTICLE IN PRESS

S1570-8683(05)00073-X/FLA AID:88 Vol.•••(•••) [DTD5] P.18 (1-27)
JAL:m1a v 1.50 Prn:17/11/2005; 11:16 jal88 by:Jolanta p. 18

18 J. Siekmann et al. / Journal of Applied Logic••• (••••) •••–•••

ve to

orean
(non-
is

hite-

uarter
emat-
rucial
ct [of
ning
plete

: Now
sk:
?
ed

n be
s
wledge

is
inte-
Would
-

tion.
atical

e-

de-

ermine
al
rties,
ory.

ods, but
stricted
To evaluate a solutionall tactics, methods, theorems, lemmata and definitions ha
be made explicit.

(2) The enormous distance between the well-known (top-level) proof of the Pythag
School, which consists of about a dozen proof steps in comparison to the final
optimized) proof at�MEGA’s ND-calculus level with about 750 inference steps
striking. This is, of course, not a new insight. While mathematics canin principle be
reduced to purely formal logic-level reasoning as demonstrated by Russell and W
head as well as the Hilbert School, nobody would actually want to do soin practice
as the Bourbaki group of French mathematicians states explicitly: The first q
of the first volume in the several dozen volume set on the foundation of math
ics starts with elementary, logic-level reasoning and then proceeds with the c
sentence[24]: “No great experience is necessary to perceive that such a proje
complete formalization] is absolutely unrealizable: the tiniest proof at the begin
of the theory of sets would already require several hundreds of signs for its com
formalization”.

(3) Finally and more to the general point of interest in mathematical support systems
that we can prove theorems in thej

√
l-problem class, the skeptical reader may still a

So what?Will this ever lead to ageneralsystem for mathematical proof assistance
We have shown that the class ofε–δ-proofs for limit theorems can indeed be solv
with a few dozen mathematically meaningful methods and control rules (see[74,72,
63]). Similarly, the domain of group theory with its class of residue theorems ca
formalized with even fewer methods (see[68,66,67]).6 An interesting observation i
also that these methods by and large correspond to the kind of mathematical kno
a freshman would have to learn to master this level of professionalism.

Do the above observations now hold for ourj
√

l-problems? The unfortunate answer
probablyNo! Imagine the subcommittee of the United Nations in charge of the ma
nance of the global mathematical knowledge base in a hundred years from now.
they accept the entry of our methods, tactics and control rules for thej

√
l-problems? Prob

ably not!
Factual mathematical knowledge is preserved in books and monographs,but the art of

doing mathematics[81,49] is passed on by word of mouth from generation to genera
The methods and control rules of the proof planner correspond to important mathem
techniques and “ways to solve it”[81], and they make this implicit and informal math
matical knowledge explicit and formal.

The theorems aboutj
√

l-problems are shown by contradiction, that is, the planner
rives a contradiction from the equationl · nj = mj , wheren andm are integers with no
common divisor. However, these problems belong to the more general class to det
whether two complex mathematical objectsX andY are equal. A general mathematic
principle for comparison of two complex objects is to look at their characteristic prope
for example, their normal forms or some other uniform notation in the respective the

6 The generally important observation is not, of course, whether we need a dozen or a hundred meth
that we don’t need a few thousand or a million. A few dozen methods seem to be generally enough for a re
mathematical domain.

ARTICLE IN PRESS

S1570-8683(05)00073-X/FLA AID:88 Vol.•••(•••) [DTD5] P.19 (1-27)
JAL:m1a v 1.50 Prn:17/11/2005; 11:16 jal88 by:Jolanta p. 19

J. Siekmann et al. / Journal of Applied Logic••• (••••) •••–••• 19

code
ly large

ort-
s are

pub-
stems
cietal
ch and
ason-
strong

f com-
bjects.
m the
ent in

w
l con-
ta in-
more,
rmedi-
matical
pecial

he doc-
mitted
ay be

of
entually
e this
say for
ical tu-
s level

s-
e user
And this is the crux of the matter: to find general mathematical principles and en
them into appropriate methods, control rules and strategies such that an appropriate
class of problemscan be solved with these methods.

3. The future: what next?

The longterm goal of the�MEGA project is an integrated environment of tools supp
ing a wide range of typical mathematical activities. Examples of mathematical activitie
computing, proving, solving, modeling, verifying, structuring, searching, inventing,
lishing, explaining, illustrating, etc. We anticipate that in the long run assistance sy
for mathematics will change mathematical practice and they will have a strong so
impact, not least in the sense that a powerful infrastructure for mathematical resear
education will become commercially available. Computer supported mathematical re
ing tools and integrated assistance systems will be further specialized to have a
impact also in many other theoretical fields such as safety and security verification o
puter software and hardware, theoretical physics and chemistry and other related su

The research questions we plan to investigate in the immediate future arise fro
following scenario of preparing a mathematical research article with formalized cont
a textbook style and in professional type-setting quality.

Mathematical research article preparation scenario.The author starts writing a ne
mathematical document in a format suitable for publication by using mathematica
cepts from different mathematical domains. New mathematical concepts or lemma
troduced in the paper should result in corresponding new formal objects. Further
when writing the document appropriate service tools can be used to compute inte
ate results for an illustrating example, querying mathematical databases for mathe
publications introducing similar concepts and send subproblems to be solved to s
reasoning or computation systems. Proofs of lemmata and theorems contained in t
ument should be amenable to formal proof checking techniques such that the sub
paper can be proof checked semi-automatically by the journal. A long-term goal m
fully automated verification.

3.1. Formalization and proving at a higher level of granularity

Mathematical reasoning with the�MEGA system is at the comparatively high level
the proof planning methods. However, as these methods have to be expanded ev
to our base-level ND-calculus, the system still suffers from the effect and influenc
logical representation has. In contrast, the proofs developed by a mathematician,
a mathematical publication, and the proofs developed by a student in a mathemat
toring system are typically developed at a less fine-grained argumentative level. Thi
has been formally categorized asproofs at the assertion level[51]. While so far assertion
level proofs needed to be constructed from the underlying ND-calculus proof in�MEGA,
the recently developed CORE system[3,4] supports proof construction directly on the a
sertion level and defines a communication infrastructure, i.e., a mediator, between th
and the automatic reasoning procedures. Currently, we exchange�MEGA’s ND-calculus

ARTICLE IN PRESS

S1570-8683(05)00073-X/FLA AID:88 Vol.•••(•••) [DTD5] P.20 (1-27)
JAL:m1a v 1.50 Prn:17/11/2005; 11:16 jal88 by:Jolanta p. 20

20 J. Siekmann et al. / Journal of Applied Logic••• (••••) •••–•••

evant
rchical
-
oning

cations
cular
uman-
ification
pes of

: First,
of de-

how to
l
or even

tivities
mple,

ples of
ample
alized

s, and
ms for
aming

s, proof
requires
arts. For
theory,
ology
y

mati-
l

guage.
left unin-

ontextual
by the CORE calculus, which supports the presentation of the proof state via rel
contextual information about possible proof continuations and also supports hiera
proof development. The proof theory of CORE is uniform for a variety of logics and ex
ploits proof-theoretic annotations in formulas for an assertion-level contextual reas
style.

An unfortunate aspect of typical mathematical proofs is theirunder-specification,7 for
example, missing references to premise assertions, to rule and instantiation specifi
or simply the specific part of the formula the author is talking about. One parti
challenge here is to define an appropriate proof format which allows to represent h
constructed proofs as they are and to develop means to resolve the under-spec
later by deductive methods. First steps in that direction and a description of the ty
under-specifications can be found in[5,13].

3.2. Mathematical knowledge representation

A mathematical proof assistance system relies upon different kinds of knowledge
of course, the formalized mathematical domain as organized in structured theories
finitions, lemmata, and theorems. Secondly, there is mathematical knowledge on
prove a theorem, which is encoded in tactics and methods, in�ANTS agents, in contro
knowledge and in strategies. This type of knowledge can be general, theory specific
problem specific.

The integration of a mathematical proof assistant into the typical and everyday ac
of a mathematician requires, however, other types of knowledge as well. For exa
a tutoring system for maths students may rely upon a database with different sam
proofs and proof plans linked by meta-data in order to advise the student. Another ex
is the support for mathematical publications: The documents containing both form
and non-formalized parts need to be related to specific theories, lemmata, theorem
proofs. This raises the research challenge on how the usual structuring mechanis
mathematical theories (such as theory hierarchies or the import of theories via ren
or general morphisms) can be extended to tactics and methods as well as to proof
plans and mathematical documents. Furthermore, changing any of these elements
maintenance support as any change in one part may have consequences in other p
example, the validity of a proof needs to be checked again after changing parts of a
which in turn may affect the validity of the mathematical documents. Thus, techn
supporting themanagement of change[7,8,6,52,77], originally developed for evolutionar
formal software engineering at the DFKI,8 will now be integrated into the�MEGA system
as well.

Hierarchically structured mathematical knowledge, i.e., an ontology of mathe
cal theories and assertions has initially been stored in�MEGAs hardwired mathematica

7 “Under-specification” is a technical term borrowed from research on the semantics of natural lan
Roughly it means that certain aspects in the semantic representation of a natural language utterance are
terpreted, such that their proper treatment can be deferred to later stages of processing in which more c
information is available.

8 http://www.dfki.de.

http://www.dfki.de

ARTICLE IN PRESS

S1570-8683(05)00073-X/FLA AID:88 Vol.•••(•••) [DTD5] P.21 (1-27)
JAL:m1a v 1.50 Prn:17/11/2005; 11:16 jal88 by:Jolanta p. 21

J. Siekmann et al. / Journal of Applied Logic••• (••••) •••–••• 21

ourced
cal
guistic

forma-

f for-
, but it

d, in
made

ertions
ion is
ledge

ain-
ledge
y
sable
s of a

ontext.
e theo-

exam-
search
large
cialized

, in ad-
fer and
t plans
l data-
rovers or
-
oblem
knowledge base. This mathematical knowledge base was later (end of the 90s) out-s
and linked to the development of MBASE [43]. We now assume that a mathemati
knowledge base also maintains domain specific control rules, strategies, and lin
knowledge. While this is not directly a subject of research in the�MEGA project, rely-
ing here on other groups of the MKM community and especially the OMDOC format,9 we
shall nevertheless concentrate on one aspect, namely how to find the appropriate in
tion as outlined in the next paragraph.

3.2.1. Semantic mediators for mathematical knowledge bases
Knowledge acquisition and retrieval in the currently emerging large repositories o

malized mathematical knowledge should not be based purely on syntactic matching
needs to be supported bysemanticmediators.

To prove a mathematical theorem in a particular domain is initially blind. Indee
order to prevent a search space explosion, only part of the relevant knowledge is
available at the start. For instance, in the�MEGA system the proof planner MULTI selects
a subset of the available knowledge which consists, for each theorem, of a set of ass
(axioms, definitions, lemmata), tactics and proof-planning methods. As this select
naturally incomplete, there is the need to incrementally incorporate additional know
if needed.

We are working on appropriately limited higher-order reasoning agents for dom
and context-specific retrieval of mathematical knowledge from a mathematical know
base. For this we shall adapt a two stage approach as in[17], which combines syntacticall
oriented pre-filtering with semantic analysis. The pre-filter employ efficiently proces
criteria based on meta-data and ontologies that identify sets of candidate theorem
mathematical knowledge base that are potentially applicable to a focused proof c
The higher-order agents then act as post-filters to exactly determine the applicabl
rems of this set.

3.3. MathServ: a global web for mathematical services

The Internet provides a vast collection of data and computational resources. For
ple, a travel booking system combines different information sources, such as the
engines, price computation schemes, and the travel information in distributed very
databases, in order to answer complex booking requests. The access to such spe
travel information sources has to be planned, the obtained results combined, and
dition, the consistency of time constraints has to be guaranteed. We want to trans
apply this methodology to mathematical problem solving and develop a system tha
the combination of several mathematical information sources (such as mathematica
bases), computer algebra systems, and reasoning processes (such as theorem p
constraint solvers). Based on the well-developed MATHWEB-SB network of mathemati
cal services, the existing client-server architecture will be extended by advanced pr
solving capabilities and semantic brokering of mathematical services (see[101]).

9 http://www.mathweb.org/omdoc/.

http://www.mathweb.org/omdoc/

ARTICLE IN PRESS

S1570-8683(05)00073-X/FLA AID:88 Vol.•••(•••) [DTD5] P.22 (1-27)
JAL:m1a v 1.50 Prn:17/11/2005; 11:16 jal88 by:Jolanta p. 22

22 J. Siekmann et al. / Journal of Applied Logic••• (••••) •••–•••

ces that

ath-

iron-
nsions
nsis-

uments

by

and
ms, and
ormal
ns.

g
orem.

e gap

ics de-
e

Fig. 7. Documents in TeXmacs: The user will be supported by different mathematical reasoning servi
“understand” the document content.

3.4. Support for mathematical activities

Proof construction is an important but only a small part of a much wider range of m
ematical activities an assistance system for mathematics should support.

3.4.1. Certified mathematics texts
A mathematician or software engineer writes a paper usually in a LaTeX-like env

ment. The definitions, lemmata, theorems and especially their proofs give rise to exte
of the original theory he started with. If the proofs of the new theorems and their co
tency with previous assertions are computer checked, we have mathematical doc
in a publishable style which in addition are formally validated, hence obtainingcertified
mathematical documents. A first step in that direction is currently under development
linking the WYSIWYG mathematical editor TEXMACS [94] with the�MEGA system (see
Fig. 7).

The TEXMACS-system provides LaTeX-like editing and macro-definition features,
we are defining macros for theory-specific knowledge such as types, constants, axio
lemmata. This allows us to translate new textual definitions and lemmata into the f
representation, as well as to translate (partial) textbook proofs into (partial) proof pla

3.4.2. Mathematical advice in tutoring systems
We are also involved in the DFKI project ActiveMath[75], which develops an e-learnin

tool for tutoring maths students, in particular in advising a student how to prove a the
This scenario is currently also under investigation in the DIALOG10 project [13,21] and,
aside from all linguistic analysis problems, gives rise to the problem to bridge th

10 The DIALOG project is a collaboration between the Computer Science and Computational Linguist
partments of Saarland University as part of the Collaborative Research Center onResource-Adaptive Cognitiv
Processes, SFB 378 (http://www.coli.uni-saarland.de/projects/sfb378/).

http://www.coli.uni-saarland.de/projects/sfb378/

ARTICLE IN PRESS

S1570-8683(05)00073-X/FLA AID:88 Vol.•••(•••) [DTD5] P.23 (1-27)
JAL:m1a v 1.50 Prn:17/11/2005; 11:16 jal88 by:Jolanta p. 23

J. Siekmann et al. / Journal of Applied Logic••• (••••) •••–••• 23

uman-
ce rule
re not

a

ically

nd

?

m for

nd Uni-

Au-
632,

with

aaz,
ence,

irch-
d Soft-

2002.
, in:
309,

ent of

)

Tso-
I-03
apulco,

em, in:
Joint
between the human style of proofs and machine-oriented proof representations. H
authored proofs are often imprecise in several respects, namely (i) the used inferen
is not mentioned, (ii) some of the premises needed for a step in the derivation a
mentioned, and (iii) some steps of the derivation are completely omitted.

Another interesting and novel application for theorem proving systems in the DIALOG

project is proof step evaluation (see[21]): Each proof step uttered by a student within
tutorial context has to be analyzed with respect to the following criteria:

Soundness: Can the proof step be reconstructed by a formal inference system and log
and tutorially verified?

Granularity: Is the ‘argumentative complexity’ or ‘size’ of the proof step logically a
tutorially acceptable?

Relevance: Is the proof step logically and tutorially useful for achieving the final goal

References

[1] S. Allen, R. Constable, R. Eaton, C. Kreitz, L. Lorigo, TheNuprl open logical environment, in:[59].
[2] P.B. Andrews, M. Bishop, S. Issar, D. Nesmith, F. Pfenning, H. Xi, TPS: A theorem proving syste

classical type theory, J. Automat. Reason. 16 (3) (1996) 321–353.
[3] S. Autexier, Hierarchical contextual reasoning, PhD thesis, Computer Science Department, Saarla

versity, Saarbrücken, Germany, 2003.
[4] S. Autexier, The CORE calculus, in: R. Nieuwenhuis (Ed.), Proceedings of the 20th Conference on

tomated Deduction (CADE-20), Tallinn, Estonia, in: Lecture Notes in Artificial Intelligence, vol. 3
Springer, Berlin, 2005, pp. 84–98.

[5] S. Autexier, C. Benzmüller, A. Fiedler, H. Horacek, Q. Bao Vo, Assertion-level proof representation
under-specification, Electronic Notes in Theoret. Comput. Sci. 93 (2003) 5–23.

[6] S. Autexier, D. Hutter, Maintenance of formal software development by stratified verification, in: M. B
A. Voronkov (Eds.), Proceedings of LPAR’02, Tbilisi, Georgia, in: Lecture Notes in Computer Sci
Springer, Berlin, 2002.

[7] S. Autexier, D. Hutter, T. Mossakowski, A. Schairer, The development graph manager MAYA, in: H. K
ner, C. Ringeissen (Eds.), Proceedings 9th International Conference on Algebraic Methodology an
ware Technology (AMAST’02), in: Lecture Notes in Computer Science, vol. 2422, Springer, Berlin,

[8] S. Autexier, T. Mossakowski, Integrating HOL-CASL into the development graph manager MAYA
A. Armando (Ed.), Proceedings of FROCOS’02, in: Lecture Notes in Artificial Intelligence, vol. 2
Springer, Berlin, 2002, pp. 2–17.

[9] R. Bartle, D. Sherbert, Introduction to Real Analysis, second ed., Wiley, New York, 1982.
[10] P. Baumgartner, U. Furbach, PROTEIN, a PROver with a theory INterface, in:[27], pp. 769–773.
[11] C. Benzmüller, Equality and extensionality in higher-order theorem proving, PhD thesis, Departm

Computer Science, Saarland University, Saarbrücken, Germany, 1999.
[12] C. Benzmüller, M. Bishop, V. Sorge, Integrating TPS and�MEGA, J. Universal Comput. Sci. 5 (1999

188–207.
[13] C. Benzmüller, A. Fiedler, M. Gabsdil, H. Horacek, I. Kruijff-Korbayova, M. Pinkal, J. Siekmann, D.

valtzi, B. Quoc Vo, M. Wolska, Tutorial dialogs on mathematical proofs, In: Proceedings of IJCA
Workshop on Knowledge Representation and Automated Reasoning for E-Learning Systems, Ac
Mexico, 2003, pp. 12–22.

[14] C. Benzmüller, A. Fiedler, A. Meier, M. Pollet, Irrationality of
√

2—a case study in�MEGA, Seki-Report
SR-02-03, Department of Computer Science, Saarland University, Saarbrücken, Germany, 2002.

[15] C. Benzmüller, M. Jamnik, M. Kerber, V. Sorge, Experiments with an agent-oriented reasoning syst
F. Baader, G. Brewka, T. Eiter (Eds.), KI 2001: Advances in Artificial Intelligence, Proceedings of

ARTICLE IN PRESS

S1570-8683(05)00073-X/FLA AID:88 Vol.•••(•••) [DTD5] P.24 (1-27)
JAL:m1a v 1.50 Prn:17/11/2005; 11:16 jal88 by:Jolanta p. 24

24 J. Siekmann et al. / Journal of Applied Logic••• (••••) •••–•••

174,

al, in:
otes in

rem

ver co-
ogic for
nce,

log on
n Arti-

a, J.J.
Evora,

.

ays in

rtificial

, in:

dings
mputer

tion to

edings
l and

3, see

(Eds.),
Com-

ok of

ms and

.
e 17th
San

nd Uni-
German/Austrian Conference on AI, Vienna, Austria, in: Lecture Notes in Artificial Intelligence, vol. 2
Springer, Berlin, 2001, pp. 409–424.

[16] C. Benzmüller, M. Kohlhase, LEO—a higher-order theorem prover, in:[54].
[17] C. Benzmüller, A. Meier, V. Sorge, Bridging theorem proving and mathematical knowledge retriev

D. Hutter, W. Stephan (Eds.), Festschrift in Honour of Jörg Siekmann’s 60s Birthday, in: Lecture N
Artificial Intelligence, vol. 2605, Springer, Berlin, 2004.

[18] C. Benzmüller, V. Sorge, A blackboard architecture for guiding interactive proofs, in:[46].
[19] C. Benzmüller, V. Sorge,�ANTS—An open approach at combining Interactive and Automated Theo

Proving, in:[53].
[20] C. Benzmüller, V. Sorge, M. Jamnik, M. Kerber, Can a higher-order and a first-order theorem pro

operate? in: F. Baader, A. Voronkov (Eds.), Proceedings of the 11th International Conference on L
Programming Artificial Intelligence and Reasoning (LPAR), in: Lecture Notes in Artificial Intellige
vol. 3452, Springer, Berlin, 2005, pp. 415–431.

[21] C.E. Benzmüller, Q.B. Vo, Mathematical domain reasoning tasks in natural language tutorial dia
proofs, in: M. Veloso, S. Kambhampati (Eds.), Proceedings of the Twentieth National Conference o
ficial Intelligence (AAAI-05), Pittsburgh, PA, AAAI Press/MIT Press, 2005, pp. 516–522.

[22] C. Benzmüller, V. Sorge, Critical agents supporting interactive theorem proving, in: P. Borahon
Alferes (Eds.), Proceedings of the 9th Portuguese Conference on Artificial Intelligence (EPIA’99),
Portugal, in: Lecture Notes in Artificial Intelligence, vol. 1695, Springer, Berlin, 1999, pp. 208–221.

[23] W. Bledsoe, Challenge problems in elementary calculus, J. Automat. Reason. 6 (1990) 341–359.
[24] N. Bourbaki, Theory of sets, Elements of Mathematics, vol. 1, Addison-Wesley, Reading, MA, 1968
[25] A. Bundy, The use of explicit plans to guide inductive proofs, in:[57], pp. 111–120.
[26] A. Bundy, A science of reasoning, in: G. Plotkin, J.-L. Lasser (Eds.), Computational Logic: Ess

Honor of Alan Robinson, MIT Press, Cambridge, MA, 1991, pp. 178–199.
[27] A. Bundy (Ed.), Proceedings of the 12th Conference on Automated Deduction, Lecture Notes in A

Intelligence, vol. 814, Springer, Berlin, 1994.
[28] A. Bundy, A critique of proof planning, in: Computational Logic: Logic Programming and Beyond

Lecture Notes in Computer Science, vol. 2408, Springer, Berlin, 2002, pp. 160–177.
[29] A. Bundy, F. van Harmelen, C. Horn, A. Smaill, The Oyster-Clam system, in: M. Stickel (Ed.), Procee

of the 10th Conference on Automated Deduction, Kaiserslautern, Germany, in: Lecture Notes in Co
Science, vol. 449, Springer, Berlin, 1990, pp. 647–648.

[30] B. Char, K. Geddes, G. Gonnet, B. Leong, M. Monagan, S. Watt, First Leaves: A Tutorial Introduc
Maple V, Springer, Berlin, 1992.

[31] L. Cheikhrouhou, J. Siekmann, Planning diagonalization proofs, in:[46], pp. 167–180.
[32] L. Cheikhrouhou, V. Sorge, PDS—A three-dimensional data structure for proof plans, In: Proce

of the International Conference on Artificial and Computational Intelligence for Decision, Contro
Automation in Engineering and Industrial Applications (ACIDCA’2000), Monastir, Tunisia, 2000.

[33] A. Church, A formulation of the simple theory of types, J. Symbolic Logic 5 (1940) 56–68.
[34] Coq Development Team, The Coq proof assistant reference manual, INRIA, 1999–200

http://coq.inria.fr/doc/main.html.
[35] M. Davis, The prehistory and early history of automated deduction, in: J. Siekmann, G. Wrightson

Automation of Reasoning, vol. 2, Classical Papers on Computational Logic 1967–1970 of Symbolic
putation, Springer, Berlin, 1983.

[36] M. Davis, The early history of automated deduction, in: A. Robinson, A. Voronkov (Eds.), Handbo
Automated Reasoning, vol. I, Elsevier Science, Amsterdam, 2001, pp. 3–15, Chapter 1.

[37] M. Davis (Ed.), The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Proble
Computable Functions, Dover Publications, New York, 2004.

[38] H. de Nivelle, Bliksem 1.10 user manual, Technical Report, Max-Planck-Institut für Informatik, 1999
[39] A. Fiedler, Dialog-driven adaptation of explanations of proofs, in: B. Nebel (Ed.), Proceedings of th

International Joint Conference on Artificial Intelligence (IJCAI), Seattle, WA, Morgan Kaufmann,
Mateo, CA, 2001, pp. 1295–1300.

[40] A. Fiedler, P.rex: An interactive proof explainer, in:[48].
[41] A. Fiedler, User-adaptive proof explanation, PhD thesis, Department of Computer Science, Saarla

versity, Saarbrücken, Germany, 2001.

http://coq.inria.fr/doc/main.html

ARTICLE IN PRESS

S1570-8683(05)00073-X/FLA AID:88 Vol.•••(•••) [DTD5] P.25 (1-27)
JAL:m1a v 1.50 Prn:17/11/2005; 11:16 jal88 by:Jolanta p. 25

J. Siekmann et al. / Journal of Applied Logic••• (••••) •••–••• 25

in Arti-

üle in
rmany,

logy,
rlin,

gic,

IJCAR

1949,

mance

Engi-

echa-

ecture

roCoS

mat-
tion of

ne, Illi-

n Arti-

tional

ertion

arland

d.),
ecture

epart-

erger,
stems
2001,

lasses,
on the
[42] A. Franke, M. Kohlhase, System description: MBase, an open mathematical knowledge base, in:[59].
[43] A. Franke, M. Kohlhase, System description: Mbase, an open mathematical knowledge base, in:[59].
[44] H. Ganzinger (Ed.), Proceedings of the 16th Conference on Automated Deduction, Lecture Notes

ficial Intelligence, vol. 1632, Springer, Berlin, 1999.
[45] H. Gebhard, Beweisplanung für die Beweise der Vollständigkeit verschiedener Resolutionskalk

�MEGA, Master’s thesis, Department of Computer Science, Saarland University, Saarbrücken, Ge
1999.

[46] F. Giunchiglia (Ed.), Proceedings of 8th International Conference on Artificial Intelligence: Methodo
Systems, Applications (AIMSA’98), Lecture Notes in Artificial Intelligence, vol. 1480, Springer, Be
1998.

[47] M. Gordon, T. Melham, Introduction to HOL—A Theorem Proving Environment for Higher Order Lo
Cambridge University Press, Cambridge, 1993.

[48] R. Goré, A. Leitsch, T. Nipkow (Eds.), Automated Reasoning—1st International Joint Conference,
2001, Lecture Notes in Artificial Intelligence, vol. 2083, Springer, Berlin, 2001.

[49] J. Hadamard, The Psychology of Invention in the Mathematical Field, Dover Publications, New York,
1944.

[50] Th. Hillenbrand, A. Jaeger, B. Löchner, System description: Waldmeister—improvements in perfor
and ease of use, in:[44], pp. 232–236.

[51] X. Huang, Reconstructing proofs at the assertion level, in:[27], pp. 738–752.
[52] D. Hutter, Management of change in structured verification, in: Proceedings of Automated Software

neering, ASE-2000, IEEE, 2000.
[53] M. Kerber, M. Kohlhase (Eds.), 8th Symposium on the Integration of Symbolic Computation and M

nized Reasoning (Calculemus-2000), AK Peters, 2000.
[54] C. Kirchner, H. Kirchner (Eds.), Proceedings of the 15th Conference on Automated Deduction, L

Notes in Artificial Intelligence, vol. 1421, Springer, Berlin, 1998.
[55] H. Kirchner, C. Ringeissen (Eds.), Frontiers of Combining systems: Third International Workshop, F

2000, Lecture Notes in Artificial Intelligence, vol. 1794, Springer, Berlin, 2000.
[56] M. Kohlhase, A. Franke, MBASE: Representing knowledge and context for the integration of mathe

ical software systems, J. Symbolic Comput. 32 (4) (2001) 365–402 (special issue on the Integra
Computer Algebra and Deduction Systems).

[57] E. Lusk, R. Overbeek (Eds.), Proceedings of the 9th Conference on Automated Deduction, Argon
nois, Lecture Notes in Computer Science, vol. 310, Springer, Berlin, 1988.

[58] R. Manthey, F. Bry, SATCHMO: A theorem prover implemented in Prolog, in:[57], pp. 415–434.
[59] D. McAllester (Ed.), Proceedings of the 17th Conference on Automated Deduction, Lecture Notes i

ficial Intelligence, vol. 1831, Springer, Berlin, 2000.
[60] W. McCune, Solution of the Robbins problem, J. Automat. Reason. 19 (3) (1997) 263–276.
[61] W.W. McCune, Otter 3.0 reference manual and guide, Technical Report ANL-94-6, Argonne Na

Laboratory, Argonne, IL 60439, USA, 1994.
[62] A. Meier, TRAMP: Transformation of machine-found proofs into natural deduction proofs at the ass

level, in: [59].
[63] A. Meier, Proof planning with multiple strategies, PhD thesis, Department of Computer Science, Sa

University, Saarbrücken, Germany, 2004.
[64] A. Meier, E. Melis, MULTI : A multi-strategy proof planner (system description), in: R. Nieuwenhuis (E

Proceedings of the 20th Conference on Automated Deduction (CADE-20), Tallinn, Estonia, in: L
Notes in Artificial Intelligence, vol. 3632, Springer, Berlin, 2005, pp. 250–254.

[65] A. Meier, E. Melis, M. Pollet, Towards extending domain representations, Seki Report SR-02-01, D
ment of Computer Science, Saarland University, Saarbrücken, Germany, 2002.

[66] A. Meier, M. Pollet, V. Sorge, Classifying isomorphic residue classes, in: R. Moreno-Diaz, B. Buchb
L. Freire (Eds.), A Selection of Papers from the 8th International Workshop on Computer Aided Sy
Theory (EuroCAST 2001), in: Lecture Notes in Computer Science, vol. 2178, Springer, Berlin,
pp. 494–508.

[67] A. Meier, M. Pollet, V. Sorge, Comparing approaches to the exploration of the domain of residue c
in: S. Linton, R. Sebastiani (Eds.), J. Symbolic Comput. 34 (4) (2002) 287–306 (special issue
Integration of Automated Reasoning and Computer Algebra Systems).

ARTICLE IN PRESS

S1570-8683(05)00073-X/FLA AID:88 Vol.•••(•••) [DTD5] P.26 (1-27)
JAL:m1a v 1.50 Prn:17/11/2005; 11:16 jal88 by:Jolanta p. 26

26 J. Siekmann et al. / Journal of Applied Logic••• (••••) •••–•••

itted

e, Saar-

ference

hton,

Ker-
erence
61,

05.
inger,

mann
Lecture

ture

ng, and
ick,

pringer,

–41.
inisch

Deduk-
, also in

istory

GA:
athe-
020-

(2) is
ning,
inger,

onrad,
f

plan-
2001.
[68] A. Meier, V. Sorge, Exploring properties of residue classes, in:[53].
[69] A. Meier, E. Melis, J. Siekmann, Proof planning with multiple strategies, Artificial Intelligence, subm

for publication.
[70] E. Melis, Island planning and refinement, Seki-Report SR-96-10, Department of Computer Scienc

land University, Saarbrücken, Germany, 1996.
[71] E. Melis, AI-techniques in proof planning, in: H. Prade (Ed.), Proceedings of the 13th European Con

on Artificial Intelligence, Brighton, UK, John Wiley & Sons, Chichester, UK, 1998, pp. 494–498.
[72] E. Melis, AI-techniques in proof planning, in: European Conference on Artificial Intelligence, Brig

UK, Kluwer, Dordrecht, 1998, pp. 494–498.
[73] E. Melis, A. Meier, Proof planning with multiple strategies, in: J. Loyd, V. Dahl, U. Furbach, M.

ber, K. Lau, C. Palamidessi, L.M. Pereira, Y. Sagivand, P. Stuckey (Eds.), First International Conf
on Computational Logic (CL-2000), London, UK, in: Lecture Notes in Artificial Intelligence, vol. 18
Springer, Berlin, 2000, pp. 644–659.

[74] E. Melis, J. Siekmann, Knowledge-based proof planning, Artificial Intelligence 115 (1) (1999) 65–1
[75] E. Melis, J. Siekmann, Activemath: An Intelligent Tutoring System for Mathematics, vol. 3070, Spr

Berlin, 2004, pp. 91–101.
[76] E. Melis, J. Zimmer, T. Müller, Integrating constraint solving into proof planning, in:[55].
[77] T. Mossakowski, S. Autexier, D. Hutter, Extending development graphs with hiding, in: H. Huss

(Ed.), Proceedings of Fundamental Approaches to Software Engineering (FASE 2001), Genova, in:
Notes in Computer Science, vol. 2029, Springer, Berlin, 2001, pp. 269–283.

[78] T. Nipkow, L.C. Paulson, M. Wenzel, Isabelle/HOL: A Proof Assistant for Higher-Order Logic, in: Lec
Notes in Computer Science, vol. 2283, Springer, Berlin, 2002.

[79] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, M. Srivas, PVS: Combining specification, proof checki
model checking, in: R. Alur, T. Henzinger (Eds.), Computer-Aided Verification, CAV ’96, New Brunsw
NJ, in: Lecture Notes in Computer Science, vol. 1102, Springer, Berlin, 1996, pp. 411–414.

[80] L. Paulson, Isabelle: A Generic Theorem Prover, Lecture Notes in Computer Science, vol. 828, S
Berlin, 1994.

[81] G. Polya, How to Solve it, Princeton University Press, Princeton, NJ, 1973.
[82] A. Riazanov, A. Voronkov, Vampire 1.1 (system description), in:[48].
[83] J. Richardson, A. Smaill, I. Green, System description: Proof planning in higher-order logic withλClam,

in: [54].
[84] J.A. Robinson, A machine-oriented logic based on the resolution principle, J. ACM 12 (1) (1965) 23
[85] M. Schönert, et al., GAP—Groups, Algorithms, Programming, Lehrstuhl D für Mathematik, Rhe

Westfälische Technische Hochschule, Aachen, Germany, 1995.
[86] J. Siekmann, Geschichte des Automatischen Beweisens (History of Automated Deduction), in:

tionssysteme, Automatisierung des Logischen Denkens, second ed., R. Oldenbourg Verlag, 1992
English with Elsewood.

[87] J. Siekmann, History of computational logic, in: D. Gabbay, J. Woods (Eds.), The Handbook of the H
of Logic, vols. I–IX, Elsevier, Amsterdam, 2004.

[88] J. Siekmann, C. Benzmüller, A. Fiedler, A. Meier, I. Normann, M. Pollet, Proof development in OME
The irrationality of square root of 2, in: F. Kamareddine (Ed.), Thirty Five Years of Automating M
matics, in: Kluwer Applied Logic Series, vol. 28, Kluwer Academic Publishers, Dordrecht, ISBN 1-4
1656-5, 2003, pp. 271–314.

[89] J. Siekmann, C. Benzmüller, A. Fiedler, A. Meier, M. Pollet, Proof development with OMEGA: Sqrt
irrational, in: M. Baaz, A. Voronkov (Eds.), Logic for Programming, Artificial Intelligence, and Reaso
9th International Conference, LPAR 2002, in: Lecture Notes in Artificial Intelligence, vol. 2514, Spr
Berlin, 2002, pp. 367–387.

[90] J. Siekmann, S. Hess, C. Benzmüller, L. Cheikhrouhou, A. Fiedler, H. Horacek, M. Kohlhase, K. K
A. Meier, E. Melis, M. Pollet, V. Sorge,LOUI: Lovely �MEGA UserInterface, Formal Aspects o
Computing 11 (1999) 326–342.

[91] V. Sorge, Non-trivial computations in proof planning, in:[55].
[92] V. Sorge,�ANTS—a blackboard architecture for the integration of reasoning techniques into proof

ning, PhD thesis, Department of Computer Science, Saarland University, Saarbrücken, Germany,
[93] G. Sutcliffe, C. Suttner, T. Yemenis, The TPTP problem library, in:[27].

ARTICLE IN PRESS

S1570-8683(05)00073-X/FLA AID:88 Vol.•••(•••) [DTD5] P.27 (1-27)
JAL:m1a v 1.50 Prn:17/11/2005; 11:16 jal88 by:Jolanta p. 27

J. Siekmann et al. / Journal of Applied Logic••• (••••) •••–••• 27

tes du

ystem

nger,

e 14th
ann,

al rea-
uction,

rroyo-
2972,
[94] J. van der Hoeven, GNU TeXmacs: A free, structured, wysiwyg and technical text editor, in: Ac
congrès Gutenberg, Metz, Actes du congrès Gutenberg, vols. 39–40, May 2001, pp. 39–50.

[95] C. Weidenbach, B. Afshordel, U. Brahm, C. Cohrs, Th. Engel, E. Keen, C. Theobalt, D. Topic, S
description: SPASS version 1.0.0, in:[44], pp. 378–382.

[96] D. Weld, An introduction to least commitment planning, AI Magazine 15 (4) (1994) 27–61.
[97] F. Wiedijk, The Seventeen Provers of the World, in: Lecture Notes in Artificial Intelligence, Spri

Berlin, 2005, in press.
[98] J. Zhang, H. Zhang, SEM: A system for enumerating models, in: C.S. Mellish (Ed.), Proceedings of th

International Joint Conference on Artificial Intelligence (IJCAI), Montreal, Canada, Morgan Kaufm
San Mateo, CA, 1995, pp. 298–303.

[99] J. Zimmer, M. Kohlhase, System description: The Mathweb software bus for distributed mathematic
soning, in: A. Voronkov (Ed.), Proceedings of the 18th International Conference on Automated Ded
in: Lecture Notes in Artificial Intelligence, vol. 2392, Springer, Berlin, 2002, pp. 138–142.

[100] J. Zimmer, E. Melis, Constraint solving for proof planning, J. Automat. Reason. 33 (2004) 51–88.
[101] J. Zimmer, A framework for agent-based brokering of reasoning services, in: R. Monroy, G. A

Figueroa, L.E. Sucar, J.H.S. Azuela (Eds.), MICAI, in: Lecture Notes in Computer Science, vol.
Springer, Berlin, 2004.

��������	��

��������������������
�������� �"!�� �$#%� �&�'(' � ���)�$����

�
*

� + ' �����,����+���� �$�����

� ���-
��.���$� & � ' �$�������$���/�

����+0���$�1��

�0��� '(' �2�

3547686.9;:.</=8<5>$6.3@?A<5BDCFEHGICKJ LNMPO8QSRUT2CKJN<
GV4D47W/CKGX6.B�WN>�GICZY 6.9\[]

^`_ba%c�a�dedgfihXjbklc%j�mn_baokVpqa�rtsvununa�pnmnwejbxymn_za%wgpqpqsImnwekVjzsVdgwgm|{2kI}�~ �yc�svu,�bpqkV��kvunao��sVu-s
� sVuna`u�mn����{ }�kvp-s � kVr��zsVpnw�unkVj�kV}��z}�mna�aoj���wej�mna�p�s � mnwe�Va���mn_baokVpqa�r8�bpqkl�Xwgjzx�un{�u|mqa�r�u� � wga���w �|h��z�V�V�������-^`_bw�u`pqa��bpqaouna�j�mqu�sIj�wer���kVpnmqsVj�m`un_bwg}�m(kI}�aor��z_zsVunweu`wej�mn_bay�zaode�kV}�sI��mqkVr�slmqao����a���� � mnwekVj/s�c`s�{�}�pnkvr�mq_ba�u�kvr�ao_bklc8sIpnmnwg� � wesVd��bpqkV bdea�r�u1kI}-mq_ba�zsvu|m% zs � h�mnk�pqaosVd¡r�sImn_baor�slmnw � sVd � _zsIdedea�jbxvaouo�� a��bpqaouna�j�m¢sIj£kl�Vaopn�Xwea�c¤kV}1mq_ba�¥%¦¨§z©�ª«un{Xu�mnaor0svu�}�sIp�svu�w¬m�w�u�pqa�dea��lsIj�m}�kvp(mn_za­�b�zpn��kvuna�kV})mn_bw�uy�zsI��a�p��¡sIjz�$mq_ba�j/c®a���w�u � �zunu¨mn_zpnaoa­��wg¯�aopnaoj�m�u�m|{Xdga�u(kI}�bpqkXkI},��a��va�dekV�br�a�j�m(wej�¥%¦¨§z©�ª°�zunwgjbx�mq_ba a�±�sVr��bdga2kV}�mq_ba wepnp�slmqwgkvjzsIdewgm|{�kI} ~ �X²^`_ba1�zp�u|m`}�kvdgdeklc(u-mq_baymnp�sV��wgmnwekVj�sId�mqs � mnw � sVd�mn_baokVpqa�r³�bpqkl�Xwgjbx�sI�b�zpnk�s � _¢c%wgmn_bkv��msVj�{5r�sImn_baor�sImnw � sVd%h�jzklc%dga���xVav�-mn_za�u�a � kVj��@aor��zdgkl{�u­mn_ba�w���a�s/kV}1wej�mna�p�s � mnwe�Vaw�u�d�sIj��´�bpnkXkV}(�bdesVjbjbwejbxz�)sVjz�´mn_za¢mn_zwgp��5w�u­s�}��bdgde{5sI��mqkVr�slmqao�5�zpnkXkI}% zsvu�a��´kVj�bd�sIjzjbwgjzx�c%wgmn_°¥%¦1§z©�ª)µ u1�bpqkXkI}-�bd�sIjbjza�p ¶¸·º¹�»½¼¾�y¿�kvpnaokl�Vaopo��c®a­wgdedg��u|mqpqsImna mq_baa�±X��sIjzunwgkvj�sIj��/un�b zunaoÀ��baojvm��Vaopnwg� � slmnwekVj�kI}�mq_ba��bpqk�kV}�u�slmymn_ba�dekVxVw � dgao�Va�di� � asVdeunk¢��w�u � �zunu(mn_ba­hXjbklc%dga���xVa2aojbxVwejbaoa�pqwgjbx��bpnk � aouqu% X{�c%_bw � _�mq_ba�r�sIwej�w���aosvu(kI}mq_ba�wgj�mnaopqs � mqwg�va­w�u�d�sIj����bpqkXkI}®sVpna�xVaojba�p�sIdewgÁoao��wgj�mnk�pqaoun��a � mnwe�Va��bpqkXkI}�r�a�mn_bk��buo�un� � _�mn_zsIm¨sI��mqkVr�slmqw � �bpqkXkI}��zdesVjbjbwejbx� �a � kVr�a�u�}�aosVunwe bdga�}�kvp`mn_bw�u(��kvr�sIwejº�

Â ¥(¶5Ã Ä�Å
^`_ba�¥%¦1§z©�ª��zpnkXkI}���a��va�dekV�br�aojvm�un{�u|mqa�r � Æ wea�hXr�sIjbj8Ç�È�ÉIÊgËe�¨�I�v�v���%w�u¢slm�mq_ba
� kVpqa kI}-una��VaopqsVd�pqa�d�slmqao��sIj���c®aodgdgfÌwgj�mnaoxVp�slmqao��pna�u�a�sIp � _$�bpnkV�|a � mqu(kV})mn_ba�¥%¦¨§�©ºªpqaounaosVp � _¸xvpnkv�b�º�-c%_zkvuna�sVwgrAw�u�mnk5��ao�Vaodgkv�Zun{Xu�mnaor"un�b�b��kVpnm�}�kvp�mn_ba�c�kVpqhXwgjbxr�slmq_ba�r�sImnw � w�sIjº�¥%¦¨§�©ºª«w�u¢s5r�sImn_baor�sImnw � sVd1sVuqunweu�mqsVjvm�mqk�kvd(mq_zslm�un�b�b��kVpnmqu��bpqk�kV}��ba��Vaodgkv��fr�a�j�m�wgj@r�sImn_baor�slmnw � sVd%��kVr�sIwejzu�slm�s��zuna�pnfi}�pnwea�jz�bdg{°dgao�Vaod®kV}1sI zu�mnp�s � mnwekVjº�°ÍÌmw�u s�r�k����bd�sIp�un{�u|mqa�rÎc%w¬mq_@s � aoj�mnp�sId-�bpqkXkI}(�bsImqs�u�mnpq� � mq�bpna¢sVjz�5una��VaopqsVd-u��z��f�bdea�r�aojvm�sIpq{�un�b zun{Xu�mnaor�u��%¥%¦¨§z©�ª´_zsvu%r�sIjX{ � _zsVpqs � mqa�pqweu�mnw � u�wej � kVr�r�kVj$c%wgmn_un{�u|mqa�r�u�dewehVa�Ï­·¡ÐyÑ¡Ò � Ó dedgaojNÇ�È�ÉlÊgËe�%�I�v�V�I���%ÔyÕ)Ö � × k�À5Ø1a��va�dekV�br�a�j�m�^�a�sIr$�
Â�ÙVÙVÙ f¾�V�V�vÚl����Û�Õ�¹ � Ü kVp���kVj¢sVjz�¢¿�aodg_�sIr$� ÂoÙVÙ Úl����Ý�Þ Æ��àß c%pqa­Ç
È�ÉIÊgËe� ÂoÙvÙVá ����sIjz�Í|uqsI �a�dedga � Ý)sI�bd�unkVjº� ÂoÙVÙVâzã,ä we�bhVklcåÇ
È�ÉlÊgËe�¨�V�V�������Kæ¨klc®ao�Va�p��-wgm���wg¯�aopqu¢unwexVjbwg�bf
� sIj�mnde{�}�pnkvrSmn_ba�u�a�un{Xu�mnaor�u1c%wgmn_/pna�u���a � m1mqk$w¬m�u¨}�k � �zuykVj�ç½èné�é|ê1ç�ÊeÉlëzë�ì�ë�í�sIjz�wej$mn_zsIm¨pqaoun��a � m(wgm¨weu¨r�kVpqa u�wer�wgd�sIp%mqk�mn_za �bpqk�kV}î�zdesVjbjbwejbx¢u�{�u�mnaor�u Ô1¹Vª�¦.sIjz�
ïXð
ñ¬ò�óõô
ö�÷®ðõø`ðõò�ùÌú
ú
ñ¬ûIù1ü�ùÌú�ý þnÿ���������
	��
� ����������������������������� �!��"�#%$&� �!���'��� ����('�*)�+�,�-/.�,10Iý(2)�3�3�.qÿ½÷54 ô76�ù�ò98�:Ìð
ú
ùnø�ñ;:=<¡ô?>14 ñ;@BA�ù�òC@|ýD<ºò¾ñ¬û?E�ùÌú(ñgû&EFA�ù=G-ù�EFA�ù�òC4 ðõûIú�@|ý

H�I�HKJ7L
MON $P�9Q9Q5R�S M Q9TU$WVXDYZY MO[R�� L
M]\ Y MO[R?$ M�L
MO[R?Q9^ [$P�9Q9Q5R7��Q \W_ ^9YZY M �

` Ô1¹vª�¦ slm=a®��wgjX b�zpnxv_ � b w � _�sIp��bu�kvj�Ç�ÈîÉlÊeËe� ÂoÙvÙdczã�e �bjz�b{�Ç
È,ÉlÊgËe� ÂoÙvÙ �I��� � a%u�_�sIdedjbklc �bpna�u�aoj�m)sVj�kl�Va�pq�Xwgaoc¸kI}½mq_ba(sIp � _bwgmna � mn�bpqa`kI}½mn_za¨¥%¦¨§z©�ª�u�{�u�mnaortsIj���un_bklcu�kvr�a1kV}�w¬m�u`jbkl�Vaodz}�a�slmq�bpna�u��Xc%_bw � _�wej � dg�z�ba1}�s � wedgwgmnweaou®mqk�s ��� aouqu®una��va�p�sIdza�±Xmna�pqjzsVdpna�sVunkVjbwejbx�un{Xu�mnaor�u�sIj���mqk�wejvmqa�xvpqsImna�mn_za�wep�pqaoun�bd¬m�u wej�mnk�s�unwgjzxVdea¢�bpqk�kV}`u�mnpq� � fmn�bpqa ã u��b �u|m�sIj�mnw�sId�u��b�z��kvp�m }�kvp�wej�mna�p�s � mnwe�Va��bpqkXkI}(��ao�Va�dekV�zr�aoj�m mn_bpqkV�zxV_¸unkVr�ajbkVjbfÌu�mqsVjz�bsIp��­wgjzun��a � mqwgkvj�}�s � wedew¬mqwga�u�sIj���}�kvp-xV�zwe�bsVj � a`wej�mn_ba1u�a�sIp � _ }�kVp®s��bpnkXkV} ãsIjz����jzsIdedg{�r�a
mq_bk��bu(mqk���ao�Va�dekV�$�bpqkXkI}�u1slm1s�_X�br�sVj�fikvpnwea�j�mqao�¡�b_zwgxv_ba�p1dgao�Va�d�kI}sI zu�mnp�s � mnwekVjº�
fhgCf i=jlkdm�ndoqpsr]ndtdrlu ndv
^`_bay¥%¦1§z©�ª��bpqkI�|a � m � �bpqpnaojvmqdg{�pqa��bpqaouna�j�mqu�kVjba1kI}¡mq_ba1d�sIpqxVa�u|m�slm�mqa�r���m�u®c�kVpqd��Xfc%we�ba�mqkZ b�zwgd��DsVj�sVuqunweu�mqsVjvm�mnkXkVd1}�kVp�mq_ba/c�kVpqhXwgjzx¸r�slmn_za�r�slmqw � wesVjº�³ÍÌm�w�u$spnao�bpqaouna�j�mqsImnwe�Va�kI}-un{Xu�mnaor�u%wgj�mn_ba jza�c.�zsIp�sV�bwgxvr kI}îç½ènéoé�ê`ç½ÊgÉlë�ëzì�ë�í$sVjz� � kvr�f bwejbaou2wej�mnaopqs � mnwe�Va�sIj��°sV��mnkvr�slmna����zpnkXkI} � kvjzu|mqpn� � mnwekVj/}�kVp �bkVr�sIwejzu�c%wgmn_´pnw � _sIjz��c�a�ded¬f¾u�mnpq� � mq�bpna���r�sImn_baor�slmnw � sVdºhXjbklc%deao��xvaV�®^`_za wgjb}�a�pqa�j � a2r�a � _zsIjzweunr sImmn_ba$deklc®a�u|m�dea��Vaod`kI}ysV zu�mnp�s � mqwgkvj¸w�u�sIj@wej�mnaopqs � mnwe�Va�mn_za�kVpqa�r �zpnkl�va�p� zsVunao�@kVjs�_zwgxv_ba�pnfikvpq�ba�pyjzslmq�bpqsVd)��ao��� � mnwekVj£� ä Øy�2��sVpnw�sIj�m�kI}`s�unkI}�mnfÌunkVpnmna���w2�va�p�u�wekVj/kI}× _X�bp � _�µ u�u�wer��bdg{ m|{X��ao� ` f � sId � �bde�zu � × _X�bp � _º� ÂoÙVâ � � �t^`_ba/dgkvxVw � sVd(desVjbxV��sIxVav�c%_bw � _¢sId�u�k2un�b�b��kVpnmqu-��sIpnmnw�sId�}��bj � mnwekVj�u���weu � sIdedeao�yxyz&{*|¢�V}�kVp5}®sIpnmnw�sIdX}��bj � mnwekVjzu
~ p���a�p��Vkvp�mqao����{���a1mn_baokVpq{V� � _bwedga�mq_bweu`pqa��zpna�u�aojvm�u-mq_ba���r�s � _zwgjba � k���a�� kV}�mn_zau�{�u�mnaorUmn_za��zu�aop c%wedgd�una�d���kvr c`sIj�m�mnk�una�aV��mn_ba�u�a�sIp � _�}�kVp­s$�bpnkXkV}®w�u2�zun�zsIdedg{� kvjz��� � mnao�/slm�s¢_bwexV_baop1dea��va�dîkI}®sV zu�mnp�s � mqwgkvj���a
��jbao�� �{´È¾Éd��È ìB����sVjz����Ç�È
�zé7�?���Ó ��mqkVr�slmqao���zpnkXkI}-unaosVp � _�sIm(mn_bw�uysI zu�mnp�s � m¨dgao�Vaod�w�u � sIdedga���ç�èné�é|ê(ç�ÊeÉlëzë�ì�ë�í5� u�aoaÆ a � mnwekVj Â � Úv�õ�¸Ý�pnkXkV} � kVj�u|mqpn� � mnwekVjZweu�sId�unk/un�b�b��kVpnmnao�@ X{¸sIdepna�sV��{´�bpqkl�Vaoj¸sVu�fu�aop�mqwgkvjzu%sIj���mq_ba�kvpnaor�u(sIjz�� X{ � sIdedeu%mnk�a
±Xmqa�pqjzsIdºun{�u|mqa�r�u`mnk¢unwer��zdgwg}�{�kvp¨unkVde�Vau��z b�bpqkV bdea�r�uo�bsVu`c%wedgdº �a un_bklc%j�wej Æ a � mnwekVj Â � ���Ó mºmn_ba � kVpqa,kI}b¥%¦¨§z©�ª�w�u¡mn_zaîç�èné�é|êºç�ÊgÉIë��VÉlÈ¾É��õÈ è�����È���èqÇ�x&��{ � × _za�weh�_zpnkv�b_bkV�sIjz� Æ kvpnxvaV���V�V�v�l���îwgj´c%_bw � _´�bpqk�kV}�u2sIjz��ç½ènéoé�êyç�ÊeÉlë
��sVpna�pqa��bpqaouna�j�mqao�°slm �lsIpnfwgkv�zu2dea��va�d�u�kI}%xVp�sIjX�bd�sIpqw¬m|{�sVjz�´sI zu�mnp�s � mnwekVjº��^`_basx&��{8w�u s���wepna � mna��´s � { � dgw �xVp�sI�b_��lc%_ba�pqa�é�çbÇ�ë�ë½é7�vÇ��`pqa��bpqaouna�j�m��zjl�|�zu�mnwg�zao���bpqkV��kvunw¬mqwgkvjzu�mn_zsIm-u|mqwgded�jba�a�� mqk �a��bpqkl�Va��¢sIj�����Êgé���Ç���ë½é7�vÇ���pqa��bpqaouna�j�m`�bpnkv��k�u�wgmnwekVj�u-mq_zslm(sIpqa�sIdepna�sV��{��bpqkl�Va��¡�^`_ba��zpnkXkI}%�bd�sIj�u�sIpqa���ao�Vaodgkv��a��5sIjz� � desvununwg�zao�°c%wgmn_@pqaoun��a � m�mnk/s�mqsl±�kvjbkVr­{kI}-r�slmq_ba�r�sImnw � sId�mn_za�kVpqweaouo��c%_bw � _�w�u � �bpqpnaoj�mnde{� �a�wejbx�pnao�bdes � a��$ �{�mq_ba­r�sImn_ba�fr�slmnw � sVdzhXjbklc%deao��xva% zsVunay¶��1ª9��§ � � pqsVjbhVa(sVjz����kV_zdg_zsvu�av���V�V�V� ã ��kV_bde_zsvu�a¨sVjz�
� p�sIjbhvaV�(�I�v� Â � �8^`_ba���u�aop¢kI}­¥%¦1§z©ºª-�%kVp¢mq_ba��bpqkXkI}2�bd�sIjbjza�p$¶@·º¹
»¡¼ � ¿�a�dew�usIjz�@¿�a�wea�p����I�v�V� � �-kVp­a�d�u�a�mn_ba$u��zxVxVa�u|mqwgkvj5r�a � _zsVjbweunrA¥®f¾Åy�¡»�� � e a�jzÁ�r���bdedgaopsIjz� Æ kvpnxvaV�º�I�v�V�l�)r�k���wg}�{�mn_bayx&��{8���zpnwejbx��bpnkXkV}���ao�Va�dekV�zr�aoj�my�bj�mqwgd�s � kvr�f�bdea
mna��bpqkXkI}��zdesVj�_zsvu1 �a�aoj�}�kv�bjz�¡��^`_ba�{ � sIj°sId�u�k�wgjX�vkVhVa­a
±Xmnaopnj�sIdîpna�sVunkVjbwejbxu�{�u�mnaor�uo��c%_zkvuna�pqaoun�bdgmqu�sIpqa�wej � dg�z�bao�ZwgjZmn_ba�x&��{³sl}�mqa�p¢sV�b�bpqkV�bpqwesImna�mnp�sIjzu�f}�kVpqr�slmnwekVj�� ß j � a�s � kvr��zdga�mna��bpnkXkV}1�bd�sIj slm�mn_ba$r�kvu�m�sI�b�bpqkV�zpnw�slmqa�dea��Vaod%kI}sI zu�mnp�s � mnwekVj´_zsvu �a�a�j¸}�kV�bjz�º�,mn_bw�u �bd�sIj@r��zu�m� �a�a
±��zsVjz��a��´ �{5un�b �fÌr�a
mn_zkX�zu

� X�"?���B	����!�'����(1� ���'�9��������"/���'�!�����C�!�'�P���D�!���B�!����"��������'���!�'���������*('�'���!����"���	7"�� ��(C����(���¡U�¢�����
���D�!���B�����'(1¡£���!� �!����"���¤ J �����D��"��;�'�!�'"�('�'��������"�#¥����������"��;���!��� ������"��������C¦���¡���('� �D�����7���
�B�!�'���1¤

_][^§^9� \9M�¨�M Yl^ _ $ M QD��© L ��ª�«D¬&­�®=¯5°��Dª M�L±[D[��� L ^�Q��9Y L ���²^9�´³ H H�I�µ

sVjz��un�b �fimqs � mnw � u�wej�mnk$deklc®aop1dea��va�d�u1kV}�sV zu|mqpqs � mqwgkvj��bj�mnwed,�zjzsVdgde{�s��bpqkXkI}®sImymq_badea��va�d-kV}�mq_ba¢dekVxvw � sId � sId � �bde�zu2w�u a�u|m�sI bdeweun_ba��¡� Ó }�mnaop�a�±X��sIjzunwgkvj´kI}`mn_ba�u�a�_bwgxv_�fdea��va�d`�bpqk�kV}�u­mnk°mn_ba$�bj���a�pqdg{Xwejbx ä Ø � sId � �bde�zuo�-mn_za¶x&�·{ � sIjZ �a � _ba � hVa��5 X{¥%¦1§z©ºª-µ u`�bpqkXkI} � _ba � hva�p��æ(aoj � av�Xmn_baopna�sIpqa(m|c�k�r�sVwgj�mqsVunh�u®un�b�b��kVpnmna��¢ X{�mn_zweu%un{�u|mqa�r$�XjzsIr�a�de{���w��-mnk�zj��5s��bpqkXkI}`�bdesVjº�)sIjz�D��wew��2mnk�a�±X��sIjz�°mq_bweu­�bpqkXkI}%�bd�sIj5wejvmqk/s � sId � �bde�zu�fidea��va�d�bpqkXkI} ã sIj��¸ �kImn_°�|kv zu � sIj �a�a�À��zsIdedg{¸�bwF¸ � �zd¬m�sVjz�¸mqwgr�a � kvjzun�br�wgjbx��Z^îsVunh��wgw�� aor��bdgkl{�u­sIj�¹ × � f¾u�m|{�dea�m�s � mqw � a
±��zsVjzu�wekVj5r�a � _zsIjbw�unr��)�zpnkXkI}¨unaosVp � _´kvp�s� kVr� zwgjzsImnwekVj°kI}% �kImn_5wej5kVp���aop�mnk�xVaojba�p�slmqa¢s$dgklc�a�pnfÌdgao�Va�d,�bpqkXkI}`kV ��|a � m���ÍÌm�w�us���aounwexVj°kV ��|a � mnwe�Va�kI}®mn_bayx&��{Nmn_�slm �lsIpqwgkv�zu(ç�èné�é|ê�ÊgÇ/ºlÇ
Ê�� � k�a�±�weu�m2c%w¬mq_�mq_ba�weppqaoun��a � mqwg�va�pqa�d�slmnwekVj�u�_bwe�zu1 �aowgjzx���{XjzsVr�w � sIdedg{�r�sIwej�mqsVwgjba��¡� � sVwgdewejbx�a�±X��sIjzunwgkvjzukV}-�bpnkXkV})u�mnao�zu¨m|{��zw � sIdedg{$deaosV��mnk�kv��aoj�jbk���a�u1sImys¢deklc�a�p¨�zpnkXkI})dea��va�d,sIjz�$mq_X�zupqaoun�bdgmywej/sVj�wej � kvr��zdga�mna��bpqk�kV}|� ^`_ba�pna�sVunkVjzu(}�kVpymn_za­}�sVwgde�bpqa � sIj/wgj/�bpnwej � wg�bdea �a¢sIjzsVdg{XÁoao�/wgj°mn_za»x&��{«wgj°mq_ba�una�jzuna�kI}`�bpnkXkV} � pqwgmnw � u � Í¾pnaodesVjz�°sIjz� e �bjz��{v�Â�ÙVÙVá � ��_bklc�a��va�p��vmq_bw�u%kV��mqwgkvj�_�sVu`jbkVm({Va
m% �a�aoj�}��zp�mq_ba�p(a�±��bdgkvpna��¡�
¼¨una�p)wej�mnaopqs � mnwekVj�w�u)u��b�z��kvp�mqao�� X{2mn_ba%xvpqsV�b_bw � sVd���u�aop)wgj�mnaop�}�s � a%½�¥§¾%¿ � Æ wea�h�fr�sIjzjZÇ
È¨ÉIÊgËe� Â�ÙVÙVÙ � �¡c%_bw � _��bpqkl�Xwe��a�u(�kImq_/s¢xvpqsV�b_bw � sVd�sIj���s�m�sI b�zdesVp1�Xwea�c«kI}mq_ba��bpqkXkI}(�bj���a�p � kvjzunwe��aopqsImnwekVjº�)sVjz�´mn_za�wej�mna�p�s � mnwe�Va��bpnkXkV}`a�±��bdesVjzslmqwgkvj@un{Xu�fmqa�rÁÀ�Ë|èqÇ�Â � � wga���dea�p����I�V� Â s ã � wga���dea�p����I�V� Â � �¡c%_bw � _��bpqkl�Xwe��a�u(mq_ba��zu�aop�c%w¬mq_°sjzsImn�bp�sIdgfÌdesVjbxV�zsVxVa(�zpna�u�aojvm�slmqwgkvj�kV}�mn_za2�bpnkXkV}|�^`_ba��bpqa��XwekV�zundg{�r�kvjbkVdew¬mq_bw � un{�u|mqa�rU_zsvuy �aoa�j5u��zdgwgm2�b�°sVjz�°u�ao�zsIp�slmqao��wej�mnkuna��va�p�sId`wgj���a���a�jz�ba�j�m�r�k����bdeaouo��c%_zw � _KsVpna � kvjbjba � mna�� ��w�s°mn_za�r�slmn_za�r�slmqw � sIdunkI}�m|c`sIpqa2 b�zu2¶5ª�»hÃhÄ §
Å
Æ�Ç]� � È wgr�r�a�pysIjz�É��kv_bde_zsVunaV�½�I�V��� � � Ó j/wgr���kVpnmqsIj�m �a�jba��bm�w�u�mn_�slm$¶¸ª�»OÃ�Ät§
ÅDr�kX�b�bdga�u � sVj7 �a/��weu�mnpqwe b��mna��£kl�Vaop­mq_ba�Í¾j�mnaopnjza
msVjz�´sIpqa­mq_ba�j´pqa�r�kImqa�de{/s ��� a�ununwe bdga� X{�kVmn_baop2pna�u�a�sIp � _�xvpnkv�b�zu2sVu�c�a�dedi��^`_baopnaw�u®s­�Vaopn{�s � mnwe�Va1�zu�aop � kVr�r��zjbw¬m|{�c%wgmn_�u�kvr�a
mnwer�aou`una��VaopqsVdbmq_bkV�zuqsIj���mn_baokVpqa�r�usVjz�¢dea�r�r�slm�s �a�wejbx��bpnkl�vao����a�p%�bs�{ ã r�kvu�m®mq_ba�kvpnaor�u`sVpna1xVa�jza�p�slmna��¢sI�bmnkVr�sIm�fw � sVdgde{�svu­� � �bpqpqa�j�mnde{�jzkVj�fÌpnao�zuqsI bdea sIjz��jbkVj�fÌwejz��a
±�a��z�(un�b b�bpqkV zdgaor�u1wej�jzslmq�bp�sIdd�sIjbxv�zsIxva��bpqk � a�ununwgjzx£� u�aoa�mn_ba�Ø1kVpqweu�un{�u|mqa�r � Ø1kVpqweuo�`�V�V� Â �e�
�®�bpqkXkI}y�bdesVjbjbwejbx� ¿�a�wea�p�Ç�È�ÉIÊgËe���V�V���l ã Æ kvpnxvaV�b�I�v� Â � �zsIjz���va�pqw¬� � slmqwgkvj¢mqsvu�h�uo�

fhg!Ê Ë�ÌOm�ndtÎÍ5Ï]Ð¥i=jlkdm�ndo�k
Ý�pnkXkI}®�bpnkv bdea�r�uypna�Àv�zwgpqa­r�sVj�{/��w¬¯½a�pqa�j�m unh�wededeuy}�kvp1mq_ba�wep unkVde��mnwekVjº��^`_baopna�}�kVpqaV�wgm�weu���a�u�wep�sI bdea�mnk´_zs��Va$s �o� a�unu­mnk5una��va�p�sId`u�{�u�mna�r�u�c%wgmn_ � kvr��bdgaor�a�j�mqsVpn{ � slf�zsV bwedgwgmnweaouo�ºmqk�kvp � _zaou�mnp�slmna­mn_za�wep �zunaV��sVjz�/mnk$wejvmqa�xvpqsImna�mn_baowgp�pna�u��bdgmquo��¥%¦¨§�©ºªwej�mna�pn}�s � aou)_za
mnaopnkvxVaojba�kv�zu,a
±Xmnaopnj�sId�un{�u|mqa�r�u�un� � _¢svu���é?�¨ç]��È¾Ç
è�ÉlÊ í�Ç7Ñ�ènÉÒ��Ó��õÈÌÇ/�Ò�
Ô�ÕDÖ�× �!Ø��l_bwexV_baop�f¡sIjz� �zp�u|mnfikvpq��aop�ÉÎ��ÈÌéÎ��ÉIÈÌÇ���È±�bÇ�élèqÇ��Dç�ènéÎºoì�ëXíP��Ó��õÈÌÇ/�Ò� ÔBÖ�Ù À*� Øl�
��élë��õÈ ènÉIì�ëzÈ5�
éIÊ£ºlÇ
è�� Ô�Õ9× � Øl�zsIjz����é7�vÇ
Ê�ívÇ�ë�Ç�ènÉlÈiì�élë���Ó���È¾Ç/�·� Ô!ÚÜÛ � Øl�
^`_baowgp��zu�a�weuºm|c®kV}�kVd��¡²½mn_bao{1r�s�{1�bpnkl�Xw���a-s(unkVde��mnwekVj�mqk¨s%un�b b�bpqkV bdea�r$��kVpºmn_bao{r�s�{�xVwe�Vay_bwej�mqu�}�kVp`mq_ba � kvjvmqpnkvd½kI}�mq_ba2u�a�sIp � _¢}�kvp`s��bpqkXkI}|�,Í¾j�mn_ba�}�kvpnr�a�p � sVunaV�mq_ba­kv��mn�z��m2kI}®sVj�wej � kvpn��kVp�slmqao�$pqaosVunkVjzwgjbx�u�{�u�mna�r w�u1mnp�sIjzund�slmna���sVjz��wejzu�aop�mqao�svu%s�u��b z�bpnkXkV}�wejvmqk�mn_baPx&�·{1��^`_bw�u%w�u% �a�jba�� � w�sId�}�kVp%wejvmqa�pn}�s � wgjbx�un{�u|mqa�r�u`mn_�slmkv��aopqsImna�slm$��wg¯�aopnaojvm�dgao�Vaodeu�kI} sI zu�mnp�s � mnwekVjº�(sVjz�7sId�unk5}�kVp�s¸_X�br�sIj�fÌkVpqwea�j�mna��

H�I ÝÞJ7L
MON $P�9Q9Q5R�S M Q9TU$WVXDYZY MO[R�� L
M]\ Y MO[R?$ M�L
MO[R?Q9^ [$P�9Q9Q5R7��Q \W_ ^9YZY M �

��w�u��bd�s�{¢sIj���wejzun��a � mnwekVj�kI})s­�zsIpnmnw�sId¡�bpqkXkI}|�,Í¾r���kvp�m�sIj�mnde{V�Xwgm¨sId�u�k�a�j�sI bdeaou`�zu�mqk� _ba � h�mn_za­unkV�bjz�bjbaouqu%kI}-a�s � _ � kVj�mnpqwg z��mnwekVj� X{�pna��zjbwejbx�mn_za�wejzu�aop�mqao��un�b b�bpqkXkI}mnk�s�dekVxVw � fÌdea��Vaod��zpnkXkI}�mnk� �a2�Vaopnwg�zao�� X{�¥%¦¨§�©ºª)µ u%�bpqkXkI} � _ba � hva�p��× �bpnpqa�j�mqdg{v�Xmn_ba�}�kvdgdeklc%wgjzx�a�±Xmna�pqjzsVdºu�{�u�mna�r�u%sVpnaywgj�mqa�xVp�slmqao��wgj�¥%¦1§z©ºª-²
ßÒà�áDâ �zpnkl�Xw���a�un{Xr� �kVdew �`� kVr��b��m�slmnwekVj��Ic%_bw � _ � sIj� �a%�zunao�­wej­m|c�kyc�s�{�uo²¡�zp�u|m��mqk � kvr��z��mna¢_zwgj�mqu mnk�xv�bw���a�mn_ba��bpqk�kV}`unaosVp � _£��av� x��g�,c%wgmnjba�ununaou2}�kVp a�±Xw�u�fmqa�j�mnw�sIdy�lsIpqwesV bdga�uq�
�%sIjz�¡�(una � kVjz�º�®mqk¸��a�pn}�kVpqr unkVr�a � kVr��bdea
± sVdgxva� bp�sIw �� kVr��b��m�slmnwekVj�un� � _�sVu,mqk2jbkVpqr�sIdewgÁoa`kVp�unwgr��bdewg}�{ mnaopnr�uo��Í¾j�mq_ba%d�slm�mqa�p � sVunamq_ba�un{�r­ �kvdgw ��� kvr��b��mqsImnwekVj£w�u¢��wepna � mnde{¸mqpqsVjzundesImnao�Zwejvmqk5�bpqk�kV}�u�mnao�zu�wej¥%¦1§z©ºª-� ×�Ó1Æ uysIpqa2wgj�mqa�xVp�slmqao���Xwes�mn_ba2mqpqsVjzu�}�kVpqr�sImnwekVj�sIj���mnp�sIjzundesImnwekVjr�k����bdea�Ç�ªDã
ãb§bÑ � Æ kvpnxvaV�-�I�v�V� � � × �bpnpqa�j�mqdg{v�)¥%¦1§z©�ªK�zunaou�mn_ba$un{Xu�mnaor�u¶¸ªDãb¹�§ � × _zsVp�Ç
È%ÉlÊgËe� ÂoÙvÙ � � sIj�� Ü�Ó Ý � Æ � _��kVjbaop�m(sIj���kVmn_baopquo� ÂoÙvÙUä � �
àPå�æ&â sIpqa�aor��zdgkl{vao�5mqk°unkVde�Va�u��z bxVk�sId�u�� × �bpqpqa�j�mnde{¸¥%¦¨§z©�ªD��u�a�u�mq_ba��zp�u|mnfkvpq��aop%�bpqkl�Va�p�u%�y¹�¼
ç���§b¦ � ��a ä wg�va�dedgav� ÂoÙVÙvÙ ����a¥èyÝ � ¿ � × �bjbav� ÂoÙvÙêé ���hë�»]Æ»¡§bÑ � ¿ � × �bjbav� Â�ÙVÙVâ � ��Ð1Ñ½Õ�»½§z¼
� � e sI�br�xvsVp�mqjba�p$sIj�� � �zpn zs � _º� ÂoÙVÙVâ ���

Ç]ã�ª9�7� � � aowe�ba�jX zs � _£Ç
È¨ÉIÊgËe� Â�ÙVÙVÙ ����Ä@ª�¹Uìî¶¸§b¼±��»¡§bÑ � æ(wedgdea�jX bp�sIj��ZÇ�È¨ÉlÊgËe�
Â�ÙVÙVÙ � ��mn_baZ_bwgxv_ba�pnfÌkVp���a�p�un{�u|mqa�r�uWí�Ð�Ç � Ó jz��pqa�c(u Ç
È�ÉlÊgËe� ÂoÙvÙVá � �­sVjz�
½*î9z � e a�jbÁor���zdgdea�p�sIj��ï��kv_bdg_�sVunaV� Â�ÙVÙUcbã�e a�jbÁor���zdgdea�p�� Â�ÙVÙvÙ � �2sIj��Dc�a�bd�sIj@mnk°wgj � kVpq��kVp�slmna�ð®ª�¦�ãb¼�Ñ¡§ � b w�sIÁ�sIjbkl�5sVjz�5Þ)kVpqkVjzhVkl�½�-�I�V� Â � �¸^`_za�zp�u�m�fÌkVp���a�p Ó ^%Ý�u�sIpqa � kVjzjba � mnao���Xwes�í2Ñ½ª�¦�ã � ¿�a�wea�p����I�v�V� � �ºc%_bw � _�w�u2s�bpqkXkI}1mnp�sIjzu�}�kVpqr�slmnwekVjZu�{�u�mna�rAmn_zsIm�mnp�sIjzu�}�kVpqr�u�pqaounkVde��mnwekVjbfÌu�m|{Xdga��bpnkXkV}�uwej�mnk�svununa�pnmnwekVj�fÌdea��Vaod ä Ø��bpqk�kV}�u�mnk� �a¢wej�mnaoxVp�slmna��°wgj�mnk°¥%¦¨§z©�ª)µ u&x&��{¨�
í�Ð�Ç�sIdepna�sV��{­�bpnkl�Xw���aou ä Ø��bpnkXkV}�u��vc%_bw � _ � sIj� �a%}��bpnmn_za�p��bpnk � aouqu�a���sVjz�� _ba � hVa���c%wgmn_$dew¬mnmndea�mnp�sIjzu�}�kVpqr�slmnwekVj�sId½a
¯½kVpnm � e a�jzÁ�r���bdedgaop�Ç
È%ÉlÊgËe� ÂoÙvÙVÙ � �

ñóò â �bpqkl��w���a¢aow¬mq_ba�p�c%wgmnjba�ununaou�}�kVp­}�pnaoa/��a
±�weu�mnaoj�mnw�sId�� �lsIpqw�sI bdeaouo�,kVp � kV�zjvmqa�pnfr�k���a�d�uo��c%_bw � _$un_bklc7mn_�slm%u�kvr�a2un�b bxvkvsId�w�u®jzkIm(s mq_ba�kvpnaor$�,æ¨a�j � aV�Xmq_ba�{_baodg�NmqkZxv�bwe�ba/mq_ba´�bpqk�kV}­unaosIp � _º� × �zpnpqa�j�mnde{V�2¥%¦¨§�©ºªt�zunaou�mn_ba5¿ Ü u
Ç�ª�»�ô]Ãº¦yÕ � ¿�sVjvmq_ba�{KsVjz� e pq{V� Â�ÙdcUc � sVjz�õÇ�Ã�¶ ��È _zsVjbxZsVjz� È _�sIjbx��Â�ÙVÙUä � �

ßsá�â � kvjzu�mnpq� � m-r�slmq_ba�r�sImnw � sIdzkV ��|a � mqu-c%w¬mq_�mn_baokVpq{vf¾un��a � wg� � �bpnkv��aop�mqwga�u-sVu,c%wgm�fjba�ununaou¢}�kVp�}�pqa�aZ��a
±�w�u|mqa�j�mnw�sId����lsVpnw�sI bdeaouo�.¿�kVpqa�kl�va�p��®s ×`Æ � sIj7_baodg�7mqkpqao��� � a1mn_ba��bpqkXkI}�unaosVp � _¢ X{ � _ba � hXwgjbx�}�kVp`wej � kvjzu�w�u�mna�j � weaou�kI} � kVjzu�mnp�sIwej�mquo�× �bpqpqa�j�mnde{V�)¥%¦¨§z©�ª7aor��zdgkl{�uPö�÷�{�¿§î � ¿�aodgw�u�Ç�È2ÉlÊgËe���V�V�V�I���)s ×`Æ }�kVp­wgjbfa�Àv��sIdew¬mqwga�u(sIjz��aoÀ��zsImnwekVjzu`kl�va�p�mn_za��za�d���kV}îpqaosVd¡jX�br� �a�p�u��

fhg ø ùÒt�úlú�û�ùÒÐBÏ]Í§Í§uCÍDü
¥%¦¨§z©�ª)µ u r�sIwej°}�k � �zu2w�u kvj´h�jzklc%dga���xVa�fi zsvu�a����bpqkXkI}`�bd�sIjbjbwejbx � e �bjz��{v� Â�Ùdcdczã¿�a�dew�u®sVjz� Æ wea�hXr�sIjbj�� Â�ÙVÙVÙ � �Xc%_ba�pqa(�bpqkXkI}�u�sIpqa(jbkVm � kvj � aowg�vao��wej�mnaopnr�u®kI}ºdeklc`fdgao�Vaod � sId � �zdg�zu,pq�bdeaouo�I b��m�slm-s�r�� � _�_bwexV_baop)dgao�Vaod�kI}¡sI zu�mnp�s � mnwekVj mq_zslm-_zwgxv_bdgwexV_�m�u

_][^§^9� \9M�¨�M Yl^ _ $ M QD��© L ��ª�«D¬&­�®=¯5°��Dª M�L±[D[��� L ^�Q��9Y L ���²^9�´³ H H�I�ý

mq_ba­r�sVwgj°we�baosVu�sVjz����a�fiaor��b_zsVunweÁ�aouyr�wejbkVpydgkvxVw � sVdîkvp1r�sImn_baor�sImnw � sVdîr�sVjbwg�z��fd�slmqwgkvjzu`kVj�}�kVpqr��bd�sIav�
��jbklc%deao��xva
fÌ zsVunao���bpqkXkI})�bd�sIjbjzwgjbx�weuys�jbaoc«�zsIp�sV�bwgxvr�wej�sI�bmnkVr�sImnao��mn_baokIfpqa�r«�bpqkl�Xwgjzxz�lc%_bw � _�unc%wejbxvu�mn_za�r�kVmnwe��sImnwekVjzsVd���aojz���bde�brt zs � h�mqkywgmqu Ó Í�kvpnwexVwejzuwej�mn_zsIm(w¬m(aor��zdgkl{�u(sVjz�¢}��zp�mq_ba�p¨�ba��Vaodgkv�zu`r�sIjX{ Ó Í®�zpnwej � we�bdeaou(sVjz��mna � _zjbweÀ��ba�uun� � _�svu`_bwea�p�sIp � _bw � sId��bd�sIjbjbwejbx���h�jzklc%dga���xVaypnao�bpqaouna�j�mqsImnwekVj�wej�}�pqsVr�a�u%sIjz� � kvj�fmqpnkvd¡pn�bdeaouo� � kVjzu�mnp�sIwej�m%unkVde�Xwgjzxz��m�s � mqw � sId½mq_ba�kvpnaor �bpqkl�Xwgjbx��bsIjz��r�a
m�slfÌdgao�Vaodºpna�slfunkVjbwejbx��KÍÌm���wg¯�aopqu¢}�pnkvrAmnp�sV�bw¬mqwgkvjzsId(unaosVp � _�fÌ zsvu�a��5mna � _bjbw�À��baou�wejKsI�bmnkVr�sImnao�mq_ba�kvpnaort�bpqkl�Xwgjzx jbkIm�dga�sVu�m®wej¢wgmqu�dgao�VaodzkI}�sV zu�mnp�s � mqwgkvjº²�mn_ba1�bpnkXkV}ºkI}�s2mq_ba�kvpnaorw�u`�bd�sIjbjba���sIm(sIj�sV zu�mnp�s � m`dea��Vaod¡c%_ba�pqa�sIj�kV��mqdgwejba�kI}�mn_ba2�bpqkXkI}�w�u�}�kV�zjz�¡�-^`_bw�ukv��mndewgjzaV�lmq_zslm)w�u��lmq_ba%sI zu�mnp�s � mî�zpnkXkI}��bd�sIjº� � sIj­ �a`pqa � �zpqunwg�va�de{�a
±��zsIj���ao��mnk � kvj�fu�mnpq� � m-sy�bpqkXkI}�c%wgmn_zwgj�sydgkvxVw � sVd � sId � �bde�zu,�bpqkl�Xwe�bao�2mq_ba%�bpqkXkI}��zdesVj��bk�a�u,jbkIm,}�sVwgdi�^`_ba­�bd�sIj�kv��aopqsImnkvpqu%pqa��zpna�u�aojvmyr�slmn_za�r�slmqw � sId�mna � _zjbweÀ��ba�u(}�sVr�wgdewesVp¨mqk�s�c®kvpnh�fwejbx$r�slmn_za�r�slmqw � wesVjº� � _bwgdea�mn_za�hXjbklc%deao�bxVa�kI}%u�� � _´s�r�slmn_za�r�slmqw � sId-��kvr�sVwgjsvu2pnao�bpqaouna�j�mna��/c%wgmn_zwgj5r�a
mq_bk��bu�sIjz� � kvj�mnpqkVd-pq�bdeaou2w�u�un��a � wg� � mqk�mn_ba�r�sImn_ba�fr�slmqw � sId½�zaode�º��mn_ba2pqa��zpna�u�aojvm�slmqwgkvjzsId�mna � _bjbw�À��baou%sVjz��pna�sVunkVjbwejbx��bpnk � ao���bpqaou`sVpnaxva�jbaopqsVd¬fÌ�b�bpq��k�u�av� � kVp�a
±bsIr��bdeaV��kvjba1kV}�kV�zp®��pqu�m � sVuna1u�mn�z�bwga�u � ¿�aodgw�u`sIjz� Æ wea�h�fr�sIjzjº� Â�ÙVÙvÙ � ��u�a���mn_ba1dgwer�w¬m�mn_za�kVpqa�r�u®�bpqkV��kvunao�� X{ � kXk���{ e dga��bu�kXa � e deao�bunkXaV�Â�ÙVÙ � � sVu%s � _zsIdedea�jbxva1mqk¢sI��mqkVr�slmqao��pna�sVunkVjbwejbx�u�{�u�mnaor�uo��^`_ba2xva�jbaopqsVd¬fÌ�b�bpq��kvuna�bd�sIjzjba�p®r�sVhVa�u)�zuna(kI}¡mq_bweu®r�slmq_ba�r�slmqw � sId���kVr�sIwej�hXjbklc%deao��xva(sIjz��kV}¡mn_ba1xV�bw��XfsVj � a2�bpqkl�Xwe�bao�� �{$��a � d�sIp�slmnwe�Vaodg{�pqa��zpna�u�aojvmqao� � kvj�mnpqkVd¡pq�bdga�u��zc%_bw � _ � kVpqpna�u���kVj��mqk¨r�slmq_ba�r�slmqw � sId�wgj�mq�bw¬mqwgkvj­sV �kv��mî_zklc´mnk¨�zpnkl�va�s%mq_ba�kvpnaorNwej­s¨�zsIpnmnw � �zdesVp�unw¬mq��fsImnwekVjº�î^`_baouna®pq�bdeaouî�bpqkl�Xwe��a`s1 zsVunweu�}�kVp,r�a
m�slfÌdgao�Vaod�pqaosvu�kvjbwejbx1sVjz� xvkvsIdgf¾��wgpqa � mna�� �a�_zs��XwekVp��
Í¾j�¥%¦¨§z©�ª)����kVr�sIwej$hXjbklc%dga���xVayw�u%a�j � k���ao��wej�r�a�mn_bk��buo� � kVj�mnpqkVd¡pq�bdeaouo�bsIjz�u�mnp�slmqa�xVweaouo��¿�kVpqa�kl�va�p���r�a�mn_bk��bu sVjz� � kVj�mqpnkvdîpq�bdeaou � sIj°a�r��bdekl{�a
±Xmnaopnj�sId-un{Xu�fmqa�r�u���aV� xz�e� � kVr��b�bmna�p�sIdexVao bpqs�un{�u|mqa�r�u�� sIj��´r�sVhVa¢��u�a�kI}`mn_ba�hXjbklc%deao��xva�wgjmq_baouna�u�{�u�mna�r�uo�D¥%¦¨§z©�ª)µ u�r��zd¬mqw¬f¾u|mqpqsImnaoxV{¸�bpqkXkI}y�bdesVjbjbaop�¶¸·º¹�»½¼ � ¿�a�dew�u�sIjz�¿�aowgaopo�V�V�V�v� � unaosVp � _zaou¡mq_ba�j­}�kVp)s1�bd�sIj���u�wejbx1mn_ba`s � Àv�zwgpqao��r�a�mn_bk��bu,sVjz��u�mnp�slmqa
fxvwga�u®xv�bw���ao�� X{�mn_za � kVj�mqpnkvd¡h�jzklc%dga���xVaywgj�mq_ba � kvjvmqpnkvd½pn�bdeaouo�

Ö�þ À�èõì�ë]��ì ç�ÊeÇ���ì�ë�À�èné�é|ê�À�ÊeÉlëzë�ì�ë�í
Í¾j Ó Íõ�zs­ç½ÊgÉlë�ëzì�ëXí�ç½ènédÑ�ÊgÇ/��w�u(s­}�kVpqr�sIdº��a�u � pnwe��mnwekVj�kI})sIj°ì�ëzì�Èiì�ÉlÊD�õÈÌÉIÈÌÇ��zs�ívé�ÉlÊ¬�sVjz��u�kvr�a­éqçzÇ
èqÉlÈ¾élè��¨mq_zslm � sVj� �a1�zu�a���mnk�mnp�sIjzu�}�kVpqr8mq_ba¨wejbwgmnw�sId½u|m�slmna1�Xwes unkVr�awej�mna�pqr�ao��w�slmqayu�mqsImna�u�mnk�s�u�mqsImnaymn_�slm(unsImnw�u|��aou®mn_ba�xvkvsIdi� Ó �b�zdgweao��mnk�s­�bdesVjbjbwejbx�bpqkV zdgaor��½s�ç½ÊgÉlë�ë�Ç�è�pna�mn�bpqjzu¨s�u�a�À��ba�j � a�kV}1Éd��È ì�éIë
�õ��mn_zsIm1w�u��½wejzu|m�sIj�mnw�slmqao��kv��faopqsImnkVp�uo�Ic%_bw � _�pna�s � _�s2xVk�sIdzu�mqsImna%}�pqkVrtmn_za(wgjzw¬mqwesVd�u�mqsImna(c%_baoj�a
±�a � ��mna��¡� Æ � � _s�unaoÀ��ba�j � a�kI},s � mqwgkvjzu`w�u(sId�u�k � sVdgdeao��s���élÊ£��Èiì�élë¢ç�ÊgÉIëz�Ó unwer��zdgav�l{Va
mî�Vaopn{ywgj
ÿz�ba�j�mqwesVdvd�sIjbxv�zsIxva-w�uºmq_ba�Ç�»¡Ñ¡¼
ã��-pqa��bpqaouna�j�mqsImnwekVj � � wghvaousVjz� ä wgd�ununkVj�� ÂoÙZéXÂvã � wehVaou�Ç�È­ÉlÊeËe� Â�Ùêé �l��� � kVpqr�sIdewgÁoao�¸wej �bpnkv��k�u�wgmnwekVj�sId�dgkvxVw � �
Ç�»¡Ñ¡¼
ã�����aou � pqwe �a�u�mn_za�wgjzw¬mqwesVd1u�mqslmqa� X{ s@u�a�m�kI}2xVpqkV�zjz� dgwgmnaopqsVdeuo� Ó xVk�sId(w�u��a�u � pnwe �ao�° X{/s � kvjl�|�bj � mnwekVj´kI}%��kvunw¬mqwg�va�dgwgmnaopqsVdeuo� ß ��a�p�slmqkVp�u�wgjÞÇ�»¡Ñ¡¼
ã���_zs��Vaç½ènÇ��qéIë]�Iì�È ì�éIë
� sIjz�5Ç��¨Ç��
È��õ��c%_bw � _�}�kvpnr�sVdgweÁ�aymnk�c%_bw � _�u|m�slmqaou�mn_za2kV��a�p�slmnkvp � sIj

H�I��KJ7L
MON $P�9Q9Q5R�S M Q9TU$WVXDYZY MO[R�� L
M]\ Y MO[R?$ M�L
MO[R?Q9^ [$P�9Q9Q5R7��Q \W_ ^9YZY M �

 �a(sV�b�bdewga���sIjz�­_bklc¸mq_baouna(u�mqslmqaou)sVpna � _zsIjzxVao�­ X{ wgmqu-sV�b�bdew � slmnwekVj��Ipna�u���a � mnwe�Vaodg{v�� _ba�pqaosvu®mn_ba��bpqa � kVjz��wgmnwekVj�u�kV}îsIj�kV��a�p�slmqkVp`sIpqa1pqa��bpqaouna�j�mqao�� X{¢s � kVjI�|�bj � mqwgkvjkI}���kvunwgmnwe�Va�dewgmna�p�sId�uo��mq_ba�a
¯½a � m�u�sIpqa�pqa��bpqaouna�j�mna��$ X{�s � kvjl�|�bj � mnwekVj/kI}���kvunw¬mqwg�vasIjz�­jbaoxvslmqwg�va®dewgmna�p�sId�uo��^`_ba`��kvunw¬mqwg�va�dewgmna�p�sId�uîwgj�mq_ba`kV��a�p�slmnkvpoµ u�a
¯½a � m�u-sIpqa � sIdedeao�mn_ba¢ÉU�d��Êàì �õÈ®kV}�mq_ba�kV��a�p�slmnkvpo�Xc%_bwedea1mq_ba2jbaoxvslmqwg�va1dewgmna�p�sId�u`sIpqa � sIdedga��¢mq_ba´�VÇ�ÊgÇ�ÈÌÇÊàì �õÈ`kI}�mq_ba2kV��a�p�slmqkVp��^`_ba � d�sVuqunw � sId�sV�b�bpqkvs � _�mnkD�bdesVjbjbwejbxK�bpqkV zdgaor�u�weu�ç�ènÇ���élëO�lì�Èiì�élë³Éd���Xì�Ç/º�Ç��
��Ç�ëzÈzç�ÊeÉlëzë�ì�ë�í � Ø¨pq�br�r�kVjz�º� ÂoÙvÙIâ ���vc%_zw � _�xVkXa�u, zs � h�mnk�mn_za Ü a�jbaopqsVdzÝ-pqkV zdgaorÆ kVde�Vaopo�,Ä�Ð&Ç � ä aoc®aodgd-sVjz� Æ wgr�kVj�� ÂoÙvá Úl�i�­^`_ba��bd�sIjzjbwgjzx��zpnk � a�unu�u�mqsVp�m�u¨}�pqkVrmn_ba/xVk�sIdi��c%_zw � _Kw�u � kVjzunw���a�pqao�7svu�sIj7�zjzs � _bwea��vao�£�bpqa � kVjz�bw¬mqwgkvjº� � wgp�u�mo�`mn_zasV�b��deweu�m(kI})sIded¡kV��a�p�slmqkVp�u®w�u � _ba � hVa���mnk¢una�a�c%_ba�mn_baop(wgm � kVj�m�sIwejzu%sIj�a
¯½a � m%mn_zsIms � _bwea��vaou unkVr�a�dgwgmnaopqsVd�kI}%mq_ba�xvkvsVd ��^`_za�jº�)kvjba�un� � _¸kv��aopqsImnkVp�weu � _bkvuna�j¸sVjz�sI�b�zpnkv�bpnw�slmqa�de{2wgj�u|m�sIj�mnw�slmqao�¡��sIjz�­mn_za(pna�u��zd¬mqwgjbx s � mqwgkvj�w�u)wejzuna�pnmnao��wej�mnk�mn_za(�bd�sIj�bjz��aop2��a��va�dekV�br�a�j�m��½mn_X�zu2uqslmnw�u�}�{�wejbx��zsIpnm�kI}-mq_ba�xVkvsVd � ^`_za��zpna � kVj���w¬mqwgkvjzuykI}mn_ba`wej�mnpqkX�b� � a���s � mnwekVj �a � kVr�a`jba�c@�bjzuqslmnw�u��zao���bpna � kvjz��wgmnwekVjzu�kI}�mn_ba��bd�sIjº�VsVjz�mn_ba2�zdesVjbjbwejbx��bpnk � aouqu`pna � �bp�u�a�u�kVj�mn_bk�u�av�Ý-pqk�kV}%�bdesVjbjbwejbx � kVjzunwe�ba�p�u2r�slmn_za�r�slmqw � sId-mq_ba�kvpnaor�u�sVu��bd�sIjbjbwejbx��zpnkv bdgaor�u� e �bj���{V� Â�Ùdcdc ���)^`_ba�wgjzw¬mqwesVd½u�mqsImnaykI}�s­�bpqkXkI}��bd�sIjzjbwgjzx­�bpqkV zdgaor � kVjzunw�u|m�u®kV}ºmn_za�bpqk�kV}2É?�����l�¨ç�Èiì�élë��¢kI}�mn_ba¢mn_baokVpqa�r$��c%_za�pqaosVuymq_ba¢xvkvsId)w�u2mq_ba�È±�bÇ�élèqÇ��Îw¬m�u�aod¬}|�^`_ba2kV��a�p�slmqkVp�u�wej$�bpqk�kV}��bd�sIjzjbwgjzx�sVpnaymq_ba2r�a
mn_zkX�zu��Í¾j�¥%¦¨§z©�ª)�z�zpnkXkI},�bd�sIjbjzwgjbx�w�u`mq_ba2�bpqk � aouqu`mn_�slm � kvr��b��mna�u(s � mnwekVjzuo��mq_zslm¨w�uo�wgj�u|m�sIj�mnw�slmqwgkvjzu-kV}½r�a�mn_bk��buo��sIjz�¢svununa�r­ bdeaou,mq_ba�r wej¢kVp���a�p-mnk­�ba�pqwg�va¨s�mn_za�kVpqa�r}�pnkvr s2una
m®kI}ºsVuqu��zr��bmnwekVjzuo�î^`_za(a
¯½a � mqu�sVjz��mn_za(�bpqa � kvjz��wgmnwekVjzu-kI}ºsIj¢s � mnwekVj�wej�bpqk�kV}î�zdesVjbjbwejbx¢sIpqa2�bpqk�kV}îjzkX�baou%c%wgmn_$}�kvpnr­�bdesVa�wgj$mq_ba _bwexV_baop�fÌkVp���aop�d�sIjzxV�zsVxVa
xyzP{¥|¢�Xc%_ba�pqa(mq_ba�a
¯½a � mqu`sIpqa � kVjzunwe�ba�pqao��sVu�dekVxvw � sIdedg{�wgjb}�a�p�sI bdea(}�pqkVr mq_ba1�zpna�f� kvjz��wgmnwekVjzuo� Ó �zpnkXkI}��bd�sIj£�bjz�ba�p � kVjzu�mnpq� � mqwgkvj£weu�pqa��zpna�u�aojvmqao� wejZmq_ba��bpqkXkI}�bd�sIj´�bslm�s�u�mnpq� � mq�bpqa·x&��{¤� u�aoa Æ a � mqwgkvj Â � ä �õ��Í¾jzw¬mqwesVdgde{V�¡mq_bayx&��{ � kvjzu�w�u�mquykI}sIj´kV��a�j´jbk���a � kVj�m�sIwejbwgjzx�mq_ba�u�mqsImna�r�aojvm2mqk� �a��bpnkl�vao�¡�îsIjz� � dgk�u�a��¡�ºmq_zslm�w�uo��|�zu�mnwg�zao�¡�,jbk���a�u2}�kvp2mn_ba��bpnkXkV}`svunun�br���mnwekVj�u��$^`_ba�wejvmqpnk���� � mnwekVj5kV}(sIj5s � mnwekVj� _zsIjzxVaou¨mn_zasx&��{N X{�sv�b��wejbx�jba�c �bpqk�kV}�jbk���a�u2sIjz�¢�|�zu|mqw¬}�{Xwejbx$mn_za�a�¯�a � m�u2kI}mn_ba2s � mnwekVj� X{�sI�b�zdgw � sImnwekVjzu�kI}�mn_ba�r�a
mq_bk���kV}�mq_ba2s � mqwgkvj�mqk�w¬m�u`�bpnaor�weunaouo�î^`_zasIwer kI}¡mn_za1�bpqkXkI}º�bd�sIjzjbwgjzx��bpqk � aouqu-w�u�mnk�pqaos � _¢s¶��Êgé���Ç��sx&�·{1��mn_zsIm®w�u���s�x&��{c%w¬mq_bkV�bm1kV��a�j/jbk���aouo�1^`_za���élÊ£��Èiì�élë�ç½èné�é|ê(ç�ÊgÉIë°�zpnk���� � ao��w�u¨mn_baoj/s¢pqa � kVp��$kI}mn_ba unaoÀ��baoj � a�kV},s � mnwekVj�u�mq_zslm(deaosv�¢mqk¢s � dekvunao�´x&��{¨�

e {�sVdgdeklc%wejbx¢}�kvp1}�kvpnc`sIp���sVjz�� zs � hXc�sVpq��s � mnwekVj�uy¥%¦1§z©ºª-µ u��bpqkXkI}��zdesVjbjbwejbx� kvr� bwejbaou�}�kVpqc�sVpq�ZsIjz� zs � h�c`sIp��@u�mqsImna�fÌun�zs � a$�bdesVjbjbwejbxz�N^`_X�zu��%s/ç½ÊgÉlë�ëzì�ë�í
�õÈÌÉIÈÌÇ¢weu s��zsVwgp2kV}®mq_ba � �zpnpqa�j�m2c®kvpnd��°u|m�slmna¢sVjz��mn_ba � �bpnpqa�j�m2xVk�sId-u�mqsImnaV�¢^`_zawgjzw¬mqwesVd¡c®kvpnd��¢u�mqslmqa � kVjzunw�u|m�u®kV}�mq_ba1xvwg�va�j��bpnkXkV}�sVuqu��zr��bmnwekVjzu`sIj��¢w�u�mqpqsVjzu�}�a�pqao� X{�}�kVpqc�sVpq�/s � mnwekVjzu�wej�mnk�s�jba�c c�kVpqde�°u|m�slmqaV�¢^`_ba�xvkvsId)u�mqsImna � kvjzu�w�u�mqu�kI}�mn_zawgjzw¬mqwesVd%kV��a�j£jbk���a�sIjz�Zw�u�mnp�sIjzu�}�a�pqao�@ �{@ zs � hXc`sIp��¸s � mnwekVjzu�wej�mnk5s°jba�c�xVkvsVdu|m�slmqa � kVj�mqsVwgjzwgjbx�jbaoc�kv��aoj$jbk���aouo� � pqkVr³mq_bw�u%��kvwgj�m(kV}��XwgaocDmq_ba sIwer¤kV}î�bpqkXkI}�bd�sIjbjbwejbx�weuymqk � kVr��b��mqa�s�unaoÀ��baoj � a�kI}`s � mqwgkvjzu¨mn_zsIm2�ba�pqwg�vaou�s � �bpqpnaojvm�c�kVpqde�u|m�slmqaywej$c%_bw � _$sVdgd½mq_ba2xVk�sId�u�wgj�mn_za � �bpqpnaoj�m`xvkvsVd½u�mqsImna2sIpqa2unsImnw�u|��ao�¡�Ó uîkV�b��kvunao�2mnky�bpna � kvjz��wgmnwekVj�s � _bwgao�Vaor�aoj�m��bd�sIjbjbwejbx���av� x��g�Iuna�a � � a�d��¡� Â�ÙVÙIâ � �õ�

_][^§^9� \9M�¨�M Yl^ _ $ M QD��© L ��ª�«D¬&­�®=¯5°��Dª M�L±[D[��� L ^�Q��9Y L ���²^9�´³ H H�I�I

a�¯�a � mqu�kI}ºr�a
mq_bk��bu-wej¢�bpqkXkI}¡�bd�sIjbjzwgjbx­��k jbkVm � sVj � aodza�s � _�kImq_ba�p�� � kVp�wgjzu�mqsVj � av�sVj�s � mqwgkvj�c%wgmn_�a�¯�a � m��	�Nwej�mnpqkX�b� � a���}�kVp)mq_ba(kV��a�j�jbk���a�
 w ��kXa�u)jbkIm)mq_bpqaoslmqa�jmq_ba¢a
¯½a � m�� wejvmqpnk���� � ao�´ X{´sIjbkVmn_baop�s � mnwekVj´}�kvp mn_za¢kV��a�j¸jzkX�ba

��V��Ø¨ao��aoj�f��aoj � weaou­sIr�kVjzx�kV��a�j5jbk���a�u�pqaoun�bdgm }�pqkVr u�_�sIpqao�°�lsIpqwesV bdga�u2}�kvp�c%wgmnjba�unu mna�pqr�usVjz�/mn_baowgp � kVj�u|mqpqsVwgj�mquo� × kVjzu�mnp�sIwej�mqu � sIj´ �av�,}�kVp wejzu�mqsVj � av��wejzu�mqsIj�mqwesImnwekVjzu }�kVpmq_ba2�lsIpqwesV bdga�u` b��m(mq_ba�{ � sVj$sVdeunk� �a2r�sImn_baor�sImnw � sVd � kvjzu|mqpqsVwgj�m�u%u�� � _�svu������l�c%_bw � _�u�mqsImnaou¨mn_�slmo�¡c%_�slmnao�Vaop¨mq_ba­wejzu�mqsVjvmqwesImnwekVj�}�kvp��°w�u��½wgmy_zsvu1mnk� �a�u�r�sIdedea�pmq_zsIj��l�(^`_za � kvjzu|mqpqsVwgj�m�u � pqaosImnao�$���zpnwejbx�mq_ba �bpqkXkI})�bd�sIjbjbwejbx¢�zpnk � a�unu¨sIpqa � kVdgfdea � mnao�¢wgj�s � kVj�u|mqpqsVwgj�m®u�mnkvpnav� Ó j�s � mnwekVj�wejvmqpnk���� � wejbx�jbaoc � kVj�u|mqpqsVwgj�mqu�weu�sI�z�bdgwgf� sI bdea2kVjbde{�wg})w¬m�u � kVjzu�mnp�sIwej�mqu%sIpqa � kvjzunweu�mnaojvm(c%wgmn_$mq_ba � kVjzu�mnp�sIwej�mqu � kvdgdea � mna���u�k}�sVpo�îØ¨ao��aojz��a�j � weaou-sVr�kvjbx�xVk�sId�u�c%wgmn_�un_zsIpqao���lsIpqwesV bdga�u,sIpqa`�bwF¸ � �zd¬m)mqk�sVjzsIde{XÁ�asVjz� � sVj � sV�zuna��lsIpqwgkv�zu1h�wejz�buykV})}�sIwedg�bpqaou1wej/s��bpnkXkV}-�bdesVjbjbwejbx�sIm�mqa�r���mo� � wepqu�mpqaoun�bdgmqu sV �kv��m _bklctmnk�sVjzsIde{XÁ�a�sIjz�5�baosId�c%w¬mq_¸u�� � _°}�sVwgde�bpqaou sVpna¢��w�u � �zuqu�a��°wgj� ¿�a�wea�p��z�I�v�VÚI���
Ú Ç�È
�zé7�?��� Õ éIëzÈiènélÊ�����ÊeÇ����®ÉlëO� × È ènÉIÈÌÇÌíVì�Ç��
Í¾j�¥%¦1§z©�ª)�h��Ç�È±�bé���� � sIj� �ay��aop � a�we�Va��¢sVu�mqs � mnw � u®wej¢mqs � mqw � sId�mn_baokVpqa�r �bpqkl�XwgjbxsV�bxVr�a�j�mqao��c%wgmn_��zpna � kVj���w¬mqwgkvjzu�sVjz�¢a�¯�a � m�u�� � sVdgdeao�­ç½ènÇ/�­ì ��Ç��ysIj��W��élëO�
Ê£�Z�õì�éIë
�õ�pqaoun��a � mqwg�va�de{V� Ó r�a�mn_bk��$pqa��bpqaouna�j�m�u�mn_ba wej�}�aopnaoj � a kV},mn_ba � kVj � dg��u�wekVj�}�pnkvr mq_ba�bpqa�r�w�u�a�u�� � kvpîwejzu�mqsVj � av����� �"! #�$Nw�u)s¨r�a
mq_bk���c%_bkvuna®�z�bpn��kvuna`weuîmqk��bpnkl�va®syxVk�sId
%�&'�	(X{ � kVj�mnp�sV��w � mqwgkvjº� ÍÌ})�*�+�"! #,$ weu�sV�b�bdewga���mqk$s�xVk�sId-%.&/�	(mq_ba�jwgm � dgk�u�a�u2mn_zweu­xVk�sId®sVjz�5wej�mnpqkX�b� � a�u2mn_za�jbaoc³xVk�sId-mqk��bpqkl�Va�}�sVdeunwgm|{V�10­�,�bjz��aopmq_ba¢sVuqu��zr��bmnwekVj'(���mq_zslm w�uo�2%�34(5&60­��^`_baopnao �{v�*%7&8�	(w�u�mn_ba � kVj � de�zu�wekVjkV}(mn_ba�r�a
mq_bk��¡��c%_baopna�sVu9%:3�(;&60�w�u­mn_ba��bpqa�r�w�u�a�kI}(mq_ba�r�a�mn_bk��¡�<�*�+�"! #,$w�u1s²Ñ�Éd��=?>�ÉIè���r�a�mn_bk��¡�¡c%_zw � _/pna���� � a�u1s�xVk�sId`��mn_za � kVj � dg�zunwekVj��%mnk�jba�c8xvkvsVdeu��mn_bay�bpqa�r�weunaou��õ��@�élè,>�ÉIè��¢r�a�mn_bk��buo��wgj � kvj�mnp�sVu�mo�X��a�pqwg�va¨jbaoc � kvj � de�zunwgkvjzu®}�pnkvrxvwg�va�j��bpnaor�weunaouo� � kVp(wejzu�mqsIj � aV�BA)C�DFEHGI�J#4K.��aop�}�kvpnr�u%a�À��zsIdew¬m|{�u��z zu|mqw¬mq��mnwekVj�u% X{��aopnwe�Xwgjzx5}�pnkvr"m|c�k¸�bpqa�r�w�u�a�uL%M&N(� O � sVjz�P%Q& O2RTS mn_ba � kVj � de�zu�wekVj
%�&U(� S � c%_ba�pqa¨sIj�k �o� �bpqpqa�j � a(kI} O w�u�pqa��bd�s � ao�� X{�sIj¢k �o� �bpqpnaoj � a%kV} S � ä kVmnamq_zslmV�*�+�"! #,$ sIjz�<A)CWDXEYGZ�J#�K sIpqa�unwgr��bdea°a
±bsIr��bdeaou�kI}���kvr�sIwej�fiwejz��ao��aojz��aojvm��dekVxvw � fipqa�d�slmqao�Kr�a�mn_bk��buo� c%_bw � _«sIpqa°jza�ao�bao�.wej.sv�b��wgmnwekVj.mqkK��kVr�sIwej�f¾u���a � w¬� � �r�slmq_ba�r�sImnw � sIdede{Zr�kImqwg�lsImnao�£r�a�mn_bk��buo� a)±bsVr��zdga�u�kI}2mq_ba�d�slmnmna�p�c%wgdedy �a°��weu�f
� �zununao��wej$�ba
mqsVwgd¡wej Æ a � mnwekVj�Úb�

Õ élë�È ènéIÊ-è���ÊgÇ���pnao�bpna�u�aoj�m�r�sImn_baor�sImnw � sVd)h�jzklc%dga���xVa�sI �kV�bm _bklc8mqk��bpnk � a�ao�wej´mn_ba��bpnkXkV}��bd�sIjzjbwgjzx��bpnk � aouqu���^`_ba�{ � sVj°wejlÿz�za�j � a�mn_ba��bd�sIjbjbaopoµ u2 �a�_zs��XwekVpsIm � _bkVw � a���kvwgj�mqu­��av� x��g�½c%_bw � _�xVk�sId¡mqk¢mqs � hXdga jza
±Xm1kvp(c%_bw � _�r�a
mn_zkX��mnk�sV�b�bde{jba�±Xm��` X{��bpna�}�a�pqpnwejbx�r�a�r­ �aopqu¨kI})mq_ba � kvpnpqaoun��kVjz��wejbx�deweu�m¨kV})sVd¬mqa�pqjzslmqwg�vaou ��aV� xz�e�mq_ba®dew�u|m,kI}z��kvuqunwg bdea�xvkvsVdeu�kVp�mn_ba�dgw�u�mîkV}z��k�ununwe bdga�r�a
mq_bk��buq�
�î^`_zweuîc`s�{1�bpqkVr�w�u�wejbxunaosVp � _/�zslmq_zu sIpqa��bpqa
}�aopnpqao�°sIjz�/mq_ba�unaosIp � _/un�zs � a � sVj´ �a��bpq�bjba��¡� � a�un_zsIded��w�u � �zuqu`a
±bsIr��bdeaou�}�kvp � kvjvmqpnkvd½pn�bdeaou`wej Æ a � mnwekVj$Úb� Â �
× ÈiènÉIÈÌÇÌíVì�Ç���a�r��bdekl{$�bw¬¯½a�pqa�j�m2u�a�mquykI}�r�a�mn_bk��bu�sIj�� � kvj�mnpqkVdîpn�bdeaouysIj��¡�½mn_X�zuo�m�s � hXdga`mq_ba1uqsIr�a(�zpnkv bdgaortwej���wg¯½a�pqa�j�m�c`s�{Xuo�,^`_ba(pqaosVunkVjzwgjbx svu,mnk­c%_bw � _¢u|mqpqsIm�faoxV{­mnk�a�r��bdekl{­kvj�s �zpnkv bdgaor weu�sIj¢a�±��bdgw � wgm � _bkVw � a1��kvwgj�m®wej$¶@·º¹
»¡¼i�,Í¾j���sIpnmnw � f

H�I�[KJ7L
MON $P�9Q9Q5R�S M Q9TU$WVXDYZY MO[R�� L
M]\ Y MO[R?$ M�L
MO[R?Q9^ [$P�9Q9Q5R7��Q \W_ ^9YZY M �

� wgxv�bpna Â �Z¿��bdgmnwgfir�k��bsId%�zpnkXkI}(�zpna�u�aojvm�slmqwgkvj@wej@mq_ba�xvpqsV�b_bw � sVd®�zuna�p�wej�mna�pn}�s � a
½�¥§¾%¿¨�

�bd�sIp���¶@·º¹
»¡¼ � sIj¢ zs � h�mnp�s � h }�pqkVr � _bk�u�aoj�u�mnp�slmnaoxVweaou®sIjz�¢unaosVp � _¢sIm�mq_ba1dea��va�d�kI}u|mqpqsImnaoxVweaouo�Ø¨a�mqsIwedeao�´��w�u � �zununwekVjzuykI}%¥%¦¨§z©�ª)µ u�r�a
mn_zkX�°sIj�� � kVj�mnpqkVd,pq�bdga�d�sIjbxv�zsIxva � sIj �a1}�kV�zjz�¢wej � ¿�a�wea�p Ç�È®ÉlÊeËe�z�I�V���Is � � Ó ��a�mqsVwgdeao��wgj�mnpqk���� � mnwekVj¢mqk­�zpnkXkI}º�zdesVjbjbwejbxc%w¬mq_$r��bdgmnwe�bdea u|mqpqsImna�xvwga�u�weu%xvwg�va�j�wgj � ¿�a�deweu¨sIjz��¿�a�wea�p����V�V�V� � �
fhg]\ ^ÎÍ§m�ndtCûUÏ`_?nWÏ]Í�a�i=j
kdm�ndo i:bdcBc§ú�tÎm
¥%¦¨§z©�ª)µ u�xVp�sI�b_zw � sId`�zuna�p�wejvmqa�pn}�s � a¶½`¥§¾%¿ � Æ wea�hXr�sIjzj.Ç�È­ÉlÊeËe� Â�ÙVÙvÙ �(��w�u��bd�s�{�umn_ba � �bpqpqa�j�m��bpqkXkI}�u�mqslmqa¨wej¢r��zd¬mqwg�bdea¨r�k��bsVdgwgmnweaouo²)s2xVp�sI�b_zw � sIdzr�sV�¢kI}¡mq_ba¨�bpqkXkI}mnpqa�av��s�dgwejba�sIpqwgÁoao�°�bpqaouna�j�mqsImnwekVj�kV}®mq_ba��bpqkXkI}`jbk���aou2c%wgmn_°mq_ba�wep2}�kVpqr��zdesVa�sVjz��|�zu�mnwg� � sImnwekVjzuo��s�mqa�pqr bpqklc(u�aopo�ºsVjz�´s$jzslmq�bp�sId)d�sIjbxv�zsIxva­�bpqaouna�j�m�slmnwekVj°kI}�mn_za�bpqk�kV}��Xw�s»À�Ë�ènÇ Â@� u�aoa � wexz� Â sVjz���v�õ�� _ba�j wejzun��a � mqwgjbx1��kvp�mqwgkvjzu¡kV}zs`�bpnkXkV}X X{1mn_ba�u�a-}�s � wedew¬mqwga�u���mn_za��zuna�p � sIj unc%wgm � _ �a�m|c®aoa�j�sVd¬mqa�pqjzslmqwg�va(dea��Vaodeu�kI}�sV zu|mqpqs � mqwgkvjº�I}�kvp®a�±�sVr��bdgav�v X{�a
±��zsVjz��wejbx­s2jzkX�bawgj´mq_ba¢xvpqsV�b_bw � sId)r�sV�5kI}�mn_ba¢�zpnkXkI}`mqpnaoaV�îc%_bw � _ � sI�zunaou sV�b�bpqkV�bpqw�slmna � _zsVjbxVa�uwgj¢mn_ba1kImn_za�p��zpna�u�aojvm�slmqwgkvj�r�k���a�u��)¿�kvpnaokl�Vaopo�IsVj¢wgj�mqa�p�s � mqwg�va%jzslmq�bp�sIdzd�sIjzxV�zsVxVaÇ�Â
ç½ÊgÉlë½ÉlÈiì�élë°kI}%mn_za��bpqkXkI}(w�u��zpnkl�Xw���ao�´ X{°mn_ba$un{Xu�mnaor À�Ë�ènÇ Â � � weao��dea�p����I�v� Â s ã

_][^§^9� \9M�¨�M Yl^ _ $ M QD��© L ��ª�«D¬&­�®=¯5°��Dª M�L±[D[��� L ^�Q��9Y L ���²^9�´³ H H�I�e

� wgxv�bpna �b� ä slmq�bp�sId¡d�sIjbxv�zsIxva¨�bpqkXkI}��zpna�u�aojvm�slmqwgkvj� X{�À�Ë�ènÇ�Â�wej�½`¥§¾%¿%�

H,[,fKJ7L
MON $P�9Q9Q5R�S M Q9TU$WVXDYZY MO[R�� L
M]\ Y MO[R?$ M�L
MO[R?Q9^ [$P�9Q9Q5R7��Q \W_ ^9YZY M �

� wga���dgaopo�½�I�v� Â ã � wga���dgaopo�¡�I�v� Â � ����c%_bw � _�weu1sV�bsV��mnwe�Va2wej�mn_za2}�kVdedgklc%wejbx¢una�jzunaV²�wgma
±��bd�sIwejzu%s­�bpnkXkV}îu�mna��$slm%mq_ba�r�kvu�m%sV zu�mnp�s � m`dea��Vaod-��c%_bw � _�mn_ba��zuna�p%w�u%sVuqun�br�ao�mnk5hXjbklc¨��sVjz�Zmn_baoj7pna�s � m�uyÿza
±�we bde{¸mnkZÀv�zaou�mnwekVjzu�sVjz�£pna�À��baou�mquo�®��kvuqunwg bde{ZsImdgklc�a�p�dea��va�d�u�kI}%sI zu�mnp�s � mnwekVjzuo�¡}�kVp2a�±bsIr��bdeaV�� X{��ba
mqsVwgdewejbx�u�kvr�a�weded¬fÌ�bjz��aopqu�mnkXk��u��z b�bpqk�kV}|�
Ó jbkVmn_baop�un{�u|mqa�r u��z�b��kvp�m­}�aosImn�bpqa�kV}1¥%¦¨§z©�ªKw�u mq_ba�xV�bw��bsIj � a¢r�a � _�sIjbw�u�r�bpqkl��w���a��� X{�mn_za�un�bxvxVaou�mnwekVj�r�k����zdga�¥®f|ÅÒ�º»h� � e a�jbÁor���zdgdea�p sVjz� Æ kVpqxVaV� Â�ÙVÙdczã

e a�jbÁor���zdgdea�p�sIjz� Æ kVpqxVav���I�V�v� ã Æ kVpqxVaV�-�V�V� Â � �)c%_bw � _ZunaosVp � _zaou2�bpqkvs � mqwg�va�de{�}�kvp��k�ununwe bdga­s � mqwgkvjzu`mq_zslmyr�s�{� �a _ba�de��}��bd,wej$�zjz��wejbx�s��bpqk�kV},sVjz��kvpq��aopqu�mq_ba�rSwejs��bpqa
}�aopnaoj � a2deweu�mo��a-±bsIr��bdeaou`}�kvp¨u�� � _�s � mqwgkvjzu(sVpna sVj�sI�b�bdew � slmqwgkvj�kI}-s��zsVp�mqw � f�bd�sIp � sId � �bde�zu2pq�bdeaV��mn_ba � sIded-kI}%s�mqs � mqw � kvp�s$�bpqkXkI}`r�a�mn_bk��5svu2c®aodgd®sVu s � sIdedkI}2sIj£a
±Xmqa�pqjzsId%pqaosvu�kvjbwgjzx°un{�u|mqa�r$�®kvp�mn_ba/u�a�sIp � _¸}�kVp¢sVjz� wgj�u�aop�mqwgkvj kV}1}�s � m�u}�pnkvr mq_ba�hXjbklc%deao�bxVa¢ zsvu�a$¶��yª��o§½�/^`_ba�xVa�jza�p�sId�w���a�s�weu�mn_za¢}�kVdedeklc%wgjbx�²­ao��fa�pq{�wej�}�aopnaoj � a­pn�bdeaV��m�s � mqw � �½r�a�mn_bk���kVp¨a�±Xmna�pqjzsVd�un{Xu�mnaorSweu¶�nsVxVa�j�mqw¬�za��
��wej�mn_zau�aojzuna1mq_zslm(ao�Vaopn{���kvuqu�we bdea¢Éd��È ì�éIë/unaosIp � _ba�u � kVj � �bpqpnaojvmqdg{�}�kvp`mn_ba�}��zd¬�zdeder�aoj�m¨kI}w¬m�u­sV�b�bdew � slmqwgkvj � kvjz��wgmnwekVjzu�sIjz�¸kVj � a¢mn_zaouna�sIpqa�uqslmqweu��za��5w¬m�un�bxVxvaou�mqu wgmqu­a
±�a�f� ��mqwgkvjº�»¼¨una�pnfÌ�ba
�zjzsV bdea�_za��bpqweu�mnw � u2una�dea � m sIjz�´��w�u��zdes�{$mq_ba¢u��zxVxVa�u|mqwgkvjzu1mnk�mn_za�zuna�p��,¥®f|ÅÒ�º»h�`weu) �sVunao��kVj¢s�_bwea�p�sIp � _bw � sVd� bdes � hX �k�sIp��¡�lc%_bw � _ � kVdedea � m�u,mn_za¨�bslm�ssI �kV��m`mq_ba � �bpqpqa�j�m%�bpnkXkV}îu�mqslmqaV�

fhgJg ùÒt�úlú�û�pih4jZn?_dmCk

^`_ba � a�j�mqpqsVd��bsImqs1u|mqpn� � mn�bpqa®}�kVp�mn_ba�kl�VaopqsVdgd�u�a�sIp � _ weu�mn_za��zpnkXkI}b�zdesVj­�bsImqs¨u�mnpq� � fmn�bpqa&x&��{1�`^`_zweu%w�u¨s¢_bwgaopqsVp � _zw � sId¡�bslm�s¢u�mnpq� � mq�bpna�mq_zslm1pnao�bpna�u�aoj�mqu%s����zsIpnmnw�sId���bpqk�kV}(slm��bw¬¯½a�pqa�j�m­dea��va�d�u kV}¨sI zu�mnp�s � mnwekVj7� � sIdedga��5�zsIpnmnw�sId®�bpqk�kV}%�bdesVjzu��õ�/^�a � _bfjbw � sIdede{V�,w¬m�weu­sIj¸s � { � dew � xVp�sI�b_º�îc%_baopna�mq_ba�jzkX�baou�sVpna��|��u|mqw¬�za��¸ X{/mqs � mnw � sI�bf�bdew � slmnwekVj�u�� × kvj � ao��mn��sIdedg{v�(aos � _Ku�� � _´�|��u|mqw¬� � slmqwgkvjKpnao�bpqaouna�j�mqu�s5�bpqk�kV} �bd�sIj��mq_ba a
±��zsVjzunwgkvj�kV}îmq_ba`�|�zu�mnwg� � sImnwekVj��(slm¨s�deklc®aop%dgao�Va�d�kI})sI zu�mnp�s � mnwekVjº��c%_bw � _�w�u� kvr��z��mna��/c%_za�j°mn_ba�m�s � mnw � weu2a�±�a � �bmnao�º�¢Í¾j¸¥%¦¨§z©�ª)�îc®a�a�±X�zdgw � wgmnde{�hva�a��/mn_zakVpqwgxvwgj�sIdb�bpqkXkI}º�bd�sIj�sVu-c�a�ded½sVu-wej�mnaopnr�ao�bwesImna¨a�±��zsIjzunwekVj�d�s�{Va�p�u)wej�sIj�a
±��zsIj�u�wekVj_bwea�p�sIp � _�{v�(^`_ba � k�a�±�weu�mnaoj � a­kI}�una��VaopqsVd�sI �u|mqpqs � mnwekVj$dea��va�d�u¨sIj��$mn_ba���{XjzsIr�w � sVdr�sIwejvmqa�jzsVj � a­kI}-mq_ba�wepypnaodesImnwekVjzun_bwe��weu�s � a�j�mqpqsVdî��a�u�wexVj�kV ��|a � mnwe�Va�kI}®¥%¦1§z©�ª)µ u
x&��{¨��^`_X�zu2mn_basx&��{8r�sVhVaouymq_ba�_bwea�p�sIp � _bw � sId)u�mnpq� � mq�bpqa�kV}��zpnkXkI}��bd�sIjzu2a�±Xf�bdew � w¬m¨sVjz��pna�mqsIwejzu`wgm%}�kVp`}��bpnmn_za�p¨sV�b�bdew � slmnwekVj�u%u�� � _$sVu`�zpnkXkI}îa
±��bd�sIjzsImnwekVj�c%w¬mq_
À�Ë|ènÇ Â@kVp�sVjzsIdekVxvw � sIdîmnp�sIjzu�}�a�p�kI}`�bdesVjzuo��^`_ba�deklc�aou�m dgao�Va�d�kI}%sI zu�mnp�s � mnwekVj°kI}(s
x&��{7pnao�bpqaouna�j�mqu®mn_za ä Ø � sId � �bde�zuo�
^`_ba2�bpqk�kV}�kv ��|a � m`xva�jbaopqsImna��¢ X{�¥%¦¨§�©ºª/}�kVp`mq_ba ��wepqpqsImnwekVjzsVdgwgm|{�kI}�~ �Î��mq_ba
fkVpqa�r weu1pqa � kvpq�bao�$wej�s�mqa � _bjbw � sVd�pqa���kVpnm � e a�jbÁor���zdgdea�p�Ç
È¨ÉIÊgËe���I�v�v�l���½c%_ba�pqa2mn_za�bjba�±X��sIjz��a���sIj���mn_za­a�±X��sIjz��a����bpqkXkI}-kV b�|a � m�u1sVpna­�bpqaouna�j�mna���wgj/xVpqaosIm1��a
m�sIwed �mn_zsIm(weu`wej�s�dgwgm�mqdga deaouqu�mn_�sIj$s�mn_bkv�zunsVjz���bpnkXkV}îu�mna���u��

_][^§^9� \9M�¨�M Yl^ _ $ M QD��© L ��ª�«D¬&­�®=¯5°��Dª M�L±[D[��� L ^�Q��9Y L ���²^9�´³ H H,[Hk

fhgIl m�Ï�kln i=mIb	a]u n?k
a®sIpqdg{���a��va�dekV�br�aojvm�u�kV}��bpqkXkI}º�bd�sIjbjzwgjbx�wej Ó d�sIj e �bjz��{½µ u®xvpnkv�b�¢slm�a��bwgjX b�bpqxV_�zunao���bpnkXkV}�u¨ X{$wgj���� � mqwgkvj/svu(mq_ba�wep¨}�s��vkVpqw¬mqa � svu�a�u|mq�z��weaou � e �zjz��{V� Â�Ùdcdc ���2^`_ba¥%¦1§z©ºª/u�{�u�mnaor³_zsVu® �aoa�j��zunao�¢wej�una��va�p�sId�kImn_za�p � svu�ayu|mq�z��weaouo��c%_bw � _�wgdede�zu|mqpqsImnawej �zsVp�mqw � �bdesVpºmq_ba®wej�mnaopn�bd�s�{�kI}�mq_ba®�lsVpnwekV�zu � kvr���kVjza�j�mquo�Iu�� � _�sVu��bpqk�kV}��bdesVjbjbwejbxun�b�b��kVpnmna��� X{¢_ba�mnaopnkvxVa�jza�kV��u®a�±Xmna�pqjzsVd¡pna�sVunkVjbwejbx�u�{�u�mna�r�uo�Ó m|{X�bw � sVd�a�±bsIr��bdea2}�kVp�s � d�sVuqu(kV}-�bpqkV bdea�r�u%mq_zslm � sVjbjbkIm1 �a�u�kvdg�vao�$ X{�mnp�slf��wgmnwekVj�sId%sI��mqkVr�slmqao�´mq_ba�kvpnaor �bpqkl�Va�p�u w�u­mn_ba � desvunu­kI}�nIoqpro��bpqkXkI}�u � ¿�aodgw�u�sIjz�Æ wea�hXr�sIjzjº� Â�ÙVÙVÙzã ¿�aodgw�u�� ÂoÙvÙdc ���î^`_zweu � d�sVuqu)c`sVu)kvpnwexVwejzsIdede{ �bpqkV��kvunao�� X{ � kXkX�b{
e deao�bunkXa � e dga��bu�kXav� ÂoÙvÙ �l��sIj�� wgm � kVr��bpqw�u�a�uºmq_ba�kvpnaor�u,un� � _�sVu�¹ºÍ|¿tsKsIjz�y¹ºÍ|¿vuX�c%_baopna�¹�Í|¿ts u|m�slmna�u�mn_�slm mq_ba¢dewgr�wgm­kI}�mn_za�u��zr kV}�m|c�k$}��bj � mnwekVjzu�aoÀ��zsVdeu�mq_baun�br kI}½mn_za�wep®dewgr�wgmqu`sIj��»¹ºÍ|¿tu2r�sVhVa�u)mn_za � kvpnpqaoun��kVjz��wejbx u�mqsImna�r�aojvm®}�kVp®r��bdgmnwgf�bdew � slmqwgkvjº�®^`_za���w;¸ � �bdgm|{�kV}îmq_bw�u¨��kvr�sVwgj�sVpnw�u�a�u�}�pnkvr¤mq_ba jbaoao��}�kVp1sIpqw¬mq_br�a
mnw �� kVr��b��m�slmnwekVj�wej kVp���aop½mnk%�zj��2s(u��zw¬m�sI bdea-wejzu|m�sIj�mnw�slmqwgkvj�kI}X}�pnaoa¨��a�±�weu�mnaojvmqwesVd��¡��sVpnwgfsV bdga�u ��un� � _�svu(sip���ao��aojz��wejbx�kvj�sIj�nõ�õ� × pq� � wesVd¡}�kVp¨mn_ba�u�� �o� a�unu¨kI}�¥%¦¨§z©�ª)µ u�bpqkXkI}¨�zdesVjbjbwejbx´weu�mq_ba�wgj�mqa�xVp�slmqwgkvj@kV}yun�bw¬m�sI bdea$a
±���a�pnmqu�}�kVp�mq_baouna�mqsvu�h�uo²�mq_basVpnwgmn_br�a�mnw �¢� kvr��z��mqsImnwekVj¸w�u���kvjba� X{/mn_ba � kvr��z��mnaop­sIdexVao bp�s�u�{�u�mna�r"¶¸ªDãb¹�§½�sVjz��sVj�sI�z�bpnkv�bpqwesImna¨wejzu�mqsVjvmqwesImnwekVj�}�kvpwp w�u � kVr��b��mqao�� X{�mn_ba � kvjzu�mnp�sIwejvm`u�kvdg�va�p
ö�÷�{�¿§î�� � a�_zs��Va� �aoa�j sI bdea�mqk°unkVde�Va�sIded � _�sIdedgaojbxVa��bpnkv bdea�r�u­un�bxvxVaou�mna��´ X{
e deao�bunkXaysVjz��r�sVj�{�r�kvpna1mn_za�kVpqa�r�u`wej�mq_bw�u � d�sVuqu®mqsIhva�j�}�pnkvr s�u|m�sIjz�bsVpq�¢mna�±�mnf �kXkVh¢kvj�pqaosVdºsIjzsVdg{�unweu � e sVp�mqdga2sVjz� Æ _ba�pq �aop�m�� ÂoÙUc �l���Ó jzkImn_za�p � desvunu�kV}®�bpqkV bdea�r�u2c�a�mqs � h�deao�/c%wgmn_5�bpqkXkI}®�zdesVjbjbwejbx$weu � kVj � a�pqjbao�c%wgmn_�pna�u�w����ba � d�sVuqu�a�u � ¿�a�wea�p2Ç
È�ÉlÊgËe�z�V�V�v�I ã ¿�a�wea�p2Ç
È�ÉIÊgËe���I�v� Â ���,Í¾j¢mn_zweu`��kvr�sVwgjc�a�un_bklcNmn_baokVpqa�r�u¨un� � _�sVuo²y�|mn_za�pqaounwe���za � d�sVuqu¨u�mnpq� � mq�bpqa�� È ÈWx 3zys��%w�u¨svununk � w�slfmqwg�va7�b����wgm�_zsvu-s2�bjbwgm�aodgaor�aoj�m �b�XsIj���unwer�wed�sIp��zpnkv��aop�mqwga�u��Ic%_za�pqa È ÈWx w�u)mn_za¨u�a�m�kI}sVdgd � kvjbxVpq�baoj � a � d�sVuqu�a�u�r�k����zdgk äi{ y� x 3 y Â x 3 y� x 3 yÚ x 3 yâ x?| sIj��7ysNw�u�mn_za sV�b��wgmnwekVj�kVjpqaounwe�b�ba � desvununaouo� � a�_zs��VaysId�u�k­wgjX�vaou�mnwexvslmqao��c%_ba�mn_baop�m|c®k�xVwe�Vaoj�u|mqpn� � mn�zpna�u®sVpnaw�u�kvr�kVpq�b_bw � kVp�jbkIm)sIjz��sIdgmnkVxva
mq_ba�p�c®a®_zs��Va®�bpnkl�vao��r�kVpqa)mq_zsIj Â �b� �V�v��mn_baokVpqa�r�ukV}îmq_bw�u(hXwgj��¸��una�a � Æ kvpnxvaV���V�V� Â �e�õ� Ó d¬mq_bkV�zxV_$mn_za��bpqkV bdea�r�u%wej�mq_bweu1��kVr�sVwgj�sVpnau�mnwedgd,c%wgmn_bwej°mn_ba�p�sIjbxva�kV}®��w;¸ � �bdgm|{�s¢mqpqsv��wgmnwekVjzsVd,sV��mnkvr�slmna���mq_ba�kvpnaor �bpnkl�va�p
� sIj�_zsIj���dgav�vwgm�c`sVu)jza��Vaop�mq_ba�deaouqu)sIj�wej�mnaopna�u|mqwgjbx � sVuna(u|mq�z��{­}�kVp-�zpnkXkI}½�bd�sIjbjzwgjbx��unwgj � ayr��bdgmnwgfÌu�mnp�slmqa�xv{��bpnkXkV}��bd�sIjbjzwgjbx�xva�jbaopqsImnao��u��z zu|m�sIj�mnw�sIdede{¢��w¬¯½a�pqa�j�m%�bpqkXkI}�u zsvu�a���kvj�aoj�mnwepnaodg{��bw¬¯½a�pqa�j�m(�bpqkXkI}�w���a�sVuo�Ó jzkImn_za�p�wer���kvp�m�sIj�m-�bpqkXkI}�mna � _zjbweÀ��ba¨weu × sVj�mnkVp�µ u-��w�sIxVkvjzsIdeweÁoslmqwgkvj mqa � _bjbw�À��basVjz��c�a2sId�u�k���ao�Va�dekV��ao��r�a
mq_bk��bu(sIj���u�mnp�slmqa�xVweaou®}�kvp`mn_bw�u � d�sVuqu � × _za�weh�_zpnkv�b_bkV�sVjz� Æ wea�hXr�sIjbjº� ÂoÙvÙdc � �(Í¾r���kvp�m�sIj�m(mq_ba�kvpnaor�u¨c®a�_zs��Va �a�aoj�sI zdga2mqk¢�bpqkl�Va sVpnamq_ba`�bjz��a � w��bsI bwedew¬m|{­kI}zmq_ba%_zsVd¬mqwgjbx��bpqkV zdgaor8sIjz� × sIj�mqkVp�µ u�mn_baokVpqa�r � � sVpq��wejzsVdgwgm|{kV}�mq_ba�una
m(kI}-un�b zuna
m�uq�
��mn_ba�jbkVj�f � kv�bj�mqsV bwgdewgm|{¢kI},mn_za2pna�sId�u%wgj�mq_ba wejvmqa�pq�lsId � �d3 Â �sVjz��kV}�mq_ba una
m%kI}îmnkVmqsId½}��zj � mqwgkvjzu���sIjz��u�wer�wgd�sIp`mq_ba�kvpnaor�u��

� wgj�sIdedg{v��s�xVkXk�� � sIjz�bwe�bsImna�}�kVp s$u�mqsVjz�bsIp��/�bpnkXkV}�mna � _bjbw�À��ba�sIpqa � kVr��bdea
mqa
fjba�unu`�zpnkXkI}�u�}�kvp(pqa
�zjbaor�a�j�mqu`kV}îpqaounkVde��mnwekVj���c%_ba�pqaymn_ba2mq_ba�kvpnaor¤w�u%�zun�zsIdedg{¢�zpqu�mun_bklc%j£slm�mn_ba�xvpnkv�bjz�Zdgao�Vaod(�zunwgjbx°mq_ba�a
± � a�unu�fÌdgwgmnaopqsVd¬fÌjX�br� �a�p�mna � _bjbw�À��ba�sIjz�mq_ba�j�xVpqkV�bj�� � kvr��bdga�mnaojbaouqu�weu`dew¬}�mqao��mnk�mq_ba��bpna���w � slmqa � sId � �bde�zuo� � a2_zs��va1��kvjba

H,[�HKJ7L
MON $P�9Q9Q5R�S M Q9TU$WVXDYZY MO[R�� L
M]\ Y MO[R?$ M�L
MO[R?Q9^ [$P�9Q9Q5R7��Q \W_ ^9YZY M �

mn_bw�u`}�kvp%r�sVjX{¢pna��zjbaor�aoj�mqu`kI},pqaounkVde��mnwekVj�c%w¬mq_�¥%¦1§z©�ª � Ü a� z_zsIp��¡� Â�ÙVÙVÙ ���

� Ó ×�Ó1Æ a Æ ^�¼¨Ø�}�²½~ �­Í Æ ä ß ^ b¨Ó ^`Í ß ä Ó ¹

¥%¦¨§z©�ª)µ u�r�sVwgjNsIwer	weu�mnk �a � kvr�a/sZ�bpnkXkV}�sVuqu�w�u|m�sIj�m¢mqk�kvdy}�kVp�mn_ba°c®kvpnhXwejbxr�slmn_za�r�slmqw � wesVjº��æ¨a�j � aV�lwgm,un_bkV�zde�­u��b�z��kvp�mîwgj�mnaopqs � mqwg�va��bpqkXkI}b��a��va�dekV�br�aojvm,slm)s�zuna�pnf }�pqwgaojz��de{2dgao�Vaod�kI}�sV zu�mnp�s � mqwgkvjº��^`_za�r�sImn_baor�sImnw � sVdvmq_ba�kvpnaor«mn_�slm�~ �(w�u)jbkVmpqsImnwekVjzsVd ��sIjz�¢w¬m�u�c�a�ded¬fÌhXjbklc%j��bpqkXkI}º�bslmqwgjzx� zs � h�mqk mn_za Æ � _bkXkvdzkI}�Ý�{�mn_zsVxVkVp�sVuo��bpqkl��w���a�u®sVj�a�± � a�dedgaoj�m � _zsVdgdea�jzxVa(mqk�a��lsIde�zslmqa1c%_za
mn_za�p`mn_zweu%sVr� bwgmnwekV�zu�xvkvsId�_zsvu �aoa�jZpna�s � _ba��¡�´Í¾j@mq_ba�pqa�r�sVwgjz�ba�p�kI}(mq_ba$�zsI��a�p��)c®a�c%wedgd`pqa
}�a�p�mqk�mq_bweu��bpqkXkI}�bpqkV bdea�rÎsVu2mq_ba ~ �~�eç½ènédÑ�ÊgÇ/�$��Í¾j � � weao�bw �|h½���I�v�v�l�)�b}�mnaoa�j@un{�u|mqa�r�u�mn_�slm­_�s��Vau�kvdg�vao��mq_ba ~ ��fi�bpqkV zdgaor un_bklc£mq_ba�wep®pqaoun��a � mqwg�va¨pqaoun�bdgmquo�,^`_za1�bpqkImqk � kVd�u-kV}ºmn_za�weppna�u���a � mnwe�Va-unaouqu�wekVj�u¡_zs��Va, �a�aoj � kVr��zsVpna��ykVj s`r��zd¬mqw¬f¾��wer�aojzunwgkvjzsId�u � sIdea)wgj2kvpq��aopmnk¨svununaouqu�mn_za·��j�slmn�zpqsVdgjba�unu �® �{yc%_bw � _2pna�sIdIr�sImn_baor�sImnw � sVdV�bpqkV bdea�r�u¡kV}Xmn_bw�uºhXwejz�� sVj� �a2�bpqkl�Vao��c%w¬mq_bwej�mq_ba2pqaoun��a � mnwe�Va2un{�u|mqa�r$�^`_bweu`pqa��zpna�u�aojvm�u`sIj�wgr���kVpnmqsIj�m(un_bw¬}�m%kV}�a�r��b_�sVunweu`wej�mq_ba��zaode��kI},sI��mqkVr�slmqao���ao�b� � mqwgkvj�s�c`s�{@}�pqkVr	mq_ba°unkVr�ao_bklcUsIpnmnwg� � w�sIdy�bpqkV bdea�r�u�kI} mq_ba°�zsVu�m
� svupnao�bpqaouna�j�mna��¡�¡}�kVp�a
±bsIr��bdeaV��wgj°mn_za�mnaou�m­una
m kV}®mq_ba¢^%Ý�^%ÝNdewg bp�sIpq{ � Æ ��m � dew¬¯½a/Ç�ÈÉlÊgËe� ÂoÙvÙIâ � � zs � h�mnk�pqaosVd¡r�sImn_baor�slmnw � sVd � _zsIdedea�jbxvaouo�� a��zsVp�mqw � wg�zsImna���wgj�mn_zweu � svu�a�u�mn�z��{�a�ununa�j�mqwesVdgde{�c%w¬mq_�mq_bpnaoa1��wg¯½a�pqa�j�m � kVj�mqpnwgf b��mqwgkvjzu�� ß �bp�wejbwgmnw�sId � kvjvmqpnwe b��mqwgkvj2c�svu�sVj2wgj�mnaopqs � mqwg�va-�bpqk�kV}�wgj­¥%¦1§z©�ª�c%w¬mq_bkV�bmsV�b�bwgjbx�u���a � wesVd¡��kVr�sIwej�hXjbklc%deao�bxVa(mqk�mq_ba�u�{�u�mna�r$� � kvp�}��bp�mq_ba�p%��a�mqsVwgd�u�kvj¢mq_bweu� svu�a�u�mn�z��{v��c%_bw � _´�zsIpnmnw � �zdesVpnde{���a�r�kvjzu|mqpqsImna�uymn_ba��zuna�kI}%¥%¦¨§z©�ª£sVu s��zun�zsVdmqs � mnw � sVd�mq_ba�kvpnaor �bpqkl�Va�p��,c®a�pna�}�a�p�mnk � e aojbÁ�rW��bdedea�p�Ç
È�ÉIÊgËe�`�V�V�������¸^`_ba�r�kvu�mwgr���kVpnmqsVjvm�sIde �aow¬m�jbkIm�aoj�mnwepnaodg{�jba�c£deaouqu�kvj�mnk �a¨deaosVpnjzao��}�pqkVrtmn_bw�u�a�±���aopnwer�a�j�mweu�mn_zsIm�mn_ba�dea��va�d%kV}2sV zu�mnp�s � mqwgkvj � kVr�r�kVj£wgj£r�kvu�m�sI�bmnkVr�sImnao�£sVjz�Zmqs � mnw � sVdmn_baokVpqa�rS�bpqkl�Xwgjbx�a�jX�XwgpqkVjbr�aojvm�u¨w�u1}�sIp1mnkXk�deklc2� � _bwedga�kV�bpy�bpqkXkI}�pqa��bpqaouna�j�m�slfmnwekVj/weu�sIdepqaosV�b{$sVj/sV zu|mqpqs � mqwgkvj¸� � sVdgdeao��mn_ba�É?� ��Ç�èõÈ ì�éIë¸ÊgÇ/º�Ç�Ê�wgj � æ¨�zsIjbx�� ÂoÙvÙIâ ���}�pnkvr mn_ba � sVd � �bdg��u¨dea��va�d�m|{��zw � sId�}�kVpyr�k�u|m Ó ^%Ý�uo�½w¬m�w�u¨jbao�Vaop�mq_ba�deaouqu � dga�sIp¨mn_zsImsVu�dekVjbx�sVu`s�u�{�u�mna�r���kXaou�jbkIm%_bw���a2sIded½mn_zaouna1a�± � pn� � w�slmnwejbx���a
m�sIwedeuo��jbk�c®kvpnhXwejbxr�slmn_za�r�slmqw � wesVj¸c%wgded�}�a�aod®wej � dewejbao�¸mnk°�zu�a�u�� � _@s�un{�u|mqa�r$�/Í¾j@}�s � mo�,mn_zweu�w�u�wejkV�bp%kv�bwejbwgkvj�kvjba�kI}�mn_ba � pnwgmnw � sVd¡wgr���ao��wer�a�j�mqu`}�kvp%�zunwgjbx Ó ^%Ý®u%sIjz��kVjzaV�bsIde �a�wgmjbkIm2mq_ba�kVjzdg{/kVjbav�ºkI}�mn_ba�pna�sVunkVjzuyc%_X{�mn_za�{/sVpna�jbkVm �zunao�´sVu�c%w���a�de{/svu��îuns�{v�
� kvr��z��mnaop(sIdexVa� zpqs�u�{�u�mnaor�uo�^`_bweu¨weu%mn_ba � pn� � w�sId¡w�unun�ba2wej$mn_ba�¥%¦1§z©ºª´�zpnkV�|a � m¨sVjz��kV�bp%r�sVwgj�r�kImqwg�lsImnwekVj}�kVp���ao�zsIpnmnwejbx/}�pnkvr mn_ba � desvununw � sId��zsIp�sV�bwgxvr kI}1sV��mnkvr�sImna��¸mq_ba�kvpnaor �bpnkl�XwejbxsI �kV��m`�b}�mqa�aoj�{VaosVpqu`sVxVkz�ß �bp­una � kVjz� � kVj�mnpqwg z��mnwekVj´mqk�mn_ba � svu�a�u�mn����{/kV}%mn_ba$~ ��fi�zpnkv bdgaor w�u �sVunao�kVjZwgj�mnaopqs � mqwg�va/ì �õÊgÉIë]��ç½ÊgÉlë�ëzì�ë�í � ¿�a�deweuo� Â�ÙVÙvá ����s�mqa � _bjbw�À��ba�mn_zsIm�a
±���a � m�u�sIjkV��mqdgwejba�kI}�mn_ba��bpqkXkI},sIjz��_zsVu®mq_ba2�zuna�p`�bpqkl��w���ayr�sIwej�un�b bxvkvsId�uo� � sIdedga���ì �õÊgÉIë]���õ�mnkvxVa
mq_ba�p`c%wgmn_�mn_za�wep(sVuqu��br���mqwgkvjzuo�,^`_za ��a
m�sIwedeu`kV}�mn_za2�bpnkXkV}|��a��Vaoj�mn�zsVdgde{¢��klc%jmnk�mn_za2dgkvxVw � dea��va�di�bsIpqa1��kvu�mn��kVjba��¡�-æ(aoj � av�Xmn_ba2��u�aop � sIj�c%pnwgmna2��klc%jÉ�Xì �2�bpqkXkI}we�baos�wej¢s�jzslmq�bpqsVdbc`s�{ c%w¬mq_�sVu-r�sVjX{�xvsV�zu)sVu)mn_baopna(sVpna%kv��aoj¢slm)mn_zweu-�zpqu�m�u�mqsIxva

_][^§^9� \9M�¨�M Yl^ _ $ M QD��© L ��ª�«D¬&­�®=¯5°��Dª M�L±[D[��� L ^�Q��9Y L ���²^9�´³ H H,[�µ

kV}-mn_ba��bpqkXkI}|� × dekvunwejbx�mq_ba�xvsV�zu¨w�u�w���aosVdgde{$}��bdedg{�sV��mnkvr�slmnw � �¡wej°�zsIpnmnw � �bd�sIp��½ X{a�±X�zdgkvw¬mqwgjbx�mn_ba�a
±Xmqa�pqjzsId`u�{�u�mnaor�u­wejvmqa�pn}�s � ao�´mqk´¥%¦1§z©ºª-�¸æ(klc�a��Vaopo�î}�kvp���w;¸�f� �bd¬m�mn_za�kVpqa�r�u­w¬m�w�u�jba � aouqunsVpn{°r�kVpqa�kV}�mna�j@mn_zsVj@jbkVm­mq_zslm�mq_ba���u�aop��zpnkl�Xw���aousv�b��wgmnwekVjzsVd¡wgj�}�kvpnr�sImnwekVj$sIjz��sI�b�zdgweaou�mq_ba2weund�sIjz��sI�b�zpnk�s � _�pqa � �bp�u�we�Vaodg{v�Í¾j � kVr��zsVpnw�unkVj�mqk�kv�bp��zp�u|m`mqs � mqw � fi zsvu�a���unkVde��mnwekVj�mn_ba2w�undesVjz��u�m|{Xdga2un�b�b��kVpnmqus�r­� � _5r�kVpqa¢sI zu�mnp�s � m­sIj��´�zu�aop�fi}�pqwgaojz��de{/wej�mna�p�s � mnwekVj´dea��Vaod ��^`_za��bpqkXkI}�u sVpnajbklcNslm(s�dgao�Vaod¡kI})sI zu�mnp�s � mnwekVj�unwer�wed�sIp`mnk��bpqkXkI}�u`wej$r�sImn_baor�slmnw � sVd½mna�±�mq �kXkvhXuo�ß �bp�mn_zwgp�� � kVj�mnpqwe b��mnwekVj@mnk/mn_ba � sVuna�u�mn�z�b{¸kI}(mq_ba ~ ��fÌ�bpnkv bdea�r w�u�s/}��bdede{sV��mnkvr�sImnw � sVdgde{��zdesVjbjbao��sIjz��a�±��zsIjz�bao���bpqkXkI})kI}�mn_ba�mn_baokVpqa�r sVu¨�bpna�u�aoj�mnao��wgjÆ a � mqwgkvj�Úz�Í¾j¸mq_ba¢}�kvdgdeklc%wejbx/una � mnwekVjzu�c®a�u�_zsVdgd®�zp�u|m���aou � pqwe �a�mn_ba��bpqkV bdea�rÎ}�kVpqr�sIdewgÁ�slfmqwgkvj8� Æ a � mnwekVjD�b� Â �õ�«^`_baojº�%c®a/u�_zsVdgd1�bpqaouna�j�m¢�zsIpnm�kV}ymq_ba�m�s � mnw � fÌdgao�Va�d¨�bpnkXkV}� Æ a � mnwekVj���� �V�(sIjz��mq_ba�wej�mna�p�s � mnwe�Va2w�u�d�sIj���sI�b�bpqkvs � _5� Æ a � mnwekVj�u1��� Ú�mnk$��� ä �
� � wgfjzsVdgde{V��wej Æ a � mnwekVj�Ú�c®a�un_bklcNmn_za }��bdedg{�sV��mnkvr�sImna���u�kvdg�bmnwekVj�sIj���c®a��bpnkl�Xw���a�sxva�jbaopqsVdgweÁosImnwekVj$kI}-wgm � kl�Vaopnwejbx¢s¢c%_zkVdea � d�sVuqu1kI}�unwgr�wedesVp1�bpqkV zdgaor�uo�1^`_za�s � mn��sId� _zsVdgdea�jzxVaV��sIm�mnpqwe b��mna���mnk�mn_ba Ý�{�mn_zsVxVkVpqaosVj Æ � _bkXkvd ��w�u(sVu�}�kvdgdeklc(uo²
^%æ�a ß�b a®¿5�z~ ��w�u`wepnp�slmqwgkvjzsIdi�
æ)�?�6����� � X{ � kvj�mnp�sV��w � mqwgkvj � Ó unun�br�a ~ �¨w�u�p�slmqwgkvjzsIdi��mn_zsImîw�uo��mn_baopna�a
±�w�u|m,jzslmq�bp�sIdjX�br­ �aopqu��v3I�°c%w¬mq_�jbk � kvr�r�kvj��bwg�Xw�u�kvp(u�� � _�mq_zslm�~ � R ���Y�)��^`_baoj���~ � R
�°��sVjz��mn_X�zu��?� � R � � �,æ¨a�j � a�� � w�u-a��va�j¢sVjz�¡�Xu�wej � a¨kX�z��jX�br� �a�p�u-uqÀv��sIpqa`mnkk��b�buo��� w�u¨ao�Vaoj ã uns�{U� R �+�¡�¨^`_ba�j´�?� � R �i�+�b� � R â � � ��mq_zslmyweuo�W� � R �+� � �^`_X�zuo�X� � w�u®ao�Vaoj�mnkXkz��sVjz��unk�w�u��)�-^`_�slm®r�a�sIjzu®mn_�slm` �kVmn_
�/sIjz��� sVpna1a��Vaojº�
� kVj�mnp�sV��w � mqwgjzx�mq_ba�}�s � m%mn_zsIm�mq_ba�{���k�jbkVm`_�s��Va2s � kVr�r�kVj$��we�XweunkVp�� �

ÊDgCf ùÒt�ú�hêÐ!ndo���ú�tÎo�Ï]Ð
u��lÏ]m1u ú�Í
^`_ba1mn_za�kVpqa�r w�u�wgjbwgmnw�sIdede{�}�kVpqr��bd�slmqao��wej�¥%¦1§z©�ª)µ u`hXjbklc%deao�bxVa(zsvu�a�sVu�sIj�kV��a�j�bpqkV zdgaor"wej7mn_ba�mn_baokVpq{��~�~�q���®^`_ba��bpqkV bdea�r w�u¢a�j � k���ao�£wej xyz&{*|Aun{Xjvm�sl±¡�c%_bw � _�weu`mq_ba2dekVxVw � sVd½wgjb�z��m(desVjbxV��sIxVa1}�kVp¨¥%¦1§z©�ª)²
���Z�,���I���Z�I 4¡�¢�£I��¤¦¥�§J Z��¨Z©�ª�¡���©� 4«����­¬�ª� 4�Z«Z£�®�°¯J¡�ª�¯J£�±�¥Z¬J¡�ªi�²ª�¡��³�] 4«����°¥�§J Z��¨�®Z®Z®Z®�����Z£���´�¥�§J Z�¦¨�¬Z¥1ª�¡��¦«� �«���¬J¡�ª�«Z£�ªZ±Z¤I¢��� µ°´J®Z®
^`_ba � kVj � a��bmqu1kI})mn_za�p�slmnwekVj�sId�jX�br­ �aopqu­�°¶d·X¸b�(sIj��$mn_ba�unÀ��zsVpna�pnkXkIm��J¹ ºF¶F¸b�sVpnay��a
�zjzao��wgj�mn_bayhXjbklc%deao��xva1 zsvu�aysVu�c�a�ded � Æ wej � aymq_ba�{�sVpna1jbkIm%jbaoao��a��¢wej�mq_bawej�mna�p�s � mnwe�Va¨unaouqunwgkvj�slm®mn_bw�u`sI zu�mnp�s � m®dea��Vaod�sVjz�¢ �a � sI�zuna¨kV}ºdes � h�kI}�un�zs � aV��c®ay��kjbkVm(��weun�bd�s�{�mn_za�r _za�pqa�� � }|� � e a�jzÁ�r���bdedgaop�Ç
È`ÉlÊgËe�½�I�V�����½}�kVp`mq_ba ��a�mqsIwed�uq�
�^�k2�bpnkl�va�mn_ba(xvwg�va�j��bpqkV bdea�r$�I}��zp�mq_ba�p®r�sImn_baor�slmnw � sVdbhXjbklc%deao��xva�w�u)pqaoÀ��bwepna��¡�ß �bp2�zpnkXkI}`a�r��bdekl{�u�mn_za¢��a
�zjzw¬mqwgkvj5kI}%a��va�jbjba�unu���»X¼q»+½~¾z�ysIjz�´unkVr�a�mn_baokVpqa�r�usV �kv��m�p�slmqwgkvjzsId�jX�br� �a�p�u��lao�Vaojbjbaouquo��sVjz� � kVr�r�kVj���wg�Xw�u�kvpqu®�J¿+ÀYÁ~Á�À+½zÂXÃ�ÄH¼WÄF¹+ÀX¶��
�æ¨klc®ao�Va�p��¡mq_ba���a��zjbwgmnwekVj5kI}¦¹ ºF¶F¸/weu jbkIm�jza�ao�bao�°wgj´mq_ba¢r�sIwej5�bpqkXkI}|�î �a � sI��u�ac�a­��u�a­mn_ba � kvr��b��mnaop2sIdexVa� zpqs�u�{�u�mna�r ¶¸ªDãb¹�§�mqk��|��u|mqw¬}�{�mq_ba�mnp�sIjzu�}�kVpqr�slmqwgkvj

H,[�ÝÞJ7L
MON $P�9Q9Q5R�S M Q9TU$WVXDYZY MO[R�� L
M]\ Y MO[R?$ M�L
MO[R?Q9^ [$P�9Q9Q5R7��Q \W_ ^9YZY M �

kI})� ~ � R � wgj�mqk@�?� � R � � �N^�k¸��k¸unkz�`a
±��bpqaouqunwgkvjzu�wgjD¥%¦1§z©�ª«u�� � _7svu~ ��sVpna1r�sV�b��ao��mnk � kVpqpqaoun��kvjz��wejbx�¶5ª�ãb¹v§�pqa��bpqaouna�j�mqsImnwekVjzuo�vsVjz��¶¸ªDãb¹�§¢��u�a�uw¬m�u¨klc%j� b�bwed¬mnfiwej�hXjbklc%deao��xva2mnk�r�sVjbwe�b�bd�slmna�mn_baor$��¼1u�wejbx�sVjz���va�pqw¬}�{Xwejbx�mn_zaouna
� kvr��z��mqsImnwekVj�u|mqa��zu`pqaoÀ��bwepqaou�mn_za2a
±��zsIj�u�wekVj�kI}�¶5ªDãz¹v§½µ u � kVr��b��m�slmnwekVj�u�mnk�mn_za� sVd � �bdg��u�des�{va�p�wgj5¥%¦¨§�©ºª)� Ó u un_bklc%j/wej � Æ kvpnxvaV���V�V�v�l����mn_bw�u � sVj/ �a¢��kvjba� �{pnao�bd�s�{�wejbx¨¶5ª�ãb¹v§¡µ u � kVr��b�bmqslmqwgkvj2 X{1un��a � w�sId � kVr��b��m�slmqwgkvjzsIdlm�s � mnw � uºwej�¥%¦¨§�©ºª)�c%_bw � _@r�s�{5sId�u�k��zj�}�kVd��@unkVr�a$��a
�zjzw¬mqwgkvjzu­un� � _ sVu
¹?ºF¶~¸½�°^`_zaouna¢mqs � mqw � u�sVjz�mn_baowgp�a�±��zsIjzunwekVjzu�sIpqa���sIpnm�kV}(mn_ba�Ç�ª�ã
ãb§bÑ�u�{�u�mnaorAsIjz� � kvpnpqaoun��kvjz�¸��wepqa � mqdg{mnk�mq_ba r�slmq_ba�r�sImnw � sIdî��a
��jbw¬mqwgkvjzu¨s��lsVwgd�sI bdea2wej�¥%¦¨§z©�ª)µ u(hXjbklc%deao��xva2 zsVunaV� � kvpa
±bsIr��bdeaV��mq_ba�jX�br� �a�p��°weu���a
�zjzao�£wej£mn_baokVpq{�Å~�~Æ+Çd�~�q�´sVu
È���È�� �v���
� Ó xvsVwgj��mn_bw�u�hXjbklc%deao��xva�w�u�kVjbde{�pna�À��bwgpqao��c%_ba�j°a
±��zsVjz��wejbx�mn_ba¢sV zu|mqpqs � my�bpnkXkV}-mnk�mn_za zsVunw �y� sId � �bde�zu`d�s�{Vaop`sVjz��w¬m(w�u%jbkVm(�Xweunwg zdgaymnk�mq_ba2�zuna�p(sIm%mn_bw�u(u�mqsIxvaV�)æ(klc�a��va�p��
Ç�ªDã
ãz§bÑ¢w�u-u�mnwedgdbmnkXk2c®a�sIh wej�xVaojba�p�sIdi��mn_bw�u)w�u-s2un�b ��|a � m)kI}�}��bp�mq_ba�p®��a��va�dekV�br�a�j�m��� a�jbklc7xvwg�va¨a
±bsVr��zdga�u-}�kvp`�ba
�zjbwgmnwekVj�u�sVjz��mq_ba�kvpnaor�u��zunao��wgj�kV�bp��bpqkXkI}�u�kI}mn_ba ~ �lfi�bpqkV zdgaor��
���J�,���I���I�I�J����É4��ªI���­¬�ª)¬�ªI�4�JÊI�J �®�]�4����¬�ª�¬���¬J¡�ª�Ë£Z«�¤
�]Ì-ªZ±I¤,®Í�Ë�ZÌ4¬Z¥���¥Z©I¥J¡� Z���­£Z«�¤��]ÎÏªZ±Z¤,®Í�]Ð�Ì�����¬�¤��4¥w¨wÎ�®Z®I®Ï¬�ªI�,®Z®Z®�²���Z£��Í´­Ñ�����¬�ª�¬���¬J¡�ª�¡��)��É4��ªXµ°´�®Z®

���J�,���I���Z�J���Z¡� 4��¤Ï �«��4©I¯� �¬��4�� �¬Z¡�ª³�­¬�ª¦ 4�Z«Z£4®�­¯Z¡�ª�¯J£�±,¥Z¬J¡�ª³����¡� 4«Z£Z£I©I¥J¡� Z���­£Z«�¤i�ËÌ�ªZ±Z¤,®�Ë�JÌ4¬Z¥���¥J©I¥J¡J Z���Ë£Z«�¤
�]Î�ªZ±I¤,®�Ë�JÌ�¬Z¥���¥J©4¥J¡� Z���Ë£I«�¤��]ÒÏªZ±Z¤,®�Ë«�ª4�³�]Ð³����¬�¤��4¥�Ì�Î�®wÒ�®�²ª�¡��³�Ë�JÌ�¬Z¥���¥J©4¥J¡� Z���Ë£I«�¤i�]�wªZ±Z¤,®�­¯Z¡�¤Z¤�¡�ª�©J�4¬�É�¬I¥J¡� ÏÎ�Ò���®Z®¬�ª4��®Z®Z®Z®¬�ª4��®Z®¬�ªI��®I® �«���®Z®�²���Z£��Í´�Ì� 4«���¬Z¡�ª�«Z£Ï¬�¤I��£I¬J�I¥��J���� 4���JÌ4¬Z¥��¦¬�ªI�4�ZÊI�� �¥�ÎYÓ]ÒwÔJ��¬I¯����«�É4��ª�¡¦¯J¡�¤Z¤�¡�ª��4¬�É�¬Z¥J¡� �«�ª4�w�J±I I�J���� J¤�¡� 4�wÒZÐIÌ4Õ�Î?µ°´J®Z®

���J�,���I���Z�J���Z¡� 4��¤¦¥J§�±�«� 4�I©Z��É4��ª³�°¬�ªÖ¬�ª4�4�JÊI�� ,®�­¯Z¡�ª�¯J£�±,¥Z¬J¡�ª³����¡� 4«Z£Z£I©I¥J¡� Z���­£Z«�¤i�ËÌ�ªZ±Z¤,®×�Ë�J§�±,¬�É³�Ë��É���ªZ���²��¡�Ô4�� �Ì¦¨4®Z®�Ë��É���ªZ��Ì�®I®Z®¬�ªI��®Z®�²���I£��Í´�Ì)¬Z¥w��É4��ª?Ó:¬��I��Ì,Ø�¨�¬I¥Ï��É4��ª+µ°´�®Z®

ÊDg!Ê Ù§Ï`_dm�u�_�Ï]Ð×Ù�Ú§n?ú�t?ndo ùÒt?ú�rluCÍDüKuCÍ�ÛiÜ�Ý:Þ¦ß
ß jba°c�s�{ mnk � kvjzu�mnpq� � m$�bpqk�kV}�u�wgj.¥%¦¨§z©�ª wej�mnaopqs � mnwe�Vaodg{£w�u� zsVunao�DkVjKmqpqsv��wgfmnwekVjzsVd-m�s � mqw � sId�mn_baokVpqa�rÎ�bpnkl�Xwejbxz� � _baoj@aor��zdgkl{vao�°wgj¸mn_bw�u�r�k���a$¥%¦¨§z©�ª7w�u
� kvr���sIp�sI bdea�mqk´r�sVjX{5kImn_za�p�wejvmqa�p�s � mnwe�Va$u�{�u�mna�r�u�dewghva�Ï­·¡ÐyÑ¡Ò � Ó dedea�j8Ç
È�ÉlÊgËe��I�v�V�l� �)ÔyÕ,Ö � × k�À�Ø1a��va�dekV�br�a�j�m2^�a�sIr$� ÂoÙvÙVÙ f¾�V�V�VÚI����Û�Õ�¹ � Ü kvpq�bkVj�sVjz�/¿�a�dgf_zsIr$� ÂoÙVÙ Ú � ��Ý-Þ Æ � ß c%pqa Ç
È-ÉlÊeËe� Â�ÙVÙVá � �XsIjz��Í|uqsI �a�dedga � Ý)sI�bd�unkVjº� Â�ÙVÙVâzãlä we�bhVklc«Ç�ÈÉlÊgËe�¡�I�v�v� � �®æ¨klc®ao�Va�p���s � _zsIp�s � mnaopnw�u|mqw � un��a � w�sId¡mqk�¥%¦¨§z©�ª´weu%mn_zsIm1u�ao�VaopqsVd�mqkXkVd�u

_][^§^9� \9M�¨�M Yl^ _ $ M QD��© L ��ª�«D¬&­�®=¯5°��Dª M�L±[D[��� L ^�Q��9Y L ���²^9�´³ H H,[�ý

��aV� xz�e��mn_ba���sVpnwekV��u`a
±XmnaopnjzsVd�un{Xu�mnaor�uq�`sVpna2s��lsIwedesV bdea1mqk¢u��z�b��kvp�m¨mn_ba2wej�mna�p�s � mnwe�Va�bpqkXkI},��a��va�dekV�br�a�j�m%�bpqk � aouqu�� � }|� Æ a � mnwekVj Â � �V�
�ß �bpî�zp�u|m � svu�a`u�mn�z��{2kvj mq_ba¨~ �lfi�zpnkv bdgaor«�zunao�2mq_ba�mqs � mnw � sVd�mn_baokVpqa�r«�bpqkl�XwgjbxsV�b�bpqkvs � _¢sVjz���bpnkl�vao��mq_ba�mn_za�kVpqa�r³wej$ÚVÚ­wgj�mnaopqs � mqwg�va1u�mna���u��-^`_ba�u�a�u�mna���u`c®aopnasV��mnkvr�sImnw � sVdgde{�pna � kvpq��a��� X{�¥%¦¨§�©ºª°wej�s�unkIf � sIdedeao�¢pqa��zdes�{��zdeaV��c%_zw � _ � kvjvm�sIwejzusVdgd)wej�}�kVpqr�slmqwgkvj�mq_zslm w�u2jbaoao��a���mqk�sI��mqkVr�slmqw � sIdedg{�pqa��bd�s�{�s��bpqkXkI}|� � æ¨a�pqaV��c®akvjbdg{�u�hva
m � _­mq_ba¨wej�mnaopqs � mnwekVj�u)pna�À��bwgpqao�­}�kvp)mn_ba¨�bpnkv bdea�r �{­�bpqaouna�j�mnwejbx2mq_ba � kvj�fmqa�j�m2kI}-mq_bweu�pqa��zdes�{��zdeaV� Ó �ba
mqsVwgdeao�°��a�u � pnwe��mnwekVj/kI}-mq_ba�wgj�mqa�p�s � mqwg�va­�zpnkXkI} � sIj �a�}�kV�bj���wej � e a�jzÁ�r���bdedgaop­Ç
È`ÉlÊgËe�½�I�v�v��� �
à"á�âJã1ä"å æ�çIèIéZê ©�ë êIì4í�îwïIð4æ�ñZè � ìZò�ðZó ¨I©�ô æ�ó © ðIêJó ®à"á�âJã w å Ñ è4îZõZêJðIêZó�í�æ ôwÑ èIîZõZêJðIè �Z� îIæ ô ì�óIê ô ó4ì � ç ôZö ç ®÷��ô�ôJö ç ®Í��ø�ôJö ç ®Z®Z®à"á�âJã � å ð ö õJè4ì ô æJó�í �I�J�4«�±�£����I���4«�±�£��à"á�âJã�ù,å ç ë êIì�è)í�çIï4æ�ðZó © êIìZì � ð4êJó © îJð,í�óZèZð�íJæ ô�®à"á�âJã1ú"å óIêIîJó�í�îIìwû4æ�ðIêZõIõJè © ìZæJðZó �I���4«�±�£����I�J�4«�±�£����Z� ìZò�ðIó ¨4®Z®��I���4«�±�£��à"á�âJã x å óIêIîJó�í�îIìwèIü�í�ì�ó�ì�è © ìZæJðZó �I���4«�±�£����I�J�4«�±�£�����ô�®��4���4«�±�£J�à"á�âJã�ý,å óIêIîJó�í�îIìÏê ôJÑ è �I���4«�±�£��Ï�I���4«�±�£����I�J�4«�±�£��à"á�âJã�þ,å óIêIîJó�í�îIìwèIü�í�ì�ó�ì�è © ìZæJðZó � õIÿ ®w�I���4«�±�£��³� ç ®��I���4«�±�£��à"á�âJã��,å óIêIîJó�í�îIìÏê ôJÑ è Õ×� õ�� ®×��ô í�õ ®à"á�âJã��,å æ�çIèIéZê ©�ë êIì4í�îÏõZèZçZçIê �4���4«�±�£J�³�Z�]Ð�� ï4æ��ZèZð�ç ¨4®×� ó�í�çZè�ì ¨�� ï�æ��ZèZð ô)¨4®Z®Z®I®à"á�âJã w ä"å óIêZîJó�í�îIì ë��4© îIæ�çZï ö óIêJó�í�æ ô�� õ
	�� ®×�Z� õ
	�	 ®Z®à"á�âJã w w å æ�çZèIéZê ©�ë êIì4í�îÏõJèZçZç4ê � õ�� ®Í�Z� èZñZè ô ï � ï4æ
�ZèZð�ç ¨4®Z®Z®à"á�âJã w � å ð ö õJè4ì Ñ èZû ô�© îIæ ô óIðIêZîJó �I�J�4«�±�£����I���4«�±�£����I����«�±�£��à"á�âJã w ù,å æ�çZèIéZê ©�ë êIì4í�îÏõJèZçZç4ê � õ�� ®Í�Z� í ô ó � ï4æ��IèZð ô¦¨�®Z®Z®à"á�âJã w ú"å óIêZîJó�í�îIì��ZèIõIõIìZæ�ðZóIè Ñ��I����«�±�£����4���4«�±�£J�à"á�âJã w x å óIêZîJó�í�îIì�èIü�íJì�ó4ì4í © ìZæ�ðZó � õ
	�� ®÷�I� ï4æ��ZèIð ô¦¨4®I®÷� õ
	�� ®÷� õ
	�� ®��I����«�±�£��à"á�âJã w ý,å ç ë êIì�è÷í�çZï4æJðZó © êIìIì � ìZò ö êZðZè © èZñIè ô�®à"á�âJã w þ,å óIêZîJó�í�îIìwêIìZìJèZðZó �Z� èZñZè ô ï�ç ®Z®Í�I� ìZò ö êZðZè © èZñIè ô õ
	���õ
	�� ®Z®Í��ô í�õ ®à"á�âJã w �,å ð ö õJè4ì Ñ èZû ô�© èIüJïIê ôJÑ³� õ
	�ÿ ®��I���4«�±�£����I�J�4«�±�£��à"á�âJã w �,å óIêZîJó�í�îIì�èIü�íJì�ó4ì�è © ìZæ�ðZó �4���4«�±�£J���I���4«�±�£��³��ø,®��I���4«�±�£��à"á�âJã � ä"å óIêZîJó�í�îIìwê ôJÑ è � õ
	
� ®��I����«�±�£����4���4«�±�£J�à"á�âJã � w å æ�çZèIéZê ©�ë êIì4í�îÏõJèZçZç4ê �I���4«�±�£��³�Z�ËÐ³� ï4æ
�ZèZð ô�¨�®Í� ó�í�çZè4ì ¨³� ï4æ��ZèIð ø¦¨4®I®Z®Z®à"á�âJã ��� å óIêZîJó�í�îIì ë��4© îIæ�çZï ö óIêJó�í�æ ô�� õ ¨ � ®×�Z� õ
	
�wõ ¨Z¨4®I®à"á�âJã � ù,å æ�çZèIéZê ©�ë êIì4í�îÏõJèZçZç4ê �I���4«�±�£��³�Z� èZñZè ô ï � ï4æ��ZèIð ô¦¨4®I®Z®à"á�âJã � ú"å ð ö õJè4ì Ñ èZû ô�© îIæ ô óIðIêZîJó �I�J�4«�±�£����I���4«�±�£����I����«�±�£��à"á�âJã � x å æ�çZèIéZê ©�ë êIì4í�îÏõJèZçZç4ê � õ ¨ � ®÷�Z� í ô ó � ï4æ
�ZèZð ø�¨�®Z®Z®à"á�âJã � ý,å óIêZîJó�í�îIì��ZèIõIõIìZæ�ðZóIè Ñ�� õ ¨ � ®÷�Z� õ ¨ 	 ®Z®à"á�âJã � þ,å óIêZîJó�í�îIì�èIü�íJì�ó4ì4í © ìZæ�ðZó �4���4«�±�£J�³�Z� ï4æ
�ZèZð ø�¨�®Z®Í� õ ¨ � ®��I�J�4«�±�£����I���4«�±�£��à"á�âJã � �,å óIêZîJó�í�îIìwêIìZìJèZðZó �Z� èZñZè ô ï ô�®Z®Í�I� ìZò ö êZðZè © èZñIè ô õ��Ïõ ¨ � ®Z®÷�]ô í�õ ®à"á�âJã � �,å ç ë êIì�è÷í�çZï4æJðZó © êIìIì � èZñZè ô�© îIæ�çZç�æ ô4©�Ñ í�ñ�í�ìZæ�ð ®à"á�âJã�ù4ä"å æ�çZèIéZê ©�ë êIì4í�îÏõJèZçZç4ê � õ ¨ � ®÷�Z� í ô ó ¨4®Z®à"á�âJã�ù w å óIêZîJó�í�îIì��ZèIõIõIìZæ�ðZóIè Ñ�� õ ¨ � ®÷��ô í�õ ®à"á�âJã�ù � å óIêZîJó�í�îIìwêIìZìJèZðZó � û4êZõIì�è ®Í�Z� èZñZè ô4© îIæ�çIç4æ ô4©�Ñ í�ñ�í�ìZæJðÏõ
	��Ïõ���õ
	 ¨ õ�	�ÿÏõ ¨ ÿwõ ¨ � ®I®Í��ô í�õ ®à"á�âJã�ù�ù,å ð ö õJè4ì��ZèIê ø è ô��I����«�±�£����4���4«�±�£J�
^`_ba�dga�ununkVj¸mnk° �a$deaosIpqjba��´}�pnkvråmn_bw�u��bpqkImnk � kVd�weu­mn_�slm�mn_ba$c%pqkVjbx/dgao�Va�d�kI}sV zu|mqpqs � mqwgkvj weu,u�mnwedgd � kVr�r�kVj�wej�r�k�u|m)sI�bmnkVr�sImnao�­sIjz� mqs � mnw � sVd�mn_baokVpqa�r«�bpqkl�Xwgjbxaoj��Xwepnkvjbr�a�j�mquo�$^`_bweu�weu kV�bp � kVjX�Xw � mnwekVj´ao�Va�j°mq_bkV�bxv_¸Ø¨a e pn�bw �|jºµ u � kVjl�|a � mn�zpnamq_zslm�mn_ba1}�kVpqr�sIdewgÁoao���zpnkXkI}ºkv ��|a � m�w�u`slm�r�k�u|m%s dewejbaosVp� zdgklc`fÌ�b�¢kV}ºmn_baywej�}�kVpqr�sIdr�slmq_ba�r�sImnw � sId¡�zpnkXkI} � sVj� �a sIpqxV�ba���mqk¢s � mq�zsIdede{¢_bkVd���}�kVp`mn_zweu%a�±bsIr��bdeaV�Í¾j mq_ba®}�kVdedgklc%wejbx1una � mnwekVjº��c�a�un_zsVdgdXu�_zklc5_bklc¸s(�bpqkXkI}zsIm,s¨r�kvpna®�zuna�pnf }�pqwgaojz��de{dea��va�d¡kI},sI zu�mnp�s � mnwekVj � sIj$ �a s � _bwea��vao�¡�
� �����*�����!��(C�����!�¥���h��¡���"��¥�'"��!�B	����h���!�'��¡£�1	���¡��¥���§�����;��¡�¡����D��°��
���!�B�§��"������'"/��� �?�'�§���O�����

('��������"��s(1� �!�'#����B	��¢��¤ #�¤�R�� �"! #�$&%¥���%#�� ���'"ê¤´�����'"»�¢��¡�¡����D�¥�!���P('��������"��y���('Î�P�C¦7�1('�����'�
�¢��¤ #�¤�R*)
� +&,�- .&/
! #"# %5��"��Ò���!��07���1"�(1�����O�?��� �����C���1�����¢��¤ #�¤�R1- !".&/�2
-3)�."$�-3)�,
4&%C¤������¥����� �����C�!�'�
��"��;���!��� ������"65�7 8�9 :
;=<
>"?�¡��1�1���'���!���5(!������('�5���l�����§�?���!�����C�!�'���!��«A@�B=C1Dl¤

H,[,�KJ7L
MON $P�9Q9Q5R�S M Q9TU$WVXDYZY MO[R�� L
M]\ Y MO[R?$ M�L
MO[R?Q9^ [$P�9Q9Q5R7��Q \W_ ^9YZY M �

ÊDg ø ^ÎÍ§m�ndt7Ï`_dm1uCr]nU^?kdÐBÏ]Í�aÜùyt�úlú�ûFE�ndr]ndÐ!ú?c5oKndÍ§m·uCÍ�ÛiÜ�Ý:Þ¦ß
^`_ba`~ �lfi�bpqkV zdgaor � sIj�sVdeunk(�a®unkVde�Vao��wej�mnaopqs � mnwe�Vaodg{ywej­¥%¦¨§z©�ª�sVdgkvjbx%mq_ba�dewgjzaouîkI}mn_ba¨�bpnao�Xwgkv�zu�de{�xvwg�va�j�mna�±Xmn �k�kvh­�zpnkXkI}-� � }|�Imq_ba¨wej�mnpqk���� � mqwgkvj�kI} Æ a � mnwekVj��v�õ�)Ø¨�zamnk�u��zs � a(pqaou�mnpqw � mnwekVj�u-c�a � sVjbjbkVm�un_bklc mn_ba1�bpnkXkV}���a��va�dekV�br�a�j�m���u�wejbx�¥%¦1§z©�ª)µ uxVp�sI�b_zw � sId���u�aop�wej�mnaop�}�s � a´½`¥§¾%¿(�- z��m�mn_ba�r�kVpqa � �zr� �a�p�u�kvr�a � kvr�r�sVjz�5dewgjzawgj�mqa�pn}�s � a�kV}®mq_ba�a�r�s � u�ao��wgmnkvpo� ß mq_ba�pqc%weuna�c®a�c�kV�bd��°_zs��Va­mnk�un_bklc s�½`¥§¾%¿u � pnaoa�j�un_bkVm�}�kVp,ao�Va�pq{y�zu�aop�wej�mnaopqs � mnwekVj���^`_X�zuo��mn_ba®}�kVdedgklc%wejbx1�bpna�u�aoj�mqslmqwgkvj xVwe�Va�usIj5wejzun�l¸ � wea�j�m�wer��zpna�ununwgkvj´kI}`mn_ba�wgj�mnaopqs � mqwgkvj°c%wgmn_@¥%¦1§z©�ª)�,c%_bw � _5w�u wej´mn_zau|m|{Xdea­kV}�mq_ba��zjzsId)w�undesVjz���zpnkXkI}®�bdesVj/wej�½�¥§¾%¿NsIjz�ÜÀ�Ë|ènÇ Â¸svu�u�_bklc%j/wgj � wgx�� ÂsIjz�$���

� kVp�a��va�pq{ � kVr�r�sIjz��c�a1un_bklc£ �kImn_¢mn_bayjba�c%de{�wgj�mqpnk���� � ao���bpqkXkI}ºjbk���a�u®sVjz�mn_ba��bpnao�Xwgkv�zu�de{@kv��aoj7�bpqk�kV}2jbk���aou¢mn_zsIm�sIpqa � dekvunao� X{Zmn_ba � kVr�r�sIjz�º�.^`_zawgjz�b��m`mnk�¥%¦¨§z©�ª@��a�j�mnaopna���sl}�mqa�p�mn_za�GIH~�KJX���bpqkVr���mõ��sVjz��wgmqu�kV��mq�b��m(sIpqa(xvwg�va�jwgj�¸MLF¾�»ONq¶WÄY¸d»+¶�}�kVj�mo�� a­�bpna�u�aoj�m%mn_ba�u�mnao�zu(kV}�mq_ba �bpqkXkI})wej�s�dgwejbaosVpnweÁ�a��$u|m|{Xdea sIjz��mq_ba�pqa
}�kvpna � sIded�bpqk�kV})jbk���aouysId�u�k�ç�èné�é|ê­Êàì�ë�Ç��õ�¨Í¾j�mq_ba­}�kVdedgklc%wejbxz��c®a�u�_�sIded�c%pqw¬mqa��bpqkXkI})dgwejba�u1svu

 ��P�� &RQ S��ºc%_baopna�
Dw�u�s¢�bjzweÀ��ba�d�sI �a�di�-�TP�� &RQ7��a�jbkVmna�u¨mq_zslmymn_za}�kVpqr��bd�sUQ � sIj$ �a �ba�pqwg�vao��}�pnkvr¤mn_za�}�kVpqr��bd�sIa�c%_bk�u�a2d�sI �a�d�u%sIpqa�wgj$mq_ba2dgw�u�mVP��sIjz�WSAweu�mn_ba��|�zu�mnwg� � sImnwekVj5}�kvp mn_zweu���a�pqwe��sImnwekVj¸kV}�QN}�pnkvrXP X{´jzsIr�wejbx�mn_za�zunao��wgj�}�aopnaoj � a�pq�bdeaV�Xmqs � mqw � �bkVp`r�a
mq_bk���sVdgkvjbx�c%w¬mq_���sIp�sIr�a
mqa�p�u®sVjz���zpnaor�w�unaouo�
áZY\[^]`_ � a�u�mqsIpnm¢ X{Zdekvsv��wejbx°mn_ba�mq_ba�kvpn{8�~�F�q���)wej7c%_bw � _£mq_ba��bpqkV zdgaor"w�u��a � desVpna��¡�
æ�çZèIéIê3a £Z¡Z«Z�I©��I 4¡�¢�£Z��¤�¥1 ��Z«Z£
b�b�b ð ±�£Z�I¥�£Z¡Z«J�I�Z�w�4¡� Ï�Z���Z¡� IÎ ðZèIêZõ µ
b�b�b ó ���Z¡� 4��¤�¥w£Z¡Z«Z�I�J�w�4¡J ��J���I¡� IÎ ðZè4êZõ µ
b�b�b ó «I¯���¬Z¯I¥w£Z¡Z«J�4�J�Ï�4¡J Ï�J���Z¡J IÎ ðZèIêIõ µb�b�b ç ���J��¡J��¥w£Z¡Z«J�4�J�Ï�4¡J Ï�J���Z¡J IÎ ðZèIêIõ µb�b�b ì �Z 4«��4�ZÊ4¬J�I¥w£I¡Z«J�I�J�Ï�4¡� ��Z���Z¡� IÎ ðZèIêZõ µ
ä klc2�lc�a®una
mîmn_ba®}�k � �zuîkVj�kV�bpî�bpqkV bdea�r«sIj�����a � d�sIpqa�u�kvr�a � kvjzu�mqsIj�m,u�{Xr� �kVd�uo�c%_bw � _�c�a u�_�sIded¡�zu�a�d�slmqa�p��

æ�çZèIéIê3a �I 4¡JÉ4��¥�§J I�4¨Z©�ª�¡J�4©� 4«��î ��«�ª�Ê4¬�ª4Êw��¡��I 4¡Z¡J�Ï��£Z«�ª ìZò�ðZó ¨Z©�ô æ�ó © ðIêJó © 	ìZò�ðZó ¨Z©�ô æ�ó © ðIêJó �°®dc ©×��ô æ�ó � ð4êJó � ìZòJðZó ¨4®Z®I® æ�ïZè ô
æ�çZèIéIê3a �I�I¯Z£Z«� 4�×�°¯J¡�ª�¥���«�ªI��¥Í��¤ÏªZ±Z¤,®×�²ªÏªZ±I¤,®Í�feÏªZ±Z¤,®Z®

áZY\[^]hgji � a¢�zpnkl�va�mn_ba�xVkvsVd-wejz��wepna � mnde{V�îmq_zslm�weuo�,c®a¢��u�a�mq_ba�wej�}�aopnaoj � a¢pq�bdea
½�À+¸WÄX�
æ�çZèIéIê3a ª�¡���¬ô èIéZêZó�í�æ ô³�]ôJÑ õ�í ô è ® ê ª��ZÊI«��4�J��£I¬�ª�� aVk�ìZò�ðIó ¨Z©�ô æJó © ðIêJó�lûIêZõIì�í�ó �³��ôZÑ õ�í ô è ® ê �4«I£I¥Z¬��IÎÏ£4¬�ª�� aVk �°® l
õ
	 � õ
	 ® c ©×� ð4êJó � ìIò�ðZó ¨4®I® m�� ïõ ¨�� õ
	 ® c © ûIêIõIì�è æ�ïZè ôìZò�ðZó ¨Z©�ô æ�ó © ðIêJó �°®dc ©×��ô æ�ó � ð4êJó � ìZòJðZó ¨4®Z®I® ô æ�ó�í\a � õ ¨4®

_][^§^9� \9M�¨�M Yl^ _ $ M QD��© L ��ª�«D¬&­�®=¯5°��Dª M�L±[D[��� L ^�Q��9Y L ���²^9�´³ H H,[�I

áAY=[^]onZi � a�dgk�sV��}�pnkvrSmn_ba¢�bsImqsV zsVuna mq_ba�mn_baokVpqa�r �~�~Æ�ÂIpF��qYÆ~�F��qIG+Å½��c%_zw � _u�mqsImnaou)mn_zsIm�}�kVp�aos � _�p�slmqwgkvjzsIdzj��zr� �a�p:���vmq_ba�pqa¨sVpna%wej�mna�xva�p�usr�sIjz�ut��vun� � _�mn_�slm
�wv\r R t���c%_za�pqaxr�sIjz�yt�_zs��va jbk � kvr�r�kvj���wg�Xw�u�kvp1 �aounw���a Â ��sVu¨mn_za�}�kvpnr�sIdgfweÁosImnwekVj�kI}w¿+ÀYÁ~ÁWÀ ½zÂXÃ�ÄY¼�ÄF¹+ÀX¶�u�mqsImna�u�� � }|� � e aojbÁ�rW��bdedea�p�Ç
È(ÉlÊeËe���I�V�����e�
� Ó u1s�u�w���aa�¯�a � mo�vmn_za¨jbaoc%dg{�wejvmqpnk���� � ao���zpnkXkI}¡dewgjza � kvj�mqsIwejbwejbx2mq_zslm®mn_baokVpqa�r weu�wgr��bdew � w¬mqdg{sv�b��ao��mnk¢mq_ba�_�{X��kImq_baounaou1dgw�u�mqu1kI}�sIded,kImq_ba�p1�bpnkXkV}-dgwejbaouo�2^`_ba�pqa
mqpnwea��lsVd�kV})mn_bw�umq_ba�kvpnaor�sIj��$w¬m�u¨sI�z�bdgw � sImnwekVjwejmn_ba�sI�b�bpqkV�zpnw�slmqa � kVj�mna�±Xm(weu¨jbkVj�fimnpqwe��w�sIdi�zunwgj � amq_ba�kvjbdg{2un{Xjvm�s � mnw � sId � pqw¬mqa�pqwgkvj2mn_�slm � sIj �a�a
±��bdekVwgmnao�2mnk¨pqaou�mnpqw � m�mq_ba���kImqa�j�mnw�sIdede{d�sIpqxVa(una
m�kI}�sI�z�bdgw � sV bdea%mn_baokVpqa�r�u-w�u�mn_ba1�bpna���w � slmqa1un{Xr� �kVd��~�~Æ½� Ó ��mnkvr�sImnw � s � fÀ��bw�u�wgmnwekVj�kI}-mq_ba�kvpnaor�u1w�uys � _zsIdedea�jbxvwgjbx��bpnkv bdea�rUsIj���pna�À��bwgpqaouys � kVr­ bwgj�slmnwekVjkV}%un{Xj�mqsl±XfÌkVpqwgaoj�mnao�/sIjz�5una�r�sVjvmqw � u|fÌkVpqwea�j�mna���mqk�kvdeuo� � wgp�u|m­we��a�sVu2wej5mq_bweu­��wepna � fmqwgkvj�sIpqa �bpqaouna�j�mna���wgj � e a�jzÁ�r���bdedgaop�Ç�È¨ÉlÊgËe���V�V�VÚ � �½sVuqu�aop�mqwgkvj�sI�b�bdew � slmqwgkvj� zsVunao�kvj�pna�u�kvdg�bmnwekVj�w�u���aou � pqwe �a���wej � Þ)k´Ç�È1ÉlÊeËe���I�v�VÚl� ��æ(klc�a��va�p�����{XjzsVr�w � pna�mnpqwgao�lsIdkV}1sI�b�zpnkv�bpnw�slmqa�sVuquna�pnmnwekVjzu�}�pnkvrAs��va�pq{´desVpnxva��bslm�s� �sVuna�c%wgmn_ r�slmn_za�r�slmqw � sIdhXjbklc%deao��xva1w�u`�bjzunkVde�Va��¡�

æ�çIèIéZê3a ¬�¤Z��¡� Z��©Z«I¥Z¥1 4«J�4©I¯� �¬��4�� �¬J¡�ª
ðIêZó © îJð�í�óZèZð�í�æ ô�� ðIêJó © îJð�í�óZèIð�í�æ ô�®6c²©×� û4æ�ð4êZõZõ © ìIæ�ðZó � k�ü�l µ ó m ç� è4ü�í�ì�ó4ì © ìZæ�ðZó � k � l µ� èIü�í�ìJó4ì © ìZæJðZó � kfz
l µ� ê ôZÑ��]Ð³� ó�í�çZè4ìÏü ��® z ®��ô æ�ó � èIü�í�ìJó4ì © ìZæJðZó � k Ñ l µ� îIæJçZç4æ ô4©�Ñ í�ñ�í�ìIæ�ð � z Ñ,®Z®í ô ó ®Z®Z®Z®í ô ó ®Z®í ô ó ®Z®ðIêZó ®

áAY=[^]|{Ai � a�aodgwer�wgj�slmna­mn_za�unkVpnmna����bjbwe�VaopquqsIdîÀv��sIj�mnwg�za�py X{�wgj�u|m�sIj�mnw�slmqwgjbx�w¬m�u�lsIpqw�sI bdead}´c%w¬mq_ ~ ���´^`_bw�u­u�mnao�@w�u­sVxvsVwgj5jbkvj�fimnpqwg�Xw�sIdi� Ó jzsIwe�Va�sI�b�bpqkvs � _°mnksV��mnkvr�sImnwekVjº��_bklc�a��Vaopo��weu�mqk�w���a�j�mnwg}�{´sIjz�5un�b zunaoÀ��baojvmqdg{/wgj�u|m�sIj�mnw�slmqa�mna�pqr�u2kI}sV�b�bpqkV�bpqwesImnayu�kvp�m%k ��� �bpnpqwejbx­wej�mn_ba2�zpnkXkI} � kvjvmqa
±Xmo�

æ�çIèIéZê3a ��¡� 4«Z£Z£I�Z©I¥J¡� I�öIô í�ñ © õ�í ô è ��ôJÑ õ�í ô è ®�öIª�¬�É4�� �¥J«Z£Ï£I¬�ª�� a�k ð4êJó © îJð,í�óZèZð�íJæ ô lõ�í ô è ��ôJÑ õ�í ô è ® ê £I¬�ª�� a�k �°® lóZèIðZç � óZèIðZç ® ó �J J¤��4¡¦¥�±Z¢�¥���¬��J±I�4� a �­¥�§J I��¨4®ìZæ © õ�í ô è ��ôJÑ õ�í ô è ® ê £4¬�ª��wÔ�¬��J�)¥J¡J Z� a�k²õ�	�l

H,[,[KJ7L
MON $P�9Q9Q5R�S M Q9TU$WVXDYZY MO[R�� L
M]\ Y MO[R?$ M�L
MO[R?Q9^ [$P�9Q9Q5R7��Q \W_ ^9YZY M �

õ�� � õ
	 ®Uc ©³� èIü�íJì�ó4ì © ìIæ�ðZó � k Ñ î ©Z¨ ����l µ û�æ�ðIêZõZõZè © ìZæ�ðIóOa �Z� ìZòJðZó ¨4®Z®� èIü�í�ì�ó4ì © ìZæ�ðZó � k Ñ î ©Z¨ ��	�l µ � ðIêJó © îZð�í�óZèZð,í�æ ô õ
	 ®� ê ôJÑ��]Ð�� ó�í�çIè4ì � ìZòJðZó ¨4®�Ñ î ©Z¨ ��� ®�Ñ î ©I¨ ��	 ®��ô æ�ó � è4ü�í�ì�ó4ì © ìZæ�ðZó � k Ñ î ©Z¨ ���
l µ� îIæ�çZç4æ ô4©�Ñ í�ñ,í�ìZæ�ð Ñ î ©Z¨ ��� Ñ î ©Z¨ �
	 Ñ î ©Z¨ ��� ®Z®í ô ó ®Z®Z®I®í ô ó ®Z®í ô ó ®

áZY\[^]�~�i � a%aodgwer�wgj�slmna`mq_ba`m|c�k�unkVpnmna�� a�±Xw�u�mna�j�mqwesVdbÀv��sIj�mnwg�za�p�u, X{ wejvmqpnk���� � wejbxmn_ba � kVj�u|m�sIj�mqu �$sIj��³�/� Æ wej � a%mq_ba¨À��zsVjvmqw¬��a�p�u-sIpqa(u�kV}�m�f¾u�kvp�mqao�¡�Imn_bw�u-wej�mnpqkX�b� � a�umn_ba%sv�b��wgmnwekVjzsVd�wej�}�kvpnr�slmqwgkvj mq_zslm ��sVjz�Í�³sVpna�wgj�mqa�xVaopquo��^`_za®jbaoc%dg{�wgj�mnpqk���� � ao�_X{���kImq_baounaou1�^��sVjz�i�K���Vc%_bw � _�a�±��bpna�unu)mn_bw�u`u�kvp�m�wej�}�kvpnr�slmqwgkvjº�XsIpqa¨��a � kVr���kvunao�pnwexV_�m(s�c`s�{V�
æ�çZèIéIê3a ¤��JÌ�¬Z¥���¥J�I©I¥J¡� Z��ÕîIæ ô îIõ�í ô è �]ôJÑ õ�í ô è ® î ¡�ª,¯J£�±�¥Z¬Z¡�ª õ ¬�ª��?µ a�k²õ ¨ lèIüZõ�í ô è ��ôJÑ õ�í ô è ® ê ª)�JÌ�¬Z¥��4��ª4��¬J«Z£Z£ZÎw§�±�«�ªI��¬���¬J�J�Ï£4¬�ª�� aVk²õ��
lì öIë é4æJêZõ ��ôZÑ õ�í ô è ® ì ±Z¢4Ê4¡Z«Z£ õ ¬�ª��Yµ a�k �°® lïIêJðIêZçZèZóZèZð � óZèZðZç�ì � ç © õ�í�ì�ó ® ó �J J¤�¥�Î�¤ õ ¬Z¥�� µ a�k �]�4¯Z©Z¨ ����	 �4¯J©Z¨ �
	�	 ® l ��ªw¤,®
õ�� � õ�� ® c²©�� ê ôZÑ�� í ô ó ô�® m�� ï� èIü�íJì�ó4ì © ìIæ�ðZó � k Ñ î ©Z¨ ��	�l µ� ê ôJÑ��]Ð�� ó�í�çZè�ì � ìZò�ðIó ¨4®�ô,®�Ñ î ©Z¨ ��	 ®��ô æJó � èIü�íJì�ó4ì © ìIæ�ðZó � k Ñ î ©Z¨ ���
l µ� î4æ�çZç4æ ô�©�Ñ í�ñ�íJìZæ�ð ôÏÑ î ©Z¨ ��	 Ñ î ©Z¨ ��� ®Z®í ô ó ®Z®Z®Z®í ô ó ®Z®õ�� � õ�� ® c²©�� í ô ó ô�® ê ôJÑ èIõOa � õ�� ®õ�� � õ�� ® c²©�� ê ôZÑ�� í ô ó�ç ® m�� ï� ê ôJÑi�]Ð³� ó,í�çZè4ì � ìZò�ðZó ¨�®�ô�® ç ®��ô æ�ó � èIü�í�ìJó4ì © ìZæJðZó � k Ñ î ©Z¨ ���
l µ� îIæ�çIç4æ ô4©�Ñ í�ñ�í�ìZæJð ô ç Ñ î ©Z¨ ��� ®Z®í ô ó ®I®Z®Z®õ�� � õ�� ® c²©�� í ô óÏç ® ê ôJÑ èIõOa � õ�� ®õ�� � õ�� ® c²©�� ê ôZÑ��]Ð³� ó�í�çZè4ì � ìZò�ðZó ¨4®�ô�® ç ® ê ôJÑ èZðIa � õ�� ®��ô æ�ó � èIü�í�ìJó4ì © ìZæJðZó � k Ñ î ©Z¨ ����l µ� îIæJçZç4æ ô4©�Ñ í�ñ�í�ìIæ�ð ô ç Ñ î ©Z¨ ��� ®Z®í ô ó ®Z®Z®õ
	�� � õ���õ���õ
	 ®Uc²© ûIêZõ4ì�è æ�ïZè ôõ ¨M� õ
	 ® c²© ûIêZõ4ì�è è Ì4¬Z¥���¥J�Z© ì ¡� Z��ÕJ©�¤ a �Z��ô ç ®Z®Í� õ��wõ
	�� ®

áZY\[^]��Zi ¹ºwejba÷�K��w�u`}��bpnmn_baop(��a � kVr���k�u�a��¡²
æ�çZèIéIê3a «�ª4�4�îIæ ô���öIô îJó�íJæ ô���ôJÑ õ�í ô è ® î ¡�ª
��±Zª,¯���¬J¡�ª��4¡�¥���£4¬�� a�k²õ��
lõZîIæ ô
�×��ôJÑ õ�í ô è ® õ ���Z�¦¯J¡�ª
��±Zª�¯�� a�k �°® lðIîIæ ô
�×��ôJÑ õ�í ô è ® ð ¬�Ê��I�¦¯Z¡�ª
��±Zª,¯�� a�k ��® l
õ
	�	 � õ�� ®uc²©×�]Ð³� ó�í�çZè4ì � ìZò�ðZó ¨4®�ô�® ç ® ê ôJÑ èIa � õ�� ®õ
	 ¨×� õ�� ®uc²©×��ô æ�ó � èIü�íJì�ó4ì © ìIæ�ðZó � k Ñ î ©Z¨ ����l µ ê ôJÑ èIa � õ�� ®� î4æ�çZç4æ ô�©�Ñ í�ñ�íJìZæ�ð ô ç Ñ î ©Z¨ ��� ®Z® í ô ó ®Z®

áZY\[^]��Ai � _bwedga�mq_ba2�bpqa��XwekV�zu®�z�va�u�mnao�zu%c�a�pqa1a�ununa�j�mqwesVdgde{ � sVjbkVjbw � sVd ��c�a2u�_�sIdedjbklc�u�mqsVp�m�mn_za2weundesVjz��sI�b�bpqkvs � _¢mqk�unhVa�m � _�mn_ba2pqa
}��bmqslmqwgkvj�sVpnxv�br�a�j�mo� � wgp�u�mo�bc�ajba�a��5u�kvr�a � sVd � �bdesImnwekVjzu2mnk�wej�}�aop��?� � R � � }�pqkVr ~ �Y� R �/��^�k���k�unkz�,c�a�zuna�mq_ba�m�s � mnw � qO�F�F�FÅM��Â+Æ~�MpFÆ�q3p���c%_bw � _ZsVdgdeklc(u­�zu­mnk�wejzuna�pnm�sVpn zw¬mqpqsVpnwedg{°d�sIpqxVa

_][^§^9� \9M�¨�M Yl^ _ $ M QD��© L ��ª�«D¬&­�®=¯5°��Dª M�L±[D[��� L ^�Q��9Y L ���²^9�´³ H H,[,e

u�mnao�zuywgj�mnk$kv�bp��bpnkXkV}|�­^`_ba � kvpnpqa � mnjba�unu1kI}®mn_ba�u�a�u�mnao�zuyweu � _ba � hVa���d�slmnaop�c%_ba�j
qO�F�F�FÅM��Â+Æ~�MpFÆ�q3p¢w�u�a�±��zsIjz�bao�¡� ä kVmna�mq_zslm�c®a¢un��a � wg}�{°mn_ba��bpqa�r�weunaou c®a¢c`sIj�mmqk�a�r��bdekl{V�5^`_bw�u�weu­wer���kVpnmqsVj�m�wej�}�kVpqr�slmqwgkvj¸ �a � sV�zu�a�w¬}1c®a$u���a � w¬}�{5�zpnaor�w�unaoumq_zslm2sIpqa mqk�k�c�aosIh½��mn_zweuyr�s�{$_zs��Va�mn_ba�a
¯½a � m1mq_zslm�mq_ba­w�undesVjz��x�sI� � sIjbjbkVmy �aun� ��� aouqu|}��zdgde{ � dekvunao��d�slmnaop%kVjº�
æ�çIèIéZê3a ¬I¥J£Z«�ª4�4©��4«I¯���¬Z¯îIæ ô î ��ôJÑ õ�í ô è ® î ¡�ª�¯J£�±�¥Z¬J¡�ª�¡J�)¥��4��� a ª�¬J£ïZðIèZç4ì ��ôZÑ õ�í ô è © õ�í�ì�ó ® ï 4��¤�¬I¥J�I¥w¡��Ö¥��4��� a � õ
	�	�õ��Ïõ�� ®ïIêZðIêJç � óIèZðZç ® û ¡� J¤Z±�£I«Ï¡�� î ¡�ª�¯J£�±,¥Z¬J¡�ª a �ËÐ³����¬�¤��I¥w¨³�²��¡�Ô4�J wª¦¨4®Z®×�²��¡�Ô��� w¤)¨�®Z®
õ
	
� � õ���õ�� ®Uc ©³�]Ð�� ó,í�çZè4ì ¨³� ï4æ��IèZð ô¦¨�®Z®Í� ï�æ��ZèZðÏç ¨4®Z® íJìJõZê ôJÑ�© óIêZîJó,í�î3a � õ
	�	�õ��Ïõ�� ®

áAY=[^]��Zi ä a
±Xmo�zc®a�wej�}�a�p%}�pqkVr �?� � R � � mn_�slmÏ� � weu`ao�Va�j��
���
æ�çIèIéZê3a ¬I¥J£Z«�ª4�4©��4«I¯���¬Z¯�ª�¬J£×� õ
	��Ïõ��wõ�� ®×�Ë��É4��ªI���²��¡�Ô��� w¤)¨�®Z®
õ
	�� � õ���õ�� ®Uc ©³� èZñZè ô ï � ï4æ
�ZèZðÏç ¨4®Z® íJìJõZê ôJÑ�© óIêZîJó,í�î3a � õ
	
�wõ��Ïõ�� ®

áAY=[^]��Ai �o�
�(sIj��¢mq_ba�pqa
}�kvpna)�Uw�u`a��va�jº�Xmqk�k��
æ�çIèIéZê3a ¬I¥J£Z«�ª4�4©��4«I¯���¬Z¯�ª�¬J£×� õ
	���õ�� ®÷�Ë��É���ªZ�Ï¤,®
õ
	
� � õ���õ�� ®Uc ©³� èZñZè ô ïÏç ® í�ìJõIê ôJÑ�© ó4êZîJó�í�îOa � õ
	��Ïõ�� ®

áAY=[^]��Ai ä a
±Xmo�zc®a��bj�}�kvde� ù mn_ba ��a��zjbwgmnwekVj$kI}	�M�~�FÅM�½�
æ�çIèIéZê3a �4���Jª�©Z�ZÌ���«�ª4�õ�í ô è ��ôJÑ õ�í ô è ® õ ¬�ª�����¡�¢��� ���ÔZ �¬��I�4��ª a�k²ðIêJó © îZð�í�óZèZð,í�æ ô lZõ�	��Ñ èIû�í ô í�ó,í�æ ô�� ó m��4© êIìZì ö çZïZó�íJæ ô�®:Ñ�����¬�ª�¬���¬Z¡�ª��4¡�¢����JÌ���«�ª4�I�J� a�k èZñZè ô ï�lï4æIì4í�ó�í�æ ô�� ï4æZì4í�ó�í�æ ô�® ï ¡I¥Z¬���¬J¡�ª¦¡��)¡I¯Z¯�±4 Z 4��ª�¯Z� a�k � � ® l
õ
	
� � õ���õ�� ®Uc ©³� èIü�íJì�ó4ì © ìIæ�ðZó � k Ñ î ©Z¨ ����l µ Ñ����Jª èOa � õ
	
� ®�]Ð ç � ó�í�çZè4ì ¨wÑ î ©Z¨ ��� ®Z®Z® í ô ó ®

áAY=[^]�gM_�i Ó uy �a
}�kVpqaV�¡c�a�a�dewgr�wejzslmqa�mq_ba�u�kvp�mqao��a
±�weu�mnaoj�mnw�sId,Àv��sIj�mnwg�za�p� X{�wej�fmqpnk���� � wgjzx�mn_za � kVjzu�mqsVjvm��½� Ó x�sIwejº�)mn_za�wej�}�kVpqr�slmqwgkvj5mn_zsIm��5weu�sIj@wgj�mnaoxVaop­w�usv�b��ao��sI�bmnkVr�sImnw � sIdede{V�
æ�çIèIéZê3a ¤��JÌ4¬Z¥���¥J�Z©I¥J¡J Z��ÕîIæ ô îZõ�í ô è ��ôJÑ õ�í ô è ® î ¡�ª�¯J£�±�¥I¬J¡�ª õ ¬�ª��Yµ a�k�õ
	���lèIüIõ�í ô è �]ôJÑ õ�í ô è ® ê ª¦�ZÌ4¬Z¥��4��ªI��¬J«Z£I£JÎw§�±�«�ª,¬���¬���¬Z�J��£I¬�ª�� a�k²õ���lZõ
	��ì ö4ë éIæJêZõ ��ôJÑ õ�í ô è ® ì ±Z¢�ÊI¡Z«Z£ õ ¬�ª��Yµ aVk �°® lïIêZðIêJçZèZóIèZð � óZèZðIç4ì � ç © õ�í�ì�ó ® ó �� J¤�¥�ÎJ¤ õ ¬Z¥��+µ a�k �Ë�4¯J©Z¨ ����	 ® l ��e�®
õ
	Jÿ � õ
	�ÿ ® c²©�� ê ôZÑ�� í ô ó ø�®÷�]Ð ç � ó,í�çZè4ì ¨wø�®Z®Z® m�� ïõ
	
� � õ
	�ÿ ® c²©�� í ô ó ø�® ê ôJÑ è4õ3a � õ
	Jÿ ®õ
	
� � õ
	�ÿ ® c²©��]Ð ç � ó�í�çIè4ì ¨wø,®Z® ê ôJÑ èIðOa � õ
	Jÿ ®õ ¨ � � õ
	�ÿÏõ���õ���õ
	 ®Uc²© ûIêZõ4ì�è æ�ïIè ôõ
	�� � õ���õ��wõ
	 ® c²© ûIêZõ4ì�è è Ì4¬Z¥���¥Z�Z© ì ¡� I��ÕJ©�¤ a �I��ø�®Z®÷� õ
	��wõ ¨ � ®

� �������;��¡�����"�#%��"��P��"��;��¡�����"�#¥���
���
�?"�� ������"��9�?�'���*�����������!��(1��¡�¡ 	�'Î�1�'"P(1��¡�¡��'�P���
�?"�� �!����"P('��"\�
�!�!��(C�!����"x��7 8�9��=/ ����� >"� :&��>&%���"����'¦7�?��"�������"(�f7 8�9��=/�8����&:
� 7&%9��"�«A@�B=C1Dl¤

H,e,fKJ7L
MON $P�9Q9Q5R�S M Q9TU$WVXDYZY MO[R�� L
M]\ Y MO[R?$ M�L
MO[R?Q9^ [$P�9Q9Q5R7��Q \W_ ^9YZY M �

áZY\[^]�g*gji ä klc2�1c®a � sVjDxVk kVj�c%w¬mq_�kv�bp � sVd � �bdesImnwekVjK��u�wejbxZmn_ba qO�F�X�~ÅM��Â
Æ~�MpFÆ�q3p�� e {¢wejzuna�pnmnwejbx¢�+�¢}�kVpÏ� wej��?� � R � � c�aykv �mqsVwgj�� � R �+� � �
æ�çZèIéIê3a ¬Z¥J£I«�ª4�I©���«I¯���¬Z¯�ª,¬J£�� õ�	��wõ
	���õ��wõ���õ
	�� ®�]Ð³�²��¡�Ô4�J wª)¨4®×����¬�¤��I¥w¨�����¡�Ô4�� �e¦¨4®Z®I®
õ ¨ 	 � õ���õ���õ
	�ÿ ®uc ©��]Ð³� ï4æ��ZèIð ô¦¨4®×� ó�í�çIè4ì ¨×� ï�æ��ZèZð ø�¨4®Z®Z®íJìJõZê ôJÑ�© óIêZîJó,í�î3a � õ
	
�Ïõ
	��Ïõ��Ïõ���õ
	�� ®

áZY\[^]|gKnAi ^`_zslm%r�aosVjzu�mn_zsImÏ� � weu(a��Vaojº�
�o�
æ�çZèIéIê3a ¬Z¥J£I«�ª4�I©���«I¯���¬Z¯�ª,¬J£�� õ ¨ 	�õ���õ
	�� ®÷�­��É4��ªZ�i�²��¡�Ô4�J wª)¨4®I®
õ ¨Z¨×� õ��Ïõ���õ
	�ÿ ®uc ©�� èIñZè ô ï � ï4æ��ZèZð ô�¨4®Z® í�ìJõZê ôJÑ�© óIêIîJó�í�î3a � õ ¨ 	�õ��wõ
	�� ®

áZY\[^]|gM{�i �����%sVjz�$u�k�weuÏ�)�
æ�çZèIéIê3a ¬Z¥J£I«�ª4�I©���«I¯���¬Z¯�ª,¬J£�� õ ¨Z¨ õ�� ®×�Ë��É4��ªZ�Ïª,®
õ ¨ � � õ
	�ÿÏõ��wõ�� ®dc ©�� èIñZè ô ï ô,® í�ìJõZê ôZÑ�© óIêZîZó�í�î3a � õ ¨Z¨ õ�� ®

áZY\[^]¡gM~�i Æ wej � a� �kImn_ �«sVjz��� sVpna�ao�Vaojº�`mn_bao{Z_�s��Va�s � kVr�r�kVjK��we�XweunkVp��jzsIr�aodg{��b�
æ�çZèIéIê3a ¬Z¥J£I«�ª4�I©���«I¯���¬Z¯�ª,¬J£�� õ�	��wõ ¨ ��õ��wõ�� ®Í�­¯J¡�¤Z¤�¡�ª�©Z�4¬�É�¬Z¥Z¡� �ªÏ¤)¨�®
õ ¨ � � õ
	�ÿÏõ��Ïõ�� ®dc ©�� î4æ�çZç4æ ô�©�Ñ í�ñ�íJìZæ�ð ô ç ¨4® íJìJõZê ôJÑ�© óIêZîJó,í�î3a � õ
	
�wõ ¨ ��õ��wõ�� ®

áZY\[^]|gK�Ai ^`_bweu`�zpnkl�vaou�kV�bp � kVj�mnp�sV�bw � mnwekVj�sVjz��c®a sVpna���kVjzaV�
æ�çZèIéIê3a ¬Z¥J£I«�ª4�I©���«I¯���¬Z¯ õ ¨ � � õ�	 ¨ õ ¨ � ®1�4«Z£I¥Z�
õ ¨ � � õ
	�ÿÏõ��Ïõ��Ïõ�	 ®uc © ûIêZõIì�è íJìJõZê ôJÑ�© óIêZîJó,í�î3a � õ
	 ¨ õ ¨ � ®
Ó �Va�pq zsVd¡�bpna�u�aoj�mqslmqwgkvj�kV}�mq_bweu(�bpnkXkV}�w�u`xVwe�Va�j�wej � wexz�z�b�

ÊDg]\ mPÐ!úlkduCÍDü�mZÚ§n£¢�Ï+c§k
^`_ba�sI�b�zdgw � sImnwekVj°kI}VqO�F�F�~Å^��Â+Æ~�KpXÆ�q3p¢��kXa�u�jbkIm2jba � aouquqsIpqwgde{�pna�u��zd¬m2wej°sVj°sV��mnkVfr�slmnw � sVdgde{��Va�pqwg��sI bdea2dekVxVw � fÌdea��Vaod¡�bpqk�kV}|��svu`�zdedgwejbx�mq_ba�x�sI�zu � sIj� �a � kVr�a­s � _�sIdgfdgaojbxVwejbx�mqsvu�h�wgj$wgmqu%klc%j�pnwexV_�mo�� a´u�_�sIded1jbklcU�baou � pqwg �a�mq_ba � u�aor�w¬f¾sI��mqkVr�slmqao�z��mqsvu�h£kI} � dgk�u�wejbx@mn_ba°xvsV�zu �a�m|c®aoa�j2mq_ba�w�undesVjz�bu�wgj kv�bp � sVuna�u�mn�z��{v�lc%_bw � _ dga�sV�buºmnkys(�Vaopnwg��sV bdga)�zpnkXkI}bkv ��|a � mslm1mn_ba�dgkvxVw � dea��va�di��¥%¦1§z©ºªZu��z�b��kvp�m�u(mq_bw�u¨�bpqk � a�unu1 X{��zpnkl�Xw���wgjzx¢wgj�mqa�pn}�s � a�u(mqka
±Xmnaopnj�sId(un{Xu�mnaor�u���Í¾j ��sIpnmnw � �bd�sIp��®c�a��zuna$mn_ba�mn_baokVpqa�r"�zpnkl�va�p�ë�»½»½§zÑ�sVjz�mn_ba � kvr��b��mnaop�sVdgxva� bp�s¸un{�u|mqa�r ¶5ªDãz¹v§½� Ó d¬mq_bkV�bxv_Kmq_baouna�a�±�mqa�pqjzsId�un{Xu�mnaor�usIpqa�a�ununa�j�mqwesVdgde{ � sV�zsI bdea�kI} � dgk�u�wejbx/mn_ba$xvsV�zu�wgjZmn_zweu � sVunaV�-mq_ba$�zuna�p�u|mqwgded%_zsvumnk � sIded-mq_ba�r �nwgj5mq_ba�pqwexV_�m�c`s�{Z��sVjz�´mqk��bpqkl��w���a¢r�w�ununwejbx�wej�}�kVpqr�slmnwekVj�� � kvpwgj�u|m�sIj � aV�Imq_ba¨��u�aop-_zsVu-mnk��ba � w���a(c%_zw � _¢un{�u|mqa�r _ba(c`sIj�mqu-mnk aor��zdgkl{v�V_ba(_�sVu)mqk

_][^§^9� \9M�¨�M Yl^ _ $ M QD��© L ��ª�«D¬&­�®=¯5°��Dª M�L±[D[��� L ^�Q��9Y L ���²^9�´³ H H,eHk

dekvsv��sV�b��wgmnwekVj�sIdbmq_ba�kvpnaor�u)}�pqkVr mn_bay�bslm�sI zsvu�av�vsVjz��_ba1_zsVu-mnk�r�sVj���sIdedg{��bj�}�kvde�unkVr�a2��a
��jbw¬mqwgkvjzuo�^`_ba$�zp�u�m�u|mqa��7c%_baoj£�baosIdewejbx5c%w¬mq_|qO�X�F�~ÅM��Â Æ~�KpFÆ�q¤p�weu�sIdec�s�{�u­mnk¸a�±��zsIjz�wgmqu�sI�b�bdew � slmqwgkvjKsIjz�£c�a��bpqaouna�j�m¢mq_bw�u�u�mnao�7kVjbde{@}�kvp¢mq_ba��zp�u�m�sI�b�zdgw � sImnwekVj7kI}
qO�F�F�FÅM��Â+Æ~�MpFÆ�q3p�� e {�a
±��zsIj���wgjzx2mn_ba¨mqs � mnw � wgmqu � kvj � de�zunwgkvj�jbk���a¨ �a � kVr�aou�kV��a�j��w � aV�e���bjI�|�zu|mqw¬��ao�z��sVxvsVwgj@sVjz� sIded%w¬m�u��bpnaor�weunaou�sIpqa�jbklc un�b�b��kVpnm�jzkX�baouo�-mn_�slmw�u��-mn_ba�kv��aoj@jbk���a$w�u�u��b�z��k�u�a��5mnk´ �a���a�pqwg�lsV bdga�}�pqkVråmn_zaouna$un�b�b��kVpnm�jbk���aouo�¿�kvpnaokl�Vaopo�Vmn_baokVpqa�r�u`sIjz��sl±�wgkvr�u®wer���kvp�mqao�¢}�pnkvr³mn_ba2�bsImqsV zsVuna1sV��mnkvr�sImnw � sVdgde{ �a � kVr�a2u��b�z��kvp�m%jbk���a�u(sVu`c�a�ded �ä kVmna­mn_zsIm1mq_ba�a
±��zsVjzu�wekVj�kV}®s�mqs � mnw � sV�b�bdew � slmqwgkvj�wgj´¥%¦¨§z©�ª � sIj�pna�u��bdgm�wgj�bpqkXkI}®una�xvr�a�j�mquymq_zslm sIx�sIwej � kVj�mqsVwgj�mqs � mnw � sI�b�zdgw � sImnwekVjzuo��^`_���u��ºa�±��zsIjz�bwgjbx�sm�s � mqw � ��klc%j/mnk�mq_ba ä Ø³dea��va�d)w�u2s�pna � �bp�u�we�Va­�bpqk � aouquykl�Va�p2una��va�p�sIdîdgao�Va�d�uo� � a� sIded,mn_ba¢pqa � �bp�u�we�Va��bpqk � aouqu�kl�Vaop�sVdgd)jza � a�unuqsIpq{�dea��va�d�u��bj�mnwed�sIj ä Ø¨fÌdgao�Va�d��bpnkXkV}w�u�pna�s � _ba���mn_ba%ê���Ê�Ê�Ç Â
çbÉIë
�õì�élë/é�ê2É�ÈÌÉU�
ÈiìB����c%_ba�pqaosvu�c%wgmn_5Ç�Â
çzÉlë���ì�éIë/é|ê É�ÈÌÉU�
ÈiìB�c�a�r�a�sIj�kVjbde{�mq_ba ��wepna � m(kVjza
fÌdgao�Va�d½a�±X��sIjzunwgkvjº�
æ)�?�M¥A¦¨§ª© �K«M¬®­J� ¯ §ª° ��± [X�3[�â=²�]ª]���â\[M° Yr�®³ ¯ ¥*[�§*�µ´+�j¶®¶/�j§£°ª¦·¥A¦�âr�z�
¸¹²�YºY\³�[^» ¯ ´OY=² ¯½¼T¼ »¾°*�¿³ ¯ ¥j[�À¯ â ¯ ´+�j¶®¶/�j§�°ª¦·¥A¦�âr�z�MÁ�³�[M§ª´I[®´X�*§�Yr� ¯MÂ
°ª¦¨´IY=¦��j§sÃ¤i ¹ºwejba��K«M¬�weu��|�zu�mnwg�zao�� X{�sIj�sI�b�bdew � slmqwgkvj�kI}ÄqO�F�F�FÅM��Â+Æ~�MpFÆ�q3p1mnk mq_ba�bpqa�r�w�u�a�u)��Å¤«$sVjz�t�K«1�½� � _baoj´c®a�a
±��zsVjz�v�M«M¬��¡wgm� �a � kVr�aou�kv��aoj°sVxvsVwgj°sIjz�wgmqu`un�b�b��kVpnm�jbk���a�u®un��a � wg}�{�mq_zslm��~�FÆ�Â1pF��qHÆ~�~��qIG Å½�?�ZÅ¤«­sVjz�i�K«1� � sIj� �ay�zunao�¢mnk� dgk�u�ayw¬m���wgj���a�a��¡���~�~Æ�ÂIpF��qYÆ~�F��qIG+Å w�u`jbkIm(jba � a�unuqsIpq{¢sVu`c�a2u�_zsVdgdºuna�a�d�slmqa�põ�õ�
æ�çIèIéZê3a �ZÌ���«�ª4�4©�ª�¡J�I� õ ¨ �è ÌJ��«�ª4�4¬�ª4Ê��J���wª�¡J�I� õ ¨ � µZµIµ
õ ¨ � � õ
	�ÿÏõ���õ���õ
	 ®Uc²© ûIêZõ4ì�è æ�ïIè ô
æ�çIèIéZê3a ¥���¡�Ô4©I¥�±Z�Z��¡� I��¥ õ ¨ �ðIêZó © îJð�í�óZèZð�í�æ ô õ
	 ¨ õ ¨ �
õ
	 ¨×� õ�� ® c ©×�]ô æ�ó � èIü�í�ì�ó�ì © ìZæ�ðIó � k Ñ î ©I¨ ���
l µ ê ôZÑ èOa � õ�� ®� îIæ�çZç�æ ô4©�Ñ í�ñ�í�ìZæ�ð ô ç Ñ î ©Z¨ ��� ®I®í ô ó ®Z®õ ¨ � � õ
	�ÿÏõ���õ�� ®uc ©×� îIæ�çZç4æ ô4©�Ñ í�ñ,í�ìZæ�ð ô ç ¨4® í�ìJõZê ôZÑ�© óIêZîZó�í�î3a � õ
	��wõ ¨ �wõ��Ïõ�� ®
Ó dgmn_zkV�bxv_´mn_ba�}�kvpnr­�bd�sIa�wej��vkVde�Va��°sVpna�wej´�zp�u|mnfikvpq�ba�p2dekVxVw � �*ë�»½»¡§bÑZ}�sIwedeu2mnk�bpqkl�Va)�K«M¬�c%w¬mq_�mq_baouna un�b�b��kVpnmquo�

æ�çIèIéZê3a ¯Z«Z£Z£Z©Z¡J�Z�4�� 4©I¡�ª�©�ª�¡Z�I� õ ¨ �ô4¡J J¤�«Z£I¬JÒ4¬�ª4Ê�µIµZµî «I£Z£I¬�ª4Ê�¡��Z�4�� ��I 4¡I¯Z�I¥Z¥w¨ ÿ��
	�	 Ô�¬��J����¬�¤��w 4�I¥Z¡�±I �¯J� 	�� ¥J�I¯³µ¡��I�4�� ó ¬�¤�� ð �4¥J¡�±I �¯Z��¬�ªÖ¥Z�I¯J¡�ª4��¥ aª	�� ¥J�4¯ì �I«� �¯��÷¥��4¡��Z���J��¢��I¯Z«�±�¥J��¥Z¡I¥w��¤Z�4�IÎ?µï «J �¥Z¬�ª4Ê æ �Z�4�� ï 4¡Z¡J�iµZµZµæ�óIóZèZð m êIì�ûIê�í�õJè Ñ ó4æÏû�í ôJÑ êÏïZð4æIæ�û
ë�»½»¡§bÑ�}�sIwedeu¨ �a � sI��u�a2kvjba �bpqa�r�w�u�a2w�u(r�w�ununwgjzxz�bc%_bw � _�w�u%jbkIm1wgj�}�aopqsV bdea2}�pnkvrmq_ba � kVj�mna�±�m��XjzsIr�a�de{­mn_zsIm%� weu�sIj¢wej�mnaoxVa�p��,^`_���u��Xc�a¨u���a � �bd�slmna1mn_zweu�u|m�slmqa�r�a�j�msvu�s(dea�r�r�s%}�kvp*�K«M¬���^`_bw�u � pna�slmqaou¡mq_ba�jza�c5dewgjba��K«^����c%_bw � _ w�u�sv�b��ao��sVu�un�b�b��kVpnm}�kvpÏ�M«M¬�� � a � sIj$�bpqkl�Va��K«M����wepqa � mqdg{�c%w¬mq_�mq_ba�mqs � mqw �ÇÆ �q�~�M�KG+�~Æ~�^�½�

H,e�HKJ7L
MON $P�9Q9Q5R�S M Q9TU$WVXDYZY MO[R�� L
M]\ Y MO[R?$ M�L
MO[R?Q9^ [$P�9Q9Q5R7��Q \W_ ^9YZY M �

æ�çZèIéIê3a £Z��¤I¤�« õ ¨ � � í ô ó ¨4®
õ ¨ � � õ
	�ÿÏõ��Ïõ��Ïõ�	 ®uc ©�� í ô ó ¨�® æ�ïZè ô
æ�çZèIéIê3a Ô4�Z£I£I¥J¡� Z���J��£Z¨ � �°®
õ ¨ � � õ
	�ÿÏõ��Ïõ��Ïõ�	 ®uc ©�� í ô ó ¨�® �Zè4õZõIìZæ�ðIóZè Ñ a �°®
� a�sV�b�bde{ ë�»½»¡§bÑ�sVxvsVwgj�mnki�K«M¬��XsVjz��mn_bw�u`mqwgr�a2wgm¨u�� �o� aoao�buo�5í2Ñ½ª�¦�ã�sV��mnkVfr�slmnw � sVdgde{�mnp�sIj�u�d�slmqaou�mn_bayë�»½»¡§bÑ��bpqkXkI}ºmqk�sIj ä Ø.�bpqk�kV}�slm`mq_ba�r�kvpna�sI �u|mqpqs � msVuqu�aop�mqwgkvj�dea��va�d � æ(�zsVjbxz� Â�ÙVÙIâ � �

æ�çZèIéIê3a ¯J«Z£I£Z©Z¡��Z���� 4©Z¡�ª�©�ª�¡J�I� õ ¨ �ô4¡� Z¤�«Z£I¬�Ò�¬�ª4Ê³µZµZµî «Z£I£I¬�ª4Ê�¡J�Z�4�� w�4 4¡I¯J�I¥I¥w¨ ÿ������ Ô�¬��J�¦��¬�¤��w 4�I¥J¡�±4 �¯J� 	�� ¥J�I¯�µ¡��Z���� ó ¬�¤�� ð �I¥J¡�±I �¯J��¬�ªÖ¥J�I¯Z¡�ª4�4¥ as	�� ¥J�I¯©Z©Z©I©Z©Z©Z©Z© ïZð4æZæ�û ©Z©Z©Z©Z©I©Z©Z©ì �Z«J �¯��)¥���¡��Z���J�w¢4Îw¤�«ZÌ�È��I 4¡I¡���¥�¡��I��¬J¡�ª+µï «� �¥Z¬�ª4Ê æ �Z�4�� ï 4¡Z¡��iµIµZµæ�óZóIèZð m êIìÏû4æ öIôZÑ êÏïZð�æZæ�ûî 4�I«���¬�ª4Ê ð ���J±I��«���¬J¡�ª�© é 4«��I�³µIµZµó 4«�ª�¥J£Z«���¬�ª4Ê³µZµZµó 4«�ª�¥J£Z«���¬J¡�ªÏ��¬�ª,¬Z¥����J�IÉ
õ
	 ¨×� õ�� ® c ©5��ô æ�ó � èIü�í�ìJó4ì © ìZæJðZó � k Ñ î ©Z¨ ����l µ ê ôJÑ èIa � õ�� ®� îIæJçZç4æ ô4©�Ñ í�ñ�í�ìIæ�ð ô ç Ñ î ©Z¨ ��� ®Z®í ô ó ®Z®õ ¨ � � õ
	�ÿÏõ��Ïõ�� ® c ©�� îIæ�çZç�æ ô4©�Ñ í�ñ�í�ìZæ�ð ô ç ¨4® íJìJõZê ôJÑ�© óIêZîJó,í�î3a � õ
	
�wõ ¨ ��õ��wõ�� ®õ ¨ � � õ�� ® c ©���ô æ�ó � èIü�í�ì�ó�ìUk Ñ î © �Zÿ
���Zÿ�l Ñ èZû ô èOa � õ
	 ¨�®� ê ôJÑ
� í ô ó Ñ î © �Zÿ����Zÿ ®� îIæ�çIç4æ ô4©�Ñ í�ñ�í�ìZæJð ô ç Ñ î © �Zÿ
���Iÿ ®Z®Z®Z®õ��
� � õ
	�ÿÏõ��Ïõ�� ® c ©���ô æ�ó � í ô ó ¨�®Z® êIìZìJèZðZó�í�æ ô a � õ ¨ �wõ ¨ � ®õ ¨ � � õ
	�ÿÏõ��Ïõ��Ïõ�	 ®uc ©�� í ô ó ¨�® �Zè4õZõIìZæ�ðIóZè Ñ a �°®õ���	 � õ
	�õ
	Jÿwõ���õ�� ®uc © ûIêZõIì�è ô æ�óIèOa � õ ¨ �wõ��
� ®õ ¨ � � õ
	�ÿÏõ��Ïõ��Ïõ�	 ®uc © ûIêZõIì�è �IèIê ø è ô a � õ���	 ®õ ¨ � � õ
	�ÿÏõ��Ïõ��Ïõ�	 ®uc © ûIêZõIì�è �IèIê ø è ô a � õ ¨ � ®
^`_bweu��bpqkl�Vaou1mq_zslm×�K«M¬�w�u ��aopnwe�lsI bdea�}�pqkVr �ZÅ¤«�sVjz�'�K«I�/slm­s$deklc®aop2dgao�Vaod-kI}sI zu�mnp�s � mnwekVjº�-æ¨klc®ao�Vaopo��mn_za jbk���aouw�KÊM¬�sVjz���M«M��sVpna2u�mnwedgd�jbkIm¨sIm%mn_ba ä Ø8dea��va�di� b��m,�|�zu�mnwg�zao�� X{�mqs � mnw � uo�-^�k­�va�pqw¬}�{�mn_zaouna�u�mnao�zu�c®ay_zs��va¨mqk�}��bdede{¢a
±��zsVjz��mq_ba�rsId�u�k��Ic%_bw � _�c®kvpnh�u,sI��mqkVr�slmqw � sIdedg{­sIjz��pqaoun�bd¬m�u,wgj�sVj ä Ø(fÌdea��Vaodzun�b b�bpqkXkI}z}�kvp��K«M�mn_zsIm � kvjzu�w�u�mqu`kI} Â Ú�u�mna���u%sIjz�$sIj ä Ø¨fÌdgao�Va�d�u��b z�bpnkXkV}�}�kVpÏ�KÊM¬�c%wgmn_ â ��u�mna���u��

æ)�?�M¥A¦¨§ª© �ZÅ¤�y­J� � ¦�âË[^¥*[M§µ¦T¶W] ¼ ¦¨[Zâ � ¦�âË[^¥*[M§¹Ã ¯ §�° �K«^ÊÀ­J� � ¦�âË[^¥*[M§Ì¦¨¶ Â
] ¼ ¦¨[Zâ � ¦BâU[^¥*[M§sÃ¤i Í¾j$kVp���a�p�mqk � dgk�u�aymq_ba�xvsI�� �a
m|c�a�a�j��ZÅ¤��sIjz��wgmqu`�bpqa�r�w�u�a�u
�ZÅ&�¢sVjz�
�KÍ�sVjz�¢ �a
m|c�a�aoj �K«MÊ�sIj���wgmqu`�bpqa�r�w�u�a�u��M«M«�sVjz�
�KÎ�c�a1jza�ao��mn_za1mq_ba
fkVpqa�rÏ�KÐ?Çq�~�~��Â+�^�~�~Å�}�pqkVr mn_ba��bsImqsI �sVunaV� � w¬mq_¢mn_zweu®mn_za�kVpqa�r ë�»½»¡§bÑ$r�sIj�sIxVa�umnk°�bpqkl�Va
�ZÅ¤��sVjz���K«MÊ��)pna�u���a � mnwe�Vaodg{v�-sIjz�Kí2Ñ½ª�¦�ã¸kV��mq�b��mqu­mq_ba � kVpqpna�u���kVj��Xfwgjzx¢sVuqu�aop�mqwgkvj�dea��va�dº�zpnkXkI}�uo�bc%_bw � _ � kvjzunweu�m(aouqu�aoj�mnw�sIdedg{¢kV}-sIj�sI�b�zdgw � sImnwekVj$kI},mn_zasVuqu�aop�mqwgkvj®�MÐ?Çd�~�~�dÂ+�M�~�~Å�� � _baoj5}��bdedg{5a�±��zsIjz�bao�¡�îmn_za�un�b b�bpqkXkI}�uo��mq_zslm�weuo�,mn_za
ä Ø¨fidea��va�d��bpqk�kV}���a�pqwe��wejbxÍ�ZÅ¤��}�pnkvr ��Å=��sIjz�
�MÍ­sIj���mn_za ä Ø¨fÌdgao�Va�d½�bpqkXkI}º��aopnwe��fwgjzx³�K«MÊ�}�pqkVr �K«M«�sIj�� �KÎ�� � kvjzunweu�m%kI} á u�mnao�zu`aos � _º�
æ)�?�M¥A¦¨§ª© ��Å=��­n�?� � R � � ¦¨¶W] ¼ ¦T[Zâ � � ¦�âF[^¥j[^§sÃ ¯ §ª° �K«^«¿­Z� � R �X� � ¦¨¶ Â
] ¼ ¦¨[Zâ � � ¦BâW[^¥*[M§sÃ¤i ^`_ba$�bpqkXkI}¨dewejba��ZÅ&�5w�uy�|�zu�mnwg�zao� X{¸sIj£sI�z�bdgw � sImnwekVj kI}

_][^§^9� \9M�¨�M Yl^ _ $ M QD��© L ��ª�«D¬&­�®=¯5°��Dª M�L±[D[��� L ^�Q��9Y L ���²^9�´³ H H,e�µ

qO�F�F�FÅM��Â+Æ~�MpFÆ�q3p�mnk��ZÅ¤Ê��~�KÎ��bsIj��U�KÍ��¥ë�»�»¡§bÑ�}�sIwed�u�mnk��bpqkl�Va¦��Å=�¢c%wgmn_�pqaoun��a � mmqk�mn_ba�u�a un�b�b��kVpnmquo��Í¾jz�ba�ao�º�z�zunwgjzx�ë�»�»¡§bÑ�mqk�kV �m�sIwej�s��bpnkXkV}�}�kVp���Å=��pna�Àv�zwgpqaouunkVr�a�}��bpnmn_baop­u�mna���u�²�� Â �yc�a�_zs��Va�mqk��bj�}�kvde�°mq_ba¢��a
��jbw¬mqwgkvj5kI}��M�F�~ÅM��wej'��Å=�½�sVjz���i�V��c�a%_zs��Va®mnk2un��a � �bd�slmqa®mq_zslm:� � w�u)sIj�wejvmqa�xva�p-sVu)sydea�r�r�s1}�kVp:�ZÅ=���lc%_zw � _w�u%sV�b�bao�$sVu%jzkX�ba÷�1�AÅ1mqk�mn_ba �zpnkXkI}|�:�^�AÅ � sIj�mn_baoj$ �a � dgk�u�a��� X{�sV�b�bde{Xwgjbx�mq_bam�s � mqw ��Æ �q�~�K�MG+�~Æ~�M�1c%wgmn_��KÎ svu,�bpnaor�weuna(u�� � _­mq_zslm�sI}�mnaopnc`sIp��buîmn_za%�bpnkv bdea�r _�sVumq_ba�}�kVdedgklc%wejbx­}�kVpqr$²
õ
	
� � õ���õ�� ®Uc ©³�]Ð�� ó,í�çZè4ì ¨³� ï4æ��IèZð ô¦¨�®Z®Í� ï�æ��ZèZðÏç ¨4®Z® íJìJõZê ôJÑ�© óIêZîJó,í�î3a � õ
	�	�õ��Ïõ�� ®õ���	 � õ���õ�� ®Uc ©³� í ô ó � ï4æ��ZèIð ô¦¨4®I® �Zè4õZõIìZæ�ðIóZè Ñ a � õ�� ®õ���� � õ���õ�� ®Uc ©³� èIü�íJì�ó4ì © ìIæ�ðZó � k Ñ î © ���ZÿIÿ
��l µ æ�ïIè ô�]Ð�� ï4æ��ZèIðÏç ¨4®×� ó�í�çIè4ì ¨�Ñ î © ���ZÿZÿ�� ®Z®Z® í ô ó ®õ
	�� � õ���õ�� ®Uc ©³� èZñZè ô ï � ï4æ
�ZèZðÏç ¨4®Z® Ñ èZû ô í=a � õ���� ®
Ó }�mqa�p%sI�z�bdg{Xwejbx�ë�»½»¡§bÑ�un� �o� aouqu�}��bdgde{­mnk³�1�½¬��êí2Ñ½ª�¦�ã��zpnkl�Xw���aou®s �bpqkXkI}¡mn_�slm��aopnwe�Va�u1�^�½¬�wej ä u�mna���u�}�pqkVrQ��Å¤Ê�sIj��U�^�AÅv� Ó }��bdede{¢a
±��zsVjz��ao��un�b b�bpqkXkI}�sIm�mq_baä Ø«dgao�Vaod � kvjzu�w�u�mqu`kI} ÂVÂ u�mnao�zu�� � _ba�j�mn_za�sI�b�zdgw � sImnwekVj�kI} Æ �q�~�K�KG �~Æ~�M�­w�u`}��bdede{a�±X��sIjz��a��¡�d�^�AÅyweu(�ba�pqwg�vao��}�pnkvr �KÎ� X{�s�u��b z�bpnkXkV} � kvjzunweu�mnwejbx�kI} Â�é u|mqa��zuo�× dekvunwgjbx�mn_ba¢x�sI�5 �a
m|c�a�aoj/�M«M«/sIjz�´wgmqu��bpqa�r�weunaou×�K«jÅv�	�KÎz�,sIj��/�ZÅ\Í�c®kvpnh�uunwgr�wedesVpnde{V��^`_za�kVjzdg{´��wg¯�aopnaoj � a�weu mn_zsIm­wejzu|mqaosv�5kI}`mn_za�dea�r�r�s�mn_�slm×� � weu­sIjwej�mna�xva�p��Xmn_ba�dgaor�r�s�mq_zslm¦� � weu1sIj$wgj�mqa�xVaop%_zsVu%mnk� �a�u���a � �bd�slmna��¡�®^`_zweu%dea�r�r�s� sIj� �a � dgk�u�a��� X{�sIj�sV�b�bdew � slmnwekVj�kI}-mq_ba�m�s � mnw �ËÆ �q�~�M�KG+�~Æ~�^��mqk�mq_ba�jbk���a×�ZÅ¤Íc%wgmn_�}�kVpqr��zdes�Ñ=qHÅ~Æ�Ò�ÓX�

æ)�?�M¥A¦¨§ª© �K«I�|­ â\¦¨§ª´I[�Ô¯ §�° �Õ¯ �3[¿[^¥*[M§�Y=³ª[^»o³ ¯ ¥*[�®¯ â ¯ ´X�*¶µ¶/�*§
°ª¦·¥A¦�âr�z�IÃ¤i e a�}�kVpqa�c�a � sIjKa�±X�zdgkvw¬m�ë�»½»½§zÑNmnk kV �m�sIwejDs¸�zpnkXkI}2}�kvp�mq_ba°xvsI� �a
m|c�a�aoj �K«1��sIjz��w¬m�u%u��z�b��kvp�m�uw�ZÅ\���q�K«MÊz�q�KÎ���sIjz� �KÍ�c®a�_zs��va¨mqk­�bjb}�kVd���unkVr�a��a��zjba�� � kVj � a���m�u2sIjz�°u���a � �bd�slmna�unkVr�a�dgaor�r�sImqsb��Í¾jV�M«1�½�¡c�a�_�s��Va­mnk$�bj�}�kvde�mq_ba¨��a��zjbao� � kVj � a���m�pKGIHMHÖG+ÅdÂI��q¤��q3�KG+�½�
c%_bw � _ � dekvunaou:�K«1�­sVjz��pqaoun�bd¬m�u)wej�s�jba�ckv��aoj�jzkX�ba��K�^����Í¾ji�M�M��c�a`mn_za�j�_zs��va®mqk �bj�}�kvde��sVdgd�k �o� �bpqpqa�j � aou,kI}�mn_za¨��a
��jbao�� kVj � a���m���q¤��qO�MG+�½��c%_bw � _ � dekvunaou��M�M��sIjz� � pna�slmna�u¨s�jza�c«kV��a�j�jzkX�ba×�KÎM¬z�w�KÎM¬wejb_baopnwgmqu�mq_ba u��z�b��kvp�m�u`kI}	�M«1�¢�Xw�s×�K�M��� ä a
±Xm��bc®a�_zs��va¨mqk��bj�}�kvde� �M�~�FÅM��wej�mq_bam|c�k�un�b�b��kVpnm jbk���a�uÖ��Å¤��sVjz�v�M«MÊ��ºc%_bw � _ � pqaoslmqaouymq_ba�m|c®k$jbaoctun�b�b��kVpnmquÖ�KÎ�ÅsVjz���MÎM«�}�kvp��KÎM¬�mn_zsIm � kvjvm�sIwej�mn_ba2}�kvpnr­�bd�sIa�pna�u��zd¬mqwgjbx�}�pqkVr��bj�}�kvde��wejbx��M�~�~Å^�½�¿�kvpnaokl�Vaopo�½}�kvp÷�MÎM¬�c®a�_zs��va�mnk�un��a � �bd�slmqa�mn_ba�m|c�k$dgaor�r�sImqs$mq_zslm ÂØ×R �$sIjz�mq_zslm��¨weu)sVj�wejvmqa�xva�p��lc%_bw � _�sIpqa�wgj�mnpqk���� � ao��svuîjbk���aou �KÎMÊysIjz���KÎI�2wej­mn_ba`�bpqkXkI}|�^`_ba�kv��aoj°jzkX�ba³�KÎM¬�sVjz��wgmqu�u��b�z��kvp�m�u � sVj/jbklct �a��zpnkl�vao����u�wejbx�ë�»½»½§zÑî�
í2Ñ½ª�¦�ã­mnp�sIjzund�slmna�u%ë�»½»¡§bÑîµ u®�bpqkXkI}¡wgj�mqk�sIj ä Ø(fÌdgao�Vaodz�bpqkXkI}½mn_zsIm � kvjzunweu�mqu�kI} Âoáu�mnao�zu�� � a­sVdgpqaosv��{��bpqkl�Va���mn_zsImy��w�u¨sIj�wej�mnaoxVa�p¨wgj��K«M���%^�k¢�zpnkl�va1mq_ba­una � kVjz�dea�r�r�sb� Â6×R �b�Xweu�s � mn�zsVdgde{�jbkIm%sVu�mnpqwg�Xw�sId½sVu�wgm�r�s�{�u�aoa�r$�)^`_bayj��zr� �a�p�u Â sIjz���sIpqa1��a��zjbao� � kvj � ao��mqu�wej�¥%¦1§z©ºª°sIj���mn_bao{�sIpqa¨r�kvpna � kVjX�va�jbwea�j�m®pqa��zpna�u�aojvm�slfmqwgkvjzu`kI}ËÑ���ÙX�~�½GÖÓ sVjz�¿Ñ
�ÚÑ��hÑ�ÙX�F�ÖGÖÓMÓMÓ���c%_baopnaË��w�u`mq_ba u�� ��� a�ununkVp`}��zj � mqwgkvjº�Ó }�mna�p��bj�}�kVd���wejbx Â sIj��´��c�a�_zs��Va�mqk��bpnkl�va�mn_zsImÀÑIÅÖG+ÆÚÑ
ÛÚÑ���Ù+�~�ÖGÖÓoÑ��hÑ��
ÙX�~�ÖG½ÓMÓMÓMÓ`_bkVd��buo� � a � sIj��bpqkl�Va�mn_bw�u�u�mqsImnaor�aoj�m�c%w¬mq_�ë�»½»½§zÑî�� z��m-mnk­��k u�k�c®ajbaoao�­mnk�wgr���kVpnm)mn_ba%}�kvdgdeklc%wejbx sl±�wekVr�uî}�pnkvr8mq_ba¨�bsImqsI �sVuna�wej�mnk2mq_ba(�bpqkXkI}|²¹Ù+�~�ÖGw�u�s�jzsImn�bp�sId,jX�br­ �aopo�¡mq_ba�u�� ��� a�ununkVpykI}�s�jzsImn�bp�sId,jX�br­ �aop2weu�sIx�sIwej/s�jzslmq�bp�sId

H,e�ÝÞJ7L
MON $P�9Q9Q5R�S M Q9TU$WVXDYZY MO[R�� L
M]\ Y MO[R?$ M�L
MO[R?Q9^ [$P�9Q9Q5R7��Q \W_ ^9YZY M �

jX�br� �a�p���mq_ba�un� �o� aouqunkVp�}��bj � mnwekVj¸w�u wejl�|a � mnwe�Vav�)sIjz�®ÙX�~�ÖG�_zsVu�jbk��bpqao��a � a�ununkVp��^`_ba�jÉí2Ñ½ª�¦�ã��bpqkl��w���a�u�svu%kV�bmn�b��m¨sVj�sVuqu�aop�mqwgkvj�fidea��va�d½�bpqkXkI}�mq_zslm � kVj�u�w�u|m�u`kI} cu|mqa��zuo� � _baoj�}��zdgde{�a�±X��sIjz��a��¡�Xmn_za u��b z�bpnkXkV}�}�kVpÏ�KÎMÊ � kVjzunweu�mqu`kV},� c u�mnao�zuo�
æ)�?�M¥A¦¨§ª© �ZÅ¤ÊÔ­n~ �Y� R � ¦¨¶W] ¼ ¦T[Zâ � � � R � � Ã ¯ §ª° �K«�Å�­Z� R �X�Ü¯ §�°�?� � R � � ¦T¶W] ¼ » � � R �+� � Ã¤i Æ k¨}�sIp���c�a®sVdgc`s�{�uº�zunao�»ë�»�»¡§bÑ¢sIjz�·í2Ñ½ª�¦�ã�mqka
±��zsVjz� sI�z�bdgw � sImnwekVjzu�kI}AqO�F�F�~Å^��Â+Æ~�KpXÆ�q3p��nÍ¾j���a�a��¡�IsI��mqkVr�slmqao��mq_ba�kvpnaor.�bpnkl�Xwejbxc�svu�mn_ba`pqwgxv_vm � _bkvw � a�}�kvp�mq_bw�uîmqsVunh½�Vunwgj � a�sVdgdbun�b b�zpnkXkI}�uîa�ununa�j�mnw�sIdede{ypqa�de{ kvj­unkVr�amn_baokVpqa�r�u�kVp2��a��zjbwgmnwekVjzuo��c%_zw � _t� sl}�mqa�p2 �a�wejbx�wer���kVpnmna��/}�pnkvr mn_ba¢�zslmqsV zsVuna
� � sVj� �a2�zunao�� X{Éë�»½»¡§bÑ�mqk���a�pqwg�va2s­�zpnkXkI}|�
Í¾j � kVj�mnp�sVu�mo�½mq_ba¢u�mna���u2��a�pqwg�Xwejbx���Å¤Ê�}�pqkVr �ZÅMÅv�6�KÎz��sIjz�v�KÍ�sVuyc�a�ded-sVu2��a�fpnwe�Xwgjzxv�K«�Å�}�pnkvrT�ZÅ¤�z���ZÅ\Ê����KÎ��1�KÍ��®sVjz�.��Å¤Í°pqa��bpqaouna�j�m�sIdexVao bpqsVw ��� kvr��z��mqsIfmnwekVjzuo��}�kvp%c%_bw � _ Ó ^%Ý®u%sIpqayjzkIm(�zsVp�mqw � �bdesVpnde{�c�a�ded�u��zw¬mqao�¡�)Í¾j�¥%¦¨§�©ºª)�zmn_ba�m�s � fmnw �ÞÝKß pKGIHM�XÇdÆF�~Æ�qIG+Å­aor��zdgkl{�u`mq_ba � kvr��b��mnaop1sVdgxva� bp�s�u�{�u�mna�r ¶5ªDãz¹v§�mqk � _ba � hc%_ba
mq_ba�p`sIj�a�À��zslmqwgkvj � kVj�m�sIwejbwgjzx�sIpqw¬mq_br�a
mqw � a�±��bpna�ununwekVjzu,}�kvdgdeklc(u)}�pqkVr³s una
m�kI}kImq_ba�p1aoÀ��zslmqwgkvjzuo�1^�k���k�u�k�� ÝKß p½GOHM�XÇdÆ~�FÆ�qIG+Å��zsVuqu�a�u¨sVdgdîaoÀ��zsImnwekVjzu(mnk$¶¸ªDãb¹�§sIjz� � sIded�u�¶¸ªDãb¹�§½µ u ÄF¹�}��bj � mqwgkvj¸mqk � _ba � h/c%_za
mn_za�p�mn_ba � kvj � de�zunwgkvj¸aoÀ��zsImnwekVj_bkVd��bu2svunun�br�wgjzx�mq_ba��bpqa�r�weuna�aoÀ��zsImnwekVjzuo��^`_bweu2mqs � mnw � u�� �o� aoao�bu�c%_baoj5sI�b�bdeweao�mnk��ZÅ¤Ê�sIjz� �K«�ÅV� � kVp%a
±bsVr��zdgav��w¬m � dgk�u�a�uw��Å¤Ê�svu�}�kVdedgklc(uo²

õ
	�	 � õ�� ® c ©��ËÐ³� ó�í�çZè4ì � ìIò�ðZó ¨4®�ô�® ç ® ê ôJÑ èIa � õ�� ®õ
	�� � õ���õ�� ®Uc ©��ËÐ³� ó�í�çZè4ì ¨×� ï4æ��ZèZð ô�¨4®Z®×� ï4æ��IèZðÏç ¨�®Z® ë�� î4æ�çZï ö ó4êJó�í�æ ô a � õ
	�	 ®
× �bpnpqa�j�mqdg{v�Imn_za%mqs � mnw ��ÝKß p½GOHM�XÇdÆ~�FÆ�qIG+Å � sIj�kVjbde{� �a(��sIpnmnw�sIdedg{ a�±��zsIjz�bao��wejvmqksIj ä Ø(fÌdea��Vaod��bpnkXkV}|�¨jzsVr�aodg{ }�kvp � kVr��b��m�slmqwgkvjzu�c%wgmn_���kvdg{Xjbkvr�wesVdeuo� � a5sIpqac®kvpnhXwejbx kvj¢a
±Xmnaojzunwgkvjzu�kV}§Ç�ªDã
ãz§bÑ�mnk � kl�va�p®r�kvpna � sVunaouo�Xu�� � _�sVu�mn_bayaoÀ��zsImnwekVjsI �kl�Vav��^`_ba�m|c�k�sV�b�bdew � slmqwgkvjzuîkI} ÝKß p½GIH^�XÇdÆ~�~ÆjqIG+Å%mq_zslm¡�|�zu�mnwg}�{×�ZÅ¤Ê�sIj��×�K«�Å%sIpqamn_baopna�}�kVpqa�kVjbde{��n�Va�pqwg�zao�
�� X{$¶¸ªDãb¹�§½�z z��m¨jbkVm1sI��mqkVr�slmqw � sIdedg{� �{�sIj ä Ø(fÌdgao�Vaod�bpqk�kV}|� ú

à [Zâ\² ¼ YIi � _ba�j�}��bdedg{�a
±��zsIj���ao�¡�¨mn_ba´w�u�d�sIj��D�bpqkXkI} � kVjzunw�u|m�u�kV}�� c �¸jzkX�baouo�c%_ba�pqa7mq_baDjbk���a�u��ZÅ¤Ê sVjz� �K«�ÅDsVpna´�|�zu�mnwg�za��¤ X{ mq_baD�zjba
±��zsVjz��ao� m�s � mnw �
ÝKß p½GIHM�XÇqÆ~�~Æ�qIG Å½��æ(aoj � av��¥%¦¨§z©�ª)µ u � _ba � hva�py�Va�pqwg�zaou¨mn_zsIm1mq_ba��bpnkXkV}�weu � kVpqpna � mr�kX�b�bdgk�mq_ba � kvpnpqa � mnjba�unu�kI}�mn_ba�u�a � kVr��b��m�slmqwgkvjzu�� � �bdgde{�a�±��zsIjz�bwgjbx�sIj�� � _za � h�fwgjzx�mq_ba��bpnkXkV}-mqsVhVaou�sV �kv��m�Úv�V��u�a � kvjz�bu1kVj´s Â1á c Ü æ(Á�Ý,a�j�mnwe�brUÍnÍ�Í1r�s � _bwejbac%w¬mq_ ä�Â �­¿ e b(Ó ¿Îpq�bjbjbwejbx��jqHÅXÇ½}½�
ÊDgJg â bDm�ú�o�Ï]m�u ú�Í ú�û�ùÒt�úlú�û Ù=Ï�k3ãlk
Ó u%��a�u � pnwe �ao��wgj���a�mqsIwed¡wej Æ a � mqwgkvjzu(��� Ú�sIjz�$��� â �Xmq_ba��bpnkXkV}�kI}�mn_ba ~ ��fÌ�bpqkV bdea�rweu � kvjzu�mnpq� � mqao��wej�m|c�k¢�b_�sVunaouo² � wgp�u|m�sIj°sI zu�mnp�s � m¨�bpqk�kV}-weuykv��mndewgjzao�¡�¡wej�c%_bw � _

ä �9����¡���(�� ������"���������� �����'��� ����(���¡l�B	��B�!�'�����¢���D�!������¡�� �?(1� �!����"�����å��§�!���'���D�
æ�('���1"���('�������=�
�!� �!����"��1������¡£��'�¡������Ò�����&('��"������!��(C������"����§�����������\�
¡��C���'¡������7���§��¡£��"ê¤ �������������
�
('��"��!������"�#
���'�!� ��(�� ������"P����¡��C�;�h���¥�����=�C¦��?��"��!����"P���'(�?��"����!�P¤

_][^§^9� \9M�¨�M Yl^ _ $ M QD��© L ��ª�«D¬&­�®=¯5°��Dª M�L±[D[��� L ^�Q��9Y L ���²^9�´³ H H,e�ý

w�u�d�sIj��bu�sIpqa � kV�b�zdga��� X{�m�s � mqw � u�c%w¬mq_bkV�bm � sIpqa�}�kVp�mq_ba���a
m�sIwedga��/dekVxvw � sId)��ao��aoj�f��aoj � weaou® �a
m|c�a�a�j¢mn_baor�� ä a
±Xmo��mq_ba¨x�sI�zu® �a�m|c®aoa�j�mq_bayweundesVjz�bu®sIpqa � dekvunao��wej¢mq_bauna � kVjz���b_zsVuna�c%w¬mq_5��a
m�sIwedga�� ä Ø(fÌ�bpqk�kV}`una�xvr�a�j�mquo� Æ k�}�sVp2 �kVmn_°mqsvu�h�uypqaoÀ��bwepna}�sVwgpqdg{���a�mqsIwedeao���zuna�p®wgj�mnaopqs � mqwgkvjº²îsIm�mq_ba1sV zu|mqpqs � m-dea��va�dbmq_bay�zu�aop�_zsvu)mqk �bpqkl��w���amq_ba(w�u�d�sIjz�zu¨��sVjz��mnk­sI�b�bde{�u�kvr�a`m�s � mnw � u�� ã sIjz��}�kvp)mn_za¨a
±��zsVjzunwgkvj�wej�mnk2mq_ba(dekVxvw �dea��va�db_ba¨_zsVu-mnk�un��a � �bd�slmqa%mn_za èõì¬í���È-dea�r�r�slmqsz�Vwer���kvp�m-mq_ba�èõì¬í��XÈ,mq_ba�kvpnaor�u���sIjz��bjb}�kVd���mq_ba�èõì¬í��XÈ%��a
��jbw¬mqwgkvjzu%�b��mnk�mq_ba�èõì¬í��XÈ`dgao�Vaod �
^`_ba%r�sIwej�pna�u�a�sIp � _�wej¢¥%¦¨§z©�ª$weu � �bpqpnaoj�mnde{2mnk2 �a
mnmna�p®sI��mqkVr�slmqa`mn_ba�u�a`m�sVunhXuo�^�k�mn_bw�u%a�j��¡�bc�aya�±bsIr�wgjza1m|c�k�sI�b�zpnk�s � _ba�u�²� wgp�u�mo�I�bpqkXkI}��bdesVjbjbwejbx�c%w¬mq_�¶¸·º¹�»½¼ � ¿�a�wea�p��v�I�v�VÚ � w�uîmn_ba%r�a�sIjzuîmqk�sV��mnkvr�slmnwgf

� sIdedg{ � pna�slmqa�w�undesVjz���bpnkXkV}�u)slm�s��zuna�pnf }�pqwea�jz��de{ dea��va�d�kI}¡sI �u|mqpqs � mnwekVj���Í¾j Æ a � mnwekVj�Úc�a2u�_zsVdgd�u�_bklcDmn_ba2hXjbklc%deao�bxVa
fÌa�jzxVwejba�aopnwejbx��zpnk � a�unu�mq_zslm1xVa�jza�p�sIdewgÁoaou®mn_ba2r�sVwgjw���aosvu¢�bj���a�pqdg{Xwejbx¸mq_ba�wej�mnaopqs � mnwe�Va��bpnkXkV} wgj�mnk � kvpnpqaoun��kvjz��wejbx5�bpqkXkI} r�a
mq_bk��busVjz� � kvjvmqpnkvd¡hXjbklc%dga���xVa�}�kvp�¶@·º¹
»¡¼i��¼¨unwejbx�mn_zweu¨h�jzklc%dga���xVa­¶@·º¹
»¡¼îw�u � sV�zsI zdgakV}1sI��mqkVr�slmqw � sIdedg{´�bd�sIjzjbwgjzx�mq_ba$�bpnkXkV}�u�}�kvp�mq_ba�kvpnaor�u­kV}(mn_za�xva�jbaopqsVdgweÁ�a��èç~ é f�bpqkV zdgaor�uo�Xmn_�slm(w�u��bc%_za
mn_za�pÌç~ é weu`wepnp�slmqwgkvjzsIdi� � a sVdeunk�_zs��Va�a�±X��sIjzunwgkvj¢m�s � mqw � u}�kvp¨mq_ba�a�r��bdekl{Vao��r�a
mn_zkX�zuyun� � _�mn_zsImymq_ba�a
±��zsVjzu�wekVj�u¨kV}-mn_ba��bpqkXkI}��zdesVjzu1}�kVp
ç~ é fÌ�bpqkV bdea�r�u � sIj� �a1��kvjba¨sV��mnkvr�sImnw � sVdgde{�sVjz��c�a � sVj�wgj�}�s � m-}��zdgde{�a
±��zsIj���sIjz��va�pqw¬}�{/mn_baor c%w¬mq_@kv�bp��bpqkXkI} � _ba � hVaop���sVxvsVwgjº�,r�k����bdek�mq_ba � kVr��b��mqa�p�sIdexVao bpqsun{�u|mqa�r � kVr��b��m�slmnwekVj�uq�
�Æ a � kVj��¡�bu�aor�w¬f¾sI��mqkVr�slmqao��sIxva�j�m�fÌ zsVunao��pna�sVunkVjbwejbx­c%w¬mq_�¥®f|Åy�¡»��1weu(s�r�aosVjzumqkykv �mqsVwgj�dekVxvw � fidea��va�dX�bpqk�kV}�uî}�kVp)mq_ba%wejvmqa�p�s � mnwe�Va�de{ xva�jbaopqsImnao�­w�u�d�sIjz�­�bpqkXkI}½�bdesVjzuc%wgmn_@}�a�c�a�p��zuna�p�wgj�mqa�p�s � mqwgkvjzuo�²a-±��zsIjz�bwgjbx°sIjz� � dekvunwgjzx/w�u�d�sIj��¸xvsV�zu­weu�kI}�mqa�jr�kVpqa � _zsVdgdea�jbxvwgjzx�mq_zsIj5wej5�bpqkXkI}`�bdesVjbjbwejbxz�,unwgj � a�mn_za�pqa¢weu jbk�hXjbklc%deao��xva�wer�fr�ao�bwesImna�de{�s��lsIwedesV bdgav��Í¾j�xVaojba�p�sIdi�Vmq_ba�a
±��zsVjzu�wekVj�kV}ºmn_za1m�s � mnw � qO�F�X�~ÅM��Â+ÆF�KpFÆ�q3p
� kVpqpna�u���kVjz�zu½mnkys � kvr��zdga�mna�de{�jba�c¸mn_baokVpqa�r$��c%_bw � _�r�s�{y �a�unkVde�Va��� �{��bpqkl�Xwe�bwgjbxr�kVpqa®un��a � wg� � weundesVjz�buo��^`_ba�w���aos1weu�mn_�slm)sl}�mnaop)u�kvr�a®_bwea�p�sIp � _bw � sId���a � kVr���k�u�wgmnwekVjmq_ba`xvsI��u� �a � kVr�a(unkyunr�sIdedXmn_zsIm)mn_bao{ � sVj­ �a��zdgdeao��wej�sI��mqkVr�slmqw � sIdedg{v��^�k1kv �mqsVwgjs� �a
m�mqa�p��ba�xVpqa�a�kI}%sI�bmnkVr�sImnwekVj/}�kVp � dekvunwejbx�mn_ba�w�u�d�sIj���x�sI�zuo�ºc�a�sVpna�c�kVpqhXwgjbxkvj�mq_ba�}�kVdedgklc%wejbx�we�baosVuo²

ê ¥®f¾Åy�¡»����nsIxva�j�mnwg�za�u���r�a�mn_bk��buo�-m�s � mqw � u�� � sVd � �bdg��u�pq�bdeaouo�®sIj��¸_ba�mna�pqkVxva
fjba�kv�zu�a
±Xmqa�pqjzsId(pqaosvu�kvjba�p�u�wgj£mq_ba�una�jzuna$mn_�slm¢mq_baouna�unaosIp � _ �bpnk�s � mnwe�Va�de{}�kVp¢mq_ba�wep�pqaoun��a � mqwg�va�sI�b�zdgw � sV bwgdewgm|{V�.ÍÌm�un_bkV�bd��£ �a���kvuqu�we bdea�mnk¸dewejbh@mq_ba
q3�F�F�~ÅM�dÂ+Æ~�KpFÆjq3p�c%w¬mq_�sI�b�bpqkV�zpnw�slmqa�¥®f|ÅÒ�º»h�2sIxVaoj�mqu%un� � _�mn_zsIm(mn_ba�u�a sV��fmnkVjzkVr�kV�zunde{­sIj�� � kXkV��a�p�slmqwg�va�de{2mnpq{�mqk � dekvuna`mn_ba1xvsV�zu)wej�mn_ba(�s � hXxVpqkV�bj��c%_bwgdea�mn_ba��zuna�p�c�kVpqh�u1kvj�mq_ba�jba
±Xm2weund�sIjz�°u|mqa��zuo��Í¾j � svu�a�¥®f|ÅÒ�¡»�� � sVj�fjbkIm � dekvuna�s¢x�sI��sV��mnkvr�slmnw � sVdgde{V��mn_za­�zuna�pyc%wedgd, �a­wej�}�kVpqr�ao��sVjz��_ba�r�s�{pna�mn_bwejbh�mq_ba�weundesVjz��u�mnao��kvp�_zayr�s�{��bpqkl�Xwe�ba(}��bpnmn_baop%hXjbklc%dga���xVa¨mn_zsIm � sIj �a2�zunao�� X{�¥®f|ÅÒ�º»h�l�

ê � a�sIpqa � �bpqpnaoj�mnde{�sId�u�k�a
±bsIr�wejbwgjzx�mq_ba�¥®f¾Åy�¡»���r�a � _zsVjbweunrUsVu�s�r�ao��wgfslmnkvp �a
m|c�a�a�j5s$hXjbklc%deao��xva� zsVuna¢sIjz�´�zpnkXkI}��bd�sIjbjbwejbx@���zp�u|m pqaoun�bdgmqu sVpnapnao��kvp�mqao� wej � e a�jzÁ�r���bdedgaop¨Ç
È,ÉlÊgËe�X�I�V�vÚ � �õ�,^`_ba`r�a���w�slmnkvp)u��b�z��kvp�m�u�mq_ba%w���aos

H,e,�KJ7L
MON $P�9Q9Q5R�S M Q9TU$WVXDYZY MO[R�� L
M]\ Y MO[R?$ M�L
MO[R?Q9^ [$P�9Q9Q5R7��Q \W_ ^9YZY M �

kV}zu�aor�sVj�mnw � sIdede{1xv�bwe�bao�2pqa
mqpnwea��lsIdVkI}br�slmq_ba�r�slmqw � sIdvh�jzklc%dga���xVa¨��mn_baokVpqa�r�uo���a��zjbwgmnwekVjzu��®}�pqkVr¤mq_ba �bsImqsI �sVuna2¶��1ª9��§½�
ê ^`_ba�un��a � �zdesImnwekVj kI}yun�bwgmqsV bdga$dea�r�r�slm�s � sIj �a�un�b�b��kVpnmna��@ X{@s°r�k���a�dxva�jbaopqsImnkVp�� � kVp-wejzu�mqsVj � av�Vc%_baoj¢sI�b�bde{Xwgjzx�mn_ba1r�k���aodbxVaojba�p�slmqkVp®¶¸ªhô�§�kvp

Ç�ª�»�ô]Ãº¦yÕ�mnk mn_ba%}�sVwgdewejbx2�bpqk�kV}½sIm�mqa�r���m�c%wgmn_ ë�»½»¡§bÑ�}�kVp1�M«M¬2s � kV�zjvmqa�pnfr�k���a�dzweu)xva�jbaopqsImna��¡�lwgj�c%_bw � _¢�1weu)jzkIm-sIj�wgj�mqa�xVaopo� Ó xVaojba�p�sIdXr�a � _�sIjbw�u�rmq_zslm)a�r��bdekl{�uîr�k���aod�xVaojba�p�slmqwgkvj2}�kVpîmn_za(u���a � �bdesImnwekVj­kI}�r�w�ununwejbx1dea�r�r�slm�s� u�� � _ZsVu�mq_ba�kvjba¢sVuqu�aop�mqwgjzx$mn_zsIm��$w�u�sIj5wej�mnaoxVa�põ�yw�u � aop�m�sIwejbde{/��kvuqu�we bdeasVjz���bpnkvr�weunwgjzxz�
ê Ó �a�m�mqa�p%u��z�b��kvp�m®}�kVp��bj�}�kvde��wejbx���a
�zjzw¬mqwgkvjzu�weu�mnk�sV�bsV��m e w�u�_bkv��sIj�� Ó j�f��pqa�c2µ u¨una�dea � mnwe�Va2�bjb}�kVd���wgjzx¢r�a � _zsVjbweunr � e weun_bkv�$sVjz� Ó j���pnaoc(u�� ÂoÙvÙdc �¡mqkkv�bp%�bpqk�kV}��bd�sIjzjbwgjzx � kVj�mqa
±Xmo�

Ú Ý b(ß2ß � Ý5¹ Ó ä¨ä Í ä Ü ^%æ�aK~ ��f¾Ý b(ß e ¹Da®¿
^`_ba��zuna�p2_zsvuymnk�sI�b�zdg{�mq_ba�weund�sIjz��mqs � mnw � a�wexV_�m�mnwer�aou�wej°mn_ba��bpqkXkI}��bweu � �zuqunao�wgj Æ a � mnwekVj�����jzsVr�a�de{¢wgj$u�mna���u á � é � c � ÂVÂ � Â ��� Â Úz� Â�â ��sVjz� Â�ä �
�,^`_zaouna�sVpna1mn_za� pq� � w�sIdºsVjz� � pqaoslmqwg�vayu�mnao�zu`mq_zslm(�bpqkl�Xwe�ba¨mq_ba2aouqu�aoj�mnw�sId¡w���aos�kI}îmn_zweu%�zpnkXkI}|�ä klc2�)mq_ba�À��ba�u|mqwgkvj¸w�u�² × sVj@c�a¢�zj��¸mq_baouna � pna�slmnwe�Va�u|mqa��zu�sI�bmnkVr�sImnw � sIdede{Kë^`_ba sIj�u�c�a�p%w�u%{Va�u���sVu%c�a u�_�sIded�u�_zklcDwej$mn_bw�u(una � mqwgkvjº�®æ¨klc®ao�Vaopo�Xc%_bwedga�c®a � sIjsIjzunc�a�p%mq_ba­À��ba�u|mqwgkvj�wgj�mq_ba�sÎ¸�pqr�slmqwg�vaV�zjzkIm1ao�Vaopn{�pna�sV��aop(r�s�{� �a � kvjX��wej � ao�mn_zsIm mn_zweu�weu2pqaosVdgde{�mq_ba��zjzsVd®sVjzu�c�a�p���svu�kV�bp­u�kvdg��mqwgkvj°mnkV� � _baou2�z��kvj¸s�u��b bmndea��kvwgj�m��îc%_zw � _5kv��aojzu mq_ba�Ý)sVjz��kVp�s e k�±/kI} � pnwgmnw � sVd�w�unun�ba�u2wgj¸mn_ba��zsIp�sV��wexVr kI}�bpqk�kV}(�bd�sIjbjbwejbx � e �bjz�b{V�®�V�V�v� � �°ÍÌm�w�u�aosVun{/mnk�c%pqwgmna$u�kvr�a�u���a � w¬� � r�a
mq_bk��bu��c%_bw � _���a�pn}�kVpqr8�|��u|m(mq_ba�u�mnao�zu%wej$mn_ba2wej�mna�p�s � mnwe�Vaodg{�}�kv�bjz�$�bpqkXkI})sIjz��mq_ba�j � sIdedmn_ba­�bpqk�kV}-�bd�sIjbjbaop2¶@·º¹
»¡¼�mqk¢�bmymn_ba­r�a
mn_zkX�zu¨mqkVxva
mn_za�p¨wej�mnk�s��bpqk�kV}-�bd�sIj�}�kvpkV�bp��bpqkV bdea�r$�)^`_bw�u��XkV} � kV�zpqunaV�Xu�_zklc(u�jbkVmn_bwejbx­kI}�un�b zu�mqsVj � av²¹ìv�zu�m�svu�c�a � kV�bd��c%pnwgmna`��klc%j�sVdgd�mq_ba��ba
�zjbwgmnwekVj�uîsVjz�2mq_ba�kvpnaor�u�pqaoÀ��bwepna���}�kVpîmq_ba®�zpnkv bdgaor«wgj��zp�u|mnfkVp���a�p,�bpqao�bw � slmna�dekVxVw � sIjz�­_zsVjz� mq_ba�r8mnk2s1�zpqu�m�fÌkVp���aop��bpqkl�Vaopîun� � _�sVu¥ë�»½»¡§bÑî� xc®a�c�kV�bd����|�zu|m(_�sIjz�Xf � k���aymq_ba��zjzsVd�u�kvdg�bmnwekVj�wgj�mnk�sV�b�bpqkV�bpqwesImnayr�a
mn_zkX�zu��Í¾jzu|mqaosv�¡�`mn_ba�xVkvsVd(kI}�mq_ba�x�sIr�a�weu¢mnk5��jz�KívÇ�ë�Ç�ènÉIÊyr�a�mn_bk��bu�}�kVp�s¸c%_bkVdea
� d�sVuqu)kI}¡mq_ba�kvpnaor�u)c%w¬mq_bwej�u�kvr�a%mn_baokVpq{�mq_zslm � sVj¢u�kvdg�va%jbkIm�kvjbde{�mq_bweu®�zsVp�mqw � �bdesVp�bpqkV bdea�r$�� b��m¨sVdeunk�sIded½mn_ba2kVmn_baop®mq_ba�kvpnaor�u`wgj�mn_�slm � d�sVuqu�� � _bwedea2kV�bp%sI�z�bpnk�s � _aouqu�aoj�mnw�sIdedg{�}�kVdedeklc(u(mq_ba­�zpnkXkI}®we��a�s¢kV}-mn_ba�wej�mna�p�s � mnwe�Vaodg{ � kvjzu|mqpn� � mna����bpqkXkI})}�kvpmn_ba�~ ��fÌ�bpqkV bdea�r$�Xw¬m%pqa�dewga�u�aouqu�aojvmqwesVdgde{�kVj�r�kvpnayxVaojba�p�sId � kvj � ao��mqu`un� � _¢mq_zslm%c�a� sVj�unkVde�Vav�v}�kvp`a
±bsIr��bdeaV� ç~ é fÌ�bpqkV bdea�r�u®}�kVp(sVpn bwgmnp�sIpq{�jzslmq�bp�sId½jX�br� �a�p�uÄí�sIj�� é �æ(klc�a��va�p��bsVu%c�a u�_�sIded���w�u � �zunu(wgj Æ a � mqwgkvj�Úb� â ��mq_bweu¨weu � a�pnmqsVwgjzdg{�jbkIm(mq_ba aojz�$kI}mn_ba u�mnkvpn{v�

î �9��� �ª�����§����"����D���'"&�!��(�å7¡���"�#�������³ H �
���!�"'�¡��'� �D� �!�6ïªð¤ð¤B&ñMòl���1�Vó ©¶���1��� ôTåÎR H,f,f�H
õ �¢���
�����§���!��#���"���¡½ïªð¤ð¤B&ñP(1���!�=��������	���"��6ó SO�'"¤ö'� V��¡�¡��'��ù1E¡ð�4 ý�R H,f,f�H
õ �;���h� �!�D�!�'��¡£�'	���� ����«�@�B=C1Dl¤

_][^§^9� \9M�¨�M Yl^ _ $ M QD��© L ��ª�«D¬&­�®=¯5°��Dª M�L±[D[��� L ^�Q��9Y L ���²^9�´³ H H,e�I

ø�gCf Ù�Ú§nº÷�Í¥ú�v»Ð!nHalüDndâ�_\øFbDu!kduCm�u ú�Í
Í¾j7kvpq��aop�mnk@�zjz�Ks¸xVa�jza�p�sId¨sV�b�bpqkvs � _Z}�kVpùç~ é fi�zpnkv bdgaor�u�}�kVp�sIpq bw¬mqpqsVpn{@jzslmq��fp�sId®j��zr� �a�p�uVí°sIjz� é �,c®a¢�zpqu�m�sVjzsIde{XÁ�a��´�bpnkXkV}�u2}�kVp�u|m�slmqa�r�a�j�mqu�un� � _¸sVu�~ c �
ú ��ÚÞv�Ú��¹û Â �`kVpýü~ �X� � a$}�kV�bj��@mq_zslm�unkVr�a$kI}1mn_ba � kVj � a��bmqu�sIj��@wej�}�a�pqa�j � au�mnao�zu¨c�a��zu�a���}�kvp ~ ��sIpqa��zsVp�mqw � �bdesVp(mqk�mq_bweuy�bpqkV zdgaorUsIjz���bk�jbkVmyxva�jbaopqsVdgweÁ�ac%_baopna�sVu�kImq_ba�p�u,��kz�î^`_���u��lmq_ba%sIjzsVdg{�unweu�deao��mnk�u�kvr�a�xVaojba�p�sIdeweÁ�ao� � kvj � ao��mquo��mn_ba�fkvpnaor�uo��sVjz�$�bpqkXkI}-u|mqa��zuo�½c%_bw � _�c®a­a�j � kX�bao�$wejvmqk�r�a
mq_bk��buysIjz� � kVj�mnpqkVd�pn�bdeaouo�mq_zslm®mnkVxva
mq_ba�p�}�kVpqr kvjba(�bd�sIjzjba�p`u|mqpqsImnaoxV{­}�kVp-mq_bw�u®hXwejz��kV}º�bpnkv bdea�r�u�� � ayun_zsIdedjbklcN��w�u � �zunu�mq_ba s � À��bwgpqao��r�a
mn_zkX�zu(sIjz� � kVj�mnpqkVd½pq�bdga�u��^`_ba2a�ununa�j�mnw�sId½w���aosvu`kI}îmn_ba2�zpnkXkI}îwgj Æ a � mqwgkvj$��sVpna�sVu�}�kvdgdeklc(u�²
� Â �¶¼¨una�mn_ba�mq_ba�kvpnaor �~�FÆ�Â1pF��qHÆ~�~��qIG Å­sIjz� � kvjzu�mnpq� � m(sIj�wejz��wepna � m(�bpqkXkI}|�
�i�V��Í¾j�kvpq�ba�p�mnk¢��aopnwe�Va1mn_za � kVj�mqpqsv��w � mnwekVj�u�_bklcDmn_zsIm%mn_ba�m|c�k � kvjzu|m�sIj�mqu���a
±Xfweu�mnaojvmqwesVd½��sVpnw�sI zdga�uq�-wgj �~�FÆ�Â1pF��qHÆ~�~��qIG Å½��c%_bw � _�sVpnayu��b�z��k�u�a���mnk�_zs��va(jbk� kVr�r�kVj$��we�XweunkVp��bs � mn�zsVdgde{���k�_zs��vays � kVr�r�kVj$��wg�Xw�u�kvp�þz�
� Úv��Í¾j�kVp���a�p%mqk��zjz��s � kvr�r�kvj$�bwg�Xw�u�kvp%mnp�sIjzu�}�kVpqr a�À��zslmqwgkvjzu���}�kVp¨a�±bsIr��bdeaV�~ �ÿvF� R � û � �uv~� � R � � �
�`�ba�pqwg�va�jba�c ��we�XweunkVp¢u�mqsImna�r�aojvm�u���}�kvpa
±bsIr��bdeaV��}�pqkVr ��vH� � R � � ��aopnwe�Va2mq_zslm¦� � _zsvu¨��we�XweunkVp����½kVp¨}�pnkvr�mq_bau|m�slmnaor�a�j�m�mn_zsImi� � _zsvu��bwg�Xw�u�kvp��°��aopnwe�Va�mn_�slm�� _zsVu��bwg�Xw�u�kvp��v�õ��sIjz���a�pqwg�va�}�pqkVr xVwe�Va�j7��we�XweunkVp�u|m�slmqa�r�a�j�mqu�jba�c pqa��zpna�u�aojvm�slmqwgkvjzu�kI}�mnaopnr�uo�c%_bw � _ � sVj� �a1�zunao��sIx�sIwej�}�kVp`aoÀ��zsImnwekVjzsVdzmqpqsVjzu�}�kVpqr�sImnwekVjzu1��}�kvp�a�±bsIr��bdeaV�}�pnkvr³mn_ba u�mqsImnaor�aoj�m%mn_zsImÏ� _zsVu%��we�XweunkVp¨����aopnwe�Vaymq_zslmÏ� R �ÇvH�b�
�

ä kImqa mq_zslm¨c�a­sVpna2��sIpnmnw � �bd�sIpqdg{�wgj�mqa�pqaou�mnao�$wej��bpqwer�a���we��w�unkVp�u��zunwej � a­kVjbde{}�kVp��zpnwer�a�jX�br� �a�p�uÿþ@weu�w¬m�mnpq�ba�mn_�slm�wg}Ëþ@w�u�s@��wg�Xw�u�kvp¢kI}Ö����mn_baoj�þweu�sId�u�k°s���we�XweunkVp­kI}��°� Ó � kVpqpna�u���kVjz�bwgjbx�mn_baokVpqa�r$�)c%_bw � _¸xVaojba�p�sIdewgÁoaou
�MÐ?Çd�~�~�dÂ+�M�~�~Å��Vweu%jzklc�s��lsIwedesV bdea1wej�¥%¦¨§z©�ª)µ u(�bslm�sI zsvu�av²
���J�,���4���Z�J���I¡� 4��¤ ï4æ
�ZèZð © ïIð�í�çZè ©�Ñ í�ñ�í�ìIæ�ð �­¬�ª)¬�ªI�4�JÊI�J �®�­¯J¡�ª�¯J£�±�¥I¬J¡�ª³���4¡J 4«Z£Z£Z©4¥J¡� Z�³�­£Z«�¤��²ª�ªZ±Z¤,®�]�4¡� 4«Z£I£Z©I¥J¡� I���Ë£Z«�¤
�]��ªZ±Z¤"®���4¡� �«Z£Z£Z©I¥Z¡� Z���Ë£Z«�¤i�]Ì�ªI±Z¤,®�­¬�¤Z��£I¬J�4¥÷�²�I �¬�¤��Z©J�4¬�É�¬Z¥J¡� ��³�²��¡�Ô4�J �Ìwª,®I®�²�I �¬�¤��Z©J�4¬�É�¬Z¥J¡� ���Ì�®Z®Z®í ô ó ®Z®í ô ó ®I®ô êJó ®Z®Z®

^�k�pna�sIdewgÁoa�we�baos5� Â ��mq_ba¢�bd�sIjbjza�p�¶@·º¹
»¡¼®_zsvu2mnk/��a � we��a¢mnk�mqpn{°sIj5wejz��wepna � m�bpqkXkI}|�¡sI�z�bdg{$mq_ba�mn_baokVpqa�r5�~�~ÆdÂ1pF��qYÆF�~��qIG+Å���sVjz����aopnwe�Va é vY� � R � � }�kVpywgj�mna�fxva�p�u�� sIj��i�)�Xc%_bw � _�sVpnayu��b�z��k�u�a���mnk�_zs��va¨jbk � kvr�r�kvj���we�XweunkVp��î^`_zaounayu�mnao�zusVpna � sVjbkVjzw � sId½}�kVp1sIpq bw¬mqpqsVpn{�ç~ é �bpqkV zdgaor�uo�®æ¨a�j � aV��c®a � kV�bd���wgr��bdea�r�a�j�m1mn_baorsVdgd®wgj�mnk�kVjba¢r�a�mn_bk��¡��æ¨klc®ao�Vaopo��mnk�s��vkVw��/mn_ba�c®aodgd®h�jzklc%j5�bpnkv bdea�rÎkI}%kl�Vaop�f�bmnmnwejbx�r�a
mq_bk��bu%c�a��ba � w���a���mqk�a�r��bdekl{�sIdepqaosV�b{¢a
±�w�u|mqwgjbx�r�a
mq_bk��bu`}�pqkVr�kImn_za�p��kvr�sIwejzu�².��� �"! #�$ ���bpqkl�Va� X{ � kVj�mqpqsv��w � mnwekVj��
�Ö$�� G4G��	�]��
 �
�H#,$ ��sV�b�bde{£s5mn_baokIfpqa�r³kvp`sVj�sI±�wgkvr }�pnkvr³mn_baymq_ba�kvpn{b�õ������
 GZ�ZG��F#JCq�����J#,$ � ��a � kVr���k�u�a�a�±Xw�u�mna�j�mqwesVdgde{À��zsVjvmqw¬��ao��}�kVpqr��bd�sIa��õ���������F#,$ ����a � kvr���kvuna � kvjl�|�bj � mnwekVjzu��õ�

H,e,[KJ7L
MON $P�9Q9Q5R�S M Q9TU$WVXDYZY MO[R�� L
M]\ Y MO[R?$ M�L
MO[R?Q9^ [$P�9Q9Q5R7��Q \W_ ^9YZY M �

^`_ba�sI�z�bdgw � sImnwekVj�kI}îmn_ba�r�a�mn_bk��bu�����
 GI�ZG��F#ZC~�����J#,$����������F#�$��bsIjz�V��� �"! #,$³��kjbkIm®jba�a��¢sIjX{­}��bp�mq_ba�p � kvjvmqpnkvd �v b��m®mn_baysI�b�bdew � slmqwgkvj�kI}�$�� GIG��	�]��
 �
�H#�$«_�sVu)mqk �axV�bw���a�� X{ u�aodga � mqwgjbx1mn_za®mq_ba�kvpnaor.kVp)sl±�wekVrNmnk� �a�sV�b�bdewga��� X{�mn_za®r�a
mq_bk��¡�)^`_bw�uweuys � _zwgao�Vao�$ X{�s � kVj�mnpqkVd�pn�bdea�·+¾~¾��ILdÂ+¶d·X¸�¿Y¶WÄY¸d»X¶�Ä?À+½���c%_bw � _���a�mna�pqr�wgjzaou¨mn_zsImmn_ba$mq_ba�kvpnaorT�~�~Æ�ÂIpF��qYÆ~�F��qIG+Å/un_bkV�zde� �a��zu�a��Z}�kVp�$�� GIG��	�]��
 �
�H#�$��,c%_ba�jbao�Vaopmn_baopna�w�u(s­}�kVpqr��bd�sÔç~ é �Í|��aos2�i�V�½w�u¡pqaosIdeweÁ�ao�yc%wgmn_ymn_za-r�a
mn_zkX�� 6�
�H�!�#"���
 $"��
 �
�� B��K÷K��
��%&
 '�
 GI���]#�$�� � _za�j¶¸·º¹�»¡¼bmqpnweaou-mnk�sV�b�bde{�mq_ba(r�a
mq_bk���w¬m`u�a�sIp � _baouî��pqu�m-}�kVp®s2�bpqk�kV}�dewejba(mq_zslm®u�mqsImna�umn_zsIm,m|c®k1mnaopnr�u)(w 3�(� _�s��Va�jbk � kVr�r�kVj���we��w�unkVp��IsIjz�­u�a � kVj��2}�kVpîm|c�k1�zpnkXkI}�dgwejba�umn_zsIm`u�mqsImna1mn_zsIm*(w sVjz�+(� ��pna�u���a � mnwe�Va�de{V��_zs��va1s���wg�Xw�u�kvp�þ��-^`_bw�u�r�a�mn_bk���weu�jbkVmxV�bw���a��$ �{ � kvj�mnpqkVdºpq�bdeaouo�z b��m2¶¸·º¹�»½¼�mqpnweaou(mnk�sV�b�bde{�wgm(mqk�u�kvr�a���a�pqwe�Vao���bpqkXkI}dgwejba�u`wgj$aos � _��zdesVjbjbwejbx � { � deaV�Í|��aos­��Úv��kI}�mq_ba��bpnkXkV}�mqa � _bjzweÀ��ba�weu�a�j � k���ao� wgj�mnkyu�ao�VaopqsVd � kvdgd�sI �kVp�slmqwgjzx%r�a�mn_�fk��bu�²�,)�#"��YG.-?����K���/dD�"H��
 �
�H#,$��"A)C�DFEHGI�J#4K���01�2
²K3��-	"�$"G�04�Ë���dD�$,�J#,$���01�5
²K3��%&
 '�0d�768�	�]#
$��osIjz�9 6�
:;: ��$"�.%&
 'HGI#�$��
^`_ba)r�a
mq_bk��<,)�="��YG.-?����K���/�D7"H��
 �>�r#,$ � kvjvm�sIwejzu�mn_za-hXjbklc%d¬fao��xva�sI �kV��m�u��bwgmqsV bdea�aoÀ��zsImnwekVjzsVd`mnp�sIjzu�}�kVpqr�slmnwekVj�u�}�kVp�kv�bp¢�bpqkV zdgaor0��kvr�sVwgj��ÍÌm�w�u�sI�b�bdeweao�£mqk sVjKaoÀ��zsImnwekVjKsIj��D��aopnwe�Va�u�s¸jza�c aoÀ��zsImnwekVjº� � kvp�wejzu�mqsVj � av�,)�="��YG.-?����K���/�D7"H��
 �>�r#,$U��aopnwe�Va�u é vX��� R �+��}�pqkVr ç~ é v+� R �°�-kVp�w¬m¢��aopnwe�Va�u
� � R �ÞvH� � }�pnkvr �Þvr� � R � �ÇvH�z� � �®^`_ba2r�a
mq_bk���A)C�DFEHGI�J#4K«��a�pn}�kVpqr�u`a�À��zsIdew¬m|{u��z zu|mqw¬mq��mnwekVj�u��
04�5
²K3��-	"�$�G.01�]����D7$"�J#�$ sIjz�?01�2
²K@��%&
 '�0d�768�	�]#�$.aoj � sV�zun�bdesImna%mq_ba(hXjbklc%deao��xva%kI}_bklc«mqk���aopnwe�Va���we��w�unkVp�u|m�slmnaor�a�j�mquo�+01�2
²K3��-	"�$"G�04�Ë���dD�$,�J#,$ weu�sI�z�bdgweao��mnk�aoÀ��zsIfmnwekVjzuÍ� R é vOr7��kvp é vOr R ���­sIjz�´pqa
mq�bpqjzu�s��zpnkXkI}%dewgjza�c%_bk�u�a�}�kvpnr­�bd�s$weu�s

� kvjl�|�bj � mnwekVj�kI}¡u|m�slmnaor�a�j�mquîmq_zslm:��_zsvuî�zsIpnmnw � �bd�sIp,�bpqwer�a(�bwg�Xw�u�kvpquo��^`_ba`r�a
mq_bk��a�r��bdekl{�u�¶5ª�ãb¹v§�mnk � kVr��b��mqa(mn_za¨�bpqwgr�a¨�bwg�Xw�u�kvpqu)kV} é �zunwgjzx�¶5ªDãz¹v§½µ u�}��bj � mqwgkvj
NBÄH¸�A ÑI½�B Áz¸�A�»~À+¶ML&C�DF·�¿Y¸dÀ+¶z¹+» ¸�ÓX��ÍÌm%�ba�pqwg�vaou�mn_zsIm��$_zsvu®mnk�_zs��VaysIded��zpnwer�a��bwg�Xwgfu�kvpqu¨kI} é � � kVpywgj�u|m�sIj � aV��}�pnkvrU��vH� � R � � 01�2
²K@��-	"�$"G�04�Ë���dD�$,�J#,$ ��a�pqwg�vaou(mn_zsIm
� � _zsVu mn_ba¢�zpnwer�a���we��w�unkVp­�b��}�pqkVr á v � � R � � wgm­��aopnwe�Va�u�mn_�slmÍ� � _zsvu�mn_za�bpqwgr�a ��we�XweunkVp�u%��sIjz��Úb�E01�5
²K3��%&
 '�0d�768�	�]#,$tw�u(sV�b�bdewga��¢mqk¢sIj�sVuqu��zr��bmnwekVj�mn_zsImu|m�slmqaou�mn_�slm�r��y_zsvu`�bpqwgr�a ��we�XweunkVp�þ¢sVjz�$��a�pqwg�vaou®mn_�slm�r¢_zsvu`�bpqwgr�a ��we�XweunkVp�þ��

� kVp�s�mqa�pqrF(G B�>:;: ��$"�.%&
 'HGI#�$¤unaosVp � _zaou%}�kvp¨�bpqkXkI}-dewgjzaou¨mn_zsIm�u�mqsImna mq_zslmH(%_zsvuu�kvr�a��zpnwer�a(��wg�Xw�u�kvpquo��^`_za�jº�vw¬m � kVr��b��mqaou-�bw¬¯½a�pqa�j�m-��kvuqu�we bdea%pnao�bpna�u�aoj�mqslmqwgkvjzuîkI}(º zsvu�a�� kVj�mn_ba`una
m,kI}bmq_ba`�bpnwer�a��bwg�Xw�u�kvpqu {�I w 3 á=á&á 3 I�J | ��^`_zsImîw�u��I}�kVpîaos � _�u��z zu�a�m{�I wLK 3 á&á=á 3 I�J K | kI} {�I w 3 á&á&á 3 I�J | w¬m`pqa
mn�zpnjzu�mn_za¨�bpqkXkI}ºdewgjbaG(R I w�K v á&á&á v I�J K v4�NM�}�kvpu�kvr�aywej�mnaoxVa�pÏ�.M��
,)�="��YG.-?����K���/�D7"H��
 �>�r#,$�� 04�5
²K3��-	"�$�G.01�]����D7$"�J#�$ sIjz� 04�5
²K3��%&
 '�0d�768����#,$sIpqa�sI�z�bdgweao�¸c%_ba�jbao�Vaop���kvuqu�we bdea�sIj��5jbk�xv�bw��bsIj � a¢w�u�pqaoÀ��bwepna��¡��^`_ba�sI�b�zdgw � sIfmnwekVjZkI}¨mq_ba�r�a�mn_bk��O B�>:;: ��$"�.%&
 'HGI#�$���_zklc®ao�Va�p��,weu�xv�bw���ao�@ �{´mq_ba � kvjvmqpnkvd®pq�bdea

·+¾F¾��IL�Âd¿ À����F»�¿Y¸qÃ�ÄY¼�¹���c%_bw � _��bpqa
}�aopqu< B�>:;: ��$"�.%&
 'HGI#�$ c%w¬mq_�pqaoun��a � m¨mqk�s¢mnaopnrF(sVuºunkXkVj2sVu¡mn_baopna-sVpna)�bpqkXkI}Xdgwejba�u¡mn_�slm�u�mqsImna,mn_�slm4(½_zsvuºu�kvr�a)�bpnwer�a���we�XweunkVp�u��º^`_zasI�b�zdgw � sImnwekVj�kI}�A)CWDXEYGZ�J#�KKweu®xV�zwe��a��� X{�mn_ba � kVj�mqpnkvdzpq�bdga)·+¾F¾��IL�Â1Û�¹7B�PW¹?¸���c%_bw � _u|m�slmqaou�mq_zslm��(sl}�mqa�p�sVj7sI�b�bdew � slmqwgkvj7kI}� 6�
:;: ��$"�.%&
 'HGI#�$��,mn_za�r�a
mq_bk��<A)C�DFEHGI�J#4Ku�_zkV�bd�� �a�sV�b�bdewga�� wej�kvpq��aopºmqk1�zuna®mn_ba�aoÀ��zsImnwekVjzu�pna�u��zd¬mqwgjbx1}�pqkVrQ B�>:;: ��$"�.%&
 'HGI#�$��� _ba�j�s�r�a
mq_bk���u�� � _�svu�A)C�DXEYGZ�J#�K��
01�5
²K3��-	"�$�G.01�]����D7$"�J#�$��lkVp*01�2
²K@��%&
 '�0d�768�	�]#

_][^§^9� \9M�¨�M Yl^ _ $ M QD��© L ��ª�«D¬&­�®=¯5°��Dª M�L±[D[��� L ^�Q��9Y L ���²^9�´³ H H,e,e

$«w�u-sV�b�bdewga���mnk�unkVr�a%�bpqa�r�w�u�a�u��lmq_ba�j¢mn_ba¨uqsIr�a%r�a
mq_bk���weu�sl}�mnaopnc`sIp��bu)sV�b�bdew � slf bdea�sVxvsIwej�mnk�mq_ba�uqsIr�a2�bpqa�r�weunaouo�z��aopnwe�Xwgjzx�mn_ba�unsVr�a2pqaoun�bdgmo�`^�k¢s��vkVw���a�jz��deaouqudekXkV�zu¡kV}zu�� � _2r�a�mn_bk��buo�lc�a�sV�b�bao�ymn_za � kvj�mnpqkVdIpq�bdea�¶d»�RF»�¿?¸�Â��XÀ~À+¾¡��c%_bw � _� bdgk � h�umq_ba2pnao��a�slmqao��sI�b�bdew � slmqwgkvj�kV}îs­}�kVpqc`sIp��¢r�a
mq_bk���mqk�mn_ba uqsIr�a��bpqa�r�w�u�a�u��
ø�g!Ê â�cBc5Ð
j�uCÍDüTSVU3W�X*Yym�ú�mJÚ§n[Z \4] ùyt�ú�hêÐ!ndo
¶@·º¹
»¡¼ � kVj�u|mqpn� � mqu�jbklcNs­�zpnkXkI}î�bd�sIj�sVu�}�kvdgdeklc(u�²� wgp�u�mo��w¬m�sV�b�bdewga�u½mn_za-r�a
mn_zkX�zu:$�� G4G�������
 �>�r#,$�� ���+�"! #,$�������
 GI�ZG��F#ZC~�����J#,$����������F#
$���sIj��G,)�#"��YG.-?����K���/dD�"H��
 �
�H#,$��qwgj2kvpq�ba�p½mnk(sV�b�bde{(mq_ba)mn_za�kVpqa�r<�~�FÆ�Â1pF��qHÆ~�~��qIG Å½�mqk2aou�mqsI zdgw�u�_�sIj�wejz��wepna � m-�bpqkXkI}|��sIjz��mnk ��a � kvr���kvuna%a
±�w�u|mqwgjzxya�±�weu�mnaojvmqwesVdgde{­À��zsVj�fmqw¬�za���}�kVpqr��bd�sIaykVp � kVjl�|�bj � mnwekVj�u�� ý
õ�� � õ�� ® c ©³� èIü�í�ìJó4ì © ìZæJðZó � k Ñ î © � ¨ �
l µ m�� ï� èIü�í�ì�ó4ì © ìZæ�ðZó � k Ñ î © � ¨ �
l µ� ê ôJÑ��]Ð�� ó�í�çIè4ì � ìZòJðZó ¨4®�Ñ î © � ¨ � ®�Ñ î © � ¨ � ®��ô æ�ó � èIü�í�ì�ó4ì © ìZæ�ðZó � k Ñ î © �����
l µ� îIæ�çZç4æ ô4©�Ñ í�ñ,í�ìZæ�ð Ñ î © � ¨ � Ñ î © � ¨ � Ñ î © ����� ®Z®í ô ó ®Z®Z®I®í ô ó ®Z®í ô ó ®õ�� � õ�� ® c ©³� ê ôJÑ�� í ô ó�î4æ ô ì�ó�	 ® m�� ï� èIü�í�ì�ó�ì © ìZæ�ðIó � k Ñ î © � ¨ �
l µ� ê ôJÑ
�]Ð�� ó,í�çZè4ì � ìZò�ðZó ¨4® îIæ ô ì�ó�	 ®�Ñ î © � ¨ � ®��ô æ�ó � èIü�í�ìJó4ì © ìZæJðZó � k Ñ î © �����
l µ� îIæJçZç4æ ô4©�Ñ í�ñ�í�ìIæ�ðÏîIæ ô ìJó�	 Ñ î © � ¨ � Ñ î © ����� ®I®í ô ó ®Z®Z®Z®í ô ó ®I®õIÿ � õ�� ® c ©³� í ô ó�î4æ ô ì�ó�	 ® ê ª4� è ©�¤ a � õ�� ®õ�� � õ�� ® c ©³� èIü�í�ìJó4ì © ìZæJðZó � k Ñ î © � ¨ �
l µ ê ª4� è ©�¤ a � õ�� ®� ê ôZÑ��]Ð³� ó�í�çZè4ì � ìZò�ðZó ¨4® îIæ ô ì�ó�	 ®1Ñ î © � ¨ � ®��ô æ�ó � èIü�íJì�ó4ì © ìIæ�ðZó � k Ñ î © ������l µ� îIæJçZç4æ ô4©�Ñ í�ñ�í�ìIæ�ðÏîIæ ô ìJó�	 Ñ î © � ¨ � Ñ î © ����� ®Z®í ô ó ®Z®Z®Z®í ô ó ®õ�� � õ�� ® c ©³� ê ôJÑ�� í ô ó�î4æ ô ì�ó ¨�® m�� ï� ê ôJÑi�ËÐ�� ó�í�çIè4ì � ìIò�ðZó ¨4® îIæ ô ì�ó"	 ® îIæ ô ì�ó ¨4®�]ô æ�ó � è4ü�í�ì�ó4ì © ìZæ�ðZó � k Ñ î © �����
l µ� îIæ�çZç�æ ô4©�Ñ í�ñ�í�ìZæ�ðÏî4æ ô ì�ó�	�îIæ ô ì�ó ¨�Ñ î © ����� ®Z®í ô ó ®Z®I®Z®õ
	�	 � õ�� ® c ©³� í ô ó�î4æ ô ì�ó ¨�® ê ª4� è ©�¤ a � õ�� ®õ
	 ¨×� õ�� ® c ©³� ê ôJÑ��ËÐ³� ó�í�çZè4ì � ìIò�ðZó ¨4® îIæ ô ìJó�	 ® îIæ ô ì�ó ¨4® ê ª4� è ©�¤ a � õ�� ®�]ô æ�ó � èIü�í�ì�ó�ì © ìZæ�ðIó � k Ñ î © �����
l µ� îIæ�çIç4æ ô4©�Ñ í�ñ�í�ìZæJðÏîIæ ô ì�ó"	�îIæ ô ìJó ¨�Ñ î © ����� ®Z®í ô ó ®I®Z®õ
	
� � õ�� ® c ©³�]Ð³� ó,í�çZè4ì � ìZò�ðZó ¨�® îIæ ô ì�ó�	 ® î4æ ô ì�ó ¨�® ê ª4� è ©�¤ a � õ
	 ¨4®õ
	�� � õ�� ® c ©³��ô æ�ó � èIü�í�ì�ó�ì © ìZæ�ðIó � k Ñ î © �����
l µ ê ª4� è ©�¤ a � õ
	 ¨4®� îIæ�çIç4æ ô4©�Ñ í�ñ�í�ìZæJðÏîIæ ô ì�ó"	�îIæ ô ìJó ¨�Ñ î © ����� ®Z®í ô ó ®I®Z®õ
	
� � õ�� ® c ©³�]Ð³� ó,í�çZè4ì ¨³� ï4æ��IèZð�îIæ ô ì�ó�	 ¨4®I® óIðIê ô ì�û�æ�ðZçZè4ò ö êJó�í�æ ô4© çOa � õ
	
� ®� ï�æ��ZèZð�î4æ ô ì�ó ¨�¨4®Z®

^ ��(C�!�?��¡�¡ 	�R�_&`>aba5c�dfebg h�i�jk_�R¤�D����(�P������¡����'��- !".&/�2
-3)�."$�-3)�,
4�Rê��¡��!�¥��"/���!�/����('�'�������=���Î�1"�¡���"��l7m R"�D����(�¥����('¡����!�'��'�	=�!�������C�����7�@n�cko�ckp�jk_�¤ ��������¡���"��h�!�'����¡ �!�
�;�!���É�����!�£��'�¡��Z'���"�����"�#�����"��!�'�T�
"?��¡Î�!�5�!�����!���'�����1� ������¡���(1� ������"����!�/(1�'����¤ L �����!� �!�'�h���?� ���!���������!�£��'�¡��)q m R\�D����(!��('���!���'�!�Î��"����
�!�&��������"�� ���'�!� ��¡�¡ 	607����"/��� �?�'�´�����!�£��'�¡�����"U- !".&/�2
-3)�."$�-3)�,
4�Rh�?���*�!�x'Î�V'Î����"��»���·�������!�'�!�r #Ns�- .�t�u�¤]�������A'���"�����"�#%�?������¡��!�1����	�'Î�'�1"�������¡����'�����%�����§�!�'���D���l�����=���!�/���Z�;��¤ #�¤�R���" l t % ¤

µ,f,fKJ7L
MON $P�9Q9Q5R�S M Q9TU$WVXDYZY MO[R�� L
M]\ Y MO[R?$ M�L
MO[R?Q9^ [$P�9Q9Q5R7��Q \W_ ^9YZY M �

õ
	�� � õ��Ïõ���õ�� ® c © ûIêIõIì�è æ�ïZè ôõ�� � õ��wõ�� ® c © ûIêIõIì�è è Ì4¬Z¥���¥Z�Z© ì ¡� I�4©�¤ a � õ��wõ
	�� ®õ�� � õ�� ® c © ûIêIõIì�è è Ì4¬Z¥���¥J�Z© ì ¡J Z�4©�¤ a � õ��wõ�� ®õ ¨���® c ©×��ô æ�ó � è4ü�í�ì�ó4ì © ìZæ�ðZó � k Ñ î © � ¨ �
l µ ô æ�ó�í © çIa � õ�� ®� èIü�í�ì�ó�ì © ìZæ�ðIó � k Ñ î © � ¨ �
l µ� ê ôJÑ
�]Ð�� ó,í�çZè4ì � ìZò�ðZó ¨4®�Ñ î © � ¨ � ®�Ñ î © � ¨ � ®��ô æ�ó � èIü�í�ìJó4ì © ìZæJðZó � k Ñ î © �����
l µ� îIæJçZç4æ ô4©�Ñ í�ñ�í�ìIæ�ð Ñ î © � ¨ � Ñ î © � ¨ � Ñ î © ����� ®I®í ô ó ®Z®Z®Z®í ô ó ®Z®í ô ó ®Z®õ
	 ��® c ©×�]Ð ü
	 � ìZò�ðZó ¨�®Z® ðZèIûIõJèIü © çìZò�ðZó ¨Z©�ô æ�ó © ðIêJó �°®dc ©×��ô æ�ó � ð4êJó � ìZòJðZó ¨4®Z®I® ç4ê ¥Z¥J�� I��¬J¡�ª�© çOa � õ ¨4®
ä a
±Xm����zunwejbx�mn_ba�aoÀ��zslmqwgkvj��Þvê��élë��õÈ Â � R ��éIë
�õÈ�� � wej�dewgjba÷�ZÅ¤� þ mn_ba�r�a�mn_bk��bu

04�5
²K3��-	"�$"G.01�Ë����D�$,�J#,$�sVjz�+01�2
²K@��%&
 '�0d�768�	�]#�$���a�pqwe�Va-mq_zslm���élë���È��¨_zsvuºmq_ba`�bpnwer�a��we��w�unkVp(���
õ
	�� � õ��Ïõ�� ®Uc ©�� ïZð�í�çZè ©�Ñ í�ñ�íJìZæ�ð ¨�� ï4æ��ZèZð�îIæ ô ì�ó ¨Ï¨4®Z® ïZð�í�çZèZûIêZî4ì © ïZð4æ ÑZö îJó © çOa � õ
	�� ®õ
	�ÿ � õ��Ïõ�� ®Uc ©�� ïZð�í�çZè ©�Ñ í�ñ�íJìZæ�ð ¨ î4æ ô ì�ó ¨�® ïZð�í�çZè Ñ í�ñ © ï�æ��ZèZð © çOa � õ
	�� ®
^`_ba�jº�& 6�
:;: ��$,�.%&
 'YGZ#,$ � kVr��b�bmnaou�s�pnao�bpqaouna�j�mqsImnwekVj/}�kVp¶��élë��õÈ��$c%w¬mq_5pna�u���a � mmnk¢dewejbaÍ�ZÅ7vz� Æ wej � aw 6�
:;: ��$,�.%&
 'YGZ#,$ wgj�mqpnk���� � aou(s�jza�c._X{���kImq_baounw�u%wgj�dewejbaÍ�ZÅ¤��wgmpna���� � aou)sId�unk1mq_ba(kv��aoj�dewejba��ZÅ¤¬ymnk�mq_ba%jba�c£kv��aoj�dewejbaÏ�K«^¬��Ic%_zw � _�sId�unk � kVj�mqsVwgj�umn_ba2jza�cN_�{X��kImq_baounweuo�

õ
	�� � õ
	�� ® c ©�� ê ôJÑ�� í ô ó�î4æ ô ì�ó�� ®÷�]Ð îIæ ô ì�ó ¨³� ó�í�çZè�ì ¨ îIæ ô ì�ó�� ®Z®I® m�� ïõ ¨ 	 � õ
	�� ® c ©�� í ô ó�î4æ ô ì�ó�� ® ê ª4� è ©�¤ a � õ
	�� ®õ ¨Z¨×� õ
	�� ® c ©��]Ð îIæ ô ì�ó ¨×� ó�í�çZè4ì ¨ îIæ ô ì�ó�� ®Z® ê ª4� è ©�¤ a � õ
	�� ®

õ ¨ � � õ
	��Ïõ��wõ��Ïõ�� ®uc © ûIêZõIì�è æ�ïZè ôõ
	�� � õ��Ïõ���õ�� ® c © ûIêZõIì�è î4æJõZõJèIîZó Ñ í�ñ4ì © çOa � õ ¨ �Ïõ
	�ÿ ®
ä a
±Xm���mq_ba�r�a�mn_bk��buÖA)C�DFEHGI�J#4K sVjz�x,)�#"��HG�-?����Kw��/dD�"H��
 �
�H#�$³�ba�pqwg�va c%w¬mq_�mn_zajba�cNpqa��bpqaouna�j�mqsImnwekVj�}�kvp·��élë
�õÈn��mq_ba2aoÀ��zsImnwekVj�wgj$dewgjba÷�K«M���

õ ¨ � � õ
	��Ïõ�� ®Uc ©³�]Ð³� ó,í�çZè4ì ¨�� ï4æ��ZèIð�îIæ ô ìJó�	 ¨4®I® Ð4¥�±Z¢�¥��4©�¤ a � õ
	
�wõ ¨Z¨4®� ï�æ��ZèZð � ó�í�çZè4ì ¨ îIæ ô ìJó�� ®�¨4®I®õ ¨ � � õ��Ïõ
	
� ®Uc ©³�]Ð³� ï�æ��ZèZð�î4æ ô ì�ó�	 ¨4® óZðIê ô ì�û4æ�ðIçZè4ò ö êZó�í�æ ô4© çOa � õ ¨ � ®� ó,í�çZè4ì ¨�� ï4æ��ZèIð�îIæ ô ìJó�� ¨4®I®Z®
^`_ba�jº�%c%wgmn_Dpna�u���a � m�mnk5mq_bweu�aoÀ��zsImnwekVj mn_ba�r�a�mn_bk��buy01�2
²K3��-	"�$"G�04�Ë���dD�$,�J#,$sIjz�y01�2
²K3��%&
 '�0��768�	�]#�$ ��aopnwe�Vaymn_�slmÒ��élë���È Â _zsvu�mn_ba2�zpnwer�a ��wg�Xw�u�kvp(���

õ ¨ � � õ��Ïõ
	
�wõ�� ®dc ©�� ïIð�í�çZè ©�Ñ í�ñ�í�ìIæ�ð ¨×� ï4æ
�ZèZð�îIæ ô ì�ó�	 ¨4®Z® ïZð�í�çZèZûIêZî4ì © ïZð4æ ÑZö îJó © çOa � õ ¨ � ®õ ¨ ÿ � õ��Ïõ
	
�wõ�� ®dc ©�� ïIð�í�çZè ©�Ñ í�ñ�í�ìIæ�ð ¨ îIæ ô ì�ó�	 ® ïZð�í�çZè Ñ í�ñ © ï�æ��ZèZð © çOa � õ ¨ � ®
� wejzsVdgde{V�� 6�
�H�!�="���
 $,��
 �>�	 6�dK÷K��
��%&
 '	
 G4����#,$ � dgk�u�a�u�mn_ba-kv��aoj2dgwejba:�K«M¬%sIj���¶¸·º¹�»½¼mnaopnr�wejzslmqaou`c%wgmn_�mn_ba���jzsIdºdewejbaV²

õ ¨ � � õ
	��Ïõ��wõ��Ïõ�� ®uc © ûIêZõIì�è îIæ ô óZðIê Ñ í�îJó�í�æ ô îIæ�çZç4æ ôJÑ í�ñ�íJìZæ�ð © çIa � õ
	��Ïõ ¨ ÿwõ
	�ÿ ®
z ª��'�!��R������9���7�!����� ����(1��¡�¡ 	%#��'"��'� � ���'��('��"��B� ��"����§:Ìóõû?@ E k ��"��&:Ìóõû?@ E H �!�'��¡£��('�D�����D('��"����!��"/���

{ ��"��@|·R?���'�!�Î�'('��� ���'¡ 	�R?��"������§��"��!�'� ��(C��� ���=���!�/����#�� ���1"���" J �1(C������" H ¤

_][^§^9� \9M�¨�M Yl^ _ $ M QD��© L ��ª�«D¬&­�®=¯5°��Dª M�L±[D[��� L ^�Q��9Y L ���²^9�´³ H µ,fHk

^`_bw�u¨sV��mnkvr�sImnw � sVdgde{¢xVaojba�p�slmqao���bpqkXkI},�bdesVj�pna�À��bwgpqao��deaouqu`mn_�sIj$}�kV�zp¨u�a � kvjz�bu× Ý*¼Nmnwer�a­kVj�s Â1á c Ü æ¨Á�Ý,a�j�mnwe�br Í�ÍnÍ%r�s � _bwejba2c%w¬mq_ ä�Â ��¿ e b¨Ó ¿ pq�bjbjbwejbx
�jqYÅXÇK}½� Ó � kVjzunwe�ba�p�sI bdea®sVr�kv�bj�mîkV}bmnwer�a`c�svu�pqaoÀ��bwepna���mnk � sVdgd�mq_ba®a�±Xmna�pqjzsVd � kVr�f�b�bmna�p sVdgxva� bp�s�un{�u|mqa�r ¶¸ªDãb¹�§�m|c%w � a�c%wgmn_bwej°mn_ba�sI�z�bdgw � sImnwekVjzuykV}�mn_za�r�a�mn_bk��01�2
²K@��-	"�$"G�04�Ë���dD�$,�J#,$��v^`_ba � kVr��bdea
mqa(�bpqkXkI}º�bd�sIj � sIj�mq_ba�j� �a1�zsVuqu�a���mnk»ÀvË�ènÇ Âî�c%_bw � _ �bpnk���� � aou�s°jzsImn�bp�sId`d�sIjbxv�zsIxva��zpna�u�aojvm�slmqwgkvj@kI}ymn_za��bpnkXkV}ysVu�xvwg�va�j wgj� wexz��Úz�%^`_bweu � kvj � de�z��a�u`mn_ba��zp�u|m¨�z_zsVunaV�zmn_zsIm¨weuo��mn_ba�sV��mnkvr�slmna�� � kvjzu|mqpn� � mnwekVjkV}¨s��bpqkXkI}(�bd�sIj���sIjz�¸c®a$u�_�sIded®jbklc³dekXkVh5slm�mn_za�una � kVjz�@�b_zsVunaV�,mq_zslm�w�u��)mq_baa�±X��sIjzunwgkvj�kV}�mq_bweu(�bpnkXkV}��bd�sIj�mnk¢sVj ä Ø(fÌdgao�Vaod¡�bpnkXkV}|�

ø�g ø Ë�ÌXc9Ï]Í9kdu ú�Í
Ó dgd�r�a
mn_zkX�zuº�zunao�2wej­¥%¦1§z©ºª�_�s��Va�svuº�zsVp�m�kV}Xmn_baowgp,u���a � w¬� � slmqwgkvj�mn_ba®hXjbklc%dga���xVakvj _zklc�mqk¸a
±��zsVjz�¡� Ó r�a
mq_bk�� � kvjvm�sIwejzu¢s¸u � _baor�sImnw � �bpqk�kV}�una�xvr�a�j�m¢mn_�slmun_bklc(u�_bklc´mnk���a�pqwe�Va�wgmqu � kVj � dg��u�wekVjzu�}�pqkVr.w¬m�u,�bpqa�r�weunaou��zunwgjzx¨m�s � mqw � u,sIjz��pn�bdeaouo�� _baoj�sIj�sV�b�bdew � slmnwekVj�kV},mn_ba r�a�mn_bk���w�u(a�±X��sIjz��a��¡�bmq_ba�j�mn_ba �zpnkXkI}-u � _ba�r�s�w�uwejzu�mqsIj�mqwesImnao��sVjz��wgj�mnpqk���� � ao��wgj�mqk�mn_ba%�bpqkXkI}½�bd�sIjy�|�zu�mnwg}�{�wejbx2mq_ba � kvj � de�zunwgkvjzu,kI}mq_ba�r�a�mn_bk���}�pnkvr³w¬m�u`�bpqa�r�weunaou`sIm`s­dgklc�a�p�dea��Vaod½kI}îsV zu�mnp�s � mqwgkvjº� ä kImqaymn_zsIm�mq_bar�a
mq_bk��bu�kVjzdg{�un��a � wg}�{�mq_ba�wep���wepqa � m2a�±X��sIjzunwgkvj�dea��va�di�ºmn_za�pqa � �bp�u�we�Va�a
±��zsVjzu�wekVjw�u`�zsIpnm%kI}îmn_ba2kl�va�p�sIded�a�±��zsIjzunwekVj��bpnk � aouqu��Ó u�sIj	a
±bsVr��zdgav� � kVj�u�w���a�p mq_baUa�±X��sIjzunwgkvj0kV}}04�5
²K3��%&
 '�0d�768����#,$ sIjz�
01�2
²K@��-	"�$"G�04�Ë���dD�$,�J#,$��Vc%_bw � _���aor�kVjzu�mnp�slmqa¨wej��zsVp�mqw � �bdesVp�_bklcKsv�b��wgmnwekVjzsVd�mn_baokIfpqa�r�u%sIj���unkVpnm(u|m�slmnaor�a�j�mqu%sVpnay}�kV�zjz�$sIjz��mnpqaosImnao��wej�mq_ba2a
±��zsVjzunwgkvj��bpqk � a�unuo�
^`_ba�a�±X��sIjzunwgkvj�u � _baor�s­}�kvp<04�5
²K3��%&
 '�0d�768����#,$ w�u(svu�}�kVdedgklc(uo²
�²Ñ èIîZõ © î4æ ô óZè ô ó� ì
� �°®÷� ïZð,í�çZè ©�Ñ í�ñ�í�ìZæJð ô�� ï4æ
�ZèZð�ê�ç ®Z®Z®� ì�	 �°®÷��ô êZó�ç ® ��´ �ZèIõIõIìZæ�ðZóIè Ñ�´¦�°®Z®I®� ì ¨³�°®÷� í ô ó ô�® ��´ �ZèIõIõIìZæ�ðZóIè Ñ�´¦�°®Z®I®� ì�� �°®÷� í ô ó�ê ® ��´ �ZèIõZõIìIæ�ðZóZè Ñr´)� í�ê ®I®Z®� ì
� �°®÷� í�çIïIõ�í�è4ì � ïZð�í�çIè ©�Ñ í�ñ,í�ìZæ�ð ôi� ï4æ��ZèIð�êÏç ®I®� ïZð�í�çIè ©�Ñ í�ñ,í�ìZæ�ð ô ê ®Z® ��´ û�æ�ðIêZõZõZè © ìZæ�ðIó Õ�´¦� ïZï Ñ ì�	wì ¨ ì�� ®Z®I®� ì�� �°®÷� ïZð,í�çZè ©�Ñ í�ñ�í�ìZæJð ô ê ® ��´ í�çZïZè ´Ö�°®Í� ì���ì
� ®Z®I®Z®

^`_bw�u �bpqkXkI}%u�aoxVr�a�j�m�pqa��zpna�u�aojvm�u2s��bpqkXkI}%slm m�s � mqw � dgao�Va�di��ÍÌm­u�_zklc(u2_bklctmnk��aopnwe�Va�dgwejbau�^�/��mq_ba � kVj � de�zu�wekVj�kI})mn_za­r�a
mq_bk��z�(}�pnkvr dewejbaU�M¬/��mq_ba­�zpnaor�w�una�kI}mq_ba1r�a�mn_bk��z�
�-^`_bweu®�bpqkXkI}�una�xVr�aojvm��zunaou®mn_baÇ�dÀINd»X¶�ÂI�~¶�Ä"ÁW»qÂI��ÄY¼WÄX¹ À+¶ymn_baokVpqa�r$�c%_bk�u�a%wej � kVpq��kvpqsImnwekVj�wej�mnk2mq_ba(�bpqkXkI}½�bd�sIj����bpqwgjzx2mn_ba¨a
±��zsIj�u�wekVj�kI}ºsIj�sV�b�bdew � slfmqwgkvj�kV})01�5
²K3��%&
 '�0d�768�	�]#,$�w�u-un��a � wg�zao��wej�mn_ba¨r�a�mn_bk��� X{­s�unkIf � sVdgdeao�­a
±��zsVjzu�wekVj� kVr��b��m�slmnwekVj ��una�a � ¿�a�wea�p�Ç�È1ÉlÊgËe�î�I�V���IsI�e�õ��^`_baU�qÀIN�»X¶�ÂO�~¶WÄ"ÁW»~ÂI�WÄY¼WÄ+¹+À+¶�mn_baokIfpqa�r¤w�u%sI z bpnao�XwesImnao��wej�mq_ba2�bpqkXkI}îuna�xvr�a�j�m(sVu��M�M�¢sIjz��wgm(weu`�zunao��mqk��ba�pqwg�va��1�½�^�k�sI�z�bdg{�mn_za mn_za�kVpqa�r c�a _zs��Va mnk¢a�u|m�sI bdeweun_�unkVr�a�unkVpnm1u|m�slmqa�r�a�j�mqu(}�kVp��/���)�sVjz� O wej¸mq_ba$dgwejbaouu�M¬�� ��ÅV�®sIjz�Ì�^«��)pqaoun��a � mqwg�va�de{V� Æ wej � a � sIjz���Kk ��� �bp�wgjmq_baysV�b�bdew � slmqwgkvj¢�zsIpnm`kI}ºmq_ba�r�a�mn_bk��¡�Xmq_ba�pqa¨w�u`s � kVj � pna�mna1jzslmq�bpqsVd½j��zr� �a�p`sIjz�s � kvj � pqa
mqa�wgj�mnaoxVaopo��pna�u���a � mnwe�Va�de{V� � a � sVj´�bpnkl�va�mq_baouna¢unkVpnm2u�mqsImnaor�aoj�mqu2c%wgmn_

µ,f�HKJ7L
MON $P�9Q9Q5R�S M Q9TU$WVXDYZY MO[R�� L
M]\ Y MO[R?$ M�L
MO[R?Q9^ [$P�9Q9Q5R7��Q \W_ ^9YZY M �

� wgxv�bpna-Úz� ä slmn�zpqsVdIdesVjbxV��sIxVa)�zpnkXkI}X�bpqaouna�j�mqsImnwekVj�kI}Xmq_ba��bd�sIjzjbao���bpqkXkI}� X{PÀ�Ë�ènÇ�Âî�

_][^§^9� \9M�¨�M Yl^ _ $ M QD��© L ��ª�«D¬&­�®=¯5°��Dª M�L±[D[��� L ^�Q��9Y L ���²^9�´³ H µ,f�µ

mq_ba m�s � mqw �ËÆ �~�~�K�KG+�FÆ~�M�½��^`_ba��lsIpqw�sI bdea O ��kXaou¨jbkImypnao�bpna�u�aoj�m1s � kvj � pqa
mqa jX�br�f �a�p��¡mn_X�zu�c�a�_zs��Va­mnk���aopnwe�Va­}�pnkvrUa
±�w�u|mqwgjzx�_X{X��kImn_zaounaou1mn_zsIm O weu2sVj/wej�mnaoxVa�p��^`_bw�u���a�pqwe��sImnwekVj°weuy�zsVp�m2kV}�mn_za�sV�b�bdew � sI bwedew¬m|{ � _ba � h�kI}®mn_ba�r�a
mq_bk��/sVjz��mq_baouna_X{X��kVmn_ba�u�a�u%sIpqa1pqa��zpna�u�aojvmqao��sI �kl�Va�sVuÞqY�¢wejº�MÊ��
01�2
²K3��%&
 '�0��768�	�]#�$ ��aopnwe�Va�u�dgwejba
�ZÅ7v�� � _baoj¸wgm�weu a
±��zsIj���ao�¡��mn_za�}�kVdedgklc%wejbx�bpqkXkI},u�aoxVr�a�j�m%weu%sv�b��a���mqk�mn_ba2�bpqkXkI}î�bdesVjº²

õ
	
� � õ���õ�� ®Uc ©³� ïZð�í�çZè ©�Ñ í�ñ�í�ìZæ�ð ¨³� ï4æ��IèZð�îIæ ô ì�ó ¨Ï¨4®I® ïIð�í�çZèZû4êZîIì © ïIð4æ ÑZö îZó © çOa � õ
	
� ®õ ¨ � �°® c ©³��ô êJó ¨4® �IèIõZõIìZæJðZóZè Ñ a �°®õ ¨ � �°® c ©³� í ô ó ¨4® �IèIõZõIìZæJðZóZè Ñ a �°®õ���� � õ�� ® c ©³� í ô ó�îIæ ô ì�ó ¨4® �ZèIõIõIìZæ�ðZóIè Ñ a � õ
	�	 ®õ��
	 � õ�� ® c ©³� í�çZï4õ�í�è4ì û�æ�ðIêZõZõZè © ìZæ�ðIó Õ a � ïZï Ñ õ ¨ ��õ ¨ �wõ���� ®� ïZð,í�çZè ©�Ñ í�ñ�í�ìZæJð ¨×� ï4æ
�ZèZð�îIæ ô ì�ó ¨�¨4®Z®� ïZð,í�çZè ©�Ñ í�ñ�í�ìZæJð ¨ îIæ ô ì�ó ¨4®Z®õ
	Jÿ � õ���õ�� ®Uc ©³� ïZð�í�çZè ©�Ñ í�ñ�í�ìZæ�ð ¨ îIæ ô ìJó ¨4® í�çZïZèOa � õ���	�õ
	
� ®

æ(aopnav�*�M�M��u�mqsVjz�bu(}�kVp(mq_bax�dÀIN�»X¶dÂI�~¶WÄ"Á�»qÂI�WÄY¼�ÄX¹+À ¶�mn_baokVpqa�r$�(^`_bw�u(mq_ba�kvpnaorw�u`jbklcDwejzuna�pnmna���wej�mnk�mn_za2�bpnkXkV}��bd�sIj$sVuo²
ïZï Ñ�� ïZï Ñ"®Uc © � û4æ�ðIêIõZõ © ìZæJðZó � k ô l µ ó m ç� û4æJðIêZõZõ © ìZæ�ðZó � k Ñ l µ� û�æ�ðIêZõZõ © ìZæ�ðZó � k²ü�l µw� í�çZïIõ�í�è4ì � ïIð�í�çZè ©�Ñ í�ñ�í�ìIæ�ð Ñi� ï�æ��ZèZð�ü ô�®Z®� ïIð�í�çZè ©�Ñ í�ñ�í�ìIæ�ð Ñ ü ®I®Z®í ô ó ®Z®í ô ó ®Z®ô êJó ®Z®Z®

Æ �q�F�K�KG+�~ÆF�M��sIjz��~½G+�~�q�~�X��Â^�KG+�FÆ��­sVpna�mqs � mnw � uo�ºc%_bk�u�a�sI�z�bdgw � sImnwekVjzu � sIj� �aa�±X��sIjz��a��¢sI�bmnkVr�sImnw � sIdede{V�îÍÌ}�sIded�kV}ºmn_zweu�w�u®��kvjbaV��mq_ba1pqaoun�bdgmnwejbx�dekVxvw � fidea��va�d��bpnkXkV}una�xvr�aoj�m%�ba�pqwg�vaou��ZÅ�v­}�pqkVrM�ZÅ\Î�wej ÂoÙ u�mna���u��
^`_ba��bpqk�kV}1u � _ba�r�s�kV}�01�2
²K@��-	"�$"G�04�Ë���dD�$,�J#,$Îu���a � w¬�za�u­mn_zsIm­mq_ba � kVj � de�zu�wekVjkV}-mn_ba­}�kVpqr��zdesz�¡dgwejbau�^«��¡w�u���a�pqwg�vao�� X{�sVj/sI�z�bdgw � sImnwekVj/kI}-mq_ba�mqs � mnw � �M}M�~�~Å^��Â

ÂI�~��q\H~��~~�KpM�1�~�ÖGI�+Ç½pFÆ�mnk�mq_ba2�bpqa�r�weuna�kI}�mn_ba2r�a
mq_bk���wgj$dewgjbax��Åv²
�²Ñ èIîZõ © î4æ ô óZè ô ó� ì�	 �°®÷�]Ð ê ë�®Z®� ì ¨³�°® îIæ ô
��öIô îJó,í�æ ô ��´ èIüJï4ê ôJÑ�© ïIð�í�çZèZû4êZîIì�ïZð�æ ÑZö îJó ´Ï�°®×� ì�	�ìIæ�ðZó © ïIðZèZç4ì ®I®Z®Z®

æ(aopnav� p½G+Å
�?ÇdÅKpFÆjqIG+Å�w�u�s�un�b zu�mnwgmn��mqa�}�kvp�mn_ba�s � mn�zsVd � kVjl�|�zj � mqwgkvj@kI}¨mna�pqr�u
Ñ��~��q\H~��ÂI��q\��qO�KG+�®��}�ÓX�½c%_bw � _/sIpqa � kVr��b�bmnao�°���bpqwejbx�mn_ba�sI�z�bdgw � sImnwekVj/kI}�mq_bar�a
mq_bk��¡� Ó u%kV�b��kvunao��mnk�mq_ba2a
±��zsVjzunwgkvj�kV},s�r�a
mq_bk��¡�zc%_bw � _$weu¨u|m�slmna����ba � d�sIpnfsImnwe�Va�de{V�Xmq_ba2a
±��zsVjzunwgkvj�kI})s­mqs � mnw � weu(xVwe�Va�j� X{�ss¹ºÍ Æ ÝZ}��bj � mnwekVj��^`_bayr�a
mn_zkX��04�5
²K3��-	"�$"G.01�Ë����D�$,�J#,$t��aopnwe�Va�u�dewejba¦�ZÅ¤Î�� � _za�j�wgm%weu®a
±��zsVjz��a��¡�jbk�jbaoc��zpnkXkI}îdgwejba�u%sIpqa�sv�b��a��¡�� b��m%mq_ba`�|�zu�mnwg� � sImnwekVj$kI} �ZÅ\Î�w�u � _zsVjbxVa��¡²
õ
	�	 � õ�� ® c ©³� í ô ó�îIæ ô ì�ó ¨4® ê ª4� è ©�¤ a � õ�� ®õIÿ � õ�� ® c ©³� í ô ó�îIæ ô ì�ó"	 ® ê ª4� è ©�¤ a � õ�� ®õ
	
� � õ�� ® c ©³�]Ð�� ó,í�çZè4ì ¨³� ï4æ��IèZð�îIæ ô ì�ó�	 ¨4®I® óIðIê ô ì�û�æ�ðZçZè4ò ö êJó�í�æ ô4© çOa � õ
	
� ®� ï�æ��ZèZð�î4æ ô ì�ó ¨�¨4®Z®õ
	
� � õ���õ�� ®Uc ©³� ïZð�í�çZè ©�Ñ í�ñ�í�ìZæ�ð ¨³� ï4æ��IèZð�îIæ ô ì�ó ¨Ï¨4®I®èIüZïIê ôJÑ�© ïZð�í�çZèIûIêZîIì © ïZð4æ ÑZö îJóOa � õ
	���õ
	�	�õ4ÿ ®

µ,f�ÝÞJ7L
MON $P�9Q9Q5R�S M Q9TU$WVXDYZY MO[R�� L
M]\ Y MO[R?$ M�L
MO[R?Q9^ [$P�9Q9Q5R7��Q \W_ ^9YZY M �

Í¾jKmn_zweu � svu�av�¨dewgjzaou ��ÅMÅ°sIj��7��v sIpqa�r�sIjz�zslmnkvpn{ �bpqa�r�w�u�a�u¢}�kvp�mq_ba�m�s � mnw �
�M}^�~�~ÅM��ÂO�~��q¤H~��~~�KpK�O�~�½GI�+Ç½pFÆ��I^`_za�{��zpnkl�Xw���a¨mq_ba2jba � aouquqsIpq{¢u�kvp�m%wej�}�kVpqr�slmnwekVj��^`_ba1a�±��zsIjzunwekVj�kI}*�^}M�~�~ÅM�dÂI�~��q¤HF��~~�KpK�O�~�½GO�XÇ½pFÆ1c�kVpqh�u�sVu-}�kVdedgklc(uo²,^`_ba¨��pqu�m�bpqa�r�weuna�kV}÷�^}M�~�~ÅM�dÂI�~��q¤HF��~~�KpK�I�F�ÖGI� ÇÖpXÆ/w�u�sVjKaoÀ��zsImnwekVj � R é vKr½�(sIjz�7wgmqu
� kvj � de�zunwgkvj¢weu`s � kvjl�|�bj � mnwekVj�kV}ºmnaopnr�uuÑ��~�jq¤H~��ÂI�jq¤��qO�KG �£��}�ÓX��¿�kVpqa�kl�Vaopo�V}��bpnfmn_baop`�bpnaor�weunaou�kI}*�^}M�~�~ÅM�dÂI�~��q¤HF��~~�KpK�I�F�ÖG3�XÇÖpXÆ�sVpnayjba � aouquqsIpq{�unkVpnm`u�mqsImnaor�aoj�mquo�� wgp�u|m��V}�kvp�a�s � _ � kvjl�|�bj � mUÑ��~��q\H~��ÂI��q\��qO�KG+�µ��}�ÓykI}¡mq_ba � kVj � dg�zunwekVj�mn_bay��a
��jbw¬fmnwekVj$kI}ª�~�jq¤H~��ÂI�jq¤��qO�KG ��weu%a�±��zsIjz�bao�¡�
���J�,���I���I�I�J�w�I �¬�¤��Z©J�4¬�É�¬Z¥J¡� ��­¬�ª)¬�ªI�4�ZÊI�� �®�]�4����¬�ª�¬���¬J¡�ª³�Ë£I«�¤i�]ÌwªZ±Z¤,®÷�­£Z«�¤i�ËÎ�ªZ±Z¤,®×�Ë«�ª4�³�]�4¬�É�¬I¥J¡� �Ì�Î�®÷�²�I �¬�¤��ÏÌ�®Z®Z®Z®Z®�²���Z£��Í´ ó �����I 4�Z�4¬Z¯J«������4¡� w�4 �¬�¤����4¬�É�¬Z¥Z¡� �¥Hµ°´J®Z®
^`_bweu1pqaoun�bd¬m�u%wej�m|c®k�jza�c8un�b bxVk�sId�u��zpna�u���a � mnwe�Va�de{V��jzsIr�aodg{�mn_zsIm I w�u¨s¢�bpnwer�ajX�br� �a�p���}�kVpqr�sVdgweÁ�a���sVuºÑ��~�jq¤H~�¿��ÓX�½sVjz�$mq_zslm I w�uys���we�XweunkVp1kI}����½}�kVpqr�sIdewgÁoao�sVuFÑ���q¤��qO�MG+� �Ü}jÓX� e {�pqa�c%pqw¬mqwgjbx¢mn_ba­mnaopnr é v\r�mnk I v��5��v=rb� �5��weu � kvr��b��mna��}�pnkvr é sIjz� I X{�¶5ª�ãb¹v§z�õ�vmn_ba1a
±��zsIj�u�wekVj�aou�mqsV bdeweun_baou-mn_zsIm1� R I v
�2� v
rb�-_bkVd��buo�Æ wej � a­mn_bw�u�w�u1a�ununa�j�mqwesVdgde{$mn_ba���a��zjbwgmnwekVj°kI}®��we�XweunkVp�wej°¥%¦1§z©ºª-µ u2�bsImqsV zsVunaV��mn_zaa
±��zsVjzu�wekVj � sVj$�ba�pqwg�vaºÑ���q¤�jqO�KG+�¿��}�ÓX�

���J�,���I���I�I�J���4¬�É�¬I¥J¡� ³�­¬�ª)¬�ªI�4�ZÊI�� �®�]�4����¬�ª�¬���¬J¡�ª�­£Z«�¤i�ËÌ�ªZ±Z¤,®�­£Z«�¤��]ÎÏªZ±Z¤,®�Ë«�ª4�³�Ë«�ª4���­¬�ª4��Ì�®Í�°¬�ªI��Î�®I®�Ë�ZÌ4¬Z¥���¥Z©I¥J¡� Z���­£Z«�¤��]ÒÏªZ±Z¤,®Í�]Ð�Î�����¬�¤��4¥�ÌÏÒ�®Z®I®Ï¬�ªI�,®Z®Z®Z®Z®�²���Z£��Í´ ó �����I 4�Z�4¬Z¯J«������4¡� ¦¬�ªI�4�JÊI�J ��4¬�É�¬I¥Z¬�¢�¬J£4¬��IÎ?µ°´J®Z®
^`_ba1unkVpnm-�bpqa�r�weunaou®sIpqa%jba�a���ao�º��unwgj � a%mq_ba1��we�XweunkVp®��a
�zjzw¬mqwgkvj�pna�Àv�zwgpqaou,mq_zslm�r½�

I �bsVjz���Vvr��sIpqa1kV},unkVpnm%wgj�mnaoxVaopo�^�kypnaoc%pnwgmna é v�r�sVuîu�mqslmqao�­sI �kl�VaV��mq_ba`a
±��zsIj�u�wekVj _�sVu�mnkyaou�mqsV bdgw�un_2mn_zsIm é R I v��_bkVd��buo�vc%_za�pqa é � I ��sVjz��� sIpqa � kVj � pna�mna(jX�br­ �aopquo�)^`_bweu®w�u � �bpnpqa�j�mqdg{1�|�zu�mnwg�zao�� �{sIj�sI�b�zdgw � sImnwekVj�kV}�mq_ba�mqs � mnw � ÝKß p½GIHM�XÇqÆ~�~Æ�qIG Å½��mq_zslm-w�u��Vw¬m-w�u,�Vaopnwg�zao�� X{�¶5ªDãz¹v§½�^`_ba`unsVr�a�_bkvde�bu�}�kvp�mq_ba%u|m�slmnaor�a�j�mqu�Ñ��~�jq¤H~�¿��Ó�}�kVp � kvj � pqa
mqa�jX�br� �a�p�u I �,^`_ba�{sIpqaysVdeunky�|�zu�mnwg�zao�� X{ ÝKß p½GOHM�XÇdÆ~�FÆ�qIG+Å½�^`_ba1a�±��zsIjzunwekVj¢kV}`�M}^�~�~ÅM��ÂO�~��q¤H~��~~�KpK�O�~�½GI� ÇÖpFÆ1wej¢mq�bpqj�a�r��bdekl{�u�kVmn_baop�m�s � fmnw � u¢��aV� xz�e��m�s � mnw � u�}�kvp���a
��jbw¬mqwgkvj5a
±��zsVjzu�wekVj´sIj��/a�À��zsIdew¬m|{°u��z zu|mqw¬mq��mnwekVj��õ��^`_zapna � �bp�unwg�va1a�±X��sIjzunwgkvj$kI})sIded¡mqs � mnw � u%mn_zsIm¨�bpqkl�Va)��Å¤Î�pqaoun�bdgmqu%wej�s��bpqk�kV},una�xvr�a�j�mmn_zsImy��aopnwe�Va�u��ZÅ¤Î¢}�pnkvr5�ZÅ¤���z�ZÅMÅv��sVjz����v�wgj édä u�mnao�zu1sIm¨mq_ba­dekVxvw � dgao�Va�di�1^`_za�bpqk�kV},una�xvr�a�j�m¨w�u(�Vaopnwg�za���a�± � a��bm(}�kVp%mq_ba�r�aojvmqwgkvjbao�$�zpnkXkI},jbk���a�u)�|�zu�mnwg�zao�� �{sI�b�zdgw � sImnwekVjzu`kV} ÝKß pKGIHM�XÇdÆF�~Æ�qIG+Å��^`_ba¨a�±X��sIjzunwgkvj�kI}�sIdedzkVmn_baop�r�a
mq_bk��bu-c�kVpqh�u-unwgr�wedesVpnde{V� ä kVmna(mq_zslm�mn_ba1r�a�mn_�fk��bu3 B�>:;: ��$"�.%&
 'HGI#�$ sIjz�x 6�
�H�!�="���
 $,��
 �>�	 6�dKÍK��
��%&
 '	
 G4����#,$«a�±X��sIjz��mnk��bpqkXkI}îuna�xVfr�a�j�mqu(mn_zsIm1�zuna2mn_za mqs � mqw � G+Æ~Æ~�~��� � _ba�j�mq_bw�u%mqs � mqw � weu¨a
±��zsIj���ao�¡��wgm¨a�r��bdekl{�u
ë�»½»½§zÑ°wgj�kvpq�ba�p(mqk2�|�zu�mnwg}�{$mn_ba � kvj � de�zunwgkvj�kI})mn_za mqs � mqw � sI�b�bdew � slmqwgkvj$}�pnkvr�wgmqu�bpqa�r�weunaou%sVjz��mn_ba2pqaoun�bdgmnwejbx��bpnkXkV}�dewgjba�u(sIpqaywgjzuna�pnmna��¡�× kVr��bdea
mnaodg{;a�±��zsIjz�bao�¡� mn_za0�bpqkXkI}¤kV}¤mn_ba ~ ��fÌ�bpqkV bdea�r � kvjzunweu�mqu kI}
éÎä Ú�u�mnao�zuo�`^`_za �bpqk�kV})weu%�va�pqw¬��ao��a
± � ao��m(}�kvp(mn_za jbk���aou-�|�zu�mnwg�zao�� X{�mn_ba2m�s � mnw �

_][^§^9� \9M�¨�M Yl^ _ $ M QD��© L ��ª�«D¬&­�®=¯5°��Dª M�L±[D[��� L ^�Q��9Y L ���²^9�´³ H µ,f�ý

ÝKß p½GOHM�XÇdÆ~�FÆ�qIG+Å½�Ic%_bw � _�weu¨�zu�a�� á mnwer�aouo�zmq_zslm¨w�uo� � �zpnpqa�j�mnde{�c�a2mqpn�zu�m�¶¸ªDãb¹�§½�
ä kImna¨mn_zsIm®mq_ba¨a�±��zsIjzunwekVj�r�a � _zsVjbw�u�r kV��a�p�slmqaou�dgk � sVdgde{�sIjz��u � _baor�slmnw � sVdgde{�sIjz�mq_ba�pqa
}�kvpna���kXaou%jzkIm%kV��mqwgr�weÁ�a�mq_ba��zjzsVd¡�bpnkXkV}�}�kVp%wgmqu¨u�weÁ�av�
ø�g]\ EÉu!kq_+bhk?kdu ú�Í
Í¾jZkVp���a�p�mnk°a��lsVdg�zsImna�mn_za$sV�b�bpqkV�bpqw�slmnaojbaouqu kV}1kv�bp�sI�b�bpqkvs � _¸c�a�un�bxVxvaou�m­mq_ba}�kvdgdeklc%wgjzx�mq_bpnaoa � pqw¬mqa�pqwesz²
� Â ��æ(klc8xva�jbaopqsVd�sIj���_bklc«pqw � _�wgj°r�slmn_za�r�slmqw � sId � kVj�mqa�j�m�sVpna�mn_ba�r�a
mq_bk��busIjz� � kvj�mnpqkVd½pn�zdga�u
ë
�i�V��æ(klcDr­� � _�u�a�sIp � _�w�u`wgjX�vkVde�Vao��wgj�mq_ba2�bpqk�kV}��bd�sIjzjbwgjzx��bpnk � aouqu
ë
� Úv� � _zslm(hXwejz��kI}��zpnkXkI}î�bd�sIjzuo��mn_�slm(w�u���c%_zsIm(hXwgjz��kV}��bpqkXkI}�uo� � sIj�c�a1��jz�Öë
^`_ba�u�a � pnwgmnaopnw�s�u�_zkV�bd��$sIdedgklcN�zu%mqk��|�z��xva _bklcNxVa�jza�p�sIdºsIj��$_bklc�pqkV z�zu|m(kv�bpunkVde��mnwekVj�weuo�-^`_ba�sIpnm®kI}î�bpqk�kV}º�bd�sIjbjbwejbx�weu®mqk�s � À��bwepnay��kVr�sIwej�hXjbklc%deao�bxVa(mq_zslm��kvj2mn_ba�kVjza�_zsVjz�¡� � kvr��bpnw�unaouºr�a�sIjbwejbxI}��zd�r�sImn_baor�sImnw � sVdVmqa � _bjbw�À��baouîsIj�� ��klc®aop�f}��bd�_bao�bpnw�u�mnw � xV�bw��bsVj � av�vsIj��¡�vkvj�mn_ba¨kImn_za�p�_�sIjz�¡��w�u-xVaojba�p�sIdza�jbkv�bxV_�mqk2mqs � h�dea¨s bpqkvsv� � d�sVuqu-kI}¡�bpqkV zdgaor�uo� � kvp�wejzu|m�sIj � aV�XsVu�kVjba(a�±Xmnpqa�r�aV��c®a � kV�zde��_zs��va(r�a
mq_�fk��bu�mn_zsIm)a�j � kX�ba�¥%¦¨§�©ºª)µ u ä Ø � sId � �bde�zuîsIjz��c®a � kv�bd��2pn�zj�¶¸·�¹
»¡¼�c%wgmn_bkv��m)sIjX{� kVj�mnpqkVdi�(^`_bw�u1sV�b�bpqkvs � _$c�kV�bd�� � aop�m�sIwejbde{� �a��va�pq{�xva�jbaopqsVd �� b��m ¶¸·º¹�»½¼)c®kv�bde�}�sVwgd�mnk¢�bpqkXkI})�bd�sIj�sVjX{�wejvmqa�pqaou�mnwejbx¢�bpqkV zdgaor�uo� Ó u¨mn_za kImq_ba�p1a
±Xmnpqa�r�a � sVunaV��c®a� kV�bd�� � ��m,s%hXjbklc%j2�bpqkXkI}�wgj�mqk(�bwea � a�u��lsVjz� � k���a-mn_ba®�bwga � a�u�sVu�r�a
mn_zkX�zu�� Ü �bw���ao� X{ � kVj�mnpqkVd,pq�bdga�uymn_zsIm�sIdec�s�{�uy�bw � h�mn_za�jba
±Xm pqwgxv_vm2�bwea � a�kI}�mn_ba��bpqkXkI}(¶¸·º¹�»½¼c�kV�bd���sVuqu�aor� bdea`mn_za(r�a
mn_zkX�zu�sIx�sIwej�mnk2mq_ba(kVpqwexVwejzsId��bpqkXkI}¡c%wgmn_bkv��m���a�pn}�kVpqr�wejbxsVj�{¢unaosVp � _��^`_baysIr�kV�bj�m�kV}ºu�a�sIp � _�sVjz��mn_za¨�lsIpqwga�m|{�kV}º��kVmna�j�mqwesVdz�bpqkXkI}¡�bd�sIjzu-}�kVp®s xVwe�Va�j�bpqkV zdgaoråsVpna�r�aosVun�bpqaou�}�kVp�mn_za�xva�jbaopqsVdgwgm|{´kI}(mq_ba$r�a�mn_bk��bu�sVjz�@sVdeunk�}�kvp­mq_basV�b�bpqkV�bpqwesImnaojbaouqu�}�kVp�mqs � hXdewgjzx5mn_ba � d�sVuqu¢kV} �bpnkv bdea�r�u¢ X{£�bd�sIjbjbwejbx��8ÍÌ}2mnwexV_�m� kVj�mnpqkVdvpn�bdeaou�kVp�_bwexV_bde{ u���a � w¬� � r�a
mq_bk��buîpna�u|mqpnw � m�mn_ba`u�a�sIp � _�mnk��|�zu|m,kVjza� bp�sIj � _wej�mq_ba�u�a�sIp � _�mnpqa�av�½mn_baoj�mn_za�pqaoun�bdgmnwejbx��bpnkXkV}-�bdesVjzuyc%wgded)r�a�pqa�de{�wgj�u|m�sIj�mnw�slmqa�s�zsIm�mqa�pqjº�,Í¾j¢mn_zweu � svu�av��s­u�wejbxvdga1mqs � mnw � kvp®r�a�mn_bk���mn_zsIm�pqaosVdgweÁ�a�u)mn_za1�bpqkXkI}�u�mnao�zukV}�mq_ba¨�zjz��a�pqde{�wejbx ��slm�mqa�pqj¢w�u-r�kVpqa¨un�bw¬m�sI bdea(mq_zsIj��bdesVjbjbwejbxz�,^`_ba1��k�ununwg zwgdew¬m|{�kI}

� pna�slmnwejbx�s¢��sVpnwea
m|{�kI}-�zpnkXkI}-�zdesVjzu¨c%wgmn_�mn_ba�xVwe�Vaoj�r�a�mn_bk��buysIj�� � kvjvmqpnkvd�pq�bdeaouw�u�mn_X�zu(sVj�wer���kvp�m�sIj�m`}�aosImn�bpqaV�Í¾j5mq_ba�}�kvdgdeklc%wejbxz�,c�a�un_zsIded®��w�u � �zuqu��zpnkXkI}(�zdesVjbjbwejbx�}�kvp|ç~ é fÌ�bpnkv bdea�r�u c%wgmn_pqaoun��a � m`mnk�mq_baouna�mn_bpqa�a � pnwgmnaopnw�sb�
­ g½Ã ^`_ba r�a
mn_zkX�zu �*�+�"! #,$�������
 GZ�ZG��F#JC~���]�J#,$������7���F#�$���A)C�DFEHGI�J#4K��ZsIjz�

$�� GIG��	�]��
 �
�H#�$ÎkI}ykV�bp¢sV�b�bpqkvs � _@a�j � k���a�dekVxVw � fÌdea��Vaod%u|mqa��zu��4�*�+�"! #,$������7���F#�$��
A)C�DFEYGZ�J#�Ky��kvp´mqs � mnw � u|mqa��zu´�va�pq{ � dekvuna mnkNmn_ba7dekVxvw � fidea��va�d$������
 GZ�ZG��F#JC~���]�J#,$��
$�� GIG��	�]��
 �
�H#�$��õ�º^`_X�zuo��mq_ba�{´sIpqa��Vaopn{�xVa�jza�p�sIdi�� b��m�mn_bao{°��k�jzkIm�aoj � k���a¢un��a�f� w¬� � ��kvr�sIwej/hXjbklc%deao��xvaV��sVjz��mn_bao{�sIpqa�wgj°}�s � m u|mqwgded-wej/mq_ba¢un�bwgpqwgm�kV} Ü aopn_zsVpq�Ü aojvmqÁ�aojºµ u%sVjzsIde{�u�w�u�kI},r�slmn_za�r�slmqw � sId¡�bpqkXkI}�u � Ü a�j�mnÁoa�jº� Â�Ù Ú ä � �

µ,f,�KJ7L
MON $P�9Q9Q5R�S M Q9TU$WVXDYZY MO[R�� L
M]\ Y MO[R?$ M�L
MO[R?Q9^ [$P�9Q9Q5R7��Q \W_ ^9YZY M �

04�5
²K3��-	"�$�G.01�]����D7$"�J#�$³sVjz�x B�>:;: ��$"�.%&
 'HGI#�$ta�j � k���a ��kVr�sVwgj�hXjbklc%dga���xVa2sV �kv��mwgj�mqa�xVaopquo��04�5
²K3��-	"�$"G.01�Ë����D�$,�J#,$�aoj � k���a�u(mq_ba�a
±Xmnp�s � mnwekVj�kV}��bpqwgr�a���we��w�unkVp�u(}�kvpwgj�mqa�xVaopqu(}�pnkvr aoÀ��zsImnwekVjzu¨kVj�wej�mnaoxVa�p�uo�H 6�
:;: ��$"�.%&
 'HGI#�$ � kvr��z��mna�uy�bw¬¯½a�pqa�j�m1pqa��bfpna�u�aoj�mqslmqwgkvjzu�}�kVp%wejvmqa�xva�p�u���}�kVp`c%_bw � _$u�kvr�a���we�XweunkVp�u®sVpnayhXjbklc%jº�)^`_bay}��bj � mnwekVj�fsIdew¬mqwga�u¨kV})mn_ba�u�a­r�a
mn_zkX�zu1sVpna � �bpqpnaoj�mnde{�p�slmq_ba�p1pna�u|mqpnw � mqao��sIj��$}�k � �zunao��kvj�kV�zps � mn�zsVd(�bpqkV bdea�r"�bkVr�sIwej«��aV� xz�e�3 B�>:;: ��$"�.%&
 'HGI#�$ � kv�bd�� �baosId1sId�u�k´c%wgmn_K��we�XweunkVp�usIjz�¢jbkIm�kvjbde{�c%wgmn_��bpnwer�a1��we�XweunkVp�uo�>01�2
²K3��-	"�$"G�04�Ë���dD�$,�J#,$ � kV�bd���_zsIj���dgays2r�kVpqaxVaojba�p�sId � desvunu�kI}ºa�Àv��slmnwekVj�uq�
�îæ¨klc®ao�Va�p��vun�bwgmqsV bdg{�a�±�mqa�jz�bao�¡�vmn_ba�u�a¨m|c®k�r�a�mn_bk��buc%wgdedº �a2�zuna
}��bd¡}�kvp%r�sIjX{¢�bpqkV bdea�r � d�sVuqu�a�u��baosIdewejbx�c%w¬mq_�wej�mnaoxVa�p�uo� �
04�5
²K3��%&
 '�0d�768����#,$DsV�b�bdewga�uºmq_ba�mq_ba�kvpnaor¾�½G Æ �~��ÂO�~��q¤H~�dÂI��q¤�*qO�KG ���q^`_bw�u � kV�bd�� �a���kVjza�sId�u�k� X{�mn_za
$�� G4G�������
 �>�r#,$³r�a
mq_bk��¡� � a a�j � k���ao��mn_ba�sI�b�bdew � slmqwgkvj�kI}mn_bw�u�mq_ba�kvpnaor wejvmqk�sIj´a
±Xmnp�s�r�a
mn_zkX�°wej´kVp���a�p�mqk�_bwe�ba�mn_ba¢unkVpnm2xVkvsVdeuo�¢^`_X�zuo�

04�5
²K3��%&
 '�0d�768����#,$7w�u�s¨�Vaopn{�u���a � w¬� � r�a
mq_bk��`�|�zu�m��zm�mna��2mqk(mn_za®�zsVp�mqw � �bd�sIp�jza�ao�zukI}�kv�bp��bpnkv bdea�r � d�sVuquo�î^`_ba2uqsIr�a¨_zkVd��bu®}�kVp*,)�="��YG.-?����K���/�D7"H��
 �>�r#,$��Ic%_bw � _���a�pnf}�kVpqr�u¨a�±�s � mqdg{$mq_ba�aoÀ��zslmqwgkvj�mnp�sIj�u|}�kvpnr�slmqwgkvjzu%mq_zslm2c�a­jza�ao��mnk$��aosVd,c%w¬mq_�kV�zp�bpqkV bdea�r � desvunuo�
 B�>�r�!�#"���
 $"��
 �
�� B��K÷K��>��%&
 '�
 GI���]#�$ w�u(jbkVmyun��a � wg� � mqk�kV�zp¨��kVr�sVwgj�sVjz��un_bkV�bd��sId�u�k� �a2�zu�a�}��bd¡}�kvp%kImn_za�p%�bpqkV bdea�r � d�sVuqu�a�u`��aosVdgwejbx�c%w¬mq_���wg�Xw�u�kvpquo�^`_ba � kVj�mqpnkvdvpq�bdeaou:·+¾~¾>�IL�Âd¿+À����F»�¿?¸~Ã�ÄH¼�¹���·+¾~¾��OL�Â1Ûz¹7B�PW¹?¸½��sIj��Í¶d»�R~»d¿?¸�Â��FÀFÀ+¾

� kvjvm�sIwej jbkU�zsVp�mqw � �bd�sIpt�bkVr�sIwej hXjbklc%dga���xVav�£ b��m }�kVp � a ¶@·º¹
»¡¼ wejvmqk mn_zapnwexV_�mDunaosVp � _S bp�sIj � _�� æ¨a�j � aV�°mn_bao{ sVpna«��u�a�}��bd�}�kvp�sIjX{ u�a�sIp � _º� ß jzdg{
·+¾F¾��IL�Â+¶q·X¸�¿?¶WÄH¸d»X¶WÄYÀ+½ZmnkV� � _baou°sKun�b �mndea ��kvwgj�mo²Nmq_bweu � kVj�mnpqkVd pq�bdea@aoj � k���a�umn_ba�h�jzklc%dga���xVa�mq_zslm(mq_ba mq_ba�kvpnaor �~�~Æ�ÂIpF��qYÆ~�F��qIG+Å�un_bkv�bde�� �a­sV�b�bdewga��$��w�s�mn_zar�a
mn_zkX��$�� GIG��	�]��
 �
�H#�$«sVjz��w�u)_baoj � a`�zm�mna��­mnk2kV�zp)�zsIpnmnw � �bd�sIp)�zpnkv bdgaor ��kvr�sVwgj��� a2sVpna � �bpqpqa�j�mnde{�a
±bsIr�wejbwgjzx�s­r�ao��w�slmqkVp`r�a � _zsVjbweunr³ �a
m|c�a�a�j�kV�zp�hXjbklc%deao�bxVa zsVuna�sIjz�Z�bpqkXkI}¨�bd�sIjzjbwgjzx£���zp�u|m¢pqaoun�bdgmqu�sIpqa$pnao��kvp�mqao�¸wej � e aojbÁ�r���bdedgaop�Ç
È�ÉlÊgËe��I�v�VÚl���õ�Xc%_bw � _�un�b�b��kVpnmqu�s­una�r�sIj�mqw � sIdedg{�xV�bw���a��¢pqa
mnpqwea��lsId�kI}ºmq_ba�kvpnaor�u�sIj��¢��a
}�fwgjzw¬mqwgkvjzu��`^`_bw�u¨sV�b�bpqkvs � _$un_bkV�bd���pnao�bd�s � a2��sIpnmnw � �bd�sIp � kVj�mnpqkVdºpq�bdeaou`}�kvp%mn_za�kVpqa�rpna�mnpqwgao�lsId-��un� � _$sVuÏ·+¾~¾��OL�Â+¶d·X¸z¿?¶WÄY¸d»+¶WÄ?À+½b�� X{�s�r�kVpqa�xVa�jza�p�sId½r�a � _zsVjbweunr$�

­ njÃ ¶¸·º¹�»¡¼¨��a�pn}�kVpqr�u¢��ao��mn_�fi�zp�u|m�unaosVp � _��®c%_bw � _ m|{X�bw � sIdedg{ZwgjX�vkVde�Vaou� �s � h�fmnp�s � hXwejbx¢}�pqkVrUunaosVp � _� bp�sIj � _baou1c%w¬mq_/jzk�unkVde��mnwekVj�u��2Í¾j°kV�bp���kvr�sVwgj°sIjz��c%w¬mq_mn_bay��aou � pqwe �a���r�a�mn_bk��bu�sIj�� � kvjvmqpnkvdbpq�bdga�u���_bklc�a��va�p��lmn_baopna¨weu®jbk zs � h�mnp�s � hXwgjzxz�b slmq_ba�p��½mn_za�unaosVp � _ � kVj�u�w�u|m�uykI}�sVdgd,��kvuqu�we bdea�mqpqsVjzu�}�kVpqr�sImnwekVjzuysIj�����aopnwe�lslmnwekVj�u}�kVp`�zj���wgjzx�m|c®k��bpqwgr�a2��we�XweunkVp�u®mn_zsIm({�wea�d���mn_ba � kVj�mnp�sV�bw � mnwekVjº�
� kVp�wgjzu�mqsVj � av�Vc%_baoj�mqs � h�dewejbxymn_bay~ á fi�bpqkV zdgaor��X¶¸·º¹�»½¼���aopnwe�Va�uî}�pnkvr á v�� � R

� � mn_zsImÍ�"_zsvu2m|c�k��bpqwgr�a���we�XweunkVp�u ��sVjz�5Úb� � w¬mq_¸pqaoun��a � m mqk�mn_ba�u�a��bpnwer�a��we��w�unkVp�u2w¬m � kvr��z��mna�u2mn_za¢}�kVdedeklc%wgjbx$mq_bpqa�a¢pqa��bpqaouna�j�m�slmnwekVj�u2kI}w�°²�� R �xv O �
� R ÚËv S ��� R �Þv�ÚËvY�l�½sIjz��a�s � _�pqa��bpqaouna�j�m�slmnwekVj$w�u¨��u�a��$mnk�u��b �u|mqw¬mq��mna×� wejmn_ba2a�À��zslmqwgkvj á v"� � R � � �
� �l���'¦/���1"��������*(�������'���¡�� �!���'�����������*���C�����/���ª�h�Ä�h����¡�����¡������?�1���5�!���C¦7���'"����!���=�!��('����('�

�;���D�����=�C¦�����"��!����"&���
�����=���'�����/����¤ J ��"�('�§�!�����D���D"����9���!� �7�£��¡U�;����'Î�����P���C�!���7���1R3�h�§��"��B�!�1���
���'('�����'�¶�;����"����K�!�s������¡��1���'"��%�����'�!�ÿ5!¡���#�����?y���'���!����"����;�����D����(!�´�����&�C¦�����"��!����"����%�;��¡�¡ 	
���d�'('� �?�'�&��"���¡��1�1���������=#��1"��1�!��¡�� �
	��!�¥�;�������!�¹�O����åÎ¤

_][^§^9� \9M�¨�M Yl^ _ $ M QD��© L ��ª�«D¬&­�®=¯5°��Dª M�L±[D[��� L ^�Q��9Y L ���²^9�´³ H µ,f�I

ä kVm­sIded��zpnkXkI}`�bd�sIjzu c®a�}�kv�bjz�5sVpna¢unwgr�wedesVp2mnk�mn_ba¢�zpnkXkI}`�bd�sIj´}�kvp2mn_ba ~ ��f�bpqkV zdgaor�� � kvp®wejzu�mqsVj � av�Vmq_ba1�zpnkXkI}¡�bd�sIj�}�kVp�mn_ba ~ c fÌ�bpnkv bdea�r _zsVu�mn_ba¨}�kVdedgklc%wejbxu�mnao�zu�² � pqkVr c v]� � R � � ¶¸·�¹
»¡¼b��aopnwe�Va�uºmq_zslm	� _zsVu�mq_ba`�bpnwer�a��bwg�Xw�u�kvp,�b� � wgmn_pqaoun��a � mymnk�mn_bw�u��bpqwgr�a���we��w�unkVp¦� � sIj/ �a�c%pqw¬mnmnaoj/sVu¦� R �xv O � Æ �b zu�mnwgmn�bmnwejbx
�Awej5mq_ba¢wejbw¬mqwesVd�a�Àv��slmnwekVj5sVjz�5u�wer��bdew¬}�{Xwejbx�mn_za¢aoÀ��zsImnwekVj5{Xwgaode�zu��(v � � R O � �
� pnkvr8mn_zweu�aoÀ��zslmqwgkvj�jbk �bpqwgr�a(��we�XweunkVp�u)kV}W� � sVj� �a1��a�pqwg�vao�¡�vc%_bw � _�c�kV�zde��mq_ba�j{Xwea�d���s � kvj�mnp�sV��w � mqwgkvj�c%w¬mq_�mn_ba­�bpqwgr�a­�bwg�Xw�u�kvpqu¨kI}:�åsVu(wej�mq_ba­�zpnkXkI})�bd�sIj�}�kVpmq_ba ~ ��fÌ�bpnkv bdea�r$�)Í¾jzu�mnaosv�¡��¶@·º¹
»¡¼���a�pqwg�vaou�mq_zslm1��w�u(s��bpqwgr�a2��we�XweunkVp%kV} O sIjz�
� kVr��b��mqaou`s�jza�cDpqa��zpna�u�aojvm�slmqwgkvj�}�kVp O ² O�R ��v S � Æ �b zu�mnwgmn��mqwgjbx O c%wgmn_�pqaoun��a � mmqk�mn_bw�uyaoÀ��zsImnwekVj$mn_za�j�{Xwea�d��bu%mq_zslm)� � R ��v S � }�pnkvr�c%_bw � _°¶@·º¹
»¡¼ � sIj���aopnwe�Vamq_zslm�� _�sVu�mn_ba��bpnwer�a���we�XweunkVp��$c%_bw � _¸{Xwgaode�bu�mn_za � kvj�mnp�sV��w � mqwgkvj/mqk�mq_ba¢}�s � mmq_zslmw�U_zsvu%sId�u�k�mq_ba2�bpqwgr�a2��we��w�unkVp¨���Ó dgmn_zkV�bxv_­mq_ba%�bpqkXkI}��zdesVjzu,}�kVp-�bw¬¯½a�pqa�j�m-�bpqkV bdea�r�u � sIj� �a¨�bw¬¯½a�pqa�j�m)c®a`}�kv�bjz�mq_zslm�mn_bao{��lsIpq{�kVjbde{��Va�pq{�dgwgm�mqdgav�-^`_bayr�sVwgj��lsIpqwesImnwekVjzu®sIpqa¨c%wgmn_�pna�u���a � m®mqk�mq_bajX�br­ �aopqu�kI}É�n�ba
mna � m$�bpqwgr�a/�bwg�Xw�u�kvpqu¢}�kVpU�/�Y� ��pqa��bpqaouna�j�m
��svu
� R I vd�NM �Y�
�qu��b �u|mqw¬mq��mna³��wej°�bpnwekVpyaoÀ��zsImnwekVjzu � � { � deaouo��Í¾j���sIpnmnw � �bd�sIp��½mn_ba��bpqkXkI}��zdesVjzu1}�kVpao�Va�pq{ ~ I fÌ�bpnkv bdea�r$�ºc%_baopna I weu2s��bpqwgr�a�jX�br� �a�p��ºdekXkVh�uya
±bs � mnde{�sVu1mn_za��bpnkXkV}�bd�sIj�}�kVp`mq_ba­~ ��fÌ�bpqkV bdea�r$�

­ {�Ã ^`_ba1jX�br� �a�p®kI}¡��kVmnaojvmqwesVdz�bpqkXkI}¡�bd�sIjzu®��a���a�j��bu�kvj�mn_ba¨�zsIpnmnw � �bd�sIp��bpnkv �fdea�r$� � kvp-�bpqwgr�a(jX�br­ �aopqu I mn_ba¨�bpnkXkV}½�zdesVj�weu-mn_ba¨uqsIr�a¨svu,}�kVp�mn_ba�~ ��fi�zpnkv bdgaor��r�k����zdgk´wejzu|m�sIj�mnw�slmqwgkvjzu��õ� � kvp�j��zr� �a�p�u é mq_zslm¢_�s��Va$u�ao�Va�p�sId`�bpqwer�a��bwg�Xw�u�kvpqumq_ba�pqa�sIpqa­m|{X�bw � sVdgde{�una��va�p�sId,�bpqk�kV}®�bd�sIj�uymn_zsIm��lsIpq{�c%w¬mq_5pna�u���a � mymqk$mn_ba � kVr�fr�kVj$��we�XweunkVp�u�� �
^`_bw�u � kvj � de�z��a�u�mn_za�s � mn�zsVd���aou � pqwe��mnwekVjzu kI}`_bklc mq_ba�~ ��fÌ�bpqkV bdea�r ��pqaoun��a � fmqwg�va�de{¢w¬m�u%xVaojba�p�sIdeweÁoslmqwgkvjº�vmn_baÜç~ é fÌ�bpqkV bdea�r¢�®c�svu`u�kvdg�vao��c%w¬mq_�¥%¦1§z©�ª)�
� _zsIm�xVaojba�p�sIdldeaouqu�kvjzu � sIj�c®a)deaosVpnjy}�pqkVrNu�r�sIdedi��sVdg �a�wgmºm|{X�bw � sIdvr�slmn_za�r�slmqw � sId� _zsVdgdea�jzxVaou�kV}�mn_zweu%hXwejz�Öë
Â �%^`_ba���ao��wedIw�u¡wej�mn_ba��ba
mqsVwgdi�omn_zsIm�weuo��w¬m�w�uºsVdgc`s�{�u���kvuqunwg bdea,mnk¨_bwe�ba,mn_ba � pn� � w�sId� pqaoslmqwg�va�u�mnao�Zwej unkVr�a$u�r�sVdgd`�bpqa
fÌ�bpqkVxVp�sIr�r�ao�5u�mnao�ZsVjz�¸mqk/�zpna�mna�j��Zsdgao�Va�d¡kV}îxva�jbaopqsVdgwgm|{�mn_�slm%_zsVu`jzkIm¨s � mn�zsVdgde{¢ �a�aoj$s � _bwea��Va��¡�,^�k�ao��sVdg��slmna2su�kvdg��mqwgkvj@ÉlÊ�Ê)m�s � mnw � uo��r�a
mq_bk��buo�zmq_ba�kvpnaor�u1sIjz����a
�zjzw¬mqwgkvjzu(_zs��va2mnk�r�sv��aa
±��bdew � w¬m��
Í¾j�mn_bw�u®�zsI��a�p��vc�a(_zs��va`mnpqwga���mnk­u|mqpnwehVa¨s zsId�sIj � a¨sIj���mnk �bpqkl�Xwe�ba(a�jbkv�bxV_wgj�}�kvpnr�sImnwekVj�mqk(�|�z��xva¨mq_ba�u|mqpnaojbxImq_���sVjz��c�aosIhXjba�unu��)kV}¡mn_ba � �zpnpqa�j�m®u�mqsImnakI}�mn_ba¢sVp�m�wgj°mq_ba�jba�c �zsVpqsv��wgxvr kI}��bpnkXkV}®�bd�sIjbjzwgjbx�c%wgmn_zkV��m �bpqkl�Xwe�bwgjbxmnkXk�r�sVjX{���a
m�sIwedeuo�

� �?������"��B� ��"�('��R&�����1"*� ��(�å/¡���"�#*³ � ¬H�	�
ð7�����'��� ���1���¢����� �
� { ��� | � ���?� ��| �?���������D���!�����
��� �7���!���!� H ��"�� µ ��"��%���'"�('�)|�(1��"�'d�����1���!�'�!�'"��!�'������| � H
�
µ>�=� ¤��?�������!���������1���!�'�!�'"�� � ������"
¬H���
ð��U���'��� ���1�O���?� � { � � �1�k� � ¤��D�����h��0/�?� ������"�	7���'¡����h�!�?� � { �?���h�����§������������� �7���!����� H ��"��
µ ¤�Q����=R?¬<�	�
ð7�U(1��"������s'd����� H ��"�� µ ���%���'�!� ���=�*(1��"���� ������(C������"ê¤

µ,f,[KJ7L
MON $P�9Q9Q5R�S M Q9TU$WVXDYZY MO[R�� L
M]\ Y MO[R?$ M�L
MO[R?Q9^ [$P�9Q9Q5R7��Q \W_ ^9YZY M �

���%^`_ba�a�jzkVpqr�kv�zu��bweu�mqsVj � a� �a�m|c®aoa�j5mq_ba�c�a�ded¬fÌhXjbklc%jK��mqkV��fÌdea��Vaod�� �bpqk�kV}(kI}mq_ba Ý-{�mn_�sIxVkvpna�sIj Æ � _zk�kvd �Xc%_bw � _ � kVj�u�w�u|m�u�kI}�sV �kv��m(s­��kvÁ�aoj�unwgjzxVdea1�bpqkXkI}u�mnao�zu�wej � kVr��zsVpnw�unkVj¸mqk´mn_ba$��jzsId(�zpnkXkI}�slm�mq_ba ä Ø dgao�Va�d¨c%w¬mq_ édä Ú°w�uu�mnpqwghXwejbxz�
^`_bw�uîweuo�lkI} � kV�bp�unaV��jbkIm,s(jbaoc¸wejzu�wexV_�m�� � _bwedga�r�slmq_ba�r�slmqw � u � sIj¢ì�ë2ç�èõì�ë]��ì­�ç½ÊgÇ� �aypqao�b� � a���mnk��b�bpqa�de{�}�kVpqr�sVd�dekVxvw � fidea��va�d�pna�sVunkVjbwejbx�svu®��aor�kVjzu�mnp�slmqao� X{ b �zuqu�aodgd�sIjz� � _bwgmnao_baosv�8sVu�c®aodgd�sVu�mq_ba@æ¨wgde �aop�m Æ � _bkXkVdi� jbkv �k���{c�kV�bd��°s � mq�zsIdede{�c�sVjvmymnk���k$unk°ì�ë�ç½ènÉd��ÈiìB�qÇ�sVu1mq_ba�wgjlÿ��ba�j�mnw�sId e kv�bpn �sIhXwxvpnkv�b��un_bklc�ao�¡²îkVjbde{�mn_za¨�zp�u�m`À��zsVp�mqa�p�kI}�mq_ba1�zpqu�m`�VkVde�br�aywgj�mn_ba�una��VaopqsVd��kvÁ�aoj°�vkVde�br�a�u�a�m kVj°mn_ba�}�kv�bjz�bsImnwekVj´kI}`r�slmq_ba�r�slmqw � u2u|m�sIpnmqu�c%wgmn_5aodga�fr�a�j�m�sIpq{V��dgkvxVw � fÌdgao�Va�d�pna�sVunkVjbwejbx sVjz��mn_za�j��zpnk � aoao�bu�c%w¬mq_¢mq_ba � pn� � w�sId�una�jbfmqa�j � a � e kV�zpn zsVhXw � ÂoÙvádc ��²&� ä k�xvpna�slm`a
±���a�pqwgaoj � a�w�u`jba � aouqunsVpn{�mqk���a�p � aowg�vamq_zslm�u�� � _¸s��bpnkV�|a � m � kV} � kVr��bdea
mqa�}�kVpqr�sIdewgÁ�slmqwgkvj � w�u�sI �u�kvdg��mqa�de{/�zjbpna�sIdgfweÁosV bdgav²`mn_ba�mnwejbweaou�my�bpqkXkI}�sIm¨mn_za� �a�xVwejbjbwejbx�kI})mn_za�mq_ba�kvpn{�kI}�una
m�u¨c�kV�bd��sVdgpqaosv��{�pqaoÀ��bwepna�una��VaopqsVd)_X�bjz��pqao�bu kI}%u�wexVjzu2}�kVp2wgmqu � kVr��bdea
mqa�}�kVpqr�sVdgweÁosIfmqwgkvjº� �

Úb� � wejzsIdedg{7sVjz�£r�kVpqa$mnk¸mq_ba���kVwej�m�kI}�mq_ba � kVj � pna�mna � kvj�mnpqwg b�bmnwekVj7kI}�mq_bweu�zsV��aopo² ä klcKmq_zslm%c�a � sIj��bpqkl�Va1mn_baokVpqa�r�u�wgj�mn_za�ç~ é fÌ�bpqkV bdea�r � d�sVuqu���mn_zaunhVao��mnw � sVd�pqaosv��a�p,r�s�{ u�mnwedgdbsvu�h × é)>��bÉIÈ.� � wgded�mq_bweu,ao�Vaop�deaosv� mqkys2í�Ç
ë½Ç
ènÉIÊun{�u|mqa�r¤}�kvp%r�slmn_za�r�slmqw � sIdºsVuqunweu�mqsVj � a¤ë� a�_zs��va-��a�r�kvjzu|mqpqsImna���wgj � ¿�a�dew�u�sIj�� Æ wea�hXr�sIjbjº� ÂoÙvÙVÙzã ¿�a�dew�u�� ÂoÙvÙdc �lmn_zsImmq_ba � desvunu�kI}�nnf�p�fÌ�bpqkXkI}�u�}�kvp�dewgr�wgm�mn_za�kVpqa�r�u � sIj5wejz��aoao�5 �a�unkVde�Va��´c%w¬mq_s�}�a�c ��kVÁoa�j@r�sImn_baor�sImnw � sVdgde{5r�aosIjzwgjbxV}��bd`r�a
mn_zkX�zu�sIjz� � kVj�mqpnkvd®pq�bdeaouo�Æ wer�wgd�sIpqde{V��mn_ba®��kVr�sIwej2kI}XxVpqkV�z�1mq_ba�kvpn{1c%w¬mq_ wgmqu � desvunuºkI}�pna�u�w����ba,mq_ba�kvpnaor�u� sIj� �ay}�kVpqr�sIdewgÁoao��c%wgmn_�a��va�j�deaouqu � ¿�a�wea�p%sIjz� Æ kVpqxVav�X�V�V�v� ã ¿�a�wea�p Ç
È�ÉlÊgËe��V�V� Âvã ¿�a�wea�p­Ç�È%ÉlÊgËe�½�I�V���l �� �zsIjz��mq_ba � pq� � w�sId¡xva�jbaopqsVd½kV zuna�pq�lslmnwekVj�w�u�mn_zsImmq_baouna�r�a
mn_zkX�zu � kvpnpqaoun��kVjz��mnk$mn_za�h�wejz�´kV}�r�slmq_ba�r�sImnw � sId)hXjbklc%deao�bxVa�s}�pqaoun_br�sIj$c�kV�bd���_�s��Va1mnk�deaosIpqj¢mqk�r�sVu�mna�p`mq_bw�u%dgao�Vaod¡kI}��zpnkV}�aouqu�wekVjzsVdgw�unr��
Í|u�mn_ba`uqsIr�a)mnpq�ba�}�kVp�ç~ é fÌ�bpqkV bdea�r�u�ë¢^`_ba®�bj�}�kvp�mq�bjzslmqa®sVjzu�c�a�p�weu��bpqkV zsV bde{
�­é��2Í¾r�sVxVwejba�mn_ba¨un�b � kvr�r�wgm�mqa�a%kI}�mn_za�¼(jbwgmna�� ä sImnwekVjzu,wej � _zsIpqxVa�kI}�mn_zar�sIwej�mnaojzsIj � a¨kV}�mq_ba¨xvdgkv zsId�r�slmn_za�r�slmqw � sIdzhXjbklc%deao�bxVa% zsvu�a(wej�s�_��zjz��pqao�{vaosIp�u�}�pnkvr¤jbklc2� � kv�bd��¢mq_ba�{�s ��� a���m�mn_ba�aojvmqpn{�kV}�kv�bp`r�a�mn_bk��buo�Xmqs � mqw � usVjz� � kVj�mqpnkvd�pq�bdeaou�}�kvp`mn_baÜç~ é fÌ�bpqkV bdea�r�u�ë$Ý-pqkV zsV bdg{�jbkVm��

â ¿ Ó ^%æ�a�¿ Ó ^`Í ×�Ó ¹Ü� ä ß(� ¹Da®Ø Ü aÞa ä Ü Í ä a*a b Í ä Ü
¿�slmq_ba�r�sImnw � sId�hXjbklc%deao�bxVa�w�u,�bpqaouna�pq�Va�� wej­ �kXkVh�u)sIjz�­r�kVjbkvxVp�sI�b_�u��� b��m)mq_ba%sIpnmkI})��kVwejbx�r�slmq_ba�r�sImnw � u � Ý,kVde{vsz� ÂoÙêé Ú ã æ1sV�bsVr�sVpq�º� ÂoÙIâvâ �ºw�u(�zsvununao��kVj$ X{�c®kvpq�kI}¨r�kv��mn_@}�pnkvrÎxva�jbaopqsImnwekVj5mqk/xva�jbaopqsImnwekVjº�´^`_ba�r�a
mn_zkX�zu�sVjz� � kVj�mnpqkVd®pn�zdga�ukI}ºmq_bay�bpnkXkV}º�bdesVjbjbaop � kVpqpna�u���kVjz��mnk�wer���kvp�m�sIj�m`r�sImn_baor�slmnw � sVdzmqa � _bjzweÀ��ba�u�sVjz�

_][^§^9� \9M�¨�M Yl^ _ $ M QD��© L ��ª�«D¬&­�®=¯5°��Dª M�L±[D[��� L ^�Q��9Y L ���²^9�´³ H µ,f,e

�nc�s�{�u®mnk¢unkVde�Vayw¬m��b��sIjz��mn_za�{�r�sVhVaymn_bw�u%wer��bdgw � wgm1sVjz��wgj�}�kvpnr�sVdºr�slmn_za�r�slmqw � sIdhXjbklc%deao��xva1a�±��bdgw � wgm¨sIj��¢}�kvpnr�sId w ä �^`_ba®mn_baokVpqa�r�u,sI �kV��mÀç~ é fÌ�bpnkv bdea�r�u�sVpna�u�_zklc%j X{ � kVj�mqpqsv��w � mnwekVjº��mq_zslm,w�u��lmq_ba�bd�sIjzjba�pî��a�pqwg�vaouîs � kVj�mnp�sV��w � mqwgkvj�}�pnkvrNmn_ba�aoÀ��zsImnwekVj é v���� R �+�V�lc%_za�pqa��¢sIj��Ö�sVpna-wej�mnaoxVa�p�u¡c%wgmn_­jbk � kVr�r�kVj ��we�XweunkVp���æ(klc�a��va�p���mq_baouna��zpnkv bdgaor�uº �a�dekVjbx¨mnk(mq_bar�kVpqa`xVaojba�p�sId � desvunuîmqk ��a
mqa�pqr�wejba%c%_ba�mn_baop-m|c�k � kVr��bdea
±�r�slmn_za�r�slmqw � sIdbkv ��|a � mqu� sIj����KsVpna`a�Àv��sIdi� Ó xva�jbaopqsVd�r�sImn_baor�slmnw � sVd��bpqwgj � wg�zdga`}�kvp � kvr���sIpqweunkVj­kI}�m|c®k� kVr��bdea
±´kV ��|a � mqu�weu mnk�dekXkVh´slm mq_ba�wep � _zsIp�s � mna�pqw�u|mqw � �bpqkV��a�pnmnweaouo�î}�kVp�a�±bsIr��bdeaV�mq_ba�wep�jbkvpnr�sVd�}�kVpqr�u)kVp�u�kvr�a%kVmn_baop��bjzw¬}�kvpnr jbkIm�slmqwgkvj�wgj�mq_ba(pqaoun��a � mnwe�Va(mn_baokVpq{V�ÍÌ}îmn_baopna2w�u%s � _zsVpqs � mnaopnw�u�mnw � �bpqkV��a�pnm|{�mn_�slm¨��w�u|mqwgjzxV�bw�u�_zaou`mq_ba�m|c®k�kv ��|a � mqu`mq_ba�jmq_ba�{ � sIjbjzkIm(�a2aoÀ��zsIdi�Í¾j5kVp���aop2mnk�m�s � hXdeaýç~ é fÌ�bpqkV bdea�r�u2c�a¢_zs��va�mnk��zj��5s��bpqkV��a�pnm|{�mn_�slm­��w�u�mnwej�fxv�bweun_ba�u�mn_ba�wgj�mqa�xVaopqu é v+���¢sVjz�V���V� Æ wgj � a¢aos � _5wgj�mqa�xVaop � sVj5 �a�pnao�bpna�u�aoj�mnao�svu%s��bpnk���� � m(kI},�bpqwgr�a�jX�br� �a�p�uo��mn_ba�jbkVpqr�sId½}�kVpqr�u`wgj�mq_ba wejvmqa�xva�p`mn_za�kVpq{�sVpna�bpqk���� � mqu­kI}¨�bpqwer�a�u��5ÍÌ}¦(� � � ��a�jbkVmna�u�mq_ba��bpnwer�a��zpnk���� � m�kV} � �)mn_za�j@c�a � sIjc%pqw¬mqa é v�����sVjz� �+�2sVuw(� é � vH(� ��� � sVjz��(� ��� � � � kVp%wejzu�mqsVj � av��}�kVp é R ���1í R �mq_bweuyw�u2�Ëv?(� � � � sIjz�t(� � � � � Ó � _zsVpqs � mnaopnw�u�mnw � �bpqkV��a�pnm|{$�bweu�mnwejbxV�zweun_bwejbx�mq_baounam|c�k1wej�mnaoxVa�p�uîweuîmq_ba%À��zsIj�mnwgm|{ kV}��bpqwgr�a`jX�br� �a�p�uîwgj­mn_za%jbkVpqr�sId�}�kVpqr$� � kVp (� � � �sVjz�Í(� � � � c®a`��k�jbkVmîhXjbklc5mq_ba`a
±bs � m,À��zsVj�mnwgm|{V�I b�bm,c�a`��k�h�jzklc5}�kVp, �kImn_­mn_�slmmq_ba�Àv��sIj�mnwgm|{�w�u1ao�Vaojº��unwgj � a�aos � _/k ��� �zpnpqa�j � a­wejV(� � � weu2�b�b�bdew � slmna���wejV(� � � � �^`_ba À��zsVj�mnwgm|{¢kI},�bpqwgr�a2jX�br� �a�p�u�}�kVp¨��w�u Â �Xmn_X�zuo�zc�ayhXjbklcDmn_zsIm%mn_ba­Àv��sIj�mnwgm|{kV}��bpqwer�a%jX�br­ �aopqu,wej��sv�(� � � � w�u)k��b�¡�Vc%_za�pqaosVuîmq_ba¨À��zsVjvmqw¬m|{­kI}½�bpqwgr�a%jX�br� �a�p�uwej (� � � � w�u`a��va�jº�)^`_X�zuo�Xmn_bao{ � sVjbjbkIm% �a2aoÀ��zsVd � ä kVmnaymn_�slm%}�kVp`mq_bw�u%sIpqxV�br�a�j�mmq_ba2�bpqa�r�weunaymn_zsImÏ�/sVjz�
� _zs��Vayjbk � kvr�r�kvj��bwg�Xw�u�kvp�w�u%jbkVm%jba � aouqunsVpn{v�^`_ba��zuna�kV}(jbkVpqr�sId®}�kVpqr�u�sVjz� � _zsVpqs � mnaopnw�u�mnw � �bpqkV��a�pnmnweaou�sVu­wgj@mn_ba�sI �kl�VasVpnxv�br�a�j�m)weu®s � kvr�r�kvj�r�sImn_baor�sImnw � sVdz�bpqwgj � we�bdgav� � kVp-a�±bsIr��bdeaV��wgj���kVde{XjbkVr�w�sIdpqwgjzxvu1kl�Va�p¨�zjbwgmna­�za�d��buywepnpqao��� � we bdga­��kvdg{Xjbkvr�wesVdeu1�bd�s�{�mq_ba�pnkvdga­kI}��zpnwer�a�jX�br�f �a�p�u��,^`_zsIm�w�u��Xa�s � _¢��kVde{XjbkVr�w�sId � sIj� �aya
±��bpqaouqu�a��¢sVu®s��zpnk���� � m®kV}�wgpqpqao��� � wg zdga��kVde{XjbkVr�w�sId�u�� � kVp�wgj�u|m�sIj � aV�¡mq_ba�wgpqpna���� � wg bdea���kvdg{Xjbkvr�w�sId�u1kI}®xvpqsv��a Â wej/Í� ù � � �sVpna:�	s Â sIjz�Ö�	s­�b� × sIj mn_baopna® �a®m|c®k¨��kvdg{Xjbkvr�w�sId�u6� � � � sVjz�Ö� � � � wej Í� ù � � � u�� � _mq_zslm��°��s Â �jvZ� � � � � R �°��s/�V�jvZ� � � � � ë�^`_baysIjzunc�a�p-w�u�jzkz�XsIjz��mq_ba1sVpnxv�br�a�j�m�w�ua�ununa�j�mnw�sIdede{2mn_bayunsVr�a(sVu,}�kvp�wejvmqa�xva�p�u)sIjz��mq_ba�wep��bpqwer�a%jX�br­ �aop�pqa��bpqaouna�j�m�slmnwekVj�u��� _baopna�sVu®mn_za Àv��sIj�mnwgm|{¢kI}îk ��� �zpnpqa�j � aou�kI}�mn_ba2wepqpna���� � we bdea1��kVde{XjbkVr�w�sIdB�×s Â wgjs�jbkVpqr�sId�}�kVpqr³pnao�bpna�u�aoj�mqslmqwgkvj�kI}®���Ös´�v�Zv�� � � � � _zsvu®mnk� �aya��va�jº�Xwgm�w�u�kX�z�¢wej�sjbkvpnr�sVd�}�kvpnr pnao�bpna�u�aoj�mqslmqwgkvj�kV}`����s Â �ªv�� � � � � �Ó u�wer�wgd�sIp$sIpqxV�zr�aoj�m�w�u��zu�a��Kwej ��Ç�È�È
�zÇ�élè�Ól�yc%_ba�pqa�mq_ba´pna�sVunkVjbwejbx@sV �kv��mm|c�k�una
m�u � sIj°u�kvr�a
mnwer�aouy �a�pqao�b� � a���mnk�mq_ba�wep � sIp���wejzsIdewgm|{V�½mn_�slm2weuo�ºs��bjbwg}�kVpqrpqa��bpqaouna�j�m�slmnwekVj�kI}îmn_ba�m|c�k�u�a�mqu`�bjz�ba�p¨u � pq��mnwejX{V�æ(aoj � av�,c®a�_zs��va�jbklc s�xVaojba�p�sId)�bpqwej � we�bdea�sIjz�5sVpnxv�br�a�j�m2�zunao�´wej¸u�a�m mn_ba�fkvpn{v��jX�br­ �aop�mn_baokVpq{¢sIjz����kvdg{Xjbkvr�wesVd�pqwejbxvu���sVjz���bpnkv zsI zdg{¢sVdeunk­kVmn_baop%sIpqaosVu®kI}r�slmq_ba�r�sImnw � u��õ�½}�pqkVrSc%_bw � _�mn_za�sVpnxv�br�a�j�m¨}�kvp¨mq_ba�wgpqp�slmnwekVj�sIdew¬m|{�kI}`~ ��weu®�|�zu�ms�un��a � w�sId�wgjzu�mqsVj � av� � a�sIpqa � �bpqpnaoj�mnde{�c�kVpqh�wejbx�kVj�r�a�mn_bk��buo�zm�s � mnw � u¨sVjz� � kvj�f
�5� L "��!���§�!�'"��!�§����('�/����"�#%� �D��"��!�%���������!�'�����'�!�'"/�!� ������"?��¡Z�¢��������¡����!�P¤

µHkIfKJ7L
MON $P�9Q9Q5R�S M Q9TU$WVXDYZY MO[R�� L
M]\ Y MO[R?$ M�L
MO[R?Q9^ [$P�9Q9Q5R7��Q \W_ ^9YZY M �

mnpqkVd¡pq�bdeaou®mnk�r�a � _�sIjbweÁ�a1mn_bw�u%r�kVpqayxVa�jza�p�sId¡sI�b�zpnk�s � _º��sIj��¢mqk��ba�r�kVjzu�mnp�slmqa1wgmqu}�aosvu�we bwedgwgm|{¢wej�r­� � _$desVpnxva�p`sIjz�$��we�Vaopquna1�za�d��bu%kV}�r�slmq_ba�r�slmqw � u��
^`_ba¨xva�jbaopqsVdbwe�baos2_baopna%w�u�mnk pqa��bpqaouna�j�m-kv ��|a � mqu-�Xw�s�jbkVpqr�sIdz}�kVpqr�u�sIjz��mqk��zuna�bpqkI�|a � mnwekVj5wej¸kVp���aop mnk/pnaoc%pnwgmna¢mn_ba�u�a�pnao�bpna�u�aoj�mqslmqwgkvjzu �zjvmqwgd`s��bweu�mnwejbxV�zweun_bwejbx�bpqkV��a�pnm|{� �a � kvr�aou(kv X��wekV��u�� � kvp(kV�bp¨�bpnkv bdea�r � d�sVuqu(slm¨_�sIjz��s¢�bweu�mnwejbxV�zweun_bwejbx�bpqkV��a�pnm|{ � sVj� �a � kvr��z��mna���sVu%}�kvdgdeklc(uo² × kVr��b�bmna2mq_ba��bpqwer�a��bpnk���� � m1jzkVpqr�sVd}�kVpqr«kI} é ��^`_zweu � sIj� �a(��kvjba®c%wgmn_�s � kvr��z��mnaop,sVdgxva� bp�s¨un{�u|mqa�r$��¹ºa
m é R � I w �����Kvá&á=á vV� I�� ��������mn_�slm%weuo�
÷� ,w�u`mn_ba2À��zsVjvmqw¬m|{�kI}�k �o� �bpqpnaoj � a�u�kV}�mq_ba2�bpqwgr�a I ��-^`_ba�jº�mn_baopna�a�±Xw�u�mqu%sIj�÷�¡ { ÷ w 3 á&á&á 3�÷ � | ��c%_bw � _�w�u`jbkIm¨��we�Xweunwe bdga� X{(í��bunwgj � a�kImn_za�pqc%weuna

ç~ é c®kv�bde�� �a pqsImnwekVjzsVd)��sIx�sIwej�mq_ba ��we�Xweunwg zwgdew¬m|{�}�kVp%a�s � _�÷� � sVj� �a � _ba � hvao��c%w¬mq_s � kvr��b��mnaopysVdgxva� bp�s�un{Xu�mnaor¢�õ��¹�a
m I �a­mn_ba­�bpqwgr�a jX�br­ �aop � kVpqpna�u���kVjz�bwgjbx�mqk
÷X� � kVp�sIj¢wej�mnaoxVa�p1��dea
m�p�¢b�°���� �a(mn_za1jX�br­ �aop�kI}ºk �o� �bpqpnaoj � a�u)kI} I wgj�mq_bay�bpnwer�a�bpqkX�b� � m�kI}�����p�¢/w�u�s/_zkVr�kVr�kVpq�b_bw�unrÎc%wgmn_£pqaoun��a � m�mnk´r��zd¬mqwg�bdew � slmqwgkvj sVjz�sV�b�bw¬mqwgkvjº�lmn_�slm-w�u��+p!¢z�°��v·rb� R p�¢z�°�½� sip!¢b�¨rb�õ�,¿�kVpqa�kl�va�p���c�a`hXjbklc¸mq_zslm�p!¢�����£V� R
rUvHp!¢b�����
� ^`_ba­sV�b�bdew � slmnwekVj�kI}1p!¢�mqk� �kImq_/unwe��a�u1sVjz��pqa���aosImna���sI�b�zdgw � sImnwekVjzu1kI}mn_ba�u�a2a�À��zslmqwgkvjzu�pnaoc%pnwgmnaymn_za2wgjbwgmnw�sId�aoÀ��zslmqwgkvj�svu�}�kVdedgklc(uo²

é v"��� R ���
¤ p!¢�� é v������ R p!¢����+���
¤ p!¢�� é �`s�p�¢b�°����� R p!¢����+���
¤ ÷ÏsÀí�v�p!¢b����� R íËvrp!¢����$�
ä klc2�,w¬m�weu � deaosVpnde{��Xw�u�we bdea¢mq_zslm mq_ba�dea
}�m�_zsVjz�5u�w���a�kI}`mn_ba�aoÀ��zsImnwekVj5w�u�jbkVm��we��w�unwg bdea2 X{(í�c%_baopna�sVu�mq_ba2pnwexV_�m%_zsVjz��unw���a2weuo�
^`_bweu1w�u¨s�}�sIp1r�kVpqa2xVa�jza�p�sId�sV�b�bpqkvs � _$sIj���mn_ba � kVpqpqaoun��kvjz��wejbx�r�a�mn_bk��buysIpqa� aop�m�sIwejbdg{$r�kVpqa�dewehVa�de{ � sVjz��w��bslmqaou1}�kVp�sIj/a�j�mnpq{$wgj�mnk�mn_za­wej�mna�pqjzsImnwekVjzsVd�hXjbklc%dgfao��xva� zsVuna�kVj�r�sImn_baor�slmnw � u(wgj�mn_ba � a�j�mn�zpnweaou�mqk � kVr�av�
� a`sIpqa�jbklc5c�kVpqhXwgjzx(kVj2}�kvpnr�sVdgweÁ�wejbx(mq_baouna�r�a�mn_bk��buîwej�p�slmn_za�pîxVa�jza�p�sIdImqa�pqr�usIjz�°mq_ba�j5wejzu�mqsVjvmqwesImna�mq_ba�råc%wgmn_¸sV�b�bpqkV�bpqwesImna��zsVpqsVr�a
mnaopquymqk�mn_za���kvr�sVwgj´wejÀ��baou�mnwekVj$��jX�br­ �aop)mn_baokVpq{V�Vuna
m,mq_ba�kvpn{v�IkVp)��kVde{XjbkVr�w�sId�pqwgjbx�uq�B� sVjz� mq_ba � pq� � wesVd� pqaosImnwe�Va1u�mnao��kV}ºmn_ba2un{�u|mqa�r ¶¸·º¹�»¡¼¡w�u�mq_ba�j�mnk­�zjz�¢mn_ba�wejzu�mqsIj�mqwesImnwekVj¢ X{¢unkVr�axVaojba�p�sId½_bao�bpnw�u�mnw � uo�

â _3ã�Í¥ú�v»Ð!nHalü]oKndÍ§m'k

� a�mq_zsIjbh × desV�zu|f¾Ý,a
mqa�p � wgpnmn_5sVjz��Þ)kvdghva�p Æ kVpqxVa­}�kVpymq_ba�wep2xVaojba�pqkV�zu�un�b�b��kVpnmwgj´c%pqw¬mqwgjzx$mn_bw�u2�zsV��aop sIjz�°r�sIjX{�}�pq�bwgm�}��bd���w�u � �zununwekVjzuykVj°mq_ba��bpqk�kV}��zdesVjbjbwejbxmnkv�bw � u�p�sIw�unao�5wej5mn_zweu��zsV��aopo�´¿�kVpqa�kl�va�p���c�a�sVpna�xVp�slmqa
}��bd®mnk�mn_ba$sIjbkvjX{�r�kv�zupnao�Xwgaoc®aopqu®}�kVp`mq_ba�wep`mn_zkV�bxv_vmnfi�zpnkl�vkVhXwgjzx � kvr�r�aoj�mquo�
^`_bweu,c�kVpqh�_zsVu, �a�aoj�un�b�b��kVpnmna�� �zsVp�mqwesVdgde{2 X{�mn_ba�a*¼@mqpqsVwgjzwgjbxyjba�m|c®kvpnh�Ô¨ª�¹dÆ

ô�·º¹v§z¦¨·D��� æ¨Ý b ä f × ^�f¾�V�V�V�IfÌ�v� Â �v�V�`sVjz�°�zsIpnmnw�sIdede{� �{�mn_ba Æ kvjz��aop�}�kvpqu � _X�bjbxvu�f �aopnaow � _$Ú éÎc kV}�mq_ba Ø1a���m�u � _ba � kVp�u � _X�bjzxvunxVa�r�aowgjzu � _zsI}�m�Ø � Ü �

_][^§^9� \9M�¨�M Yl^ _ $ M QD��© L ��ª�«D¬&­�®=¯5°��Dª M�L±[D[��� L ^�Q��9Y L ���²^9�´³ H µHk,k

e Í e ¹ºÍ ß�ÜPb¨Ó Ý�æÏ}
ó ��¡�¡��1"�ù�E½ð�4 ý£R H,f,f,f
õ&J ¤���¡�¡��1"UR [¤¦¥O��"��B� ��'�¡���R [¤ M � ����"êR1¥9¤ N �!�'� ��ö�R���"��´Y�¤�Yê���!��#���¤´�����§�¨N© d=ª����Î�'"P¡���#���(1��¡ê�'"/�7���!��"����1"��1¤ L "�$P(1��¡�¡��'�����1�Äó H,f,f,f
õ ¤
ó ��"����!�
�D�-ù�E¡ð�4 ý£R kIe,e,�
õ�_ ¤ê��"����!�
�D��RZ$y¤USO���!�����êR J ¤ L �!� ���1R \ ¤êQ��'����� �!�êRd�h¤ _ �;�1"�"���"�#�Rl��"��ª5¤�«9� ¤7� _hJ °��»�!���1�����'���������7��"�#9�B	��B�!�'�W�;���l('¡£���!����(���¡/�
	��Î�O�����'����	�¤�¬oóõô�ò¾ûIð�4Iób­]8îô�E�ó
ø�ð�E�ùÌú®ºùið�@Ìó
ûlñ¬û�¯�R kI� � µ % ° µ�HHk±°7µ�ý�µ R kIe,e,� ¤
ó Sh���B�!¡��=��"�� J ���'��'Î�'���1R kIe,[�H
õ�[¤USh���B�!¡��¥��"�� \ ¤ J ���'��'Î�'���1¤*²Ìû?E�ò�ónúõô�:�E�ñgóõû»E�ó@®ºùÌð�4l8,ûIð�4 ³�@Ìñ;@!¤©¶��¡��'	�R H "����'��� ������"êR kIe,[�H ¤
ó Sh������#����B�!"��1�D��"����?����'?��(!�êR kIe,e�Ý�õ�_ ¤%Sh������#�������"��'����"�� X5¤¥�?����'?��(!�ê¤ _][^9� M]L Q5R��

_O[^����'�A�D� �!���¥�����'����	 L QD���'���¢��('��¤ L "PSO��"���	(ó kIe,e�Ý�õ R��?��#��'� I��,e�°�I�I�µ ¤
ó SO�'"¤ö'� V��¡�¡��'����"�� N ����¡��?���!��R kIe,e,[
õ ¥9¤
SO�'"¤ö'� V��¡�¡��'�¥��"��s$y¤ N ����¡��?���!��¤�Y M ^µ´Á�P����#����'�T����!���1�h�����'���!�'�Þ���������'��¤ L " N ���!(��"��1�D��"�� N ���!(��"��'� ó kIe,e,[
õ ¤
ó SO�'"¤ö'� V��¡�¡��'����"�� J ���!#���R kIe,e,[
õ ¥�¤êSO�'"¤ö'� V��¡�¡��'�§��"�� ¨ ¤ J ���!#���¤%�®'�¡£��(�å='Î�����!�Ò���!(!��� �!�'(C�����!��;���D#���������"�#%��"��!�'�!��('��� ���=���!�/���;��¤ L "9¶9����"�(����#�¡��£�Vó kIe,e,[
õ ¤
ó SO�'"¤ö'� V��¡�¡��'����"�� J ���!#���R H,f,f,f
õ ¥�¤�SO�'"¤ö'� V��¡�¡��'����"�� ¨ ¤ J ���!#���¤?«��±¯1·Ið7¸ ° �9"*���Î�1"%�������!����(!�� �D('����'���"���"�# L "/���'� ��(C��� ���¥��"����9��������� ���1���D���1�����'� _ �����7��"�#�¤ L " N �'��'Î�'�D��"�� N ����¡��?�����

ó H,f,f,f
õ ¤
ó SO�'"¤ö'� V��¡�¡��'�)ù�E½ð�4 ý£R kIe,e,e
õ ¥9¤/SO�'"¤ö'� V��¡�¡��'��R�$y¤/SO���������êR/��"�� ¨ ¤ J ����#���¤ L "��!�'#��!� �!��"�#5� _hJ ��"��«A@�B\CIDl¤¦¬�óõô�ò¾ûIð�4bób­G¹�ûlñ»ºqùnòC@¾ð�4�¼zóõø)½Iô7E�ùnò¿¾U:nñgùnûÎ:iù�R ý ° kI[,[�°7H,f�I R kIe,e,e ¤
ó SO�'"¤ö'� V��¡�¡��'�)ù�E½ð�4 ý£R H,f,f�H
õ ¥9¤�SO�'"¤ö'� V��¡�¡��'��R��*¤��
���'��¡��'��R��5¤�$P�'���1�1R/��"���$y¤ _ ��¡�¡��C�1¤ L �!�!� �!����"?��¡ �� �
	����l³ H ´ �=(������9�B�!���7	���"�«�@�B=C1Dl¤ J ��å/� � [�'�Î����� J�[� f�H � f�µ R \ �1�����������1"��h����¥h���������!�'�J ('���'"�('��R J �����!¡£��"���X�"�� ���'���!� �
	�R J �����T'�� V��(�å��'"êR�¶9�'�!����"�	/R H,f,f�H ¤
ó SO�'"¤ö'� V��¡�¡��'�)ù�E½ð�4 ý£R H,f,f�µ
õ ¥9¤DSO�'"¤ö'� V��¡�¡��'��R��5¤D$P�1���'�1R9��"�� ¨ ¤ J ���!#���¤�SO�!����#���"�#y�!���1�����'��������7��"�#5��"������ �!���1��� ����(1��¡¤å/"����D¡��'��#��9���C�!�����'����¡ ¤ L "¨ï�ù1@ E @C:CAoò¾ñ ­ Ebñgû*À-óõûIóõô�ò)ób­1¬�Áóõò=¯&¾VñgùLÂ�Ãø`ðõûlû	Ä @ÆÅ�3�@¿Ç�ñgòCE;A�ú
ð!³�R?YlQD� L ¤ J ���!��"�#��'�1R H,f,f�µ ¤��l�������Î�1����¤
ó SO�'"¤ö'� V��¡�¡��'��R kIe,e,e
õ ¥�¤ZSO�'"¤ö'� V��¡�¡��'��¤3È�Énô�ð�4 ñ;E=³�ðõûIúGÈ�Ê�E�ùnû?@ÌñgóõûIð�4 ñ;E�³2ñgûwÀ,ñ;¯ A�ù�òkÃLË¡ò ú
ù�ò<ÌêA�ù�Ãóõò�ùnø <ºò�ó!ºqñ¬û�¯�¤ _ � \ �!���1������R \ �'�?���������'"/�*���¿¥h���������!�'� J ('���1"�(1��R J �����!¡£��"��sX�"�� ���'�!��� �
	�RJ �����T'�� V��(�å��1"UR�¶9�1������"/	�R kIe,e,e ¤
ó SO���������P��"����9"����!�
�D��R kIe,e,[
õ $y¤dSO���!�����&��"�� _ ¤Î��"��������D�1¤ J �'¡��'(C�!� ���'¡ 	&��"����!��"/���£� �!��"�#����
�¤�"�� ������"���¤ L " N ���!(��"��1�D��"�� N ���!(��"��1�Äó kIe,e,[
õ ¤
ó SO¡��'�����7��R kIe,e,f
õ ©W¤OSO¡��'���!�/��¤y¥h����¡�¡��1"�#��P���!�"'�¡��1������"´�'¡��'���1"��!����	�(1��¡�('��¡�����¤Í¬oóõô�ò¾ûIð�4)ób­8îô�E�óõø�ð�E�ùÌúE®¡ùÌð�@¾óõûlñgû�¯�R � ° µ�ÝYk±°7µ�ý,e R kIe,e,f ¤
ó SO�����T'?��å/� R kIe,�,[õ&Q=¤dSO������'���å7� ¤GÌZA�ùÌóõòk³yóÎ­*@Ìù�E @ ¤�ª���� M ¡��'���'"/���9���]��� �!���'��� ����('��R k ¤ _ ���!����Rª��'������"�" [�1������"�#�$&������¤�R��9����������"\� ©·�'�!¡��C	�R kIe,�,[¤
ó SO��"���	�ù�E¡ð�4 ý�R kIe,e,f õ��*¤ÎSO��"���	�RÎ�h¤�����"&ª����!���'¡��'"êR	¥9¤ÎªD���!"êR?��"��P�*¤ J ������¡�¡ ¤��D���5^�	��B�!�'�T�¥O¡£��� J 	7�����'�P¤ L "�$y¤ J �!��(�å��'¡ R��'��� ������R7<¡ò ó1:ÌùÌùiú
ñ¬û�¯�@îób­DE;A�ù§,/3�EFA<¼zóõû�­|ù�ò ù�ûÎ:Ìù)óõû�8îô�E�ó
ø�ð�E�ùÌúÏ�ùÌúõô�:�E�ñgóõû?R�"/����'Î�'� Ý�Ý"e ��"�YlQ)¥ J R��?��#��'� ��Ý/I�°r��Ý"[R N �����!�'���!¡£�������'�!"êR�¶9�1������"/	�R kIe,e,f ¤J ������"�#��'��¤
ó SO��"���	�R kIe,[,[õ��5¤ZSO��"���	�¤¥�����¥���!�*���h�C¦���¡���('� �§��¡£��"����!��#��������%��"�����(C�!� ���¥���!�/���¢�1¤ L "ÒYZ����å��"��P^����1�T'Î�1��åxó kIe,[,[
õ R��?��#��'� k,k,k±° k1H,f ¤
ó SO��"���	�R kIe,e�Ý õ��5¤DSO��"���	�R9�1��� �!���1¤ <ºò�ó�:iùÌùÌúõñgû�¯�@�ób­&E;A�ùs,�)/EFAÍ¼zóõû�­|ù�ò ù�ûÎ:Ìù�óõû�8-ô�E�ó
ø�ð�E�ùÌúÏ�ùÌúõô�:�E�ñgóõû?R?"7����'Î�'� [Hk'Ý ��"�YlQD� L ¤ J ���!��"�#��'�1R kIe,e�Ý ¤ó SO��"���	�R H,f,f�H õ��5¤dSO��"���	�¤9��('�!� ��� 07���*���]���!�/���]��¡£��"�"���"�#�¤ L "[¼�óõø1½Vô7E�ð�E�ñgó
ûIð�4�Ð�ó±¯õñ¢:�Ñ8Ð�ó±¯õñ¢:<ºò�óÎ¯
ò�ðõø�ø®ñgû�¯�ðõûIúEÇ�ù�³
ó
ûIú�R�"7��� 'Î�1� H�Ý"f,[��"�YlQ¿¥ J R��?��#��'� kI�,f�° k�I�I ¤ J ���!��"�#��'��R H,f,f�H ¤
ó ¥O�?���-ù�E½ð�4 ý£R kIe,e�H
õ S9¤�¥O�?����R N ¤!¶9�'�����1�1R.¶*¤�¶9��"�"��C��R�S9¤ YZ�'��"�#�R�$y¤ $P��"���#���"êR���"�� J ¤1©Ò� ���1¤ï�ñgòC@!Eh4 ùÌð!º�ù1@LÑ,ð�E�ô�E�óõò¾ñgð�4Xñgû?Eeò ó�úõô�:1E�ñeóõû·E�ó�Ò�ðk½d4 ù9Ó
¤ J ���!��"�#��'��R kIe,e�H ¤
ó ¥O���'� å/���!���������&��"�� J ����å/����"�"êR kIe,e,[
õ Y�¤7¥O���'� å/���!������������"��3Ô�¤ J ����å7����"�"U¤ _ ¡£��"�"���"�#=���£��#����"?��¡�� ö1� ������"P���!�/���;��¤ L "<¶9����"�(����#�¡��£�Çó kIe,e,[
õ R��?��#��'� kI��I�° kI[,f ¤
ó ¥O���'� å/���!���������&��"�� J ���!#���R H,f,f,f
õ Y]¤1¥O���'� å7����������������"�� ¨ ¤ J ���!#���¤ÖÕ�×&ØÙ´ � �������'���

\ �����'"�������"?��¡ \ � �!� J ���!��(C�����!�&�;��� _ �!�/��� _ ¡£��"���¤ L "É<ºò�ó1:ÌùÌùÌúõñ¬û�¯�@­óÎ­&E;A�ù9²Ìû?E�ùnò¾ûIð�E�ñgóõûIð�4¼zóõû�­|ù�ò ù�ûÎ:Ìù2óõûy8,òCEeñ Ú]:�ñeð�4ºðõûIú�¼zóõø)½Iô�E�ð�EeñeóõûIð�4�²¾û?E�ù14;4 ñ;¯
ùnûÎ:Ìù�­|óõò�Ï�ù :�ñ;@Ìñgóõû�ÿ3¼zó
û?Eeò ó�4ºðõûIú8îô�E�óõø�ð�Eeñeóõû�ñ¬û9Èºû�¯õñgûIùiùnò¾ñ¬û�¯2ðõûIú@²ÌûIú
ô7@ E�ò¾ñgð�4
8�½N½Î4 ñ;:Ìð�E�ñgóõû?@1ü¢8Û¼�²ÎÏE¼ê8GÄ)73�3�3¾þ R
$P��"?����������R�l��"������£��R H�H�°7H�Ý $&����(� H,f,f,f ¤
ó ¥O�/���!(�UR kIe�Ý"f
õ �5¤�¥h�/����(�ê¤l� �
���!�*��¡£� ������"����U�!��� J ������¡��������'����	����l�h	7�d�'�1¤�ÌêA�ù8¬oó
ôoò¾ûIð�4ób­¿¾�³õø%>ió�4 ñ;:&Ð�ó±¯õñ¢:1R ý ° ý,��°r�,[R kIe�Ý"f ¤
ó ¥O�&0 \ �'���'¡��������'"��D�l�����PR kIe,e,e � H,f,f�µ
õ ¥O�&0 \ �C���1¡��������1"����l�����P¤�ÌêA�ù�¼�ó�É�<¡ò ó�ób­h8=@ @iñ;@ E�ð
û?E®ºù=­|ù�ò�ùnûÎ:Ìù&Ò ð
ûlô�ð�4 ¤ L Q [�L � kIe,e,e � H,f,f�µ ¤ J �'��Ü >">��>Ý2Þ!Þ ����ß
àÎá
� �7á�:�à 9"�.Þ
7&� ��ÞLâ¤:�á��>à�Ü >�â3<7¤

µHk1HKJ7L
MON $P�9Q9Q5R�S M Q9TU$WVXDYZY MO[R�� L
M]\ Y MO[R?$ M�L
MO[R?Q9^ [$P�9Q9Q5R7��Q \W_ ^9YZY M �

ó ���=Q�� ���'¡�¡���R kIe,e,e
õ ª5¤]���·Q�� ���'¡�¡���¤�SO¡�� å7���1� k ¤ kIf �����'������"/�?��¡ ¤É�l�'(��"���(1��¡§���1�Î���B��R�$&� ¦&�
_ ¡£��"�(�å � L "��B�!� �����9�;� L "��;���!��� ��� ådR kIe,e,e ¤

ó \ ���!���1R H,f,fHk
õ �D��� \ ���!������	7�����'� ���y�'������¡£��'�¡��´� ��Ü >">��>Ý2Þ!Þ�ã!ã!ã>à¨����ä�å"�.á�à 8�7
à :&��à�;!æ�Þ7ç�è�é\�Nå�Þ
7&�
�7á�å�Þ7¤

ó \ �!��������"��êR kIe,e�Ý�õ $y¤ \ �!��������"��ê¤�^9"5���!�'('��"���� ������"¥��(�����'���'���'"�����"��5������(1��������� � ������"?��¡�'('��"�������('�]���ê����������� �!��(���¡£��"�"���"�#�¤ L "w¼bô�ò¾ò�ùnû?E1Ìlò�ùnûIú�@ºñgû%8)²h<h4 ðõûlûlñgû�¯�R/�?��#��'� ��° k1µ ¤ L ^ J_ �!�'�!�1R kIe,e�Ý ¤
ó �����'��¡��'�1R H,f,fHk � õ �5¤��
���'��¡��'��¤�<õýiò�ùkÊZ°
�9"���"��!�'� ��(C��� ���=���!�/���
�C¦���¡£����"��1�1¤ L "<¶9����ê���C�9��¡ ¤1ó H,f,fHk
õ ¤
ó �����'��¡��'�1R H,f,fHk '\õ��*¤��
���'��¡��'��¤ \ �£��¡���#�� ���!� ���'"É���?�����!� ������"W���¥�'¦7��¡£��"?� ������"������%���!�/���¢�1¤ L "S9¤7QD��'Î�'¡ R7�1��� �!���1R?<¡ò ó1:ÌùÌùiú
ñ¬û�¯�@-ób­9E;A�ù5,�+ E;A�²Ìû?E�ù�ò¾ûIð�EeñeóõûIð�4�¬oóõñgû?E1¼�óõû�­¾ùnò�ùnûÎ:iù®óõû�8îòCE�ñ Ú]:nñgð�4²Ìû?E�ù14;4 ñ;¯
ùnûÎ:Ìù%ü�²k¬�¼ê8)²�þ�RÎ�?��#��'� k1H,e�ý�° k1µ,f,f R J ��� �B��¡���R?©P�*R H,f,fHk ¤Î$P����#���" N �����;����"�"ê¤
ó �����'��¡��'�1R H,f,fHk (õ �5¤U�
���'��¡��'��¤�¹
@ÌùnòkÃ�ð
ú�ðk½ÎE�ñëº�ù8½Iò ó�ób­¨ù±ÊL½Î4 ðõûIð�E�ñgó
û?¤ _ � \ �����'�!����R \ �'�?���������'"/�����¥O�����������'� J ('���1"�(1��R J ������¡£��"��PXD"�� ���'�!��� �
	UR J ������'�� V��(�å��'"êR�¶9�'������"/	dR H,f,fHk ¤
ó ��� å��'����"��PQD��¡��!����"êR kIe�Irk
õP[¤ M ¤��
� å��1����"���Q=¤ Ô�¤�QD��¡��!����"ê¤ J � [�L
_hJ °���"�����������������(�����=�!���������¡���(1� �!����"P���
�����'���!�'�K���!���7��"�#%���%�����"'�¡��'�K�!��¡ �7��"�#�¤]8îòCE�ñ Ú]:nñgð�4	²¾û?E�ù14;4 ñ;¯
ùnûÎ:Ìù1R H ° kI[,e�°7H,f,[R
kIe�Irk ¤

ó ��� å��'��ù�E¡ð�4 ý£R kIe�I�H
õ�[¤ [¤Î�
� å��'��R _ ¤ M ¤dª9���B��RU��"���Q=¤�Ô�¤êQD��¡��!����"ê¤DYZ�1���!"���"�#���"��&�C¦7�'(1�7�!��"�##��'"��'�!��¡�� ö1�'�P���"'Î������¡£��"���¤]8îòCE�ñ Ú]:nñgð�4	²¾û?E�ù14;4 ñ;¯
ùnûÎ:Ìù1R µ ° H�ýHk±°7H,[,[R kIe�I�H ¤
ó �?� ��"¤å��5��"�� N ����¡��?���!��R H,f,f,f
õ �*¤��?� ��"¤å��=��"��P$y¤ N ����¡��?���!��¤ J 	��B�!�'� ���'�!('�!����������"ê°O¬<ìAD�¸�BÎR��"����Î�1"���� �!���'��� ����(1��¡^å/"����D¡��'��#��Ä'?���!��¤ L "P$P('�9¡�¡��'�B�!�'�Äó H,f,f,f
õ ¤
ó ¶���"¤ö'��"�#��'��R kIe,e,e õ�ª5¤
¶���"\ö1��"�#��1�1R
�'��� �!���1¤�<ºò�ó1:ÌùÌùÌúõñ¬û�¯�@1óÎ­%E;A�ù�,�Å E;A�¼zó
û�­¾ùnò�ù�ûÎ:ÌùyóõûÒ8îô�E�ó!Ãø�ð�E�ùÌúEÏ-ùÌúõô�:�Eeñeóõû?R?"/����'Î�'� kI��µ�H ��"�YlQ�� L ¤ J ������"�#��'��R kIe,e,e ¤
ó ¶9��'��?���!�êR kIe,e,e
õ ª5¤
¶9��'��?���!�ê¤·SO�
�h�'������¡£��"7��"�#&� V���5������SO�
�h�'���!�����'� ¨ ��¡�¡���� V��"�����#"å��'� �¥���'�¨���(�����'���'"��'� [�'�!��¡���������"��Tå���¡ å V��¡�����"s«A@�B=C1Dl¤�$&�������'��í �§�����'�!����R \ �'�?���������'"/�5���)¥O�����������1�

J (1���'"�('��R J ������¡£��"��PXD"�� ���'�!�!� �
	�R J ������'�� V��(�å��'"êR�¶9�'�!����"�	�R kIe,e,e ¤
ó ¶9�1"��Tö1�'"êR kIe�µ�ý
õ ¶*¤	¶9�'"���ö'�'"ê¤�X�"��!�'���!��(�/��"�#��'" V�\'d�'���?����¡���#����!(!��� J (��¡�����î��'" L�ïÉL�L ¤�Ò�ð�E;A�Ãù�ø`ð�E�ñF@C:'A�ùÛðXùnñFE @C:'Aoò¾ñ ­CE¢R µ,e ° k�I���°7HHkIf R ý�I�H�°7ý,e�ý R kIe�µ�ý ¤
ó ¶9����"�(����#�¡��£��R kIe,e,[
õ �h¤�¶9����"�(����#�¡��£��RÎ�'��� ������¤D<¡ò ó1:ÌùÌùiú
ñ¬û�¯�@�ób­&ñ�E;A@²Ìû?E�ù�ò¾ûIð�EeñeóõûIð�4�¼�óõû�­¾ùnò�ùnûÎ:iùóõû&8,òCEeñ Ú]:�ñeð�4�²Ìû?E�ù�4F4 ñ ¯�ù�ûÎ:Ìù�Ñ)Ò�ù�EFA�ó�ú
ó�4 óÎ¯N³qÿ�¾�³�@ E�ù�ø¥@ ÿ�8�½N½Î4 ñ;:Ìð�E�ñeóõû?@(ü¢8)²bÒH¾�8HÄ òNñ¾þ�Rd"7��� 'Î�1�
k'Ý"[,f ��"�YlQD� L ¤ J ���!��"�#��'��R kIe,e,[¤

ó ¶9���!����"&��"��P$P�'¡��?���PR kIe,e�µ
õ $y¤4¶9��������" ��"�� �§¤�$P�'¡��?���P¤Í²¾û?Eeò ó�úõô�:1E�ñeóõû�E�ó�À*Ë�Ð�-�8EFA�ùió
ò�ù�øó½Iò ó!ºnñgû�¯�ù�û�ºqñ¬ò�ó
ûlø�ùnû?E¦­|óõò�Aoñ;¯ A�ùnò óõò�ú�ù�ò�4 óÎ¯
ñ;:�¤y¥h����'�������#��&XD"�� ���'�!�!� �
	 _ �!�'�!�1R
kIe,e�µ ¤

ó ¶9����ê�%ù�E½ð�4 ý£R H,f,fHk õ [¤�¶9����ê��Rd�*¤ÎYZ�'� ���!(�URZ��"��&�§¤dQD���¤å����=RÎ�'��� �����!��¤�8îô�E�óõø�ð�E�ùÌú@®ºùÌð�@¾óõûlñ¬û�¯
ô ,�@ E�²Ìû?E�ùnò¾ûIð�E�ñgóõûIð�4�¬oó
ñ¬û?E�¼zó
û�­¾ùnò�ù�ûÎ:Ìù|ÿ�²±¬�¼ê8¿®�)73�3�,�R�"/����'Î�'� H,f,[�µ ��"¥YlQ�� L ¤ J ���!��"�#��1�1RH,f,fHk ¤

ó ª9���?���������êR kIe�Ý�Ý�õ Ô�¤�ª����?�������!�ê¤õÌZA�ùÒ<�@Î³�:'A�ó�4 óÎ¯N³�ób­<²Ìû�º�ùnû?Eeñeóõû°ñ¬û�EFA�ù�Ò ð�EFA�ù�ø`ð�E�ñ;:Ìð�4ï�ñgù�4 ú�¤ \ �1���1� _ �\'�¡���(1� �!����"��1RÎQ��
��������åÎRÎX J � ò��1��� �!����" kIe�Ý"e R kIe�Ý�Ý ¤
ó ª���¡�¡��'"='�� ��"���ù�E¡ð�4 ý£R kIe,e,e
õ ���ê¤dª���¡�¡��'"&'�� ��"��êR?�*¤7Ô����1#��'�1Rê��"��&S9¤?Y V��(��"��'��¤ J 	7�����'� ���'�!('�!���=�������"ê°�©Ò��¡������'�������'�&´ �������������'���'"/���5��"s�Î�1�B�¢��������"�('����"��»�1���!�����9���!��¤ L "+¶���"¤ö'��"�#��'�

ó kIe,e,e
õ R��?��#��'� H�µ�H�°7H�µ,� ¤
ó ª��?��"�#�R kIe,e�Ý�õ «5¤�ªD�?��"�#�¤ [�'('��"������!��('����"�# _ �!�/���¢�
� �l�����O���!���1�B�!����"=YZ�C���'¡ ¤ L "*SO��"���	�ó kIe,e�Ý�õ R����#��1� I�µ,[�°�I�ý�H ¤
ó L �!�'¡£��"��P��"��&SO��"���	�R kIe,e,�
õ �*¤ L �!�'¡£��"�����"����*¤�SO��"��7	/¤ _ �!�/����(C��� �������!�9���Z� ����¡����!�D��"���"�����(
���� ���=���!�/���B¤¦¬�óõô�ò¾ûIð�4zób­�8îô7E�óõø`ð�E�ùÌú*®ºùÌð�@¾óõûlñ¬û�¯�R kI� � k � H %C° I�e�° k,k,k R kIe,e,� ¤
ó N �1�T'Î�1����"�� N ����¡��?���!��R H,f,f,f õ&$y¤ N �'��'Î�'�§��"��·$y¤ N ����¡��?���!��Rê�1��� �!������¤3ñ�E;A<¾�³õø)½oó�@Ìñgôoø.óõûEFA�ùG²Ìû?E�ù2¯
ò�ð�E�ñgóõû�ób­@¾�³õø%>ió�4 ñ;:�¼zóõø)½Iô7E�ð�E�ñeóõû�ðõûIúwÒ�ù :CA�ðõûlñ önùÌúw®ºùið�@Ìó
ûlñ¬û�¯�üL¼zð�4 :nô74 ùnø®ô�@±Ã)73�3�3Ìþ�¤Î� N�_ �C���1����R H,f,f,f ¤
ó N ���!(��"��1�D��"�� N ���!(��"��1�1R kIe,e,[
õ ¥9¤ N ����(��"��'����"���ª5¤ N ���!(��"��'��R7�1��� �!������¤�<ºò�ó1:ÌùÌùÌúõñ¬û�¯�@�ób­§EFA�ù,Nö�E;A�¼�óõû�­¾ùnò�ùnûÎ:iù`óõûP8)ô�E�óõø�ð�E�ùÌúEÏ�ùiú
ô�:�E�ñgóõû?R�"/����'Î�'� k'Ý�HHk ��"�YZQ�� L ¤ J ������"�#��'��R kIe,e,[¤
ó N ���!(��"��1�D��"�� [��"�#��'�����!�'"êR H,f,f,f
õ ª5¤ N ����(��"��'����"���¥9¤ [��"�#��'�����!�'"êRh�'��� �����!�1¤�ïXò�óõû?E�ñgùnòC@yóÎ­:ió
ø%>�ñ¬ûlñgû�¯»@±³�@ E�ù�ø¥@LÑxÌêAoñgò�úw²¾û?E�ù�ò¾ûIð�E�ñeóõûIð�4E÷�óõòÎÂ�@BA�ók½�ÿ`ï�ò�ó	¼zó�¾W)73/3�3�RD����¡������ k�I�e�Ý ���ÐlGD8)² ¤ J ���!��"�#��'��R H,f,f,f ¤
ó N ����¡��?���!�=��"��P�?� ��"¤å���R H,f,fHk
õ $y¤ N ����¡������!����"����*¤��?�!��"¤å���¤l¬<ìZD�¸�Bd° [�'�����1���'"/����"�# å7"����D¡ ��'��#�����"��s('��"��!�C¦/�%�;���=��������"/���'#�� � ������"s���D��� �!���1��� ����(1��¡O�!���F� ���������B	��B�!�'���1¤�¬oóõô�ò¾ûIð�4�óÎ­¾�³õø%>ió�4 ñ;:�¼zóõø)½Iô�E�ð�Eeñeóõû�øE¾.½�ù!:nñgð�4¦²C@!@Ìô�ù­ó
û�E;A�ùH²Ìû?E�ù2¯õò ð�E�ñgóõû�ób­w¼�óõø1½Vô7E�ùnò�894 ¯�ù�>|ò�ð�ð
ûIúÏ-ùÌúõô�:�EeñeóõûH¾�³�@ E�ù�ø¥@ R µ�H � Ý % ° µ,��ý�°/Ý"f�H R J �1�7�!�'��'Î�'� H,f,fHk ¤

_][^§^9� \9M�¨�M Yl^ _ $ M QD��© L ��ª�«D¬&­�®=¯5°��Dª M�L±[D[��� L ^�Q��9Y L ���²^9�´³ H µHk1µ

ó YZ����å���"��&^����'�T'd�'��åÎR kIe,[,[
õPM ¤lYZ���Tås��"�� [¤�^����'��'Î�'��ådR��'��� �!������¤Ò<¡ò ó1:ÌùÌùiú
ñ¬û�¯�@yób­�E;A�ù<ò�E;A¼zóõû�­|ù�ò ù�ûÎ:Ìù(óõû�8îô�E�óõø�ð�E�ùÌú3Ï�ùÌúõô�:�E�ñgóõû?RU"/��� 'd�'� µHkIf ��"&YZQ¿¥ J RÎ�9��#���"�"���R L ¡�¡���"�������RdX J �*R
kIe,[,[¤ J ���!��"�#��'��¤

ó $&��"��!���'	���"���SO��	�R kIe,[,[
õ�[¤ê$&��"��!���C	Ò��"��Ò��¤êSO��	�¤ J ���1¥hª9$�^*°d�Ü�����'���!�'�ï���!�����'�=�������¡��'���'"/���'����" _ �!��¡���#�¤ L "�YZ����å���"���^����'��'Î�'��åËó kIe,[,[
õ R�����#��1� ÝYk1ý�°/Ý�µ�Ý ¤
ó $P('�9¡�¡��'�B�!�'��R H,f,f,f
õP\ ¤Î$P('�9¡�¡��'�����'��R?�'��� ������¤�<¡ò ó1:ÌùÌùiú
ñ¬û�¯�@®ób­5E;A�ù�,7+ E;A�¼zóõû�­|ù�ò�ùnûÎ:Ìù%óõûP8,ô7E�ó!Ãø`ð�E�ùiúEÏ�ùÌúõô�:�E�ñgóõû?R�"/����'Î�'� kI[�µHk ��"�YlQD� L ¤ J ���!��"�#��1�1R H,f,f,f ¤
ó $P(�¥O��"���R kIe,e�Ý�õ ©W¤h©�¤D$P(�¥O��"���¤K^������'� µ ¤ f �!�C�;�1���'"�('�·����"/�?��¡=��"���#���������¤��l�1(!��"���(1��¡[�1�Î���B�h��QDY^� e�Ý � � R/�9��#���"�"��9Q9� ������"?��¡ÎYl��'Î��� � ������	�R����!#���"�"���R L ¡�¡���"������ �,f�Ý�µ,e R�X J �5R kIe,e�Ý ¤
ó $P(�¥O��"���R kIe,e�I�õ ©W¤d$P(�¥O��"���¤ J ��¡���������"P�����!��� [�"'\'���"��9���!�"'�¡��'�P¤�¬oó
ôoò¾ûIð�4�ób­§8îô�E�ó
ø�ð�E�ùÌú®ºùið�@Ìó
ûlñ¬û�¯�R kIe � µ % ° H,��µ�°7H�I�� R kIe,e�I ¤
ó $P�'���'�D��"�� J ����#���R H,f,f,f õ��5¤�$P�'���'����"�� ¨ ¤ J ���!#���¤ M ¦���¡�������"�#¥���!���Î�'�������1�h���
���'�!��������('¡£���!�!�'�1¤

L " N �'�T'd�'�D��"�� N ����¡��?���!� ó H,f,f,f õ±¤
ó $P�'���'�-ù�E¡ð�4 ý�R H,f,fHk õ��*¤d$P�'���'��Rd$y¤ _ ��¡�¡��C��RU��"�� ¨ ¤ J ���!#���¤�¥h¡£�����!� �F	���"�# L �!�������!������([�'�!�������¥O¡£���!���1�1¤ L " [¤�$P���!�'"���� \ �£��ö�RhS9¤�SO��(�&'Î�1��#��'��R���"���Ô�¤ �
Y]¤��?���1������RO�'��� �����!��Rh8ù¾vù�4 ù!:�E�ñgóõûób­9<ºðL½oùnòC@�­Ìò�ó
ø EFA�ùÆñ�E;A3²Ìû?E�ù�ò¾ûIð�EeñeóõûIð�41÷�ó
òÎÂ�@�A�ók½�óõû�¼zóõø)½Iô7E�ùnò98îñeú
ùÌú*¾�³�@ E�ù�ø¥@*ÌêA�ùÌóõòk³ü�È¡ô�ò�ó�¼Z8)¾�Ì¶)73�3�,|þ RÎ"7��� 'Î�1� HHk�I�[��"�YlQ¿¥ J R��?��#��'� Ý"e�Ý�°7ý,f,[¤ J ���!��"�#��'��R H,f,fHk ¤
ó $P�'���'�-ù�E¡ð�4 ý�R H,f,f�H � õ �*¤�$P�'���'��R M ¤h$P�1¡����1R���"��É$y¤ _ ��¡�¡��C��¤Ü�l�������!�����C¦7���'"�����"�#´����������"�!�'�����'�!�'"/�!� ������"���¤ J ��å7� [�'�Î����� J�[� f�H � fHk R \ �1�����������1"��5���1¥O�����������1� J ('���'"�('��R J �����!¡£��"��X�"�� ���1���!� �
	dR J �����T'�� V��(�å��'"êR�¶9�'�!����"�	/R H,f,f�H ¤
ó $P�'���'�-ù�E¡ð�4 ý�R H,f,f�H ' õ �*¤?$P�1���'�1RÎ$y¤ _ ��¡�¡��C��RU��"�� ¨ ¤ J ����#���¤)¥O�����?������"�#%�9�����!����(���1���!�%�����

M ¦7��¡����!� �!����"»�����!��� \ ��������"s��� [�'���������G¥h¡£�����!�'��¤�¬oó
ôoò¾ûIð�4îób­*¾�³õø%>ió�4 ñ;:+¼zóõø)½Iô7E�ð�E�ñeóõû�ÿ¾.½où :nñgð�4	² @ @Ìô�ù®óõûPE;A�ù1²¾û?E�ù#¯
ò�ð�E�ñeóõû ób­�8îô�E�óõø`ð�E�ùiú�®¡ùÌð�@¾óõûlñgû�¯(ðõûIú9¼zóõø)½Iô7E�ùnò�894 ¯
ù�>|ò ðÆ¾�³�@ÎÃE�ù�ø¥@ R µ�Ý � Ý % ° H,[�I�°7µ,f,� Rl^9(C���"'Î�1� H,f,f�H ¤ J �!�C���=YZ��"��!��"P��"�� [�"'Î�1�B�!� J ��'?�������£��"�� RÎ�'����¤
ó $P�'���'��R H,f,f,f
õ �5¤ $P�'���'��¤�� [��$ _ °'��� ��"��B�¢������� �!����"§����$&��(����"��
�
�
����"�� _ ���7���;�Z��"��!��Q9� �����!��¡

\ �'����(C������" _ ���7���;�D� ���!���=���!�!�'�B�!����"�YZ�C���'¡ ¤ L "�$P(1��¡�¡��'�����1�Äó H,f,f,f
õ ¤
ó $P�'���'��R H,f,f�µ
õ �5¤ê$P�'���'��¤%<ºò�ó�ób­*<h4 ðõûlûlñgû�¯&6�ñFE;A9Ò ô74 E�ñ ½Î4 ù�¾dE�ò�ð�E�ù2¯
ñgù�@ ¤ _ � \ �����'�!���1R \ �'�?���B�T����'"/������¥O�����������'� J ('���1"�(1��R J ������¡£��"��PXD"�� ���'�!��� �
	/R J ������'�� V��(�å��'"êR�¶9�'������"/	�R H,f,f�µ ¤
ó $P�'¡�������"��&$P�'���'��R H,f,f,f õ M ¤/$P�'¡����]��"����5¤/$P�1���'�1¤ _ �!�/���ê��¡£��"�"���"�#s�D� �!���*��¡ ������¡�������� � ���1#����'�1¤

L "�Ô�¤êYZ�1	��UR ¨ ¤ \ ����¡ RZX=¤ê�?���T'?��(�êRZ$y¤ N �1�T'Î�1�1R N ¤êYl���UR�¥9¤ _ ��¡£���������1���!� RÎY]¤ $y¤ _ �'�!�'��� ��R�¥¤ J ��#�� ����"��êRO��"�� _ ¤ J ����(�å��C	�Rh�'��� �!������R½ï�ñgòC@ E)²Ìû?E�ùnò¾ûIð�E�ñgóõûIð�4&¼zóõû�­¾ùnò�ùnûÎ:Ìù2óõû�¼zó
ø1½Iô�E�ð!ÃE�ñgóõûIð�4�Ð�óÎ¯
ñ;:­üL¼�Ð>Ã±)�3�3�3Ìþ�R�"7��� 'Î�1� kI[,�Hk ��"sYlQD� L Rl�?��#��'� ��Ý�Ý�°r��ý,e R]YZ��"�����"UROX N R H,f,f,f ¤J ������"�#��'��¤
ó $P�'¡�������"�� J ����å/����"�"êR kIe,e,e
õ�M ¤�$P�1¡����ê��"��&Ô�¤ J ����å/����"�"ê¤ N "����D¡��'��#��
� '?�����'�*�����7������¡£��"�"���"�#�¤8îòCE�ñ Ú]:nñgð�4	²¾û?E�ù14;4 ñ;¯
ùnûÎ:Ìù1R k,k1ý � k % ° ��ý�° kIf�ý R kIe,e,e ¤
ó $P�'¡����)ù�E½ð�4 ý£R H,f,f,f
õ�M ¤Z$P�'¡�����R�Ô�¤ZTd�������'��Rd��"����§¤ê$ V��¡�¡��'��¤ L "��!�'#�� � ����"�#P('��"��B�!�!����"/�=����¡ ����"�#��"��!�%���!�/���
��¡£��"�"���"�#�¤ L " N ����(��"��'�D��"�� [��"�#��'�����!�'"6ó H,f,f,f
õ ¤
ó $P�'¡�����R kIe,e,�
õ�M ¤Î$P�'¡�����¤ L �!¡£��"��P��¡£��"�"���"�#���"���������"��'���1"��1¤ J ��å7� � [�'�Î����� J�[� e,� � kIf R \ �'�?���B�T����'"/������¥O�����������'� J ('���1"�(1��R J ������¡£��"��PXD"�� ���'�!��� �
	/R J ������'�� V��(�å��'"êR�¶9�'������"/	�R kIe,e,� ¤
ó $P�'¡�����R kIe,e,[
õ�M �!��(1�P$P�'¡����1¤�� L � ���'(��"�� 0/���'�%��"·���!�/���D��¡£��"�"���"�#�¤ L "sª=¤ _ � ������R
�'��� ������R�<ºò�ó!Ã:ÌùÌùiú
ñ¬û�¯�@1ób­�E;A�ù&,�.�EFA�Èºô�ò�ók½oùÌðõûÍ¼�óõû�­¾ùnò�ùnûÎ:iù�óõû»8,òCEeñ Ú]:Ìð�4�²Ìû?E�ù�4F4 ñ ¯�ù�ûÎ:Ìù�R��?��#��'� Ý"e�Ý�°/Ý"e,[RSO�!��#�������"êRÎX N R kIe,e,[¤	Ô�����"�©¶��¡��C	 ï²J ��"��1R�¥O����(���'�B�!�'��R?X N ¤
ó QD���O�1¡�¡ê��"�� J ������"êR kIe,��µ õ��*¤]Q��
�h�'¡�¡���"���ª=¤ J ������"U¤[¶ _OJ °]� ������#�� ��� ���?� ���!���¥��¡£� �!�'��/������"%�!������#��/�1¤ L " M ¤/�?�'��#��'"='?�����K��"��3Ô�¤/�?�'¡�������"êR/�'��� �!������R>¼zó
ø1½Iô�E�ù�òC@)ðõûIú<ÌZA�óõôN¯ A7E R�?��#��'� H�I�e�°7H,e,� ¤d$P(�¶9�!���A�±ª���¡�¡ R7QD��� ������åÎR?Q��¥R kIe,��µ ¤
ó QD���¤å����¸ù1E¡ð�4 ý�R H,f,f�H
õ �l�"'��£����Q����¤å����5R]Yl���D���1"�(1�<¥�¤ _ ����¡��!��"UR���"��´$&����å/���%©·�'"¤ö'�1¡ ¤?² @±Ãð/>iù�4F4 ù5ú7À*Ë�Ð�Ñ§8 <¡ò ó�ób­�8=@ @ÌñF@ E�ðõû?E)­¾ó
ò<À)ñ ¯�A�ù�òkÃ�Ë¡ò�ú
ùnò<Ð�ó±¯õñ¢:1¤ QD����'Î�'� H�H,[�µ ��"�YlQ)¥ J ¤J ������"�#��'��R H,f,f�H ¤
ó ^��D�!��ù�E¡ð�4 ý�R kIe,e,�
õPJ ¤ê^��D�!��R J ¤ [��ô!��"êR�Ô�¤ $y¤ [���!�&'�	/RêQ5¤ J �?��"¤å����1RZ��"���$y¤ J �!� ������¤ _�¨=J °¥O����'���"���"�#§�!�Î�'('� �?(1� �!����"êR����!�/���Z(!���'(�å7��"�#�R?��"������/���'¡?(���'(�å/��"�#�¤ L " [¤���¡����h��"����§¤7ª��'"\�

ö'��"�#��'��R7�'��� �!������R�¼�óõø1½Vô7E�ùnòkÃ¢8îñgú�ùiúwÓIùnò¾ñ Ú]:Ìð�E�ñgó
û�ÿ1¼ê88Ó�Ä ò�Å R�"/����'Î�'� k,kIf�H ��"�YlQ)¥ J R�����#��1�ÝYk,k±°/ÝYk'Ý RdQ��
��SO����"��T�D��(�åÎR?Q1Ô�R kIe,e,� ¤ J ���!��"�#��'��¤
ó _ ����¡�����"êR kIe,e�Ý�õ Y]¤ _ ����¡�����"ê¤7²C@¾ð/>iù14;4 ù�Ñ]8ÙûºùnûIù�ò¾ñ¢:&ÌêA�ùÌóõò ù�øW<ºò�ó!º�ù�òC¤�QD����'Î�'� [�H,[��"=YlQ)¥ J ¤J ������"�#��'��R kIe,e�Ý ¤
ó _ ��¡ 	/��R kIe�I�µ
õ ¶*¤ _ ��¡ 	/��¤¦À-ó�6�E�ó�¾vó�4 ºqù®ñFE ¤ _ �!��"�(1�C����"PXD"�� ���'�!�!� �
	 _ �!�'�!�1R kIe�I�µ ¤
ó [�£��ö1��"�������"�� ¨ ���!��"\å����dR H,f,fHk
õ �5¤ [�£��ö���"�������"����5¤ ¨ ������"¤å����d¤ ¨ ����������� k ¤ k �;��	7�����'����'�!('�������!����"3%C¤ L "<¶9����ê�§�'�9��¡ ¤Mó H,f,fHk
õ ¤

µHk'ÝÞJ7L
MON $P�9Q9Q5R�S M Q9TU$WVXDYZY MO[R�� L
M]\ Y MO[R?$ M�L
MO[R?Q9^ [$P�9Q9Q5R7��Q \W_ ^9YZY M �

ó [��(�����!������"�ù�E½ð�4 ý£R kIe,e,[
õ Ô�¤ [��(�?���!���!��"êR��*¤ J ������¡�¡ R���"�� L ¤�¶9�!�'�'"ê¤ J 	7�����1� ���1��('�!����������"ê°
_ �!�/���
��¡£��"�"���"�#���"�����#����1�¨�
���!���1��¡���#���(¹�D� ���Gü�¥O¡£���P¤ L " N ����(��"��'�D��"�� N ����(��"��'�Äó kIe,e,[
õ ¤ó J (� V��"��'�B����"������!���'����R kIe,e�ý
õ $y¤ J (!� V��"��'���*�C�%��¡ ¤+û�89<�-�û¡ò�óõô�½Î@ ÿ�894 ¯
óõò¾ñ;E;Aoø*@ ÿ�ðõûIú&<¡ò ó!Ã¯õò�ð
ø®ø�ñ¬û�¯�¤�YZ�'������������¡ \ � V����$&� �����'��� �!� åÎR [���'��"����!(!�s©Ò�'�B��� V��¡����!(�����l�'(��"�����(���&ªD�7(!�\���(�/��¡���R?����(���1"UR�¶9�1������"/	�R kIe,e�ý ¤

ó J ����å7����"�"­ù�E¡ð�4 ý£R kIe,e,e
õ Ô�¤ J ����å/����"�"êR J ¤´ª��'�!�1RÍ¥9¤´SO�'"¤ö'� V��¡�¡��'��R�Y]¤�¥O���'� å/���!���������êR�5¤h�
���'��¡��'��R�ª5¤�ªD��� ��('��ådR9$y¤ N ����¡������!��R N ¤ N ��"�� ���UR9�5¤�$P�'���1�1R M ¤�$P�'¡�����RD$y¤ _ ��¡�¡��'�1R��"�� ¨ ¤ J ���!#���¤�ý¦þ)ÿ��D°>ý]�1���'¡ 	�«A@�B=C1D�ÿ§���'����"����1�B� ��('��¤½ï�óõò¾ø�ð�4U8§@=½où :�E @-ób­*¼�óõø1½Vô7E�ñ¬û�¯�R
k,k ° µ�H,��°7µ�Ý�H R kIe,e,e ¤ó J ����å7����"�"­ù�E¡ð�4 ý£R H,f,f�H
õ Ô�¤ J ����å/����"�"êR)¥9¤hSO�'"¤ö'� V��¡�¡��'��R ¨ ¤OSO�!��ö'��"��C�dR�Y]¤4¥O���'� å/���!���������êR�5¤Z�
���'��¡��'��Rê�*¤Z�?�!��"¤å���R
ª5¤êª����!��('��åÎR�$y¤ N ����¡��?���!��Rl�5¤l$P�'���'��R M ¤l$P�'¡����1RZ$y¤ê$P���!(��"��'��R
L ¤OQ���������"�"êRD$y¤ _ ��¡�¡��C�1R ¨ ¤ J ���!#���R1¥9¤hXD¡�¡��!��(�êR�¥�¤ � _ ¤�©����B�!�URD��"��?Ô�¤OTd�������'��¤ _ ���7������'���'¡��������'"����D� ���P«A@�B=C1Dl¤ L " ¨ ���!��"¤å��1�xó H,f,f�H
õ R��?��#��'� k'Ý�µ�° k'Ý"[¤ó J ���!#���R H,f,f,f õ ¨ ¤ J ����#���¤9QD��"\�
�l��� ���£��¡
¥O�������7� � ������"�����" _ �!�/��� _ ¡£��"�"���"�#�¤ L " N ����(��"��'�9��"��
[��"�#��'���!���'" ó H,f,f,f õ
¤ó J ���!#���R H,f,fHk õ ¨ ¤ J ���!#���¤�«¿Ã¢¯1·Ið7¸ ô 8 ÇD4 ð�:LÂ/> ónðõò�ús8îòB:'AoñFE�ù :1E�ô�ò�ùÛ­|óõòPE;A�ùG²¾û?E�ù2¯
ò�ð�E�ñgó
û$óÎ­®¡ùÌð�@¾óõûlñgû�¯[ÌIù :'Aoûlñ»Énô�ù�@¨ñgû?E�ó&<ºò�ónób­�<�4 ð
ûlûlñ¬û�¯�¤ _ � \ �����'�!����R \ �'�?���������'"/�¥���&¥O�����������1�
J (1���'"�('��R J ������¡£��"��PXD"�� ���'�!�!� �
	dR J ������'�� V��(�å��'"êR�¶9�'�!����"�	UR H,f,fHk ¤

ó J ����(1¡�� �d�(ù�E½ð�4 ý£R kIe,e�Ý�õ ¶*¤ J ����('¡�� �d��R�¥�¤ J ���B��"��'��R���"����§¤��]�'���'"�����¤s�D����� _ � _ �����"'�¡��'�¡�� '�� ����	�¤ L "�SO��"���	(ó kIe,e�Ý�õ ¤ó ¨ ��ù1E¡ð�4 ý�R H,f,f�µ
õ S9¤��9���7(¨ ��R4¥9¤�SO�'"¤ö'� V��¡�¡��'��R]��"�� J ¤��9�����C¦����'��¤´���!�!�'�B�!����"�������¡���(�� ������"��"»�����'���!�'� ���!�1����"�#y��"������!�/���§��¡£��"�"���"�#�¤ L "�<¡ò ó1:ÌùÌùiú
ñ¬û�¯�@�óÎ­�E;A�ù@²Ìû?E�ùnò¾ûIð�E�ñgóõûIð�41¬�óõñ¬û?E¼zóõû�­¾ùnò�ùnûÎ:Ìùyó
ûy8îòCE�ñ Ú]:nñgð�4
²Ìû?E�ù�4F4 ñ ¯�ù�ûÎ:Ìù2ü»²k¬�¼ê8)²�þ�R
�9(1������¡�('��R�$P�C¦7��(1��R H,f,f�µ ¤x�;�d���B�!�'�5���
���('�!����������"O% ¤
ó ¨ ������"¤å����dR H,f,f�H
õ �5¤ ¨ ���!��"¤å��1�UR/�'��� ������¤U<ºò�ó1:ÌùÌùÌúõñ¬û�¯�@)ób­DEFA�ù§,Nñ�E;AÛ²Ìû?E�ù�ò¾ûIð�EeñeóõûIð�4
¼�óõû�­¾ùnò�ùnûÎ:iùóõû�8-ô7E�óõø`ð�E�ùÌú*Ï�ùÌúõô�:1E�ñgó
û?R�"7��� 'Î�1� H�µ,e�H ��"�YlQ�� L ¤ J ���!��"�#��'��R H,f,f�H ¤
ó ©Ò�'�����'"&'?��(��ù1E¡ð�4 ý�R kIe,e,e
õ ¥9¤�©Ò�'�����'"&'?��(�êR7S9¤ ���;�!���������'¡ R�X5¤�SO� �����PR!¥9¤N¥O�����!�1R����ê¤ M "�#��'¡ RM ¤ N �'�'"êR�¥9¤Z�����'�"'?��¡ �1R]��"�� \ ¤l�l������(�¤ J 	7�����'�õ���'�!('�������!����"U° J7_ � J�J ���'�!������" k ¤ f ¤ f ¤ L "¶���"\ö1��"�#��1� ó kIe,e,e
õ R?�?��#��'� µ�I�[�°7µ,[�H ¤
ó ©Ò�'¡��êR kIe,e�Ý�õP\ ¤U©·�1¡��U¤��9"y��"����!�/����(C�!����"·�!��¡������B�5(1������� �����'"/�9��¡£��"�"���"�#�¤�8)²ÆÒ�ð�¯�ðnö�ñ¬ûIù�R
k1ý � Ý % ° H�I�°r�Hk R kIe,e�Ý ¤ó ©����'��� ô¨ådR H,f,f�H õP�h¤�©¶���'��� ô¨åd¤������¹���F�!�'�'"P���������'�!�����l�����s�h���!¡��U¤�X�"����\'�¡����!���'� \ � � �F��R H,f,f�H ¤ó Td�?��"�#���"��&Td����"�#�R kIe,e�ý õ<Ô�¤�Td�?��"�#���"��%ª=¤�Td����"�#�¤ J7M $y°�����	7�����'�W�;���l�'"7�����'�!� �!��"�#9���7�\��'¡��1¤ L "�¥�¤ J ¤ê$P�'¡�¡������êRÎ�'��� �!���1Rl<¡ò�ó�:ÌùiùÌúõñgû�¯�@%ób­%EFA�ù�,10�E;AG²Ìû?E�ùnò¾ûIð�E�ñgóõûIð�4�¬oó
ñ¬û?E&¼�óõû�­¾ùnò�ùnûÎ:iùóõûÒ8îòCE�ñ Ú]:nñgð�4�²Ìû?E�ù�4F4 ñ ¯�ù�ûÎ:Ìù�ü�²k¬�¼ê8)²�þ�Rl�?��#��'� H,e,[�°7µ,f�µ R�$P��"��!������¡ R
¥���"����?��R kIe,e�ý ¤l$P����#���"
N ���7�¢����"�"UR J ��"�$&� �!�'��R�¥h��¡�� �;���!"��£��R�X J �5¤

ó Td�������'�h��"�� N ����¡��?���!��R H,f,f�H
õ Ô�¤]Td�������'�¥��"��¶$y¤ N ����¡������!��¤ J 	7�����1� ���'��(1������������"ê°P�����$&� ��� �h��' J ���F� �������%SO���9�;���������B�!��� '������'�·��� �����'��� ����(���¡l���1���!��"���"�#�¤ L " ¨ ���!��"¤å��1�uó H,f,f�H
õ R����#��1� k1µ,[�° k'Ý�H ¤

Mathematical Domain Reasoning Tasks in
Natural Language Tutorial Dialog on Proofs∗

Christoph Benzmüller and Quoc Bao Vo
Saarland University, Saarbrücken, Germany

chris|bao@ags.uni-sb.de
http://ags.uni-sb.de/˜chris|bao

Abstract

We study challenges that are imposed to mathematical
domain reasoning in the context of natural language tu-
torial dialog on mathematical proofs. The focus is on
proof step evaluation:
(i) How can mathematical domain reasoning support
the resolution of ambiguities and underspecified parts
in proof steps uttered by a student?
(ii) How can mathematical domain reasoning support
the evaluation of a proof step with respect to the criteria
soundness, granularity, and relevance?

Introduction
The final goal of the DIALOG project1 is a natural tutorial
dialog on mathematical proofs between a student and an as-
sistance system for mathematics. Natural language (NL) tu-
torial dialog on mathematical proofs is a multi-disciplinary
scientific challenge situated between (i) advanced NL pro-
cessing, (ii) flexible tutorial dialog, and (iii) dynamic, ab-
stract level mathematical domain reasoning (MDR2). There
is still relatively few data available that can guide research
in this area. We, therefore, approached the project by using
a methodology with a strong initial emphasis on empirical
investigations and a top-down modeling of the over-all ar-
chitecture followed by refinements of the architecture, down
to implementation.

First a relevant corpus has been collected and analyzed in
the DIALOG project. The phenomena that have been iden-
tified through corpus analysis demonstrate, for instance, the
need for deep semantical analysis, the importance of a tight

∗We thank Manfred Pinkal, Jörg Siekmann, Ivana Kruijff-
Korbayová, Armin Fiedler, Magdalena Wolska, Helmut Horacek,
Serge Autexier, Dimitra Tsovaltzis, Marvin Schiller, and Mark
Buckley.
Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1The DIALOG project is a collaboration between the Com-
puter Science and Computational Linguistics departments of Saar-
land University as part of the Collaborative Research Center
on Resource-Adaptive Cognitive Processes, SFB 378 (http://
www.coli.uni-saarland.de/projects/sfb378/).

2We use ‘MDR’ in the remainder as an abbreviation for both
’mathematical domain reasoning’ and ’mathematical domain rea-
soner’; the precise meaning will be clear in each context.

integration of NL processing and MDR, and the relevancy
of dynamic, abstract-level proof development techniques
supporting human-oriented MDR. In particular, the explicit
abstract-level representation of proof steps (logically sound
or unsound) as uttered by the students is a crucial prerequi-
site for their subsequent analysis by MDR means in a tuto-
rial dialog setting. Additionally, from a logical point of view,
proof steps are highly underspecified (e.g. logically relevant
references are left implicit) causing an additional challenge
for bridging the gap between NL analysis and MDR.

In this paper we focus on the challenges imposed to MDR:
(i) How can MDR support the resolution of ambiguities

and underspecified parts in proof steps uttered by a student?
(ii) How can MDR support the evaluation of a student

proof step with respect to the criteria soundness, granularity,
and relevance?

In the next section we present an example dialog from our
DIALOG corpus and point to some revealed phenomena. We
then discuss the MDR challenges from a general viewpoint.
Subsequently we present our first concrete approach to solve
these challenges. Finally, we discuss some related work and
conclude the paper.

Phenomena and Challenges
A Wizard-of-Oz experiment (Dahlbäck, Jönsson, & Ahren-
berg 1993) has been performed in the DIALOG project in
order to obtain a corpus of tutorial dialogs on mathematical
proofs. Twenty four subjects with varying background in hu-
manities and sciences participated in this experiment. Their
prior mathematical knowledge ranged from little to fair. The
experiment employed typed user and tutor (wizard) input as
opposed to spoken language. This experiment and the corpus
obtained is discussed in more details in (Wolska et al. 2004).
The complete corpus comprises 66 recorded dialogs contain-
ing on average 12 turns and is available from the DIALOG
web-page3. It contains 1115 sentences in total, of which 393
are student sentences. An example dialog is shown in Fig. 1.

Investigation of the corpus resulted in an overwhelming
list of key phenomena raising interesting and novel research
challenges (Benzmüller et al. 2003). This was not expected,
in particular, because of the simplicity of the mathematical
domain (naive set theory) chosen for this experiment. Many

3http://www.ags.uni-sb.de/˜chris/dialog/

AAAI-05 / 516

T1: Bitte zeigen Sie: K((A∪B)∩ (C∪D)) = (K(A)∩K(B))∪
(K(C)∩K(D))! [Engl.: Please show: K((A∪ B)∩ (C ∪D)) =

(K(A) ∩ K(B)) ∪ (K(C) ∩ K(D))!]
S1: nach deMorgan-Regel-2 ist K((A∪B)∩ (C ∪D)) = (K(A∪

B) ∪ K(C ∪ D)). [Engl.: by deMorgan-Rule-2 K((A ∪ B) ∩ (C ∪

D)) = (K(A ∪ B) ∪ K(C ∪ D)) holds.]
T2: Das ist richtig! [Engl.: This is correct!]

S2: K(A∪B) ist laut deMorgan-1 K(A)∩K(B) [Engl.: K(A∪

B) is K(A) ∩ K(B) according to deMorgan-1]
T3: Das stimmt auch. [Engl.: That is also right.]

S3: und K(C ∪ D) ist ebenfalls laut deMorgan-1 K(C) ∩ K(D)
[Engl.: and K(C ∪ D) is also K(C) ∩ K(D) according to deMorgan-1]

T4: Auch das stimmt. [Engl.: That also is right.]

S4: also folgt letztendlich: K((A ∪ B) ∩ (C ∪ D)) = (K(A) ∩
K(B)) ∪ (K(C) ∩ K(D)). [Engl.: hence follows finally: K((A ∪

B) ∩ (C ∪ D)) = (K(A) ∩ K(B)) ∪ (K(C) ∩ K(D)).]
T5: Das stimmt . . . [Engl.: This is correct . . .]

Figure 1: An example dialog. T and S mark tutor (i.e. wizard)
and student turns respectively. ‘K’ refers to the ‘set complement’
relation. German has been the language of choice.

of the identified phenomena are relevant not only for the tu-
torial NL dialog context but have a much wider impact for
NL interactions in human-oriented theorem proving. This
paper focuses on phenomena that are relevant for MDR:

Notion of Proof. For analyzing the notion of human-
oriented mathematical proofs, primarily shaped-up textbook
proofs have been investigated in the deduction systems com-
munity (Zinn 2004). The DIALOG corpus provides an im-
portant alternative view on it, since textbook proofs neither
reveal the actual dynamics of proof construction nor do they
show the weaknesses and inaccuracies of the student’s ut-
terances, i.e., the student’s proof step directives. The corpus
also illustrates the style and logical granularity of human-
constructed proofs. The style is mainly declarative, for ex-
ample, the students declaratively described the conclusions
and some (or none) of the premises of their inferences. This
is in contrast to the procedural style employed in many proof
assistants where proof steps are invoked by calling rules, tac-
tics, or methods, i.e., some proof refinement procedures.

The hypothesis that assertion level reasoning (Huang
1994) plays an essential role in this context has been con-
firmed. The phenomenon that assertion level reasoning may
by highly underspecified in human-constructed proofs, how-
ever, is a novel finding (Autexier et al. 2003).

Underspecification is a well known phenomenon in lin-
guistic analysis. The corpus reveals that underspecifica-
tion also occurs in the content and precision of mathemat-
ical utterances (proof step specification) and thus carries
over to MDR. Interestingly underspecification also occurs in
shaped-up textbook proofs but has only very recently been
addressed (Zinn 2004). To illustrate the underspecification
aspect we use example utterance S4 in Fig. 1: Utterance S4
is logically strongly underspecified. Here, it is neither men-
tioned from what assertion(s) in the discourse this statement
exactly follows nor how these assertions are used. However,
such detailed information is typically required in proof as-
sistants to execute the student’s proof step directive, i.e., to
‘understand’ and ‘logically follow’ the student’s argumenta-
tion.

Proof Step Evaluation (PSE) is an interesting novel ap-
plication for theorem proving systems. A (next) proof step
uttered by a student within a tutorial context has to be ana-
lyzed with respect to the following criteria:

Soundness: Can the proof step be reconstructed by a formal
inference system and logically and tutorially verified?

Granularity: Is the ‘argumentative complexity’ or ’size’ of
the proof step logically and tutorially acceptable?

Relevance: Is the proof step logically and tutorially useful
for achieving the goal?

Resolution of underspecification and PSE motivate a spe-
cific module supporting these tasks in tutorial NL dialog on
proofs; in the remainder we call such a module proof man-
ager (PM).

MDR Challenges from a General Viewpoint
Ambiguity and Underspecification Resolution The cor-
pus reveals that ambiguities may arise at different phases of
processing between the linguistic analysis and MDR. Con-
sider, for instance, the following student utterance:

S: A enthaelt B [Engl.: A contains B]

In this utterance ‘enthaelt’ (‘contains’) is ambiguous as it
may refer to the set relations ‘element-of’ and ‘subset-of’.
The ambiguity arises during linguistic analysis. It can be re-
solved, for instance, by type-checking provided that type in-
formation on A and B is available: if both symbols are of
the same ‘set type’ then ‘enthaelt’ means ‘subset-of’. How-
ever, type checking cannot differentiate between ‘⊂’ and
‘⊆’ as potential readings. The phenomenon is even better
illustrated by the following two utterances in which impor-
tant bracketing information is missing (‘K’ refers to the ‘set
complement’ operation and ‘P ’ to the ‘Power set’ opera-
tion):

S’: P ((A ∪ C) ∩ (B ∪ C)) = PC ∪ (A ∩B)

S”: K((A ∪ C) ∩ (B ∪ C)) = KC ∪ (A ∩B)

In S’ type information (if available) can be employed to rule
out the reading P (C) ∪ (A ∩ B) for the term to the right.
However, type information is not sufficient to differentiate
between the readings K(C)∪ (A∩B) and K(C ∪ (A∩B))
in S”. Here only MDR can detect that the first reading leads
to a logically wrong statement and the second reading to a
correct one. As we cannot assume that the domain model
statically represents all correct mathematical statements this
calls for dynamic MDR support in the resolution of ambigu-
ities that, as given here, may arise during linguistic analysis.
Now consider the following slight modification (wrt. refer-
ence to deMorgan rule) of utterances T1 and S1 from Fig. 1.

T1: Please show : K((A ∪ B) ∩ (C ∪ D)) = (K(A) ∩
K(B)) ∪ (K(C) ∩K(D))

S1’: by the deMorgan rule we haveK((A∪B)∩(C∪D)) =
(K(A ∪B) ∪K(C ∪D)).

S1’ does not lead to an ambiguity during linguistic analysis.
It nevertheless leads to an ambiguity in the domain reasoner
since the suggested proof step is highly underspecified from

AAAI-05 / 517

Proof State

(A1) A ∧ B.
(A2) A ⇒ C.
(A3) C ⇒ D.
(A4) F ⇒ B.

(G) D ∨ E.

Some Student Utterances

(a) From the assertions follows D.
(b) B holds.
(c) It is sufficient to show D.
(d) We show E.

Figure 2: PSE example scenario: (A1)-(A4) are assertions that
have been introduced in the discourse and that are available to
prove the proof goal (G). (a)-(d) are examples for possible proof
step directives of the student in this proof situation.

a proof construction viewpoint: S1’ can be obtained directly
from the deMorgan rule ∀X,Y.K(X∩Y) = K(X)∪K(Y)
(denoted as deMorgan-2) by instantiating X with (A ∪
B) and Y with (C ∪ D). Alternatively it could be inferred
from T1 when applying deMorgan rule ∀X,Y.K(X ∪Y) =
K(X)∩K(Y) (denoted as deMorgan-1) from right to left
to the subterms of T1: K(A) ∩K(B) and K(C) ∩K(D).
Differentiating between such alternatives could be crucial in
tutoring mathematical proofs.

Proof Step Evaluation: PSE supports the dynamic step-
by-step analysis (with criteria soundness, granularity, rele-
vance) of the proof constructed by the student. All three cri-
teria have a pure logical dimension and additionally a tuto-
rial dimension. For instance, a proof step may be formally
relevant by pure logical means but it may be considered as
not relevant when additional tutorial aspects are taken into
account. On the other hand, a student utterance which is suf-
ficiently close to a valid next proof step may be considered
tutorially relevant while being logically irrelevant. In this pa-
per we mainly focus on the logical dimension; the hypoth-
esis is that their solution is one important prerequisite for
solving the general PSE problem involving also the tutorial
dimension. Much further research in this direction is clearly
needed. The PSE challenge will now be further illustrated
using the artificially simplified example in Fig. 2.

Soundness: Determining whether an uttered proof step is
sound requires that the MDR can represent, reconstruct and
validate the uttered proof step (including all the justifications
used by the student) within the MDR’s representation of the
proof state. Consider, for instance, utterance (a) in Fig. 2:
Verification of the soundness of this utterance boils down to
addingD as a new assertion to the proof state and to proving
that: (P1) (A ∧ B), (A ⇒ C), (C ⇒ D), (F ⇒ B) ` D.
Solving this proof task confirms the logical soundness of ut-
terance (a). If further explicit justifications are provided in
the student’s utterance (e.g. a proof rule) then we have to
take them into consideration and, for example, prove (P1)
modulo these additional constraints. Soundness is a fairly
tractable criterion for which different techniques are readily
available (Zinn 2004). PSE with respect to the criteria gran-
ularity and relevance, however, is novel and challenging.

Granularity evaluation requires analyzing the ‘complex-
ity’ or ‘size’ of proofs instead of asking for the mere exis-
tence of proofs. For instance, evaluating utterance (a) above

boils down to judging the complexity of the generated proof
task (P1). Let us, for example, use Gentzen’s natural deduc-
tion (ND) calculus as the proof system `. As a first and naive
logical granularity measure, we may determine the number
of `-steps in the smallest `-proof of the proof task for the
proof step utterance in question; this number is taken as the
argumentative complexity of the uttered proof step. For ex-
ample, the smallest ND proof for utterance (a) has ‘3’ proof
steps: we need one ‘Conjunction-Elimination’ step to extract
A from A ∧ B, one ‘Modus Ponens’ step to obtain C from
A and A ⇒ C, and another ‘Modus Ponens’ step to obtain
D from C and C ⇒ D. On the other hand, the smallest
ND proof for utterance (b) requires only ‘1’ step: B fol-
lows from assertion A ∧ B by ‘Conjunction-Elimination’.
If we now fix a threshold that tries to capture, in this sense,
the ‘maximally acceptable size of an argumentation’ then
we can distinguish between proof steps whose granularity
is acceptable and those which are not. This threshold may
be treated as a parameter determined by the tutorial setting.
However, the ND calculus together with naive proof step
counting doesn’t always provide a cognitively adequate ba-
sis for granularity analysis. The reason is that two intuitively
very similar student proof steps (such as (i) fromA = B and
B = C infer A = C and (ii) from A⇔ B and B ⇔ C infer
A ⇔ C) may actually expand into base-level ND proofs of
completely different size. Also related literature has pointed
out that standard ND calculus does not adequately reflect
human-reasoning (Rips 1994). This problem could become
even worse if we chose a machine-oriented calculus such as
resolution. Two important and cognitively interesting ques-
tions thus concern the appropriate choice of a proof system
` and ways to measure the ‘argumentative complexity’ of a
proof step.

Relevance. Relevance asks questions about the usefulness
and importance of a proof step with respect to the original
proof task. For instance, in utterance (c) the proof goalD∨E
is refined to the new proof goalD using backward reasoning,
i.e., the previously open goalD∨E is closed and justified by
a new goal. Answering the logical relevance question in this
case requires to check whether a proof can still be generated
in the new proof situation. In our case, the task is thus identi-
cal to proof task (P1). A backward proof step that is not rel-
evant according to this criterion is (d) since it reduces to the
proof task: (P2) (A∧B), (A⇒ C), (C ⇒ D), (F ⇒ B) `
E for which no proof can be generated. Thus, (d) is a sound
refinement step that is not relevant. This simple approach
appears plausible but needs to be refined. The challenge is
to exclude detours and to take tutorial aspects into account
(in a tutorial setting we are often interested in teaching par-
ticular styles of proofs, particular proof methods, etc.). This
also applies to the more challenging forward reasoning case
to identify that, for instance, utterance (b) describes a non-
relevant proof step.

Relevance and granularity are interesting, ambitious and
important challenges for tutoring of proofs. To address these
problems, it’s not sufficient to merely establish the existence
of proofs but the system has to construct proofs with par-
ticular properties. It may be the case that evaluating dif-
ferent criteria requires different ‘suitable’ theorem provers.

AAAI-05 / 518

Moreover, the system also needs to closely mirror and reflect
reasoning steps as they are typically performed by humans.
Generally, the system will need to adapt to the capabilities of
individual students and the requirements of varying tutorial
settings.

PSE in the DIALOG Demonstrator
We have implemented a demonstrator version of a PM which
provides dynamic support for resolution of underspecifica-
tion and PSE based on heuristically guided abstract-level
MDR realized on top of the ΩMEGA-CORE framework (Au-
texier 2003). The PM has been integrated into the overall
demonstrator of the DIALOG project in which it communi-
cates with other components of the system including the lin-
guistic analyzer, the dialog manager, the tutorial manager,
and the NL generator. More information on the role of the
PM in the DIALOG demonstrator system and on its inter-
play with other modules is given in (Buckley & Benzmüller
2005). Note that we do not address tutoring aspects directly
in the PM. Instead the result of the PM’s proof step anal-
ysis is passed to the tutorial manager which then proposes
a tutoring move to the dialog manager of the overall sys-
tem. Tutoring aspects of the DIALOG project are discussed
in (Fiedler & Tsovaltzi 2003).

The complete system has been applied to several exam-
ple dialogs from the DIALOG corpus and it has been demon-
strated in the course of the evaluation of the DIALOG project
that the system is particularly able to support variations of
the dialog presented in Fig.1 (which we will use for illustra-
tion purposes). However, our system is currently only appli-
cable to a very restricted subset of example proofs in naive
set theory. For these examples the PM’s computation costs
are acceptable. It remains to be seen whether this is still the
case when moving to less elementary mathematical problem
domains.

Proof Step Representation and Resolution of Underspec-
ification. The PM needs to “understand” the incoming stu-
dent proof step and to fit it into the current proof context.

In our implementation, the student proof step is first for-
matted into a tuple 〈 LABEL, TYPE, DIR, FORMULA,
JUSTIFICATION-LIST 〉: LABEL provides a reference to this
proof step. TYPE indicates whether the student proof step is,
for example, an inference step, a variable assignment, or a
local hypothesis introduction (these are the options we cur-
rently support). Given the proof step type inference, DIR in-
dicates the direction of this step as linguistically extracted
from the student’s utterance. The alternatives are forward,
backward, sideward, and closing. For instance, when the
student asserts that “φ follows from ψ and θ” and if we
know that ψ and θ are the two premises of the current proof
task, then the input analyzer should be able to assign for-
ward inference to DIR. FORMULA is the asserted formula
in this proof step, e.g., the φ from above. JUSTIFICATION-
LIST contains all the information the student uses to justify
FORMULA.

In our current approach, all of these fields except from
FORMULA can be left underspecified (i.e. empty). LABEL

can in general be easily generated by referring to FORMULA
or by NL references such as “the previous proof step”, “your
second proof step”, etc. The other fields are usually more
ambitious to determine. Before we proceed with describ-
ing our solution to underspecification resolution, we elab-
orate the JUSTIFICATION-LIST. JUSTIFICATION-LIST is a
list (J1, . . . , Jn) of justifications Ji (for 0 ≤ i ≤ n). When
n = 0 then JUSTIFICATION-LIST is underspecified. Each
justification Ji is a tuple 〈NAME, FORM, SUBST〉: NAME
refers to an assertion. It can be the label of a previous proof
step or of an assertion in a mathematical knowledge base,
for example, ‘deMorgan-2’. FORM is a formula used to jus-
tify the asserted proof step. For instance, instead of referring
to deMorgan-2, the student may say: “SinceA ∩ (B ∪ C) =

A∪B ∪ C, from Φ[A ∩ (B ∪ C)] we obtain Φ[A∪B ∪ C].”
SUBST is an explicitly mentioned instantiation of variables
the student has applied in the proof step.

All justifications fields can be left underspecified.
The field SUBST has been introduced mainly for the
purpose of exhaustively capturing the student input in
our representation. Given an underspecified justification
〈NAME, FORM, SUBST〉, FORM is generally equivalent to
dereference(NAME) + SUBST. Assume, for example, that
we already have information on FORM := A ∩ (B ∪ C) =
A ∪ B ∪ C. The PM can determine a possible assertion
which has been used (e.g. deMorgan-2) together with the
substitution the student has applied (here [A 7→ X, (B ∪
C) 7→ Y]). In fact, in most proof step utterances in the DI-
ALOG corpus the student justifies her proof step with a ref-
erence to the employed assertion NAME and by specifying
the inferred formula FORMULA: For instance, a student may
say: “By deMorgan-2, we have Φ”. Unification and heuristi-
cally guided theorem proving is employed in the PM to sup-
port the analysis and completion of different combinations
of given and missing information in justifications. Problem-
atic cases typically arise when the student leaves the justifi-
cation for her proof step underspecified altogether.

The proof step representation language presented here is
the one that has been implemented in the PM. In the mean-
time this language has been further developed in theory (Au-
texier et al. 2003).
Example 1 The underspecified proof step S1 in the exam-
ple dialog (see Fig. 1) is represented in the PM as follows:4

(input (label 1_1)

(formula (= (C (N (U a b) (U c d)))

(U (C (U a b)) (C (U c d)))))

(type ?)

(direction ?)

(justifications

(just (reference deMorgan-2)

(formula ?)

(substitution ?))))

Our PM employs the ΩMEGA-CORE calculus (Autexier
2003) as a sound and complete base framework (for classical
higher-order reasoning) to support resolution of underspec-
ification and PSE. The internal proof representation of the

4C, N, and U stand for complement, intersection, and
union, respectively. ? denotes underspecification.

AAAI-05 / 519

PM is based on task structures which are defined on top of
the ΩMEGA-CORE calculus; for more details on this proof
representation framework we refer to (Hübner et al. 2004).

In some sense, tasks resemble and generalize sequents in
sequent calculi. Proof construction in this “ΩMEGA-CORE
+ tasks”-framework employs and generalizes well-known
techniques in tableau-based theorem proving (cf. (Hähnle
2001) and the references therein) and the matrix method
(Andrews 1981; Bibel 1983). See also (Vo, Benzmüller, &
Autexier 2003) for further details.

We present two example strategies employed by the PM
to relate the student proof step to the PM’s internal represen-
tation of the current proof state and to formally reconstruct
it in order to determine missing information.

Justify by a unifiable premise: The system looks for sub-
terms of the premises of the present task and for subterms
of the available assertions in a knowledge base which are
unifiable to the student proof step. Such a justification may
require further conditions to be discharged. These conditions
are extracted with the help of the ΩMEGA-CORE framework
and they form additional proof obligations which are ana-
lyzed by an automated theorem prover.

Justify by equivalence transformation and equality rea-
soning: This case is a generalization of the above one in
the sense that the asserted formula does only follow via
equivalence transformation and equality reasoning from the
premises and assertions available in the proof state. For this
strategy we employ a specifically adapted tableau-based rea-
soner implemented within the ΩMEGA-CORE framework.

Example 1 (contd.) Our simple example illustrates the
above strategies:

1. The asserted formula in the student proof step is unifiable
at top-level with the deMorgan-2 rule. Thus, we recom-
pute a forward proof step:

(A ∪B) ∩ (C ∪D) = (A ∪B) ∪ (C ∪D)

is obtained by deMorgan-2 using the substitution:

[X 7→ (A ∪B);Y 7→ (C ∪D)]

2. On the other hand, our system is able to identify the
discrepancies between the asserted formula and the goal
formula of the current proof task. Identifying a possible
backward reasoning step the system thus carries out the
following transformation:

(A ∪B) ∩ (C ∪D) = (A ∩B) ∪ (C ∩D)

is reduced to the new goal formula

(A ∪B) ∩ (C ∪D) = (A ∪B) ∪ (C ∪D)

by rewriting the subterms: (A∩B) and (C ∩D) with the
subterms (A ∪B) and (C ∪D), respectively, using the
rule deMorgan-1.

For the initially underspecified input proof step represen-
tation we have thus computed two possible fully specified
logical interpretations.

Proof Step Evaluation The PM is now facing the problem
of evaluating both identified proof step interpretations along
the PSE criteria. Note that soundness has already been partly
addressed during the above phase, since we were able to re-
construct the underspecified proof step in at least one way in
the current proof state.

Employing heuristically guided theorem proving tech-
niques, our PM finally identifies the following ratings and
annotations for our two proof step interpretations:5

1. (evaluation

(reference ...)

(formula (= (C (N (U a b) (U c d)))

(U (C (U a b)) (C (U c d)))))

(substitution ((x (U a b) y (U c d))))

(direction FORWARD)

(justification DeMorgan-2)

(soundness 1)

(relevance 0.9)

(granularity 1))

2. (evaluation

(reference ...)

(formula (= (C (N (U a b) (U c d)))

(U (C (U a b)) (C (U c d)))))

(substitution ...)

(direction BACKWARD)

(justification (((C (U c d)) . (N (C c) (C d)))

((C (U a b)) . (N (C a) (C b)))))

(soundness 1)

(relevance 0.9)

(granularity 0.5))

The overall system then determines a preference for inter-
pretation (1.) since it shares the justification used by the stu-
dent, viz. the rule deMorgan-2. Furthermore, the former
inference is considered to be granularly more appropriate
than the latter. This is because the former employs only one
application of the rule deMorgan-2while the latter applies
the rule deMorgan-1 twice. As discussed in the previous
section, this is generally an over-simplified way to determine
the relative granularity of a proof step. A more precise, sep-
arate soundness investigation in the PSE phase would also
rule out interpretation (2.), provided that the students explicit
reference to deMorgan-2 is taken into account.

Further Proof Management Tasks It is important that
the system and the student share a mutual understanding
about the situation they are confronting. And we have al-
ready motivated that the system should be capable of ade-
quately representing the context and the situation in which
the student is currently operating and reasoning about. Gen-
erally, we consider different classes of situations. Two ex-
amples are:

Problem-solving situations: In these situations, alterna-
tive problem solving strategies are considered to tackle the
problem, e.g. looking for similar problems whose solutions

5The ellipses indicate that the field refers to some internal rep-
resentation which is left out to save space. Note also that the rel-
evance rating for both interpretations is 0.9 to allow a margin for
error unless the proof step is found to be used in every possible
proofs in which case the relevance rating will be 1.

AAAI-05 / 520

are known, finding a lemma whose application could bridge
the gap between the premises and the goal, searching for
applicable proving methods such as proof by induction, di-
agonalization proof, etc.

Proof situations: Once a student proof step has been
identified as related to an available proof situation in the
maintained proof history, a new current proof situation is
computed and updated into the proof history. The current
proof situation consists of the “relevant” proof fragments
which have been identified up to this point.

The tasks of reconstructing theorem prover-oriented proof
fragments from the student proof steps, organizing the rele-
vant proof fragments into (partial) proofs, keeping track of
the proof history and other relevant information for future
backtracking, etc. are all handled by the PM. It’s also impor-
tant to note that while the problems of resolving underspec-
ification and PSE have been discussed separately, they are
solved in combination since they are mutually dependent.

In general, judging the student’s utterances in a mathemat-
ics tutoring scenario is a very complex task addressing many
AI problems including NL understanding, plan recognition,
ambiguity resolution, step-wise proof construction, manage-
ment of proofs, etc. In our first implementation of the PM,
we clearly had to make several simplifications which can
later be generalized if future experiments indicate the need
for this. We give some examples:
Granularity and the Direction of Inference: If the direction
of an inference is not made explicit by the student, the PM
tries to determine it by considering the granularity of the
proof justifying a forward reasoning step and the granularity
of the proof justifying a backward directed goal reduction
step; cf. our example from before. If the former is consid-
ered to be more difficult than the latter, the system conjec-
tures that this proof step is a forward proof step; otherwise,
it is considered to be a backward proof step.
Student Modeling: The granularity of a proof step is relative
to the student’s knowledge and expertise in the domain un-
der consideration. In the present implementation, the student
model and other relevant information have not been taken
into account when appraising the student proof step.

Related Work
Empirical findings in the area of intelligent tutoring show
that flexible natural language dialog supports active learn-
ing (Moore 1993). In the DIALOG project, therefore, the
focus has been on the development of solutions allowing
flexible dialog. However, little is known about the use of
natural language in dialog settings in formal domains, such
as mathematics, due to the lack of empirical data.

Input analysis in dialog systems is for most domains com-
monly performed using shallow syntactic analysis combined
with keyword spotting; slot-filling templates, however, are
not suitable in our case. Moreover, tight interleaving of nat-
ural and symbolic language makes key-phrase spotting dif-
ficult because of the variety of possible verbalizations. Sta-
tistical methods are employed in tutorial systems to com-
pare student responses with a domain-model built from pre-
constructed gold-standard answers (Graesser et al. 2000).

In our context, such a static domain-modeling solution is
impossible because of the wide quantitative and qualitative
range of acceptable proofs, i.e., generally, our set of gold-
standard answers is even infinite.

Related work with regard to interpreting mathematical
texts is (Zinn 2004) which analyzes comparably complete,
carefully structured textbook proofs, and relies on given
text-structure, typesetting and additional information that
identifies mathematical symbols, formulae, and proof steps.
With respect to our goal of ambiguity and underspecification
resolution, (Bos 2003) provides an algorithm for efficient
presupposition and anaphora resolution which uses state-of-
the-art traditional automated theorem provers for checking
consistency and informativeness conditions.

Recent research into dialog modeling has delivered a va-
riety of approaches more or less suitable for the tutorial di-
alog setting. For instance, scripting is employed in Autotu-
tor (Person et al. 2000) and knowledge construction dialogs
are implemented in Geometry Tutor (Matsuda & VanLehn
2003). Outside the tutorial domain, the framework of Infor-
mation State Update (ISU) has been developed in the EU
projects TRINDI6 and SIRIDUS7 (Traum & Larsson 2003),
and applied in various projects targeting flexible dialog. An
ISU-based approach with several layers of planning is used
in the tutorial dialog system BEETLE (Zinn et al. 2003).

Finally, the dialogs in our corpus reveal many challenges
for human-oriented theorem proving. Traditional automated
theorem provers (e.g. OTTER and Spass) work on a very
fine-grained logic level. However, interactive proof assis-
tants (e.g. PVS, Coq, NuPRL, Isabelle) and in particular
proof planners (e.g. OMEGA and λClam) support abstract-
level reasoning. The motivation for abstract-level reasoning
is twofold: (a) to provide more adequate interaction support
for the human and (b) to widen the spectrum of mechaniz-
able mathematics. Proof assistants are usually built bottom-
up from the selected base-calculus; this often imposes con-
straints on the abstract-level reasoning mechanisms and the
user-interface.

Conclusion
We have identified novel challenges and requirements to
MDR in the context of tutorial NL dialogs on mathemati-
cal proofs. For instance, we must be able to explicitly repre-
sent and reason about ambiguous and underspecified student
proof steps in the PM. The represented proof steps may be
unsound, of unacceptable granularity or not relevant. The
analysis of these criteria is then the task of PSE. Gener-
ally, resolution of underspecification and PSE are mutually
dependent. Except for pure logical soundness validation of
proof steps, none of these requirements can currently be eas-
ily supported within state-of-the-art theorem provers. Thus,
novel and cognitively interesting challenges are raised to the
deduction systems community.

PSE can principally be supported by different approaches
— including ones that avoid dynamic theorem proving as

6
http://www.ling.gu.se/research/projects/trindi/

7
http://www.ling.gu.se/projekt/siridus/

AAAI-05 / 521

presented in this paper. We list some alternative approaches
according to increasing difficulty:

1. We could statically choose one or a few ‘golden proofs’
and match the uttered partial proofs against them.

2. We first generate from the initially chosen golden proofs
larger sets modulo, for instance, (allowed) re-orderings of
proof steps and match against this extended set.

3. We dynamically support PSE with heuristically guided
abstract-level MDR.

4. We interpret the problem as challenge to proof theory and
try to develop a proper proof theoretic approach to differ-
entiate between ’tutorially good proofs and proof steps’
and ’tutorially less good proofs and proof steps’ in the
space of all proofs for a given problem.
The space of all proofs that solve a proof problem is gen-

erally infinite which is one reason why a static modeling of
finitely many ’golden solutions’ as in approaches (1) and (2)
is generally insufficient in our context. Approach (3) is our
currently preferred choice and a first, still rather naive, ap-
proach to the logical dimension of this challenge has been
presented in this paper. Much further research is clearly
needed. Approach (4) is the approach we want to addition-
ally investigate in the future; some relevant related work in
proof theory to capture a notion of good proofs is presented
in (Dershowitz & Kirchner 2003).

For (3) we have developed a heuristically guided MDR
tool that is capable of representing, constructing and analyz-
ing proofs at the assertion level. In the first place these proofs
maybe sound or non-sound. For naive set theory (our math-
ematical domain of choice so far) this tool has been able to
reconstruct and represent student proofs at the same level
of argumentative complexity as given in the DIALOG cor-
pus. We conjecture that this is a basic requirement for PSE
in tutorial settings. We have also shown how (in the same
mathematical domain) our PM resolves ambiguities and un-
derspecification in the student input and how it evaluates the
student input along the three major dimensions of sound-
ness, relevance, and granularity. The application of our ap-
proach to more challenging mathematical domains and its
evaluation therein is future work.

References
Andrews, P. B. 1981. Theorem proving via general matings. J. of
the ACM 28(2):193–214.
Autexier, S.; Benzmüller, C.; Fiedler, A.; Horacek, H.; and Vo,
B. Q. 2003. Assertion-level proof representation with under-
specification. ENTCS 93:5–23.
Autexier, S. 2003. Hierarchical Contextual Reasoning. Ph.D.
Dissertation, Saarland University, Germany.
Benzmüller, C.; Fiedler, A.; Gabsdil, M.; Horacek, H.; Kruijff-
Korbayová, I.; Pinkal, M.; Siekmann, J.; Tsovaltzi, D.; Vo, B. Q.;
and Wolska, M. 2003. Tutorial dialogs on mathematical proofs.
In Proc. of the IJCAI 03 Workshop on Knowledge Representation
and Automated Reasoning for E-Learning Systems.
Bibel, W. 1983. Automate Theorem Proving. Friedr. Vieweg.
Bos, J. 2003. Implementing the the binding and accomoda-
tion theory for anaphora resolution and presupposition projection.
Computational Linguistics.

Buckley, M., and Benzmüller, C. 2005. System description: A
dialog manager supporting tutorial natural language dialogue on
proofs. In Proc. of the ETAPS Satellite Workshop on User Inter-
faces for Theorem Provers (UITP).

Dahlbäck, N.; Jönsson, A.; and Ahrenberg, L. 1993. Wizard of oz
studies – why and how. Knowledge-Based Systems 6(4):258–266.

Dershowitz, N., and Kirchner, C. 2003. Abstract saturation-based
inference. In Proc. of LICS 2003. Ottawa, Ontario: ieee.

Fiedler, A., and Tsovaltzi, D. 2003. Automating hinting in an
intelligent tutorial dialog system for mathematics. In Proc. of the
IJCAI 03 Workshop on Knowledge Representation and Automated
Reasoning for E-Learning Systems.

Graesser, A.; Wiemer-Hastings, P.; Wiemer-Hastings, K.; Harter,
D.; and Person, N. 2000. Using latent semantic analysis to evalu-
ate the contributions of students in autotutor. Interactive Learning
Environments 8.

Hähnle, R. 2001. Tableaux and related methods. In Robinson,
A., and Voronkov, A., eds., Handbook of Automated Reasoning,
volume I. Elsevier Science. chapter 3, 101–176.

Huang, X. 1994. Reconstructing Proofs at the Assertion Level.
In Proc. of CADE-12, number 814 in LNAI, 738–752. Springer.

Hübner, M.; Autexier, S.; Benzmüller, C.; and Meier, A. 2004.
Interactive theorem proving with tasks. ENTCS 103(C):161–181.

Matsuda, N., and VanLehn, K. 2003. Modelling hinting strategies
for geometry theorem proving. In Proc. of the 9th International
Conference on User Modeling.

Moore, J. 1993. What makes human explanations effective? In
Proc. of the 15th Annual Conference of the Cognitive Science So-
ciety.

Person, N. K.; Graesser, A. C.; Harter, D.; Mathews, E.; and the
Tutoring Research Group. 2000. Dialog move generation and
conversation management in AutoTutor. In Building Dialog Sys-
tems for Tutorial Applications—Papers from the AAAI Fall Sym-
posium. North Falmouth, MA: AAAI press.

Rips, L. J. 1994. The psychology of proof. MIT Press, Cambridge,
Mass.

Traum, D. R., and Larsson, S. 2003. The information state ap-
proach to dialogue management. In van Kuppevelt, J., and Smith,
R., eds., Current and New Directions in Discourse and Dialogue.
Kluwer. http://www.ict.usc.edu/˜traum/Papers/
traumlarsson.pdf.

Vo, Q. B.; Benzmüller, C.; and Autexier, S. 2003. Assertion
application in theorem proving and proof planning. In Proc. of
IJCAI-03. IJCAI/Morgan Kaufmann.

Wolska, M.; Vo, B. Q.; Tsovaltzi, D.; Kruijff-Korbayová, I.;
Karagjosova, E.; Horacek, H.; Gabsdil, M.; Fiedler, A.; and
Benzmüller, C. 2004. An annotated corpus of tutorial dialogs
on mathematical theorem proving. In Proc. of LREC.

Zinn, C.; Moore, J. D.; Core, M. G.; Varges, S.; and Porayska-
Pomsta, K. 2003. The be&e tutorial learning environment (bee-
tle). In Proc. of Diabruck, the 7th Workshop on the Semantics and
Pragmatics of Dialogue.

Zinn, C. 2004. Understanding Informal Mathematical Discourse.
Ph.D. Dissertation, University of Erlangen-Nuremberg.

AAAI-05 / 522

An Agent-based Architecture for Dialogue

Systems?

Mark Buckley and Christoph Benzmüller
{markb|chris}@ags.uni-sb.de

Dept. of Computer Science, Saarland University

Abstract. Research in dialogue systems has been moving towards re-
usable and adaptable architectures for managing dialogue execution and
integrating heterogeneous subsystems. In this paper we present a formali-
sation of Admp, an agent-based architecture which supports the develop-
ment of dialogue applications. It features a central data structure shared
between software agents, it allows the integration of external systems,
and it includes a meta-level in which heuristic control can be embedded.

1 Introduction

Research in dialogue systems has been moving towards reusable and adaptable
architectures for managing dialogue execution and integrating heterogeneous
subsystems. In an architecture of this type, different theories of dialogue man-
agement can be formalised, compared and evaluated. In this paper we present a
formalisation of Admp

1, an architecture which uses software agents to support
the development of dialogue applications. It features a central data structure
shared between agents, it allows the integration of external systems, and it in-
cludes a meta-level in which heuristic control can be embedded.

We have instantiated the system to support dialogue management. Dialogue
management involves maintaining a representation of the state of a dialogue, co-
ordinating and controlling the interplay of subsystems such as domain processing
or linguistic analysis, and deciding what content should be expressed next by the
system. Admp applies the information state update (ISU) approach to dialogue
management [1]. This approach uses an information state as a representation of
the state of the dialogue, as well as update rules, which update the information
state as the dialogue progresses. The ISU approach supports the formalisation
of different theories of dialogue management.

The framework of our research is the Dialog project2, which investigates
flexible natural language dialogue in mathematics, with the final goal of natural
tutorial dialogue between a student and a mathematical assistance system. In

? This work was supported by the DAAD (German Academic Exchange Service),
grant number A/05/05081 and by the DFG (Deutsche Forschungsgemeinschaft),
Collaborative Research Centre 378 for Resource-adaptive Cognitive Processes.

1 The Agent-based Dialogue Management Platform
2 http://www.ags.uni-sb.de/dialog/

2

the course of a tutorial session, a student builds a proof by performing utter-
ances which contain proof steps, thereby extending the current partial proof.
The student receives feedback from the Dialog system after each proof step.
This feedback is based on the computations and contribution of numerous sys-
tems, such as a domain reasoner or a natural language analysis module. The
integration of these modules and the orchestration of their interplay as well as
the selection of a next dialogue move which generates the feedback is the task
of the dialogue manager.

The work presented in this paper is motivated by an initial prototype dia-
logue manager for the Dialog demonstrator [2]. After its development we were
able to pinpoint some features which we consider necessary for the Dialog

system, and which the platform presented here supports. The overall design of
Admp is influenced by the design of Ω-Ants [3], a suggestion mechanism which
supports interactive theorem proving and proof planning. It uses societies of
software agents, a blackboard architecture, and a hierarchical design to achieve
concurrency, flexibility and robust distributed search in a theorem proving envi-
ronment.

Although Admp has been developed to support dialogue systems, it can
be seen as a more general architecture for collaborative tasks which utilise a
central data store. For example, we have used Admp to quickly implement a
lean prototype resolution prover for propositional logic.

Our work is related to other frameworks for dialogue management such as
TrindiKit, a platform on top of which ISU based dialogue applications can be
built. TrindiKit provides an information state, update rules and interfaces to
external modules. Another such framework is Dipper [4], which uses an agent
paradigm to integrate subsystems.

This paper is structured as follows. In Section 2 we give an overview of the
Dialog project and the role a dialogue manager plays in this scenario. Section
3 outlines the architecture of Admp. Section 4 presents the formalisation of the
system, and Section 5 concludes the paper.

2 The Dialog Project

The Dialog project is researching the issues involved in automating the tutoring
of mathematical proofs through the medium of flexible natural language. In or-
der to achieve this a number of subproblems must be tackled. An input analyser

[5] must perform linguistic analysis of utterances. These typically contain both
natural language and mathematical expressions and exhibit much ambiguity. In
addition to the linguistic analysis the input analyser delivers an underspecified
representation of the proof content of the utterance. Domain reasoning is en-
capsulated in a proof manager [6], which replays and stores the status of the
student’s partial proof. Based on the partial proof, it must analyse the correct-
ness, relevance and granularity of proof steps, and try to resolve ambiguous proof
steps. Pedagogical aspects are handled by a tutorial manager [7], which decides
when and how to give which hints.

3

These three modules, along with several others such as a natural language
generator, collaborate in order to fully analyse student utterances and to com-
pute system utterances. Their computation must be interleaved, since they work
with shared information, and this interplay is orchestrated by the dialogue man-
ager. Fig. 1 shows the modules involved in the Dialog system.

GUI
Tutorial

Manager

NL Generator

Proof
Manager

Dialogue Move
Recogniser

Domain Info
Manager

Input
Analyser

Dialogue Management
Platform

Dialogue Manager

Information
State

Update Rules

Fig. 1. The Dialog system.

We illustrate how the system works with an example from the Dialog corpus
[8] in Fig. 2, where K stands for the complement operation and U is the universal
set. The student has made a correct step (Stud1) and thus has begun building
a partial proof of the theorem. Later in the proof he makes an irrelevant step
(Stud2). We now consider how the modules of the system interact to generate
the response in (Sys2).

The student’s utterance first goes to the input analyser, which calculates
its linguistic meaning and underspecified proof content. The proof content in
this case is a representation of the content of the formula which is given in the
utterance. This is then taken up by the proof manager. In the given proof context
it assigns the proof step category correct, since the formula holds under the
assumptions, but also irrelevant, because the step does not lead to a proof, or
at least does not appear in a proof of the theorem. Simultaneously the dialogue

move recogniser uses the linguistic meaning to determine the function of the
utterance in the dialogue, and encodes this function in a dialogue move [9]. A
dialogue move is a multi-dimensional abstraction of the functions of an utterance
in a dialogue, such as question or assertion. In the example the utterance is a
domain contribution , since it asserts a new piece of information in the theorem
proving task.

A domain information manager determines what domain information was
addressed by the proof step by accessing static mathematical knowledge re-

4

Sys0: Bitte zeigen Sie: Wenn A ⊆ K(B), dann B ⊆ K(A)
Please show that: If A ⊆ K(B) then B ⊆ K(A)

Stud1: U/A = K(A)
U/A = K(A)

Sys1: Das ist richtig! Und weiter?
That’s correct! And now?

. . .

Stud2: also ist A 6⊆ B
Therefore it holds that A 6⊆ B

Sys2: Nein, das bringt nichts. Wissen Sie, was Sie mit der wenn-dann-Beziehung
anfangen müssen?
No, that doesn’t help. Do you know what to do with the if-then relation?

Fig. 2. Excerpt from the Dialog corpus, session soc20k.

sources. The tutorial manager uses a combination of these results to add hinting
information to the dialogue moves. In this case it decides to explicitly indicate
the inappropriateness (“No”) and irrelevance (“that doesn’t help”) of the step.
Furthermore, a combination of a student and tutor model result in an explicit
hint, namely to draw the student’s attention to dissolving the if-then relation
which is the head of the theorem.

In general, the result of each module’s computation is a contribution of con-
tent to some system dialogue move. The final step is that a natural language

generator generates the utterances constituting the system’s response in (Sys2)
from these dialogue moves. Since a module’s computations depend only on in-
formation stored in a subset of the information state, their execution order is
only partially constrained. This means that many computations can and should
take place in parallel, as in the case of the proof manager and dialogue move
recogniser in the example above.

Dialog is an example of a complex system in which the interaction of many
non-trivial components takes place. This interaction requires in turn non-trivial
control to facilitate the distributed computation which results in the system
response. This control function resides in the dialogue manager. As shown in
Fig. 1, the dialogue manager forms the hub of the system and mediates all
communication between the modules. It furthermore controls the interplay of
the modules.

We realised a first Dialog demonstrator in 2003. It includes a dialogue man-
ager built on top of Rubin [10], a commercial platform for dialogue applications.
This dialogue manager integrates each of the modules mentioned above and con-
trols the dialogue. It provides an information state in which data shared between
modules is stored, input rules which can update the information state based on
input from modules, and interfaces to the system modules.

However, we identified some shortcomings of this first dialogue manager for
the demonstrator, and these have formed part of the motivation for the devel-
opment of Admp:

5

– The modules in the system had no direct access to the information state,
meaning they could not autonomously take action based on the state of the
dialogue.

– The dialogue manager was static, and neither dialogue plans nor the inter-
faces to modules could be changed at runtime.

– There was also no way to reason about the flow of control in the system.

Admp solves these problems by using a software agent approach to information
state updates and by introducing a meta-level. The meta-level is used to reason
about what updates should be made, and provides a place where the execution
of the dialogue manager can be guided.

3 Architecture

The central concepts in the architecture of Admp are information states and
update rules, and these form the core of the system. An information state consists
of slots which store values, and can be seen as an attribute-value matrix. It is
a description of the state of the dialogue at a point in time, and can include
information such as a history of utterances and dialogue move, the results of
speech recognition or a representation of the beliefs of dialogue participants.
Update rules encode transitions between information states, and are defined by
a set of preconditions, a list of sideconditions, and a set of effects. Preconditions
constrain what information states satisfy the rule, sideconditions allow arbitrary
functions to be called within the rule, and effects describe the changes that
should be made to the information state in order to carry out the transition
that the rule encodes.

An update rule is embodied by an update rule agent, which carries out the
computation of the transition that the update rule encodes. These check if the
current information state satisfies the preconditions of the rule. When this is the
case, they compute an information state update representing the fully instanti-
ated transition. An information state update is a mapping from slotnames in the
information state to the new values they have after the update is executed. We
introduce information state updates as explicit objects in Admp in order to be
able to reason about their form and content at the meta-level.

As an example, we consider the information state in (1), a subset of the
information state of the Dialog system3. Here the user’s utterance is already
present in the slot user utterance, but the linguistic meaning in the slot lm has
not yet been computed. The slot lu stores a representation of the proof content
of the utterance, and eval lu stores its evaluated representation.

(1)

IS

2

6

6

6

4

user utterance "also ist A 6⊆ B"

lm ""

lu ""

eval lu ""

3

7

7

7

5

3 In general an information state will contain richer data structures such as XML
objects, but for presentation we restrict ourselves here to strings.

6

The update rule in (2) represents transitions from information states with a
non-empty user utterance slot to information states in which the lm and lu

slots have been filled with the appropriate values.

(2)
{non empty(user utterance)}

{lm → p , lu → q}

< r := input analyser(user utterance),
p := extract lm(r),
q := extract lu(r) >

In Admp’s update rule syntax this rule is defined as:

(3) (ur~define-update-rule

:name "Sentence Analyser"

:preconds ((user_utterance :test #’ne-string))

:sideconds ((r :function input_analyser

:slotargs (user_utterance))

(p :function extract-lm :varargs (r))

(q :function extract-lu :varargs (r))

)

:effects ((lm p) (lu q))

)

The precondition states that the slot user utterancemust contain a non-empty
string. When this is the case, the rule can fire. It carries out its sideconditions,
thereby calling the function input analyser, which performs the actual compu-
tation and calls the module responsible for the linguistic analysis of utterances.
Rule (2) thus represents the input analyser. The result of this computation is an
object containing both the linguistic meaning of the utterance and an underspec-
ified representation of the proof content. The functions extract lm and extract lu

access the two parts and store them in the variables p and q, respectively. The
information state update that the rule computes maps the slot name lm to the
linguistic meaning of the utterance and the slot name lu to its proof content.

Rule (4) represents the proof manager, and picks up the proof content of the
utterance in the slot lu.

(4)
{non empty(lu)}

{eval lu → r}
< r := pm analyse(lu) >

The proof manager augments the information in lu by attempting to resolve
underspecification and assign correctness and relevance categories, and the re-
sulting update maps eval lu to this evaluated proof step. A similar update
rule forms the interface to the dialogue move recogniser, which uses the linguis-
tic meaning of the utterance in lm to compute the dialogue move it represents.
Since these two computations are both made possible by the result of the update
from the input analyser, they can run in parallel.

Fig. 3 shows the architecture of Admp. On the left is the information state.
Update rules have in their preconditions constraints on some subset of the in-
formation state slots and are embodied by update rule agents, which are shown
here next to the information state. When an update rule agent sees that the
preconditions of its rule hold, the rule is applicable and can fire. The agent then
executes each of the sideconditions of the rule, and subsequently computes the

7

information state update that is expressed by the rule’s effects. The resulting in-
formation state update is written to the update blackboard, shown in the middle
of the diagram.

Slot 1

Slot 2

Slot 3

Slot 4

IS Update 1

IS Update 2

IS Update 3

. . .

ISUs Chosen ISU

ISU execution

Information State Update Rule Agents Update Blackboard Update Agent

Fig. 3. The architecture of Admp.

The update blackboard collects the proposed updates from the update rule
agents. These agents act in a concurrent fashion, so that many of them may
be simultaneously computing results; some may return results quickly and some
may perform expensive computations, e.g. those calling external modules. Thus
the set of entries on the update blackboard can grow continually. On the far
right of the diagram is the update agent, which surveys the update blackboard.
After a timeout or some stimulus it chooses the heuristically preferred update
(or a combination of updates) and executes it on the current information state.
This completes a transition from one information state to the next.

Finally the update agent resets the update rule agents. Agents for whom
the content of the slots in their preconditions has not changed can continue to
execute since they will then be computing under essentially the same conditions
(i.e. the information that is relevant to them is the same). Agents for whom
the slots in the preconditions have changed must be interrupted, even if their
preconditions still happen to hold. This is because they are no longer computing
within the correct current information state.

4 A Formal Specification of Admp

We now give a concise and mathematically rigorous specification of Admp.
We introduce the concepts and terminology necessary to guarantee the well-
definedness of information states and update rules, and we give an algorithmic
description of the update rule agents and the update agent.

Information States and Information State Updates First, we fix some
data structures for the slot names and the slot values of an information state.

8

In our scenario it is sufficient to work with strings in both cases (alternatively
we could work with more complex data structures). Let A and B be alphabets.
We define the language for slot names as SlotId := A∗ and the language for slot

values as SlotVal := B∗. In our framework we want to support the checking of
certain properties for the values of single slots. Thus we introduce the notion
of a Boolean test function for slot values. A Boolean test function is a function
f ∈ BT := SlotVal → {>,⊥}.

Next, we define information state slots as triples consisting of a slot name,
a slot value, and an associated Boolean test function. The set of all possible
information state slots is Slots := SlotId × BT × SlotVal . Given an information
state slot u = (s, b, v), the slot name, the test function, and the slot value can be
accessed by the following projection functions: slotname(u) := s, slotfunc(u) := b

and slotval (u) := v.
Information states are sets of information state slots which fulfil some addi-

tional conditions. Given r ⊆ Slots , we call r a valid information state if r 6= ∅
and for all u1, u2 ∈ r we have slotname(u1) = slotname(u2) ⇒ u1 = u2. We
define IS ⊂ P(Slots) to be the set of all valid information states. The set of all
slot names of a given information state r ∈ IS can be accessed by a function
slotnames : IS → P(SlotId) which is defined as follows

slotnames(r) = {s ∈ SlotId | ∃ u ∈ r . slotname(u) = s}

We define a function read : IS × SlotId → SlotVal to access the value of a slot
in an information state where read(r, s) = slotval (u) for the unique u ∈ r with
slotname(u) = s.

In our framework information states are dynamically updated, i.e. the values
of information state slots are replaced by new values. Such an information state

update is a mapping from slots to their new values. The set of all valid information
state updates µ is denoted by ISU , the largest subset of P(SlotId ×SlotVal) for
which the following restriction holds: ∀(s1, v1), (s2, v2) ∈ µ . s1 = s2 ⇒ v1 = v2

for all µ ∈ ISU . We define ISU⊥ := ISU ∪ {⊥}. An information state update
µ ∈ ISU is executable in an information state r ∈ IS if the slot names addressed
in µ actually occur in r and if the new slot values suggested in µ fulfil the
respective Boolean test functions, i.e.

executable(r, µ) iff ∀(s, v) ∈ µ . ∃u ∈ r . slotname(u) = s ∧ slotfunc(u)(v) = >

We overload the function slotnames from above and analogously define it for
information state updates. Information state updates are executed by a function
execute update : IS × ISU → IS. Given an information state r ∈ IS and an
information state update µ ∈ ISU we define

execute update(r, µ) =

{

r if not executable(r, µ)

r− ∪ r+ otherwise

where

r− := (r \ {(s, b, v) ∈ r|s ∈ slotnames(µ)}

r+ := {(s′, b′, v′) | (s′, v′) ∈ µ ∧ ∃u ∈ r . s′ = slotname(u) ∧ b′ = slotfunc(u)}

9

Update Rules Update rules use the information provided in an information
state to compute potential information state updates. They consist of precondi-
tions, sideconditions and effects.

The preconditions of an update rule identify the information state slots that
the rule accesses information from. For each identified slot an additional test
function is provided which specifies an applicability criterion. Intermediate com-
putations based on information in the preconditions are performed by the side-
conditions of the update rules. For this, a sidecondition may call complex external
modules, such as the linguistic analyser or the domain reasoner. The results of
these side-computations are bound to variables in order for them to be accessible
to subsequent sideconditions and to pass them over from the sideconditions to
the effects of a rule. We now give a formal definition of each part in turn.

Let s ∈ SlotId and b ∈ BT . The tuple (s, b) is called an update rule precondi-

tion. The set of all update rule preconditions is denoted by C := SlotId×BT . We
define projection functions pc slotname : C → SlotId and pc testfunc : C → BT
such that pc slotname(pc) = s and pc testfunc(pc) = b for all pc = (s, b). An
information state r ∈ IS satisfies an update rule precondition pc = (s, b)
if the function b applied to the value of the slot in r named s returns >,
i.e. satisfies(r, pc) iff ∃u ∈ r . pc testfunc(pc)(slotval (u)) = > ∧ slotname(u) =
pc slotname(pc). We overload the predicate satisfies and define it for sets of pre-
conditions C′ ⊆ C and information states r ∈ IS as follows: satisfies(r, C ′) holds
if each precondition in C′ is satisfied by r.

Let v ∈ Var be a variable where Var is a set of variables distinct from
the languages A∗ and B∗, let (v1 . . . vm) ∈ Varm be an m-tuple of variables,
let (s1 . . . sn) ∈ SlotIdn be an n-tuple of slot names, and let f : SlotValn →
SlotValm → SlotVal be a function4 (n, m ≥ 0). A single sidecondition is thus
given by the quadruple (v, (s1, . . . , sn), (v1, . . . , vm), f). The set of all single side-
conditions is denoted by D := Var ×SlotIdn ×Varm × (SlotValn → SlotValm →
SlotVal).

Given the set D of single sideconditions sci, the sideconditions of an up-
date rule are now modelled as lists l := <sc1, . . . , scn >, n ≥ 0. We further
provide projection functions sc var : D → Var , sc slottuple : D → SlotId

n,
sc slotnames : D → P(SlotId), sc vartuple : D → Varm, sc varnames : D →
P(Var) and sc func : D → (SlotValn → SlotValm → SlotVal), such that
for all sc = (v, (s1, . . . , sn), (v1, . . . , vm), f) ∈ D it holds that sc var(sc) = v,
sc slottuple(sc) = (s1, . . . , sn), sc slotnames(sc) = {s1, . . . , sn}, sc vartuple(sc)
= (v1, . . . , vm), sc varnames(sc) = {v1, . . . , vm} and sc func(sc) = f .

A sidecondition list l is called valid if two conditions hold: for all sci, scj ∈ l

with i 6= j we must have sc var(sci) 6= sc var(scj) and for all sci ∈ l we must
have sc varnames(sci) ⊆ {v|∃ scj ∈ l . j < i ∧ v = sc var(scj)}. The set of all
valid sidecondition lists is denoted as Dl.

Let s ∈ SlotId and v ∈ Var be a variable. The tuple (s, v) is called an update

rule effect. The set of all update rule effects is denoted by E := SlotId × Var .

4 We assume the right-associativity of → .

10

We provide projection functions e slotname : E → SlotId and e var : E → Var

such that e slotname((s, v)) = s and e var((s, v)) = v.
Let U be a set of rule names (distinct from A∗, B∗, and Var). An update rule is

a quadruple ν ∈ UR := U×P(C)×Dl×P(E). An update rule ν = (n, c, d, e) ∈ UR
is well-defined w.r.t. the information state r if

1. the slotnames mentioned in the preconditions actually occur in r, i.e, for all
pc ∈ c we have pc slotname(pc) ∈ slotnames(r),

2. each slot that is accessed by a sidecondition function has been mentioned
in the preconditions, i.e., (

⋃

di∈d sc slotnames(di)) ⊆ {s ∈ SlotId | ∃ pc ∈
c . pc slotnames(pc) = s},

3. the variables occurring in the effects have been initialised in the sidecon-
ditions, i.e., {v ∈ Var | ∃ ei ∈ e . e var(ei) = v} ⊆ {v ∈ Var | ∃ sc ∈
d . sc var(sc) = v}, and

4. the slotnames in the effects refer to existing slots in the information state r,
i.e., {s ∈ SlotId | ∃ei ∈ e . e slotname(ei) = s} ⊆ slotnames(r).

Let ν = (n, c, d, e) ∈ UR be an update rule and r ∈ IS be an information
state. ν is called applicable in r if ν is well-defined w.r.t. r and satisfies(r, c)
holds. This is denoted by applicable (r, ν).

Update Rule Agents Update rule (software) agents encapsulate the update
rules, and their task is to compute potential information state updates. The
suggested updates are not immediately executed but rather they are passed to
an update blackboard for heuristic selection. Update rule agents may perform
their computations in a distributed fashion.

An update rule agent embodies a function execute ur agent : UR → (IS →
ISU⊥). The function execute ur agent(ν) takes an update rule ν and returns
a function (lambda term) representing the computation that that rule defines.
The new function can then be applied to a given information state in order to
compute a suggestion for how to update this information state. For each update
rule we obtain a different software agent.

We introduce a macro sc evaluate which abbreviates the retrieval of the
values in the variables and slotnames in the body of sidecondition and the com-
putation of the value which is to be stored in the sidecondition’s variable. We
use function call to apply a function to the arguments which follow it and
value of to retrieve the value stored in a variable.

sc evaluate(sc) =
let (s1, . . . , sn) := sc slottuple(sc)
let (v1, . . . , vm) := sc vartuple(sc)
let (t1, . . . , tm) := (value of(v1), . . . , value of(vm))
function call(sc func(sc), (read (r, s1), . . . , read (r, sn)), (t1, . . . , tm))

We now define execute ur agent as

11

execute ur agent(ν = (n, c, d, e)) =
λr . if applicable(r, ν)

then

let <sc1, . . . , scn> := d
let sc var (sc1) := sc evaluate(sc1)
let sc var (sc2) := sc evaluate(sc2)

...
let sc var (scn) := sc evaluate(scn)
{(s, v)|∃(s, sc var (sci)) ∈ e . v = value of(sc var(sci))}

else ⊥

Update Blackboard and Update Agent An update blackboard is modelled
as a set of information state updates w ∈ UB := P(ISU), and stores pro-
posed updates to the current information state. The update agent investigates
the entries on the update blackboard, heuristically chooses one of the proposed
information state updates and executes it. We assume a user-definable function
choose : UB → ISU which realises the heuristic choice based on some heuristic
ordering criterion > UB : ISU × ISU . A simple example of a partial ordering
criterion >UB is

µ1 >UB µ2 iff slotnames(µ2) ⊆ slotnames(µ1)

In fact, choose may be composed of several such criteria, and clearly the overall
behaviour of the system is crucially influenced by them. The update agent now
embodies a function update agent : UB × (UB → ISU) × IS → IS which is
defined as

update agent(w, choose , r) = execute update(r, choose(w))

5 Conclusion

In this paper we have presented a formalisation of Admp, a platform for devel-
oping dialogue managers using the information state update approach. We were
motivated by the need to integrate many complex and heterogeneous modules
in a flexible way in a dialogue system for mathematical tutoring. These modules
must be able to communicate and share information with one another as well as
to perform computations in parallel.

Admp supports these features by using a hierarchical agent-based design. The
reactive nature of the update rule agents allows for the autonomous concurrent
execution of modules triggered by information in the information state. This
furthermore obviates the need for a strict pipeline-type control algorithm often
seen in dialogue systems, since agents can execute without being explicitly called.
Interfacing the dialogue manager with system modules is also simplified by using

12

the agent paradigm, because adding a new module involves only declaring a new
update rule. Finally, the meta-level provides a place where overall control can
take place if needed.

Admp thus allows the formalisation of theories of dialogue in the information
state update approach, offering the functionality of related systems like TrindiKit
and Dipper. However by introducing an explicit heuristic layer for overall control
it allows reasoning about the execution of the dialogue manager which these two
systems do not support.

An instantiation of Admp is achieved by declaring an information state, a set
of update rules which operate on the information state, and a choose function,
whereby a developer can fall back to a default function such as suggested in the
previous section. A user-defined choose function should compute valid ISUs,
also in the case where ISUs from the update blackboard are merged. As an
example, a conservative merge strategy would simply reject the merging of pairs
of ISUs whose slotname sets intersect. Update rule agents and the update agent
are automatically generated from the update rule declarations.

We have recently implemented Admp and given an instantiation for the
Dialog system which uses eleven update rules and requires no declaration of
control structure. We have also shown that we can implement a propositional
resolution prover in Admp with four agents and five information state slots,
which corresponds to just 40 lines of code. Extensions such as a set of support
strategy can be realised simply by adding agents, possibly at runtime.

We foresee as future work the extension of our agent concept to include for
instance resource sensitivity, and the investigation of further default heuristics
for the dialogue scenario. Other interesting work is to turn the specification given
in this paper into a formalisation within a higher-order proof assistant such as
ISABELLE/HOL, HOL or OMEGA and to verify its properties.

References

1. Traum, D., Larsson, S.: The information state approach to dialogue management.
In van Kuppevelt, J., Smith, R., eds.: Current and new directions in discourse and
dialogue. Kluwer (2003)

2. Buckley, M., Benzmüller, C.: A Dialogue Manager supporting Natural Language
Tutorial Dialogue on Proofs. Electronic Notes in Theoretical Computer Science
(2006) To appear.

3. Benzmüller, C., Sorge, V.: Ω-Ants – An open approach at combining Interactive
and Automated Theorem Proving. In Kerber, M., Kohlhase, M., eds.: 8th Sym-
posium on the Integration of Symbolic Computation and Mechanized Reasoning
(Calculemus-2000), AK Peters (2000)

4. Bos, J., Klein, E., Lemon, O., Oka, T.: Dipper: Description and formalisation of
an information-state update dialogue system architecture. In: Proceedings of the
4th SIGdial Workshop on Discourse and Dialogue, Sapporo, Japan (2003)

5. Horacek, H., Wolska, M.: Interpreting Semi-Formal Utterances in Dialogs about
Mathematical Proofs. Data and Knowledge Engineering Journal 58(1) (2006) 90–
106

13

6. Benzmüller, C., Vo, Q.: Mathematical domain reasoning tasks in natural language
tutorial dialog on proofs. In Veloso, M., Kambhampati, S., eds.: Proceedings of the
Twentieth National Conference on Artificial Intelligence (AAAI-05), Pittsburgh,
Pennsylvania, USA, AAAI Press / The MIT Press (2005) 516–522

7. Tsovaltzi, D., Fiedler, A., Horacek, H.: A Multi-dimensional Taxonomy for Au-
tomating Hinting. In Lester, J.C., Vicari, R.M., Paraguaçu, F., eds.: Intelligent Tu-
toring Systems, 7th International Conference (ITS 2004). Number 3220 in LNCS,
Springer (2004) 772–781

8. Benzmüller, C., Fiedler, A., Gabsdil, M., Horacek, H., Kruijff-Korbayová, I.,
Pinkal, M., Siekmann, J., Tsovaltzi, D., Vo, B.Q., Wolska, M.: A Wizard-of-Oz
experiment for tutorial dialogues in mathematics. In: Proceedings of the AIED
Workshop on Advanced Technologies for Mathematics Education, Sidney, Aus-
tralia (2003) 471–481

9. Allen, J., Core, M.: Draft of DAMSL: Dialogue act markup in several layers. DRI:
Discourse Research Initiative, University of Pennsylvania (1997)

10. Fliedner, G., Bobbert, D.: A framework for information-state based dialogue (demo
abstract). In: Proceedings of the 7th workshop on the semantics and pragmatics
of dialogue (DiaBruck), Saarbrücken (2003)

DiaWOz-II - A Tool for Wizard-of-Oz

Experiments in Mathematics?

Christoph Benzmüller1, Helmut Horacek1, Ivana Kruijff-Korbayová2,
Henri Lesourd1, Marvin Schiller1, and Magdalena Wolska2

1 Dept. of Computer Science
2 Dept. of Computational Linguistics

Saarland University, Germany
{chris, horacek, henri, schiller}@ags.uni-sb.de,

{korbay, magda}@coli.uni-sb.de

Abstract. We present DiaWOz-II, a configurable software environment
for Wizard-of-Oz studies in mathematics and engineering. Its interface
is based on a structural wysiwyg editor which allows the input of com-
plex mathematical formulae. This allows the collection of dialog corpora
consisting of natural language interleaved with non-trivial mathemati-
cal expressions, which is not offered by other Wizard-of-Oz tools in the
field. We illustrate the application of DiaWOz-II in an empirical study
on tutorial dialogs about mathematical proofs, summarize our experi-
ence with DiaWOz-II and briefly present some preliminary observations
on the collected dialogs.

Key words: Dialog systems, natural language dialog in mathematics,
tutoring systems, Wizard-of-Oz experiments

1 Introduction

For the development of natural language dialog systems, experiments in the
Wizard-of-Oz (WOZ) paradigm are a valued source of dialog corpora.3

Existing environments for WOZ experiments, even those for the domain of
mathematics tutoring, generally operate in domains that either require only sim-
ple mathematical formulae (with operators like + and ×), or they separate the
mathematical objects (geometric figures or equations) from the tutorial dialog
(such as in the Wooz tutor [2], for example). In this paper we present our WOZ

? This work has been funded by the DFG Collaborative Research Center on Resource-
Adaptive Cognitive Processes, SFB 378 (http://www.coli.uni-saarland.de/
projects/sfb378/).

3 A Wizard-of-Oz experiment [1] serves to test the usability of a hypothetical software
system. The system is (partially) simulated by a human expert, the wizard. Typically,
a mediator software partially implements the functionality of the simulated system.

environment DiaWOz-II which, in contrast to that, enables the collection of di-
alogs where natural language text is interleaved with mathematical notation,
as is typical for (informal) mathematical proofs. The interface components of
DiaWOz-II are based on the what-you-see-is-what-you-get scientific text editor
TEXmacs

4 [3]. DiaWOz-II provides one interaction window for the user and one
for the wizard, together with additional windows displaying instructions and
domain material for the user, and additional notes and pre-formulated text frag-
ments for the wizard. All of these windows allow for copying freely from one to
the other. Furthermore, our DiaWOz-II allows the wizard to annotate user dialog
turns with their categorization. DiaWOz-II is also connected to a spell-checker
for checking both the user’s and the wizard’s utterances.

This paper is organized as follows: In Sect. 2 we motivate the design of our
system. In Sect. 3.1 we describe the TEXmacs wysiwyg editor, on which the
interface of DiaWOz-II is based. The DiaWOz-II system is discussed in detail
in Sect. 3. In Sect. 4 we discuss the application of DiaWOz-II in a recently
completed series of experiments. Section 5 concludes the paper.

2 Design Aspects

General Requirements for WOZ Tools. We list some general requirements
we considered in the development of DiaWOz-II:

Plausibility and Comfort. For WOZ experiments, it is crucial to maintain the
user’s belief that he is interacting with a fully artificial system. Therefore,
the software that mediates between wizard and student should enable the
wizard to conceal his human identity. This is not a trivial pursuit, since it is
common sense that “people are flexible, computers are rigid (or consistent),
people are slow at typewriting, computer output is fast” [4]. Thus, the WOZ
tool is required to enable the wizard to respond to the participant quickly
and comfortably and in a plausible way.

Suitability for Book-keeping. The main goal of WOZ experiments is the analysis
of the interactions between the subjects and the simulated system. Therefore,
the WOZ tool is required to record the dialogs using a representation format
suitable for further processing and analysis.

Flexibility and Simplicity. The WOZ tool should be easily adjustable, so that it
can be used under different experimental conditions and in different domains.
Adjustments to the software should not significantly add to the complexity
of carrying out a series of experiments, a process which by itself poses enough
challenges.

Tool Integration. The WOZ tool should support the integration of other soft-
ware components, for example, modules that already realize single parts of
the simulated overall system.

4 www.texmacs.org

Specific Requirements for DiaWOz-II. DiaWOz-II has been developed for
application in the Dialog project [5], which investigates the use of natural lan-
guage dialog for teaching mathematical proofs. The particular research foci of
the Dialog project are natural language analysis, domain reasoning for math-
ematics, and tutorial aspects of mathematics tutoring.

In 2003, we carried out a first empirical study [6] in the WOZ paradigm
in which we collected a corpus of tutorial dialogs on mathematical proofs in
German. The study concentrated on the comparison between three tutoring
strategies, namely the Socratic, didactic and the minimal feedback strategies.
For this purpose, we developed the DiaWoZ [7] environment, the predecessor of
DiaWOz-II. DiaWoZ supports complex dialog specifications, which were needed
in order to specify a particular hinting algorithm used in the Socratic tutoring
condition. DiaWoZ allows keyboard-to-keyboard interaction between the wizard
and the student. The interfaces consist mainly of a text window with the dialog
history and a menu bar providing mathematical symbols. Furthermore, the wiz-
ard can assign dialog state transitions and speech act categories to student turns
w.r.t. the underlying dialog model. The DiaWoZ interface allowed free mixing
of natural language text with mathematical symbols. Still, there was room for
improvement with respect to the plausibility and comfort criterion postulated
above. For example, the experiment participants suggested the use of the key-
board instead of the mouse for inserting mathematical symbols.

The first study motivated a second series of experiments [8], which we briefly
describe in Sect. 4. In contrast to the first study, the more recent study imposes
less constraints on the wizards’ tutoring and assumes a rather simple dialog
model. However, in comparison to the first study, the second study is more
focused on linguistic phenomena and mathematical domain reasoning in tutorial
dialogs and the interplay between these two.

Related Work. A variety of WOZ tools and dialog system toolkits already
exist. Examples are the simulation environment ARNE [4], the SUEDE proto-
typing tool for speech user interfaces [9] and MD-WOZ [10].

In the domain of mathematics, a WOZ simulation of the ALPS environment
[11] and the Wooz tutor [2] should be mentioned. In the case of ALPS, the
Synthetic Interview (SI) method is used, i.e. the student formulates free-form
questions in a chat window, and receives a video clip with an answer. In the ALPS
system, these video clips are pre-recorded, stored in a database, and retrieved
as answers for the questions from the user, whereas in the WOZ simulation of
ALPS, the wizard’s responses are spontaneous. The ALPS tutor is designed to
be an algebra tutor. Typical problems in the domain of ALPS are for example
the computation of area and perimeter of geometric figures.

The Wooz tutor is also a tool for keyboard-to-keyboard interaction in the
domain of algebra. It offers a chat window displaying the tutorial dialog, a
dedicated window displaying the problem statement and a dedicated editor for
editing equations. A typical problem given to the participants is “please factor
11x

2 − 11x + 6”.

The interfaces of these two systems are not intended for mixing natural lan-
guage input with the mathematical notation employed for proving theorems,
which we investigate in the Dialog project. For our dialog system we aim for an
interface that allows flexible and easy input for mathematical formulae and natu-
ral language text. This requirement is addressed by the interface in DiaWOz-II.

3 The DiaWOz-II System

We decided to build a new WOZ tool rather than trying to improve the existing
DiaWoZ system. An important motivation was to use TEXmacs [3] as a platform
for the new system in order to benefit from its typesetting abilities, its config-
urable GUI and its event-handling as a building block for the creation of a more
lightweight software.

DiaWOz-II is realized as a classical client-server architecture, and consists
of a server and two client interfaces for the student and the tutor respectively.
The architecture allows keyboard-to-keyboard interaction between the student
and the tutor. Furthermore, the server fulfills other central functions, namely
the recording of the interaction in a log file, controlling turn-taking between
the dialog participants, and providing an interface to a spell-checker. We first
describe TEXmacs and its role in DiaWOz-II before we further elaborate on each
of these aspects in turn.

3.1 TEXmacs

TEXmacs is a scientific text editor with strong support for mathematical typeset-
ting which is inspired by TEX and GNU emacs. The internal representation of a
TEXmacs-document is well organized in a tree-like structure. TEXmacs provides
two alternative editing modes: (i) a wysiwyg interface that allows to directly
manipulate the typeset document and (ii) a source mode that provides a view
of the internal document representation in the underlying, structured TEXmacs

markup language. This language supports the definition of macros, which are
generally easy to read and understand. It is also worth noting that the standard
TEXmacs markup language inherits many usual LATEX constructs, in such a way
that for LATEX-literate persons, starting to use TEXmacs is usually straightfor-
ward. Thus, extending the markup (namely, defining new kinds of tags together
with how these newly defined tags must be typeset) can be done in a very con-
venient way using macros. For more sophisticated behavior, for example, the
implementation of an interactive application, one can use Scheme, the standard
TEXmacs scripting language.

TEXmacs fulfills the plausibility and comfort requirement introduced in Sect.
2 by offering various advanced modes of input for mathematical symbols, and in
particular it enables LATEX commands. Using TEXmacs also fulfills the flexibility
and simplicity requirement, since it can be reconfigured with little effort.

The TEXmacs editor has already been adapted as an interface to a diversity
of external tools, most of which are computer algebra systems. However, using
TEXmacs as an interface for a (simulated) tutoring system is novel.

3.2 TEXmacs as Base Component of DiaWOz-II

A TEXmacs application as employed in DiaWOz-II has the overall structure
shown in Fig. 1. Such an application consists of (i) a set of TEXmacs macros which
implement the visualization of the different parts of the user

���������
	�
���
�������� ���
����������������� ��! "$# �&%

')(*
�
��+	,
���
�������� ���
�&-/.*02143�5�67��8*� ��9/�&%

�;:�<�(=�?>?��>
'@(=
�A�B�<DCE
����

F ! �G"IH 8/J

')�*B?���*K
LM��N�OI�=(*
�>

.;P � Q�#R�

S C �?TEUWV�X�Y>?��
�B�Z����=�4� �[(
'@(*
�A�B�<)CE
����

\
�
������

Fig. 1. Structure of a TEXmacs application

interface (i.e. what are their
shapes, their locations, the
text attributes (e.g. color,
font, ...), etc.), and (2) a set
of Scheme scripts, which im-
plement the mechanism which
interprets the events (e.g., a
mouse click, a key press, etc.)
and modifies the interface ac-
cordingly.

Macros. A very basic ex-
ample of a TEXmacs macro
that can be used to turn a
part of the document into
italics underlined text is (cf.
[12] for more details on the macro language):

<underlined-italics|x> => <with|font-shape|italic|<underline|<arg|x>>>

The left-hand side of this expression defines the use of the macro (i.e., the non-
expanded markup, as it can be found in a TEXmacs document file) and the
right-hand side its expansion. Given this macro definition, the TEXmacs markup
fragment <underlined-italics|This is italics underlined text.>

is first rewritten by the macro processor as <with|font-shape|italic|

<underline|This is italics underlined text.>> and then displayed in
TEXmacs as This is italics underlined text.

Processing the Markup Using Scheme. The event processor can be ex-
tended by plugins written as Scheme scripts. These scripts can manipulate the
internal markup tree that represents the user interface, typically as a reaction
to an event (e.g., mouse, keyboard, network, etc.). As a reaction to the changes
in the markup, the macros are reevaluated, and the display is then updated.

3.3 Student and Wizard Interfaces

The dialog system simulated by DiaWOz-II is presented to the student as a
window, referred to as the interaction window. It consists of menu bars and a
text field, as shown in Fig. 2. The dialog history and the prompt for the current
input are displayed in the same text field, separated by a horizontal bar at the
bottom in Fig. 2. The utterances from the tutor and the student are displayed in

Fig. 2. Interaction window of the student interface

different colors for better readability. The student can send messages by pressing
the “absenden” (submit) button. Upon submitting, the message becomes part
of the dialog history. The answers by the tutor are accompanied by an acoustic
signal.

In a second window, which is independent of the interaction window, supple-
mentary study material with mathematical concepts and definitions is displayed.

The wizard’s interface, as shown in Fig. 3, is conceptually similar to the
student’s interface. In addition, the wizard is asked to categorize each student
turn w.r.t. three dimensions: correctness, granularity and relevance; the wizard
fills out the fields of a small table referring to the three dimensions by making
choices in pull-down menus, or directly by typing. The wizard’s button for send-
ing messages is only enabled once all the fields have been filled. If the student’s
utterance does not represent a mathematical statement the wizard fills in default
values (N/A).

We now turn in more detail to the methods for inserting mathematical sym-
bols in DiaWOz-II, which are made available by TEXmacs. Mathematical sym-
bols (e.g., ∅) can be created by using LATEX commands (e.g., \emptyset) or
by using additional commands defined when designing the interface (e.g., the
command \emptyset in German language, i.e. \leeremenge). These commands
are also made available in the menu bar. DiaWOz-II also allows for structured
commands, e.g. commands that create pairs of brackets for pair (�, �) and for
set notation {� |� }. An example is the macro paar (German for pair):

<paar|left|right> => (<arg|left> , <arg|right>)

Fig. 3. The interaction window of the wizard interface

Invoking \paar with the arguments x and y yields the formula (x, y). The
two arguments need not necessarily be provided when invoking the macro, their
respective placeholders can be also filled in interactively and modified later.
Macros can be nested, and most importantly, they avoid missing parentheses
when the user writes expressions using the pair notation. The set of macros
provided with DiaWOz-II can be easily extended with further TEXmacs macros.

TEXmacs furthermore makes it possible to distinguish between mathematical
symbols created via the menu bar and via LATEX commands, even if they appear
to be the same at the typesetting level.

Using structured building blocks for constructing mathematical formulae via
macros is similar to the Maths Tiles approach [13]. Maths Tiles are graphical
tiles that can contain text, diagrammatic shapes and sockets, which are place-
holders where other Maths Tiles can be inserted to form composite objects.
TEXmacs has the advantage over Maths Tiles that it already includes by de-
fault a large set of macros for constructing formulae, such as a large number of
macros that represent LATEX commands.

3.4 The Server

The central capabilities of DiaWOz-II reside in the server. Its main task is to
pass the dialog contributions back and forth between the student and the wizard
interface. Furthermore, it provides the following other central services:

Log-file Mechanism. All dialogs are recorded in a log-file in DiaWOz-II. The
log-file format is based on the representation format of TEXmacs, which is a

structured, extensible and open document format. Naturally, the annotations
performed by the wizard for each student turn are also stored in the log-file.

Spell-Checking. Spelling mistakes by the wizard can be a giveaway of human
simulation. Therefore, our server (optionally) integrates a spell-checker. If
spell-checking is activated, a message from the wizard is only passed on
by the server if it passes the spell-checker, otherwise the wizard is asked
to correct the message. The student’s input is also spell-checked. Messages
exceeding a threshold of spelling errors are refused (i.e. not passed on to
the wizard). The underlying rationale is that it would be implausible that
an automated system could deal with such misspelled input.
We currently employ the spell-checker GNU Aspell5 with the standard Ger-
man dictionary provided with Aspell together with an extra dictionary of
mathematical jargon. The latter was compiled from the introductory math-
ematics materials and gradually extended during the experiments.

Turn-Taking Control. DiaWOz-II imposes strict turn-taking on the student:
once the student makes a turn, the sending of new messages is disabled
(i.e., the dedicated button for “sending” is deactivated and displayed in a
darker shade) until the tutor provides a response. Without this constraint,
it might become unclear to which turn of the student an answer from the
wizard belongs. However, the tutor is allowed to barge in at any time, which
enables him to offer support or prompt if the student appears to be inactive.

3.5 Implementation

]W^,_�`a`Rb�cd_=b�e�_�f

g4h f�iWj/k�emlaidnpoq]2r

s[t nIn$lRiEn

u�v*w�xIv*w

g4y2zM{}|�~W���]Wj hE� _=iWj/�g�y2z�{[|�~m����g�h j t f��

�q� �a����������� ���������/�=��� �}�D��� �
���/���2����� � �=��� ���q� ����� �R���*���

� � �$�/�R�=�D���������+�����

�q ¡�v�¢d£�q ¡�v*¢d£

Fig. 4. System architecture

Figure 4 illustrates the archi-
tecture of DiaWOz-II. In or-
der to customize the client in-
terfaces, we have

– adapted the menu bars
and buttons to the needs
of our application and

– restricted the editing fa-
cilities so that the student
can only type in a desig-
nated text area with all
other TEXmacs function-
alities disabled (for exam-
ple, inserting an image,
or editing the dialog his-
tory).

On the server side, turn-taking is controlled by a finite-state automaton. A
message received by the server is written to the log-file and sent to a spell-
checker. If it passes, it is broadcast to the clients. If it does not pass, it is

5 http://aspell.sourceforge.net/

sent back to the sender for correction. Disallowing the student from sending new
messages until the wizard makes a turn is technically realized by server messages
to the student’s client to reconfigure the client’s interface (i.e. enable/disable the
interface’s elements according to the current state).

The combination of macros and Scheme provided in TeXmacs has turned out
to be very useful for our development of DiaWOz-II. In particular, the amount
of code we wrote (a dozen of Scheme files of approximately 100 Kb in total) is
relatively small considering the implemented functionality, and it remained man-
ageable over time (as opposed to the previous version of DiaWoZ that consisted
of about 200Kb Java code spread among 70 files). The environment enabled also
people who are not professional software developers to participate in develop-
ing the system. Thus, TeXmacs has proven to be a good choice for our WOZ
software, both from the point of view of the level of functionality it offers (word
processing with LATEX-like mathematical typesetting in a customizable editor)
as well as from the point of view of prototyping and extending the software.
The combination of the Scheme programming language with the large set of fea-
tures already provided by TeXmacs allows for a lightweight, inclusive software
development process.

4 An Empirical Study Using DiaWOz-II

Exploiting the DiaWOz-II system, we carried out a series of experiments in July
2005. In this study (see [8]), we collected a corpus of tutorial dialogs in German
on mathematical proofs in the domain of binary relations. The collected data
serves to investigate linguistic phenomena related to the mixing of mathemat-
ical formulae and natural language, underspecification phenomena, qualitative
aspects of proof steps and mutual dependencies between natural language anal-
ysis and non-trivial mathematical domain reasoning.

4.1 Method

Thirty-seven students from Saarland University participated in the experiments.
They were instructed to solve proof exercises collaboratively with a computer
system that was described to them as a natural language dialog system on math-
ematics. This system was simulated with the DiaWOz-II software and four ex-
perts6, who took the role of the wizard in turn (the set-up is shown in Fig.
5).

The wizards were given general instructions on the Socratic style of tutoring
(cf. [14]), which is characterized by the use of questions to elicit information from
the student. The tutors were instructed to reject utterances outside the math-
ematical domain and to respond in a uniform manner. Apart from that, the
wizards were not restricted in the verbalization of their answers to the students.

6 The experts consisted of the lecturer of a course Foundations of Mathematics, a
maths teacher, and two maths graduates with teaching experience.

Fig. 5. An experiment in progress: The participant (left) and the wizard, experimenter
and research assistant in the control room (right)

This allowed us to investigate the use of mathematical language without possi-
bly influencing it by a-priori restrictions, even if more restrictions might have
contributed to making the simulated system appear even more machine-like. In
addition to the interaction window of DiaWOz-II, the tutors were provided with
a second TeXmacs window in which they could save text and formulae for re-use.

The exercises were taken from the domain of relations, and were centered
around the concepts of relation composition and relation inverse. Because of the
advanced character of the exercises, the participants were required to have taken
part in at least one mathematics course at university level. First, the subjects
were required to fill out a questionnaire, asking about previous experiences with
dialog systems and mathematics background. Subjects were also given study ma-
terial with the mathematical definitions that were required to solve the exercises
which was studied for approximately 25 minutes. The materials were handed
out on paper and were also available as a TeXmacs document on the screen.
This helped to achieve a uniform (and thus plausible) appearance of the system.
Prior to the tutoring session, the students received a short introduction to the
interface, during which the different modes of input for mathematical symbols
– as menu items, as LATEX commands or via commands in German language –
and the copy & paste facility were demonstrated.

The largest part of the two-hour experimental session was allotted to the
interaction between the student and the simulated system. In addition to the
log-files recorded by DiaWOz-II, screen recordings were made. Furthermore, the
participants were encouraged to “think aloud” and they were audio-recorded
and filmed. This comprehensive collection of data not only documents the text
of the tutorial dialogs, but also allows us to analyze how the participants used
the interface and the study material.

At the end of the experimental session, the participants were required to
fill out a second questionnaire asking about their verdict on the usability of the
system, how difficult they found the exercises, and suggestions for improvements
of the system.

S33: Nach Aufgabe W ist
(S ◦ (S∪R)−1)−1 = ((S∪R)−1)−1 ◦ S−1

By Exercise W
(S ◦(S∪R)−1)−1=((S∪R)−1)−1◦S−1

holds
T34: Das ist richtig! That is correct!
S34: Dies ist nach Theorem 1 gleich
(S∪R) ◦ S −1

This is by Theorem 1 equal to
(S∪R) ◦ S −1

T35: Das ist auch richtig!
That is also correct!
S35: Ein Element (a,b) ist genau dann
in dieser Menge, wenn es ein z∈M gibt
mit (a,z)∈S∪R und (z,b)∈S −1

An element (a,b) is in this set exactly
when there is a z∈M with (a,z)∈S∪R
und (z,b)∈S −1

T36: Das ist korrekt! That is correct!
S36: Also (b,z)∈S. Therefore (b,z)∈S.
T37: Auch das ist korrekt!
That is also correct!
S37: DAmit [sic] kann aber nicht die
geforderte Gleichheit bewiesen werden.
But with this the given equality cannot be
proven.
T38: Das haben Sie gut erkannt! Was
fehlt Ihnen dazu?
You have made a good observation! What
is missing?

S25: (R∪S)◦S = {(x,y) | ∃ z(z ∈ M ∧
((x,z) ∈ R ∨ (x,z) ∈ S) ∧ (z,y) ∈ S}
T28: Diese Beziehung hat Relevanz fuer
die Aufgabe. Sie muessen sich also etwas
dabei gedacht haben, als Sie diese ver-
muteten. Koennen Sie begruenden, wie
sie mit der Aufgabe zusammenhaengt?
This relation is relevant for the exercise.
You must have considered something as
you proposed it. Can you justify how it is
related to the exercise?
T29: Ihre Formel ist richtig.
Your formula is correct.
T30: Koennen Sie die Behauptung unter
zusaetzlichen Voraussetzungen beweisen?
Can you prove the expression under
additional assumptions?
S26: {(x,y) | ∃ z(z ∈ M ∧ ((x,z) ∈ R ∨
(x,z) ∈ S) ∧ (z,y) ∈ S} = {(x,y) | ∃ z(z
∈ M ∧ (y,z) ∈ S ∧ ((x,z) ∈ R ∨ (x,z) ∈
S))} ⇔ ((y,z) ∈ S ∧ (z,y) ∈ S)}
T31: Auf der rechten Seite ist z nicht
spezifiziert. Meinten Sie vielleicht ⇔ oder
etwas Aehnliches [sic] statt ∧?
On the right side z is not specified.
Do you perhaps mean ⇔ or something
similar instead of ∧?

Fig. 6. Excerpts of dialogs in the two conditions: VM-group (left) and FM-group
(right). English translations are given in italics. S and T indicate student and wizard
turns, respectively.

4.2 Discussion

The experiments resulted in a large and diverse corpus of dialogs. During a
session, a participant made on average 24 dialog turns, excluding those that
were rejected for bad spelling. We briefly discuss how DiaWOz-II fulfilled its
role, how the participants coped with the interface. Furthermore, the collected
data hints at a potential influence of the interface features in combination with
the reading material on the resulting tutorial dialogs.

Observations from the Corpus. An example of two dialog fragments from
the experiment is given in Fig. 6. These dialogs were obtained under two different
modes of presentation of the study material: formal (FM) vs. verbose (VM). Note

that the dialogs clearly differ in the employed mathematical style and that in
Fig. 6 (right), the mathematical operations performed by the student can be
characterized as term rewriting steps, i.e. a subformula of a term is replaced by
an equivalent subformula. Also note that in Fig. 6 (right), the student uses no
natural language. Even though all subjects were informed before the interaction
that the system can handle a combination of natural language and formula input,
we observed great variations in the amount of natural language used by the
subjects.

Corpus analysis reveals differences in the use of natural language and math-
ematical expressions that was at least partially influenced by the mode of pre-
sentation of the study material. The group presented with the verbose material
tended to use more natural language than the formal material group and the
dialog turns of the VM-subjects contained more, but shorter, mathematical ex-
pressions. The formal material group tended to use more and longer formulas
overall, and less natural language. More details on the differences in language
production between the two conditions can be found in [15].

The copy & paste facilities provided by DiaWOz-II allowed copying defini-
tions from the study material into the dialog contributions, and allowed copying
previously uttered formulae for constructing new formulae. We observed that
many subjects constructed larger and larger formulae with several levels of nest-
ing. No such phenomenon was observed in the first study [6]. Even though the
predecessor DiaWoZ software used in this study allowed copy & paste, this fea-
ture was not explained to the users and discovered only by some. Furthermore,
in the first study the introduction material was only presented on paper, so that
students could not copy from there as was possible in the second study. Another
difference is the mathematical domain itself - the proofs concerning relations
in the second experiment series require considerably longer formulae than those
concerning naive set theory in the first experiment.

Usability of DiaWOz-II. The students were required to fill out post-
experiment questionnaires, which among other things asked questions about the
interface.

Students were asked if they had problems while using the interface, and to
qualify their answer by a rating on a five-point scale between one (no problems)
and five (great problems). Their ratings7 (median 2, average 2.14, standard
deviation 0.85) indicate that the participants generally had little trouble using
the DiaWOz-II interface.

Even though a direct comparison between DiaWoZ and DiaWOz-II would re-
quire an experiment on its own (the two reported experiments involved different
mathematical domains and different requirements imposed on the participants),
these ratings are not far from those obtained in the first series of experiments

7 The ratings from thirty-six participants are distributed as follows: A rating of 1
was assigned by 7 participants, a rating of 2 by 21 participants, a rating of 3 by 4
participants and a rating of 4 by 4 participants. No participant gave a rating of 5.

Table 1. Most frequent comments on the DiaWOz-II interface (number of participants
indicated in brackets)

Positive Comments

– Variety of formula input methods1

(7)
– LATEX commands available1 (6)
– Math symbols in menu1 (5)

– Interface is simple to use/clear (5)
– Questions can be formulated in

NL (4)

1 In total, 20 subjects mentioned at least one positive aspect w.r.t. to formula input.

Negative Comments

– TEXmacs-specific problems (14)
– Bad screen size/font size (8)
– No direct keyboard shortcuts for

math symbols available (3)

– Interface delay (10)
– Sending messages not via return key

(6)

with DiaWoZ. There, students had also been asked the same question, where
they indicated a rating of 1.59 on average and a median of 1.

A small number of participants commented to the experimenter that they
suspect a human teacher. However, comments by other subjects indicated that
these were convinced of having interacted with an automated system.

Participants were asked to give comments about the system in general and
the interface in particular, which are summarized in Table 1. The fact that the
input facilities of DiaWOz-II were positively mentioned by numerous partici-
pants can be contrasted with the first series of experiments, where eight of the
seventeen participants complained that the sole input method for mathematical
symbols via the menu bar required constant switching between the mouse and
the keyboard for inputting mathematical formulae.

A serious criticism concerned the speed of the system. This refers to two
aspects: (1) the fact that the students had to wait for the answers from the
system, and (2) the behavior of the interface itself. The waiting times consisted
in the time spent by the tutor to read the dialog contributions from the students
and to write an answer (even with the help of pre-formulated answers), but also
the message-passing between the client, the server and the spell-checker. An
important fact was that the wizards were sometimes challenged by the size of
formulae created by the students, which made checking them particularly time-
consuming. The insufficient speed attributed to the system’s interface refers to
a small but noticeable delay when typing symbols in DiaWOz-II. This delay is
not experienced when using a standard TeXmacs, but results from the extra
mechanism that protects the dialog history from being edited mentioned above.
Another criticism concerns the window layout. For the experiment we used a
screen capturing software and a low screen resolution to save disk space, which
was commented on negatively by the subjects.

In summary, the questionnaires show that the input methods for mathemat-
ical text available in DiaWOz-II were well received by many participants, but
that other mainly technical difficulties remain. A possible improvement proposed
by some of the participants is an option for the user to withdraw a message after

it is sent, in case the user himself becomes aware of a minor error and wants to
correct it himself.

5 Conclusion

We have presented DiaWOz-II, our mediator software for WOZ experiments
based on the wysiwyg editor TEXmacs. DiaWOz-II allows various modes of input
for mathematical symbols, such as LATEX commands, customized commands and
menu items, and editing facilities that allow for the creation of complex formulae.
Furthermore, DiaWOz-II inherits high quality typesetting from TEXmacs. One
purpose of this paper is to advocate DiaWOz-II to the AI community for similar
WOZ studies in domains such as engineering, physics, economics, etc. where
mathematical input in combination with natural language plays a crucial role.

We also briefly addressed the set-up and some results of a series of exper-
iments conducted with DiaWOz-II. The corpus we obtained is important to
guide our research in the Dialog project. It is currently being evaluated and
can be obtained from http://www.ags.uni-sb.de/~dialog (see [8] for a pre-
liminary analysis). We have observed that the capabilities of DiaWOz-II for
editing and copying mathematical formulae introduced artifacts into some of
the tutorial dialogs that we collected, which we did not observe in the previous,
similar experiment. These manifest themselves in a term-rewriting style of prov-
ing mathematical theorems leading to unnecessarily large and nested formulae.
This hints at the importance of incorporating didactic knowledge into tutoring
systems in our field (as simulated by DiaWOz-II) which prevent students from
abusing such a system’s features in a technology-driven manner, and to help the
students to use these features purposefully and with moderation.

As a part of our ongoing work, we are combining the dialog specification
mechanism from DiaWoZ with the DiaWOz-II system to obtain an environment
that reflects our expertise gained with both systems. The DiaWOz-II system can
be downloaded from http://www.ags.uni-sb.de/~dialog/diawoz2.

Acknowledgments. We would like to thank all of the members of the Dialog
team for their input and comments on initial drafts of this paper, and of course
for their contributions to DiaWOz-II and the experiments.

References

1. Fraser, N.M., Gilbert, G.N.: Simulating speech systems. Computer Speech and
Language (5) (1991) 81–99

2. Kim, J.H., Glass, M.: Evaluating dialogue schemata with the Wizard of Oz
computer-assisted algebra tutor. In: Intelligent Tutoring Systems. (2004) 358–367

3. Hoeven, J.v.d.: GNU TeXmacs: A free, structured, wysiwyg and technical text
editor. In Flipo, D., ed.: Le document au XXI-ième siècle. Volume 39-40., Metz
(2001) 39–50 Actes du congrès GUTenberg.

4. Dahlbäck, N., Jönsson, A., Ahrenberg, L.: Wizard of Oz studies – Why and how.
Knowledge-Based Systems 6(4) (1993) 258–266

5. Benzmüller, C., Fiedler, A., Gabsdil, M., Horacek, H., Kruijff-Korbayová, I.,
Pinkal, M., Siekmann, J., Tsovaltzi, D., Vo, B.Q., Wolska, M.: Tutorial dialogs on
mathematical proofs. In: Proceedings of the IJCAI Workshop on Knowledge Rep-
resentation and Automated Reasoning for E-Learning Systems, Acapulco (2003)
12–22

6. Benzmüller, C., Fiedler, A., Gabsdil, M., Horacek, H., Kruijff-Korbayová, I.,
Pinkal, M., Siekmann, J., Tsovaltzi, D., Vo, B.Q., Wolska, M.: A Wizard of Oz ex-
periment for tutorial dialogues in mathematics. In: Proceedings of AI in Education
(AIED 2003) Workshop on Advanced Technologies for Mathematics Education,
Sydney, Australia (2003) 471–481

7. Fiedler, A., Gabsdil, M., Horacek, H.: A tool for supporting progressive refinement
of wizard-of-oz experiments in natural language. In Lester, J.C., Vicari, R.M.,
Paraguaçu, F., eds.: Intelligent Tutoring Systems — 7th International Conference
(ITS 2004). Number 3220 in LNCS, Springer (2004) 325–335

8. Benzmüller, C., Horacek, H., Lesourd, H., Kruijff-Korbayová, I., Schiller, M., Wol-
ska, M.: A corpus of tutorial dialogs on theorem proving; the influence of the
presentation of the study-material. In: Proceedings of International Conference on
Language Resources and Evaluation (LREC 2006), Genoa, Italy, ELDA (2006) To
Appear.

9. Klemmer, S.R., Sinha, A.K., Chen, J., Landay, J.A., Aboobaker, N., Wang, A.:
Suede: a wizard of oz prototyping tool for speech user interfaces. In: UIST. (2000)
1–10

10. Munteanu, C., Boldea, M.: MDWOZ: A Wizard of Oz environment for dialog
systems development. In: Proceedings 2nd International Conference on Language
Resources and Evaluation, Athens, Greece (2000) 1579–82

11. Anthony, L., Corbett, A.T., Wagner, A.Z., Stevens, S.M., Koedinger, K.R.: Student
question-asking patterns in an intelligent algebra tutor. In Lester, J.C., Vicari,
R.M., Paraguaçu, F., eds.: Intelligent Tutoring Systems. Volume 3220 of Lecture
Notes in Computer Science., Springer (2004) 455–467

12. Hoeven, J.v.d., et al.: The TeXmacs manual.
http://www.texmacs.org/tmweb/manual/web-manual.en.html (1999-2006)

13. Billingsley, W., Robinson, P.: Towards an intelligent online textbook for discrete
mathematics. In: Proceedings of the 2005 International Conference on Active
Media Technology, Takamatsu, Japan (2005) 291 – 296

14. Rosé, C.P., Moore, J.D., VanLehn, K., Albritton, D.: A comparative evaluation
of socratic versus didactic tutoring. In: 23rd Annual Conference of the Cognitive
Science Society, Edinburgh, Scotland (2001)

15. Wolska, M., Kruijff-Korbayová, I.: Factors influencing input styles in tutoring
systems: the case of the study-material presentation format. In: Proceedings of
the ECAI-06 Workshop on Language-enabled Educational Technology. (2006) To
Appear.

	C17.pdf
	Motivation: Test Problems for Higher-Order Reasoning Systems
	Classical Higher-Order Logic
	Test Problems for Pre-unification and Quantifier Dependencies
	Pre-unification
	Quantifier Dependencies

	Semantics for HOL
	Test Problems for Higher-Order Theories
	Properties of Equality
	Extensionality
	Set Comprehension

	More Complex Examples
	Conclusion

	C16.pdf
	Introduction
	Why Linking Higher-Order and First-Order?
	Higher-Order/First-Order Cooperation via Oants
	Oants
	Cooperation via a Single Inference Rule
	Extracting FO-Like Clauses from Leo
	Soundness and Completeness of the Cooperation

	Experiments and Results
	Related Work and Conclusion

	J12.pdf
	Computer supported mathematics with Omegamega
	Introduction
	Omegamega
	System overview
	Proof objects
	Proof planning
	AI principles in proof planning
	Methods, control rules, and strategies
	Exploiting domain specific knowledge: proof planning [j]l-problems

	OmegaAnts: agent-oriented theorem proving
	External systems
	Interface and system support
	Case studies
	Discussion
	Proof-planning as an alternative approach to automated theorem proving?
	What lessons have we learned?

	The future: what next?
	Formalization and proving at a higher level of granularity
	Mathematical knowledge representation
	Semantic mediators for mathematical knowledge bases

	MathServ: a global web for mathematical services
	Support for mathematical activities
	Certified mathematics texts
	Mathematical advice in tutoring systems

	References

