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5 Cumulative Habilitation Script

5.1 Introduction

Since more than a decade my main research interests are:

1. The (collaborative) development of large and integrated mathematics assistance systems in
the emerging mathematical semantic web. These systems shall fruitfully support education
(e.g., e-learning) and research in mathematics, formal methods, and engineering.

2. The study of the theoretical foundations (model theory and proof theory) of higher-order
logic.

3. The improvement of automated theorem proving techniques in higher-order logic.

Higher-order logic constitutes the base representation framework of many leading mathematics
assistance systems (e.g., Isabelle!, HOL?, PVS3, and our own OMEGA system*). Furthermore,
many mathematical textbooks naturally employ higher-order logic constructs. Therefore it is
not surprising that the currently fast evolving repositories of formalized mathematics contain a
significant amount of higher-order logic encodings. Thus, topics (2) and (3) can be characterized
as important subtopics for the overall research goal (1).

The envisioned all-embracing assistance systems for mathematics cover a wide range of typical
characteristics an ambitious, integrated AI system shall have. Therefore, research goal (1) in
addition to (2) and (3) requires the combination of techniques from several subfields of AT including
knowledge representation and reasoning, cognitive architectures and multi-agent systems, human
computer interaction and user interfaces, machine learning, intelligent tutor systems, and dialog
systems and natural language processing.

My PhD thesis has concentrated on tasks (2) and (3). Parallel to my PhD work and in
particular adjacent to it T have performed and supervised research (e.g., as PostDoc and Research
Fellow in Germany, the UK, and the USA, as head of the OMEGA project of Jorg Siekmann,
and as principal investigator of two projects in the SFB 378 in Saarbriicken) in the wider range
of research topics as required for goal (1). These research activities are documented by a wide
range of journal, conference, and workshop publications (see the selected recent publications in
Section 1, my complete list of publications in Section 3, and the selected publications for this
cumulative habilitation document as given below) as well as by my activities as organizer and PC
member of various related conferences and workshops, as scientific coordinator of the EU RTN
Calculemus (2000-2004) and my recent editorship of a special issue in the Journal of Applied Logic
on mathematics assistance systems. The following text, which addresses the challenge of building
mathematics assistance systems and which I present here as a personal research statement, has
been adopted from my editorial of this special issue (see [J13-06] in Section 3).

What is an assistance system for mathematics and what is it good for?

The notion of an assistance system for mathematics adopted here characterizes an integrated envi-
ronment of tools supporting a wide range of typical research, publication and knowledge manage-
ment activities. Examples of mathematical activities are computing, proving, solving, modeling,
verifying, structuring, maintaining, searching, inventing, paper writing, explaining, illustrating,
and possibly others. Clearly, some of them require a high amount of human ingenuity while oth-
ers do not. An assistance system for mathematics should support activities for which practical
and robust solutions exist, that is, at the moment predominantly those which require less human
ingenuity.

Lwww.cl.cam.ac.uk/Research/HVG/Isabelle
hol. sourceforge.net
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Meanwhile an impressive range of mathematical support tools is actually available, for in-
stance, computer algebra systems (e.g., MAPLE and MATHEMATICA), interactive proof assistants
(e.g., ISABELLE/HOL and C0Q), automated theorem provers (e.g., VAMPIRE and OTTER), model
checkers (e.g., SMV), partially integrated hybrid systems (e.g. OMEGA), search engines (e.g.,
GOOGLE), and publishing and typesetting packages (e.g., LATEX). The integration of one or sev-
eral of these tools within a uniform environment leads to our notion of an integrated mathematics
assistance system. The overall idea, however, is not to replace the mathematician (or engineer or
teacher) but instead to support a fruitful symbiosis of human and machine intelligence in which
the computer takes over tedious routine parts thus setting precious resources free for the human
user.

An obvious and very prominent approach to the development of an assistance system for math-
ematics is the integration of off-the-shelf tools, for instance, automated theorem provers, decision
procedures, and computer algebra systems, into interactive proof assistants. An important issue
in this approach is the provision of transformational mappings between the different representa-
tions employed in the combined tools. Furthermore, the maintenance and effective management
of formalized bits of mathematical knowledge in structured (and probably distributed and shared)
knowledge bases has to be addressed. Syntactic and semantic search facilities are required for
retrieving knowledge from these knowledge sources. Bridging the gap between informal multi-
modal mathematical texts and fully formalized representations is just as important as the com-
bination with powerful publication and typesetting packages. In order to reduce the duplication
and multiplied encoding effort as currently still required in computer-supported mathematics,
we need a smooth and formal transition from technical developments within an assistance sys-
tem back and forth to high-quality publications. Another important issue is the development of
powerful, uniform look-and-feel as well as effective user interfaces which preferentially support a
human-oriented rather than a machine-oriented interaction with the system. They should hide the
minute representational and operational details of the integrated tools. Many support tools and
the mathematical knowledge sources can ideally be shared between different assistance systems
through the development of a mathematical semantic web.

And who needs assistance systems for mathematics?

Computer algebra systems and publishing tools, for example, are already routinely employed in
mathematical research and practice today. Furthermore, interactive proof assistants and model
checkers are nowadays used in industrial applications for formal software and hardware verification
and quality assurance. On the other hand mathematics has existed for thousands of years without
computer support and it is perfectly valid to doubt, as many working mathematicians actually
do, that the immediate impact of the envisioned assistance systems will be overwhelming for the
frontiers of mathematical research.

In recent years, however, we can observe a small but increasing number of success stories
in computer aided mathematics. For example, the four color theorem has been proven in 1976
by Appel and Haken with significant computer support. This proof had a dubious status for a
long time because a verification of it (by hand) seemed impossible. Recently, however, a formal
verification within the assistance system CoQ was reported by Georges Gonthier at Microsoft
Research. Another success story is the verification of a proof of the prime number theorem with
the system ISABELLE by Jeremy Avigad at Carnegie Mellon University in 2004.

Presumably the most important recent example is the computer supported proof of Kepler’s
conjecture by Thomas Hales at Pittsburgh University. Kepler’s conjecture is a problem in discrete
geometry which has been unsolved for nearly 400 years. The submission of his results to the Annals
of Mathematics resulted in an interesting and controversial debate. Robert D. MacPherson, the
editor in chief of the Annals of Mathematics, gave a presentation at the symposium ‘The nature
of mathematical proof’ of the British Royal Society in London in Fall 2004 in which he revealed
how difficult it is to review results of this nature: a refereeing board of 12 mathematicians had
finally given up to fully verify the proof after 4 years! They could still validate Hales’” reduction of
the original problem to a wide range of subproblems. However, they were not able to verify (nor
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to refute) the many subcriteria that Hales solved with significant computer algebra support. This
happened for the first time in the history of mathematics! As Hilbert’s famous perpetual call from
the heart exemplifies: “Da ist das Problem, suche die Losung. Du kannst sie durch reines Denken
finden, denn in der Mathematik gibt es keinen Ignorabimus”®, mathematicians have always held
the belief that in principle we know — although we may err — if something is the case or not.

While mathematicians have thus given up on verifying the proof, Hales has started the Flyspeck
project. The aim of this project is to reconstruct, formalize, and fully verify Hales complete proof
in the assistance system HOL-LIGHT. This is an a posteriori attempt to apply assistance systems in
a research frontier of mathematics and due to the complexity of the problem and the comparative
mathematical and practical immaturity of today’s mathematical assistance systems this endeavor
will certainly require several years of persistent work.

In the long run, however, the envisioned fully integrated assistance systems will support this
new style of mathematics not a posteriori but from the very start, ideally with far less effort as
currently still required and also at a more human-friendly interaction level.

Is there some low hanging fruit?

Yes, there is. Even in case of a failure of the ambitious Flyspeck project, the existing systems are
already successfully used in less ambitious mathematics such as formal verification in computer
science. In particular students who want to learn mathematics or engineers who want to apply
mathematics — both groups are typically confronted with far less ambitious mathematical prob-
lems than Hales — may well and actually do already benefit from current mathematics assistance
systems. In fact, proof assistants and model checkers have been widely used in applications for
software and hardware verification. Also e-learning environments with integrated support tools
increasingly attract attention in academia as well as in public applications.

Why is it so difficult to build an integrated assistance system for mathematics?

The challenge is to attack the scientific and technological gap between the targeted ideal mathe-
matics assistance environments and the many weaknesses and shortcomings of the current systems.
This requires in particular the combination of techniques and expertise from several research ar-
eas. Research progress and good research training in this multidisciplinary area can currently
probably be best achieved by joining forces in research networks. One example is the European
CALCULEMUS research training network (2000-2004), which has put an emphasis on the training
of young researchers in the areas of computer algebra and deduction systems.

Actually, there are relatively few research groups which have sufficient expertise, background
and critical mass to cover the whole spectrum of relevant research issues to build an all embracing
assistance system for mathematics. This problem is actually analogous to the development of
large and all-encompassing Al systems in general; in fact, these assistance systems can be seen
as an instance of an ambitious, integrated and general Al system, which researchers claim also in
other more common subfields of AI.® However, a broad research expertise is only one of the many
essential requirements. Availability of human resources, in particular, talented and enthusiastic
PhD students with strong implementational skills is another. In fact, most of the existing attempts
at large and integrated assistance systems have been predominantly achieved with the help of
generations of PhD students and postdocs.” Such a student-based development strategy imposes
several challenges, not least of which is the software maintenance problem, which is particularly

5Engl.: There is the problem. Seek its solution. You can find it by pure reason, for in mathematics there is no
ignorabimus.

6In their invited talks at this years AAAI-05 conference in Pittsburgh both Ronald J. Brachman and Mar-
vin Minsky argued for building and analyzing large, integrated AI systems. I should think that the envisioned
all-embracing assistance systems for mathematics actually cover a wide range of these typical characteristics an
ambitious, integrated Al system will have as well.

7An example is Peter Andrews’ TPS system, which is based on the contributions of a row of students such as
Dale Miller, Frank Pfenning, Dan Nesmith, Sunil Issar, Hongwei Xi, Matthew Bishop, and Chad Brown. Another
example is our own OMEGA project with its long sequence of PhDs and postdocs.
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difficult for those groups which do not have the support of an experienced and long-term employed
software engineer to control and guarantee a persistent high quality software development along
uniform conventions. Probably even harder is the organization of a smooth knowledge transfer
in order to pass crucial system expertise from one generation of students to the next. PhD
students and researchers in the area of mathematics assistance systems need in addition to scientific
talent and implementational skills a broad research interest, excellent communication skills, social
competence and teamwork spirit.

An important challenge is to identify the best of todays achievements and to integrate them
into a single best practice environment. In order to achieve significant progress in our research
area the best research strategy is debatable. Two options are “Let the best system win” and
“Cooperate, modularize, and exchange components”. I personally advocate the latter — however,
time will tell.

5.2 Selected Publications

The following selected publications well document my personal research activities on Higher-
Order Logics and Mathematics Assistance Systems in the last decade. The given percentages are
estimations of my personal contribution to each paper.

Higher-Order Semantics

[50%]  C. Benzmiller and C. Brown, A Structured Set of Higher-Order Problems.
TPHOLs 2005, 10.3606 in LNAIL pp.66-81, Oxford, UK, 2005. @Springer.

[33%]  C. Benzmiiller, C. Brown, and M. Kohlhase. Higher-Order Semantics and Exten-
sionality. Journal of Symbolic Logic, 69(4):1027-1088, 2004. ©JSTOR.

Higher-Order Proof Theory

[40%]  C. Benzmiiller, C. Brown, and M. Kohlhase, Cut-Simulation in Impredicative Log-
ics. IJCAR'06, n0.4130 in LNAI pp.220-314, Seattle, USA, 2006. ©Springer.

Higher-Order Theorem Proving

[100%] C. Benzmiiller. Comparing Approaches to Resolution based Higher-Order The-
orem Proving. Synthese, An International Journal for Epistemology, Methodology and
Philosophy of Science, 133(1-2):203-235, 2002. ©Kluwer.

[100%] C. Benzmiiller. Extensional Higher-Order Paramodulation and RUE-
Resolution. CADE-16, 1no.1632 in LNAI, pp.399-413, Trento, Italy, 1999. (©Springer.

[60%]  C. Benzmiiller and M. Kohlhase. Extensional Higher-Order Resolution. CADE-15,
1n0.1421 in LNAI, pp.56-71, Lindau, Germany, 1998. (©Springer.

Intergration of Reasoning Systems

[60%]  C. Benzmiiller, V. Sorge, M. Jamnik, and M. Kerber, Can a Higher-Order and a
First-Order Theorem Prover Cooperate? LPAR-11, no.3452, pp.415-431, Mon-
tevideo, Uruguay, 2005. (©Springer.

[50%]  C.Benzmiiller and V. Sorge. OANTS — An Open Approach at Combining Interac-
tive and Automated Theorem Proving. In Symbolic Computation and Automated
Reasoning, pp.81-97, 2000. ©A.K.Peters.

[50%]  C. Benzmiiller, M. Bishop and V. Sorge. Integrating TPS and OMEGA. Journal of
Universal Computer Science, 5:188-207, 1999. (©Springer.
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Mathematics Assistance Systems

[40%]  J. Siekmann, C. Benzmiiller, and S. Autexier, Computer Supported Mathematics
with OMEGA. Special Issue on Mathematics Assistance Systems, Journal of Applied
Logic. ©ZFElsevier. In print, 2006.

[40%]  J. Siekmann, C. Benzmiller, A. Fiedler, A. Meier, I. Norma and M. Pollet, Proof
Development in OMEGA — The Irrationality of Square Root of 2. In Thirty Five
Years of Automating Mathematics, pp.271-314, 2003. ©Kluwer Applied Logic Series,
Volume 28.

Tutorial Dialog with Mathematics Assistance Systems

[60%]  C. Benzmiiller and Q.B. Vo, Mathematical Domain Reasoning Tasks in Tutorial
Natural Language Dialog on Proofs. AAAI-05, Pittsburgh, Pennsylvania, 2005.
USA. ©AAAI Press / The MIT Press.

[40%] M. Buckley and C. Benzmiiller, An Agent-based Architecture for Dialogue Sys-
tems. Perspectives of System Informatics (PST’06), Novosibirsk, Akademgorodok, Rus-
sia, 2006. ©Springer LNAI. In print.

[25%]  C. Benzmiiller, H. Horacek, H. Lesourd, I. Kruijff-Korbayova, M. Schiller, M. Wolska,
DiaWOz-II - A Tool for Wizard-of-Oz Experiments in Mathematics. KI 2006,
Bremen, Germany, 2006. ©Springer LNAI In print.









A Structured Set of Higher-Order Problems

Christoph E. Benzmiiller and Chad E. Brown
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Abstract. We present a set of problems that may support the development of cal-
culi and theorem provers for classical higher-order logic. We propose to employ
these test problems as quick and easy criteria preceding the formal soundness and
completeness analysis of proof systems under development. Our set of problems
is structured according to different technical issues and along different notions of
semantics (including Henkin semantics) for higher-order logic. Many examples
are either theorems or non-theorems depending on the choice of semantics. The
examples can thus indicate the deductive strength of a proof system.

1 Motivation: Test Problems for Higher-Order Reasoning Systems

Test problems are important for the practical implementation of theorem provers as well
as for the preceding theoretical development of calculi, strategies and heuristics. If the
test theorems can be proven (resp. the non-theorems cannot) then they ideally provide
a strong indication for completeness (resp. soundness). Examples for early publications
providing first-order test problems are [21129123]]. For more than decade now the TPTP
library [28] has been developed as a systematically structured electronic repository of
first-order test problems. This repository together with the yearly CASC theorem prover
competitions [24] significantly supported the improvement of first-order and proposi-
tional reasoning systems. Unfortunately, a respective library of higher-order test prob-
lems is not yet available.

This paper presents a small set of significant test problems for classical higher-
order logic that may guide the development of higher-order proof systems. These test
problems are relevant for both automated and interactive higher-order theorem proving.
Even some of our simpler theorems may be difficult to prove interactively. Examples are
our problems[I3[a): po—o (a6 Aby) = p (bAa) and[I6 (po—o ao) A(p bo) = (p (aND)).

Most of the examples presented here are chosen to be a simple representative of
some particular technical or semantical point. We also include examples illustrating
real challenges for higher-order theorem provers. Our work is relevant in the first place
for theorem proving in classical higher-order logic. However, many of our examples
also carry over to other logics such as intuitionistic higher-order logic. Most of the
presented test problems evolved from experience gained in the development of the
higher-order theorem provers TPS [3]] and LEO [10/7]. Some of the examples and (many
others) have been also discussed in other publications on classical higher-order logic,
e.g. [1501706/1/4]]. The novel contribution of this paper is not the test problems per se,
but the connection of these examples with the particular model classes in which they
are valid (resp. invalid) and their assemblage into a comprehensive set.

J. Hurd and T.F. Melham (Eds.): TPHOLSs 2005, LNCS 3603, pp. 66-181], 2005.
(© Springer-Verlag Berlin Heidelberg 2005
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We structure many of our examples along two dimensions. The examples are theo-
rems or non-theorems depending on these dimensions.

Extensionality provides one dimension in which we can vary semantics. Assuming
Henkin semantics, for instance, most of our examples denote theorems. If we choose
a weaker semantics, for instance, by omitting Boolean extensionality, then some test
problems become non-theorems providing a test case for soundness with respect to this
more general notion of semantics (in which fewer propositions are valid). By varying
extensionality, we have defined a landscape of eight higher-order model classes and
developed abstract consistency methods and model existence results in [8l9]. This land-
scape of higher-order model classes and the corresponding abstract consistency frame-
work provides much needed support for the theoretical analysis of the deductive power
of calculi for higher-order logic. The test problems we introduce in this paper provide
quick and easy test criteria for the soundness and completeness of proof systems with
respect to these model classes. Testing a proof system with our examples should thus
precede a formal, theoretical soundness and completeness analysis with the abstract
consistency methodology introduced in [819].

Set comprehension provides another dimension along which one can vary seman-
tics. In [14] different model classes are defined depending on the logical constants
which occur in the signature. Since many sets are only definable in the presence of
certain logical constants, this provides a way of varying the sets which exist in a model.
In this paper, we provide examples of theorems which are only provable if one can use
certain logical constants for instantiations. In implementations of the automated theo-
rem provers TPS and LEO the problem of instantiating set variables corresponds to the
use of primitive substitutions described in [[14/2[3]].

Section 2] introduces the syntax of classical higher-order logic following Church
[15]. Section 3] presents some first test problems for pre-unification and quantifier de-
pendencies. In Section ] we review a landscape of higher-order semantics that distin-
guishes higher-order models with respect to various combinations of Boolean exten-
sionality, three forms of functional extensionality and different signatures of logical
constants. Section [3 provides test problems that are structured according to the intro-
duced landscape of model classes. Section[f]presents some more complex test problems.

2 Classical Higher-Order Logic

As in [15]], we formulate higher-order logic (HOL) based on the simply typed A-calculus.
The set of simple types 7 is freely generated from basic types o and ¢ using the function
type constructor —.

For formulae we start with a set V of (typed) variables (denoted by X,,Y, Z,...)
and a signature X' of (typed) constants (denoted by cq, fo—g,...). We let Vo, (Xy)
denote the set of variables (constants) of type a. A signature X' of constants may include
logical constants from the set X defined by

{Toa J_m “o—o0> /\o~>o~>05 \/0~>o~>07 = 0—0—09 <:>o~>o~>o}

u{ng ‘aET}U{Zf‘ | e TYU{=S |ae T}

(—0)—o0 a—o)—o a—a—o
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Other constants in a signature are called parameters. The constants 1* and ¥ are used
to define V and 3 (see below) without introducing a binding mechanism other than .
The set of HOL-formulae (or terms) over X' are constructed from typed variables and
constants using application and A-abstraction. We let wff, (2') be the set of all terms of
type « and wff(X) be the set of all terms. We use A, B, . .. to denote terms in wff,, (X).

We use vector notation to abbreviate k-fold applications and abstractions as AUF
and AX*, A, respectively. We also use Church’s dot notation so that . stands for a (miss-
ing) left bracket whose mate is as far to the right as possible (consistent with given
brackets). We use infix notation A V B for ((VA)B) and binder notation VX ,.A for
(M*(AX4.A,)). While one can consider A, = and < to be defined (as in [8]), we con-
sider these members of the signature 3. We also use binder notation 3X.A as shorthand
for X*(AX.A)if X*is a constant in X. We let (A ,="B,,) denote the Leibniz equation
VPy—o-(PA) = .PB.

Each occurrence of a variable in a term is either free or bound by a A\. We use
free(A) to denote the set of free variables of A (i.e., variables with a free occurrence
in A). We consider two terms to be equal (written A = B) if the terms are the same up
to the names of bound variables (i.e., we consider a-conversion implicitly). A term A
is closed if free(A) is empty. We let cwff,,(X) denote the set of closed terms of type
a and ewff(X) denote the set of all closed terms. Each term A € wff,(X) is called a
proposition and each term A € cwff, (X)) is called a sentence.

We denote substitution of a term A, for a variable X, in a term Bg by [A/X]B.
Since we consider a-conversion implicitly, we assume the bound variables of B avoid
variable capture.

Two common relations on terms are given by [S-reduction and 7n-reduction. A 3-
redex (AX.A)B f-reduces to [B/X]A. An n-redex (AX.CX) (where X ¢ free(C))
n-reduces to C. For A, B € wff, (X), we write A=3B to mean A can be converted
to B by a series of 3-reductions and expansions. Similarly, A=3,B means A can be
converted to B using both § and 7. For each A € wff(X) there is a unique 3-normal
form (denoted Al ) and a unique 3n-normal form (denoted A, ). From this fact we
know A=3B (A=4,B)iff Al = B|j(Alg, = Blg,).

A non-atomic formula in wff, (X)) is any formula whose 3-normal form is (cA™)
where c is a logical constant. An atomic formula is any other formula in wif, (X).

Many of the example problems in this paper employ equality, e.g. =(a = —a). We
have different options for the encoding of equality. We can either use primitive equality
(i.e., equality as a logical constant) or use some definition of equality in terms of other
logical constants. A common definition is Leibniz equality (VP,—..(PA) = .PB),
but others are possible (see Exercise X5303 in [4]). In many examples we will denote
equality by = (e.g., =(a L —a)). For each different interpretation of equality, we obtain
a different example. We will discuss conditions under which different choices lead to
theorems and which choices lead to non-theorems.

For some types, one can also define equality extensionally. For example, one can use

. . . .. . t
equivalence instead of equality at type o. Similarly, at any type @ — o, we introduce =
. . t. o e
to denote set equality, i.e., = is an abbreviation for

AUaq—oAVaoV X UX & VX
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In some cases, the use of an extensional definition of equality yields a theorem which
can be proven without assuming extensionality. We will nor use the notation = to refer
to any extensional definition of equality. Interpreting = extensionally would signifi-
cantly change some of the discussion below.

3 Test Problems for Pre-unification and Quantifier Dependencies

Higher-order pre-unification (see [26]) and higher-order Skolemization (see [22]) are
important basic ingredients for building an automated higher-order theorem prover.
They are largely independent of the chosen semantics for higher-order logic with one
exception: 3 versus On. As noted in [[18] the unification problem relative to J-conversion
is different from the unification problem relative to 5n-conversion.

3.1 Pre-unification

Implementing a sound, complete and efficient pre-unification algorithm for the simply
typed A-calculus is a highly non-trivial task. Since higher-order pre-unification extends
standard first-order unification all first-order test problems in the literature also apply to
the higher-order case.

Some specific higher-order test problems can be obtained from the literature on
higher-order unification and pre-unification, for example [26l25]. We will now illustrate
how further challenging test examples can be easily created using Church numerals.

Church numerals are usually employed in the context of the untyped A-calculus to
encode the natural numbers. This encoding can be partly transformed in a simply typed
or polymorphic typed A-calculus. This includes the definition of successor, addition and
multiplication which we employ in or test problems.

Iteration is the key concept to encode natural numbers as Church numerals. For each
type a, we can define the Church numeral 7% by (Ao AYor(F"Y))(a—a)—(a—a)
where (F™Y) is shorthand for (F (F'...(F Y))). We will often write 72 instead of 1n®,

———

n—times
leaving the dependence on the type implicit. Omitting typeﬂ, the successor function s
can be defined as ANAFAY.F(NFY), addition + as \MANAFAY.M F(NFY') and
multiplication X as AMANAFAZ.N(MF)Z. To ease notation, we write + and X in
infix.

Arithmetic equations on Church numerals such as 3x4= 517 or (((I0X10)xX10) =
((10x5)+(5%10))x10)) provide highly suited test problems for the efficiency of
[B-conversion or (3n-conversion in the proof system. Of course, in order to correctly
implement (3- and 7-conversion, one must first properly implement c-conversion.

We obtain more challenging test problems if we employ pre-unification for synthe-
sizing Church numerals and arithmetical operations.

Example 1. (Solving arithmetical equations using pre-unification) The following ex-
amples are provable using pre-unification for 3-conversion.

"' N, M are of type (o — &) — (a — ), F'is of type @ — «, and Y, Z are of type a.



70 C.E. Benzmiiller and C.E. Brown

(@ 3IN(—1)——w((NXT) = T) (There are two solutions, T and (AF, ,.F"), if one only
assumes J-conversion. There is one solution assuming (37-conversion.)

(b) IN.(NX4) =5F

(c) 3H.(((H2)3) =6

(d) 3N, M.(Nx4)

7
) A ((H1)2) = 2))
5+M (There are infinitely many solutions to this problem.)

*

3.2 Quantifier Dependencies

In proof search with tableaux and expansion proofs, variable conditions can be used
to encode quantifier dependencies. Of course, one must be careful to obtain a sound
framework. For instance, the variable conditions added with each eliminated existential
quantifier in the framework used in [20] allow (incorrect) proofs of the following first-
order non-theorems:

Example 2. (First-order non-theorems)

(a) (Example 2.9 in [30]) (3X,VY,.q,—,—oXY) V (U, VV,.—qVU)
(b) (Example 2.50in [30]) Y, VX,.(VZ,.¢,—1—0oX Z) V (—qXY))

In [19] an attempt was made to use variable conditions in the context of resolution
theorem proving (for a sorted extension of higher-order logic) instead of introducing
Skolem terms. However, the system was unsound as it allowed a resolution refutation
proving the following non-theorem:

Example 3. (Non-Theorem: Every function has a fixed point) VF,_, 0.3 Xo.F X=X.
The idea is that one obtains two single-literal clauses (P,—,,(F X)) and =(PY") using
clause normalization and variable renaming (where X and Y can be instantiated). One
then obtains the empty clause by unifying Y with (FX).

Skolem terms avoid incorrect proofs of such theorems since the Skolem terms will
preserve the relationship between renamed variables in different clauses. In particular,
if S is a Skolem function, we would obtain single-literal clauses (.S,—,,—,X (F' X)) and
—(S,-.—0YY') which cannot be resolved and unified.

There is a relationship between Skolemization and the axiom of choice in the first-
order case which becomes more delicate in the higher-order case. Consider formulas
YV, 3y, o(x,y) and Vo, o(x, (f,—,x)). In first-order logic, the two formulas are equiva-
lent with respect to satisfiability whenever f does not occur in (. The equivalence fol-
lows from the fact that any first-order model (with domain D,) satisfying VzIyp(x, y)
can be extended to interpret f as a function g : D, — D, such that Vzp(z, (fx))
holds. In general, the axiom of choice (at the meta-level) is required to conclude the
function g exists. The situation is different in the higher-order case. As we shall see
when we consider higher-order models, we would need to interpret f not simply as a
function from D, to D,, but as a member of a domain D,_,,. Existence of an appropri-
ate function from D, to D, follows from the axiom of choice at the meta-level, but the
existence of an appropriate element of D,_,, would only follow from a choice property
internal to the higher-order model.

Dale Miller has shown that a naive adaptation of standard first-order Skolemization
to higher-order logic allows one to prove particular instances of the axiom of choice.
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For example, naive Skolemization permits an easy proof of the following version of the
axiom of choice:

Example 4. (Choice) (VX3IY.rXY) = (3FVXarX(FX))

However, naive Skolemization does not provide a complete method for reasoning with
choice. The following example is equivalent to the axiom of choice (essentially Axiom
11 in [15])) but is not provable using naive Skolemization.

Example 5. (Choice) 3E, .,y _,,YP.(3Y.PY) = .P(EP)

Thus standard first-order Skolemization is unsound in higher-order logic as it partly
introduces choice into the proof system. Dale Miller has fixed the problem by adding
further conditions (see [22]]): any Skolem function symbol f™ with dependency arity n
(the existentially bound variable to be eliminated by a new Skolem term headed by f is
depending on n universial variables) may only occur in formulas ™A™, where none of
the A’ contains a variable that is bound outside of the term ™ A",

4 Semantics for HOL

In [8]] we have re-examined the semantics of classical higher-order logic with the pur-
pose of clarifying the role of extensionality. For this we have defined eight classes of
higher-order models with respect to various combinations of Boolean extensionality
and three forms of functional extensionality. One can further refine these eight model
classes by varying the logical constants in the signature X' as in [[14].

A model of HOL is given by four objects: a typed collection of nonempty sets
(Do) weT > an application operator Q: D, _, 3 X Do — Dg, an evaluation function & for
terms and a valuation function v: D, — {T,F}. A pair (D, @) is called a X-applicative
structure (see [8](3.1)). If £ is an evaluation function for (D, @) (see [8](3.18)), then
we call the triple (D, @, £) a X-evaluation. If v satisfies appropriate properties, then we
call the tuple (D, @, £, v) a X-model (see [8](3.40 and 3.41)).

Given an applicative structure (D, @), an assignment ¢ is a (typed) function from
V to D. An evaluation function £ maps an assignment ¢ and a term A, € wff,,(X) to
an element £,(A) € D, . Evaluation functions £ are required to satisfy four properties
given in [8](3.18)). If A is closed and £ is an evaluation function, then £,(A) cannot
depend on ¢ and we write £(A).

A valuation v: D, — {T,F} is required to satisfy a property £.(£(c)) for every
logical constant ¢ € X' (see [8](3.40)). For each logical constant ¢, £.(a) is defined to
hold if a is an object of a domain D, satisfying the characterizing property of the logical
constant c. For example, £ (n) holds forn € D,_,, iff forevery a € D, v(nQa) is T iff
v(a) is F. Likewise, £=(q) holds for q € Dy—.—, if forevery a,b € D,, v(qQa@b)
is T iff a equals b.

Given a model M := (D, @, £, v), an assignment o and a proposition A (or set of
propositions @), we say M satisfies A (or @) and write M =, A (or M =, ) if
V(Ey(A)) =T (orv(€,(A)) =T foreach A € @). If A is closed (or every member of
& is closed), then we simply write M = A (or M | &) and say M is a model of A
(or @). We also consider classes 9t of X'-models and say a proposition A is valid in 97t
if M =, A for every M € 91 and assignment .
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In order to define model classes which correspond to different notions of exten-
sionality, we define five properties of models (see [8](3.46, 3.21 and 3.5)). For each
Y-model M := (D, Q, £, v), we say M satisfies property

q iff forall & € 7 thereis a q® € Dy—q—0o With £_a (q%).

n iff (D, @, £) is n-functional (i.e., for each A € wff, (X) and assignment ¢, £,(A) =
SSD(A*L[}W))

¢ iff (D, @, £) is {-functional (i.e., for each M, N € wff5(X), X € V, and assignment
0, Eo(AX0Mp) = E,(AX0.Ng) whenever £, [,/ x1(M) = &, (a/x](IN) for every
a € Dy).

f iff (D, @) is functional (i.e., for each f,g € D,_.3, f = g whenever fQa = g@a for
every a € D).

b iff v is injective.

For each x € {3, 8n, B¢, Bf, b, Bnb, BEb, Gfb} and each signature X' we define 91, (X))
to be the class of all X-models M such that M satisfies property q and each of the
additional properties {7, &, f, b} indicated in the subscript * (see [8](3.49)). We always
include [ in the subscript to indicate that 3-equal terms are always interpreted as iden-
tical elements. We do not include property g as an explicit subscript; q is treated as a
basic, implicit requirement for all model classes. See [8]](3.52) for a discussion on why
we require property q. (We also briefly explore models which do not satisfy property
q in the context of Example [§ and again in Subsection[3.3]) Since we are varying four
properties, one would expect to obtain 16 model classes. However, we showed in [3]
that f is equivalent to the conjunction of ¢ and 7. Note that, for example, Mg; (LX) is
a larger class of models than Mg (X), hence fewer propositions are valid in Mg (X)
than are valid in Mg (X). In our examples we try to indicate the largest of our model
classes in which the proposition is valid. Implicitly, this means the proposition is also
valid in smaller (more restricted) model classes and may not be valid in larger (less
restricted) ones.

S Test Problems for Higher-Order Theories

Unless stated otherwise, we assume the signature includes ¥ (see p. [67) and write
M., for M. (X). Many of the examples could be considered in the context of smaller
signatures. In the following discussion, we only consider smaller signatures in order to
make particular points. (Note that if the signature becomes too small, Leibniz equality,
for example, is no longer expressible.)

5.1 Properties of Equality

There are many useful first-order test problems on equality reasoning in the literature.
For instance, in [12] the following clause set is given to illustrate the incompleteness of
the RUE-NREF resolution approach as introduced in [16]:

{9(f(a)) = a, f(9(X)) # X}
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Here, X is a free variable (i.e., implicitly universially quantified) and f, g are unary
function symbols. In [[12] it is shown that this inconsistent clause set cannot be refuted
in the first-order RUE-NRF approach.

We now present some higher-order test problems addressing properties of equality.
Some of them apply to many possible notions of equality while others describe specific
properties of individual notions or relate different notions to each other.

Example 6. Equality is an equivalence relation in 91g. These particular examples should
be theorems even if one replaces = with an extensional definition of equality (e.g., <
at type o or et at any type o — 0).

(@) VXX = X
(b) VX VYo X =Y =Y =X
©) VX NVYNVZ X EYANY = 2)= X = Z

Example 7. Equality obeys the congruence property (substitutivity property) in Mig.

(@) VX VY VE, 0 X =Y = (FX) = (FY)
() VX VY, VP on(X =Y) A (PX) = (PY)

Example[8]relates the Leibniz definition of equality to primitive equality.
Example 8. (aqa=%by) = (a =*b).

One could legitimately debate whether Example[§] should be a theorem. On the one
hand, if Example [8is not a theorem, then one should not consider Leibniz equality to
be a definition of real equality. Semantically, Henkin’s first (quite natural) definitions
of models allowed models in which Leibniz equality (e.g., at type ¢) does not evaluate
to equality of objects in the model. Such a model M is constructed in [1]. This model
M is a X-model in the sense of this paper (if one assumes =*¢ X for every type «),
but is not in any model class 91, (X') since property q fails. There is a slight technical
problem with saying M provides a counter-model for Example [§] since one cannot
express Example [8| without =*€ Y. As in [14], one can distinguish between internal
and external uses of equality (as well as = and V) and determine that M is (in a sense
that can be made precise) a countermodel for Example[8l

If a model satisfies property ¢, then Example[8lis valid for any type «. If a logical
system is intended to be complete for one of our model classes 21, (%), then Exam-
ple [8l should be a theorem. For the complete natural deduction calculi in [8], there is
an explicit rule which derives primitive equality from Leibniz equality. In some sense,
requiring property q semantically corresponds to explicitly requiring that Example[§]be
provable.

Also, if =“€ X, then Example [§] (for this particular type «) is valid in any X-
model. A proof using primitive equality could instantiate the Leibniz variable P, _.,
with (AZy.a = Z). The important point is that = must be available for instantiations
during proofs (not simply for expressing the original sentence).

Extensionality is the distinguishing property motivating our different model classes.
For both, functional and Boolean extensionality, we distinguish between a trivial and a
non-trivial direction.
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Example 9. The trivial directions of functional and Boolean extensionality are valid
in Dﬁfg.

() VFo_pVGopF = G = (VX0(FX) = (GX))
(b) VA,VB,.A= B = (A< B)

The other directions are not valid in 913. They become theorems only relative to
more restricted model classes in our landscape.

Example 10. (discussed in [13]]; Axiom 10 in [17]) VA,VB..(A & B) = A = Bis
valid in 9Mgp. This is the non-trivial direction of Boolean extensionality.

Example 11. ([T5[17], Axiom 10°%) VF, _3YGo_5.(VX0n(FX) = (GX)) = F =
G is valid in 9g;. This is the non-trivial direction of functional extensionality. (Property
q is also relevant to this example as is discussed in [].)

5.2 Extensionality

We next present examples that illustrate distinguishing properties of the different model
classes with respect to extensionality. In the preceding sections we have already men-
tioned several test problems that are independent of the “amount of extensionality” and
which are theorems in 913. We additionally refer to all first-order test problems as, for
instance, provided in the TPTP library.

n-equality is usually realized as part of the pre-unification algorithm in a higher-
order reasoning system. It is important to note that n-equality should not be confused
with full extensionality. In literature on higher-order rewriting, for instance [25], the
notion of extensionality is usually only associated with n-conversion which is far less
than full extensionality.

Example 12. (p(,—.)—o(AX i fi . X))= (P(1—1)—0of) is essentially 21 from [[15] which
expresses n-equality using Leibniz equality. It is valid in 9, but not in Mig.

Property ¢ together with 1 gives us full functional extensionality.

Example 13. Validity of (VX,.(f,—.X) = X) A p(AX,X) = p(AX,.fX) only de-
pends on &, not on 7. It is thus valid in Mg (but not in model classes which do not
require either & or §).

Example 14. (VX,.(f.—.X) = X) Ap(AX,X) = pf is valid in Mg, but not in model
classes which do not require f.

As in Example [Tl property q is important for validity of Example [I3]in 95 and
validity of Example [[4lin Mig;.

Example 15. ([1]) (2) po—o (a0 Abo) = p (b A a) and (b) ap A by A (po—oa) = (pb)
are valid iff we require Boolean extensionality as in 91gp.

Example 16. (po—o ao) N (p bo) = (p (a A D)) is a theorem of Mg, which is slightly
more complicated to mechanize in some calculi; see [7] for more details.
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Example 17. —(a = —a) is valid in 9gp. As discussed in [7]] this example motivates
specific inference rules for the mechanization of primitive equality.

The following is a tricky example introduced in [14].

Example 18. (ho—,((RT) = (hL))) = (h.L) is valid in 93, but not in model classes
which do not require property b.

Many people do not immediately accept that Example [18]is a theorem. A simple
informal argument is helpful. Either (hT) = (h.L) is true or false. If the equation
holds, then Example [[§ reduces to (hT) = (h.L) which we have just assumed. If the
equation is false, then Example I8 reduces to (h_L) = (h_L), an instance of reflexivity.

Example[19] combines Boolean extensionality with n-equality.

Example 19. p(,—.)—o(AXiafoimi(A(1—0)—o(AX 1 [0, X ) AD) X)) = p(f(bA-a(fD)))
is valid in 9g,, but is not valid if properties b and 7 are not assumed.

By DeMorgan’s Law, we know X A Y is the same as =(—X V —Y"). In Example 20}
we vary the notion of “is the same as” to obtain several examples which are only prov-
able with some amount of extensionality. Note that if we only assume property &, we
can only conclude the n-expanded form of A is equal to (AXAY.~(=X V =Y)).

Example 20. Consider the following examples.

(a) VXVY.X AY < ~(=X V —Y) is valid in M.

(b) VXVY.X NY = —(=X V ~Y) is valid in M.

©) (AUAV.UAV)E (AXAY.~(=X V ~Y)) is valid in M gep.
d) A=< (AXAY.~(=X V =Y)) is valid in M.

Finally we reach Henkin semantics which is characterized by full extensionality,
i.e. the combination of Boolean and functional extensionality. Example 20(d) already
provided one example valid only in 9.

Example 21. The following theorem in 9Migsp characterizes the fact that in all Henkin
models we have exactly four functions mapping truth values to truth values.

(P AX0:Xo) A (p AX 0 X)) A (P AX 0 L) A (p AXp-T)) = VYoon(p Y)

Example 22. As exploited in [11], set theory problems can be concisely and elegantly
formulated in higher-order logic when using A-abstraction to encode sets as character-
istic functions. For instance, given a predicate p,—,, the set of all objects of type « that
have property p is denoted as A X,.(pX ). We then define set operations as follows (we
give only some examples):

set operation defined by
€a—(a—o)—o AoAXa—o(XZ)
{Jas(amo) NUa(AZoZ = U)
Dao (A\Zal)

ﬂ(ag‘o)%(a*}o)*}(aﬂo) AXQHO/\YQHO()\ZQ.Z e XNY e Y)
U([XHO)H(@HO)H([XHO) AXQHO/\YQHO()\ZQ.Z eXVY e Y)
Claoyoo)mo P XasodVao(?ZaZ € X =Y €Y)
Bo(aao)a((aﬂo)ﬂo) /\Xaﬂo(/\yaﬂo-y g X)
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We can now formulate some test problems on sets:

set

(@) Ga—o U (ba—o Ncaso) = (aUb) N (aUc)is valid in Mg.
(1) @a—oU(ba—oNca—o) = (aUb)N(aUc) is valid in M, but not in model classes
without £ and b.

set

©) p(Da—o) = {0a—o} is valid in Mg but not in model classes without § and b.
The example is not valid in iz due to the embedded equation introduced by the
definition of a singleton set {.}.

(d) and p(Da—o) = {Ba—o} is valid in Mg, but not in model classes without f and b.

These examples motivate pre-processing in higher-order theorem proving in which
the definitions are fully expanded and in which the extensionality principles are em-
ployed es early as possible. After pre-processing, many problems of this kind can be
automatically translated from their concise and human readable higher-order represen-
tation into first-order or even propositional logic representations to be easily checked
by respective specialist systems.

5.3 Set Comprehension

One of the advantages of Church’s type theory is that instead of assuming compre-
hension axioms one can simply use terms defining sets for set instantiations. Such set
instantiations make use of logical constants in the signature 3. As in [[14] one can vary
the signature of logical constants in order to vary the set comprehension assumed in
2’-models. With different amounts of set comprehension, different examples will be
valid.

Generating set instantiations is one of the toughest challenges for the automation of
higher-order logic. (In fact set instantiations can be employed to simulate the cut-rule
as soon as one of the following prominent axioms of higher-order logic is available
in the search space: comprehension, induction, extensionality, choice, description.) Set
instantiations are often generated during automated search using an enumeration tech-
nique involving primitive substitutions.

For each example below, we note restrictions on the signature 2’ under which the
example is either valid or not valid. Since we would like to distinguish between sig-
natures which contain primitive equality (at various types) and those which do not, we
consider classes of models which do not necessarily satisfy property q. In particular,
let M;%(2) be the set of all £-models and let 9, (X) be the set of all X-models
satisfying properties f and b (without requiring property q).

As in Example [8| one can focus on the use of logical constants in X' for instantia-
tions and ignore certain uses of logical constants to express the formula. For example,
suppose A € ewff,(X), M is a ¥-model and - ¢ X'. While (—A) ¢ wff,(X), we can
consider (—A) to be a X-external proposition and define M = —A to mean M }£= A.
Intuitively, the negation is used externally in (—A). We can inductively define the set
of Y-external propositions M and the meaning of M = M for X-models M. After
doing so, most of the examples below are 3'-external propositions even if 3’ contains
no logical constants. Only Examples [30/and [33]in this section make nontrivial uses of
certain logical constants to express the propositions. Due to space considerations, we
refer the reader to [14]] for details.
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If X is sufficiently small, then one can construct two trivial models in Sﬁgfg ()
where D, is either simply {T} or {F}. (This possibility was ruled out in [8]] since we
assumed - € X))

Example 23. 3PP is valid in Dﬁgq(E) if either T € X or = € Y. The example is not

valid in Sﬁgfg(ﬂ) if ¥ C {L,AV}U{N* X%« € T}. (Any proof must use a set

instantiation involving either T, -, =, < or some primitive equality.)

Example 24. =V PP is valid in Sﬁgq(E) if either 1 € X or - € X. The example is

not valid in Sﬁgf;‘(ﬂ )if ¥ C (X\ {L,—}). (Any proof must use a set instantiation
involving either | or —.)

Example 23] characterizes when an instantiation satisfying the property of nega-
tion is possible. This can be either because the signature supplies negation or supplies
enough constants to define negation.

Example 25. AN,_.,VP,.NP < =P is valid in SDng(E) if = € X. The example is
also valid in 95 %(X) if L € X and {=,«} N X # () since one can consider either

the term AX,.X = L or the term AX,.X < L. The example is not valid in smgfg ()
it X C{T, LAVIU{N* T%ae T}.

One possibility we did not cover in Example 23] is if X' is { L, =°}. Consider the
term (AX,.X =° L). This only defines negation if we assume Boolean extensionality.
Hence we obtain the interesting fact that Example[23]is valid in Dﬁﬁ}g ({L,=°}), butis
not valid in 90, 9 ({ L, =°}).

One can modify Example 23] in a way that requires not only a set instantiation for
negation, but also extensionality.

Example 26. ~VF, .,3X.(FX) = X is valid in Dﬁﬁ_ﬂq) (X) if = € X. The example is
not valid in 95 (%) regardless of the signature X. Also, the example is not valid in

Mo (X)if ¥ C{T, LA, VIu{Ne, L% e T}

Example [27] characterizes when an instantiation can essentially define disjunction
and Example [28] characterizes when an instantiation can essentially define the univer-
sal quantifier at type a. Clearly one can modify these examples for any other logical
constant.

Example 27. 3Dg—.o—0¥PVQuDPQ & (PV Q) is valid in 9, *(X) if V € X. The
example is also valid in Dﬁgq(E) if {-,A} C 2.

Example 28. 3Q(a—0)—0)VPa—oiQP < VX o.PX is valid in M *(2) if N* € .

Recall that Example [8] already provided an example in which one might require a
set instantiation involving primitive equality (depending on how the calculus relates
Leibniz equality to primitive equality).

A few interesting set instantiations involve no logical constants, but do make use of
projections (see [18]). Sometimes such projections can be obtained from higher-order
unification, as in Example 29



78 C.E. Benzmiiller and C.E. Brown

Example 29. AN,_,,VP,.NP < P is valid in E)ﬁgq (@).

However, one cannot expect higher-order unification to always provide projection
terms when they are needed. Example 30 was studied extensively in [2] (see THM104)
in order to demonstrate this fact. In this example, we make use of the abbreviation
{.} which was defined in Example 22} If the definition of {.} makes use of primitive
equality, one must assume ="€ X' to express the proposition. If {.} is defined using
Leibniz equality, then one must assume —, [1°7° € X' to express the proposition.

Example 30. VX NZ,{X}={Z} = X=Z is valid in M; (X)) so long as X is suffi-
cient to express the proposition.

The examples above are straightforward examples designed to ensure completeness
of theorem provers with respect to set comprehension. A more natural theorem which
requires set instantiations is Cantor’s Theorem. Two forms of Cantor’s Theorem were
studied with respect to set comprehension in [14]]. Example[3lis the surjective form of
Cantor’s Theorem discussed in [4].

Example 31. (Surjective Cantor Theorem) —3G o q—oVFa—03J0GJ =27 F is
valid in M () if - € X. The example is not valid in M () if ¥ C {T, L, A, V}U
{N* X%« € T} (see Theorem 6.7.8 in [[14]).

An alternative formulation of Cantor’s Theorem (see [5i14]) is the injective form
shown in Example 32] Almost any higher-order theorem prover complete for the cor-
responding model class should be capable of proving the previous examples in this
subsection. Example[32]is far more challenging. At the present time, no theorem prover
has found a proof of Example 32 automatically.

Example 32. (Injective Cantor Theorem) —3H(,_,,y.,VP,.,VQ,—o.HP =" HQ =
P ='7° () is valid in Dﬁﬁ_ﬂq) (X)if {=, A, =" N7} C X (see Lemma 6.7.2 in [14]).
The example is not valid in DJIL;E(E) if Y C{T, L, AV,=, & N X =0
(This fact follows from the results in Section 6.7 of [14].)

One of the difficulties of proving Example[32]is that certain set instantiations seem
to be needed beneath other set instantiations (see [S)]). The next family of examples
illustrates that nontrivial set instantiations can occur within set instantiations with an
arbitrary number of iterations.

Example 33. Assume X' contains — and [N1* for every type «. Fix a constant ¢,. We will
define a theorem D7, for each natural number 7. By induction on n, define simple types
7™ and abbreviations A” as follows.

(a) Let 7° be the type ¢ and 7*+! be 7" — o for each natural number 7.
(b) Let A% be A\Z.(Z=c,) AT and A" be \Z n+1.(Z=A") A IT;n.ZT for each

L—0

natural number n.
Finally, for each n, let D} be 35,» A™S. Each D™ is a valid in 01 ?(X). The constant
¢, is the obvious witness for DO. For each n, A" is the witness for D”*1. Note that
a subgoal of showing A" is the witness for D™ involves showing A" is nonempty

(which was D™). Hence this proof of D"*! involves all the previous instantiations
A° .. A"
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6 More Complex Examples

Here we present technically or proof theoretically challenging examples. First we con-
sider a class of hard problems simply involving 3-reduction.

Example 34. Let o be + and o™ *! be (™ — a™) for each n. Note that the Church

—am _an_anfl _aU
numeral 2° has type a" 2. For any n we can form the term (2° 2 -2 )of type

(¢t = t) — ¢ — ¢. The size of the S-normal form of this term is approximately of size
2)
22 containing n + 1 ‘2s’. (This is a well-known example, mentioned in [27].) For

2
. . . . . 227,
n > 4 it becomes infeasible to 3-normalize such a term (since 22~ is 265236 a number

much larger than google). One can express relatively simple theorems using this term
such as

—a"—qn!
(2 2 x )()\XX) (AX,X).
If one avoids eager 3-normalization and allows lemmas, then there is a reasonably short

proof using higher-order logic. We first define the set C'§ of Church numerals (over «)
greater than or equal to 2:

AN(40)asaVP.(P2* A (YM.PM = P(3M))) = PN.

(Technically, (0 2) is B-equal to (\F,_,, F'), which is not equal to 1. We work with the
set of Church numerals greater than or equal to 2 to avoid this problem.) One can prove
two results with little trouble (where the lengths of the proofs do not depend on the

type «):

(a) \V/N((a—wc)—»a—wc)—»(a—>o¢)—»a—>o¢'cél‘>aN = C’g(Nia)
(1) YN(ama)aa-lSN = (N(AXq X)) = (AXoX)

Using (a) at several types and (b) at type ¢, we can prove, e.g.,
—a*—a®=a?=al=a’ *
(2722 2 2 )(AX,X)=(X.X)

in higher-order logic without $-normalizing.

In [13, Chapter 25, p. 376-382] Boolos presents a related example of a first-order
problem which has only a very long (practically infeasible) derivation in first-order
logic, but which has a short derivation in a second-order logic, by making use of com-
prehension axioms.

Example 35. (Boolos’ Curious Inference)

(Vnf(n,1) = s(1) AV f (1, s(x)) = s(s(f(1,2)))
AVnYz.f(s(n), s(x)) = f(n, f(s(n),z))
A D(1) AVz.(D(z) = D(s(x))))
= D(f(s(s(s(s(1)))), s(s(s(s(1))))))
If there were an appropriate (first-order) induction principle available, then there

should be a short proof of this example. Note that the example specifies f to be the Ack-
ermann function which grows extremely fast and hence f(s(s(s(s(1)))), s(s(s(s(1)))))
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is a very big number. Actually, there is long first-order proof which is relatively easy

to describe. Boolos argues that any first-order proof must be of size at least 22" ?
containing 64K 2s’ in all (far more enormous than the number 264X in Example 34)).
There is no chance of formally representing such a proof with all computation power
ever. Boolos presents a short alternative proof in second-order logic that makes use of
higher-order lemmas obtained from comprehension axioms. Formulating the appropri-
ate lemmas (as with the lemmas in Example 34) requires human ingenuity that goes
beyond the capabilities of what can be supported with primitive substitution and lemma
speculation techniques in current theorem proving approaches.

As discussed in [3], there is a family of theorems A', A2, ... which are all of the
same low order such that A™ is not provable unless one uses set instantiations involving
n*"-order quantifiers. To obtain concrete examples from the argument, one must use
Godel numbering. A family of simpler examples displaying this phenomenon would
likely be enlightening.

7 Conclusion

We have presented a first set of higher-order test examples that may support the develop-
ment of higher-order proof systems. This set of examples has been structured according
to technical aspects and the semantic properties of extensionality and set comprehen-
sion. Future work is to add examples and include them in either the TPTP library or
an appropriate higher-order variant. Many more examples are particularly needed to
illustrate properties of different forms of equality.
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HIGHER-ORDER SEMANTICS AND EXTENSIONALITY
CHRISTOPH BENZMULLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

Abstract. In this paper we re-examine the semantics of classical higher-order logic with the purpose
of clarifying the role of extensionality. To reach this goal, we distinguish nine classes of higher-order
models with respect to various combinations of Boolean extensionality and three forms of functional
extensionality. Furthermore, we develop a methodology of abstract consistency methods (by providing the
necessary model existence theorems) needed to analyze completeness of (machine-oriented) higher-order
calculi with respect to these model classes.

§1. Motivation. In classical first-order predicate logic, it is rather simple to assess
the deductive power of a calculus: first-order logic has a well-established and
intuitive set-theoretic semantics, relative to which completeness can easily be verified
using, for instance, the abstract consistency method (cf. the introductory textbooks
[6.22]). This well understood meta-theory has supported the development of calculi
adapted to special applications—such as automated theorem proving (cf. [16. 47]
for an overview).

In higher-order logics, the situation is rather different: the intuitive set-theoretic
standard semantics cannot give a sensible notion of completeness, since it does
not admit complete (recursively axiomatizable) calculi [24, 6]. There is a more
general notion of semantics [26]. the so-called Henkin models, that allows complete
(recursively axiomatizable) calculi and therefore sets the standard for deductive
power of calculi.

Peter Andrews’ Unifying Principle for Type Theory [1] provides a method of
higher-order abstract consistency that has become the standard tool for complete-
ness proofs in higher-order logic, even though it can only be used to show complete-
ness relative to a certain Hilbert style calculus 4. A calculus & is called complete
relative to a calculus Ty iff (if and only if) € proves all theorems of . Since Ty is
not complete with respect to Henkin models, the notion of completeness that can
be established by this method is a strictly weaker notion than Henkin completeness.
The differences between these notions of completeness can largely be analyzed in
terms of availability of various extensionality principles, which can be expressed
axiomatically in higher-order logic.

As a consequence of the limitations of Andrew’s Unifying Principle, calculi for
higher-order automated theorem proving [1, 32, 33, 34, 42, 36, 37] and the cor-
responding theorem proving systems such as Tps [7, 8], or earlier versions of the
LEo [14] system are not complete with respect to Henkin models. Moreover, they
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are not even sound with respect to ¥, since they (for the most part) employ
n-conversion, which is not admissible in 4. In other words, their deductive power
lies somewhere between Ty and Henkin models. Characterizing exactly where re-
veals important theoretical properties of these calculi that have direct consequences
for the adequacy in various application domains (see the discussion in section 8.1).
Unlike calculi without computational concerns, calculi for mechanized reasoning
systems cannot be made complete by simply adding extensionality axioms, since
the search spaces induced by their introduction grow prohibitively. Being able to
compare and characterize the methods and computational devices used instead is a
prerequisite for further development in this area.

In this situation, the aim of this article is to provide a semantical meta theory
that will support the development of higher-order calculi for automated theorem
proving just as the corresponding methodology does in first-order logic. To reach
this goal, we need to establish:

(1) classes of models that adequately characterize the deductive power of existing
theorem-proving calculi (providing semantics with respect to which they are
sound and complete), and

(2) amethodology of abstract consistency methods (by providing for these model
classes the necessary model existence theorems, which extend Andrews’ Uni-
fying Principle), so that the completeness analysis for higher-order calculi
will become almost as simple as in first-order logic.

We fully achieve the first goal in this article, and take a large step towards the
second. In the model existence theorems presented in this article, we have to
assume a new condition called saturation, which limits their utility in completeness
proofs for machine-oriented calculi. Fortunately, the saturation condition can be
lifted by extensions of the methods presented in this article (see the discussion in
the conclusion 8.2 and [12]).

Due to the inherent complexity of higher-order semantics we first give an informal
exposition of the issues covered and the techniques applied. In Section 4, we will
investigate the properties of the model classes introduced in Section 3 in more detail
and corroborate them with example models in Section 5. We prove model existence
theorems for the model classes in Section 6. Finally, in Section 7 we will apply
the model existence theorems from Section 6 to the task of proving completeness
of higher-order natural deduction calculi. Section 8 concludes the article with a
discussion of related work, possible applications, and the saturation assumption we
introduced for the model existence theorems.

The work reported in this article is based on [15] and significantly extends the
material presented there.

§2. Informal exposition. Before we turn to the exposition of the semantics in
Section 2.3, let us specify what we mean by “higher-order logic”: any simply typed
logical system that allows quantification over function and predicate variables.
Technically, we will follow tradition and employ a logical system Z0.% based on
the simply typed A-calculus as introduced in [18]; this does not restrict the generality
of the methods reported in this article, since the ideas can be carried over. A related
logical system is discussed in detail in [6].
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2.1. Simply typed A-calculus. To formulate higher-order logic we start with a
collection of types 7. We assume there are some basic typesin & and that whenever
o, f € 7, then the function type (o — f) is in J. Furthermore, we assume the
types are generated freely, so that (a; — f1) = (ay — f») implies o = a» and
pi = po.

0% -formulae (or terms) are built up from a set 7” of (typed) variables and
a signature T (a set of typed constants) as applications and A-abstractions. We
assume the set 77, of variables of type « is countably infinite for each type a. The
set wiT, (Z) of well-formed formulae consists of those formulae which have type «.
The type of formula A4, will be annotated as an index, if it is not clear from the
context. We will denote variables with upper-case letters (X,. Y. Z X, ﬁ' Xyz, co )
constants with lower-case letters (ca. fo—p....) and well-formed formulae with
upper-case bold letters (A4,. B. C'....). Finally, we abbreviate multiple applications
and abstractions in a kind of vector notation, so that 4 U* denotes k-fold application
(associating to the left), AX*.4 denotes k-fold J-abstraction (associating to the
right) and we use the square dot “.’ as an abbreviation for a pair of brackets, where
%’ stands for the left one with its partner as far to the right as is consistent with the
bracketing already present in the formula. We may avoid full bracketing of formulas
in the remainder if the bracketing structure is clear from the context.

We will use the terms like fiee and bound variables or closed formulae in their
standard meaning and use free(4) for the set of free variables of a formula 4. In
particular, alphabetic change of names of bound variables is built into Z0.%: we
consider alphabetic variants to be identical (viewing the actual representation as a
representative of an alphabetic equivalence class) and use a notion of substitution
that avoids variable capture by systematically renaming bound variables.! We denote
a substitution that instantiates a free variable X with a formula 4 with [4/X] and
write o, [4/X] for the substitution that is identical with ¢ but instantiates X with
A. For any term 4 we denote by A[B], the term resulting by replacing the subterm
at position p in 4 by B.

A structural equality relation of Z7.% terms is induced by fy-reduction

(AX.A)B —; [B/X]4 (AX.CX) —, C

where X is not free in C. It is well-known that the reduction relations £, #, and
fn are terminating and confluent on wif (X), so that there are unique normal forms
(cf. [9] for an introduction). We will denote the f-normal form of a term A4 by Al 5
and the fy-normal form of A4 by A|g,. If we allow both reduction and expansion
steps, we obtain notions of f-conversion, n-conversion, and pn-conversion. We say
A and B are f-equal [n-equal. fn-equal] (written A=gB [A=,B, A=p,B]) when A is
f-convertible [#-convertible, fy-convertible] to B.

2.2. Higher-order logic (Z2.%). In #0.%, the set of base types is {0, 1} for truth
values and individuals. We will call a formula of type o a proposition, and a sentence
if it is closed. We will assume that the signature X contains logical constants for
negation (—o—.,). disjunction (N y—.—.,). and universal quantification (I1% ) for

(a—0)—0
each type . Optionally, £ may contain primitive equality (=%_, ) for each type

'We could also have used de Bruijn’s indices [19] as a concrete implementation of this approach at
the syntax level.
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a. All other constants are called parameters, since the argumentation in this article
is parametric in their choice.

We write disjunctions and equations, i.e., terms of the form ((VA4)B) or ((= 4)B),
in infix notation as 4 V B and 4 = B. As we only assume the logical constants —,
V, and I1% (and possibly =) as primitive, we will use formulae of the form A4 A B,
A = B, and A < B as shorthand for the formulae —=((—4) v (=B)), and (-=4) V B,
and (4 = B)A\(B = A), respectively. For each 4 € wif,(Z). the standard notations
VX,.4 and 3X,.4 for quantification are regarded as shorthand for I1*(1X,.4) and
—(I1*(AX,.—A)). Finally, we extend the vector notation for A-binders to k-fold
quantification: we will use VX*.4 and 3X*.4 in the obvious way.

We often need to distinguish between atomic and non-atomic formulae in witf, ().
A non-atomic formula is any formula whose f-normal form is either of the form
—A, AV B, orI[1°C (where A, B € wif,(X) and C € wif,_,,(Z)). Anatomic formula
is any other formula in wif,(X)—including primitive equations 4 = B in case of
the presence of primitive equality.

It is matter of folklore that equality can directly be expressed in Z0.%. A
prominent example is the Leibniz formula for equality

Q° := (AX, Yo.¥Py_0.PX = PY).

With this definition, the formula (Q*AB) (expressing equality of two formulae 4
and B of type o) f-reduces to VP,_,,.(PA) = (PB), which can be read as: formulae
A and B are not equal iff there exists a discerning property P.> In other words, 4 and
B are equal, if they are indiscernible. We will use the notation 4 =% B as shorthand
for the f-reduct VP, _.,.(PA) = (PB) of (Q*AB) (where P ¢ free(4) U free(B)).’
There are alternative ways to define equality in terms of the logical connectives
([6. p. 203]) and the techniques for equality introduced in this article carry over to
them (cf. Remark 4.4).

In this article we use several different notions of equality. In order to prevent
misunderstandings we explain these different notions together with their syntactical
representation here:

If we define a concept we use := (e.g.. let & := {T.F}). = represents identity.
We refer to a representative of the identity relation on &, as an object of the
semantical domain D, ., with q*. Note that we possibly have one, several, or
no q* in 9, _.,_, for each domain Z,. The remaining two notions are related to
syntax. = may occur as a constant symbol of type « — a — o in a signature X.
Finally, =" and Q® are used for Leibniz equality as described above.

2.3. Notions of models for Z70.%. A model of Z0.% is a collection of non-empty
domains &, for all types « together with a way of interpreting formulae. The
model classes discussed in this article will vary in the domains and specifics of
the evaluation of formulae. The relationships between these classes of models are
depicted as a cube in Figure 1. We will discuss the model classes from bottom to
top, from the most specific notion of standard models (&%) to the most general
notion of v-complexes, motivating the respective generalizations as we go along. In
Section 3, where we develop the theory formally based on the intuitions discussed

2Note that this is symmetric by considering complements and hence it is sufficient to use = instead
of &.
3Note that 4 =% Bis fi-normal iff 4 and B are f-normal. The same holds for fy-equality.
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FIGURE 1. The landscape of higher-order semantics.

here, we will proceed the other way around, specializing the notion of a X-model
more and more.

The symbols in the boxes in Figure 1 denote model classes, the symbols labeling
the arrows indicate the properties inducing the corresponding specialization, and
the V-symbols next to the boxes indicate the clauses in the definition of abstract
consistency classes (cf. Definition 6.5) that are needed to establish a model existence
theorem for this particular class of models (cf. Theorem 6.34).

2.3.1. Standard and Henkin models [S%., $, Mgsp]. A standard model (ST, cf.
Definition 3.51) for Z2.% provides a fixed set Z, of individualsand aset 2, := {T.F}
of truth values. Allthe domains for the function types are defined inductively: Z,_.z
is the set of functions f': &, — Z3. The evaluation function &, with respect to an
assignment ¢ of variables is obtained by the standard homomorphic construction
that evaluates a A-abstraction with a function.

One can reconstruct the key idea behind Henkin models () isomorphic to Mgse .
cf. Definitions 3.50, and Theorem 3.68) by the following observation. If the set Z, is
infinite, the set Z,_,, of sets of individuals must be uncountably infinite. On the other
hand, any reasonable semantics of a language with a countable signature that admits
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sound and complete calculi must have countable models. Leon Henkin generalized
the class of admissible domains for functional types [26]. Instead of requiring
D,—.p (and thus in particular, Z,_,,) to be the full set of functions (predicates). it is
sufficient to require that Z,_, 3 has enough members that any well-formed formula
can be evaluated (in other words, the domains of function types are rich enough to
satisfy comprehension). Note that with this generalized notion of a model, there are
fewer formulae that are valid in all models (intuitively, for any given formula there
are more possibilities for counter-models). The generalization to Henkin models
restricts the set of valid formulae sufficiently so that all of them can be proven by a
Hilbert-style calculus [26].

Of course our picture in Figure 1 is not complete here; we can axiomatically
require the existence of particular (classes of) functions, e.g., by assuming the de-
scription or choice operators. We will not pursue this here: for a detailed discussion
of the semantic issues raised by the presence of these logical constants see [3]. Note
that even though we can consider model classes with richer and richer function
spaces, we can never reach standard models where function spaces are full while
maintaining complete (recursively axiomatizable) calculi.

2.3.2. Models without boolean extensionality [IMp. Mpz, Mg, . Mg;]. The next gen-
eralization of model classes comes from the fact that we want to have logics where
the axiom of Boolean extensionality can fail. For instance, in the semantics of nat-
ural language we have so-called verbs and adjectives of “propositional attitude” like
believe or obvious. We may not want to commit ourselves to a logic where the sen-
tence “John believes that Phil is a woodchuck” automatically entails “John believes
that Phil is a groundhog” since John might not be aware that “woodchuck™ is just
another word for “groundhog”. The axiom of Boolean extensionality does just that;
it states that whenever two propositions are equivalent, they must be equal, and can
be substituted for each other. Similarly, the formulae obvious(Q) and obvious(F)
where O :=2+2=4and F :=Vn>2x"+y" =z" = x =y = z = 0 should
not be equivalent, even if their arguments are. (Both O and F are true over the nat-
ural numbers, but Fermat’s last theorem F is non-obvious to most people). These
phenomena have been studied under the heading of “hyper-intensional semantics”
in theoretical semantics; see [39] for a survey.

To account for this behavior, we have to generalize the class of Henkin models
further so that there are counter-models to the examples above. Obviously, this
involves weakening the assumption that &, = {T, F} since this entails that the values
of O and F are identical. We call the assumption that &, has two elements property
b. In our Z-models without property b (931,;, Mgz, Mg, . Mg, cf. Definitions 3.41
and 3.49) we only insist that there is a division of the truth values into “good” and
“bad” ones, which we express by insisting on the existence of a valuation v of Z,,,
i.e., a function v: &, — {T,F} that is coordinated with the interpretations of the
logical constants —, VV, and I1* (for each type «). Thus we have a notion of validity:
we call a sentence 4 valid in such a model if v(a) = T, where a € 2, is the value
of the sentence 4. For example, there is a -model (see Examples 5.4 and 5.5)
where woodchuck(phil), groundhog(phil) and believe(john, woodchuck(phil)) are
all valid, but believe(john, groundhog(phil)) is not. In this model, the value of
woodchuck (phil) is different from the value of groundhog(phil) in Z,.
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2.3.3. Models without functional extensionality [9Mg, Mg, Mpee, Mps, Mpye,
Mpzp]. In mathematics (and as a consequence in most higher-order model the-
ories), we assume functional extensionality, which states that two functions are
equal, if they return identical values on all arguments. In many applications we
want to use a logic that allows a finer-grained modeling of properties of functions.
For instance, if we want to model programs as (higher-order) functions, we might
be interested in intensional* properties like run-time complexity. Consider for in-
stance the two functions I := AX.X and L := AX.rev(rev(X)), where rev is the
self-inverse function that reverses the order of elements in a list. While the identity
function has constant complexity, the function rev is linear in the length of its ar-
gument. As a consequence, even though L behaves like I on all inputs, they have
different time complexity. A logic with a functionally extensional model theory
(which is encoded as property §, cf. Definitions 3.5, 3.41 and 3.46) would conflate /
and L semantically and thus hide this difference rendering the logic unsuitable for
complexity analysis.

To arrive at a model theory which does not require functional extensionality
(which we will a call non-functional model theory in the remainder) we need to
generalize the notion of domains at function types and evaluation functions. This
is because the usual construction already uses sets of (extensional) functions for the
domains of function type and the property of functionality to construct values for
A-terms.

We build on the notion of applicative structures (cf. Definition 3.1) to define X-
evaluations (cf. Definition 3.18), where the evaluation function is assumed to respect
application and f-conversion. In such models, a function is not uniquely deter-
mined by its behavior on all possible arguments. Such models can be constructed,
for example, by labeling for functions (e.g., a green and a red version of a func-
tion f) in order to differentiate between them, even though they are functionally
equivalent (cf. Example 5.6). Property b may or may not hold for non-functional
2-Models.

We can factor functional extensionality (property §) into two independent prop-
erties, property # and property £. A model satisfies property # if it respects #-
conversion. A model satisfies property ¢ if we can conclude the values of AX.M and
AX.N areidentical whenever the values of M and N are identical for any assignment
of the variable X. We will show that a model satisfies property f iff it satisfies both
property # and property ¢ (cf. Lemma 3.24).

2.3.4. Andrews’ models and v-complexes [Mg.IMp,]. Peter Andrews has pio-
neered the construction of non-functional models with his v-complexes in [1] based
on Kurt Schiitte’s semi-valuation method [50]. These constructions, where both
functional and Boolean extensionality fail, are X-models as defined in Defini-
tion 3.41. (Typically they will not even satisfy the property that Leibniz equality
corresponds to identity in the model, but they will have a quotient by Theorem 3.62
which does satisfy this property.)

2.4. Characterizing the deductive power of calculi. These model classes discussed
in the previous section characterize the deductive power of many higher-order

4Just as in the linguistic application, the word “intensional” is used as a synonym for “non-extensional”
even though totally different properties are intended.
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theorem provers on a semantic level. For example, Tps [8] can be used in modes
in which the deductive power is characterized by 94, (or even 9y if #-conversion
is disallowed). Note that in particular TPs is not complete with respect to Henkin
models. It is not even complete for Mg, although it can be used in modes with
some ‘extensionality treatment’ built into the proof procedure.

The incompleteness of Tps for Henkin models® can be seen from the fact that
it fails to refute formulae such as cA4, A —=c(——A), where ¢ is a constant of type
0 — o, or to prove formulae like p(AXo.BX A AX) = p(AX,.AX A BX), where
p is a constant of type (o — 0) — 0. The problem in the former example is that
the higher-order unification algorithm employed by Tps cannot determine that A
and ——A denote identical semantic objects (by Boolean extensionality as already
mentioned before), and thus returns failure instead of success. In the second
example both functional and Boolean extensionality are needed in order to prove
the theorem.

[21] discusses a presentation of higher-order logic in a first-order logic based on
an approach called theorem proving modulo. 1t is easy to check that this approach
is also incomplete for model classes with property b. For instance the approach
cannot prove the formula

VPy_o Xy Yo (PX NPY) = P(X A Y)

which is valid in Henkin models and which requires b. As a result, the theorem
proving modulo approach of representing higher-order logic in a first-order logic [21]
can only be used for logics without Boolean extensionality in its current form.

2.4.1. Model existence theorems. For all the notions of model classes (except,
of course, for standard models, where such a theorem cannot hold for recursively
axiomatizable logical systems) we present model existence theorems tying the differ-
entiating conditions of the models to suitable conditions in the abstract consistency
classes (cf. Section 6.3).

A model existence theorem for a logical system & (i.e., a logical language Zs
together with a consequence relation =5C Zs x Z) is a theorem of the form:

If a set of sentences @ of S is a member of an abstract consistency class
I, then there exists a S-model for @.

For the proof we can use the classical construction in all cases: abstract consistent
sets are extended to Hintikka sets (cf. Section 6.2), which induce a valuation on
a term structure (cf Definition 3.35). We then take a quotient by the congruence
induced by Leibniz equality in the term model.

2.4.2. Completeness of calculi. Given a model existence theorem as described
above we can show the completeness of a particular calculus € (i.e.. the derivability
relation FsC P x L) by proving that the class I' of sets of sentences ® that are
& -consistent (i.e., cannot be refuted in &) is an abstract consistency class. Then the
model existence theorem tells us that @-consistent sets of sentences are satisfiable
in §. Now we assume that a sentence A4 is valid in &, so =4 does not have a
S-model and is therefore Z-inconsistent. Hence, —A4 is refutable in €. This shows

3In case the extensionality axioms are not available in the search space. Note that one can add
extensionality axioms to the calculus in order to achieve—at least in theory—Henkin completeness. But
this increases the search space drastically and is not feasible in practice.
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refutation completeness of €. For many calculi #, this also shows A4 is provable,
thus establishing completeness of .

Note that with this argumentation the completeness proof for € condenses to
verifying that I" is an abstract consistency class, a task that does not refer to -
models. Thus the usefulness of model existence theorems derives from the fact that
it replaces the model-theoretic analysis in completeness proofs with the verification
of some proof-theoretic conditions. In this respect a model existence theorem is
similar to a Herbrand Theorem, but it is easier to generalize to other logic systems
like higher-order logic. The technique was developed for first-order logic by Jaakko
Hintikka and Raymond Smullyan [29, 52, 53].

§3. Semantics for higher-order logic. In this section we will introduce the seman-
tical constructions and discuss their relationships. We will start out by defining
applicative structures and X-evaluations to give an algebraic semantics for the sim-
ply typed A-calculus. To obtain a model for higher-order logic, we use a X-valuation
to determine whether propositions are true or false.

3.1. Applicative structures.

DerINITION 3.1 ((Typed) Applicative structure). A collection & := Dy :=
{Z, | @ € T } of non-empty sets Z,, indexed by the set 7 of types, is called
a typed collection (of sets). Let D4 and &7 be typed collections, then a col-
lection f:={f*: @, — &, | « € T } of functions is called a typed function
f: @5 — &7. We will write 7 (4; B) for the set of functions from 4 to B and
F7(Ds:&5) for the set of typed functions. In the following we will also use the
notion of a typed function extended to the n-ary case in the obvious way.

We call the pair (2, @) a (typed) applicative structure if @ = D4 is a typed
collection of sets and

@ :={@": Doy x Do — Dy |a.peT }.

Each (non-empty) set &, is called the domain of type o and the family of functions
@ is called the application operator. We write simply f@a for f@**a when f € &, _, B
and a € 9, are clear in context.

REMARK 3.2. Often an applicative structure is defined to also include an inter-
pretation of the constants in a given signature (for example, in [44]). We prefer this
signature-independent definition (as in [30]) for our purposes.

REMARK 3.3 (Currying). The application operator @ in an applicative structure
is an abstract version of function application. It is no restriction to exclusively use
a binary application operator, which corresponds to unary function application,
since we can define higher-arity application operators from the binary one by setting

f@@'.....a") := (... (f@a') ... @a") (“Currying”).

DEFINITION 3.4 (Frame). An applicative structure (2, @) is called a frame, if
Doy C F(Do: Dp) and @°* is application for functions for all types o and f.

DEFINITION 3.5 (Functional/full/standard applicative structures). Let & :=
(Z.@) be an applicative structure. We say that & is functional if for all types
o and f§ and objects f, g € D,_.p, we have f = g whenever f@a = g@a for every
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a € 9,.° Wesay & is full if for all types a and f§ and every function /' : 9, — Dy
there is an object f € &, _.4 such that f{@a = f (a) for every a € Z,. Finally, we say
S is standard if it is a frame and Z,_y = F (Z,: D) for all types a and f. Note
that these definitions impose restrictions on the domains for function types only.

REMARK 3.6. It is easy to show that every frame is functional. Furthermore, an
applicative structure is standard iff it is a full frame.

ExamPLE 3.7 (Applicative singleton structure). We choose a single element a and
define 7, := {a} for all types a. The pair (Zs.@?), where a@?a = a is a (trivial)
example of a functional applicative structure. It is called the singleton applicative
structure.

ExaMPLE 3.8 (Applicative term structures). If we define A@B := (4B) for A €
wifa_4(Z) and B € wif,(Z). then @: wif,_4(Z) x wifo(2) — wifp(Z) is a
total function. Thus (wif (X), @) is an applicative structure. The intuition behind
this example is that we can think of the formula 4 € wff,_4(Z) as a function
A: wif,(2) — wiff4(X) that maps B to (4B).

Analogously, we can define the applicative structure (cwif (), @) of closed for-
mulae (when we ensure X contains enough constants so that cwif, (Z) is non-empty
for all types a).

DEFINITION 3.9 (Homomorphism). Let &/! := (2!, @') and &% := (22, @?)
be applicative structures. A homomorphism from /' to /2 is a typed function
k:Z' — Z? such that for all types o, f € 7, all f € &} ;. and a € Z, we have
k(F@*k(a) = k(f@'a). We write k: &' — /2. The two applicative structures
" and &/ are called isomorphic if there are homomorphisms i: &' — /2 and
j: &? — /' which are mutually inverse at each type.

The most important method for constructing structures (and models) with given
properties in this article is well-known for algebraic structures and consists of
building a suitable congruence and passing to the quotient structure. We will now
develop the formal basis for it.

DerINITION 3.10 (Applicative structure congruences). Let. := (2, @) beanap-
plicative structure. A typed equivalence relation ~ is called a congruence on & iff
forallf.f € @, and a.a’ € Z, (for any types o and f). f ~ f and a ~ a’ imply
f@a ~ f@a’.

The equivalence class [a]~ of a € D, modulo ~ is the set of all a’ € Z,,, such that
a ~ a’. A congruence ~ is called functionaliff for all types o and f and f.g € ..
we have f ~ g whenever f{@a ~ g@a for every a € Z,.

Lemma 3.11. The f-equality and fn-equality relations = g and = g, are congruences
on the applicative structures wit (X) and cwit .

Proor. The congruence properties are a direct consequence of the fact that fy-
reduction rules are defined to act on subterm positions. -

OThis is called “extensional” in [44]. We use the term “functional” to distinguish it from other forms
of extensionality.
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DErFINITION 3.12 (Quotient applicative structure). Let & := (2. @) be an ap-
plicative structure, ~ a congruence on &, and & := {[a]~ | a € D, }. Further-
more, let @™~ be defined by [f]l~@~[a]~ := [f@a]~. (To see that this definition
only depends on equivalence classes of ~, consider f € [f]~ and a’ € [a]~. Then
f ~fand a ~ a imply f@a ~ f@a’. Thus, [f@a]~ = [f@a']~. So. @™ is
well-defined.) &/ /. := (2™, @") is also an applicative structure. We call & /.. the
quotient structure of &/ for the relation ~ and the typed function z..: & — &/
that maps a to [a]~ its canonical projection.

THEOREM 3.13. Let &/ be an applicative structure and let ~ be a congruence on
then the canonical projection n.. is a surjective homomorphism. Furthermore, & /.. is
Sfunctional iff ~ is functional.

ProoF. Let & := (Z.@) be an applicative structure. To convince ourselves
that 7. is indeed a surjective homomorphism, we note that z.. is surjective by the
definition of Z'~. To see that 7, is a homomorphism let f € Z,_.4. and a € .
then 7. ()@~ 7 (a) = [fl~@~[a]~ = [f@a]~ = = (f@a).

The quotient construction collapses ~ to identity, so functionality of ~ is equiv-
alent to functionality of & /.. Formally, suppose [f]~ and [g]~ are elements of
95 5 such that [fl.@~[a]~ = [g]l~@"[a]~ for every [a]~ in 9. This is equiv-
alent to [f@a]. = [g@a]~ for every a € &, and hence f@a ~ g@a for all a € Z,,.
By functionality of ~, we have f ~ g. That is, [f]~ = [g]~. -

LEMMA 3.14. =g, is a functional congruence on wit(X). If X, is infinite for all
types a € I, then =g, is also functional on cwit.

Proor. By Lemma 3.11, =g, is a congruence relation. To show functionality let
A. B € wif,_,, (%) such that AC=4,BC for all C € wff,(X) be given. In particular,
for any variable X € 7, that is not free in 4 or B, we have AX=4,BX and
1 X.AX=g,AX.BX. By definition we have A=,/ X,.AX=p,AX,.BX=,B.

To show functionality of fr-equality on closed formulae, suppose 4 and B are
closed. With the same variable X as above, let M and N be the fy-normal forms of
AX and BX, respectively. We cannot conclude that M = N since X is not a closed
term. Instead. choose a constant ¢, € X, that does not occur in 4 or B. (Such a
constant must exist, since we have assumed that %, is infinite.) An easy induction
on the length of the fx-reduction sequence from AX to M shows that ¢ does not
occur in M and Ac¢ = [¢/X](AX) Bn-reduces to [¢/XIM. Similarly, ¢ does not
occur in N and B¢ fn-reduces to [¢/X]N. Since ¢ is a constant, substituting ¢ for
X cannot introduce new redexes. So, simple inductions on the sizes of M and N
show [c¢/X]M and [c¢/X]N are fn-normal. By assumption, we know Ac=g,Bc.
Since normal forms are unique, we must have [¢/ XM = [¢/X]N. Using the fact
that ¢ does not occur in either M or NV, an induction on the size of M readily shows
M = N. So, we have A=,AX,.AX=p,AX,.M = /. X,.N=p,AX,.BX=,B =

REMARK 3.15. Suppose we have a signature X with a single constant ¢,. In this
case, ¢ is the only closed fy-normal form of type 1. Since AX.X #p, AX.c even
though (AX.X)c=p,c=p,(AX.c)c we have a counterexample to functionality of =p,
on cwff. The problem here is that we do not have another constant d, to distinguish
the two functions. In wif () we could always use a variable.
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REMARK 3.16 (Assumptions on X). From now on, we assume X, to be infinite for
each type a. Furthermore, we assume there is a particular cardinal 8, such that Z,,
has cardinality N, for every type . Since 7" is countable, this implies wif, () and
cwif, have cardinality R for each type a. Also, whether or not primitive equality
is included in the signature, there can only be finitely many logical constants in X,
for each particular type a. Thus, the cardinality of the set of parameters in X, is
also N;. In the countable case, N, is Ny.

3.2. X-evaluations. Z-evaluations are applicative structures with a notion of eval-
uation for well-formed formulae in wiT (X).

DEFINITION 3.17 (Variable assignment). Let & := (2,@) be an applicative
structure. A typed function ¢: 7" — 9 is called a variable assignment into &/ .
Given a variable assignment ¢, variable X,, and value a € &,. we use ¢, [a/X] to
denote the variable assignment with (¢, [a/X])(X) = aand (p.[a/X])(Y) = ¢(Y)
for variables Y other than X.

DEFINITION 3.18 (Z-evaluation). Let &: 5 (7:2) — Fo (Wil (Z).2) be a
total function, where F# (7";: @) is the set of variable assignments and F & (Wil (Z),
) is the set of typed functions mapping terms into objects in 2. We will write the
argument of & as a subscript. So, for each assignment ¢, we have a typed function
&, wit(X) — 2. & is called an evaluation function for & if for any assignments
o and y into &, we have

(1) %¢|% = .

(2) &,(FA) = &,(F)@&,(A) forany F € wff,_.4(X) and 4 € wif,(X) and types
a and f.

(3) &€,(4) =&, (A) for any type o and A4 € wff, (Z), whenever ¢ and y coincide
on free(A4).

(4) &€,(4) = é@(Alﬂ) for all 4 € wif, ().

Wecall 7 := (2. @, &) aX-evaluation if (2, @) is an applicative structure and & is
an evaluation function for (2, @). We call &,(A4,) € D, the denotation of A, in #
for . (Note that since & is a function, the denotation in # is unique. However, for
a given applicative structure &/, there may be many possible evaluation functions.)

If A is a closed formula, then &,(A) is independent of ¢, since free(4) = (. In
these cases we sometimes drop the reference to ¢ from &,(A4) and simply write
Z(A).

WecallaX-evaluation # := (', @. &) functional [full, standard] if the applicative
structure (2, @) is functional [full, standard]. We say £ is a Z-evaluation over a
frame if (2, @) is a frame.

X-evaluations generalize X-evaluations over frames, which are the basis for Henkin
models, to the non-functional case. The existence of an evaluation function that
meets the conditions above seems to be the weakest situation where one would like to
speak of a model. We cannot in general assume the evaluation function is uniquely
determined by its values on constants as this requires functionality. For example,
two evaluation functions & and &’ on the same applicative structure may agree on
all constants, but give a different value to the term (A1X,.X). Such an example is
constructed and discussed later in Remark 5.7.
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REMARK 3.19 (Z-evaluations respect f-equality). Let . := (2,@.&) be a X-
evaluation and A=4zB. For all assignments ¢ into (Z.@). we have &,(4) =

&, (Alﬂ) = éﬂ,(Blﬂ) =&,(B).

We can easily show Z-evaluations satisfy a Substitution-Value Lemma.

LemMA 3.20 (Substitution-value lemma). Let 7 := (2, @. &) be a T-evaluation
and ¢ be an assignment into ¢ . For any types o and B, variables X g, and formulae
A € wit, () and B € wily(Z). we have &,z (g)/x)(A) = &,([B/ X14).

Proor. Using the fact that & respects /)’ equahty (cf. Remark 3.19) and the other
properties of & (cf. Definition 3.18), we can compute

Eptz,m)/0(A4) = Eppe, ()0 (AXA)X)
=&, =,/ x A X.A)@F, =, 8/ (X)
&,(1X.A)@%,(B)
&,((2X.4)B)
&, ([B/X]A). .

We will consider two weaker notions of functionality. These forms are often
discussed in the literature (cf. [28]).

DEFINITION 3.21 (Weakly functional evaluations). Let f = (2, @.&) be a -
evaluation. We say 7 is n-functional if €,(4) = &,(A| ﬁ”) for any type «, formula
A € wif,(X), and assignment ¢. We say Z is E-functional if for all o, f € T,
M.N € wff4(Z). assignments ¢, and variables X,. &,(A1Xa.Mp) = &,(AX0.Np)
whenever &, [,/ (M) = &, ,/x;(N) for every a € Z,.

We will now establish that functionality is equivalent to #-functionality and &-
functionality combined. We prepare for this by first proving two lemmas about
functional X-evaluations.

LemMA 3.22. Let 7 := (2. @, &) be a functional X-evaluation. For any assign-
ment ¢ into F and F € wit,_3(X) where X, ¢ free(F), we have

Z,(AXFX) = &,(F).

PROOF. Let a € I, be given. Since X, ¢ free(F). we have &, [,/x)(F) = &,(F).

Since & respects f-equality (cf. Remark 3.19), we can compute
(/IXFX)@E] = S(,[a/)( ((/IXFX)X) = gg,[a/)(](FX) = %y,(F)@a

Generalizing over a, we conclude &, (A1 X.FX) = &,(F) by functionality. =

LemMaA 3.23. Let 7 := (2.@. &) be a functional Z-evaluation. If a formula A
n-reduces to B in one step, then for any assignment ¢ into ¥ . &,(A) = &,(B).

ProOF. We prove this by induction on the structure of the term A. For the
base case when A is the 7-redex which is reduced, we apply Lemma 3.22. When
A = (FC), then the n-reduction either occurs in F or C. So, B = (GD) where F
n-reduces to G in one step (or G = F) and D = C (or C p-reduces to D in one
step). So. by induction we have &,(F) = &,(G) and &,(C) = &,(D). It follows
that £,(A4) = &,(B).

When 4 is a A-abstraction, we must use functionality. Suppose for some type «,
A = (AX,.C) (and this is not the #-redex reduced to obtain B). Then B = (AX,D)
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where C n-reduces in one step to D. By the induction hypothesis, for any a € &,
&p1a/x1(C) = &, 1a/x1(D). Since & is an evaluation function, we have

g(p (/lXC)@a = gp_[a/x]((;{X.C)X) = ggo.[a/X](C)
= S(,_[a/)(](l)) = g@y[a/x]((/lX.D)X) = g(p(;LXD)@a

By functionality. &,(4) = &,(1X.C) = &,(A1X.D) = &€,(B). =

LemMA 3.24 (Functionality). Let 7 := (2.@.&) be a -evaluation. Then £ is
Sfunctional iff it is both n-functional and &-functional.

Proor. The fact that functionality implies #-functionality now follows from a
simple induction on the number of fr-reduction steps using Lemma 3.23 and
Remark 3.19.

To show functionality implies ¢-functionality, let M, N € wif4(Z), an assignment
¢ and a variable X, be given. Suppose &, [./x|(M) = &, [s/x)(N) forevery a € Z,.
We need to show &,(1X.M) = &,(AX.N). This follows from functionality since

g(p (/lXM)@a = g(p,[aAX]((/lX.M)X) = ggo.[a/X](M)
= go.[a/X](N) = g(p,[a,x]((/lX.N)X) = %W(AXN)@a

for every a € 9,.

To show functionality from #-functionality and &-functionality, let f, g € Zo_.p
such that f@a = g@a for all a € I, be given. We need to show that f = g. Let
Fo_.p. Go—p and X, be variables and ¢ be any assignment such that ¢(F) = f
and ¢(G) = g. Then for any a € Z, we have &,[,/x](FX) = f@a = g@a =
&,1a/x)(GX). and thus &, (AX.FX) = &,(1X.GX) by ¢-functionality. Hence.

f=&,(F)=&,AX.FX)=&,(AX.GX) =&,(G) =g
by n-functionality. -

LemMA 3.25 (¢-functionality and replacement). Let 7 := (2, @, &) bea&-func-
tional E-evaluation and B, C € wifg(2). Suppose &,(B) = &,(C) for every assign-
ment @ into Z. Then for all formulae A € wit,(Z), positions p, and assignments
into 7. &,(A[B),) = &,(A[C],).

ProOF. We show the assertion by an induction on the structure of A. If p is the
top position, we have

Z,(A[B],) = &,(B) = &,(C) = &,(A[C])).

In particular, if A4 is a constant or a variable, then p must be the top position and
we are done. Otherwise, assume p is not the top position. If A4 is an application FD,
we have to consider two cases: A[B], = F[B],D and A[B], = F(D[B],) for some
positions ¢ and r. Since the second case is analogous we only show the first case.
By the inductive hypothesis we have

€,(A[B],) = &,(F[B],D) = &,(F[B,)@&,(D)
=&,(F[C),) @&, (D) = &,(F[C]),D) = &,(A[C],).
If A[B], = 2X,.D[B],. then we get the assertion from ¢-functionality. By the induc-

tive hypothesis, we know &, (D[B],) = &, (D[C],) for every assignment y. In par-
ticular, for any assignment p andc € Z,, wehave &, ¢/ x) (D[B],) = Eolc/X) (D[C],).
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By &-functionality, we have
&,(A[Bl,) = &,(.X.D[B),) = &,(AX.D[C],) = &,(A[C],).
Thus we have completed all the cases and proven the assertion. -

EXAMPLE 3.26 (Singleton evaluation). The singleton applicative structure (cf. Ex-
ample 3.7) is a Z-evaluation if for any assignment ¢ and formula 4 we take
&,(A) = a, where a is the (unique) member of &,. Note that in this X-evaluation
€ (1X.X) = &,(AX.Y) for any assignment .

For a detailed discussion on the closure conditions needed for the domains for
function types to be rich enough for evaluation functions to exist, we refer the reader
to [2. 4].

Note that the applicative term structure wif () from Example 3.8 cannot be made
into a X-evaluation by providing an evaluation function. To see this, suppose & is
an evaluation function for wif(Z) and F := &(1X,.X) € wilq_o(Z). Since & is
assumed to be an evaluation function, we must have

Z,(A) = &,((AX0X)A) = F@A = FA

for every A € wif,(X). In particular, for any constant a, € X,. we must have
Fa = &,(a) = €((AX0X)a) = €1 X0 X)@& (a) = F(Fa). But clearly Fa #
F(Fa) no matter what F € wif,_.(X) we choose. In particular, the “obvious”
choice of & (1X,.X) = (1X,.X ) does not work. This example suggests that we need
to consider B-convertible terms equal before we can obtain a term evaluation (cf.
Definition 3.353).

DEFINITION 3.27 (Z-evaluation congruences). A congruence on a X-evaluation
J = (2.@.%) is a congruence on the underlying applicative structure (2, @).
Given any two variable assignments ¢ and y into (2, @), we will use the notation
¢ ~  to indicate that ¢(X) ~ w(X) for every variable X .

A typed equivalence relation was defined to be a congruence if it respects appli-
cation. In order to form a quotient of a X-evaluation, we must be able to define
an evaluation function &~ on the quotient structure. But & interprets all terms,
including A-abstractions. It is not obvious that one can find a well-defined &~ that
is really an evaluation function. In fact, the property one needs in order to show
&~ will be a well-defined evaluation function is €,(4) ~ &, (A4) forall 4 € wff, ()
and assignments ¢ and y with ¢ ~ . One can show this by an easy induction
on the term A if the congruence ~ is functional. However, without the assumption
that ~ is functional, this direct proof will fail when A is a A-abstraction. This is a
general problem with trying to prove properties of evaluations since many objects
in 9,_,p may represent the same function from 2, to 5. Fortunately, there is a
way to use combinators to reduce such inductions to terms which only have very
special A-abstractions.

DEFINITION 3.28 (SK-combinatory formulae). Foralltypesc, 8, and y, we define
two families of closed formulae we call combinators:

Ka—>,b’—>oz = /lXa Y/f.X
S(a*)/;*,ﬁﬁ(aﬂﬁ)ﬂaﬁy I:/an_,ﬁ_,;,Va_,/;Wa.(UW(VW)).
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We define the set of SK-combinatory formulae to be the least subset of the set
Uacs WiTa (X) containing every K and S, every constant ¢ € T and every variable,
that is closed under application.

Asshownin [3], every formula can be f-expanded to an SK-combinatory formula.

LeMMA 3.29. For every type o and A € wit, (). there is an SK-combinatory
SJormula A’ € wit, (X) such that A’ B-reduces to A.

Proor. See Proposition 1in [3]. The main difference to this setup is the signature,
and this plays no role in the proof. -

Now, we can show &,(4) ~ &, (4) for SK-combinatory 4 whenever ¢ ~ y.

LemMa 3.30. Let F = (2. @. &) be a T-evaluation, ~ a congruence on 7, and @
and y assignments into £ with ¢ ~ y. For every SK-combinatory formula A, we
have &,(A) ~ &,(A).

Proor. The proof is by induction on the SK-combinatory formula 4. If 4 is
a variable X, we have &,(X) = p(X) ~ w(X) = &,(X). If 4 is closed (e.g.. a
constant in X or a combinator), then &,(4) = &, (A4). so certainly &,(4) ~ &, (A4).
Finally, if 4 is an application of two SK-combinatory formulae F and B, then by
the inductive hypothesis we have &,(F) ~ &, (F) and &,(B) ~ &,(B). Since ~
respects application, &,(FB) = &,(F)@%,(B) ~ &,(F)@&,(B) = &,(FB). -

We can use this result to show the same property holds for all formulae.

LemMa 3.31. Let F = (2.@. &) be a Z-evaluation, ¢ and w assignments into 7
with o ~ y.and ~ a congruence on 7 . For every formula A, we have &,(A) ~ &,(A).

PrOOF. Let A € wif,(X) for some type @. By Lemma 3.29 there is an SK-
combinatory formula A’ that f-reduces to 4. By Remark 3.19 and Lemma 3.30,
we have &,(4) = &,(4') ~ &,(4") = &,(A). 4

REMARK 3.32 (Correspondence with logical relations). Lemma 3.31 isessentially
an instance of the “Basic Lemma” for logical relations (Lemma 8.2.5 in [44]). In
fact, ~ is functional, iff ~ is a logical relation over the applicative structure. If ~
is not functional, it still satisfies this “Basic Lemma” property, which makes it a
pre-logical relation in the sense of [31].

DEFINITION 3.33 (Quotient X-evaluation). Let # = (2, @. &) be a X-evaluation,
~ a congruence on Z and let (2~,@") be the quotient applicative structure of
(2. @) with respect to ~.

For each A € 9, we choose a representative A* € A. So, [A*]. = A. Note
that [a]*, ~ a for every a € &,. For any assignment ¢ into 7 /., let ©* be the
assignment into _# given by ¢*(X) := ¢(X)*. Note that ¢ = 7. o ¢*. So we can
define &" as . 0 &+, and call 7 [ := (2™, @~ . &™) the quotient X-evaluation of
7 modulo ~. (By Lemma 3.31, the definition of €~ does not depend on the choice
of representatives.)

This definition is justified by the following theorem.

THEOREM 3.34 (Quotient X-evaluation theorem). If 7 is a T-evaluation and ~ is
a congruence on £, then ¢ [ is a Z-evaluation.

PrOOF. We prove that &~ is an evaluation function by verifying the conditions
in Definition 3.18. For any assignment ¢ into the quotient applicative structure, let



HIGHER-ORDER SEMANTICS AND EXTENSIONALITY 1043

* be the assignment with ¢ = 7., o ¢* as in Definition 3.33. First, we compute
Equ~|7 = (nwo0&,) o =T 08y |,, =T 0™ = . Since 7. is a homomorphism
we have

&, (FA)

~ (&, (FA))
~(g<p*( )@gw*(A))
(& (F) @ 1 (& (A))
= %’J(F)@N%J(A).
If ¢ and y coincide on free(4). then &7 (4) = [Ep(A)]~ = [€,-(4)]~ = &, (4)

since this entails that ¢* and w* coincide on free(4) too (as we have chosen par-
ticular representatives for each equivalence class). Finally, &, (4) = [€,-(4)]~ =

[5,- (4] )]~ = &5 (4] ). 1
DEFINITION 3.35 (Term evaluations for £). Let cwff ()| p be the collection of

closed well-formed formulae in f-normal form and A@”B be (AB)l 5 For the
definition of an evaluation function let ¢ be an assignment into cwff (Z)l e Note

~

Il
3 3 3

that o := cp‘ free(A) is a substitution, since free(A) is finite. Thus we can choose

gl(a) = U(A)lﬂ. We call 72(3)" = (cwﬂ‘lﬂ,@ﬂ,%ﬂ) the B-term evaluation
for Z.

Analogously, we can define 7€(X)" : = (cwfl] gy - @P1.EPT) the fy-term evalua-
tion for X.

The name term evaluation in the previous definition is justified by the following
lemma.

Lemma 3.36. 522" is a S-evaluation and 7€(2)™ is a functional Z-evaluation.
PrOOF. The fact that (cwff (Z)l P @?) is an applicative structure is immediate:
For each type av. cwfT, (Z)] P is non-empty (by the assumption in Remark 3.16) and
@ ewify (E)lﬂ x cwify, (Z)lﬂ — cwily (Z)lﬂ.
We next check that £/ is an evaluation function.
(1) E5(X) = @l een(X) = 0(X).

(2) &/ respects application since o (FA)| g = (o(F)| /;U(A)l /f)l y Where ¢ =

(p|free(FA)'

(3) éﬁf(A) = (90|free(A)(A))lﬁ = (Lp/|free<A>(A))lﬂ = %f/ (A) whenever ¢ and ¢’
coincide on free(A4).

(4) gﬁf(A) = O'(A)lﬂ = O-(Alﬁ)lﬁ = %q'f(Alﬂ) where g = (P‘free(A)'

A similar argument shows that 7~ %(Z)ﬂ " is a T-evaluation. Also, one can show
TE (Z)'g " is functional using an argument similar to Lemma 3.14 since X is infinite
at all types by Remark 3.16. (Alternatively, one can simply apply Lemma 3.14
and Theorem 3.13 to note that the applicative structure cwif (%) /=,, 1s functional.
The applicative structure cwiT (Z) /=, 1s isomorphic to the applicative structure
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(cwil (Z)l e @P"). One can easily show that functionality is preserved under iso-
morphism.) 4

REMaRrk 3.37. Note that I~ g(Z)/f is not a functional X-evaluation since, for in-
stance, for any constant 4, _,; € X

(AX,.h,_sX)@'C, = h@’C
forall Cin 7&,(2)" but AX.hX # h.

REMARK 3.38. One can show that an evaluation function & for an applicative
structure (2, @) is uniquely determined by its values € (¢) on the constants ¢ € X
and its values & () and & (K) on the combinators S and K. When the applicative
structure is functional, even the values of each & (S) and & (K) are determined, so
that & is uniquely determined by its values & (c) for ¢ € Z.

DEFINITION 3.39 (Homomorphism on -evaluations). Let 7! := (2! . @'.&")
and 72 := (2?% @?. &) be Z-evaluations. A X-homomorphism s a typed function
k: ' — 2?2 such that k is a homomorphism from the applicative structure
(2'.@") to the applicative structure (22, @*) and « (&) (4)) = &2,,(4) for every
A € wff,(X) and assignment ¢ for #!.

3.3. X-models. The semantic notions so far are independent of the set of base
types. Now, we specialize these to obtain a notion of models by requiring specialized
behavior on the type o of truth values. For this we use the notion of a Z-valuation
which gives a truth-value interpretation to the domain &, of a X-evaluation con-
sistent with the intuitive interpretations of the logical constants. Since models are
semantic entities that are constructed primarily to make a statement about the truth
or falsity of a formula, the requirement that there exists a X-valuation is perhaps the
most general condition under which one wants to speak of a model. Thus we will
define our most general notion of semantics as X-evaluations that have Z-valuations.

DEFINITION 3.40. Fix two values T # F. Let # := (2.@.&) be a Z-evalua-
tion and v: 9, — {T.F} be a (total) function. We define several properties that
characterize logical operators with respect to v in the table shown in Figure 2.

prop | where
£.(n) | n€ Dy v(n@a) =T iff

£v(d) [d€Domoso | v(d@a@b) =T iff
)

holds when | for all |
F aeD,
Torv(b) =T a.be g,
Tandv(b) =T | a,be 2,
F

v

<
Y

<

(c) CE Doproo | v(c@a@b)=T iff
= (i)

<
S
L | L
Lirele
]Iy

[

1 € Dyo—o—o v(i@a@b) =T iff

(

(

( orv(b) =T a.be 9,
€€ Do—oo ve@a@b) =T iff wv(a)

(

(

(

i~

(e (b) a,be g,
Ev(n) T € Dyoo)no | V@) =T iff Vac Zov(f@a)=T | f€ oo
£2(0) | 0 € Dlgo)no | V@) =T iff Ja€Too(f@a)=T | f€ Du—o
£2(q) | 9 € Dasa—o | vig@a@b) =T iff a=b a,be g,

FIGURE 2. Logical properties in -models.

DEFINITION 3.41 (2-model). Let .7 := (Z.@. &) be a -evaluation. A function
v: D, — {T.F} is called a X-valuation for # if £_(£(-)) and £, (£(V)) hold,
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and for every type o £2(£ (I1*)) holds. In this case. # := (Z.@.&.v) is called a
X-model.

For the case of (the optional) primitive equality, i.e., when =*¢ %, _.,_., for all
types a, we say ./ is a T-model with primitive equality if £&(€ (=2)) holds for every
type a.

We say that ¢ is an assignment into . if it is an assignment into the underlying
applicative structure (2, @). Furthermore, ¢ satisfies a formula A € wif,(X) in .4
(wewrite £ =, A)ifv(&,(A4)) = T. We say that 4 is validin .# (and write # |= A)
if # =, A for all assignments ¢. When A4 € cwif,(2), we drop the reference to the
assignment and use the notation .# |= A. Finally, we say that .Z is a ¥-model for a
set @ C cwif,(X) (we write # = @) if £ |= A forall 4 € ©.

AX-model Z := (Z.,@.%.v)iscalled functional [full, standard)if the applicative
structure (2. @) is functional [full, standard]. Similarly, ./ is called y-functional
[E-functional] if the evaluation (2, @, &) is n-functional [E-functional]. We say A
is a X-model over a frame if (&, @) is a frame.

REMARK 3.42 (Adding primitive equality). In the definition of £-model above,
the addition of property £2 (&€ (=)) addressing the case of primitive equality above
has a purely practical motivation: calculi with a primitive treatment of equality,
see for instance [10, 11], may provide a more effective approach to equational
reasoning in higher-order logic than the exclusive use of Leibniz equality. Therefore
we enrich our theory to automatically also address the situation where (always built-
in) Leibniz equality and (optional) primitive equality are simultaneously present
in the language. The generalization to primitive equality is less trivial than the
generalization to other (optional) primitive logical connectives such as A or =.
This is the main reason why we built primitive equality directly into our theory
while we omit other logical primitives (cf. also Remarks 3.47 and 6.9).

LeMMA 3.43 (Truth and falsity in 2-models). Let 4 := (Z.@.&.v) be a Z-
model and  an assignment. Let T, :=NPo.P N =P andF, := —T,. Thenv(&,(T,))
=Tandv(&,(F,)) =F.

PROOF. Let P be a variable of type o. We havev(&,,(T,)) = T. iff (&, (PV-P)) =
T for every assignment . The properties of v show that this statement is equivalent
tov(e(P)) = Torv(e(P)) = F, which is always true since v maps into {T,F}. Note
further that v(&,(F,)) = F since v(&,(T,)) = T. =

REMARK 3.44. Let # := (2, @.&.v) be a T-model. By Lemma 3.43, &, must
have at least the two elements &, (T,) and &, (F,). and v must be surjective.

REMARK 3.45. In contrast to the case of Henkin models, Definition 3.41 only
constrains the functional behavior of the values of the logical constants with respect
to v. This does not fully specify these values since

e ./ need not be functional,
e and there can be more than two truth values.

We will now introduce semantical properties called g, #, f, and b, which we will
use to characterize different classes of -models.

DEFINITION 3.46 (Properties q. 7, &, f and b). Given a Z-model .Z = (2, @. &,
v). we say that .# has property
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iff for all « € F there is some q% € Dy_.a—, such that £2(q*) holds.

iff A is y-functional.

iff 4 is &é-functional.

iff A/ is functional. (This is generally associated with functional extensionality.)
iff &, has at most two elements. By Lemma 3.44 we can assume without loss
of generality that &, = {T.F}, v is the identity function. &,(7,) = T and
&,(F,) = F. (This is generally associated with Boolean extensionality.)

T3 2

REMARK 3.47 (Choice of logical constants). The work presented in this article is
based on the choice of the primitive logical constants —, V, and T1*. We have
also introduced shorthand for formulas constructed using A, =, <, and existential
quantification. One can (easily; cf. Lemma 3.48) verify that in any E-model /Z =
(Z.@, &.v), each of the properties £A(E(AX, Y, X AY)), Lo (81X, Y, X = Y)),
Lo (E(QX, Y X & Y)) and £2(& (APs— -3 Xa-PX)) (for each type ) hold with
respect to v. In this sense, our choice of logical constants and shorthand for
other logical constants is sufficient. However, Leibniz equality Q“ will only satisfy
£2(&(Q%)) for each type « iff the model satisfies property q (cf. Remark 3.52 and
Theorem 3.63).

On the other hand., in the absence of extensionality, one can gain some (limited)
expressive power by including extra logical constants such as A in the signature.
This is the case since there may be several objects in ¢ € Z,_,,_,, such that £,(c)
holds. So, one could have a £-model .# = (2, @. & .v) (where A is also in X) such
that £, (£ (A)) holds, but &(A) # &€ (41X, Y,.—(=X VvV =Y)). We will not investigate
this possibility here.

Our choice of logical constants differs from Andrews’ choice [6] who considers
primitive equality as the only logical primitive from which all other logical operators
are defined using the definitions in Figure 3. For the sake of clarity, we write
q* for = when = is not being written in infix notation. For Henkin models,
the definitions in Figure 3 are appropriate. However, without extensionality, the
situation is quite different. Suppose . = (2. @. &) is a Z-evaluation where =*c X
for every type a. Letv : @, — {T,F} be a function such that £ (& (=%)) holds for
each type a.. The fact thatv(&(T,)) = T follows directly from £2707¢(& (=°7277))
and reflexivity of (meta-level) equality. Unfortunately, this is the last definition
which is clearly appropriate without further assumptions. So long as &, has more
than one element, one can show v(€(F,)) = F. So, let us explicitly assume &,

Tu = qu —_0—0—0 qu

F, = (AX,.T,) =27 (AX,.X)

To—o0 = qDFa

I~ = q*°(AX,.T,)

Nosoo = "Xy You(AGy—srp—0GT,T,) =07070)=0 (G, _,.GXY)
Soomo 1= A, Yo (X =2 (X A Y))

Vosooso = AX, Yo.ﬁ(—!X A —\Y)

T '= APy_oa(TI% A X0 (PX))

FIGURE 3. A definition of logical constants from equality in
Henkin models.
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has more than one element, which is anyway met by £-models (cf. Remark 3.44).
Next, we investigate whether £_(€(=)) holds. Leta € Z, be given. By £ (£ (=°)).
we know v(& (=°)@& (F,)@a) = T is equivalent to € (F,) = a. So. if v(& (=)@
&(F,)@a) = T, then v(a) = v(&(F,)) = F. For the converse, suppose v(a) = F.
This, in general, does not imply &(F,) = a. However, if we assume a is the
unigue member of &, such that v(a) = F, then we can conclude &(F,) = a. In
particular, if &, has only two elements, then » must be injective and we can conclude
& (F,) = a. So, Boolean extensionality is required to ensure that £_(&(=)) holds
for this definition of —.

We now investigate whether £%(& (I1*)) holds for TI* defined as in Figure 3.
Let f € 9,_, be given. Suppose v(&(=*"°)@& (AX..T,)@f) = T. Then, by
£270(€(=279)), we know & (1X,.T,) = f. This does guarantee & (T,) = f@a and
hence v(f@a) = T for every a € &,. However, showing the converse requires that
A is functional (i.e., strong functional extensionality is given). Suppose v(& (=)@
& (41X, T,)@f) = F. We can conclude & (1X,.T,) # f, but this is of little value. If 7
is not functional, then these may be different representatives in &, _,, of the same
function. If # is functional, there must be some a € 9, such that €(T,) # f@a.
However, this still does not imply v(f@a) = F. If @, has only two elements, then the
factsthat& (T,) # f@aand &(T,) # & (F,) imply & (F,) = f@a, hence v(f@a) = F.

Similar observations apply to the other definitions in Figure 3. These definitions
do show that at least T, and F, are definable from primitive equality (so long as Z,
has at least two elements). Furthermore, if &, has exactly two elements —is definable
from primitive equality. We conjecture that this is as much as one can define in terms
of primitive equality without extensionality assumptions. That is, we conjecture
that without assuming Z, has two elements, there may be no object n € &, _.,, such
that £_(n) holds. Furthermore, we conjecture that without assuming functionality
and that 9, has two elements, there may be no object d € 9,_.,_., such that £, (d)
holds, and there may be no object 7 € &, _.,)_., such that £ (x) holds.

The next lemma formally verifies that £, (£ (1X, Y,.X < Y)) holds with respect
to the valuation of a £-model, as indicated in the remark above.

Lemma 3.48 (Equivalence). Let # := (Z.@.%.v) be a -model, ¢ an assign-
ment into M, and A, B € wif,(Z). v(&,(4 < B)) =T iff v(&,(4)) = v(&,(B)).

PrROOF. Suppose v(&,(4 < B)) = T. This implies v(&€,(—~4 V B)) = T and
v(&,(-BVA)) =T. Ifv(&,(A4)) = T. thenv(&,(~4VB)) = Timplies v(&,(B)) = T.
s0 0(&,(A4)) =T = v(&,(B)). If v(&,(A4)) = F. then v(&,(~B V A)) = T implies
v(&,(B)) =F.sov(&,(4)) =F = v(&,(B)). Since these are the only two possible
values for v(&,(A4)). we have v(&,(4)) = v(&,(B)).

Suppose v(&,(A4)) = v(&,(B)). Either v(&,(4)) = v(&,(B)) =Torv(&,(4)) =
v(€,(B)) =F. An easy consideration of both cases Verlﬁes v(&,(=4V B)) =T and
v(&,(~BV A)) = T. Hence, v(&€,(4 < B)) =T. -

We next define classes of X-models in which certain properties hold. These classes
are denoted by 9, where x € {f. By, pE. Bf. pb. fnb, pEb, ff6}. The subscript [ is
always included to emphasize that f-equal terms are interpreted to be identical
elements in all models (cf. Remark 3.19). The subscripts 7, &, f and b indicate when
the corresponding properties must hold (cf. Definition 3.46). Note that we are not
including property q as an explicit subscript. The only Z-models we need to consider
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which do not satisfy property q are term models. It will turn out (cf. Theorem 3.62)
that we can obtain a model satisfying property q from a model that does not by taking
a quotient. However, this may not preserve properties & or f. Consequently, we omit
q as a subscript and define the sets .. (for x € {B. fn. BE. Bf. Bb. pnb. BEb, Bib}) so
that every model in 901, satisfies property q. (This choice will be discussed further
in Remark 3.52.)

DEFINITION 3.49 (Higher-order model classes). We will denote the class of -
models that satisfy property q by 91s. and we will use subclasses of 95 depending
on the validity of the properties #, &, f, and b. We obtain the specialized classes
of X-models Mg, Mgz, Mps, Mgy, Mgye, NMpep, and Mg by requiring that the
properties specified in the index are valid.

If primitive equality is in the signature, i.e., if =*€ Z,_,,—,,. then we require the
models to be £-models with primitive equality. Note that in this case property q is
automatically ensured.

We can group these eight classes in two dimensions as in Figure 4 based on the
“amount of extensionality” required.

functional

none | weak (1) | weak (&) | strong (f)
Boolean none DJT/; m/f,? Dﬁﬁé f)ﬁ/;f
b | Mpo | Mgy Dgeo QU

FIGURE 4. Extensional model classes.

DEFINITION 3.50 (2-Henkin models). A Z-Henkin model is a model 4 over a
frame with .# € Myg;,. We denote the class of all Z-Henkin models by $. (Such
models are called general models in [2] and [6]. We avoid this terminology here since
we consider models which are more general than these.)

DEFINITION 3.51 (E-standard models). A X-standard model is a *-Henkin model
that is also full (i.e., a model .# € My, over a standard frame). The class of all
Y-standard models is denoted by 6F.

REMARK 3.52 (Property q). The purpose of property q is to ensure that for all
types « there is an object q* in Z, ., representing meta equality for the do-
main Z,. This ensures the existence of objects representing unit sets {a} for each
a € 9, in the domains &,_,,. which in turn makes Leibniz equality the intended
equality relation. This is because membership in these unit sets can be used as
an appropriately strong criterion to distinguish between different elements of &Z,,.
This aspect is discussed in detail by Peter Andrews in [2]. He notes that Leon
Henkin unintentionally introduced in [26] a class of models which need not satisfy
property q instead of the class of Henkin models in the sense above. As Andrews
shows, a consequence is that such a model may fail to satisfy the principle of strong
functional extensionality (cf. Definition 4.5) given by the formula

VF,_.VG,_.(VX,.FX = GX)=F ="' G
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even though the model (as a model over a frame) is functional. Andrews fixed
this problem by introducing property q. Here, we have followed this by requiring
property q in all our model classes 91...

Now let us extend the notion of a quotient evaluation to X-models.

DEFINITION 3.53 (Z-model congruences). A congruence on a X-model # = (Z,
@, & .v) is a congruence on the underlying X-evaluation (27, @, & ) such that v(a) =
v(b) foralla,b € &, witha ~ b.

DEFINITION 3.54 (Quotient -model). Let.Z = (2, @, &.v) be a =-model, ~ be
a congruence on .Z, and (Z~, @™, &") be the quotient Z-evaluation of (Z, @. &)
with respect to ~ (cf. Definition 3.33). Using the notation for representatives A* € A
for A € @7 as in Definition 3.33, we define v™: & — {T.F} by v~ (A) := v(A")
for every A € 9. (Since v(a) = v(b) whenever a ~ b in Z,, this definition
of v™ does not depend on the choice of representatives and v™([a]~) = v(a) for
everya € Z,.) Wecall Z /. := (Z~,@~,&"~,v™) the quotient Z-model of .# with
respect to ~.

THEOREM 3.55 (Quotient -model theorem). Let # = (Z.@.&.v) be a X-
model and ~ be a congruence on M . The quotient A /.. is a Z-model.

Furthermore, if for every type o, =€ X, and we have v(€ (=%)@a@b) = T iff
a ~ b forevery a,b € D, then A /.. is a Z-model with primitive equality.

PrOOF. We check the conditions of Definition 3.41, again using the A* notation
for representatives. To check condition £-(£~(-)) for v™, for all A € 2~ we
need to show that v™(&~(-)@~A) = T iff v~(A) = F. Let A € ;> be given.
Since . is a E-model we have v(& (-)@A*) = Tiff v(A™) = F. Since [A*]. = A
and [&(-)@A ]~ = &~ (-)@~A. we have v~ (£~ (-~)@~A) = T iff v~(A) = F.
Checking condition £\, (€~ (V)) for v™ is analogous.

To check condition £2(&~(I1*)) for v™. suppose we have G € Z” . For every
Aec g v (G@~A) = v(G"@A"). So.if v™(G@~A) =T for every A € ”, then
v(G*@a) = v(G*@[a]%,) = T for every a € Z,,. and we conclude v(& (I1*)@G*) =
T. Hence, v~ (&~ (I1*)@~G) = T. Conversely, suppose v™ (€~ (I1*)@G) = T.
Then v(& (IT*)@G*) = T and hence v~ (G@A) = v(G*@A™*) = Tforevery A € Z.

Suppose primitive equality is in the signature and v(& (=*)@a@b) = Tiffa ~ b
for every a,b € 9,. To verify £2(£€~(=*)) holds for v™, we simply note that
0™ (&~ (=)@ A@~B) = T. iff v(£ (=*)@A*@B*) = T, iff A* ~ B*,iff A= B.

We can define properties of a congruence analogous to those defined for models
in Definition 3.46.

DEFINITION 3.56 (Properties 7, &, f and b for congruences). Given a X-model

M = (T,@,%,v) and a congruence ~ on ./, we say ~ has property

n: iff &,(A) ~ &,(Aly,) for any type o, 4 € wif,(X). and assignment ¢.

& iff for all e p € . M.N € wify(Z), assignment ¢, and variables X,.
&o(AXaMp) ~ &,(1Xa.Ng) whenever &, x)(M) ~ &, x)(IN) for every
acg,.

f. iff ~ is functional.

b: iff 2, has at most two equivalence classes with respect to ~. (By Remark 3.44
there are always at least two.)
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REMaRrk 3.57. It follows trivially from reflexivity of congruences that if a model
satisfies property #, then any congruence on the model satisfies property #. Similarly,
if a model has only two elements in &,, then &, can have at most two equivalence
classes with respect to any congruence ~. So, if a model satisfies property b, then
any congruence on the model satisfies property b. This is not true for properties &
or §. For an example, we refer to the functional model (satisfying property f, hence
property &) constructed by Andrews in [2]. Using the results we prove below, one
can show Leibniz equality must induce a congruence failing to satisfy properties &
and f on this functional model.

LeMMA 3.58. Let M be a T-model, ® C cwil,(X), and ~ be a congruence on A .
We have M [. = @ iff # = ®. Furthermore, if * € {n,&.§,b} and ~ satisfies
property x, then M /.. satisfies property .

PrROOF. Let A, € ®. Since Aisclosed, # = A.iffv(&(A4)) = T, iff o~ (£~ (A4))
T.iff #/. =A. So, 4 EQiff #/. E .

Suppose ~ satisfies property 7. Let A € wif,(X), and an assignment ¢ into ./Z /..
be given. Let ¢* be a corresponding assignment into .# (cf. Definition 3.33). Since
~ satisfies property 5, we know &, (4) ~ &,-(A|p,). Taking equivalence classes,
we have &7 (4) = &, (Al ).

Suppose ~ satisfies property ¢. Let M. N € wiff4(Z). a variable X, and an
assignment ¢ into .Z /.. be given. Again, let ¢* be a corresponding assignment
into 4. Suppose ?&A/X](M) = 8;[A/X](N) for every A € @°. This means
Epr (a0 (M) ~ Epu (p/x)(N) for every A € 2. For any a € Z,. using
Lemma 3.31, we know

Epr tayx1 (M) ~ & (ps 31 (M) ~ Epe (p+ /3 (N) ~ & 1arx7(N)

where A € 27 is the equivalence class of a. Since ~ satisfies property &, we
know that &,-(AX.M) ~ &,-(AX.N). Taking equivalence classes, we see that
&y (AX.M) = &€, (AX.N).

If ~ is functional (satisfies property §), we know .Z /. is functional (satisfies
property f) by Theorem 3.13.

Finally, if ~ satisfies property b, then clearly &, has only two elements. So, .# /..
satisfies property b. -

DEFINITION 3.59 (Congruence relation ~). Let # = (2, @. &, v) be a -model.
Let 9% € Dy a0 be £(Q%), i.e., the interpretation of Leibniz equality at type a.
We define a ~ b in Z, iff v(q®*@a@b) = T.

Before checking ~ is a congruence, we first show that it is at least reflexive.

LemMA 3.60. Let 4 be a X-model. For each type o and a € D, we have a ~ a.

ProoF. We need to check v(&(Q%)@a@a) = T. Let X, be a variable of type o
and ¢ be some assignment with ¢(X) = a. Let r := &,(APs—0.~(PX) V PX)).
For any p € 9,_.,, since & is an evaluation function, we have

l)(l’@p) = U(ggo[p/P](_'(PX) 4 PX))
As  is a Z-model. we have v(&,,[,/p|(—(PX) V PX)) = T since either
U(ggo[p/P](PX)) =T or U(gg,[p/p](_'(PX))) =T.
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So, again since .Z is a Z-model, v(€ (I1*~?)@r) = T. By the definitions of r and
=% we have v(&,(X =% X)) =T. As X =% X is a f-reduct of Q* XX, we have
v(&,(Q*XX)) = T as well. Using p(X) = a, we see that v(& (Q*)@a@a) = T.

In order to check that ~ is a congruence, it is useful to unwind the definitions to
better characterize when a ~ b fora, b € 9,.

LemMA 3.61 (Properties of ~). Let # be a Z-model. For each type o and a,b €
D, the following are equivalent:

(1) a~b.

(2) For all variables X, and Y, and assignments ¢ such that ¢(X) = a and

©(Y) =b. we have o(&,(X =* Y)) =T.

(3) Forevery p € Dy_.,, v(p@a) = T implies v(p@b) = T.

(4) Forevery p € Do_.0. v(p@a) = v(p@b) .

PRrROOF. At each type a, let % € D,_.a—, be the interpretation & (Q®) of Leibniz
equality. By definition, a ~ biff v(q*@a@b) = T.

To show (1) implies (2), suppose a ~ b and ¢ is an assignment with ¢(X,) = a
and ¢(Y,) = b. Since v(q*@a@b) = T. we have v(&,(Q*“XY)) = T. Since &
respects f-equality (cf. Remark 3.19). we have v(&, (X =* Y)) =T.

To show (2) implies (3). suppose v(&,(X =" Y)) = T whenever ¢ is an as-
signment with ¢(X) = a and (YY) = b. Let X and Y be particular distinct
variables of type o and ¢ be any such assignment with ¢(X) = a and ¢(Y) = b.
Let p € D,_., with v(p@a) = T and a variable P,_,, be given. By assumption,
(&, (VPa—on(PX) V (PY))) = T. Since v(&,,/p)(PX)) = v(p@a) = T. we have
v(p@b) = v(&,p/p(PY)) =T.

To show (3) implies (4), let p € D,_,, be given. If v(p@a) = T, then we have
v(p@b) = T by assumption. So, v(p@a) = v(p@b) in this case. Otherwise, we
must have v(p@a) =F. Let q := &,(AXs.~(Pa—o X)) where ¢ is some assignment
with ¢(P) := p. Since . is a model, v(q@a) = v(&(-)@(p@a)) = T. Applying
the assumption to q. we have v(q@b) = T and so v(&(-)@(p@b)) = T. Thus.
v(p@b) = F and v(p@a) = v(p@b) in this case as well.

To show (4) implies (1), suppose v(p@a) = v(p@b) for every p € D, _.,. In par-
ticular, this holds for p := q*@a € D,_.,. Since v(q*@a@a) = T by Lemma 3.60,
we must have v(q*@a@b) = T. Thatis, a ~ b. -

THEOREM 3.62 (Properties of /4 /.). Let # be aZ-model. Then ~ is a congruence
relation on the model # and A [., satisfies property q. Furthermore, if for every type
a, =€ X, and v(&(=*)@a@b) = T iff a ~ b for all a,b € D, then M ., is a
X-model with primitive equality.

Proor. We first verify that ~ is an equivalence relation on each &,. Reflexivity
was shown in Lemma 3.60. To check symmetry and transitivity we use condition
(4) in Lemma 3.61. For symmetry, let a ~ bin 2, and p € D,_., be given. So,
v(p@a) = v(p@b). Generalizing over p, we have b ~ a. For transitivity, let a ~ b
and b ~ cin 9, and p € D,_., be given. So, v(p@a) = v(p@b) = v(p@c).
Generalizing over p, we have a ~ c.

We next verify that ~ is a congruence. Supposef ~ gin ,_ganda ~ b € Z,.
To show f@a ~ g@b we use condition (3) in Lemma 3.61. Let p € @5, with
v(p@(f@a)) = T be given. Let ¢ be an assignment with p(Pp_,) = p. p(X,) = a
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and ¢(G,_3) = g for variables P, X and G. We can use Lemma 3.61(3)
with &,(AF,_p(P(FX))) and f ~ g to verify that v(p@(g@a)) = T. Using
Lemma 3.61(3) with &,(1X,.(P(GX))) and a ~ b verifies v(p@(g@b)) = T. So,
f@a ~ g@b.

It remains to check that v(a) = v(b) whenever a ~ bfora,b € &,. Leta ~ b
in 9, be given. Applying Lemma 3.61(4) to €(1X,.X) € Z,_, we have v(a) =
(& (X, X)@a) = v(&(1X,.X)@b) = v(b) as desired. So, ~ is a congruence
relation on ./ .

Now, we show ./ /., satisfies property q. At each type o, let g € D, —.o—, be the
interpretation & (Q®) of Leibniz equality. To check property ¢, we show that [q%]..
is the appropriate object in &” ., ., foreacha € 7. Let a,b € Z, be given. Note
that [a]. = [b] is equivalent to a ~ b.

Also, v~ ([q*]. @~ [a].@"~[b].) = T is equivalent to v(q®*@a@b) = T. So, we
need to show that v(q®*@a@b) = T if and only if a ~ b. But this is precisely the
definition of ~.

The statement for primitive equality follows immediately by Theorem 3.55.

Now, we know that when one takes a quotient of a model .#Z by ~, one obtains
a model satisfying property q. It is worthwhile to note the following relationship
between ~ and property q.

THEOREM 3.63. Let #/ = (D . @, &, v) be a Z-model. The following are equivalent:

(1) A satisfies property q.

(2) For any congruence ~ on M , type o, and a,b € 9,, a ~ b implies a = b.

(3) Forany type a, and a,b € D, a ~ b implies a = b.

(4) For any type o, £2(€(Q%)) holds for v.

ProoF. To show (1) implies (2), suppose ./ satisfies q. ~ is a congruence on ./,
anda ~ bfora,b € 9,. Let q* € D,_.o—, be the object at type o guaranteed to
exist by property q. Since a ~ b, we have (q®*@a@a) ~ (q®@a@b). By property q.
we have v(q*@a@a) = T (since a = a). Since ~ is a congruence on the model, we
have v(q®*@a@b) = T. By property q. this means a = b.

Since ~ is a particular congruence on .Z, we know (2) implies (3).

To show (3) implies (4), we need to show £2(&(Q%)) holds for each type a. By
the definition of ~, for every a,b € Z,, we have v(& (Q*)@a@b) = T. if and only if
a ~ b, iff a = b. The last equivalence holds by our assumption that a ~ b implies
that a = b, and by Lemma 3.60.

For each type a. £2(£(Q%)) implies €(Q®) is the witness required to show
property q. So, we know (4) implies (1). =

REMARK 3.64 (Congruences for X-models with primitive equality). Theorem
3.63 shows that once we have a model .# which satisfies property ¢, there are no
nontrivial congruences on .#. Hence, there are no nontrivial quotients of .Z. In
particular, the only possible congruence for a Z-model with primitive equality is
the trivial congruence given by the identity relation =. Consequently, the quotient
construction in the case of a Z-model with primitive equality leads to essentially the
same model again. We therefore do not consider quotients of models with primitive
equality.

3.4. X-models over frames. In this section, we define the notion of an isomor-
phism between two models and show every functional £-model is isomorphic to a
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model over a frame. In particular, this shows that the model class g, is simply
the closure of the class $ of Henkin models under isomorphism of X-models.

DEFINITION 3.65 (2-model homomorphism/isomorphism). Let #Z! = (2!, @'.
gl oY) and 2% = (2%, @*. &2, v?) be T-models. A homomorphism from 4" to
A is a typed function k: ! — 2?2 such that  is a homomorphism from the
evaluation (', @', &) to the evaluation (2%, @?.&?) and v'(a) = v?(k(a)) for
everya € 9.

A homomorphism i from . to .#? is called an isomorphism iff there is a homo-
morphism j from .#? to #" where j,: 2 — 2] is the inverse of i, : I} — P2
at each type a. Two models are said to be isomorphic if there is such an isomor-
phism. (It is clear from the definition that this is a symmetric relationship between
models.)

REMARK 3.66. The class $) of Henkin models is not closed under isomorphism
of models. Neither is the class &% of standard models. This is because Henkin
and standard models require that the domains &, _.g consist of functions from
F (D4: Zp). We may, however, take a given Henkin model and appropriately mod-
ify it to obtain an isomorphic model that is not in the class of Henkin models. For
example. we may choose 7, 1= { 0. 1) | f € Da—p } and define @ appropri-
ately (cf. Example 5.6 for a similar construction).

LemMma 3.67. Let 4" and M* be isomorphic E-models.

(1) For any set of sentences ®, #' |= @, iff #* = .

(2) If £V is a Z-model with primitive equality, then M* is a Z-model with primitive

equality.

(3) If* € {q.n.&.§. b} and 4" satisfies *, then M* satisfies *.

In particular, each model class M, is closed under isomorphism of models.

PROOF. Let i be a homomorphism from ' = (2!, @'.&!.v!) to 4 = (22,
@?.&2,v%) and j be its inverse.

Let @ be a set of sentences with.#! |= ®. Thatis, forevery 4 € ®,v!'(£!(4)) = T.
So.forevery 4 € @, v*(£2(A4)) = v'(j(&*(A4))) = v (£'(A4)) = T (since A is closed,
we can ignore the variable assignment). This shows .Z? |= ®; the other direction is
obtained by switching indices.

Supposeq® € !, issuch that £2(q%) holds for v!. We show that £2(i(q®))
holds for v?. Given a,b € Z2. We have a = b, iff j(a) = j(b). iff v! (@' j(a)@'
j(b)) = T.iff v*(i(q*@' j(a)@' j(b))) = T. iff v’ (i (q*)@*a@’b)) = T.

In particular, suppose . is a -model with primitive equality. Then. we have
£2(g1(=)) for v! at each type a.. So. £2(i(£'(=2))) holds for v? at each type a.
Since i (&1(=*)) = &?(=2), we know .#? is a Z-model with primitive equality.

Next, suppose .# ! satisfies property q. Let a be a type and q® be the witness for
property q in .#! at a. That is, £2(q®) holds for »'. We have shown £2(i(q%))
holds for v?. Hence, .#7 satisfies property q.

Suppose .# ! satisfies property #. To show .#? satisfies 7, let A € wif,(2) and an
assignment ¢ into .#? be given. We compute

g(A) = (i 0 j)(&;(4) = i(&],,(4))

= i(gjlmp(Alﬂq)) =( Oj)(gé(A\Lﬂq)) = %ﬁ(Algq)~
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So, .#? satisfies property 7.

M satisfies ¢, let M, N € wif3(Z). a variable X,. and an assignment y into .#>
be given. Suppose &2 7 1b/X] (M) = %j‘[b/x] (N) forallb € @2. Foranya € 9/}, we
compute

Ejoy 1o/ 1 M) = J(EL oy 116011 (M) = J(E ] i) 3y (M)
](%5[1 /X](N)) = gjloq/.[a/)( (N).
(AX.N). Finally, we

Since .#! satisfies property &, we know &1 (IX.M) =

Joy JO‘//
compute

g20X.M) =i(g],,0X.M)) =i(&l,, (AX.N)) = E2(LX.N).

So. .? satisfies property ¢.

Suppose .#! satisfies property f and we are given f.g € 2?2 p for types a and
B. Suppose further that f@’b = g@?b for every b € 2. It is enough to show
Jj(f) = j(g). This follows from property fin .2 if we can show j(f)@'a = j(g)@'a
for every a € 7. So. let a € I be given. We finish the proof by computing

jifH@'a=jf@'(joi)a) = jf@*(a))
= j(g@’i(a) = j(g@'(joi)(a) = j(g)@'a.

Finally, if ! satisfies property b, then & has two elements. Sincei,: I} — 2?2
has inverse j,, &> must also have two elements. Thus, .#? satisfies property b. -

THEOREM 3.68 (Models over frames). Let #/ = (Z,@.& ., v) be a T-model which
satisfies property § (i.e.. M is functional). Then there is an isomorphic model M/
over a frame.

PrOOF. We define the model .#/ := (Z/ @/, &/, v/") by defining its compo-
nents.

We first define the domains & f’ for .4/ by induction on types. We simultaneously
define functions iy : F, — ZJ" and Ja: 9" — 9, which will witness that the
two models are isomorphic. At each step of the definition, we check that i, and j,
are mutual inverses. For base types a € {1,0} let Za := Z, and i, and j, be the
identity functions (clearly mutual inverses). ‘

Given two types o and f, we assume we have 2 mutual inverses i, : I, — T

and j,: ojfr — 9,, as well as QZ/{r and mutual inverses ig: Dp — QZé{r and

Jp: QZﬁ — 5. We define

gl ={f2) — D] | I € DupVacT.fa) =is(f@jala)) }.
Note that@fﬁﬂ C 9(%];9;). To define themap ip—p: Do—p — QZf " we let

io—p(f) be the function takingeach a € 23 t0ig(f@ja(a)). This choice for i, 4(f)
is clearly in 9 : by definition. To define the inverse map j,—.p: 901—» 8 s
we must use the fact that ./ is functional. Givenany f € 9 I e by definition there
is some f € Z,_p such that f(a) = is(f@ja(a)) for every a € 23". (Note that
the function f and object f are different in general.) By functionality and the fact
that the 7/ and j at types  and f are already inverses, this f is unique, since if
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ip((@ja(a)) = is(g@ja(a)) for every a € 2. then {@/a(ia(a)) = g@ja(ia(a))
forevery a € @ . Thatis, f@a = g@a forevery a € a7 . So. for every f € 90{;[;,
we define j,—4(f) to be the unigue f such that f(a) = ig(f@ja(a)). It is easy to
check that i, and j,_.s are mutually inverse.

For the applicative structure (27", @/") to be a frame, we are forced to let the

application operator @/ to be function application. That is, for every f € & I

a—p
and a € 9, f@"a := f(a). We define the evaluation function &/ simply by
&5 (A) 1= i(&jo,(A)) for every A € wif,(Z) and assignment ¢ into the applicative
structure (27, @). Since @) = Z,. we can let v/ 1= v.

We only sketch the remainder of the proof. First one can show that i and j
preserve application. One can use this fact to verify that £/ is an evaluation
function so that (/. @/, &) is a Z-evaluation, and that v/ = v is a valuation
function for this evaluation. This verifies .#/ is a model. Finally, to verify one has
an isomorphism, one can easily check the remainder of the conditions for i and j
to be homomorphisms between the models. These are isomorphisms since they are
mutually inverse on the domains of each type. o

We can conclude that Mg is simply the closure of the class of § of Henkin
models under isomorphism. Given any .# € Mgy, by Theorem 3.68, there is an
isomorphic model .#/" over a frame. By Lemma 3.67. this model ./ satisfies q. f.
and b (since .# does). Also, if primitive equality is present in the signature, by the
same lemma we know .Z/" is a model with primitive equality. That is, #/ € §.

84. Properties of model classes. In this section we discuss some properties of the
model classes introduced in section 3. Our interest is in the properties of Leibniz
equality and primitive equality.

DErFINITION 4.1 (Extensionality for Leibniz equality). We call a formula of the
form

EXT? 7 = VF, pNGe p(VX0FX = GX)=> F =7 G

an axiom of (strong) functional extensionality for Leibniz equality, and refer to the
set

EXT: := {EXT* "/ |a.pe T}

as the axioms of (strong) functional extensionality for Leibniz equality. Note that
EXTZ specifies functionality of the relation corresponding to Leibniz equality =.
We call the formula

EXT. := VA,VB,.(A< B)=A="H

the axiom of Boolean extensionality. We call the set EXT-" U {EXTZ } the axioms
of (strong) extensionality for Leibniz equality.

In Examples 5.4 to 5.8 below we give concrete models in which EXT" and
EXTiﬁﬂ fail in various ways. First, we prove relationships between properties g, b
and f and the statements EXT? and EXT- .

LemMA 4.2 (Leibniz equality in Z-models). Let.# := (Z,@. &, v) be aZ-model,
@ be an assignment, o € T, and A, B € wif,(Z).
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(1) If€,(A) = &,(B). thenv(&,(A =" B)) = T.

(2) If # satisfies property q and v(€,(A = B)) =T, then &,(A) = &,(B).

PROOF. Let ¢ be any assignment into .#. For the first part, suppose &,(4) =
&,(B). Given r € Z,_,, we have either v(r@%,(4)) = v(r@%,(B)) = F or
v(r@&,(B)) = v(r@&,(4)) = T. In either case, for any variable P,_, not in
free(A4) Ufree(B), we have v(&, [, p)(—(PA) V PB)) = T. So, we have &,(4 =" B) =
T.

To show the second part, suppose v(&,(4 = B)) = T. By property q. there is
some q% € D, a0 such that for a, b € Z,, we have v(q*@a@b) = Tiff a = b.
Let r = q°@&,(A). From v(&,(4 = B)) = T. we obtain &, ,/p;(~PAV PB) =T
(where P,_., ¢ free(4) U free(B)). Since &, p)(PA) = q*@&,(4)@&,(A4) = T.
we must have v(&,,/p)(PB)) = T. That is. v(q°@&,(4)@%,(B)) = T. By the
choice of q*, we have &,(4) = &,(B). -

THEOREM 4.3 (Extensionality in -models). Let # = (2, @.& . v) be a T-model.

(1) If # satisfies property q but not property f, then # = EXT= .

(2) If # satisfies property q but not property b, then # = EXT.

(3) If # satisfies properties q and §, then #/ = EXTZ .

(4) If # satisfies property b, then #/ = EXTZ.

Thus we can characterize the different semantical structures with respect to Boolean
and functional extensionality by the table in Figure 5.

in__ || Mg, My, Mg Mgy Dgo Mo Mpco || Mgro
formula [| valid? | by [ valid? | by || valid? | by valid? | by
EXT. || — | 1L T 3] — T T 13
EXT. || — | 2. — 2 ¥ 47 v 47

FIGURE 5. Extensionality in X-models.

PrOOF. Suppose.Z satisfies property q but does not satisfy property f. Then there
must be types o and f and objects f. g € Z,_.5 such that f # g but f@a = g@a
for every a € 9,. Let Fo_p, Ga—.p € 7 be distinct variables, X, € 7, and
© be any assignment with ¢(F) = fand ¢(G) = g. For any a € Z,,. f@a = g@a
implies v(&,, 5/ x;(FX =P GX)) = T by Lemma 4.2(1). Using the fact that v is a
valuation, we have v(&, (VX.(FX =P GX))) = T. On the other hand, since f # g
and ./ satisfies property g, we have v(&, (F =2~ @)) = F by contraposition of
Lemma 4.2(2). This implies .# = EXT ",

Suppose ./ satisfies property q but does not satisfy property b. Then, there must
be at least three elements in &,. Since v maps into a two element set, there must
be two distinct elements a.b € Z, such that v(a) = v(b). Let 4,.B, € 7, be
distinct variables and ¢ be any assignment into .# with ¢(4) = a and ¢(B) = b.
By Lemma 3.48, we know v(&,(4 < B)) = T. Since a # b and property q holds,

"The cases in the figure corresponding to Theorem 4.3(4) are actually special cases. In Theorem 4.3(4).
we can infer a model satisfies EXT? even if property q does not hold. However, the models in 9,
Mgy - Mpzp and Mgy, do satisfy property q by the definition of these model classes.
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by contraposition of Lemma 4.2(2), we know v(&,(4 =° B)) = F. It follows that
A |~ EXTC.

Let ¢ be any assignment into .#. From v(&,(VX..FX = GX)) = T we
know v(&,./x)(FX = GX)) = T holds for all a € Z,. By Lemma 4.2(2)
we can conclude that &,/ x|(FX) = &,[./x)(GX) for all a € &, and hence
g(p«[a/X](F)@gw,[a/X](X) = g(p«[a/X](G)@gga«[a/X](X) for all a € 90[. That iS,
Eorax1(F)@a = &, 2/ x1(G)@a for all a € Z,. Since X does not occur free in
F or G, by property f and Definition 3.18(3) we obtain &,(F) = &,(G). This
finally gives us that v(&,(F =7F G)) = T with Lemma 4.2(1). It follows that
M E EXTiéﬁ and /# = EXTZ, since a and f were chosen arbitrarily. Note that
we certainly need the assumption that .# satisfies property q (which is employed
within the application of Lemma 4.2(2). As explained in Remark 3.52, there is a
functional model in which property q fails and EXT' " is not valid.

Let 4,. B, € 7, be distinct variables and ¢ be any assignment into .#. Since
property b holds, we can assume &, = {T,F} and v is the identity function. Suppose
v(&€,(4 < B)) = T. By Lemma 3.48, we have &,(4) = v(&,(4)) = v(&,(B)) =
&,(B). By Lemma 4.2(1). we have v(&,(4 =" B)) = T. It follows that .Z |=
EXT¢. =

REMARK 4.4 (Alternative definitions of equality). Leibniz equality is a very
prominent way of defining equality in higher-order logic. However, there are alter-
native definitions such as (cf. [6, p. 203])

=20 = )Xo YoV 0asaoo(VZaaQZZ) = QXY.

An important question is whether an alternative definition of equality is equivalent
to the Leibniz definition in particular model classes. As Remark 3.47 shows, this
has to be carefully investigated for each equality definition and each model class
in question. We can show that for all 4. B, € cwif,(X) 4 = Band 4 = B are
equivalent modulo v for all # € My (and thus for all other model classes). That
is, we can show v(£(4 =% B)) = v(£€(4 =% B)). Note that this is weaker than
showing & (4 £“ B) = (4 = B). The key idea is to reduce the definition of = to
= (and vice versa) by instantiating the universally quantified set variables Q and P
appropriately. We may, for instance, show 4 = Bimplies 4 = B by choosing the
instantiation [AU, V.V Py—.0.PU = PV] for Q and the converse by choosing the
instantiation [AVaV04—a—o(VZ0OZZ) = QAV] for P. As a consequence the
properties of Leibniz equality with respect to extensionality also apply to =.

DEFINITION 4.5 (Extensionality for primitive equality). Analogous to the exten-
sionality axioms for Leibniz equality, we can define the axioms of strong (functional
and Boolean) extensionality for primitive equality:

EXT* ™/ :=VF, pNGa p(VX0FX = GX) = F =27F G
EXT’ :=VA,VB,(A4 < B) = A="B.

As before we refer to the set EXTZ := {EXT** | a.f € I} as the axioms of
(strong) functional extensionality for primitive equality.

The following lemma shows that in a ¥-model with primitive equality for each
a € F the denotations of =% and =“ are identical modulo v.
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LEMMA 4.6 (Primitive and Leibniz equality). If £ := (2. @.&.v) € M, is a
Y-model with primitive equality where x € {5, fn. P&, pf, pb, pnb, &b, ff6}. then we
have v(&,(A =~ B)) = v(&,(4 =" B)) for all assignments ¢ into M, types e € T .
and A, B € wif,(2).

PrOOF. Since property q holds for .Z € 9M,., by Lemma 4.2 parts (1) and (2), we
have v(&,(4 = B)) = Tiff &,(4) = &,(B). Since 4 is a Z-model with primitive
equality, we know &,(4) = &,(B) is equivalent to v(& (=*)@&,(4)@&,(B)) = T.
and hence to v(&,(4 =* B)) =T. =

REMARK 4.7. Lemma 4.6 implies that for all models in our model classes 9, the
extensionality axioms for primitive equality are equivalent to the corresponding
extensionality axioms for Leibniz equality. Thus, the analysis for the Leibniz
versions applies directly to the versions using primitive equality. Also, Lemma 4.6
reinforces that (provided property q holds) we can indeed use Leibniz equality to
treat equality as a defined notion (relative to models in 90t,). Thus, we principally
do not need to assume the constants = to be in our signature. The critical part
in this choice is that for ensuring the correct meaning for Q% we have to require
the existence of an object representing the identity relation for each type in each
Y-model (cf. [2] for a discussion in the context of Henkin models). This requirement
is automatically met if we consider primitive equality. Hence it seems natural to
treat equality as primitive.

REMARK 4.8 (Properties 7 and &). We have shown, in the presence of property
q. a model ./ satisfies property f iff # = EXT. . Similarly, we have shown that
property b corresponds to a model satisfying EXTZ. A corresponding analysis can
be done for properties # and ¢ (cf. Definition 3.46). Assume .# satisfies property
q. Then, ./ satisfies property 7 iff # = A =% (A] ﬂn) for every type « and closed
formula 4 € cwif, (). Also, ./ satisfies property ¢ iff

M= Fy p NG p(VXFX = GX) = AX.FX) =7 2X.GX)
for all types « and .

§5. Example models. We now sketch the construction of models in the model
classes 901.. to demonstrate concretely how properties for Boolean, strong and weak
functional extensionality can fail. We need this to show that the inclusions (cf.
Figure 1) of the model classes defined in Section 3 are proper, and we indeed need
all of them.

We start with the simplest example of a Henkin model, which we will call the
singleton model, since the domain of individuals is a singleton. Note that the un-
derlying evaluation of this model is not the singleton evaluation from Example 3.26
since I, has two elements. In this model, all forms of extensionality are valid.

ExaMPLE 5.1 (Singleton model— 2/ € T C § C Myy,). Let (2. @) be the
full frame with &, := {T.F} and &, := {*}. One can easily define an evaluation
function & for this frame by induction on terms, using functions to interpret A-
abstractions. The identity function v: &, — {T,F} is a valuation, assuming the
logical constants are interpreted in the standard way (including primitive equality,
if present in X). So, £/ := (2. @.&.v) defines a model. This model clearly
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satisfies all our properties b, f (hence # and &) and q (since the frame is full). So,
M € GT C H C Mygp.

REMARK 5.2. In particular, all our model classes are non-empty. By parts (3)
and (4) of Theorem 4.3, we have £/ = EXT? and .#/"® = EXTZ.

We can use the singleton model .Z/"® to construct another model which makes
the importance of property q clear.

REMARK 5.3. Let £ = (7, @.%,v) as above and T€(2)’ = (27, @F, «")
be the f-term evaluation as defined in Definition 3.35. Let v': @/ — {T.F}
be the function v'(A4) := v(&(A4)) for every 4 € cwil, (E)l/f. One can show
M= (TP . @P. &P v') is a T-model such that .#’ |= A iff £ |= A for every
sentence 4. In particular, #’ = EXTS and 4’ = EXTZ .

Nevertheless, .Z’ fails to satisfy properties q, b. # and §. Property b does not hold
since 7/ = cwfl, (E)l P is infinite. Property # does not hold since, for example,

EP(AF,_ X FX) = AF,_,X,.FX 2 JF,_,.,F = £P(\F,_.F).

Property f cannot hold since property 7 does not hold. (On the other hand, property
¢ does hold since the underlying evaluation is a term evaluation.)

We know now by Theorem 4.3, either part (1) or part (2), that property q must
not hold. A concrete way to see that property q fails is to consider two distinct
constants a,, b, € ¥,. We must have .##7 = a =' b (since Z, has only one element),
and so #' = a =' b. On the other hand a and b are distinct elements (as distinct
B-normal forms) in &/ .

The model .’ shows that property q is needed in the proofs of parts (1) and (2)
of Theorem 4.3.

EXAMPLE 5.4 (Failure of b—#" € My \ Mgy ). Let (2. @) be the full frame
with 9, = {a.b,c} and @, = {0.1}. We define an evaluation function & for
this frame by defining & (=), (V). and & (I1*) to be the functions given in the
following table:

g(V)|a b ¢
g(-)|a b a |a a a
[c < b |a a a
C a a ¢
o [ a, iff@ge{ab}forallge Z,.
&(*)@f = { c. if f@g = cforsomeg e Z,.

We can choose & (w) to be arbitrary for parameters w € X. Since the applicative
structure (2, @) is a frame, hence functional, this uniquely determines & on all
formulae. Also, since the frame is full, we are guaranteed that there will be enough
functions to interpret A-abstractions.

Let the map v: 9, — {T.F} be defined by v(a) :=T.v(b) :=Tand v(c) :=F.
It is easy to check that #/ := (2. @.%.v) is indeed a -model. Since this is a
model over a frame, we automatically know it satisfies property f. Since the frame
is full, we know property q holds. (By the same argument, if primitive equality is
in the signature, we can ensure & (=%) is interpreted appropriately for each type



1060 CHRISTOPH BENZMULLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

a.) Clearly property b fails, so we have £ € 9y \ M. By Theorem 4.3(2),
MPT = EXTL.

In this model one can easily verify, if d := &,(D,) and e := &,(E,). then the
values &,(D A E), €,(D = E). and &,(D < E) are given by the following tables:

e: e: e:
EMDNE)| a b ¢ &MD=E)| a b c &DsE)|a b c
d: al|a a c d: a|a a c d: a|a a c

bl a a ¢ b| a a ¢ b| a a c

clc ¢ c cla a a c|l c ¢ a

Note that one can properly model the woodchuck / groundhog example from [39]
referred to in the introduction in .2Z”f.

ExaMPLE 5.5 (Groundhogs and woodchucks). Let .Z/T be given as above and
suppose woodchuck,_,,. groundhog,_, . john,, and phil, are in the signature Z. Let
& (phil) := 0 and & (john) := 1. Let &(woodchuck) be the function w € Z,_,,
with w(0) = b and w(l) = c. Let &(groundhog) be the function g € Z,_,, with
g(0) = a and g(1) = c. One can show that the sentence V.X,.(woodchuck X) <
(groundhog X) is valid. Also, & (woodchuck phil) = b and & (groundhog phil) = a,
so the propositions (woodchuck phil) and (groundhog phil) are valid. Next, sup-
pose believe,_.,_,, € T and & (believe) is the (Curried) function bel € 9,_,,_,, such
that bel(1)(b) = b and bel(1)(a) = bel(1)(c) = bel(0)(a) = bel(0)(b) = bel(0)(c) =
c (Intuitively, John believes propositions with value b, but not those with value a or
c). So, believes john(woodchuck phil) is valid, while believes john(groundhog phil)
is not.

As we have seen, Boolean extensionality fails when one has more than two values
in 9,. We can generalize the construction defining &, := {F} U &, where % is
any set with T € & and F ¢ #. The model will satisfy Boolean extensionality iff
% = {T}. In this way, we can easily construct models for the case with property b
and the case without property b simultaneously. We will use thisidea to parameterize
the remaining model constructions by %. These semantic constructions are similar
to those in multi-valued logics. which have been studied for higher-order logic
in [38]. In contrast to these logics where the logical connectives are adapted to talk
about multiple truth values, in our setting we are mainly interested in multiple truth
values as diverse v-pre-images of T and F.

EXAMPLE 5.6 (Failure of f and n—.#%* € M, \ Myge). We start by construct-
ing a non-functional applicative structure by attaching distinguishing labels to func-
tions without changing their applicative behavior. Let % be any set with T € %
andF ¢ #. Let 9, := {F} UZ and &, := {x} with x as singleton element. For
each function type @ — f3, let

Doop:={i.f)|i€{0.1}and f: D, — Dy }.

Technically, we should write & % for U, but to ease the notation, we wait until
the model is defined to make its dependence on % explicit. We define application
by (i. /)@a := f(a) whenever (i, f) € Z_p and a € Z,. It is easy to see that
(2. @) is an applicative structure and is not functional. Consider, for example, the
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unique function u: &, — 2,. For both (0, u), (1.u) € @,_,, we have (i, u) @ = *,
although (0,u) # (1, u).

We can define an evaluation function by induction on terms. We must be-
gin by interpreting the constants. For the logical constants, let (=) := (0,n)
where n(b) :=F for every b € % and n(F) :=T. Let &(V) := (0.d) where
d(b) := (0,kT) forevery b € &, d(F) := (0.id), k7 is the constant T function and
id is the identity function from Z, to Z,. For each type a. let d(I1%) := (0, 7%)
where for each (i, f) € Do, n%((i. 1)) :=Tif f(a) € B forall a € F, and
n%(i, f) :=F otherwise. For each type a, let q* := (0,¢%) € Dy—_o_, Where
g%(a) :=(0,5) and s?(b) :=Tif a = b and s*(b) := F otherwise. If primitive
equality is present in the signature, let £ (=) := q®. Let &€(w) € 2, be arbitrary
for parameters w € X,,.

For variables, we must define &,(X) := ¢(X). Similarly, for application, we
must define &,(FA) := &,(F)@&,(A). For J-abstractions, we have a choice. To
be definite. we choose &,(1X,.Bg) := (0. /') where [ : &, — Dy is the function
such that f(a) = &, . x1(B) foralla € Z,.

With some work (which we omit), one can show that this & is an evaluation
function. Furthermore, taking v to be the function such that v(b) := T for ev-
ery b € # and v(F) :=F, one can easily show that this is a valuation. Hence,
ME = (D.@.%.v)is a T-model.

The objects q* witness property q for .#% (and also show that this is a model
with primitive equality, when primitive equality is in the signature). Note that the
objects (1, g®) also witness property q. So, in the non-functional case such witnesses
are not unique.

We have already noted that property f fails, since the applicative structure is
not functional. One may question whether properties # or & hold. In fact, prop-
erty # does not, as one may verify by computing, for example, & (AF,_4.F) and
& (AFo_pXoFX) for types a and . We have & (AF,_p5.F) = (0.id) where id is
the identity function from Z,_; to Z,_p. However, & (AF,_pXa.FX) = (0. p)
where p is the function from Z,_.5 to Z,_.p such that p((i. /)) = (0. /) for each
f:Pa — Dp. Property ¢ does hold.® The reason is that if &, ,/x)(M) =
&oa/x1(N) for every a € Z,. then &,(AX..M) = (0. f) = &,(AX.N) where
f@) =&, x) (M) =&, 5x(N) for every a € Z,.

Since .#% is satisfies property q but not property f, by Theorem 4.3(1) we have
MZE EXTi_’/f for some types o and . (One can easily check that, in fact,

M EXTZHﬁ for all types o and S by considering the witnesses (0, /) and
(1. f) in Do_p where [ : D, — D is any function.)

If # = {T}. then the model . := #{T} satisfies property b. So. we know
MPC € Mgy \ M. On the other hand, if b is any value with b ¢ {T.F}, and
% = {T.b}. then the model .#% :=.#{"P} does not satisfy property b. In this
case, we know 2% € My \ (Mgr U My ).

8This construction is an example of how one constructs models for the simply typed A-calculus using
retractions. Such constructions will always yield models satisfying property &, but only yield models
satisfying property # when each retraction is an isomorphism, in which case the applicative structure is
functional.
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REMARK 5.7. Let .#% be the X-model (Z. @.&.v) constructed in Example 5.6.
We can define an alternative evaluation function &’ by induction on terms. For
all w € X, let &' (w) := & (w). For variables, we define &/(X) := ¢(X). For
application, we must define &/(FA) := &/ (F)@&(A). For i-abstractions, we
choose &) (A1 Xq-By) := (1. f) where f : Do, — D is the function such that f'(a) =
&pla/X] (B) for all a € &,. We omit checking &’ is an evaluation function, but the
verification is that same is checking & is an evaluation function. Notice that & and
&’ agree on all constants (by definition). However, they are different evaluation
functions. For example,

£(X.X) = (0,id) # (1.id) = £'(1X,.X)

where id: 9, — 9, is the identity function.This example shows that evaluation
functions are not uniquely determined by their values on constants in non-functional
models.

In Lemma 3.14, we have shown that fy-equality induces a functional congruence
if the X, is infinite for all types . As a result, with such signatures, the term
evaluation 7%(2)" is functional (cf. Lemma 3.36). As noted in Remark 3.15, if £
is finite, we cannot show that functionality holds. Nevertheless, even if X is finite,
the evaluation - é”(E)ﬁ " interprets fy-convertible terms the same. We can use this
idea to construct non-functional models which satisfy property 7.

ExaMPLE 5.8 (Failure of ¢—Instances of My, M. Mgs. Mgy ). Again, let B be
any set with T € & and F ¢ %. Choose constants ¢,,¢, € Land let £’ := {¢,, ¢, }.
By induction on types, we define C, € cwff,(2')] gy © Wil =] 4+ At base types,

let €] := ¢, and €} := ¢,. Atfunction types. let G}, := 1X,.Cp. (Thus each C,,
is of the form X.cg where 8 € {1.0}.) In particular, cwffo (2)] . and cwiT, (2)] P
are non-empty for each type a.

We can now inductively define a map p from wif, (X) to wif, (X’) which collapses
terms to the smaller signature. For variables, let p(X) := X. For constants w, € X
(including logical constants), let p(w,) := C.,. For application and A-abstraction,
we simply use p(FA) := p(F)p(A) and p(AX.4) := iX.p(4). By induction on
the formula 4, one can show [p(B)/X]p(A) = p([B/X]A) for any A € wif,(X),
B € wff4(X) and X. From this, one can show p(A4)=p,p(B) whenever 4=, B for
every A, B € wif,(X). Note also that p(A4’) = A’ for every A’ € wiT,(Z’).

We can construct a non-functional applicative structure using an indexing tech-
nique similar to Example 5.6. In this case, instead of indexing with i € {0, 1}, we
use terms in cwif, (X)), as indices. (Here 4], means the f-normal form if * = f
and the fy-normal form if * = By.) In essence, this index records some informa-
tion about the “implementation” of the function. Note that cwff,(X').= {c¢,} and
ewlf, (2 )= {c,}. Let D, := {(c,.0)} and D, := {(c,.F)}U{(c,.b) | b € #}. For
function types, let Z,_,; be the set of pairs (F/ 5 /). where F' € cwff,_z(Z')L.
and f': 9, — Y is any function such that 1 (4’, a) = ((F'A4’).... b) for some value
b. Application is defined as in Example 5.6: (F. f)@a := f(a). The construction
of this applicative structure closely follows Andrews’ v-complexes in [1], except we
have a very restricted signature X’ which does not include logical constants.
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To show that each domain is non-empty, we construct a particular element c® €
9, for each type . (This element will also be used to interpret parameters.) Let
¢ :=(c,.0), ¢ :=(c,.F), and c*F : = (C(;_%,k) where k: &, — Py is the
constant function k(a) := c foreverya € &,. The fact thatc®*~f € g, _, s follows
from (C,_ ,4).= Cj.

One can see that the applicative structure is non-functional by noting (A.X,.X, /)
and (AX,.c,. f) are distinct members of Z,_,,, where f is the unique function taking
2, into itself. However, (AX,.X. f)@c' = ¢! = (AX.c,. f)@c'. In fact, once we
define the evaluation function, this same example will show that property & will fail.

Letv: 9, — {T.F} bev((c,.F)) :=Fand v((c,.b)) := T foreach b € &. This
will be the valuation function on the model.

We only sketch the definition of the evaluation function & and the proof that this
gives a model .# “F = (g, @. & .v). We can define & by induction on terms. First,
we interpret parameters w, € X by & (w,) := c®. For logical constants a, € X, we
choose the first component of & (a,) to be C’, and the second component to be an
appropriate function. We can define the witnesses q* in a similar way and use these
to interpret primitive equality, if it is present in the signature.

We are forced to let &,(X) := ¢(X) and &,(FA) := &,(F)@%,(A). For the /-
abstraction step, we choose &, (A1 X,.Bg) := ((6(p(AX.B))).. f). where f: D, —
Dy satisfies f(a) = &, [2/x)(B) for all a € Z, and ¢ is the substitution defined by
letting o(Y) be the first component of ¢(Y) for each Y € free(AX.B). In order
to show & is well-defined, one shows the first component of &,(A4) is (o (p(4)))L.
(where o is the substitution for free(A4) defined from the first components of the
values of ) for every formula A.

The fact that & evaluates variables and application properly is immediate from
the definition. The fact that &,(A4) depends only the free variables in A follows by
an induction on the definition of &. To show & respects f-conversion if * = f and
By-conversion if * = By (so that the model will also satisfy property #), one first
shows & respects a single f[n]-reduction, then does an induction on the position of
the redex, and finally does an induction on the number of f[r]-reductions.

Once these details are checked, we know . *%# is a model (with primitive equality,
if present) satisfying property q. We already know the model will not satisfy property
f since the applicative structure is not functional. We can also check that the
model will not satisfy property ¢ by considering & (AX,.X) and &(iX,.c;). We
know & (1 X,.X) # & (1X,.c,) since the first components ((A1X,.X) and (1 X,.c,)) are
not equal. However, &, has only one element, ¢! = (¢,,0). So, we must have
Eorax1(X) =" =&, a/x;(c,) for every a € Z,. This shows property ¢ fails.

If « = py, then we have noted above that & respects fr-conversion. So, in
this case, the model satisfies property #. If *+ = f, then we can easily check
&(LF_,X.FX) £ &(AF,_,.F) since the first components will differ. So, in this
case, the model does not satisfy property 7.

Asin Example 5.6.if & = {T}. then #/° : = .#P{™ and 4P : = .o Pr{T} satisty
property b. So. we know £ € Mg, \ (Mpyp U M) and 4P € My, \ M. If
% = {T.b} where b is any value with b ¢ {T.F}. then the models .Z# := ##{"b}
and 4P .= P1{TP} do not satisfy property b, so .ZF € My \ (M, UM U Ny )
and 2P ¢ mlg” \ (mlgf U mﬁ”b).
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In particular, the models .Z%" and .#P1"* show that respecting 5-conversion does
not guarantee strong functional extensionality.

Thus we have given (sketches of) concrete models that distinguish model classes
and shown that the inclusions between the 9. model classes in Figure 1 are proper.

§6. Model existence. In this section we present the model existence theorems
for the different semantical notions introduced in Section 3. The model existence
theorems have the following form, where x € {f, . BE, pf. pb. pnb, &b, ffo}:

THEOREM (Model existence). For a given abstract consistency class Iy € cc, (cf.
Definition 6.7) and a set ® € Iy there is a Z-model M of @, such that # € M, (cf.
Definition 3.49).

The most important tools used in the proofs of the model existence theorems are
the so-called X-Hintikka sets. These sets allow computations that resemble those in
the considered semantical structures (e.g., Henkin models) and allow us to construct
appropriate valuations for the term evaluation I~ %"(Z)ﬂ defined in Definition 3.35.
The key step in the proof of the model existence theorems is an extension lemma,
which guarantees a Z-Hintikka set /Z for any sufficiently Z-pure set of sentences ®
inIs.

6.1. Abstract consistency. Let us now review a few technicalities that we will need
for the proofs of the model existence theorems.

DEFINITION 6.1 (Compactness). Let € be a class of sets.

(1) € is called closed under subsets if for any sets S and T, S € & whenever
SCTand T €%.

(2) € is called compact if for every set S we have S € % iff every finite subset of
S is a member of .

LEMMA 6.2. If € is compact, then & is closed under subsets.

PrOOF. Suppose S C T and T € . Every finite subset 4 of S is a finite subset
of T, and since % is compact we know that 4 € €. Thus S € @. =

We will now introduce a technical side-condition that ensures that we always have
enough witness constants.

DEFINITION 6.3 (Sufficiently Z-pure). Let X be a signature and @ be a set of -
sentences. O is called sufficiently X-pure if for each type a there is a set #, C X, of
parameters with equal cardinality to wif, (Z), such that the elements of %, do not
occur in the sentences of @.

This can be obtained in practice by enriching the signature with spurious param-
eters. Another way would be to use specially marked variables (which may never
be instantiated) as in [36]. Note that for any set to be sufficiently Z-pure, ., must
be infinite for each type o, since we have assumed that 7, C wil(X) are infinite.
Recall that in Remark 3.16 we assumed every X, has a common (infinite) cardinality
N, for every type a. (One could easily show that no set of Z-sentences could be
sufficiently pure if, for example, ¥, is countable while ,_,, is uncountable. In such a
case wif, () is uncountable for every type a so one could not satisfy the sufficient
purity condition at type 1.)
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NortaTION 6.4. For reasons of legibility we will write S % a for S U {a}, where S
1s a set. We will use this notation with the convention that * associates to the left.

DEFINITION 6.5 (Properties for abstract consistency classes). Let Iz be a class of
sets of Z-sentences. We define the following properties of Iz, where ® € I3, «,
peT.A Becwi, Fccwif,_,. and G, H, (A1X0M). (AXo.N) € cwif,_.p are
arbitrary.

V.: If A is atomic, then 4 ¢ ® or —~A4 ¢ .

Vo If——A €D then®x A4 cl;.

Vp: If A=gBand 4 € @, then ® x B € I5.

V;: IfA=g,Band 4 € @, then ® * B ¢ I;.

V: IfAVBe D, then®xAclzyor®*Bels.

Va: If2(AV B) € ®, then® -4 x-B c I3.

V. IfTI*F € @, then ® « FW €< Iz for each W e cwff,.

Va: If -II°F € @, then ® * ~(Fw) € Iy for any parameter w, € X, which does
not occur in any sentence of ®.

Vo: If2(A4="B) c D, then®*xA*x Bz or®*x-A*xBcl;.

Ver If (A X0M =*7F jX,.N) € ®. then ® * ~([w/ XM =" [w/X]N) € I for
any parameter w, € X, which does not occur in any sentence of ®.

Vi If =(G =~ H) € @, then ® « ~(Gw =" Hw) € L for any parameter

wq € Xq which does not occur in any sentence of ©.
Viar: Either ®x A € Iy or @ x =4 € I;.

For the optional case of primitive equality, i.e., when =%¢ X, ., ., for all types
a, we now add a set of further properties. While our first choice will be to combine
the V property with V=, we will later show that other pair combinations from this
set are equivalent.

DEFINITION 6.6 (Properties for abstract consistency classes). Suppose =% ¢
Yo—a—o for all types a. Let Iz be a class of sets of X-sentences. We define for
® eIz, A, B € cwif, and F € cwif, where F has a subterm of type « at position p:

Vi =(4=>4) ¢ .

Vs: If F[A], € ®and A =* B € @, then ® « F[B], € Iz}

V= IfA="Bec® then®xA4="Becl.
Vo IfA="Bc® then®+xA4="Bcl;.

VZ i 1f (4 =" B) € ©. then @+ ~(4 =" B) € I5.
V=i If (4 =" B) € ®, then D+ (4 =* B) € I;.

DEFINITION 6.7 (Abstract consistency classes). Let T be a signature and I3 be a
class of sets of Z-sentences that is closed under subsets. If V., V., V3, W/, VA, W
and V3 are valid for I3, then I3 is called an abstract consistency class for X-models.
Furthermore, when =€ X,_.,_., for all types o and the properties V" and V=
are valid then Iy is called an abstract consistency class with primitive equality. In
the following we often simply use the phrase abstract consistency class to refer to
an abstract consistency class with or without primitive equality. We will denote

9 Although this resembles Lemma 3.25 which required property &, it is far weaker since A4 and B must
be closed.
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the collection of abstract consistency classes (with primitive equality) by 2ccs.
Similarly, we introduce the following collections of specialized abstract consistency
classes (with primitive equality): Accg,, Uccpe, Aceps, Acegy., Accpyp. Accpzp. Accpsp.
where we indicate by indices which additional properties from {V},. V. V;. V; } are
required.

REMARK 6.8. If primitive equality is not in the signature, 2fccg corresponds to
the abstract consistency property discussed by Andrews in [1]. The only (technical)
differences correspond to aff-conversion. In [1], a-conversion is handled in the Vj
rule using a-standardized forms. Also, we have defined the Vj rule to work with
p-conversion instead of f-reduction. We prefer this stronger version of Vi over the
weaker option “If 4 € ®, then @ x Al 5 € I3” since it helps to avoid the use of V,,

in several proofs below. (Note that Vs follows from the weaker option and Vj,.)
Furthermore, in practical applications, e.g., proving completeness of calculi, the
stronger property is typically as easy to validate as the weaker one. An analogous
argument applies to V.

REMARK 6.9. While the work presented in this article is based on the choice of
the primitive logical connectives —, V, and I1* (and possibly primitive equality), a
means to generalize the framework over the concrete choice of logical primitives
is provided by the uniform notation approach as, for instance, given in [22]. It is
clearly possible to achieve such a generalization for our framework as well. This
can be done in straightforward manner: V, becomes an a-property, W, becomes a
S-property, Vi becomes a y-property, and V3 becomes a d-property. Thus they will
have the following form:
a-case: Ifa € O, then P xa; xan € Is.
f-case: If f € O, then P« ) c [zorD* f, € I3.
y-case: If y € @, then @ x y W € Iy for each W € cwff,.
o-case: Ifé € @, then ® xdw € I3 for any parameter w, € X which does not occur

in any sentence of @.

We often refer to property V. as “atomic consistency”. The next lemma shows
that we also have the corresponding property for non-atoms.

LeMMA 6.10 (Non-atomic consistency). Let Iz be an abstract consistency class
and A € cwit, (), then for all ® € Ig we have A ¢ ® or —=A ¢ .

Proor following a similar argument in [1]. Lemma 3.3.3. If for some ® € I3 and
A € cwff,(X) we have 4 € ® and —4 € @, then {4, -4} € I3 since I3 is closed
under subsets. Furthermore, using V; and closure under subsets we can assume
such an 4 is f-normal. We prove {4, ~A4} ¢ I3 for any f-normal 4 € cwff,(X) by
induction on the number of logical constants in 4.

If 4 is atomic (which includes primitive equations), this follows immediately from
V.. Suppose 4 = —B for some B € cwif,(X) and {-B,——B} € I3. By V, and
closure under subsets, we have {—~B. B} € Iz, contradicting the induction hypothesis
for B. Suppose A = BV C for some B, C € cwff,(£) and {BV C,—~(BV C)} € 5.
By W. V, and closure under subsets, we have either {B, ~B} € Iz or {C.~C} € I3,
contradicting the induction hypotheses for B and C. Suppose A = I1¢B for some
B € cwif,_,(X) and {I1*B, ~(I1*B)} € I. Since X, is assumed to be infinite (by
Remark 3.16). there is a parameter w, € X, which does not occur in 4. Since
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w 1s a parameter, the sentence Bw clearly has one less logical constant than I1*B.
However, we cannot directly apply the induction hypothesis as Bw may not be
f-normal. Since B is f-normal, the only way Bw can fail to be f-normal is if B
has the form 4X,.C for some C € wiff,(X) where free(C) C {X,}. In this case, it
is easy to show that the reduct [w/X]C is f-normal and contains the same number
of logical constants as B. In either case, we can let /V be the f-normal form of Bw
and apply the induction hypothesis to obtain {/V, =N} ¢ Iz. On the other hand,
Va. V. Vi and closure under subsets implies {N,—-N} € I3, a contradiction. -

REMARK 6.11. Note that for the connectives vV and I1* there is a positive and a
negative condition given in the definition above, namely W, /V, for V and W,/ V5 for
®. For =° and =* " the situation is different since we need only conditions for
the negative cases. Positive counterparts can be inferred by expanding the Leibniz
definition of equality (cf. Lemma 6.12).

LeMMA 6.12 (Leibniz equality). Let Iz be an abstract consistency class. The fol-
lowing properties are valid for all ® € Tz, A.B € cwif,(X), C € cwif,(Z) and
F.Gc CWﬁ‘a_,/f(Z).

Vi =(C="C) ¢ ®.
Vo IfF =P G e ®, then® « FW =* GW < Iz for any closed W € cwil,(Z).
VO IfA="Be® then®+A*BeTzor®*-A4%-Becl;.

Proor. To show V!, assume —(C = C) € ®. By subset closure {—~(C = C)} € Iz
and by V5 with some parameter p which does not occur in C and V; we get
{=(C = C),~(=pCV pC)} € Iz. The contradiction follows by V,, V., and V... So,
V! holds.

To show V., suppose F =" G € ®. By application of W, with 21X, _ s FW =
X W and V; we have @ * (=(FW = FW)V FW = GW) € Iz. By W, and subset
closure we get @ « —=(FW = FW) € Iz or ® x FW = GW € Iz. The latter proves
the assertion since the first option is ruled out by V! (shown above).

To show V2, suppose 4 =’ B € ®. Applying % with 1Y.Y we have ®
(AP,—.0.mPAV PB)(LY.Y) € Iz. By V; and subset closure we get @ « =4 V B €
Is. Similarly, we further derive by M, with AY.=Y, Vj;, and subset closure that
®x-4V B+x—--4V -B € I[z. By applying W, twice and subset closure we get
the following four options: (i) ® * =4 x ~—=A4 € Iy, (ii) ® * -4 x =B ¢ I3, (iii)
®*xBx—--Aclz or(iv) ®xBx*-B c Iz. Cases (i) and (iv) are ruled out by
non-atomic consistency. In case (iii) we furthermore get by V. and subset closure
that ®x Bx A € I5. Thus, ®x A+« -Bclzyor®+«BxAcIxs. -

We could easily add respective properties for symmetry, transitivity, and congru-
ence to the previous lemma. They can be shown analogously, i.e., they also follow
from the properties of Leibniz equality.

In contrast to [1], we work with saturated abstract consistency classes in order
to simplify the proofs of the model existence theorems. For a discussion of the
consequences of this decision, see Section 8.2.

DEFINITION 6.13 (Saturatedness). We call an abstract consistency class I satu-
rated if it satisfies Vi, .
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REMARK 6.14. Clearly, not all abstract consistency classes are saturated, since the
empty set is one thatis not (cwif, (Z) is certainly non-empty since VP,.P € cwif,(Z)).

REMARK 6.15. The saturation condition V,, can be very difficult to verify in
practice. For example, showing that an abstract consistency class induced from a
sequent calculus (as in [1]) is saturated corresponds to showing cut-elimination (cf.
[12]). Since Andrews [1] did not use saturation, he could use his results to give a
model-theoretic proof of cut-elimination for a sequent calculus. We cannot use the
results of this article to obtain similar cut-elimination results.

We now investigate derived properties of primitive equality.

LEMMA 6.16 (Primitive equality). Let I3 be an abstract consistency class with prim-
itive equality, i.e., =€ To_.a—o, for all types o € T . where N and V= hold. Then
V= and N2 are valid. Furthermore, Vj: and V;: are valid if Iy is saturated.

Prookr. To show V= we derive from (4 =% B) € ® by W with A1 X,.4 =* X, V.
and subset closure that ® x ~(4 = A) V A = B c Iz. By ¥, and subset closure we
get ® x ~(4 =A) € Iz or ® x A = B € I5. The assertion follows from the latter
option since the former is ruled out by V.

In order to show V! let F[4], € ®, we derive from 4 =* B € ® by V- that
® x (4 = B) € Iz. By W with AX.F[X], (where X € 7, does not occur bound in
F[A],). Vj. and subset closure we furthermore get that @ x (—F[A4], V F[B],) € L;.
Application of W, and subset closure gives us @+ —F[A4], € Iz or ®«F[B], € Is. The
assertion follows from the latter option since the former is ruled out by F[4], € ®
and non-atomic consistency.

The straightforward proof for V- employs saturation, V.-, and non-atomic
consistency. Similarly, the proof for V= employs saturation, V=, and atomic
consistency. -

The next theorem provides some alternatives to our choice of V= and V/ in
the definition of abstract consistency classes with primitive equality provided that
saturation holds. In practical applications the user may therefore choose the com-
bination that suits best.

THEOREM 6.17 (Alternative properties for primitive equality). Let Iz be an ab-
stract consistency class and let =€ X .o, for all types o € I . If Iz is saturated
and validates one of the following combinations of properties, then it also validates V.=
and V. The combinations are:

(1) V2 and V".

(2) V= and V.

(3) Vo and V.

ProoF. To prove (1) we only have to show V=. Let (4 = B) € ® and suppose
® x (4 = B) ¢ Iz. Then by saturation ® x —(4 = B) € I3 and by application of V*
we get a contradiction to V! (cf. Lemma 6.12).

To prove (2) we only have to show V. Since @ x ~(4 = A4) ¢ Iz by V! we get by
saturation ® x 4 = A4 € I3. By V= and subset closure, we have ® x 4 = 4 € I5. By
atomic consistency, we have —(4 = A) ¢ @.
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For (3) we first show V’. Suppose (4 = A) € ®. Then by V=_ we get
® x =(4 = A) € Iz contradicting V. To show V- let 4 = B € ® and suppose
® x A = B ¢ Iz. By saturation we get ® * ~(4 = B) € Iy and by application of
V= we get a contradiction to atomic consistency. =

LeMMA 6.18 (Compactness of abstract consistency classes). Foreach abstract con-
sistency class Iy there exists a compact abstract consistency class Iy, satisfying the same
V. properties such that Iy C Iy

PRrOOF (following and extending [6], Proposition 2506). We choose I/ := {® C
cwif, | every finite subset of @ isin I3 }. Now suppose that ® € I;. I3 is closed
under subsets, so every finite subset of @ is in Is and thus ® € I. Hence Iz C [.

Next let us show that I is compact. Suppose ® € [ and ¥ is an arbitrary
finite subset of ®. By definition of I3/ all finite subsets of @ are in I5 and therefore
Y € IJ. Thus all finite subsets of @ are in I whenever @ is in I. On the other
hand, suppose all finite subsets of @ are in Iy'. Then by the definition of I3/ the finite
subsets of @ are also in I3, so ® € I3. Thus I is compact. Note that by Lemma 6.2
we have that I/ is closed under subsets.

Next we show that if Iy satisfies V;, then I satisfies V.

V.: Let @ € Iy and suppose there is an atom A, such that {4, -4} C ®. {4, -4}
is clearly a finite subset of @ and hence {4, -4} € I; contradicting V, for I5.

V.: Let ® € I/, =—A4 € @, ¥ be any finite subset of @ * 4, and © := (¥ \ {4}) x
——A. O is a finite subset of ®, so ® € Iy. Since I3 is an abstract consistency
classand ——A4 € ®, we get @ x A € Iy by V., for Iy. We know that ¥V C ® x 4
and I3 is closed under subsets, so ¥ € Iz. Thus every finite subset ¥ of ® x 4
is in Iy and therefore by definition ® « 4 € I7.

Vs, V. V. Va. W, Va1 Analogous to V...

Ve Let @ € . =(AXoM =77 jX.N) € ® and ¥ be any finite subset of
Ox—([w/ XM =F [w/XN),wherew € X, is a parameter that does not occur
in any sentence of ®. We show that ¥ € Iz. Clearly ® := (W\{~([w/X]M ="
[w/XIN)}) = =(AX.M =" jX.N) is a finite subset of ® and therefore
® € ;. Since I3 satisfies V: and —(1X.M =o=F ;X.N) € ©. we have
O x —~([w/XIM =" [w/X]N) € Iz. Furthermore. ¥ C @ * —([w/X|M ="
[w/X]N) and I3 is closed under subsets, so ¥ € I3. Thus every finite subset
¥ of @ x —~([w/ XM =F [w/X]N)is in I3, and therefore by definition we have
© «~([w/XIM = [w/XIN) € I

V4: Analogous to V.

Vo: Let @ € Iy with —(4 = B) € ®. Assume @+ A*—B ¢ [yand Dx-A*B ¢ I5.
Then there exists finite subsets @ and @, of @, such that ®; x 4 x =B ¢ Iz
and @, x =4 x B ¢ Iz. Now we choose @3 := ®; U®D; * ~(4 = B). Obviously
@5 is a finite subset of ® and therefore @3 € Iy. Since I3 satisfies V;, we have
that @3 x A x =B € Iz or @3 x =4 x B € Iy. From this and the fact that I3 is
closed under subsets we get that ®; x* A x =B € I3 or ®, x =4 * B € I3, which
contradicts our assumption.

Viar: Let @ € I, Assume neither @ * 4 nor @ = =4 is in I. Then there are
finite subsets ®; and @, of ®, such that ®; * 4 ¢ Iy and @, x =4 ¢ I;.
As ¥ := ®; U D, is a finite subset of ®, we have ¥ € Iz. Furthermore,
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VYxAelzor¥x—A € Iy because I3 is saturated. I is closed under subsets,
so ®; x A € Iy or @, x =4 € Iz. This is a contradiction, so we can conclude
thatif ® € [/, then® x4 € [ or ® x =4 € L.

In case primitive equality is present in the signature, we check the corresponding
properties.
V': Let ® € I and assume —(4 =~ 4) € ®. {~(4 =* A)} is clearly a finite
subset of ® and hence {—(4 =@ 4)} € Iy contradicting V” in I3.
| Vindl VAN v/l vl V- Analogous to V.. -

6.2. Hintikka sets. Hintikka sets connect syntax with semantics as they provide
the basis for the model constructions in the model existence theorems. We have
defined eight different notions of abstract consistency classes by first defining prop-
erties V., then specifying which should hold in cc,.. Similarly, we define Hintikka
sets by first defining the desired properties.

DEFINITION 6.19 (Z-Hintikka properties). Let # be a set of sentences. We define
the following properties which # may satisfy, where 4. B € cwff,, C, D € cwff,,
F € cwif,—,. and (A1Xo.M). (AX.N), G. H € cwff,_:
cA¢gF or—A¢x.
cIf -4 € #,thend € 7.

: If A € # and A=4B. then Bc 7.

: If 4 € # and A=p, B, then B € 7.

cIfAVBe #.thenAc #orBec #.

: If~(4V B) € #,then -4 € # and -B c 7.

 IfTIF € 7, then FW € # for each W ¢ cwif,,.

: If =II*F € #. then there is a parameter w, € X, such that -(Fw) € #.

: If =(4 =" B) € #.then {A4.-B} C # or {—~4.B} C #.

If (A X0 M =7 JX.N) € #. then there is a parameter w, € X, such that

~([w/XIM =* [w/XIN) € 7.

A2A032 ada

Vi: If (G =>~F [ € #. then there is a parameter w, € X, such that =(Gw ="
Hw)c #.
Vyar: Either 4 € # or -4 € 7.
Vi =(C=*C) ¢ Z.
Vi

cIfC="Dec# thenC="Dcx>.

DEFINITION 6.20 (2-Hintikka set). A set # of sentences is called a X-Hintikka
set if it satisfies V.., V... %, Vo. Va. W and V5. When primitive equality is present
in the signature and # is a Hintikka set satisfying V' and V= we call #Z a 2-
Hintikka set with primitive equality. We define the following collections of Hin-
tikka sets (with primitive equality): Hintg. Hinty,. Nintge, Hintg, Hintgy, Hintge.
$intgzp, and Hintgg, where we indicate by indices which additional properties from
{ﬁ? ﬁg ﬁf ﬁb} are required. If primitive equality is in the signature, we require
Z € Hint, to be a Hintikka set with primitive equality.

We will construct Hintikka sets as maximal elements of abstract consistency
classes. To obtain a Hintikka set, we must explicitly show the property V5 (and V:
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or ﬁf when appropriate). This will ensure that Hintikka sets have enough parameters
which act as witnesses.

LemMa 6.21 (Hintikka lemma). Let Iz be an abstract consistency class in Acc,.
Suppose a set ' € Iy, satisfies the following properties:

(1) # is subset-maximalin Iz, (i.e., for each sentence D € cwit, such that # x D €

Iz. we already have D € #).

(2) #Z satisfies V3.

(3) If x € {BE. pEb}. then N: holds in 7 .

(4) If € {Bf. pfb}. then N holds in Z .
Then, # € $Hint,. Furthermore, if I3 is saturated, then 7 satisfies Vit

PROOF. 7 satisfies V3 by assumption. Also. if x € {&. fEb} (x € {Bf. ffb}). then
we have explicitly assumed # satisfies V- (V). The fact that # € I3 satisfies V,
follows directly from non-atomic consistency (Lemma 6.10). Similarly, if primitive
equality is in the signature, then /Z satisfies V’ since # € I3 and I3 satisfies V.
Every other \V4 property follows directly from the corresponding V, property and
maximality of 7 in I3. For example, to show V.. suppose =4 € Z. By V.,
we know # * A € Iz. By maximality of 77, we have 4 € 7. Checking %, ﬁ?
(if x € {pn. ﬂr]b}) Vi. V. and V= hold for # follows exactly this same pattern.
Checking V. Vi, (if « € {pb.pyb.pfb}) and V,, (if I is saturated) follows a
similar pattern, but with a simple case analysis. For example, to check V4. given
A € cwil,(X), Vi implies # * A € Iz or # x =4 € Iz. So, either 4 € # or
AeXx. !

It is worth noting that the converse of V= also holds in Hintikka sets with
primitive equality.

LEMMA 6.22. Suppose primitive equality is in the signature and # is a Hintikka

set with primitive equality. Then. we have the following property for every type o and
A, B € cwif,(Z):

V A="Bc X iffA="BcXx.
PROOF. If A =% B € #.then A =“ B € # by !z: For the converse direction

assume that 4 =% B € #. From this we get by W with AX.4 = X and Vj that
~(A=A)VA=Be #. Since—~(4d=A) ¢ #byV’' WV impliesd =*Be #. -
It is helpful to note the following properties of Leibniz equality in Hintikka sets.
LEMMA 6.23. Suppose Z# is a Hintikka set. For any F.G € cwif,_4() and

A, B, C € cwit, () (for types o and B), we have the following:

-(A4="A4)¢ 7.

" IfA="Bc X andB="Cec ¥ thenA="Cecx#.

cIf(F=""" G) e # and (4 =* B) € #. then (FA =" GB) ¢ .

PrOOF. To show V!, suppose (4 =* A) € #. By V4 and Vj. there must be

some parameter g,_., such that ~(-gA4 VvV gA4) € #. By Vi. we have -—qA € X
and ~gA € # . contradicting V.

To show ﬁz” suppose A =* B € # and B =% C € #. Let Q,_,, be the
closed formula (1 Xa..4 =% X). Applying W to B =* C € # and Q. we know

n~<lh Hﬂl <
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—-(QB)V QC € #. By V. we know ~(QB) € # or QC € #. If -(QB) € # . then
—(4 =% B) € # by V. contradicting V. So, QC € # and hence 4 =* C € 7 as
desired.

To show ﬁ; .let P, _ )., be the closed formula (AHo—p.FA = g A). Applying
YV to (F =77 G) € # and P, we have ~(PF) v PG € #. By V. we know
~(PF) € # or PG € #. If =(PF) € #. then ~(FA =’ FA) € # by V;, which
contradicts V/. So, we must have PG € # and hence (FA =P GA) € #. Let 04—,
be the closed formula (1 X..FA =" GX). Applying % and ¥, to (4 =* B) € #,
we know —(Q4) € # or QB € 7. If ~(QA) € # . then —~(FA =" GA) € # by V.
contradicting V. So, OB € # and hence (FA =/ GB) € # as desired. 4

Whenever a Hintikka set satisfies Vj,,, we can prove far more closure properties.
For example, we can prove converses of V.. %, V. Via. V. V4 and V= (when
primitive equality is in the signature). Also, if any of ﬁﬂ V. ﬁq or ﬁf hold, we can
prove the corresponding converse. (We could call these properties ﬁ) The proofs

of the stronger properties V., and V, in Lemma 6.25 indicate how one would prove
any of these converse properties.

DEFINITION 6.24 (Saturated set). We say a set of sentences # is saturated if it
satisfies V,;.

By Lemma 6.21, any Hintikka set constructed as a maximal member of a saturated
abstract consistency class will be saturated. However, it is also possible for a
maximal member of an abstract consistency class I3 to be saturated without Iy
being saturated.

LEMMA 6.25 (Saturated sets lemma). Suppose # is a saturated Hintikka set. Then
we have the following properties for every A,B € cwif,(Z), F € cwif,_,(X). and
C € cwif,(2) (for any type av):

Yﬁ: ~AeXiffA¢ x.

W: (AVB) e Z iff Ac Z orBe Z.

Yy: (TI°F) € # if and only if FD € Z# for every D € cwif,(Z).
Y : (MI°F) ¢ # iﬁ"(FD)lﬂ € # forevery D € cwﬁ”a(E)lﬂ.

Vi (C=*C)ex.

PROOF. If =4 € #.then A ¢ # by N,. If A ¢ #. then =4 € # since 7 is
saturated. So, V., holds.

If (AVB) € #,then A € # or B € # by Y,. We prove the converse by
contraposition. Suppose (4 V B) ¢ 7. By saturation we have —(4 vV B) € #, and
by Vi, we get =4 € # and =B € #. So, by V.. A ¢ # and B ¢ #. Thus, AV
holds.

One direction of Y, is ﬁv For one direction of v\f, note that if (IT*F) € #, then
for any D € cwif, (E)lﬂ we have (FD)lﬂ € # by Vy and V.

Suppose (I1*F) ¢ # . By saturation, ~(II*F) € #. By V4. there is a parameter
Wa € X, such that =(Fw) € #Z. By V., we know (Fw) ¢ #. This shows the other
direction of V. Furthermore, by Vs we know —(Fw)| 4 €% and so (Fw)| s .

Since w is f-normal, we also have the other direction of v\f.
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Finally, V, follows directly from saturation and ﬁ:’ . -

LEMMA 6.26 (Saturated sets lemma for b). Suppose # € $Hint. where = € {fb,
Pnb, BE6. Bib}. If 7 is saturated, then the following property holds for all A, B €
cwil, (2).

YVo: A="BeFX ord="-Bec ¥#.

PrROOF. Suppose (4 =° B) ¢ # and (4 =° —B) ¢ #. By saturation, —(4 =’
B) € # and ~(4 =° —B) € #. By V. we must have {4. ~B} C # or {-4.B} C
Z. We must also have {4, =——B} C # or {—4.-B} C #. Each of the four cases
leads to an immediate contradiction to V.. -

LEMMA 6.27 (Saturated sets lemma for 7). Suppose # € $int, where x € {fy,
Pnb}. If Z is saturated, then the following property holds for every type o and
A € cwif,(2):

Vi (A="Alg)ex.
PrOOF. If (4 = Alg,) ¢ #. then by saturation ~(4 = Al,) € Z. So, by @ we
have —( Al =" Al4,) € Z. But this contradicts V. 4
LEMMA 6.28 (Saturated sets lemma for &). Suppose # € $int, where x € {B¢,
PE6Y. If Z is saturated, then the following properties hold for all o, f € I and
(AX0M), (ZX.N) € cwify_4(Z):
Ve UXM =" )X.N) € 7 iff (A/XIM =" [4/XIN) € Z for every A €
cwit, ().
' QXM =" JX.N) € 7 i ([4/XIM = [4/XIN)| , € 7 for every A €
cwif, (Z)lﬁ.
PROOF. Suppose (AX.M =*"% jX.N) € # and 4 € cwfl,(X). We can apply V
and % using the closed formula (AK,_.4.[4/ XM =F K A4) to obtain

(~([4/X1M =" [4/X1M) v [4/ XM =" [4/XIN) € 7.

Since ~([4/XIM =" [4/XM) ¢ 7 (by V!), we know ([4/XIM =" [4/X|N) e
7. This shows one direction of V-. By V we have ([4/X]M =" [A/X]N)lﬁe Xx.
Since this holds in particular for any 4 € cwff, (Z)l » this shows one direction of
<.

Suppose (AX.M =" JX.N) ¢ 7. We show that there is a (f-normal) 4 €
ewff, (2) with [4/XIM =’ [4/X|N ¢ #. By saturation, ~(AX.M =" JX.N) €
# . By V:, there is a parameter w, € Z, such that —([w/ XM =F [w/XIN) e #.
By V.. [w/ XM = [w/X]IN ¢ #. Choosing A := w we have the other direction
of V.. Since w is f-normal and ([w/X]M =" [w/X]N)lﬁgé # (using V), we have
the other direction of Véﬂ. =

LEMMA 6.29 (Saturated sets lemma for f). Suppose # € $Hint. wherex € {ff, fjb}.
If 7 is saturated, then the following property holds for any types o and [ and
G.H € cwif,_4(Z).

Vi G="""Hecxiff GA=" HA c 7 for every A € cwi,(Z).
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_ﬁ . 00— . .
Vi G= PHexiff(Ga=" HA)l/fG K for every A € cwffa(Z)l/f.

PrOOE. Suppose (G =*"* H) ¢ # and 4 € cwff,(2). Since (4 =* A) € # by
Y, we have (GA =" HA) € # by V.~ (cf. Lemma 6.23). This shows one direction
of V. By Vj we have (GA =F HA)| 4€ # . Since this holds in particular for any
A € ewffo(2)] 4~ this shows one direction of Vfﬂ .

Suppose (G =" H) ¢ . By saturation. ~(G =*" H) € 7. By Vi. there is
a parameter w, € X, such that =(Gw =" Hw) € Z . By V. (Gw =" Hw) ¢ 7.
Choosing 4 :=w we have the other direction of V;. Since w is f-normal and
(Gw =" Hw )lﬁé # (using %) we have the other direction of vf. 4

In Lemma 3.24, we compared properties #. ¢ and f of models by showing f
is equivalent to # plus £. Similarly, Theorem 6.31 compares ﬁ” ﬁg and ﬁf as
properties of Hintikka sets. Showing ﬁf implies ﬁ,, requires saturation and must be
shown in several steps reflected by Lemma 6.30.

LemMA 6.30. Let 7 be a saturated Hintikka set satisfying ﬁf

(1) For all F € cwff,_.3 we have (A Xo.FX) =P Fez.

(2) Forall A, B € cwil, (). if A n-reduces to B in one step, then A =" B € # .
(3) Forall A € cwif,(2). A =" Alg, € Z.

(4) Forall A € cwff,(X), if A € Z . then Alg, € 7.

~a—f

ProoOF. To show part (1), suppose (AX,.FX) = F ¢ #. By saturation,
~((AXFX) =*"" F) e 7. By ﬁf there is a parameter w,, such that

(A X0F X)w) =P (Fw)) € 7.

By Vi, —((Fw) =P (Fw)) € #. which contradicts V! (cf. Lemma 6.23).

We prove part (2) by induction on the position of the #-redex in 4. If A4 is the #-
redex reduced to obtain B, then this follows from part (1). Suppose 4 = (F,_.,C,)
and B = (G,_,C) where F y-reduces to G in one step. By induction, we know
F="""Gex. ByV,,C=' Cec#. ByV. wehave (FC) =" (GC) € # as
desired. The case in which 4 = (F,_.,C,) and B = (FD,) where C n-reduces to D
in one step is analogous.

Suppose 4 = (4YpC,) and B = (AYg.D,) where C p-reduces to D in one
step. Let p be the position of the redex in C. Assume 4 =77 B ¢ #. By
saturation, —(A4 =f= B) ¢ #. By ﬁf there is some parameter wy such that
(4w =" Bw) € #. By Vj, we know ~([w/Y]C =’ [w/Y]D) € #. Note that
[w/Y]C n-reduces to [w/Y]D in one step by reducing the redex at position p in
[w/Y]C. So, by the induction hypothesis, [w/Y]C =’ [w/Y]D € #. contradicting
V..
Part (3) follows by induction on the number of fy-reductions from A to A| pe 1
A is fp-normal, we have 4 =* 4 € #Z by V,. If A reduces to A| 4, in n + 1 steps,
then there is some B, such that A reduces to B in one step and B reduces to Al 4, in
n steps. By induction, we have B =“ Alg, € #Z. 1f A B-reduces to B in one step.

then 4 =% B € # by ¥V, and V. If 4 y-reduces to B in one step, then 4 =* B € #
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by part (2). Using V. 4 =% B € % and B =" A|;, € # imply A =" A|;, € #
as desired. .
Finally, to show part (4), suppose 4 € 7. By part (3). 4 =° Aly, € Z. By W,

~(AXo-X)AV (X, X) Aly, € Z. By ﬁﬂ and Vi, we have =4 € # (contradicting
V) or Aly, € Z. Hence. A4, € 7. -
THEOREM 6.31. Let #Z be a Hintikka set.
(1) If Z satisfies ?7 and N, then # satisfies V.
(2) If Z satisfies N, then Z satisfies V.
(3) If # is saturated and satisfies ﬁf then 2 satisfies ﬁ,

PROOF. Suppose 7 satisfies V, and V:. Assume ~(F =* 7 G) € #. By V..
~((AXaFX) =P JX.GX)) € #. By V:. there is a parameter w, such that
~((Fw) =’ (Gw)) € #. Thus. ¥, holds.

Suppose # satisfies V; and —(1X,.M =*=F JX.N) € #. By V. there is
a parameter w, such that =((A1Xe.M)w = (AX.N)w) € #. By V. we have
~([w/XIM =" [w/XIN) € #. Thus. V: holds.

Suppose # is saturated and satisfies ﬁf Assume A € 7, B € cwff,(X), A=4,B
and B ¢ #. By saturation, we know =B € #. By Lemma §.30(4), we know
Alg, € # and - Blg, € . Since A| 5, = Bl p,. this contradicts V.. -

6.3. Model existence theorems. We shall now present the proof of the abstract
extension lemma, which will nearly immediately yield the model existence theorems.
For the proof we adapt the construction of Henkin’s completeness proof from [26,
27].

LeMMA 6.32 (Abstract extension lemma). Let X be a signature, Is be a compact
abstract consistency class in Ucc.,., where x € {f, pn, P&, pf. pb. pnb, pEb. pib}, and let
® € I3 be sufficiently X-pure. Then there exists a X-Hintikka set 77 € $int,., such
that ® C . Furthermore, if I3 is saturated, then # is saturated.

ProoOF. In the following argument, note that «, 5, and y are types as usual, while
0, &, o and 7 are ordinals.

By Remark 3.16, there is an infinite cardinal 8, which is the cardinality of £, for
each type a.. This easily implies cwif,, () is of cardinality X for each type .. Let
¢ be the first ordinal of this cardinality. (In the countable case, ¢ is @.) Since the
cardinality of cwif,(X) is N, we can use the well-ordering principle to enumerate
cwif, (E) as (Aé Jo<e-

Let « be a type. For each § < ¢, let U? be the set of constants of type o which
occur in a sentence in the set { 47 | ¢ < J}. Sinced < ¢, theset {4 | ¢ < J}
has cardinality less than X,. Hence, U? has cardinality less than X;. By sufficient
purity, we know there is a set of parameters P, C X, of cardinality N such that
the parameters in P, do not occur in the sentences of ®. So. P, \ U2 must have
cardinality N, for any 6 < ¢. Using the axiom of choice, we can find a sequence
(w?)s<; where for each d < &, w? € P, \ (U2 U{w? | o <J}). Thatis, for each
type o, we know w? is a parameter of type o which does not occur in any sentence
in®U{4° | 6 <J}. Asa consequence, if w’ occurs in A%, then § < g. Also, we

have ensured that if wg =w?.thend = o foranyd, o < ¢.
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The parameters w?, are intended to serve as witnesses. To ease the argument,

we define two sequences of witnessing sentences related to the sequence (A4°);s.,.
For each 6 < ¢. let E° := —(Bw?) if 4° is of the form —~(I1*B). and let E° := A°
otherwise. If € {Bf. ffb} and 4° is of the form —(F =*" G).1et X° : = —(Fw? =/
Gwd). If x € {B&.pEb} and A° is of the form —~((AXeM) =P (JX.N)). let
X0 = —([wl/XIM =" [wl/X]N). Otherwise. let X° := 4°. (Notice that any
sentence —(F =*"" @) is also of the form —(I1" B), where 7 is (o — B) — o. So,
whenever X° # 4°, we must also have E° # 4°))

We construct # by inductively constructing a transfinite sequence (#°)s., such
that #° € I for each < ¢. Then the =-Hintikka set is 7 := |Js_, #°. We define
#" := ®. For limit ordinals §, we define #° := UK(; 2.

In the successor case, if #° x 4° € I3, then we let #°1! := #% « 49 « E% x X°. If
X0 A° ¢ Tz, welet 707! 1= 79,

We show by induction that for every 0 < ¢, type o and parameter w; which
occurs in some sentence in #°, we have © < 6. The base case holds since no wp,
occurs in any sentence in #° = ®. For any limit ordinal J, if w? occurs in some
sentence in #°, then by definition of # 5 w}, already occurs in some sentence in
Z° forsome o < 0. So, 1< 0 <9.

For any successor ordinal § + 1, suppose w, occurs in some sentence in #°+!. If
it already occurred in a sentence in #°, then we have t < 6 < & + 1 by the inductive
assumption. So, we need only consider the case where w occurs in a sentence in
#°F1\ #°. Note that (74! \ #°) C {4°. E°. X°}. In any case, note that if 7 is 6.
then we are done, since 0 < J + 1. If w}, is any parameter with 7 # ¢ and occurs in
E° or X°, then it must also occur in A4° (by noting that w? # w? and inspecting the
possible definitions of E° and X?), in which case 7 < 6 < J + 1.

In particular, we now know w? does not occur in any sentence of #° for any
0 < ¢ and type a.

Next we show by induction that 7 9 ¢ Iz for all § < ¢. The base case holds by
the assumption that #° = ® € I;. For any limit ordinal §, assume #° € I3 for
every o < 6. We have #° = U,<s #Z° € Iz by compactness, since any finite subset
of #° is a subset of #° for some ¢ < J.

For any successor ordinal 6 + 1, we assume 7 % ¢ . We have to show that
#°! € Tz. This is trivial in case #° x A° ¢ T (for all abstract consistency classes)
since #°t! = #7. Suppose #° « A’ € Iz. We consider three sub-cases:

(i) If E° = A° and X° = A°, then #° « A° « E° « X° € Tz since #° + A° € I5.

(i) If E° # A° and X° = 4°, then A° is of the form —I1*B and E° = —Bw?.

We conclude that #° x 4° x E° € Ty by V5 since w’ does not occur in 4°
or any sentence of #°. Since X° = A°, this is the same as concluding
FOx A« E° x X° € 3.

(iii) If X° # 4°, then * € {BE, Bf. BEb. Bfb} (by the definition of X?). #9 x A *

E° € T3 by V5 since w{,_, , does not occur in A° or any sentence in #°.

Now, w? (which is different from wfaH 5o

not occur in any sentence in #° x A% « E°. We have #° « A° « E° « X° € #
by V: (if x € {. BCb}) or by V (if * € {f. fb}).

Since I3 is compact, we also have Z € I3.

since it has a different type) does
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Now we know that our inductively defined set /# is indeed in I3 and that ® C 7.
In order to apply Lemma 6.21, we must check # is maximal, satisfies Vi, ﬁq (if
x € {BE.PE0}). and Vi (if + € {Bf.pfb}). It is immediate from the construction
that V5 holds since if =(IT®F) € #. then —~(Fw?) € # where J is the ordinal
such that 4 = —(II*F). If « € {f¢.pEb}. then we have ensured V- holds since
~([ws /XM =" [wl/XIN) € # whenever ~((AXo.M) =*"% (AX.N)) ¢ #
where & is the ordinal such that 4° = —((AXa.M) =" (AX.N)). Similarly, we
have ensured V; holds when * € {Bf. b} since ~(Fw? =’ Gu?) € # whenever
—~(F =77 G) € # where 6 is the ordinal such that 4° = —~(F =% G).

It only remains to show that /7 is maximalin I5. So, let A € cwff, and Z x4 € I3
be given. Note that A = A° for some J < ¢. Since # is closed under subsets we
know that #° « A° € Tz. By definition of #°*! we conclude that 4° € #°*! and
hence 4 € 7.

So. Lemma 6.21 implies 7 € $int, and # is saturated if I3 is saturated. -

We now use the X-Hintikka sets, guaranteed by Lemma 6.32, to construct a
Y-valuation for the X-term evaluation that turns it into a model.

THEOREM 6.33 (Model existence theorem for saturated sets). For all x € {B.pn.
BE. B, Bb. Bnb, BEb, Bib} we have: If # is a saturated Hintikka set in $yint, (cf. Defi-
nition 6.20), then there exists a model # € M. (cf. Definition 3.49) that satisfies 7 .
Furthermore, each domain D, of # has cardinality at most X.

PrOOF. We start with the construction of a -model . for # based on the

term evaluation I~ g(Z)ﬁ . This model may not be in the model class 901, as it may
not satisfy property q. However, we will be able to use Theorem 3.62 to obtain a
model of 7 which is.

Note that since 7 is saturated, by Lemma 6.25, # satisfies V.., W, and Vf.

The domain of type o of the evaluation - ()" (cf Definition 3.35 and
Lemma 3.36) is cwff, (2)] g which has cardinality X,. To construct .#;, we simply

need to give a valuation function for this evaluation. This valuation function should
be a function v: cwff, (Z)lﬁ — {T.F}. We define

w3 85E

To show v is a valuation, we must check the logical constants are interpreted
appropriately. For each 4 € cwff,(Z)] g We have v(—4) = T iff v(4) = F since
-A € #iff A¢ # by V.. Foreach 4,B € cwffo(E)lﬂ, we have v(4 v B) = T iff
v(A) = Torv(B) = T.since (AV B) € #Z iff A € # or B € # by V,. Finally,
for each type o and F € cwﬁ”aéo(i‘.)lﬁ, Vf implies (IT°F) € # iff (FA)lﬂ ex
for every 4 € cwff, (Z)l,g' Thus. we have o(T1*F) = T iff o(F@f A) = T for every
A € cwff, (Z)l/f.

This verifies #{7 := (cwff| g @P.&P,v) is a T-model. Clearly, #{% = # since
v(A) = T for every A € # by definition.

By Theorem 3.62, we have a congruence relation ~ on ;% induced by Leibniz
equality. Note that by Lemma 3.61 in the term model .#{7, for every type o and
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every A. B ¢ cwffa(E)lﬂ, we have A, ~ B,.iffv(d = B) =T.iff (4 =% B) € 7.
Furthermore, if primitive equality is in the signature, then 7 € §int, is a Hintikka
set with primitive equality. Hence. # satisfies V_ by Lemma 6.22. We have 4 ~ B.
iff (A=""B)ec#.iff (byV_) (4 =>B)c 7. iffo(&f(=*)a’A@’B) = T.

Let # := ///fy /~. Each domain of this model has cardinality at most X, as it
is the quotient of a set of cardinality ;. By Theorem 3.62, we know the quotient
model .Z models #, satisfies property ¢, and is a model with primitive equality
(if primitive equality is in the signature). Hence, # € M. Now. we can use
Lemma 3.58 to check .Z € 9. by checking certain properties of ~.

When * € {fb, b, 56, ffb}, we must check that ~ has only two equivalence
classes in Qoﬁ . To show this, first note that V; holds for # by Lemma 6.26. Choose
any f-normal B € #. By V. -B ¢ #. By V. for every 4 € cwﬁ”,,(Z)lﬂ either
(4 =" B) or (A =° —B). Thatis, in ;" for every A € cwff, (E)l/f we either have
A~ Bor A~ —B. So, we know ./ satisfies property b.

When * € {Bn.Bnb}. the fact that ~ satisfies property # follows from V, which
holds for # by Lemma 6.27.

When x € {f¢&, pEb}, we must show that ~ satisfies property &. Let M, N €
wif4(Z). an assignment ¢ and a variable X, be given. Suppose é”sf[A/X] (M) ~
& (ﬁ [4/X] (N) for every A € cwif,(Z)| g Let 0 be the substitution defined by
0(Y) := ¢(Y) for each variable Y € (free(M) U free(N)) \ {X}. So. for each
A€cw Q(Z)l/f,

([4/X10(M))] , = &Ly (M) ~ €L (N) = ([4/ X10(N))] .

That is. ([4/X10(M) =/ [4/X]0(N))| ,& 7 for every A € cwifo(Z)| ;. By 4

(Lemma 6.28), we have (1 X.0(M)) =7 /IX.H(N))lﬁE #. So,

5

ELOXM) = (2X.0(M))| , ~ 2X.0(N)| , =EJ2X.N).

B

Thus, ~ satisfies & as desired.
When x € {ff, ffb}, we must show ~ is functional. Let o and f be types and
G H c cwffa_,/;(Z)l/f. We need to show G ~ H iff (GA)l/f ~ (HA)l/f for every

A € ewio(T)] 4 This follows directly from 7!5.
This verifies the fact that .# € 9, whenever Z € Hint,. -

THEOREM 6.34 (Model existence theorem). Let Iy be a saturated abstract con-
sistency class and let ® € Iy be a sufficiently X-pure set of sentences. For all
x € {B.Pn.BE. Bf. Po. fub. BEL, Bfo} we have: If Tz is an Ucc, (cf. Definition 6.7).
then there exists a model # € M., (cf. Definition 3.49) that satisfies ®. Furthermore,
each domain of M has cardinality at most X.

ProoOF. Let I3 be an abstract consistency class. We can assume without loss of
generality (cf. Lemma 6.18) that I3 is compact, so the preconditions of Lemma 6.32
are met. Therefore, there exists a saturated Hintikka set #Z € $int, with ® C #Z.
The proof is completed by a simple appeal to the Theorem 6.33. -
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THEOREM 6.35 (Model existence for Henkin models). Let Iy be a saturated ab-
stract consistency class inAccgp and let ® € Iy be a sufficiently Z-pure set of sentences.
Then there is a Henkin model (cf. Definition 3.50) that satisfies ®. Furthermore, each
domain of the model has cardinality at most N;.

Proor. By Theorem 6.34, there is a model .# € Mgy, with # = ®. By Theo-
rem 3.68, there is a Henkin model .Z/" ¢ Mg isomorphic to .. By the isomor-
phism, we have .Z/" |= ® and that each domain of .#/" has the same cardinality as
the corresponding domain of .Z. -

REMARK 6.36. The model existence theorems show there are “enough” models
in each class M. to model sufficiently pure sets in saturated abstract consistency
classes in 2cc,.. These results are abstract forms of completeness. To complete the
analysis, we can show abstract forms of soundness. One way to show this is to
define a class of sentences

' :={0Ccwlf, | 34 e M.l =D}

for each = € {B. pn. BE. Bf. fb. b, PEb, ffb} and show I5* is a (saturated) Acc,.. We
only sketch the proof here.

The fact that each I3 satisfy V., V., Vo, M, VA, W, and V,, is straightforward.
The proof that V5 holds has the technical difficulty that one must modify the
evaluation of a parameter. Showing V; [V,] holds when considering models with
property b [#] is also easy.

When showing V; holds in l"zﬁ f [1"2/f fb], one sees the importance of assuming prop-

erty q holds. Suppose ® € ' [[P"] and —~(F =*~F G) € ®. Then there
is a model # = (Z.@.&.v) € Mg [Mgse] such that .# = ®. This implies
M 1= —(F =*7% G). Without using property g, it follows by Lemma 4.2(1) that
& (F) # &(G). By functionality, there is an a € Z,, such that & (F)@a # &€ (G)@a.
Let ¢ be any assignment into .#. Then &, [,/ x|(FX) # &,[./x)(GX). Now, using
property q. we can conclude /#,,,/x) = ~((FX) = (GX)) by Lemma 4.2(2). Let
w, € X be a parameter that does not occur in any sentence of ®. With some
technical work which we omit, one can change the evaluation function to &’ so that
&' (A) =& (A)forallA € ®,and &' (w) = a. Inthenewmodel #’ = (Z. @, &’ v),
we have #' = ® and #' = —(Fw =P Gu). Also, 4" € ccp; [Accpse]. This shows
D+~ (Fw =F Guw) € l;ﬂf [Eﬂfb]. The proof that V: holds in l"zﬂé [lgﬂfb] is analogous.

‘We have now established a set of proof-theoretic conditions that are sufficient to
guarantee the existence of a model.

87. Characterizing higher-order natural deduction calculi. In this section we apply
the model existence theorems above to prove some classical higher-order calculi of
natural deduction sound and complete with respect to the model classes introduced
in Section 3. The first calculus for such a formulation of higher-order logic was a
Hilbert-style system introduced by Alonzo Church in [18]!°. Leon Henkin proves
completeness (with respect to Henkin models) for a similar calculus with full exten-
sionality in [26]. Peter Andrews introduced a weaker calculus T4 [1], which lacks all

10Church included functional extensionality axioms but only mentions the Boolean extensionality
axiom as an option.



1080 CHRISTOPH BENZMULLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

Aec® A=pB DI 4
NR(Hyp) — NR(P)
O A OB
OxAFF, OF--4 O A
—— MNMA(AI) ————— NR(-E)
(ONERY | o C
O A OB
— NA(VI) ——— NA(VIR)
O-AVB O-AVB
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o-C
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O+ I1°G

MR(I1I)"

Dt I1°G Ox-AF,
—— — MA(IIE) —— MNA(Contr)
O GA O A

FIGURE 6. Inference rules for MR;.

forms of extensionality. This calculus has been widely used as a syntactic measure
of completeness for machine-oriented calculi [1, 32, 33, 34, 42, 36, 37].

Instead of applying our methods to Hilbert-style calculi, we will use a collection
of natural deduction calculi to avoid the tedious details of proving a deduction
theorem and propositional completeness. Moreover, natural deduction calculi are
more relevant in practice. They form the logical basis for semi-automated theorem
proving systems such as HOL [25], ISABELLE [46], or QMEGA [51].

DEFINITION 7.1 (The calculi MR.). The calculus 9%y consists of the inference
rules'! in Figure 6 for the provability judgment k- between sets of sentences ® and
sentences A. (We write I~ A4 for () - 4.) The rule MA(B) incorporates f-equality
into k. The others characterize the semantics of the connectives and quantifiers.

For x € {fn, B, pf. b, pnb. pEb, ffb} we obtain the calculus MR, by adding the
rules shown in Figure 7 when specified in x.

REMARK 7.2. It is worth noting that there is a derivation of I T, (ie., I~ VP,.
P Vv —P) which only uses the rules in Figure 6. Let p be a parameter of type 0. A
derivation of =(p V =p) = (p V —p) is shown in Figure 8. Using MA(Hyp) and

Recall that F, is defined to be ~(VP,.(PV—P)) and & [~ F, for each Z-model # (cf. Lemma 3.43).
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A=pB OF A D+ VXM = N
——— MNAy) NR(E)
O+ B O (AXM) =P (1X,.N)
O VX,.GX = HX 0
o-G="""H
O+«A+-B O«BI A
NA(b)

O-A4="B

FIGURE 7. Extensional inference rules.

PV MNR(Hyp)
NA(Hyp) PEPEPEP waivr)
“(pV-p).pt-(pVv-p) ~(pV-p).pk(pV-p)
MR(-E)

=(pV-p).pFF,
=(pV-p)-p
“(pV-p)t(pV-p)

MNA(-I)
NR(VIR)

FIGURE 8. Derivation of =(p V =p) = (p V =p).

MA(—E), we obtain —(p V =p) + F,. So, we can conclude Ik (p V —p) using
MNR(Contr). Finally, we obtain a derivation of ¥ T, using MR(I1/)”. Hence, # T,
is derivable in each calculus 8. where x € {f. fn, BE. Bf. Bb. fuyb, BEb, pfb}. Also,
we can apply the rule MA(I1E) to the end of this derivation with any sentence A4 to
derive + (4 VvV —A4).

Note that 9185 and 91Rgs, correspond to the extremes of the model classes dis-
cussed in Section 3 (cf. Figure 1 in the introduction). Standard models do not admit
(recursively axiomatizable) calculi that are sound and complete, MR sp is complete
for Henkin models, and 918 is complete for Miz. We will now show soundness and
completeness of each DR, with respect to each corresponding model class 91, by
using the model existence theorems in Section 6.

THEOREM 7.3 (Soundness). MR, is sound for M., for € {B. fn. BE. Bf. fb. pnb,
PE6, pfb}. That is, if ® bma, C is derivable, then # = C for all models # =
(Z.@.%.v) in M, such that 4 = ®.

Proor. This can be shown by a simple induction on the derivation of ® Fyg, C.
We distinguish based on the last rule of the derivation. The only base case is
MNA(Hyp). which is trivial since # = C whenever # = ® and C € ©.
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NA(P):
MNA(Contr):
MA(-I):
MR(-E):
m(\/IL)Z

M(\/IR)I
MAVE):

MA(TL):

NA(TLE):

Suppose @ = C follows from ® - 4 and A=4C. Let # € M, bea
model of ®. By induction, we know .# |= 4 and so # = C using
Remark 3.19.

Suppose # € M., # = ® and ® I C follows from @ « -C t F,. By
Lemma 3.43, # [~ F,. So, we must have /# [~ —C. Hence, # = C.
Analogous to MA(Contr).

Suppose @ - C follows from ® + —A4 and ® -~ A. By induction, any
model in 9. of ® would have to model both 4 and —A4. So, there is
no such model of ® and we are done.

Suppose # € M., # = @, Cis (AV B) and ® i C follows from
® i~ A. By induction, # = Aandso 4 = (A V B).

Analogous to MA(VIL).

Suppose @ I~ C follows from ® - (AV B), ®x A+ Cand ®+ B+ C.
Let # € M. be a model of ®. By induction, # = AV B. If 4 | A,
then by induction # = C since ® x4 + C. If # | B. then by
induction . = C since @ « B C. In either case, @ i~ C.

Suppose C is (II*G) and ® + (I1*G) follows from ® + Gw where
w, 1s a parameter which does not occur in any sentence of ® or in G.
Let # = (Z,@.&.v) € M, be a model of ®. Assume Z [~ 11°G.
Then there must be some a € Z, such that v(£(G)@a) = F. From
the evaluation function &, one can define another evaluation function
&' such that &' (w) = a and &/(4,) = &,(A4,) if w does not occur in
A. Let #' := (Z,@.&’,v). One can check /#' ¢ 9, using the fact
that .# € 9M,. Since #' = @, by induction we have .#’ = Gw. This
contradicts v(€'(G)@a) = v(&(G)@a) = F. Thus, # = 1°G.
Suppose C is (GA) and ® I~ C follows from ® - (II*G). Let # =
(Z.@.&.v) € M, be amodel of ®. By induction, .# = (I1*G) and
thus v(&€ (G))@a = T for every a € Z,,. In particular, Z = GA.

We now check soundness of the rules in Figure 7 with respect to their model classes:

NR(n):
NR(E):

Analogous to 91R(f) using property 7.

Suppose C is (AXaM) =*"" (7 X,.N) and ® I C follows from ® -
VXM =P N. Let # = (2.@.%.v) € M, be a model of d. By
induction, we have # E VX,.M =P N. So, for any assignment ¢
and a € Dy M |y M =F N. Note that property q holds in .#
since # € M, (cf. Definition 3.49). By Lemma 4.2(2). &, 2/ x)(M) =
Epa/x1(IN). By property &, &,(AXo.M) = &,(1Xo.N) and thus 4 |=
C by Lemma 4.2(1).

. Suppose Cis G =*# Hand ® I Cfollows from® - VX,.GX =/ HX.

Let # € M. be a model of ®. By induction, we know Z |=
VX,.GX =¥ HX. Note that property q holds for .# since # € IMN..
By Theorem 4.3(3), we must have # | (G ~=b ).

Suppose Cis 4 =° Band @ I~ C follows from ®+A - Band ®+B I- A.
Let# = (Z.@.&.,v) € M, beamodel of ®. If # |= A, then # = B
by induction. If # |= B, then .# = A by induction. These facts imply
v(&(A)) = v(&(B)). By Lemma 3.48, we have # = (4 < B). By
Theorem 4.3(4), we must have /# = (4 =° B). -
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DEFINITION 7.4 (MR, -consistent). A set of sentences ® is R.-inconsistent if
D tma, F,. and NR.-consistent otherwise.

Now, we use the model existence theorems for 0¥ to give short and elegant
proofs of completeness for R...

LeMMA 7.5. The class I :={® C cwff, | @ is MR.-consistent} is a saturated
Acc,.
ProoOF. Obviously [J* is closed under subsets, since any subset of an 9R.-

consistent set is J1R.-consistent. We now check the remaining conditions. We
prove all the properties by proving their contrapositive.

\vA
Vs

Va:

V\/:

V/\:

Va:

Viar

: Suppose 4, -4 € ®. We have ® I~ F, by MA(Hyp) and NRA(-E).

: Let 4 € ®, A=4B and ® * B be NMRA.-inconsistent. Thatis, ® * B - F,. By

MRA(-1), we know @ I —B. Since 4 € O, we know @ I B by MA(Hyp) and

MA(B). Using NA(-E), we know @ I F, and hence ® is 9K, -inconsistent.

Suppose =—A4 € ® and © * A4 is NR.-inconsistent. From ® x 4 + F, and

MA(-I), we have ®  —A4. Since ~—A4 € ®, we can apply MA(Hyp) and

MNR(=E) to obtain ® I F,.

Suppose (4 V B) € ® and both @ * 4 and ® * B are 918, -inconsistent. By

MA(Hyp) and MR(VE), we have O I~ F,.

Suppose —(4 V B) € ® and ® x —A4 * —~B is MRK,-inconsistent. By NKA(Contr)

and MA(VIR), we have ®, -4 - AV B. Using MA(-E) with =(4 V B) € @,

we have @, ~4 = F,. By M&(Contr) and MA(VIL). we have ® - AV B. Using

MRA(-E) with (4 vV B) € ©, ® is 9R,.-inconsistent.

: Suppose (II*G) € ® and @ * (GA) is MR, -inconsistent. By NA(=I), © -

-(GA). By MA(Hyp) and MA(IIE), ® = GA. Finally, MA(-E) implies

Ot F,.

Suppose ~(I1*G) € @, w, is a parameter which does not occur in ®, and

® * -(Gw) is NAR,-inconsistent. By NA(Contr), ® + Gw. By NRA(I1)",

® I (T1*G). Using MA(-E) with ~(I1*G) € ©, ® is NK,.-inconsistent.

: Let @+ A4 and ®x—A4 be NR,.-inconsistent. We show that ® is NR..-inconsistent.
Using MA(-I), weknow @ - =4 and ® - ——4. By NMA(-E). wehave ® I~ F,.

Thus we have shown that l"z/f is saturated and in Accg. Now let us check the
conditions for the additional properties #, &, f, and b.

Vy:
Ve

Vbl

If « includes 7, then the proof proceeds as in Vi above, but with the rule MR (»).
Suppose * includes &, ~(AX.M =*"* jX.N) € ®, and ® * —([w/ XM =*
[w/X]N) is MR.-inconsistent for some parameter w,, which does not occur in
any sentence of ®. By MR&(Contr), we have @ + ([w/XIM =" [w/X]N). By
MA(B). we have ® - (AX.M = N)w). By Ma(I11), ® - (VX.M = N).
By MA(&), @ - (AX.M =" j X.N). By MA(~E). ® is MA,-inconsistent.

: This case is analogous to the previous one, generalizing A X.M = JX.N to
arbitrary G = H and using the extensionality rule MA(f) instead of MNR(E).

Suppose * includes b. Assume that (4 =° B) € ® but both ® x4 « B ¢ I
and ® x 4 x ~B ¢ I*. So both are MR, -inconsistent and we have ® « 4 + B
and ® * B - 4 by MA(Contr). By MA(b). we have ® I~ (4 =° B). Since
—(4 =° B) € ®, @ is MK, -inconsistent. -
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THEOREM 7.6 (Henkin’s theorem for MR.). Let x € {B, Bn. BE. Bf. Bb. fnb, BEb,
pfb}. Every sufficiently Z-pure NR.-consistent set of sentences has an M .-model.

ProoF. Let @ be a sufficiently X-pure 91R.-consistent set of sentences. By The-
orem 7.5 we know that the class of sets of D1R.-consistent sentences constitute a
saturated 2Acc,., thus the Model Existence Theorem (Theorem 6.34) guarantees an
M. model for ®. -

CorOLLARY 7.7 (Completeness theorem for MR.). Let @ be a sufficiently Z-pure
set of sentences, A be a sentence, and x € {f. fn. P&, pf., fb, pnb, pEb, pfo}. If A is
valid in all models # € M, that satisfy ©, then © byg, A.

ProOOF. Let A be given such that A is valid in all 9t models that satisfy ®. So,
@ x —A is unsatisfiable in 9,. Since only finitely many constants occur in —4,
@ x -4 is sufficiently X-pure. So, ® x* -4 must be J1R.-inconsistent by Henkin’s
theorem above. Thus, @ ng, 4 by NA(Conir). o

Finally we can use the completeness theorems obtained so far to prove a com-
pactness theorem for our semantics.

CorOLLARY 7.8 (Compactness theorem for MR, ). Let ®© be a sufficiently Z-pure
set of sentences and x € {f.pn, PE. pf. po. fnb, pE6, ff6}. @ has an M..-model iff
every finite subset of ® has an 9 .-model.

Proofr. If ® hasno 91,.-model, then by Theorem 7.6 @ is DR, -inconsistent. Since
every JR.-proof is finite, this means some finite subset W of @ is 9], -inconsistent.
Hence, ¥ has no 9t.,.-model. -

REMARK 7.9 (Calculi with primitive equality). If primitive equality is included in
the signature, a simple way of extending the calculi 9], in a sound and complete
way is to include the rules MRA(=") and MA(=') in Figure 9. These rules are clearly
sound for models with primitive equality. One can argue completeness by showing
¥ :={® C wif,(X) | ®isNR.-consistent} is a saturated Acc, with primitive
equality. By Lemma 7.5, we already know [3* is a saturated cc,. To show the
conditions for primitive equality. one can show [* satisfies V’ using MR(=") and

V= using NA(=').

FIGURE 9. Primitive equality in 9R...

§8. Conclusion. In this article, we have given an overview of the landscape of
semantics for classical higher-order logics. We have differentiated nine different
possible notions and have tied the discerning properties to conditions of corre-
sponding abstract consistency classes. The practical relevance of these notions has
been illustrated by pointing to application scenarios within mathematics, program-
ming languages, and computational linguistics.
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Our model existence theorems are strong proof tools connecting syntax and
semantics. A standard application is in completeness analysis of higher-order
calculi. A calculus @ is shown to be complete for a model class 9. by showing
that the class of #-consistent or @-irrefutable sets of sentences is in Acc,. Then
completeness follows from the model existence results. We have given an example
of this by showing completeness for natural deduction calculi in Section 7.

8.1. Applications and related work. The generalized model classes 91, have many
possible applications. An example is higher-order logic programming [45] where
the denotational semantics of programs can induce non-standard meanings for
the classical connectives. For instance, given an SLD-like search strategy as in
A-PROLOG [43], conjunction is not commutative any more. Therefore, various au-
thors have proposed model-theoretic semantics where property b fails. David Wol-
fram, for instance, uses Andrews’ v-complexes [58] as a semantics for A-PROLOG
and Gopalan Nadathur uses “labeled structures” for the same purpose in [45].
Mary DeMarco [20] also develops a model theory for intuitionistic type theory
and A-prolog in which property b may fail (James Lipton and Mary DeMarco are
continuing this work). Till Mossakowski and Lutz Schroder have been studying
non-functional Henkin models for a partial A-calculus in the context of the Has-
CasL specification language [48, 49]. It is plausible to assume that the results of this
article will be useful for further development in this direction. Further relevance
of model-theoretic semantics where property q fails, however, is not sufficiently
investigated yet, but seems a promising line of research.

The article also provides a basis for the investigation of hyper-intensional seman-
tics of natural languages. In fact early versions of this article have already influenced
the work of Lappin and Pollard [40]. Hyper-intensional semantics provide theories
for logics where Boolean extensionality (and thus the substitutability of equivalents)
can fail. Linguistically motivated theories like the ones presented in [56, 17, 41, 40]
introduce intensional (non-standard) variants of the connectives and quantifiers
acting on a generalized domain of truth values. Interestingly, only [41] and [40]
present formal model-theoretic semantics. The model construction in [41] strongly
resembles Peter Andrew’s v-complexes (semantic objects are paired with syntactic
representations; in this case linguistic parse trees). In [40], &, is taken to be a
pre-Boolean algebra, and possible worlds are associated with ultrafilters. A direct
comparison is aggravated by the fact that Lappin and Pollard’s work is situated in a
Montague-style intensional (i.e., modal) context. A generalization of our work by
techniques from [23] seems the way to go here.

8.2. Relaxing the saturation assumption. Unfortunately, the model existence the-
orems presented in this article do not support completeness proofs for most higher-
order machine-oriented calculi, such as higher-order resolution [33, 13], higher-
order paramodulation [11], or tableau-based calculi [5, 37]. This is because we had
to assume saturation of abstract consistency classes to prove the model existence
theorems. The problem is that machine oriented calculi are typically, in some sense,
cut-free. This makes saturation very difficult to show.

For the same reason the results of this article also do not apply to another
prominent application of model existence theorems: relatively simple (but non-
constructive) cut-elimination theorems. In [1] Peter Andrews applies his “Unifying
Principle” to cut-elimination in a cut-free non-extensional sequent calculus, by
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proving the calculus complete (relative to T4). He concludes that cut-elimination
is valid for this calculus. Again, the saturation condition prevents us from obtain-
ing variants of the extensional cut-elimination theorems in [54, 55] by Andrews’
approach using our model existence theorem for Henkin models. In fact one can
prove (cf. [12]) that the problem of showing that an abstract consistency class can
be extended to a saturated one is equivalent to showing cut elimination for certain
sequent or resolution calculi.

To account for the saturation problem we have additionally investigated model
existence for the model classes presented in this article using an extension of Peter
Andrews’ v-complexes (cf. [12]). The model construction in this technique requires
an abstract consistency class to satisfy certain acceptability conditions which are
much weaker than saturation. (For example, the acceptability conditions can be
shown to hold for abstract consistency classes obtained from certain cut-free sequent
calculi.) Because this technique is much more complex and subtle than the relatively
simple quotients of term evaluations used in this article, we did not include the
extended results here. The unsaturated model existence theorems imply that every
acceptable abstract consistency class can be extended to a saturated one. Armed
with this fact, we can use the model existence theorems presented here to rescue the
general completeness and cut elimination results mentioned above. To show, for
example, completeness of a higher-order machine-oriented calculus &, we define the
class I of @-irrefutable sentences and show that it is an acceptable (but unsaturated)
abstract consistency class. By the extension result in [12] there is a saturated abstract
consistency class IV D I'. By application of saturated model existence from this
article we obtain a suitable model for every (sufficiently -pure) ® € I'” and thus for
every (sufficiently Z-pure) ® € I'. This immediately gives us completeness. Hence,
the leverage added by this article together with [12] is that we can now extend
non-extensional cut-elimination results to extensional cases.
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Abstract. We investigate cut-elimination and cut-simulation in impred-
icative (higher-order) logics. We illustrate that adding simple axioms
such as Leibniz equations to a calculus for an impredicative logic — in
our case a sequent calculus for classical type theory — is like adding cut.
The phenomenon equally applies to prominent axioms like Boolean- and
functional extensionality, induction, choice, and description. This calls
for the development of calculi where these principles are built-in instead
of being treated axiomatically.

1 Introduction

One of the key questions of automated reasoning is the following: “When does a
set @ of sentences have a model?” In fact, given reasonable assumptions about
calculi, most inference problems can be reduced to determining (un)-satisfiability
of a set @ of sentences. Since building models for @ is hard in practice, much
research in computational logic has concentrated on finding sufficient conditions
for satisfiability, e.g. whether there is a Hintikka set H extending &.

Of course in general the answer to the satisfiability question depends on the
class of models at hand. In classical first-order logic, model classes are well-
understood. In impredicative higher-order logic, there is a whole landscape of
plausible model classes differing in their treatment of functional and Boolean
extensionality. Satisfiability then strongly depends on these classes, for instance,
the set @ :={a,b, qa, ~gb} is unsatisfiable in a model class where the universes
of Booleans are required to have at most two members (see property b below),
but satisfiable in the class without this restriction.

In [5] we have shown that certain (i.e. saturated) Hintikka sets always have
models and have derived syntactical conditions (so-called saturated abstract con-
sistency properties) for satisfiability from this fact. The importance of abstract
consistency properties is that one can check completeness for a calculus C by
verifying proof-theoretic conditions (checking that C-irrefutable sets of formulae
have the saturated abstract consistency property) instead of performing model-
theoretic analysis (for historical background of the method in first-order logic,
cf. [10,13,14]). Unfortunately, the saturation condition (if ¢ is abstractly con-
sistent, then one of ® U {A} or & U {—A} is as well for all sentences A) is very
difficult to prove for machine-oriented calculi (indeed as hard as cut elimination).

In this paper we investigate further the relation between the lack of the
subformula property in the saturation condition (we need to “guess” whether



to extend @ by A or —A on our way to a Hintikka set for all sentences A) and
the cut rule (where we have to “guess, i.e. search for in an automated reasoning
setting” the cut formula A). A side result is the insight that there exist “cut-
strong” formulae which support the effective simulation of cut in calculi for
impredicative logics.

In Section 2, we will fix notation and review the relevant results from [5]. We
define in Section 3 a basic sequent calculus and study the correspondence be-
tween saturation in abstract consistency classes and cut-elimination. In Section 4
we introduce the notion of “cut-strong” formulae and sequents and show that
they support the effective simulation of cut. In Section 5 we demonstrate that
the pertinent extensionality axioms are cut-strong. We develop alternative ex-
tensionality rules which do not suffer from this problem. Further rules are needed
to ensure Henkin completeness for this calculus with extensionality. These new
rules correspond to the acceptability conditions we propose in Section 6 to en-
sure the existence of models and the existence of saturated extensions of abstract
consistence classes.

2 Higher-Order Logic

In [5] we have re-examined the semantics of classical higher-order logic with the
purpose of clarifying the role of extensionality. For this we have defined eight
classes of higher-order models with respect to various combinations of Boolean
extensionality and three forms of functional extensionality. We have also devel-
oped a methodology of abstract consistency (by providing the necessary model
existence theorems) needed for instance, to analyze completeness of higher-order
calculi with respect to these model classes. We now briefly summarize the main
notions and results of [5] as required for this paper. Our impredicative logic of
choice is Church’s classical type theory.

Syntaz: Church’s Simply Typed A-Calculus. As in [9], we formulate higher-order
logic (HOL) based on the simply typed A-calculus. The set of simple types 7 is
freely generated from basic types o and ¢ using the function type constructor —.

For formulae we start with a set V of (typed) variables (denoted by X,,Y, Z,
X4, X2...) and a signature X of (typed) constants (denoted by ca, fa—p,- - -)-
We let V, (X,) denote the set of variables (constants) of type a. The signature
X of constants includes the logical constants —,—, Vo—o—o and H("&_}O)_)O for
each type a; all other constants in X' are called parameters. As in [5], we assume
there is an infinite cardinal 8¢ such that the cardinality of X, is N for each type
a (cf. [5](3.16)). The set of HOL-formulae (or terms) are constructed from typed
variables and constants using application and A-abstraction. We let wff,, (X) be
the set of all terms of type « and wff(X) be the set of all terms.

_ We use vector notation to abbreviate k-fold applications and abstractions as
AU and AX*.A, respectively. We also use Church’s dot notation so that . stands
for a (missing) left bracket whose mate is as far to the right as possible (consistent
with given brackets). We use infix notation A vV B for ((VA)B) and binder



notation VXo.A for (II*(AXa-A,)). We further use AAB, A = B, A & B
and 3X,.A as shorthand for formulae defined in terms of =, V and IT® (cf. [5]).
Finally, we let (A, =" B,) denote the Leibniz equation VP, _,..(PA) = .PB.

Each occurrence of a variable in a term is either bound by a A or free. We
use free(A) to denote the set of free variables of A (i.e., variables with a free
occurrence in A). We consider two terms to be equal if the terms are the same
up to the names of bound variables (i.e., we consider a-conversion implicitly).
A term A is closed if free(A) is empty. We let cwff, (X) denote the set of
closed terms of type a and cwff(X') denote the set of all closed terms. Each term
A € wff,(X) is called a proposition and each term A € cwff,(X) is called a
sentence.

We denote substitution of a term A, for a variable X, in a term Bg by
[A/X]B. Since we consider a-conversion implicitly, we assume the bound vari-
ables of B avoid variable capture.

Two common relations on terms are given by g-reduction and n-reduction.
A [-redex (AX.A)B f-reduces to [B/X]A. An n-redex (AX.CX) (where X ¢
free(C)) n-reduces to C. For A, B € wff, (X)), we write A=35B to mean A can
be converted to B by a series of 8-reductions and expansions. Similarly, A=3,B
means A can be converted to B using both 3 and 7). For each A € wff(X) there
is a unique F-normal form (denoted Al ;) and a unique #n-normal form (denoted
Als,). From this fact we know A=3B (A=4,B) iff Al; = Bl (Alg, = Blg,).

A non-atomic formula in wff,(X) is any formula whose -normal form is of
the form [cA"] where c is a logical constant. An atomic formula is any other
formula in wff, (X).

Semantics: Fight Model Classes. For each x € {3, 8n, B¢, 5f, 86, Bnb, &b, Bfb} (the
latter set will be abbreviated by ® in the remainder) we define 9, to be the class
of all X-models M such that M satisfies property q and each of the additional
properties {n, ¢, f, b} indicated in the subscript * (cf. [5](3.49)). Special cases of
Y-models are Henkin models and standard models (cf. [5](3.50 and 3.51)). Every
model in Mgy, is isomorphic to a Henkin model (see the discussion following
[5](3.68)).

Saturated Abstract Consistency Classes and Model Existence. Finally, we review
the model existence theorems proved in [5]. There are three stages to obtain-
ing a model in our framework. First, we obtain an abstract consistency class
I (usually defined as the class of irrefutable sets of sentences with respect to
some calculus). Second, given a (sufficiently pure) set of sentences @ in the ab-
stract consistency class Iy, we construct a Hintikka set H extending &. Third,
we construct a model of this Hintikka set (and hence a model of @).

A Y-abstract consistency class I; is a class of sets of X-sentences. An abstract
consistency class is always required to be closed under subsets (cf. [5](6.1)).
Sometimes we require the stronger property that Is is compact, i.e., a set @ is
in I3 iff every finite subset of @ is in I3 (cf. [5](6.1,6.2)).

To describe further properties of abstract consistency classes, we use the
notation S x a for S U {a} as in [5]. The following is a list of properties a class
I5; of sets of sentences can satisfy with respect to arbitrary @ € I3 (cf. [5](6.5)):



V. If A is atomic, then A ¢ @ or —=A ¢ .

V. If ——A € &, then §x A € Is,.

Vs If A=3B and A € @, then ¢ x B € I3

V, If A=5,B and A € @, then ¢ xB € I5,.

VW IfAVBe® then dx A e€lxor ?xB e Iy

Vi If /(A VB) € P, then x-A «—-B € 3.

Y If II*F € @, then & « FW € I3, for each W € cuwff, (X).

Va3 If —=[I°F € @, then ¢ x ~(Fw) € Iy, for any parameter w, € X, which does
not occur in any sentence of @.

Vo If (A ="B)€® thendx Ax B € lsord*-AxBecl.

Ve If = (AX0.M =77 AX,.N) € &, then &  ~([w/X]M = [w/X]N) € I; for
any parameter w, € X, which does not occur in any sentence of @.

Vi If (G =o—h H) € &, then ¢ *x -(Gw =F Hw) € I; for any parameter
Wq € X, which does not occur in any sentence of @.

Viat Either @ x A € Is; or @ x —A € I5.

We say Iy, is an abstract consistency class if it is closed under subsets and
satisfies V., V5, V3, Vi, VA, W and V3. We let Accg denote the collection of all
abstract consistency classes. For each * € & we refine 2dccg to a collection
Acc, where the additional properties {V;,, Ve, V}, V } indicated by * are required
(cf. [5](6.7)). We say an abstract consistency class Iy is saturated if Vi, holds.

Using V. (atomic consistency) and the fact that there are infinitely many
parameters at each type, we can show every abstract consistency class satisfies
non-atomic consistency. That is, for every abstract consistency class Iy, A €
cuwff,(X) and @ € I3, we have either A ¢ @ or —=A ¢ & (cf. [5](6.10)).

In [5](6.32) we show that sufficiently X-pure sets in saturated abstract con-
sistency classes extend to saturated Hintikka sets. (A set of sentences @ is suffi-
ciently X-pure if for each type « there is a set P, of parameters of type « with
cardinality N, and such that no parameter in P occurs in a sentence in @.)

In the Model Existence Theorem for Saturated Sets [5](6.33) we show that
these saturated Hintikka sets can be used to construct models M which are mem-
bers of the corresponding model classes M. Then we conclude (cf. [5](6.34)):

Model Existence Theorem for Saturated Abstract Consistency Classes:
For all x €@, if Is; is a saturated abstract consistency class in Acc, and @ € I5;
is a sufficiently X -pure set of sentences, then there exists a model M € M, that
satisfies . Furthermore, each domain of M has cardinality at most N,.

In [5] we apply the abstract consistency method to analyze completeness
for different natural deduction calculi. Unfortunately, the saturation condition
is very difficult to prove for machine-oriented calculi (indeed as we will see in
Section 3 it is equivalent to cut elimination), so Theorem [5](6.34) cannot be
easily used for this purpose directly.

In Section 6 we therefore motivate and present a set of extra conditions for
Accgy we call acceptability conditions. The new conditions are sufficient to
prove model existence.



A atomic (and S-normal) Ax A

Basic Rules G(init) ——G(m)
A * A * ﬁA A * ﬁﬁA
Ax—-A Ax-B AxAxB
ax7A ax7b Gg(v_ axAxD g(\/+)
Ax—=(AVB) Ax(AVB)
Ax - (AC)lﬁ C € cuff, (X) A x (Ac)lﬁ Ca € X new
G(1r°) g
Ax-II°A AxII"A
A x —A
Inversion Rule ara G(Inv™)
Ax A
A AxC Ax-C
Weakening and Cut Rules G(weak) or arny G(cut)
AuA A

Fig. 1. Sequent Calculus Rules

3 Sequent Calculi, Cut and Saturation

We will now study cut-elimination and cut-simulation with respect to (one-sided)
sequent calculi.

Sequent Calculi G. We consider a sequent to be a finite set A of [-normal
sentences from cwff,(X). A sequent calculus G provides an inductive definition
for when #g A holds. We say a sequent calculus rule

A - A,
A

r

is admissible in G if kg A holds whenever g A; for all 1 < ¢ < n. For any
natural number k£ > 0, we call an admissible rule r k-admissible if any instance
of r can be replaced by a derivation with at most & additional proof steps. Given
a sequent A, a model M, and a class 9t of models, we say A is valid for M (or
valid for M), if M = D for some D € A (or A is valid for every M € ). As
for sets in abstract consistency classes, we use the notation A x A to denote the
set AU{A} (which is simply A if A € A). Figure 1 introduces several sequent
calculus rules. Some of these rules will be used to define sequent calculi, while
others will be shown admissible (or even k-admissible).

Abstract Consistency Classes for Sequent Calculi. For any sequent calculus G
we can define a class Fzg of sets of sentences. Under certain assumptions, Fzg is
an abstract consistency class. First we adopt the notation =@ and @| 5 for the
sets {~A|A € @} and {Al5|A € &}, resp., where ¢ C cuff,(¥). Furthermore,
we assume this use of — binds more strongly than U or %, so that =® U A means
(=®) U A and ~P x A means (—P) x A.



Definition 1 Let G be a sequent calculus. We define FEQ to be the class of all
finite @ C cwff,(X) such that g — @]z does not hold.

In a straightforward manner, one can prove the following results (see [7]).

Lemma 2 Let G be a sequent calculus such that G(Inv™) is admissible. For any
finite sets @ and A of sentences, if U —A ¢ Z:vg, then g =@l 53U Al holds.

Theorem 3 Let G be a sequent calculus. If the rules G(Inv™), G(=), G(weak),
G(init), G(V_), G(V4), G(IIC) and G(II%) are admissible in G, then Z}Jg € Accg.

We can furthermore show the following relationship between saturation and
cut (see [7]).

Theorem 4 Let G be a sequent calculus.

1. If G(cut) is admissible in G, then Z}Jg 18 saturated.
2. If G(=) and G(Inv™) are admissible in G and LY is saturated, then G(cut)
18 admissible in G.

Since saturation is equivalent to admissibility of cut, we need weaker condi-
tions than saturation. A natural condition to consider is the existence of satu-
rated extensions.

Definition 5 (Saturated Extension) Let * € & and I+, I;: € cc, be ab-
stract consistency classes. We say I3 is an extension of I, if & € I3 for every
sufficiently X-pure & € I;. We say 5% is a saturated extension of I3 if I is
saturated and an extension of Iy .

There exist abstract consistency classes I" in Accgp which have no saturated
extension.

Example 6 Let ao,b0, (om0 € X and & := {a, b, (ga),~(¢b)}. We construct an
abstract consistency class Is; from @ by first building the closure @' of & under
relation =g and then taking the power set of &'. It is easy to check that this I3 is
in Accgge . Suppose we have a saturated extension I3t of Is; in Accggy. Then @ € I3
since @ is finite (hence sufficiently pure). By saturation, ® * (a =° b) € I or
@ x—(a =° b) € L. In the first case, applying Ny with the constant q, N, and V.
contradicts (qa), —(gb) € ®. In the second case, Vy and V. contradict a,b € ®.

Existence of any saturated extension of a sound sequent calculus G implies
admissibility of cut. The proof uses the model existence theorem for saturated
abstract consistency classes (cf. [5](6.34)). The full proof is in [7].

Theorem 7 Let G be a sequent calculus which is sound for M,. If FEQ has a
saturated extension It € Ucc,, then G(cut) is admissible in G.



Sequent Calculus Gg. We now study a particular sequent calculus Gg defined by
the rules G(init), G(=), G(V_), G(V4), G(IIC) and G(II{) (cf. Figure 1). It is
easy to show that Gg is sound for the eight model classes and in particular for
class M.

The reader may easily prove the following Lemma.

Lemma 8 Let A € cuff,(X) be an atom, B € cwff,(X), and A be a sequent.
In gg

1. Ax A& A:=Ax—(=(-AVA)V-(-AVA)) is derivable in 7 steps and
2. AxB="B:=Ax [I%(AP,—_o—(PB) V (PB) is derivable in 3 steps.

The proof of the next Lemma is by induction on derivations and is given in
[7].

Lemma 9 The rules G(Inv™) and G(weak) are 0-admissible in Gga.

Theorem 10 The sequent calculus Gg is complete for the model class Mg and
the rule G(cut) is admissible.

Proof: By Theorem 3 and Lemma 9, 1}% € Uccg. Suppose g, A does not
hold. Then —~A € RAccg by Lemma 2. By the model existence theorem for ccg
(cf. [6](8.1)) there exists a model for =A in Mg. This gives completeness of Gg.
We can use completeness to conclude cut is admissible in Gg. O

Andrews proves admissibility of cut for a sequent calculus similar to Gg in [1].
The proof in [1] contains the essential ingredients for showing completeness.

We will now show that G(cut) actually becomes k-admissible in G if certain
formulae are available in the sequent A we wish to prove.

4 Cut-Simulation

Cut-Strong Formulae and Sequents. k-cut-strong formulae can be used to effec-
tively simulate cut. Effectively means that the elimination of each application of
a cut-rule introduces maximally k additional proof steps, where k is constant.

Definition 11 Given a formula A € cwff, (X)), and an arbitrary but fixed num-
ber k > 0. We call formula A k-cut-strong for G (or simply cut-strong) if the
cut rule variant

AxC Ax-C

tA
A*ﬁA g(cu )

18 k-admissible in G.

Our examples below illustrate that cut-strength of a formula usually only
weakly depends on calculus G: it only presumes standard ingredients such as
[-normalization, weakening, and rules for the logical connectives.

We present some simple examples of cut-strong formulae for our sequent
calculus Gg. A corresponding phenomenon is observable in other higher-order
calculi, for instance, for the calculi presented in [1,4, 8, 11].



Example 12 Formula VP,.P := II°(AP,.P) is 3-cut-strong in Gg. This is jus-
tified by the following derivation which actually shows that rule G(cut™) for this
specific choice of A is derivable in Gg by mazimally 3 additional proof steps. The
only interesting proof step is the instantiation of P with formula D := -CVC in
rule G(ITP). (Note that C must be 3-normal; sequents such as AxC by definition
contain only B-normal formulae.)

AxC
Ax—(~CVC)

A« —~IT°(\P,.P)

Gg(vo)
Q(HP)

Clearly, VP,.P is not a very interesting cut-strong formula since it implies false-
hood, 1i.e. inconsistency.

Example 13 The formula VP,.P = P := II°(AP,.—P V P) is 3-cut-strong in
Gs. This is an example of a tautologous cut-strong formula. Now P is simply
instantiated with D := C in rule G(IIP). Except for this first step the derivation
1s identical to the one for Example 12.

Example 14 Leibniz equations M =% N := [I*(AP.~PM Vv PN) (for arbi-
trary formulae M, N € cuff,, (X) and types o € T ) are 3-cut-strong in Gg. This
includes the special cases M =% M. Now P is instantiated with D := A X,.C in
rule G(IIP). Except for this first step the derivation is identical to the one for
Ezxample 12.

Example 15 The original formulation of higher-order logic (cf. [12]) contained
comprehension axioms of the form C := AP on o VXMPX"™ & B, where
B, € wff,(X) is arbitrary with P ¢ free(B). Church eliminated the need for such
azioms by formulating higher-order logic using typed \-calculus. We will now
show that the instance CT := IP,_,, ¥V X,.PX & X ="' X is 16-cut-strong in Gs
(note that G(weak) is 0-admissible). This motivates building-in comprehension
principles instead of treating comprehension axiomatically.

3 steps; see Lemma 8

L

Ax=(pa=a="a)xa="a

Ar(pasaz as@=a ) D G(v-)
Ax=(pa=a="a)*—(=(a="a)Vpa) G(ve)
Ax=(pa=a="a)V-(a="a= pa) g(:)

Ax—=(=(pa=a="a)V-(a="a= pa))
Ax—IT'O\X.pX & X = X)
Ax T =° (AP~ II"(AX,.pX & X = X))
AxC!

G
gz=)
9(-)




Derivation D 1is:
AxC Ax-C
. 3 steps; see FExample 14
A x pa * —pa G(init) A*ﬁ(tlz =%a)

g(-)

Ax=(=paVa="a)x-pa

G(weak)
G(v-)

A% ——pa * —pa Ax—=(a="a)x*-pa

As we will show later, many prominent axioms for higher-order logic also
belong to the class of cut-strong formulae.
Next we define cut-strong sequents.

Definition 16 A sequent A is called k-cut-strong (or simply cut-strong) if
there exists a a k-cut-strong formula A € cuwff,(X) such that ~A € A.

Cut-Simulation. The cut-simulation theorem is a main result of this paper. It
says that cut-strong sequents support an effective simulation (and thus elimina-
tion) of cut in Gg. Effective means that the size of cut-free derivation grows only
linearly for the number of cut rule applications to be eliminated.

We first fix the following calculi: Calculus ggut extends Gg by the rule G(cut)

and calculus ggut" extends Gg by the rule g(cutA) for some arbitrary but fixed
cut-strong formula A.

Theorem 17 Let A be a k-cut-strong sequent such that A € A for some k-
cut-strong formula A. For each derivation D: H—gﬁcut A with d proof steps there

exists an alternative derivation D': Geuth A with d proof steps.
5

Proof: Note that the rules G(cut) and G(cut®) coincide whenever ~A € A.
Intuitively, we can replace each occurrence of G(cut) in D by G(cut®) in order
to obtain a D’ of same size. Technically, in the induction proof one must weaken
to ensure —A stays in the sequent and carry out a parameter renaming to make
sure the eigenvariable condition is satisfied. O

Theorem 18 Let A be a k-cut-strong sequent such that =A € A for some k-cut-
strong formula A. For each derivation D: H-gth A with d proof steps and with
5
n applications of rule G(cut) there exists an alternative derivation D': t-g, A

with mazximally d + nk proof steps.

Proof: A is k-cut-strong so by definition g(cutA) is k-admissible in Gg.
This means that G(cut®) can be eliminated in D and each single elimination
of G(cut®) introduces maximally k new proof steps. Now the assertion can be
easily obtained by a simple induction over n. O

Corollary 19 Let A be a k-cut-strong sequent. For each derivation D: H'ggut A

with d proof steps and n applications of rule G(cut) there exists an alternative
cut-free derivation D': kg, A with mazimally d + nk proof steps.



5 The Extensionality Axioms are Cut-Strong

We have shown comprehension axioms can be cut-strong (cf. Example 15). Fur-
ther prominent examples of cut-strong formulae are the Boolean and functional
extensionality axioms. The Boolean extensionality axiom (abbreviated B, in the
remainder) is

VA,VBn(A & B)= A="B
The infinitely many functional extensionality axioms (abbreviated %g) are pa-
rameterized over o, 5 € 7.

These axioms usually have to be added to higher-order calculi to reach
Henkin completeness, i.e. completeness with respect to model class Mgsp. For
example, Huet’s constrained resolution approach as presented in [11] is not
Henkin complete without adding extensionality axioms. For instance, the need
for adding Boolean extensionality is actually illustrated by the set of unit liter-
als @ := {a, b, (qa), ~(gb)} from Example 6. As the reader may easily check, this
clause set @, which is inconsistent for Henkin semantics, cannot be proven by
Huet’s system without, e.g, adding the Boolean extensionality axiom. By relying
on results in [1], Huet essentially shows completeness with respect to model class
Mg as opposed to Henkin semantics.

We will now investigate whether adding the extensionality axioms to a machine-
oriented calculus in order to obtain Henkin completeness is a suitable option.

Theorem 20 The Boolean extensionality axiom B, is a 14-cut-strong formula
mn gg.
Proof: The following derivation justifies this theorem (a, is a parameter).

7 steps; see Lemma 8

: AxC Ax-C
Asasa (=) 3 steps; see Example 14
Ax—-(a < a) Ax—(a =° a) G(v_)

Ax=(=(a e a)Va=’a)
A*‘!Bg

2xG(I?) O

Theorem 21 The functional extensionality axioms Fg are 11-cut-strong for-
mulae in Gg.

Proof: The following derivation justifies this theorem (f,—p is a parameter).

3 steps; see Lemma 8

A*faiﬁfa g(ﬂaa) A*C A*ﬁC
. B + :
Ax (VXafX =7 fX) (=) © 3 steps; see Example 14
Ax VX0 fX =° X Ax—(f =277 p)
Ax(=(VXaf X = [X)V =277 f)

G(v-)
2x G(I1!) O




Ax-Jop a—pBeT A*ﬁBog

G(%s)
A A

Fig. 2. Axiomatic Extensionality Rules

In [4] and [8] we have already argued that the extensionality principles should
not be treated axiomatically in machine-oriented higher-order calculi and there
we have developed resolution and sequent calculi in which these principles are
built-in. Here we have now developed a strong theoretical justification for this
work: Theorems 20, 21 and 19 tell us that adding the extensionality principles
B, and F3 as axioms to a calculus is like adding a cut rule.

In Figure 2 we show rules that add Boolean and functional extensionality in
an axiomatic manner to Gg. More precisely we add rules G(%3) and G(B) allowing
to introduce the axioms for any sequent A; this way we address the problem
of the infinitely many possible instantiations of the type-schematic functional
extensional axiom %g. Calculus Gg enriched by the new rules G(%g) and G(B)
is called GF’. Soundness of the the new rules is easy to verify: In [5](4.3) we show
that G(%g) and G(B) are valid for Henkin models.

Replacing the Extensionality Axioms. In Figure 3 we define alternative exten-
sionality rules which correspond to those developed for resolution and sequent
calculi in [4] and [8]. Calculus Gg enriched by G(f) and G(b) is called Gy . Sound-
ness of G(f) and G(b) for Henkin semantics is again easy to show.

Our aim is to develop a machine-oriented sequent calculus for automating
Henkin complete proof search. We argue that for this purpose G(f) and G(b) are
more suitable rules than G(%g) and G(B).

Our next step now is to show Henkin completeness for g[;E . This will be
relatively easy since we can employ cut-simulation. Then we analyze whether
calculus gﬁ—fb has the same deductive power as gg .

First we extend Theorem 3. The proof is given in [7].

Theorem 22 Let G be a sequent calculus such that G(Inv™) and G(—) are ad-
missible.

1. If G(f) and G(IT¢) are admissible, then LY satisfies V.
2. If G(b) is admissible, then LY satisfies V.

Theorem 23 The sequent calculus gg is Henkin complete and the rule G(cut)
1s 12-admissible.

Proof: G(cut) can be effectively simulated and hence eliminated in g[;E by
combining rule G(%g) with the 11-step derivation presented in the proof of
Theorem 21.

Let %gﬁ be defined as in Definition 1. We prove Henkin completeness of
E

gg by showing that the class FEQ"' is a saturated abstract consistency class in



Ax (VX0 AX = BX)LB Ax-A*B Ax-BxA

Ax (A =""°B) Ax (A =°B)

Fig. 3. Proper Extensionality Rules

Acegp. We here only analyze the crucial conditions Vg, Vj and V4. For the
other conditions we refer to Theorem 3. Note that 0-admissibility of G(Inv™)
and G(weak) can be shown for gﬁE by a suitable induction on derivations as in
Lemma 9.

V; G(IIY) is a rule of gg and thus admissible. According to Theorem 22 it is
thus sufficient to ensure admissibility of rule G(f) to show Vj. This is justified
by the following derivation where N := A =77 Band M := (VX0 AX =P
BX)lﬁ (for S-normal A, B).

Ax (VXaAX =0 BX)l derivable

B
AxNxM G (weak)

Ax N *x —-—-M 9(2) AxN % =N
A*N*‘!(‘\M\/N)
AxN*Fpg

AxA="""B

G(v-)
G(IT*),G(11B)
G(%s)

V% With a similar derivation using G(B) we can show that G(b) is admissible.
We conclude V;, by Theorem 22.
Viat Since G(cut) is admissible we get saturation by Theorem 4. O

Does gﬁ—fb have the same deductive strength as gg? Te., is gﬁ—fb Henkin com-
plete? We show this is not yet the case.

Theorem 24 The sequent calculus gﬁ_ﬂ] is not complete for Henkin semantics.
We illustrate the problem by a counterexample.

Example 25 Consider the sequent A := {—a,-b,—(qa), (¢b)} where a,,b,,
Go—o € X are parameters. For any M = (D,Q, &, v) € Mg, either v(€(a)) =F,
v(E()) =F or E(a) = E(b) by property b. Hence sequent A is valid for every
M € Mge. However, H_ng., A does not hold. By inspection, A cannot be the

conclusion of any rule.

In order to reach Henkin completeness and to show cut-elimination we thus
need to add further rules. Our example motivates the two rules presented in
Figure 4. G (Imti) introduces Leibniz equations such as qa =° gb as is needed in
our example and G(d) realizes the required decomposition into a =° b.



Ax(A="B) (1) Ax(A'="1B') ... Ax(A"=""B") ()

Init™ — — G(d)
AroA.p U A (WA" =° 1B

() A,B atomic (1) n>1,8¢€{o,t}, hgn_ 5 € X parameter

Fig. 4. Additional Rules G(Init™) and G(d)

We thus extend sequent calculus gﬁgb to Gap by adding the decomposition

rule G(d) and the rule G(Init=) which generally checks if two atomic sentences
of opposite polarity are provably equal (as opposed to syntactically equal).

Is Gasp complete for Henkin semantics? We will show in the next Section that
this indeed holds (cf. Theorem 28).

With G and Gsie we have thus developed two Henkin complete calculi and
both calculi are cut-free. However, as our exploration shows “cut-freeness” is
not a well-chosen criterion to differentiate between their suitability for proof
search automation: G¥ inherently supports effective cut-simulation and thus
cut-freeness is meaningless.

The criterion we propose for the analysis of calculi in impredicative logics is
“freeness of effective cut-simulation”.

Other Rules for Other Model Classes. In [6] we developed respective complete
and cut-free sequent calculi not only for Henkin semantics but for five of the eight
model classes. In particular, no additional rules are required for the 3, 6n and
B¢ case. Meanwhile, the Of case requires additional rules allowing n-conversion.
The limited space does not allow us to present and analyze these cases here.

6 Acceptability Conditions

We now turn our attention again to the existence of saturated extension of
abstract consistency classes.

As illustrated by the Example 6, we need some extra abstract consistency
properties to ensure the existence of saturated extensions. We call these extra
properties acceptability conditions. They actually closely correspond to ad-
ditional rules G(Init=) and G(d).

Definition 26 (Acceptability Conditions) Let I3 be an abstract consistency
class in Uceggp. We define the following properties:

Vi If A,B € cuwff,(X) are atomic and A,-B € @, then & x (A =° B) € I3.
Vi If =(hA™ = hB™) € @ for some types a; where 3 € {o,1} and hgm_, 5 € X is
a parameter, then there is an i (1 <i < n) such that ®x (A’ = BY) € I3.

We now replace the strong saturation condition used in [5] by these accept-
ability conditions.



Definition 27 (Acceptable Classes) An  abstract  consistency  class
Is; € Uccgp is called acceptable in Accgp if it satisfies the conditions Vi, and
Vi.

One can show a model existence theorem for acceptable abstract consis-
tency classes in Acegg (cf. [6](8.1)). From this model existence theorem, one can
conclude Ggjp is complete for Mgy (hence for Henkin models) and that cut is
admissible in Ggyp.

Theorem 28 The sequent calculus Gge s complete for Henkin semantics and
the rule G(cut) is admissible.

Proof: The argumentation is similar to Theorem 10 but here we employ the
acceptability conditions V,, and V. O

One can further show the Saturated Extension Theorem (cf. [6](9.3)):

Theorem 29 There is a saturated abstract consistency class in Accgre that is
an extension of all acceptable Is; in Accgsp.

Given Theorem 7, one can view the Saturated Extension Theorem as an
abstract cut-elimination result.

The proof of a model existence theorem employs Hintikka sets and in the
context of studying Hintikka sets we have identified a phenomenon related to
cut-strength which we call the Impredicativity Gap. That is, a Hintikka set
H is saturated if any cut-strong formula A (e.g. a Leibniz equation C = D)
is in ‘H. Hence we can reasonably say there is a “gap” between saturated and
unsaturated Hintikka sets. Every Hintikka set is either saturated or contains no
cut-strong formulae.

7 Conclusion

We have shown that adding cut-strong formulae to a calculus for an impredica-
tive logic is like adding cut. For machine-oriented automated theorem proving
in impredicative logics — such as classical type theory — it is therefore not rec-
ommendable to naively add cut-strong axioms to the search space. In addition
to the comprehension principle and the functional and Boolean extensionality
axioms as elaborated in this paper the list of cut-strong axioms includes:

Other Forms of Defined Equality Formulas A =% B are 4-cut-strong in Gg
where = is AX . A\Yo0.VQo—a—0(VZ0(Q Z Z)) = (Q X Y) (cf. [3]).
Proof: Instantiate Q with A X,.\Y,.C. O

Axiom of Induction The axiom of induction for the naturals VP,_,.P0 A
(VX,.PX = P(sX)) = VX,PX is 18-cut-strong in Gz. (Other well-founded
ordering axioms are analogous.)

Proof: Instantiate P with AX,.a =° a for some parameter a,. O



Axiom of Choice 34— 0)—0VQa-0IXa.QX = Q(IQ) is 7-cut-strong in Gg.
Proof: Instantiate @ with A X,.C.

O
Axiom of Description The description axiom 37(4 )0 VQa—o0-(F1 Y QY) =
QIQ) (see [2]), where 31Y,.QY stands for IY,.QY A (VZ,.QZ =Y = Z)
is 25-cut-strong in Gg.
Proof: Instantiate Q with AX,.a =% X for some parameter a,. o

As Example 15 shows, comprehension axioms can be cut-strong. Church’s for-
mulation of type theory (cf. [9]) used typed A-calculus to build comprehension
principles into the language. One can view Church’s formulation as a first step in
the program to eliminate the need for cut-strong axioms. For the extensionality
axioms a start has been made by the sequent calculi in this paper (and [6]),
for resolution in [4] and for sequent calculi and extensional expansion proofs
in [8]. The extensional systems in [8] also provide a complete method for us-
ing primitive equality instead of Leibniz equality. For improving the automation
of higher-order logic our exploration thus motivates the development of higher-
order calculi which directly include reasoning principles for equality, extension-
ality, induction, choice, description, etc., without using cut-strong axioms.
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CHRISTOPH BENZMULLER

COMPARING APPROACHES TO RESOLUTION BASED
HIGHER-ORDER THEOREM PROVING

ABSTRACT. We investigate several approaches to resolution based automated theorem
proving in classical higher-order logic (based on Church’s simply typed A-calculus) and
discuss their requirements with respect to Henkin completeness and full extensionality.
In particular we focus on Andrews’ higher-order resolution (Andrews 1971), Huet’s con-
strained resolution (Huet 1972), higher-order E-resolution, and extensional higher-order
resolution (Benzmiiller and Kohlhase 1997). With the help of examples we illustrate the
parallels and differences of the extensionality treatment of these approaches and demon-
strate that extensional higher-order resolution is the sole approach that can completely
avoid additional extensionality axioms.

1. INTRODUCTION

It is a well known consequence of Godel’s first incompleteness theorem
that there cannot be complete calculi for higher-order logic with respect to
standard semantics. However, Henkin (1950) showed that there are indeed
complete calculi if one gives up the intuitive requirement of full function
domains in standard semantics and considers Henkin’s general models in-
stead. For higher-order calculi therefore Henkin completeness constitutes
the most interesting notion of completeness.

A very challenging task for a calculus aiming at Henkin-completeness
is to provide a suitable extensionality treatment. Unfortunately the im-
portance of full extensionality in higher-order theorem proving, i.e., the
suitable combination of functional and Boolean extensionality, has widely
been overlooked so far. This might be due to the fact that (weak) func-
tional extensionality is already built-in in the pure simply typed A-calculus
and that Boolean extensionality or the subtle interplay between Boolean
and functional extensionality does simply not occur in this context. How-
ever, the situation drastically changes as soon as one is interested in a
higher-order logic based on the simply typed A-calculus, as now Boolean
extensionality is of importance too.

We therefore investigate the extensionality treatment of several resolu-
tion based approaches to Henkin complete higher-order theorem proving:

#‘ Synthese 133: 203-235, 2002.
‘w © 2002 Kluwer Academic Publishers. Printed in the Netherlands.



204 CHRISTOPH BENZMULLER

Andrews’ higher-order resolution (Andrews 1971), Huet’s constrained
resolution (Huet 1972), higher-order E-resolution, and extensional higher-
order resolution (Benzmiiller and Kohlhase 1998a). In order to ease the
comparison we present them in a uniform way. Even though we focus on
the resolution method in this paper the main results on the feasibility of
extensionality reasoning in higher-order theorem proving do nevertheless
apply to other theorem proving approaches as well.

For Andrews’ and Huet’s approach it is well known that generally infin-
itely many extensionality axioms are required in the search space in order
to reach Henkin completeness. With the help of rather simple examples
we will point out the shortcomings of this kind of extensionality treat-
ment; namely a fair amount of non-goal directed search which contrasts
the general idea of resolution based theorem proving.

Whereas the use of higher-order E-unification (cf. Snyder 1990; Nip-
kow and Qian 1991; Wolfram 1993; Qian and Wang 1996) instead of
simple syntactical higher-order unification partially improves the situation,
this idea nevertheless fails to provide a general solution and still requires
additional extensionality axioms to ensure Henkin completeness.

The first calculus that generally takes into account, that higher-order
theory unification with respect to theories including full extensionality is
as hard as Henkin complete higher-order theorem proving itself, is the
extensional higher-order resolution approach (Benzmiiller and Kohlhase
1998a). This calculus very closely integrates higher-order unification and
resolution by allowing for mutual recursive calls (instead of hierarchical
calls solely from resolution to unification as in first-order). With its close
integration of unification and resolution this approach ensures Henkin
completeness without requiring additional extensionality axioms. With the
help of our examples we show that this aspect is not only of theoretical but
also of practical importance as proof problems requiring non-trivial exten-
sionality reasoning can be solved in the extensional higher-order resolution
approach in a more goal directed way.

As a theoretical result the paper presents Henkin completeness proofs
for the resolution approaches of Andrews and Huet which have been ex-
amined in literature so far only with respect to Andrews’ rather weak
semantical notion of V-complexes.

The paper is organised as follows: Syntax and semantics of higher-order
logic and a proof theoretic tool for analysing Henkin completeness are
sketched in Section 2. Various resolution based calculi are then introduced
in Sections 3 and their extensionality treatment is investigated with the
help of examples in Section 4. Related work is addressed in Section 5, and
Section 6 concludes the paper.
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2. SYNTAX AND SEMANTICS OF HIGHER-ORDER LOGIC

2.1. Classical Type Theory

We consider a higher-order logic based on Church’s simply typed A-
calculus (Church 1940) and choose BT := {t, o} as base types, where (
denotes the set of individuals and o the set of truth values. Functional
types are inductively defined over BT. A signature ¥ contains for each
type an infinite set of variables and constants, and particularly it provides
the logical constants —,_,,, Vp—o—0, and Iy ), for every type a. As
all other logical operators can be defined (e.g., A A B := —=(—=A v =B),
VX0 P X 1= ((4>0)—0) (A Xe P X), and 3X,. P X := =VX,. ~(P X)))
the given logical constants are sufficient to define a classical higher-order
logic.

The set of all X-terms (closed X-terms) of type « is denoted by wif,,
(cwff,). Variables are printed as upper-case (e.g., X,), constants as lower-
case letters (e.g., ¢, ), and arbitrary terms appear as bold capital letters (e.g.,
T,). If the type of a symbol is uniquely determined by the given context we
omit it. We abbreviate function applications by Ay, ..o, —p U_gn, which
stands for (- -+ (hg— ..o, —p Uél) --- U, ). For a-, B-, n-, Bn-conversion
and the definition of B-normal, fn-normal, long Bn-normal, and head-
normal form we refer to Barendregt (1984) as well as for the definition of
free variables, closed formulas (also called sentences), and substitutions.
Substitutions are represented as [T}/ Xy, ..., T,/ X,] where the X; spe-
cify the variables to be replaced by the terms T;. The application of a
substitution o to a term (resp. literal or clause) C is printed C, .

Higher-order unification and sets of partial bindings 9&3]’1 are well
explained in Snyder and Gallier (1989).

A calculus R provides a set of rules {r,| 0 < n < i} defined on clauses.
We write ® = € (€' F™ Q) iff clause C is the result of a one step
application of rule r, € R to premise clauses C; € ® (to C’ respectively).
Multiple step derivations in calculus R are abbreviated by ®; -z &, (or
Ci Fr Cp).

2.2. Clauses, Literals, and Unification Constraints

The approaches studied in this paper are presented using a uniform nota-
tion for clauses, literals, and unification constraints (the notation is due to
Kohlhase (1994)). Literals, e.g., [A]*, consist of a literal atom A and a
polarity u € {T, F}. For all rules presented in this paper we assume that
the polarity specifiers u, v € {T, F} refer to complementary polarities,
i.e., w # v. In particular we distinguish between proper literals and pre-
literals. The (normalised) atom of a pre-literal has a logical constant at



206 CHRISTOPH BENZMULLER

head position, whereas this must not be the case for proper literals. For
instance, [A v B]” is a pre-literal and [p,—, (A V B)]” isa proper literal.
Furthermore a literal is called flexible if its atom contains a variable at head
position.

A unification problem between two terms T! and T? (between n terms
T!, ..., T") generated during the refutation process is called an unification
constraint and is represented as [T' #’ T?] (resp. £’ (T, ..., TH]. A
unification constraint is called a flex-flex pair if both unification terms have
flexible heads, i.e., variables at head position.

Clauses consist of disjunctions of literals or unification constraints. The
unification constraints specify conditions under which the other literals are
valid. For instance the clause [py— g, T} T%]T\/[Té £’ Sé]\/[Tzﬂ £’ S%]
can be informally read as: if T! is unifiable with S' and T? with S? then
(p T' T?) holds. We implicitly treat the disjunction operator V in clauses
as commutative and associative, i.e., we abstract from the particular or-
der of the literals. Additionally we presuppose commutativity of #’ and
implicitly identify any two «-equal constraints or literals. Furthermore we
assume that any two clauses have disjoint sets of free variables, i.e., for
each freshly generated clause we choose new free variables.

If a clause contains at least one pre-literal we call it a pre-clause, other-
wise a proper clause. A clause is called empty, denoted by [, if it consists
only of (possibly none) flex-flex pairs.

An important aspect of clause normalisation is Skolemisation. In
this paper we employ Miller’s sound adaptation of traditional first-order
Skolemisation (Miller 1983), which associates with each Skolem func-
tion the minimum number of arguments the Skolem function has to be
applied to. Higher-order Skolemisation becomes sound, if any Skolem
function f” only occurs in a Skolem term, i.e., a formula S = f”ﬂ,
where none of the A’ contains a bound variable. Thus the Skolem terms
only serve as descriptions of the existential witnesses and never ap-
pear as functions proper. Without this additional restriction the calculi
do not really become unsound, but one can prove an instance of the
axiom of choice. Andrews (1973) investigates the following instance:
AE - 0)»0 YPi,. 3X,. P X) = P (E P)), which we want to treat as an
optional axiom for the resolution calculi presented in this paper; for further
details we refer to Miller (1983).

2.3. Standard and Henkin Semantics

A standard model for #(OL provides a fixed set D, of individuals, and a set
D, = {T, L} of truth values. The domains for functional types are defined
inductively: D, g is the set of all functions f: D, — Dg. Henkin models
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only require that D, g has enough members that any well-formed formula
can be evaluated. Thus, the generalisation to Henkin models restricts the
set of valid formulas sufficiently, such that complete calculi are possible.
The following figure illustrates the sketched connection between standard-
and Henkin semantics.

\\\\\\\\\\\\\\\ standard-

In Henkin and standard semantics Leibniz equality (which is defined as
=% = AXy. AYq.YPy_,. P X = P Y)denotes the intuitive identity relation
and the (type parameterised) functional extensionality principles

formulas
valid in

VYMy—p.VNyp. YX. M X =N X) = (M = N)
as well as the Boolean extensionality principle
VP,.VQ,. (P &= (P = Q)

are valid (cf. Benzmiiller 1999a; Benzmiiller and Kohlhase 1997). Satis-
fiability and validity (M = F or M = &) of a formula F or set of formulas
® in a model M are defined as usual.

We want to point out that the above statements on equality and exten-
sionality do not apply to general models as originally introduced by Henkin
(1950). Andrews (1972) showed that the sets &D,_,, may be so sparse in
Henkin’s original notion of general models that Leibniz equality may de-
note a relation, which does not fulfil the functional extensionality principle.
Due to lack of space we cannot present this general model here but refer to
Andrews (1972) for further details. The solution suggested by Andrews is
to presuppose the presence of the intuitive identity relations in all domains
Dysa—s0, Which ensures the existence of unit sets {a} € D,_,, for all
elements a € D,. The existence of these unit sets in turn ensures that
Leibniz equality indeed denotes the intended (fully extensional) identity
relation.

In this paper, “Henkin semantics” means the corrected version of
Henkin’s original notion as given in Andrews (1972).
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2.4. Proving Completeness

The abstract consistency proof principle (also called unifying principle)
is a strong tool supporting the analysis of the connection between syntax
and semantics for higher-order calculi. This proof principle has originally
been introduced by Smullyan (1963) for first-order logic and has been
adapted to higher-order logic by Andrews (1971). However, Andrews’
adaptation allows completeness proofs only for the rather weak semantical
notion of V-complexes (in which the axioms of extensionality may fail, cf.
Benzmiiller 1991; Benzmiiller and Kohlhase 1997).

The following proof principle adapts Andrews abstract consistency
proof principle to Henkin semantics.

DEFINITION 1 (Acc for Henkin Models). Let X be a signature and [y
a class of sets of X-sentences. If the following conditions hold for all
A,B € enwff,, F, G € ewff,_4, and ® € I3, then we call I3 an abstract
consistency class for Henkin models, abbreviated by Acc. (We want to
point out that we assume an implicit treatment of «-convertibility here,
whereas Andrews treats a-convertibility explicit in his notion of n-wffs;
cf. Andrews (1971, 3.1.2,2.7.5).)

saturated  ® U {A} e Iy or ® U {—A} € I5.

<

If A is atomic, then A ¢ ® or —A ¢ .

V. If——A € &, then ®U{A} € [3.

Vs If A € ® and B is the B-normal form of A, then ® U {B} € I

V, If A € ® and B is the n-long form of A, then ® U {B} € I5.

V¥, IfAVvBe®,then®U{A} elsordU({B}els.

V. If=(AVvB)e ®, then ®U{—-A, —B} e I3.

VW IfIT°F € @, then ® U {F W} € I; for each W € cwff,.

V5 If —=I1°F € @, then PU{—(F w)} € I} for any new constant w € X,,.
Vi If=(A="B)ec ® then®U{A,-B} eI} or®U{—-A,B}el;.

If —=(F =" G) € ®, then U {—=(F w =" G w)} € I for any new
constant w € .

<
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This definition extends Andrews notion of abstract consistency classes
for V-complexes by the new requirements saturated, V,, V,, and V. Satur-
atedness turns the partial V-complexes into total structures and the latter
two conditions ensure that Leibniz equality indeed denotes a fully exten-
sional relation (which may not be the case in V-complexes, where Leibniz
equality simply not necessarily denotes the intended identity relation; cf.
Benzmiiller 1991; Benzmiiller and Kohlhase 1997).

The following model existence theorem is due to Andrews (1971).

THEOREM 2 (Henkin Model Existence (Andrews 1971)). Let ® be a set
of closed X-formulas, [ be an abstract consistency class for V-complexes
(e, Iy fulfils V., V., V5, %, Vi, W, V4), and let ® € I5. There exists a
V-complex M, such that M = .

The following related theorem addressing Henkin semantics (and ad-
ditional ones addressing several notions in between Henkin semantics
and V-complexes) is presented in Benzmiiller (1999a); Benzmiiller and
Kohlhasse (1997).

THEOREM 3 (Henkin Model Existence (Benzmiiller and Kohlhase
1998)). Let @ be a set of closed X-formulas, I be an abstract consistency
class for Henkin models, and let & € I5;. There exists a Henkin model M,
such that M = .

The complicated task of proving Henkin completeness for a given (res-
olution) calculus R can now be reduced to showing that the set of all sets
® containing R-consistent closed formulas is an abstract consistency class
for Henkin models, i.e., to verify the (syntactically checkable) conditions
given in Definition 1.

3. HIGHER-ORDER RESOLUTION

In this section we introduce several higher-order resolution calculi. Ad-
ditional approaches not mentioned here are briefly sketched and related to
the presented ones in Section 5. The sketched approaches will be compared
with respect to their extensionality treatment in Section 4.

3.1. Andrews’ Higher-Order Resolution R

We transform Andrews’ higher-order resolution calculus (Andrews 1971)
in our uniform notation. In the remainder of this paper we refer to this
calculus with R. Extending Andrews (1971) we show that R is Henkin
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complete if one adds infinitely many extensionality axioms into the search
space.

A-Conversion. Calculus R provides two explicit rules addressing o-
conversion and B-reduction (cf. Andrews 1971, 5.1.1) but does not provide
arule for n-conversion. Consequently n-equality of two terms (e.g., fi—, =
AX,. f X) cannot be proven in this approach without employing the
functional extensionality axiom of appropriate type; cf. Section 4.1.

In our presentation we omit explicit rules for o- and B-convertibility
and instead treat them implicitly, i.e., we assume that the presented rules
operate on input and generate output in B-normal form and we automatic-
ally identify terms which differ only with respect to the names of bound
variables.

Clause Normalisation. R introduces only four rules belonging to clause
normalisation: negation elimination, conjunction elimination, existential
elimination, and universal elimination (cf. Andrews 1971, 5.1.4.-5.1.7.).
As our presentation of clauses in contrast to Andrews (1971) explicitly
mentions the polarities of clauses and brackets the literal atoms we have to
provide additional structural rules, e.g., the rule V7.

CvI[-A]T ; Cv [-A]F
CVIA]F C VAl
e Conjunction!/disjunction elimination:

CVvI[AVB]” ; CvIAVvB]Y ., CVv[AVB]f |
CvIAl" VB ¥ cCvAF ! cvBlF "

e Existential’/universal elimination:
C v [T°A]" ; Cv [TT*A1F
CVIA X, 17 n CVI[As,]F

X, 1s a new free variable and s, is a new Skolem term

e Negation elimination: F

F

Additionally Andrews presents rules addressing commutativity and as-
sociativity of the V-operator connecting the clauses literals (cf. Andrews
1971, 5.1.2.). We have already mentioned the implicit treatment of these
aspects in Section 2.2.

In the remainder of this paper Cnf(A) denotes the set of clauses ob-
tained from formula A by clause normalisation. It is easy to verify that
clauses produced with Andrews’ original normalisation rules can also be
obtained with the rules presented here (and vice versa).
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Resolution and Factorisation. Instead of a resolution and a factorisation
rule — which work in connection with unification — Andrews presents a
simplification and a cut rule. The cut rule is only applicable to clauses with
two complementary literals which have identical atoms. Similarly Sim is
defined only for clauses with two identical literals. In order to generate
identical literal atoms during the refutation process these two rules have to
be combined with the substitution rule Sub presented below.

[A]* VI[A]* v C
[A]* Vv C

¢ Simplification: Sim

[A]*VvC [A]YVD
CvD

e Cut:

Cut

Unification and Primitive Substitution. As higher-order unification was
still an open problem in 1971 calculus R employs the British Museum
Method instead, i.e., it provides a substitution rule that allows to blindly
instantiate free variables by arbitrary terms. As the instantiated terms
may contain logical constants, instantiation of variables in proper clauses
may lead to pre-clauses, which must be normalised again with the clause
normalisation rules.

&

Crr, /X, Sub

e Substitution of arbitrary terms:

X, is a free variable occurring in C.

Extensionality Treatment. Calculus R does not provide rules addressing
the functional and/or Boolean extensionality principles. Instead R as-
sumes that the following extensionality axioms are (in form of respective
clauses) explicitly added to the search space. And since the functional
extensionality principle is parameterised over arbitrary functional types
infinitely many functional extensionality axioms are required”.

EXT: 40 VFyopVGoop VX0 FX=GX) = F=G

oz—>;3:

EXT;: VAnVB,. (A& B) = A="B

These are the crucial directions of the extensionality principles and the
backward directions are not needed. The extensionality clauses derived
from the extensionality axioms have the following form (note the many
free variables, especially at literal head position, that are introduced into
the search space — they heavily increase the amount of blind search in any
attempt to automate the calculus):
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8?““3 Ip(FHIT vig F1¥F vio 61T g2 [A1F v(BIF viP A)F vP BIT
&P p G Fvio FIFvigGIT & (A1 v [BIT v[P AIF v [P BIT

Pp—o» So are Skolem terms and Py, g)—0, O («—p)—o are new free
variables.

Proof Search. Initially the proof problem is negated and normalised. The
main proof search then starts with the normalised clauses and applies
the cut and simplification rule in close connection with the substitution
rule. An intermediate application of the clause normalisation rules may be
needed to normalise temporarily generated pre-clauses. The extensionality
treatment in R simply assumes to add at the beginning of the refutation
process the above clauses obtained from the extensionality axioms.

When abstracting from the initial and intermediate normalisations the
proof search can be illustrated as follows:

m proof search & blind variable instantiation

Completeness Results. Andrews (1971) gives a completeness proof for
calculus R with respect to the semantical notion of V-complexes. As
the extensionality principles are not valid in this rather weak semantical
structures, the extensionality axioms are not needed in this completeness
proof.

THEOREM 4 (V-completeness of R). The calculus R is complete with
respect to the notion of V-complexes.

Proof. We sketch the proof idea: 4(i) First show that the set of non-
refutable sentences in R is an abstract consistency class for V-complexes.
4(ii) Then prove completeness of R with respect to V-complexes in
an indirect argument: assuming non-completeness of R leads to an
contradiction by 4(i) and Theorem 3. [l

We now extend this result and prove Henkin completeness of calculus
R.

THEOREM 5 (Henkin completeness of ). The calculus R is com-
plete with respect to Henkin semantics provided that the infinitely many
extensionality axioms are given.

Proof. 5(1) The crucial aspect is to prove that the set of non-refutable
sentences in R enriched by the extensionality axioms is an abstract con-
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sistency class for Henkin models. 5(ii) An indirect argument analogous to
4(i1) employing 5(i) and Theorem 3 ensures completeness.

In order to show 5(i) we have to verify the additional abstract con-
sistency properties saturated, V,, Vj,, and V, as specified in Definition
1.

saturated We show that ® U {A} fg O or ® U {—A} /g . Assume
D g Obut U {A} g Oand ® U {—A} % O. By Lemma 6
(cf. below) we get {A Vv —A} ¢z U, and hence, since A vV —A is
a tautology, it must be the case that & gz [, which contradicts our
assumption.

V, Assuming A € ® and ® U {B} 5 L], we get & 5 [J by Lemma 7
(cf. below). This ensures the assertion by contraposition.

V» We first apply rule Sub and instantiate the variables A and B in the
Boolean extensionality axioms &/ and &; with terms A and B. Now
assume that =(A =" B) € ® and ® U {A,—B} % O and ® U
{—A, B} % 0. Employing the instantiated Boolean extensionality
axioms it is easy to see that & % [, which ensures the assertion by
contraposition.

V, Can be shown analogously to V, when appropriately instantiating the

functional extensionality axioms &7, €577

LEMMA 6. Let ® be a set of sentences and A, B be sentences. If ® U
{A}Fg Oand ® U {B} % 0O, then ® U{AV B} ¢ [

Proof. We first verify that Cnf(® x A v B) = Cnf(®) U (Cnf(A) L
Cnf(B)), where TUA = = {CVvD|C € Cnf(A)},D € Cnf(B)}. Then we
use that ®U (" UT,) 5 U, provided that PUT"| k& Uand ®UTL, 5 L.
]

LEMMA 7. Let ® be a set of sentences and let A, B be sentences in S-
normal form, such that A can be transformed into B by (i) a one step 7n-
expansion or (ii) a multiple step n-expansion. Then ® U {B} % U implies
DdU{A} 5 L

Proof. Case (ii) can be proven by induction on the number of 5-
expansion steps employing (i) in the base case. To prove case (i) note that
A and B differ (apart from «-equality) only with respect to a single subterm
T, 5. More precisely, Ajo.x. T x)/1] 1S equal to B. Normalising sentences
A (resp. B) may result in several clauses Ay, ..., s, (resp. By, ..., By)
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with duplicated occurrences of subterm T (resp. AX. T X). We appro-
priately instantiate the functional extensionality axioms &; —f & " and
derive the (Leibniz equation) clauses C; : [Q f 1" vIiQ AX. f X)]F and
G : [Q f1F VvIQ (AX. f X)]T (the latter can be obtained from the
former by substituting A X. =Q’ X for Q). Obviously, we can derive for
each 1 <i < n the clause $B; from its counterpart +; with the help of G,
and G, (formally we apply an induction on the occurrences of term T in

A;). O

3.2. Huet’s Higher-Order Constrained Resolution CR

In this section we transform Huet’s constrained resolution approach (Huet
1972, 1973a) to our uniform notation. The calculus here is the unsor-
ted fragment of the variant of Huet’s approach as presented in Kohlhase
(1994). In the remainder of this paper we refer to this calculus as CR. We
extend (Huet 1972, 1973a) and show that CR is Henkin complete if we
add infinitely many extensionality axioms to the search space.

A-Conversion. Like R calculus CR assumes that terms, literals, and
clauses are implicitly reduced to S-normal form. Furthermore we assume
that «-equality is treated implicitly, i.e., we identify all terms that differ
only with respect to the names of bound variables.

Clause Normalisation. Huet (1972) does not present clause normalisation
rules but assumes that they are given. Here we employ the rules =7, =F,

v, \/IF R \/f , 7, and T17 as already defined for calculus &R in Section 3.1.

Resolution and Factorisation. As first-order unification is decidable and
unitary it can be employed as a strong filter in first-order resolution
(Robinson 1965). Unfortunately higher-order unification is not decid-
able (cf. Lucchesi 1972; Huet 1973b; Goldfarb 1981) and thus it can
not be applied in the sense of a terminating side computation in higher-
order theorem proving. Huet therefore suggests in Huet (1972, 1973a) to
delay the unification process and to explicitly encode unification prob-
lems occurring during the refutation search as unification onstraints. In
his original approach Huet presented a hyper-resolution rule which sim-
ultaneously resolves on the resolution literals A!,...A” (1 < n) and
B',...B” (1 < m)oftwo given clauses and adds the unification constraint
[#£’ (A!,...A" B!, ...B™)] to the resolvent.

Al v ... V[A"]* VCB!'*v...V[B"]*VvD

H
CVvDV £ (Al, .. A".Bl, .. B")] res
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In order to ease the comparison with the two other approaches discussed
in this paper we instead employ a resolution rule Res and a factorisation
rule Fac. Like Hres both rules encode the unification problem to be solved
as a unification constraint.

Constrained luti [A]*VvC [B]"VvD R
nstrained r ion: es
e Constrained resolutio CvDVIA £ B

ned factorisation: [A]* vV [B]" v C F

e Constrained factorisation: A vCv[A £ B ac

One can easily prove by induction on n + m that each proof step

applying rule Hres can be replaced by a corresponding derivation employ-

ing Res and Fac. For a formal proof note that the unification constraint

[#" (A',...A",B',...B™)] is equivalent to [A! #’ A?] v [A%? #’

ATV ... vIATE £ ATV [AT £ Bl v B #T B Vv [B? #’
B3] v...v[B"! #£"B"].

Unification and Splitting. Huet (1975) introduces higher-order unifica-
tion and higher-order pre-unification and shows that higher-order pre-
unification is sufficient to verify the soundness of a refutation in which
the occurring unification problems have been delayed until the end. The
higher-order pre-unification rules presented here are discussed in detail
in Benzmiiller (1999a). They furthermore closely reflect the rules as
presented in Snyder and Gallier (1989).
CVIA #£"A]

e Elimination of trivial pairs: —c Triv

Cv [Aa—>ﬁ Ca 7&? Ba—)ﬁ Da]

e Decomposition
P CVIA £ BIVICA D]
Elimination of A-binders: CV [Myp # Noogl
* ; : ; Func
(weak functional extensionality) CV[Ms, # Nsgl

Sq 18 a new Skolem term.

. . CVI[F, U #hV"] Ge§s"
e Imitation of rigid heads: — — FlexRigid
CVI[F # G)V[FU" £ h Vn]

9£f, is the set of partial bindings of type y for head i as defined in
Snyder and Gallier (1989).

Huet points to the usefulness of eager unification to filter out clauses
with non-unifiable unification constraints or to back-propagate the solu-
tions of easily solvable constraints (e.g., in case of first-order unification
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problems occurring during the proof search). Many of the higher-order uni-
fication problems occurring in practice are decidable and have only finitely
many solutions. Hence, even though higher-order unification is generally
not decidable it is sensible in practice to apply the unification algorithm
with a particular resource*, such that only those unification problems
which may have further solutions beyond this bound need to be delayed.
In our presentation of calculus CR we explicitly address the aspect of
eager unification and substitution by rule Subst. This rule back-propagates
eagerly computed unifiers to the literal part of a clause.

e Eager unification and substitution:

CVI[X £ A] X ¢ free(A) S
Cia/x

ubst

Rule Subst is applicable provided that [ X #£” Al is solved with respect
to the other unification constraints in C, i.e., that there is no conflict
with other unification constraints.

The literal heads of our clauses may consist of set variables and it may
be necessary to instantiate them with terms introducing new logical con-
stant at head position in order to find a refutation. Unfortunately not all
appropriate instantiations can be computed with the calculus rules presen-
ted so far. To address this problem Huet’s approach provides the following
splitting rules:

[P AT VC

1. Instantiate set variables: > S?
[Q1" VIRI" VCVIPA # (Q,V R)]
[P A vC GF

[P A]* v C rr [Q1FVCVIPA # (QoVR)
[QI'VCVIPA # =0,] ~ [RIFVCVIPA #"(QoV Ry)]

[P Ayol” VC g7

(Moo ZIT VCVIPA £ TI9M] 1
[P Au—ol” vV C GF

Moo sSIEVCVIPA £ TI%M] 1

Sﬁ and Sff[ are infinitely branching as they are parameterised over
type «. Q,, Ry, My, Z, are new variables and s, is a new Skolem
constant.

A theorem which is not refutable in CR if the splitting rules are not
available is 9A,.A. After negation this statement normalises to clause C; :
[A]7, such that none but the splitting rules are applicable. With the help of
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rule SZF and eager unification, however, we can derive G, : [A’ 17 which
is then successfully resolvable against C;.

Extensionality Treatment. On the one hand n-convertibility is built-in in
higher-order unification, such that calculus GR already supports func-
tional extensionality reasoning to a certain extent. On the other hand CR
nevertheless fails to address full extensionality as it does not realise the re-
quired subtle interplay between the functional and Boolean extensionality
principles. For example, without employing additional Boolean and func-
tional extensionality axioms CR cannot prove the rather simple Examples
presented in Sections 4.2, 4.3, and 4.4.

Proof Search. Initially the proof problem is negated and normalised. The
main proof search then operates on the generated clauses by applying the
resolution, factorisation, and splitting rules. Despite the possibility of eager
unification CR generally foresees to delay the higher-order unification
process in order to overcome the undecidability problem. When deriv-
ing an empty clause CR then tests whether the accumulated unification
constraints justifying this particular refutation are solvable. Like R, the
extensionality treatment of CR requires the addition of infinitely many
extensionality axioms to the search space. The following figure graphically
illustrates the main ideas of the proof search in CR.

m %3% a%ﬁ%gﬁ%”nm M W%

Completeness Results. Huet (1972, 1973a) analyses completeness of CR
only with respect to Andrews V-complexes, i.e., Huet verifies that the set
of non-refutable sentences in CR is an abstract consistency class for V-
complexes.

THEOREM 8 (V-completeness of CR). The calculus CR is complete with
respect to the notion of V-complexes.

We now extend this result and prove Henkin completeness of calculus
CR.

THEOREM 9 (Henkin completeness of CR). The calculus CR is complete
wrt. Henkin semantics provided that the infinitely many extensionality
axioms are given.
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Proof. Analogously to the proof of Theorem 5 we can reduce the prob-
lem to verifying that the set of non-refutable sentences in R enriched by
the extensionality axioms is an abstract consistency class for Henkin mod-
els. The assertion then follows in an indirect argument employing Theorem
3. In addition to the abstract consistency properties already examined in
Huet (1972, 1973a) for Theorem 8 we have to verify saturatedness, V,,
Vi, and V,, as specified in Definition 1. The proofs of all four statements
are analogous to the corresponding parts in the proof of Theorem 5. For
saturatedness and V, we use analogues of Lemmas 6 and 7.

LEMMA 10. Let ® be a set of sentences and A, B be sentences. If ® U
{A} Fer Oand ® U {B} Feg [, then ® U {A VvV B} Feg [
Proof. Analogous to the proof of Lemma 6. ([

LEMMA 11. Let & be a set of sentences and let A, B be sentences in
B-normal form, such that A can be transformed into B by (i) a one step n-
expansion or (ii) a multiple step n-expansion. Then ® U{B} ez U implies
D U{A} Fer 0.

Proof. The proof is analogous to Lemma 7. The main difference is
with regard to the derivability of the clauses B; from its counterparts +A;
with the help of €, and C, obtained from the (suitably instantiated) func-
tional extensionality axioms. It might be the case that the terms T occur
inside flexible literals of the clauses ;. Resolving these flexible literals
against C; and G, results then in flex-flex pairs that cannot be solved
eagerly but have to be delayed. E.g., let A; (1 < j < n) be of form
[R (p T)]" Vv D.Instead of B; :=[R (p (AX.T X))]" v D we can derive
only JB; =[QAX.TX)"VDVIQOT #" R (p (AX. T X))]. Hence,
we have to show (in a technically rather complicated inductive proof on the
length of the derivation) that each refutation employing !B} can be replaced
by a corresponding one employing B;. g

3.3. Higher-Order E-Resolution CRE

Some more recent approaches to higher-order theorem proving employ
equational higher-order unification instead of syntactical higher-order uni-
fication in order to ease and shorten proofs on the resolution layer by
relocating particular computation or reasoning tasks to the unification
process. For instance, equational higher-order unification has been invest-
igated within the contexts of higher-order rewriting and narrowing (cf.
Nipkow and Prehofer 1998; Prehofer 1998), and within the context of
restricted higher-order E-resolution (Wolfram 1993).
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In this Section we will sketch a higher-order E-resolution approach
based on calculus CR. In contrast to the other investigated calculi the aim
thereby is not to provide a detailed description of the particular rules and
the functioning of the calculus, but to provide a sufficient basis for the in-
vestigation to what extent equational higher-order unification can improve
the extensionality reasoning in a higher-order theorem prover.

Generally unification of two (or several) terms S and T aims at comput-
ing sets of unifiers, i.e., substitutions o, such that S, equals T, (S, = T,).
Equational unification thereby extends syntactical unification in the sense
that it tries to equalise S, and T, modulo a fixed equational theory E
(written as S, =g T, ) instead of equalising them syntactically. A survey to
unification theory is given in Baader and Siekmann (1994), and Siekmann
(1989).

Within our higher-order context we assume that an equational theory £
is defined by a fixed set of equations between closed A-terms. For instance,
equations expressing commutativity and associativity of the A-operator are
AXp XY XAY) = WX MY Y AX)and WX AY 0o AZ, (XAYIANZ) =
AXpe MY AZ0e X A (Y A 2Z)).

And within this particular theory E (to be more precise modulo the
congruence relation defined by this equations) the following two terms are
unifiable by [a/X]: (po—o (by A Xo) A (Xy A by)) and (py—, ap A (a, A
(bo A by))).

We want to point out that Huet’s unification approach as presented for
calculus GR is of course not a pure syntactical one as it already takes «fn-
equality into account. We nevertheless call Huet’s approach syntactical
higher-order unification in this paper in order to distinguish it from equa-
tional higher-order unification in the sense of this Subsection, where the
theory E may contain additional higher-order equations.

Several, often restricted, approaches to higher-order E-unification have
been discussed in literature. Wolfram (1993) a general higher-order E-
unification approach which employs higher-order rewriting techniques. An
approach restricted to first-order theories is given in Snyder (1990) and an-
other restricted one, where as much computation as possible is pushed to a
first-order E-unification procedure, is discussed in Qian and Wang (1996)
and Nipkow and Qian (1991). Dougherty and Johann (1992) presents a
restricted combinatory logic approach.

We now sketch our higher-order E-resolution approach CRE.

Clause Normalisation, Resolution and Factorisation, and Splitting. We
assume that calculus CRE coincides with calculus CR in all but the uni-
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fication part. Thus CR provides the clause normalisation, resolution and
factorisation, and splitting rules as introduced in Section 3.2.

Equational Unification. Instead of presenting a concrete set of rules for
higher-order E-unification we refer to the respective approaches given in
Snyder (1990), Nipkow and Qian (1991), Wolfram (1993), and Qian and
Wang (1996). For our investigation of CRE it will be of minor importance
which particular approach we choose and how general this approach is.

Whereas higher-order E-unification can indeed partially improve the
extensionality treatment in CRE, we will present simple theorems in
Section 4 which cannot be proven in GRS (or in any of the related
approaches mentioned above) without additional extensionality axioms.
These counterexamples do not depend on the concrete choice of an
equational theory E.

3.4. Extensional Higher-Order Resolution ER

We now present the extensional higher-order resolution approach as intro-
duced in Benzmiiller and Kohlhase (1998a), Benzmiiller (1991a). In the
remainder of this paper we refer to this calculus as §&R. &R is Henkin
complete without requiring additional extensionality axioms.

A-Conversion. In contrast to R and CR calculus &R assumes that all terms,
literals, and clauses are implicitly reduced to long 8n-normal form.

Clause Normalisation, Resolution and Factorisation, and Unification and
Splitting. ER employs the normalisation rules =T —F T, \/lF, \/rF, n’,
17, the resolution and factorisation rules Res, Fac, and the unification
rules Triv, Dec, Func, FlexRigid, Subst as already defined for calculus CR
in Section 3.2.

Additionally &R employs the infinitely branching unification rule
FlexFlex, which guesses instances in case of flex-flex pairs (cf. Conjecture
13 in Section 3.4).

CVI[Fp,, U =Hg_, V"' GegB

yh—a

o Guess

— — FlexFlex
CV[FU =HV"f V[F =G

93’;7% is the set of partial bindings of type y for a constant 4 in the

given signature.

The splitting rules presented for CR in Section 3.2 are replaced in
&R by the more elegant primitive substitution rule as first introduced by
Andrews (1989).
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Ukl*vC Pe £{ﬁ’V}U{Hﬂ‘ﬁET}
e Primitive substitution 1o, U1l — e v Prim
[0, U vCVI[Q =PIf

93;‘”“““’367} is the set of partial bindings of type o for a logical
constant in the signature.

Extensionality Treatment. Instead of adding infinitely many extensional-
ity axioms to the search space CR provides two new extensionality rules
which closely connect refutation search and eager unification. The idea
is to allow for recursive calls from higher-order unification to the over-
all refutation process. This turns the rather weak syntactical higher-order
unification approach considered so far into a most general approach for
dynamic higher-order theory unification.

CV M, # N,

CVvI[M, & N,IF
CVIM, # N,]

e Unification and Leibniz equality: Leib
Y eV VP PM > PN

e Unification and equivalence: Equiv

Proof Search. Initially the proof problem is negated and normalised. The
main proof search then closely interleaves the refutation process on res-
olution layer and unification, i.e., the main proof search rules Res, Fac,
and Prim and the unification rules are integrated at a common conceptual
level. The calls from unification to the overall refutation process with rules
Leib and Equiv introduce new clauses into the search space which can be
resolved against already given ones.

This close interplay between unification and refutation search com-
pensates the infinitely many extensionality axioms required in R and CR
by a more goal-directed approach to full extensionality reasoning.

The following picture graphically illustrates the main ideas of the proof

search in ER.
H.uﬂicaﬁnﬂ

levedihorseel

Completeness Results. Henkin completeness of the presented approach
with rule FlexFlex is analysed in detail in Benzmiiller (1999a) and
Benzmiiller and Kohlhase (1998a). Here we only mention the main result:

v ;

THEOREM 12 (Henkin completeness of &R). The calculus &R is com-
plete with respect to Henkin semantics.
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Benzmiiller (1999a) presents but does not prove the following interest-
ing claims which are of major practical importance as they will lead to an
enormous reduction of the search spaces in &R.

CONIJECTURE 13 (FlexFlex-rule is not needed). Rule FlexFlex can be
avoided in &R without affecting Henkin completeness.

CONIJECTURE 14 (Base type restriction of rule Leib). Rule Leib can be
restricted to base types « in &R without affecting Henkin completeness.

4. EXAMPLES

In this section we compare the extensionality treatment provided by the
calculi R, CR, CRE, and ER with the help of simple examples. Des-
pite their simplicity the latter two of these examples are nevertheless
challenging with respect to their automisation in a higher-order theorem
prover.

4.1. n-Equality
EXAMPLE 15. f,, =AX,. f X
Solution in R. In order to prove Example 15, which normalises after

negation and expansion of Leibniz equality to G, : [¢ f]© and G, :
[g AX. f X)]T where qu——o 1s a new Skolem term, we first have to

appropriately instantiate the two functional extensionality clauses 811_)’3
and & with the help of rule Sub:

7 p (fOI" VIQ fIF VIQ (X, f X"
& i p (fHIF VIO FIFvIo X f X1

Employing cut and simplification we can derive
C3:[Q f1" VIQ GX. f X1

which corresponds to the Leibniz equation between f and (AX. f X).
With rule Sub we then substitute the term AM,_, . =(q M) for the predicate
variable Q, re-normalise the generated pre-clause, and obtain

Cs:lg 1" VIg OX. f X)1F
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By applying the cut rule to G4, C;, and C, we then derive [.

Solution in CR, CRE, and ER. We first sketch the proof of Example 15
in CR. Initially we resolve on C; : [g f1F and @ : [g (A X. f X)]T and
thereby obtain the unification constraint C3 : OV [f £ (AX. f X)]¥. The
n-equality of the two unification terms is shown with the help of the uni-
fication rule Func which derives the trivial unification constraint G4 : [1V
[f s #° f s]F (where s, is new Skolem term). This unification constraint
can be subsequently eliminated with rule Triv. Our examples illustrates
higher-order unification already addresses weak functional extensionality
(n-equality).

An analogous refutation can clearly be employed in calculus CRE as
weak functional extensionality is built-in in higher-order E-unification as
well.

Example 15 is trivially solvable in &R due to the fact that we implicitly
assume all terms to be in long Bn-normal form, i.e., the clauses to be
refuted are C; : [¢g(AX. fX)]¥ and @, : [¢g(AX. fX)]". Clearly, when
considering long Bn-normal forms instead of S-normal forms the problem
is trivially solvable in calculi R, CR, and CRE as well.

4.2. Set Descriptions

In higher-order logic sets can be elegantly encoded by characteristic func-
tions. An interesting problem then is to investigate whether two encodings
describe the same set. The following trivial example demonstrates the
importance of the extensionality principles for this purpose.

EXAMPLE 16. The set of all red balls equals the set of all balls that are
red: {X|red X A ball X} = {X]|ball X A red X}. This problem can be
encoded as (A X,.red X A ball X) = (AX,.ball X Ared X).

Negation, expansion of Leibniz equality, and clause normalisation leads
to the following clauses (where p(,_.,)-, is a new Skolem constant):

Ci:[p (AX.red X Aball X)]¥ G :[p (AX.ball X Ared X)]7

Solution in R. As no rule is applicable to ¢} and C, Example 16 is not
refutable in R without employing extensionality axioms. The only way to
derive a contradiction is to employ suitable instances of the extensionality
clauses in a rather complicated derivation:

1. With rule Sub instantiate the Boolean extensionality axioms &} and &7
with the terms (red Y A ball Y) and (ball Y A red Y) for variables A
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and B. By normalising and employing simplification exhaustively to
the resulting pre-clauses we obtain among others:

Csy: [redY]F v [ball Y] v [PF T v [P G!T
Cy: [red Y] v [PF1F v [PGYT
Cs : [ball Y] v [PFF v [P GYT

where F! stands for the term (red Y A ball Y) and G! for (ball ¥ A
red V).

From CG3-Cs we derive Cs : [P F'1" v [P G']" by cut and
simplification, where Cg corresponds to the clause normal form of
VY. ((AX.red X Aball X) YV) = ((AX.ball X Ared X) V).

. With rule Sub we now instantiate the functional extensionality axioms

&7° and 85~ with terms F? := (1 X.red X A ball X) for variable F
and G? := (A X.ball X A red X) for variable G.

C;: [g (red s Aball )17 v [Q F*1F v [0 GHT
Cg : [g (ball s Ared )1 VIQFF v [0 G*F

. Applying substitution [(AZ.q Z)/P, s/Y] with rule Sub to clause C¢

leads to:
Cy : [q (red s A ball 5)]¥ v [¢g (ball s A red 5)]7

Applying cut and simplification we combine the results of the above
steps and derive from C7, Cs, and G

Cio: [0 (AX.red X Aball X)1¥ v [Q (AX.ball X Ared X)]¥

which represent the Leibniz equation between (AX. red X A ball X)
and (AX. ball X A red X). With the help of €, and G, we can now
derive U after appropriately instantiating Cy with [p/Q].

Note that in Steps 1 and 2 we had to guess the right instantiations of the
extensionality axioms and to apply non-goal directed forward reasoning.

Solution in CR. The only rule that is applicable to C; and C, in calculus

CR

is the resolution rule Res leading to the following unification constraint

C;:0OV[p (AX.red X Aball X) ;é? p (AX.ball X Ared X)]

As this unification constraint is obviously not solvable by syntactical
higher-order unification we cannot find a refutation on this derivation path.

As in calculus R the only way to find a refutation is to guess appropri-
ate instances of the extensionality axioms and to derive from them clause

Cio

representing the Leibniz equation between (AX. red X A ball X) and
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(AX. ball X A red X). A concrete derivation can be carried out analog-
ously to the above derivation in R. The only difference is that we employ
resolution and factorisation instead of cut and simplification. In contrast
to R we thereby gain additional guidance with respect to finding some
of the required instantiations when combining the resolution/factorisation
steps with eager unification attempts. But note that this only holds for the
instantiation of non-formulas, e.g., as given in Step 3. The key step in
the proof, namely the instantiation of the extensionality axioms in Step 1
with appropriate formulas as arguments, is not supported by unification.
Instead the splitting rules have to be employed in order to guess the right
instances. The problem with the splitting rules (or analogously the primit-
ive substitution rule) is that each application introduces new clauses with
flexible literals into the search space (in case of ST, and S{; even infinitely
many) such that the splitting rules become recursively applicable to the
new clauses as well.

Consequently, the extensionality treatment in CR is analogously to the
one in R rather hard to guide in practice. Overwhelming the search space
with extensionality clauses and applying forward reasoning to them fur-
thermore principally contrasts the intended character of resolution based
theorem proving.

Solution in CRE. Analogous to the unsuccessful initial attempt in CR we
first resolve between C; and G, and obtain

C;:0OV[p (AX.red X Aball X) ;é? p (AX.ball X Ared X)]

Whereas syntactical unification as employed in CR clashes on this uni-
fication constraint, calculus CRE can solve this E-unification problem
provided that the employed E-unification algorithm covers associativity
of the A-operator (i.e., E = (AX,. MY, X A Y) = (AX,. AY,. Y A X))

Hence, depending on the peculiarity of unification theory E calculus
CRE can provide more goal directed solutions to particular examples and
avoid applications of the extensionality axioms. However, the examples
below will demonstrate that E-unification does not provide a general
solution.

Solution in &R. Calculus &R provides another goal directed solution
avoiding the extensionality axioms. Instead of employing equational uni-
fication calculus &R analyses the unifiability of the unification constraint
C; with the help of a recursive call from within its unification algorithm
to its own overall refutation process. Clearly, this idea can be seen as a
very general form of equational unification, namely equational unification
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modulo the theory defined by the given clause context and full higher-order
logic.

Like above we initially resolve between C; and G, and obtain clause
C5. Then we transform G5 with the unification rules Dec and Func into

C,: OV [reds Aball s # ball s A red s]

and apply a recursive call to the overall refutation process with the
Boolean extensionality rule Equiv. After normalisation and elimination of
identical literals we thereby obtain the following trivially refutable set of
propositional clauses

Cs : [red s17 v [ball s]¥ G :[red s]’ @, :[ball s]"

4.3. Reasoning with Classical Logic

The following theorem states that all unary logical operators O,_,, which
map the propositions a and b to T consequently also mapa A bto T.

EXAMPLE 17. YO, (O a,) A (O b,) = (O (a, A b,)).

Negation and normalisation leads to (0, , is a Skolem constant for O)

Ci:loal’ Cy:lob]" Cs:lo(anb)]f

Solution in R. Obviously there is no rule applicable to G, — C3. As in
Section 4.2 we are forced to appropriately instantiate the extensionality
axioms. In particular we employ the following two instantiations of the
Boolean extensionality principle EXTf:

(@& (anb) & (a="(anb))
and

(b (@nb)) & (b="(a b))
That means we guess the substitutions [a/A, (a AD)/B], [b/A, (aAb)/B]
and then instantiate the Boolean extensionality clauses & and &7 with rule

Sub. From the instantiated clauses we can now derive

Cy:[Pal” VIP @AD" VIQbI"VIQ (anb)]
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which represents that (@ = (a A b)) vV (b = (a A b)). By instantiating P
and Q with o and simplification we obtain:

Cs:[oal” vIobl" Vvio(anAb)]"
Resolving against Cy, C,, and C; leads to L.

Solution in CR and CRE. There are only two possible proof steps at
the very beginning: resolve between C; and Gz and between G, and Cs.
Thereby we get

Ci:OVipa# panb)] Cs:0OVIipb# p(anb)]

Both unification constraints are neither solvable by syntactical higher-
order unification nor by higher-order E-unification.

Successful refutations in GR and CRE therefore require the application
of appropriately instantiated extensionality clauses as demonstrated within
the refutation in calculus R above. Note that higher-order (E-)unification
does not even provide any support for choosing the right instantiations of
the extensionality axioms.

Hence both calculi, CR as well as CRE, cannot be Henkin complete
without additional extensionality axioms.

Solution in ER. ER allows for a straightforward refutation of the clauses
C; — CG3. Like in CR and CRE the only possible steps at the beginning are
to resolve between C; and C3 and between C, and Cs. Thereby we get

Cy:OVIpa# panb)] Cs:0OVvIipb# panbd)]
Decomposing both the unification constraints in both clauses leads to
Co:0VIa#" (anb)] € :0OVvI[b+#" (anb)]

When regarding both unification constraints isolated they are obviously
neither syntactically nor semantically solvable. When considering them
simultaneously, however, it is easy to see that at least one of both uni-
fication constraints must be solvable. Such a non-constructive reasoning
on the simultaneous solvability/non-solvability of unification constraints
is handled in &R by recursive calls from unification to the overall proof
search. In this sense &R intuitively first assumes that the unification
constraints are simultaneously not solvable and then tries to refute this
assumption. More concretely, the recursive calls with rule Equiv applied
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to G¢ and €7 introduce after normalisation and factorisation the follow-
ing clauses into the search space (note the importance of the fact that the
generated clauses are analysed in a common context):

Cs:[alf vIblF Co:lal’ vIb]T G5 :la)t  Cs:[b])"

Clauses CGs—Cg can be refuted immediately, which contradicts the as-
sumption of the simultaneous semantical non-unifiability of the unification
constraints in G4 and C;. Hence, either G4 or G; must already be the empty
clause, which justifies the proof.

4.4, Mappings from Booleans to Booleans

We already mentioned in Section 2.3 that in Henkin semantics the do-
main D, of all Booleans contains exactly the truth values 1 and T.
Consequently the domain of all mappings from Booleans to Booleans
contains exactly’ the denotations of the following four functions: 1 X,. X,
AX,.—X,,AX,.L,and AX,. T. This theorem can be formulated as follows
(where f,_,, is a constant):

(f =2 Xoe X))V (f = AXo =X) V (f = AXoe L)V (f = A X0n T)

By unfolding the definition of Leibniz equality, negating the theorem,
and applying clause normalisation we obtain the following clauses (where
p', ..., p* are Skolem constants):

Dy [p' f17 Dy [p' A X Xo17 D31 [P 17 Dy [p? 2 X, —X,1F

Ds: [p° f1I7 D6 :[p° A X0 L1F 070 [p* 1T Dg: [p* 2X,. T1F

Solution in R, CR, and CRE. As the reader may easily check, none of the
applicable resolution steps leads to a unification constraint that is solvable
by higher-order unification or higher-order E-unification (independent
from theory E).

In order to find a refutation appropriate instances of the extensionality
principles are needed, just as illustrated in the previous example. Because
of lack of space we do not present the quite lengthy refutation here.

Solution in ER. In ER we can find the following goal directed refutation
of the clauses D, ..., Dg. We first resolve between the related clauses
D, and D,, D3 and Dy, Ds and Dg, and D, and Dg, and immediately
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decompose the head symbols in the unification pairs. Thereby we obtain
the following four clauses consisting of exactly one unification constraint.

Ci:lp=xrx.x]¥ C:[p=irxr.—x]F C:[p=nrx.L]"
Cy:lp=rx.TIF

Whereas none of these unification constraints is solvable taken alone
(even not by E-unification), it is possible in calculus &R to refute the
assumption that these unification constraints are simultaneously not solv-
able. Like in the previous example the idea of the following derivation is to
show that always one of these unification constraints must be solvable even
though one cannot specify which one. The proof presented here has been
automatically generated by the prototypical higher-order theorem prover
LEO (Benzmiiller and Kohlhase 1998b) (which implements calculus &R)
within 25 seconds on a Pentium II with 400MHz. Each line presented be-
low introduces a new clause (the line numbering thereby corresponds to the
clause numbering) by applying the specified calculus rules to previously
derived clauses. For instance, line 32 describes that clause Cs, is derived
from clauses C;7 and Cj¢ by resolution with rule Res and immediate elim-
ination of trivial unification constraints with rule Triv. In the proof below
s', ..., s are new Skolem constants of Boolean type introduced by the
functional extensionality rule Func at the very beginning of the refutation.

5: Func(Cy) Cs:[(psdH=TIF
6: Func(C3) Co:[(ps?) =11F
7:  Func(Cy) er:l(psh =(=sHF
8:  Func(C)) Cy:l(psh=sHF
10:  Equiv+Cnf(Cs) Cio : [(p sHIF
13 Equiv+Cnf(Cg) Ci3:l(psHT
16: Equiv+Cnf(C7) Cre : Is*17 v [(p sH1F
17: Equiv+Cnf(C7) Cr7: [(psH1T vishF
20 Equiv+Cnf(Cg) Coo : [(psHIF v [s11F
21: Equiv+Cnf(Cg) Gy s v p sHIT
32:  Res+Triv(Ci7; Cpg) e l(psHT vip shiF
36:  Res(Ca: Cr7) C36: s Vs v I(psh) = (pshIF
42:  Dec(C3q) Cap : [s1F v s v [s! = s4F

56 Equiv+Cnf(C4p) Csq : [s11F v [sF
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76:  Res(C3; Cpp) Cr6: s 1T v I(p sHT v I(psh) = (psHIF
85:  Dec(Cyp) Cs : [(psHIT v [T v [s* = s1)F
134:  Equiv+Cnf(Cgs) Ci3a: [(psNT vishT v shT
141:  Res+Triv(Cse; C16) Crag : [(p sNF v IshF

144 :  Res+Triv(Csg; Ca1) Craa : [(p sHIT v [sF

163:  Res+Triv(Ciay; Cop) Ciez : [(p sHIT v I(p sHIF

211:  Res(Cie3; C13) Con : LpsHIT vIp shH = (psHIF
237:  Dec(Ca11) Co37: [(psH1T v s* =s21F

250:  Res+Triv(Ci34: Cig) Cosp : [sM1T v s11T

255:  Res+Triv(Cq34; C17) Coss : [s11T v [(p stT

387:  Res+Triv(Css; Co0) C3g7: [(psHIT vI(p shHIF

458:  Res(C3g7: Cip) Cass : [(psHIF v I(pshH = (psHF
459:  Res(Csg7: C13) Caso : [(psHIT VIpsh = (psHIF
492:  Dec(Cys8) Cagn : [(p sHIF v [s* = s3F

493:  Dec(Cys9) Cy03 : [(p sHIT Vv [s! =217

519:  Equiv+Cnf(C493) Cs19: [(psH1T v s v [s9)F
523 Equiv+Cnf(Cy492) Cso3 : [(p sOIF v IsY1F v I3 F
558 :  Res+Triv(Cs1g: Cia1) Css5 : [s21F v [s11F

592:  Res+Triv(Css8; Cop) Cs97 : [(p sHIT v [s21F

610 : Res+Triv(Css8; Ca50) C610 : sh7 v s

664:  Res(Csgp; Cpo) Copa : 15217 vV I(psh = (psHF
706:  Dec(Cgpa) Cr06 : [s21F v [s! = $31F

783:  Res+Triv(Cs;3: Claa) Crg3 : [$31F v [s11F

820 : Res+Triv(C783; Cg10) Cgoo : [s21F v [s31F

824 :  Res+Triv(C7g3; C6) Cga : [(p sHIF v IsF

912:  Res(Cg; C13) Corz : Y1 vV I(p sh = (ps1IF
952:  Dec(Cy1p) Cosy : [$31F v [s* = s21F

1078 :  Equiv+Cnf(Cysy) Cro7s : 217 v IshT v s31F

1144 :  Res+Triv(Cro78; C783)  Ciyga s [s217 v [s31F
1218 :  Res+Triv(Cya4: C320)  Crais : [s71F

1302 Equiv+Cnf(C7gg) Ci302 : 317 v s T v [s21F
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1363 :  Res+Triv(C1302; Cs58) Cr363 : [s317 v [s21F
1377 Res+Triv(Ci363;: Cia18)  Ci377 : [s21F

1454 . Equiv+Cnf(Cp37) Cigs4 : [(p sT v s v sHT
1502:  Res+Triv(Ciasa: Cras)  Ciso2: 217 v I(psHIT
15210 Res+Triv(Cisoo; C1377)  Cisor: [(psHIT

1560 :  Res(Cys521: Cio) Ciseo : [(p 1) = (p sHF
1565 :  Res+Triv(Cis21; Cap) Cises : [s11F

1576 :  Dec(C1s60) Ci576 : [s! = s31F

1643 1 Equiv+Cnf(C576) Creas : [s317 v sT
1646 :  Res+Triv(Ciea3; C1218)  Cieae : [s117

1655: Res+Triv(Cig46; C1565) Ciess5 : I

4.5. Additional Examples and Case Studies

Benzmiiller (1999a) discusses several additional examples that require full
extensionality reasoning — such as the following example on sets:

» 1) = {0}

It furthermore reports on case studies with the higher-order theorem prover
LEO (Benzmiiller and Kohlhase 1998) that demonstrate the feasibility of
calculus &R in practice.

5. RELATED WORK

Related to calculus CR is the higher-order resolution approach of Jensen
and Pietrzykowski (1972, 1976) which also employs a higher-order uni-
fication algorithm in order to guide the proof search. The undecidability
problem of higher-order unification is thereby tackled by dove-tailing the
generation of resolvents. Like CR this approach requires the extensionality
axioms in the search space to ensure Henkin completeness.

Kohlhase (1994) presents a sorted variant of Huet’s constrained resolu-
tion approach. Kohlhase (1995) discusses a higher-order tableaux calculus
that is quite closely related to calculus &R, as it already introduces addi-
tional calculus rules in order to improve its extensionality treatment. As
is illustrated in detail in Benzmiiller (1999a) the presented extensionality
rules are unfortunately not sufficient to completely avoid additional exten-
sionality axioms. The first sufficient set of extensionality rules in this sense
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is presented in Benzmiiller (1997), which introduces a variant of calculus
&R as presented here.

The theorem proving modulo approach described in Dowek et al. (1998)
is a way to remove computational arguments from proofs by reasoning
modulo a congruence on propositions that is handled via rewrite rules and
equations. In their paper the authors present a higher-order logic as a theory
modulo.

Equality is usually treated as a defined notion in approaches and
systems for automated higher-order theorem proving. This is probably
the main reason why the problem of mechanising primitive equality in
higher-order logic while preserving Henkin completeness has rarely been
addressed in literature so far. Approaches to integrate primitive equality in
a Henkin complete higher-order theorem proving approach are discussed
in Snyder and Lynch (1991), Benzmiiller (1999a, b). Of course, the field
of higher-order term rewriting and narrowing (Prehofer 1998; Nipkow and
Prehofer 1998; Nipkow 1995) is very active. But calculi developed in this
context typically only address functional extensionality and do not focus
on the subtle interplay between functional and Boolean extensionality that
is required in a Henkin complete theorem proving approach.

The most powerful automated higher-order theorem prover currently
available is (to the best knowledge of the author) the TPS-system (Andrews
1996) which employs the mating method (Andrews 1976) as inference
mechanism. TPS employs a clever extensionality pre-processing mechan-
ism which transforms embedded equations in input formulas into more
appropriate ones in order to avoid later applications of the extensionality
axioms. However, this does not provide a general solution and many theor-
ems requiring non-trivial extensionality reasoning, such as Examples 3.4
and 4.4, cannot be proven this way.

6. CONCLUSION

In this paper we investigated four approaches to resolution based higher-
order theorem proving: Andrews’ higher-order resolution approach R,
Huet’s constrained resolution approach CR, higher-order E-resolution
CRE, and extensional higher-order resolution &R. Thereby we focused
on the extensionality treatment of these approaches and pointed to the
crucial role of full extensionality for ensuring Henkin completeness. The
investigated examples demonstrate that simply adding (infinitely many)
extensionality axioms to the search space — as suggested for R and CR
— increases the amount of blind search and is thus rather infeasible in
practice.
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Whereas higher-order E-unification and E-resolution indeed improves
the situation in particular contexts, it does still not provide a general
solution.

Calculus &R is the sole studied approach that can completely avoid
the extensionality axioms. It’s extensionality treatment is based on goal
directed extensionality rules which closely connect the overall refutation
search with unification by allowing for mutual recursive calls. This suitably
extends the higher-order E-unification and E-resolution idea, as it turns
the unification mechanism into a most general, dynamic theory unifica-
tion mechanism. Unification may now itself employ a Henkin complete
higher-order theorem prover as a subordinated reasoning system and the
considered theory (which is defined by the sum of all clauses in the actual
search space) dynamically changes. Due to the close connection of unific-
ation and refutation search it is even possible in &R to realise a kind of
non-constructive reasoning on E-unifiability, as was demonstrated in this

paper.
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NOTES

1. Conjunction elimination is provided by the rules v lF and v f . We note that conjunction
is defined with the help of disjunction and negation; cf. Section 2.1.

2. Existential elimination is realised by the rule 1. For this note that existential
quantification is defined with the help of universal quantification (and universal
quantification with the help of IT); cf. Section 2.1.

3. Itis still an open problem whether it is possible to restrict the required instances of the
functional extensionality axioms in dependence of a given proof problem.

4. One may choose a bound on the allowed number of nested branchings in the search
tree with rule FlexRigid.

5. Since D, contains two elements, D, , contains in each Henkin model at most four
elements. And because of the requirement, that the function domains in Henkin models
must be rich enough such that every term has a denotation, it follows that D, ,
contains exactly the pairwise distinct denotations of the four presented function terms.
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Abstract. This paper presents two approaches to primitive equality
treatment in higher-order (HO) automated theorem proving: a calculus
EP adapting traditional first-order (FO) paramodulation [RW69] , and
a calculus ERUE adapting FO RUE-Resolution [Dig79] to classical type
theory, i.e., HO logic based on Church’s simply typed A-calculus. EP and
ERUE extend the extensional HO resolution approach ER [BK98al. In
order to reach Henkin completeness without the need for additional ex-
tensionality axioms both calculi employ new, positive extensionality rules
analogously to the respective negative ones provided by ER that operate
on unification constraints. As the extensionality rules have an intrinsic
and unavoidable difference-reducing character the HO paramodulation
approach loses its pure term-rewriting character. On the other hand ex-
amples demonstrate that the extensionality rules harmonise quite well
with the difference-reducing HO RUE-resolution idea.

1 Introduction

Higher-Order (HO) Theorem Proving based on the resolution method has been
first examined by Andrews [And71] and Huet [Hue72]. Whereas the former avoids
unification the latter generally delays the computation of unifiers and instead
adds unification constraints to the clauses in order to tackle the undecidability
problem of HO unification. More recent papers concentrate on the adaption of
sorts [Koh94] or theory unification [Wol93] to HO logic. Common to all these
approaches is that they do not sufficiently solve the extensionality problem in
HO automated theorem proving, i.e., all these approaches require the exten-
sionality axioms to be added into the search space in order to reach Henkin
completeness (which is the most general notion of semantics that allows com-
plete calculi [Hen50]). This leads to a search space explosion that is awkward
to manage in practice. A solution to the problem is provided by the extensional
HO resolution calculus ER [BK98a]. This approach avoids the extensionality ax-
ioms and instead extends the syntactical (pre-)unification process by additional
extensionality rules. These new rules allow for recursive calls during the (pre-)
unification process to the overall refutation search whenever pure syntactical
HO unification is too weak to show that two terms can be equalised modulo the
extensionality principles. ER has been implemented in LEO [BK98b| and case
studies have demonstrated its suitability, especially for reasoning about sets.
There are many possibilities to improve the extensional HO resolution ap-
proach and the probably most promising one concerns the treatment of equal-
ity. ER assumes that equality is defined by the Leibniz principle (two things

H. Ganzinger (Ed.): CADE-16, LNAI 1632, pp. 399—413, 1999.
© Springer-Verlag Berlin Heidelberg 1999
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are equal iff they have the same properties) or by any other valid definition
principle, and thus provides no support for primitive equality. But a primitive
equality treatment seems to be more appropriate as it avoids the many flexi-
ble literals introduced when using defined equality, which unfortunately increase
the amount of blind search with ER’s primitive substitution rule Prim. There-
fore we adapt two well known first-order (FO) approaches to primitive equality:
the paramodulation approach [RW69] (the basis of many successful refinements
such as the superposition approach) and the RUE-resolution approach [Dig79]
(a generalisation of E-resolution [Dar68]). The main goal thereby is to preserve
Henkin completeness. We will show that therefore positive extensionality rules
are needed (which operate on positive equation literals) as in contrast to FO
logic single positive equations can be contradictory by themselves in HO logic.?

This paper summarises the Chapt. 6, 7, and 8 of [Ben99] and because of lack
of space the preliminaries and the formal proofs can only be sketched here.

The preliminaries are concisely presented in Sect. 2 and calculus ER is re-
viewed in 3. Section 4 discusses interesting aspects on primitive and defined equa-
lity, before the extensional HO paramodulation calculus EP and the extensional
HO RUE-resolution approach ERUE are discussed in 5 and 6. Both approaches
are briefly compared by examples in 7 and the conclusion is presented in 8.

2 Higher-Order (HO) Logic

We consider a HO logic based on Church’s simply typed A-calculus [Chu40] and
choose BT :={i,0} as base types, where ¢ denotes the set of individuals and
o the set of truth values. Functional types are inductively defined over BT. A
signature X (X=) contains for each type an infinite set of variables and con-
stants and provides the logical connectives —o—o, Vo—o—o, and I (q—0)—0 (ad-
ditionally =* = =, _.,_,) for every type a. The set of all Y-terms (closed
XY-terms) of type « is denoted by wff,, (cwff, ). Variables are printed as upper-
case (e.g. X, ), constants as lower-case letters (e.g. c¢,) and arbitrary terms
appear as bold capital letters (e.g. T,). If the type of a symbol is uniquely
determined by the given context we omit it. We abbreviate function applica-
tions by ha,—...—a,—g UL, which stands for (- - - (ha,—...—a,—p Ug,) - - UL ).
For a-, 3-, n-, Bn-conversion and the definition of Gn- and head-normal form
(hnf) for a term T we refer to [Bar84] as well as for the definition of free vari-
ables, closed formulas, and substitutions. Unification and sets of partial bind-
ings ABQ are well explained in [SG89]. An example for a pre-clause, i.e., not
in proper clause normal form, consisting of a positive literal, a negative lit-
eral, and a special negative equation literal (also called unification constraint)
is C: [=(P—o T)]T V [h5—, W]F VI[Q.—. a, =Y,_, b]F. The corresponding
proper clause, i.e., properly normalised, is C' : [P T]F VR Y"F V[Q a =Y b]F.
The unification constraint in C and C’ is called a flez-flex pair as both unification
terms have flexible heads. A clause is called empty, denoted by [, if it consists

! Consider, e.g. the positive literal [a, = —ao]’ or [G X = f]* (resulting from the
following formulation of Cantor’s theorem: —=3G,—,,~o. VP,—0. 3X,. G X = P).
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only of flez-flex unification constraints. A clause C; generalises a clause Cs, iff
there is a substitution o, such that the fn-normal form of ¢(C;) is an a-variant
of the fn-normal form of Cs.

A calculus R provides a set of rules {r,| 0 < n < i} defined on clauses. We
write @ ™ C (C' F™ C) iff clause C is the result of an one step application of rule
rn € R to premise clauses C; € @ (to C’ respectively). Multiple step derivations
in calculus R are abbreviated by @1 Fr @y, (or C; Fr Ck).

A standard model for HOL provides a fixed set D, of individuals, and a set
D, :={T, L} of truth values. The domains for functional types are defined in-
ductively: D,_.g is the set of all functions f:D, — Dg. Henkin models only
require that D,_.3 has enough members that any well-formed formula can be
evaluated. Thus, the generalisation to Henkin models restricts the set of valid
formulae sufficiently, such that complete calculi are possible. In Henkin and
standard semantics Leibniz equality (=% = AXa. \Ya. VParoo PX = PY) de-
notes the intuitive equality relation and the functional extensionality principles
(VMa—p. VNo—p. (VX. (MX) = (NX)) & (M = N)) as well as the Boolean exten-
sionality principle (VP.. VQo. (P = Q) & (P < Q)) are valid (see [Ben99,BK97]).
Satisfiability and validity (M = F or M |= @) of a formula F or set of formulas
@ in a model M is defined as usual.

The completeness proofs employ the abstract consistency method of [BK97|&
[Ben99] which extends Andrews’ HO adaptation [And71] of Smullyan’s approach
[Smu63] to Henkin semantics. Here we only mention the two main aspects:

Definition 1 (Acc for Henkin Models). Let X' be a signature and I5; a class
of sets of X-sentences. If the following conditions (all but V¥ ) hold for all A, B €
cwff,, F, G € cuff, .3, and @ € Iz, then we call I:: an abstract consistency

class for Henkin models with primitive equality, abbreviated by Acc™
(resp. abstract consistency class for Henkin models, abbreviated by Acc).

Saturated  PU{A} e Is or PU{-A} € 5.

Ve  If A is atomic, then A ¢ & or -A ¢ .

V. If-——Ae€®, then®dU{A} € .

Vi  If A € & and B is the fn-normal form of A, then ® U{B} € I5..

VW IfAVBe®, thenPU{A} € I or PU{B} € .

Vn If~(AVB) e, then®U{-A,~B} € 3.

Y% IfII°F € &, then @U{F W} € I for each W € cuwff,,.

Vs  If-II°F € &, then U {~(F w)} € Iy for any new constant w € Y.

V% If-(A="B)e®, then®U{A,-B} €Iy or®U{-A B} € I3.

V, If-(F="""G)ed, then dU{~(F w =" G w)} € I& for any new constant
wE Mg

Vo, =(Aa=A)¢®. V° IfF[A], € and A =B € &, then ® U{F[B|,} € I.”

Theorem 1 (Henkin Model Existence). Let ® be a set of closed X-formulas
(X=-formulas), I3 (Is=) be an Acc (Acc=) and @ € I3;. There exists a Henkin
model M, such that M |= .
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CvAvB]" = CV[AVBJ’

CVI[AVB]”
cvA'vEe]” '  cv[A]”

Ccv [B]*

F

Vi F

\Z

cvI[-A]" , CV [-A]F . CvV [IT"A]" X, new variable
cviAlY cvia]T cviA x]|T
CV [IT"A]" sk, is a Skolem term for this clause
CV[A sk, )7

HT

HF

Fig. 1. Clause Normalisation Calculus CNF
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Fig. 2. Extensional HO Resolution Calculus ER
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3 ER: Extensional HO Resolution

Figure 1 presents calculus CNF := {Vv7T, \/f, vE ST SEF T ITE) for clause nor-
malisation. These rules are defined on (pre-)clauses and are known to preserve
validity or satisfiability with respect to standard semantics.?

The syntactical unification rules (cf. Fig. 2) provided by ER which operate on
unification constraints are UNZ := { Func, Dec, Triv, Subst, FlexRigid}. These
rules realise a sound and complete approach to HO pre-unification. Note the
double role of extensionality rule Func: on the one hand this rule works as a
syntactical unification rule and subsumes the a- and 7n-rule as, e.g. presented
in [BK98al; on the other hand Func applies the functional extensionality prin-
ciple if none of the two terms is a A-abstraction. Apart from rule Func, ER
provides the extensionality rules Equiv and Leib (cf. Fig. 2). The former applies
the Boolean extensionality principle and the latter simply replaces a negative
unification constraint (encoded as a negative equation) by a negative Leibniz
equation. The extensionality rules operate on unification constraints only and
do in contrast to the respective axioms not introduce flexible heads into the
search space.

The main proof search is performed by the resolution rule Res and the fac-
torisation rule Fac. It is furthermore well known for HO resolution, that the
primitive substitution rule Prim is needed to ensure Henkin completeness.

For the calculi presented in this paper we assume that the result of each rule
application is transformed into hnf*, where the hnf of unification constraints is
defined special and requires both unification terms to be reduced to hnf. A set
of formulas @ is refutable in calculus R, iff there is a derivation A : &, Fgr [,
where @, := {[F/]T|F’ hnf of F € &} is the clause-set obtained from & by simple
pre-clausification. More details on ER are provided by [BK98a,Ben99].

Whereas completeness of ER has already been analysed in [BK98a] this paper
(and [Ben99]) presents an alternative completeness proof for a slightly extended
version of ER (this version, e.g. employs the instantiation guessing FlexFlex-
rule). The new proof is motivated as follows: (i) it eases the proof of the lifting
lemma and avoids the quite complicated notion of clause isomorphisms as used
in [BK98a,Koh94], (ii) it can be reused to show the completeness for calculi EP
and ERUE as well, (iii) it prepares the analysis of non-normal form resolution
calculi, and (iv) it emphasises interesting aspects on rule FlezFlez, unification,
and clause normalisation wrt. ER, EP, and ERUE.

One such interesting aspect is that different to Huet [Hue72] eager unification
is essential within our approach. This is illustrated by the argumentations for Vj,
and V, in the completeness proofs (cf. [Ben99,BK98a]) as well as the examples
presented in Sec. 7 or [Ben99]. However, we claim that rule FlezFlex can still be
delayed until the end of a refutation, i.e., FlexFlex can be completely avoided.

The author has not been able to prove the latter claim yet. And thus the
completeness proofs for ER (and EP, ERUE) still depends on the FlexFles-rule.

2 A does not contain free variables.
? For Skolemisation we employ Miller’s sound HO correction [Mil83].
4 One may also Sn-normal form here.
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We now sketch the main results on ER as discussed in detail in [Ben99].

Definition 2 (Extensional HO Resolution). We define three calculi:

ER = {Cnf, Res, Fac, Prim} UUNT U {FEquiv, Leib} employs all rules
(except FlexFlex) displayed in Fig. 2.

ERy = ERU{FlexFlex} uses full HO unification instead of pre-unification.

ERy. = (ER\{Cnf}) UCNF employs unfolded and stepwise clause normali-
sation instead of exhaustive normalisations with rule Cnf.

These calculi treat equality as a defined notion only (e.g. by Leibniz equality) and

primitive equations are not allowed in problem formulations. Although unification

constraints are encoded as negative equation literals, no rule but the unification

rules are allowed to operate on them.

Theorem 2 (Soundness). The calculi ER, ERy, and ERy. are Henkin-sound
(H-sound).

Proof. Preservation of validity or satisfiability with respect to Henkin semantics
is proven analogously to the standard FO argumentation. For Skolemisation
(employed in rule IT¥ and Func) we use Miller’s sound HO version [Mil83].
Soundness of the extensionality rules Equiv, Func, and Leib is obvious as they
simply apply the valid extensionality principles.

Lemma 1 (Lifting of ERy). Let @ be clause set, D1 a clause, and o a substi-
tution. If o(®) Fer,. D1, then @ Fer, Dy for a clause Dy generalising D .

Proof. One can easily show that each instantiated derivation can be reused on
the uninstantiated level as well. In blocking situations caused by free variables
at literal head position or at unification term head position, either rule Prim or
rule FlexFlex can be employed in connection with rule Subst to introduce the
missing term structure. The rather unintuitive clause isomorphisms of [BK98a]
or [Koh94| are thereby avoided.

Theorem 3 (Completeness). Calculus ERy. is Henkin complete.

Proof. Analogously to the proof in [BK98a] we show that the set of closed for-
mulas that are not refutable in ERy. (i.e., I5 :={® C cwff,|Pu Fer, O}) is a
saturated abstract consistency class for Henkin models (cf. Def. 1). This entails
Henkin completeness for ERy. by Thm. 1.

Lemma 2 (Theorem Equivalence). The calculi ERy. and ERy are theorem
equivalent, i.e., for each clause set @ holds that @ er,, U iff D Feg, L.

Proof. We can even prove a more general property: For each proper clause C
holds @ Fgr, C implies @ gr, C. The proof idea is to show that the unfolded
clause normalisations can be grouped together and then replaced by rule Cnf.

Question 1 (Theorem Equivalence). The author claims that the calculi ER and
ER. (or ERy) are theorem equivalent. A formal proof has not been carried
out yet. Some evidence is given by the case studies carried out with the LEO-
prover [BK98b] and the direct completeness proof for ER in [BK98a].
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4 Primitive Equality

Treating equality as a defined notion in HO logic (e.g. by the Leibniz principle)
is convenient in theory, but often inefficient and unintuitive in practical appli-
cations as many free literal heads are introduced into the search space, which
increases the degree of blind search with primitive substitution rule Prim.> This
is the main motivation for the two approaches to primitive equality presented in
the next sections. Before we discuss these approaches in detail we point to the
following interesting aspects of defined equality in HO logic:

— There are infinitely many different valid definitions of equality in HO logic.®
For instance: Leibniz equality (=% = AXa. A\Ya. VPa—o. PX = PY), Reflex-
ivity definition” (2% :=AXa. AYar VQa—a—or (VZar (Q Z Z)) = (Q X Y)),
and infinitely many artificial modifications to all valid definitions (e.g., =
‘= AXaw AWao VPaon (a0 V = a0) AP X) = ((bo V = bo) A P Y)). The latter
definition is obviously equivalent to Leibniz definition as it just adds some
tautologies to the embedded formulas.

— The artificially modified definitions demonstrate, that it is generally not
decidable whether a formula is a valid definition of equality (as the set of
tautologies is not decidable). Hence, it is not decidable whether an input
problem to one of our proof procedures contains a valid definition of equality,
and we cannot simply replace all valid definitions embedded in a problem
formulation by primitive equations as one might wish to.

If we are interested in Henkin completeness, we therefore have to ensure that the
paramodulation and RUE-resolution approaches presented in the next sections
can handle all forms of defined equality (like the underlying calculus ER) and
can additionally handle primitive equality.®

5 EP: Extensional HO Paramodulation

In this section we adapt the well known FO paramodulation approach [RW69]
to our HO setting and examine Henkin completeness. A straightforward adap-
tation of the traditional FO paramodulation rule is given by rule Para in Fig. 3.
Analogous to the ER rules Res and Fac, (pre-)unification is delayed by encoding
the respective unification problem (its solvability justifies the rewriting step) as

® This is illustrated by the examples that employ defined equality in [BK98a] and the
examples that employ primitive equality in Sect. 7.

6 For this statement we assume Henkin or standard semantics as underlying seman-
tical notion. In weaker semantics things get even more complicated as, e.g., Leibniz
equality does not necessary denote the intended equality relation. For a detailed
discussion see [Ben99,BK97].

" As presented in Andrews textbook [And86], p. 155.

8 The author admits, that in practice one is mainly interested in finding proofs rather
than in the theoretical notion of Henkin completeness. Anyhow, our motivation in
this paper is to clarify the theoretical properties of our approaches.
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[A[T,]]*VC [L,=R,]"VD [A]*VC [L,=R,]"VD )
AR[*VOVDV[T=LF " [p_ RvVCVDVA=PLF ¥

We implicitly assume the symmetric application of [L, = R,]%.
T (in Para) does not contain free variables which are bound outside of T.

Fig. 3. Adapted Paramodulation Rule and a HO specific reformulation

a unification constraint. Rule Para’ is an elegant HO specific reformulation® of
paramodulation that has a very simple motivation: It describes the resolution
step with the clause [P L]¥ v [P R]T V D, i.e., the clause obtained when re-
placing the primitive equation [L = R]” by its Leibniz definition. Note that the
paramodulant of Para’ encodes all possible single rewrite steps, all simultane-
ous rewrite-steps with rule Para, and in some sense even the left premise clause
itself. This is nicely illustrated by the following example: C1 : [p (f (f a))]* and
Co:[f = h]T, where p, .o, fi—., h,—, are constants. Applying rule Para’ to C;
and C, from left to right leads to C3 : [P,—,)—, hTVIp (f (fa) = Py f1x.
Eager unification computes the following four solutions for P, which can be back-
propagated to literal [P h]T with rule Subst:

[AZ,—,.p (f (f a))/P] the pure imitation solution encodes C; itself.
(AZ,_..p (Z (f a))/P] encodes the rewriting of the first f ([p (b (f a))]?).
(AZ,_..p (f (Z a))/P] encodes the rewriting of the second f ([p (f (h a))]%).
[AZ, ... p (Z (Z a))/P] encodes the simult. rewr. of both f ([p (h (h a))]T).

Rule Para’ introduces flexible literal heads into the search space such that rule
Prim becomes applicable. Thus, a probably suitable heuristics in practice is to
avoid all primitive substitution steps on flexible heads generated by rule Para’.

Note that reflexivity resolution'® and paramodulation into unification con-
straints'! are derivable in our approach and can thus be avoided.

9 This rule was first suggested by Michael Kohlhase.

10 In FO a reflexivity resolution rule is needed to refute negative equation literals
[T = Tg]F if Ty and T2 are unifiable. As such literals are automatically treated as
unification constraints reflexivity resolution is not needed in our approach.

Y Let Cy : C VIA[T] = B]¥ and C» : [L = R]? Vv D. The rewriting step Para(C1,Cs) :
Cs : CVDVI[A[R] = B]f v [L = T]" can be replaced by derivation Leib(C1) :
Ca:[p AT)|F VC, Cs:[pB]F vC; Para(Cs,C) : Cs: [p A[R]]"VCVDVI[L =
T]"; Res(Cs,Cs5), Fac, Triv : Cr : CVDV[p A[R] = p B)¥ V[L = T]¥; Dec(Cr) : Cs.
Notational remark: Res(Cs,Cs), Fac, Triv describes the application of rule Res to
Cs and Cs, followed by applications of Fac and Triv to the subsequent results.
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In the following discussion we will use the traditional paramodulation rule
Para only.'? As Para’ is obviously more general than Para we obtain analogous
completeness results if we employ Para’ instead.

Definition 3 (Simple HO Paramodulation). &P, 4ive == ER U {Para} ez-
tends the extensional HO resolution approach by rule Para. Primitive equations
in input problems are no longer expanded by Leibniz definition. Para operates on
proper clause only and omits paramodulation into unification constraints.

Whereas soundness of rule Para can be shown analogously to the FO case,
it turns out that our simple HO paramodulation approach is incomplete:

Theorem 4 (Incompleteness). Calculus EPyqive is Henkin incomplete.

Proof. Consider the following counterexamples: EY?7: -3X,. (X = -X), i.e.,
the negation operator is fix-point free, which is obviously the case in Henkin
semantics. Negation and clause normalisation leads to clause C; : [a = —a]T,
where a, is a new Skolem constant. The only rule that is applicable is self-
paramodulation at positions (1), (2), and (), leading to the following clauses

(including the symmetric rewrite steps):

Para(Cy,Cy) at (1) :Ca: [a=—a]T V[-a=all', C3: [~a=—a]lV|a=adF
Para(Cy,C1) at (2): Cy: [a=—a]T V]a=—dl, C5: [a=a]lV[~a=—a]f
Para(Cy,C1) at () : Co: [a]T V][~a= (a=—a)|",Cr: [a]F V][a=(a=—a)f
A case distinction on the possible denotations {T, 1} for a shows that all clauses
are tautologous, such that no refutation is possible in EP, 4ive. Additional ex-
amples are discussed in [Ben99], e.g. EL97%: [G X = p|T, which stems from a

simple version of cantor’s theorem —3G, ., .,.VP, ., dX,. G X = P, or example
ELe: [M = AX,. 1|7, which stems from 3IM, . M # ().

The problem is that in HO logic even single positive equation literals can be
contradictory. And the incompleteness is caused as the extensionality principles
are now also needed to refute such positive equation literals.'® Hence, we add
the positive counterparts Func’ and FEquiv’ (cf. Fig. 4) to the already present
negative extensionality rules Func and Equiv. The completeness proof and the
examples show that a positive counterpart for rule Leib can be avoided.

Definition 4 (Extensional HO Paramodulation). Analogously to the ex-

tensional HO resolution case we define the calculi EP := ER U {Para, Equiv’,
Func'}, EPy = EPU{FlexFlex}, and EPy. == (EP\{Cnf}) U CNF.

Theorem 5 (Soundness). The calculi EP, EPf, and EPy. are H-sound.

12 Tt has been pointed out by a unknown referee of this paper that rule Para’ already
captures full functional extensionality and should therefore be preferred over Para.
Example EJ“" discussed in Sec. 10.6 of [Ben99] illustrates that this is generally not
true.

13 In contrast to EP, the underlying calculus ER does not allow positive equation liter-
als as the equality symbol is only used to encode unification constraints. Therefore
the pure extensional HO resolution approach ER does not require a positive exten-
sionality treatment.
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CvVv M, =N,]" CV[M,—s =N,_5/7 X new variable

7 Dquiv’ T Fund'
C VM, & Ny CVIM X, =N X,

Fig. 4. Positive Extensionality Rules

Proof. Soundness of rule Para with respect to Henkin semantics can be proven
analogously to the FO case and soundness of Fquiv’ and Func’ is obvious, as they
simply apply the extensionality principles, which are valid in Henkin semantics.

Lemma 3 (Lifting of EPy). Let @ be a clause set, D1 a clause, and o a sub-
stitution. If o(®) Fer,, D1, then @ t-gp, Do for a clause Do generalising D;.

Proof. Analogous to Lemma 1. The additional rules do not cause any problems.

The main completeness theorem 6 for P below is proven analogously to
Thm. 3, i.e., we employ the model existence theorem for Henkin models with
primitive equality (cf. Thm. 1). As primitive equality is involved, we additionally
have to ensure the abstract consistency properties V" and V7 (cf. Def. 1), i.e.,
the reflexivity and substitutivity property of primitive equality. Whereas the
reflexivity property is trivially met, we employ the following admissible'* — and
moreover even weakly derivable (i.e., modulo clause normalisation and lifting)
— paramodulation rule to verify the substitutivity property.

Definition 5 (Generalised Paramodulation). The generalised paramodula-
tion rule GPara is defined as follows:

[T[Ag]]*VC [Ag=Bg]"
[T[B]]*VC

GPara

This rule extends Para as it can be applied to non-proper clauses and it restricts
Para as it can only be applied in special clause contexts, e.g. the second clause
has to be a unit clause. GPara is especially designed to verify the substitutivity
property of primitive equality V.° in the main completeness theorem 6.

Weak derivability (which obviously implies admissibility) of GPara is shown
with the help of the following weakly derivable generalised resolution rules.

Definition 6 (Generalised Resolution). The generalised resolution rules
GRes1, GRess, and GRess are defined as follows (for all rules we assume

a, B € {T, F} with a # 3, and for GResy we assume that Y™ ¢ free(A)):

4 Rule r is called admissible (derivable) in R, iff adding rule r to calculus R does not
increase the set of refutable formulas (iff each application of rule r can be replaced
by an alternative derivation in calculus R).
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A= ., T*vC [A~_, X"’V D A, Y"*v(C [X,T")?vVvD
[A5 5] [A5 7] GRes: [A, Yn] [ Xy Tn] CRess
€V D)z (C'V D) a,x 77 /7

[A, T]*VC [X,Y"]°VD

(Cv D)[A/X,T_”/W]

G Ress

These rules extend Res as they can be applied to non-proper clauses, and they
restrict Res as they are only defined for special clause contexts. The rules are
designed just strong enough to prove weak derivability of GPara.

Lemma 4 (Weak Derivability of GResy 23). Let C1,Ca,Cs be clauses and
r € {GRes1,GResa, GRess}. If {C1,Ca} F" C3 Fone Cy for a proper clause Cy,
then {C1,Ca} Fep, Cs for a clause Cs which generalises Cy.

Proof. The proof is by induction on the number of logical connectives in the
resolution literals. It employs generalised (and weakly derivable) versions of the
factorisation rule Fac and primitive substitution rule Prim (see [Ben99]), which
are not presented here because lack of space. GResy and G Ress are needed to
prove weak derivability for GRes;. As the rules Para, Equiv’, Func’ are not
employed in the proof, this lemma analogously holds for calculus ERy..

Lemma 5 (Weak Derivability of GPara). LetCy : [T[A],]*VD1,Ce: [A =
B|7,C5 : [T[B],]*V Dy be clauses. If A : {Cy,Ca} FEP C3 t=anr Cy for a proper
clause Cy, then {C1,Ca} Fep, Cs for a clause Cs generalising Cy.

Proof. The proof is by induction on the length of A and employs the (weakly
derivable) generalised resolution rule GRes; and the standard paramodulation
rule Para in the quite complicated base case.

Theorem 6 (Completeness). Calculus EPy. is Henkin complete.

Proof. Let Is; be the set of closed Y-formulas that cannot be refuted with cal-
culus EPy. (i.e., I := {@ C cwff,|Pe Fep, O}). We show that Iy is a saturated
abstract consistency class for Henkin models with primitive equality (cf. Def. 1).
This entails completeness by the model existence theorem for Henkin models
with primitive equality (cf. Thm. 1).

First we have to verify that I3, validates the abstract consistency properties
Ve, Vo, Vg, W, Vi, W, V5, Vi, V, and that Iy is saturated. In all of these cases
the proofs are identical to the corresponding argumentations in Thm. 3.

Thus, all we need to ensure is the validity of the additional abstract consis-
tency properties V" and V. for primitive equality:

(V") We have that [A =~ A]F 17 [ and thus =(A = A) cannot be in .

(V#) Analogously to the cases in Sec. 3 we show the contrapositive of the asser-
tion, and thus we assume that there is derivation A : &,U{[F[B]]*} Fep, 0. Now
consider the following EPj.-derivation: A’ : &, U {[F[A]]T, [A = B]T} pGPara
P, U{[F[A]]T,[A = B]", [F[B]]"} bgp, 0. By Lemma 5 GPara is weakly deriv-
able (hence admissible) for calculus P, such that there is a EPp-derivation
A" oy U{[FIA]]T,[A = B|"} kep, P U{[F[A]]", [A = B|", [F[B]]"} Fep, O
which completes the proof.
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Lemma 6 (Theorem Equivalence). EPy. and EPy are theorem equivalent.

Proof. Analogous to Lemma 2. The additional rules do not cause any problems.

Question 2 (Theorem Equivalence). The author claims that the calculi EP and
EPy. (or EPf) are theorem equivalent. The formal proof will most likely be anal-
ogous to the one for question 1.

6 ERUE: Extensional HO RUE-Resolution

In this section we will adapt the Resolution by Unification and Equality ap-
proach [Dig79] to our higher-order setting. The key idea is to allow the resolu-
tion and factorisation rules also to operate on unification constraints (which is
forbidden in ER and EP). This implements the main ideas of FO RUE-resolution
directly in our higher-order calculus. More precisely our approach allows to com-
pute partial E-unifiers with respect to a specified theory E by resolution on
unification constraints within the calculus itself (if we assume that E is specified
in form of an available set of unitary or even conditional equations in clause
form). This is due to the fact that the extensional higher-order resolution ap-
proach already realises a test calculus for general higher-order E-pre-unification
(or higher-order F-unification in case we also add the rule FlexFlex). Further-
more, each partial E-(pre-)unifier can be applied to a clause with rule Subst,
and, like in the traditional FO RUE-resolution approach, the non-solved unifica-
tion constraints are encoded as (still open) unification constraints, i.e., negative
equations, within the particular clauses.

Definition 7 (Extensional HO RUE-Resolution). We now allow the fac-
torisation rule Fac and resolution rule Res to operate also on unification con-
straints and define the calculi ERUE = ER U {Equiv’, Func'}, ERUE; = ERUE U
{FlexFlex}, and ERUE; = (ERUEN{Cnf}) UCNF.

Theorem 7 (Soundness). The calculi ERUEy., ERUEs, and ERUE are H-sound.

Proof. Unification constraints are encoded as negative literals, such that sound-
ness of the extended resolution and factorisation rules with respect to Henkin
semantics is obvious.

Lemma 7 (Lifting of ERUEL). Let @ be a clause set, D1 a clause, and o a
substitution. If o(P) Fery. D1, then @ I—g;m Do for a clause Do generalising Dy .

Proof. Analogous to Lemmata 1 and 3.

Within the main completeness proof we proceed analogously to previous sec-
tion and employ the generalised paramodulation rule GPara to verify the crucial
substitutivity property V.°. Thus, we need to show that GPara is admissible in
calculus ERUE,.. Note that in Lemma 5 we were even able to show a weak deriv-
ability property of rule GPara for calculus EPy.. Whereas GPara is not weakly
derivability for calculus ERUE:., we can still prove admissibility of this rule here.
As in Lemma 5, we employ the generalised resolution rules which are weakly
derivable in ERUE. as well.
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Lemma 8 (Weak Derivability of GResy 23). Let C1,Cs,Cs be clauses and
r € {GRes1, GResy, GRess}. If {C1,Ca} F" C3 Fone Cy for a proper clause Cy,
then {C1,Ca} Ferue. Cs for a clause Cs which generalises Cy.

Proof. Analogous to Lemma 4.

Lemma 9 (Admissibility of GPara). Let ¢ be a clause set, such that A :
pGPara g/ Ferue,. U, then there exists a refutation @ Ferug, U

Proof. The proof is (analogous to Lemma 5) by induction on the length of A
and employs the weakly derivable generalised resolution rule GRes;. The ap-
plications of rule Para in the proof of Lemma 5 are replaced by corresponding
derivations employing resolution and factorisation on unification constraints.
The latter causes the loss of the weak derivability property.

Theorem 8 (Completeness). Calculus ERUEy. is Henkin complete.

Proof. Analogously to Lemma 6 we show that the set of closed X-formulas which
cannot be refuted by the calculus ERUE. (i.e., I := {P C cwff,|Pu Verue, O}) is
a saturated abstract consistency class for Henkin models with primitive equality
(cf. Def. 1). This entails the assertion by Thm. 1.

The proof is analogous to Lemma 6. Even the abstract consistency properties
V] and V. are proven analogously by employing the generalised paramodulation
rule GPara, which is by Lemma 9 admissible in ERUE...

Lemma 10 (Theorem Equiv.). ERUE. and ERUEs are theorem equivalent.

Proof. Analogous to Lemma 2. The additional or modified rules do not cause
any problems.

Question 8 (Theorem Equivalence). The author claims that the calculi ERUE
and ERUE. (or ERUEs) are theorem equivalent. A formal proof will most likely
be analogous to questions 1 and 2.

7 Examples

The first (trivial FO) example illustrates the main ideas of EP and ERUE: a, €
m,—o ANa = b = b € m. Sets are encoded as characteristic functions and
€ = AXa, My_o. M X, such that the negated problem normalises to: C; : [m a]”,
Cy:[a=0", Cs:[mb]". An obvious term-rewriting refutation in EP: Para(Ci,Cz),
Triv : Cs : [mb)T; Res(Cs,Ca), Triv : 0.1° A difference-reducing refutation in ERUE:
Res(C1,C3) : Ca: [m a=m b¥; Dec(Cs), Triv:Cs : [a =b]"; Res(C2,Cs), Triv : O.
We now examine the examples mentioned in Thm. 4 in calculus EP: E&*™ .
[(G X.) = pi—o]’ (Cantor’s theorem) Func (EY**), Equiv' : Cy : [G X Y] Vv

5 Notation (as already used before): Res(Cs,Cs), Fac describes a paramodulation step
between Cs and Cs followed by factorisation of the resulting clause. Prim(Ci|C2)
denotes the parallel application of rule Prim to C; and Ck.
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[pY.]", Co: [G X YT Vv [p Y.]F; Prim(Ci|C2),Subst : C3 : [G' X YT v[pY]", Cs:
[G" X YIF VIp Y], Fac(C3|Cs),UNT: Cs : [p Y]*, Cs : [p Y]*; Res(Cs,Cs), UNT :
Cr: 0. Ef%@ and EL?"® can be proven analogously. The key idea is to employ
the positive extensionality rules first. As paramodulation rule is not employed,
these proofs are obviously also possible in ERUE.

Example E5' focuses on reasoning about sets: ({X| odd X A num X} =
{X| —ev X A num X}) = (2{X| odd XAX>100Anum X} __ 2{X| - ev XAX>100Anum X})’
where the powerset-operator is defined by ANq—o. AMa—o. VX0 M X = N X.
CNF(E5®Y), Func, Func' : C1 : [(odd X A num X) = (= ev X A num X)]¥ and
Co: [(VX.n X = ((odd X ANX > 100) Anum X)) = (VX.n X = ((—ev X AX > 100) A
num X))|¥ where n is a Skolem constant. The reader may check that an applica-
tion of rule Para does not lead to a successful refutation here as the terms in the
powerset description do unfortunately not have the right structure. Instead of fol-
lowing the term-rewriting idea we have to proceed with difference-reduction and
a recursive call to the overall refutation search from within the unification pro-
cess: Dec(Ca), Triv, Func, Dec, Triv : Cs : [((odd sAs > 100) Anum s) = ((— ev sAs >
100) Anum s)]¥; Equiv(Cs),CNF, Fac,UNT: Cy : [odd )T V]ev s]¥', C5 : [s > 100]", C :
[num s|*, Cr : [odd s]¥ V [s > 100]F V [num s]* V [ev s]T; Equiv'(C1),CNF, Fac, UNT :
Cs : [odd X1¥ Vv [num X1 V[ev X]¥, Co : [odd X]T V [num X]¥ V]ev X]*. The rest of
the refutation is a straightforward resolution proof on C4 —Cy. It is easy to check
that an elegant term-rewriting proof is only possible if we put the succedent of
Eget in the T’Zght order: 2{X| (odd X Anum X)AX>100} _ 2{X| (= ev XAnum X)/\X>100}.
Thus this example nicely illustrates the unavoidable mixed term-reducing and
difference-reducing character of extensional higher-order paramodulation.

On the other hand a very interesting goal directed proof is possible within
the RUE-resolution approach ERUE by immediately resolving between C; and
the unification constraint Co and subsequently employing syntactical unification
in connection with recursive calls to the overall refutation process (with the
extensionality rules) when syntactical unification is blocked.

[Ben99] provides a more detailed discussion of these and additional examples.

8 Conclusion

We presented the two approaches EP and ERUE for extensional higher-order
paramodulation and RUE-resolution which extend the extensional higher-order
resolution approach ER [BK98a| by a primitive equality treatment. All three
approaches avoid the extensionality axioms and employ more goal directed ex-
tensionality rules instead. An interesting difference to Huet’s original constraint
resolution approach [Hue72] is that eager (pre-)unification becomes essential and
cannot be generally delayed if an extensionality treatment is required.

Henkin completeness has been proven for the slightly extended (by the ad-
ditional rule FlezFlex) approaches ERy, EPy and ERUEs. The claim that rule
FlexFlex is admissible in them has not been proven yet. All three approaches
can be implemented in a higher-order set of support approach as presented
in [Ben99]. [Ben99] also presents some first ideas how the enormous search space
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of the introduced approaches can be further restricted in practice, e.g. by intro-
ducing redundancy methods.

It has been motivated that some problems cannot be solved in the paramod-
ulation approach EP by following the term-rewriting idea only, as they unavoid-
ably require the application of the difference-reducing extensionality rules. In
contrast to EP the difference-reducing calculus ERUE seems to harmonise quite
well with the difference-reducing extensionality rules (or axioms), and thus this
paper concludes with the question: Can HO adaptations of term-rewriting ap-
proaches be as successful as in FO, if one is interested in Henkin completeness
and extensionality, e.g., when reasoning about sets, where sets are encoded as
characteristic functions? Further work will be to examine this aspect with the
help of the LEO-system [BK98b] and to investigate the open questions of this

paper.
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Abstract. In this paper we present an extensional higher-order resolu-
tion calculus that is complete relative to Henkin model semantics. The
treatment of the extensionality principles — necessary for the complete-
ness result — by specialized (goal-directed) inference rules is of practical
applicability, as an implentation of the calculus in the LEO-System shows.
Furthermore, we prove the long-standing conjecture, that it is sufficient
to restrict the order of primitive substitutions to the order of input for-
mulae.

1 Introduction

The history of building automated theorem provers for higher-order logic is al-
most as old as the field of deduction systems itself. The first successful attempts
to mechanize and implement higher-order logic were those of Huet [Hue73] and
Jensen and Pietrzykowski [JP76]. They combine the resolution principle for
higher-order logic (first studied in [And71]) with higher-order unification. The
unification problem in typed A-calculi is much more complex than that for first-
order terms, since it has to take the theory of afn-equality into account. In
particular the higher-order unification problem is undecidable and sets of so-
lutions need not to have most general elements that represent them. Thus the
calculi for higher-order logic have to take special measures to circumvent the
problems posed by the theoretical complexity of higher-order unification.

Experiments like the TPs system [And89,ABI*96] (which uses a higher-order
matings calculus) or our own LEO system [BK98,Ben97] (which uses a variant of
Huet’s resolution calculus [Hue73]) have shown the practical feasibility of higher-
order automated theorem proving based on these ideas. Establishing complete-
ness for higher-order calculi is more problematic than in first-order logic. The
intuitive set-theoretic standard semantics cannot give a sensible notion of com-
pleteness, since it does not admit complete calculi [G6d31]. But there is a more
general notion of semantics due to Henkin [Hen50] that allows complete calculi
and therefore sets the standard for the deductive power of calculi.

The core of higher-order resolution (HORES, see [Hue73,Koh94] for details)
is a simple extension of the first-order resolution method to the higher-order
language: the only significant difference is that gn-equality has to be build in
by keeping formulae in normal form and that first-order unification has to be
replaced by higher-order unification (i.e. unification with respect to the theory

C. Kirchner and H. Kirchner (Eds.): Automated Deduction, CADE-15
LNAI 1421, pp. 56-71, 1998. (© Springer—Verlag Berlin Heidelberg 1998
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of fn-equality). Since this is a semi-decidable search process itself, it cannot
simply be used as a sub-procedure that is invoked during the application of
the resolution or factoring rules. Rather resolution and factorization rules are
modified, so that they record the induced unification problem in a unification
constraint instead of trying to compute a complete set of unifiers. Furthermore,
the calculus is augmented with the inference rules of higher-order unification
that are lifted to act on the unification constraints of clauses. With this trick
the search for empty clauses and that for higher-order unifiers are interleaved,
which alleviates the undecidability problem.

Unfortunately, neither HORES nor the TPS procedure are complete with
respect to Henkin semantics, since they fail to capture substitutivity of equiva-
lence. In [Koh95], the first author has presented a higher-order tableau calculus
that addresses the problem with a new inference rule that uses substitutivity of
equivalence in a goal-oriented way, but still fails to capture functional extension-
ality of Leibniz equality.

For our extensional higher-order resolution calculus £R we extend higher-
order resolution by ideas from [Koh95] and a suitable treatment of Leibniz
equality and prove the resulting calculus sound and complete with respect to
Henkin’s general model semantics [Hen50]. Furthermore, we show that we can
restrict the set of primitive substitutions that are necessary for flexible literals
to a finite set.

Before we begin with the exposition, let us specify what we mean by “higher-
order logic”: any simply typed logical system that allows quantification over
function variables. In this paper, we will employ a system HOL, which is based on
the simply typed A-calculus; for an introduction see for instance [And86,Bar84].

2 Higher-Order Logic (HOL)

The set wff, (X) of well-formed formulae of type « is build up from the
set V of variables, and the signature ¥ (a set of typed constants) as appli-
cations and A-abstractions. We will denote variables with upper-case letters
(Xa,Y, Z, X}, X7 . .), constants with lower-case letters (ca, fa—p, - - -), and well-
formed formulae with upper-case bold letters (A, B, C,...)!. Furthermore, we
abbreviate multiple applications and abstractions in a kind of vector notation,
so that AU* denotes k-fold application (associating to the left) and AX*.A de-
notes k-fold A-abstraction (associating to the right) and use the square dot . as
an abbreviation for a pair of brackets, where . stands for the left one with its
partner as far to the right as is consistent with the bracketing already present
in the formula.

We will use the terms like free and bound variables in their standard meaning
and we use Free(A) for the set of free variables of a formula A. In particular
alphabetic change of names of bound variables is build into our HOL: we con-
sider alphabetic variants to be identical (viewing the actual representation as a
representative of an alphabetic equivalence class) and use a notion of substitu-
tion that avoids variable capture, systematically renaming bound variables. We

! We will denote the types of formulae as indices, if it is not clear from the context.
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could also have used de Bruijn’s indices [dB72] as a concrete implementation of
this approach at the syntax level.

By wff®(X) C wff,(X) we denote the set of all closed well-formed formulae,
i.e. which contain no free variables and we call the members of wff, (%) sentences.

We denote a substitution that instantiates a variable X with a formula A
with [A/X] and write o, [A/X] for the substitution that is identical with o but
instantiates X with A.

The structural equality relation of HOL is induced by gn-reduction

(AX.A)B —;3 [B/X]A (AX.CX) —, C

where X is not free in C. It is well-known, that the reduction relations 3, n, and
0On are terminating and confluent, so that there are unique normal forms.

In HOL, the set of base types is {0, ¢} for truth values and individuals, and the
signature ¥ contains logical constants for negation —,_.,, conjunction A,_ o0,

and quantification? H?‘a_} 0)—o" All other constants are called parameters, since

the argumentation in this paper is parametric in their choice?.

It is matter of folklore that equality can directly be expressed in HOL e.g.
by the Leibniz definition, so that a primitive notion of equality (expressed by a
primitive constant = in ) is not strictly needed; we will use this observation
in this paper to treat equality as a defined notion. Leibniz equality defines two
terms to be equal, iff they have the same properties. Hence equality can be
defined as

=% = AX o AYQ VP, ..PX = PY

A standard model for HOL provides a fixed set D, of individuals, and a set
D, := {T,F} of truth values. All the domains for the complex types are defined
inductively: D,_g is the set of functions f:D, — Dg. The evaluation Z, with
respect to an interpretation Z:3 — D of constants and an assignment ¢ of
variables is obtained by the standard homomorphic construction that evaluates
a A-abstraction with a function, whose operational semantics is specified by (-
reduction.

Henkin models only require that D,_.3 has enough members that any
well-formed formula can be evaluated?. Note that with this generalized notion
of a model, there are less formulae that are valid in all models (intuitively, for
any given formulae there are more possibilities for counter-models). Thus the
generalization to Henkin models restricts the set of valid formulae sufficiently,
so that all of them can be proven by the resolution calculus presented in this
paper. For our completeness proofs, we will use the abstract consistency method
first introduced by Raymond Smullyan in [Smu63] for first-order logic and later

2 With this quantification constant, standard quantification of the form VX,.A can be
regained as an abbreviation for II* (A X,.A).

3 In particular, we do not assume the existence of description or choice operators. For
a detailed discussion of the semantic issues raised by the presence of these logical
constants see [And72].

4 In other words: the functional universes are rich enough to satisfy the comprehension
axioms.
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extended to higher-order logic by Peter Andrews [And71]. The model existence
theorem below is a variant of the latter for Henkin models. For the proof we
refer to [BK97].

Theorem 1 (Henkin Model Existence). Let Is; be a saturated abstract con-
sistency class for Henkin models (see the definition below), and ® € I3, then
there is a Henkin model M such that M |= ®.

Definition 1 (Abstract Consistency Class for Henkin Models). We call
a class Iy of sets of sentences an abstract consistency class for Henkin
Models, iff Is; is closed under subsets and such that for all sets ® € Iy, (we use
® x A as an appreviation for ® U {A}):

V. If A is atomic, then A ¢ ® or A ¢ ®.

V. If =—A € P, then ®x A €13.

Van, If A € ® and B is the Bn-normal form of A, then B x ® € Ix.

W IfAVBe®, then®dxAcly or®xBelx.

Vi If=(AVB)e®, then ® «x—-A x—-B € I3.

VW IfII°F € @, then ® « FG € Iy for each G € wfi'(%).

V5 If -II°F € @, then @ x ~(Fw) € I3y for a fresh parameter wy € Q.

Vo If~(A=°B)e€®, then PU{A,-B}ely ordU{-A,B} €s.

Vy If-(F —o—h G) € ®, then ® x =(Fw =P Guw) € Iy, for a fresh parameter
Wo € Qg

We will call Iy; saturated, iff for all sentences A € wff,(X) we have & x A € Iy,
or & x—-A cI.

Remark 1 (Counterparts for V,,V, ). In Definition 1 positive counterparts for the
two conditions Vj,V; are not needed, since these conditions are automatically met
(note that = is a defined construct). For details see [BK97].

In this paper the extensionality principles will play a major role. These for-
malize fundamental mathematical intuitions about functions and truth values.
The functional extensionality principle says, that two functions are equal,
iff they are equal on all arguments. This principle can be formulated by the
following schematic A-term:

VMo gV Na—p(VX.(MX) = (NX)) = (M = N)

The extensionality principle for truth values states that on the set of truth
values equality and equivalence relation coincide: VP,.VQ..(P = Q) = (P = Q).
Note that in Henkin models both extensionality principles are valid and that
Leibniz equality indeed denotes equality relation (see [BK97] for details).
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3 The Calculus £R

Now we introduce the higher-order resolution calculus ER. Therefore we will re-
view standard higher-order resolution HORES and use the extensionality prin-
ciples to discuss why it is not complete. From the deficiencies we will develop the
necessary extensions and give an intuition by exhibiting refutations that become

possible.
HORES is a refutation calculus that manipulates sets of clauses, i.e. sets
(which we will represent as disjunctions) of literals (e.g. C := [ga—0Xa]T V

[ a—>oXa]F \% [Ca = Xa]F)~

Definition 2 (Literal). Literals are atomic propositions labeled with an in-
tended truth value. We call a literal a unification constraint, iff it is negative
(i.e. annotated by the truth value F') and the head is =, all the others we call
proper literals. Clauses existing entirely of unification constraints are called
almost empty. Since instantiation of a head variable will convert a literal into a
general labeled propositions, we will sometimes call these pre-literals.

Clause normalization is very similar to the first-order case, except for the treat-
ment of existential quantification. Therefore, we will not present the transfor-
mation rules here, but simply discuss the differences and assume that each given
higher-order proof problem P can be transformed into a set of clauses CNF(P).
A naive treatment with Skolemization results in a calculus that is not sound with
respect to Henkin models, since Skolem functions are special choice functions®,
which are not guaranteed to exist in Henkin models. A solution due to [Mil83]
is to associate with each Skolem constant the minimum number of arguments
the constant has to be applied to. Skolemization becomes sound, if any Skolem
function f™ only occurs in a Skolem term, i.e. a formula S = f"An, where
none of the A’ contains a bound variable. Thus the Skolem terms only serve as
descriptions of the existential witnesses and never appear as functions proper.
When we speak of a Skolem term S, for a clause C, where {X}, --- X7, } is
the set of free variables occurring in C, then S, is an abbreviation for the term
(f" X1... X", where f is a new constant from Cy1_,..._,qn_q and n

al—-—a”—a

specifies the number of necessary arguments for f.

Remark 2 (Leibniz Equality). We assume that before applying clause normal-
ization each primitive equality symbol is replaced by its corresponding Leibniz
definition. Hence after normalizing a given input problem, the resulting clause
set does not contain any equality symbol. However, during the refutation process,
equality symbols may be introduced again as we code unification constraints by
negated equation literals.

3.1 Higher-Order Unification in £R

Higher-order unification is a process of recursive deterministic simplification
(rules «, n, Dec, Triv, and Subst in figure 1) and non-deterministic variable
binding (rule Flex/Rigid). The rules o and 7 are licensed by the functional

5 They choose an existential witness from the set of possible witnesses for an existential
formula.
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CV|[AXaA) = (\Y..B) Sa Skolem term for this clause

a
CV[[s/X]A =[s/Y]B]"
CVI[(AX..A) =B]" Sa Skolem term for this clause .
CV([s/X]A = (Bs)|"

CV [hT" = WV ¥ 5 CVIA=A)"
CVU' =VFv.. vur=vrF 7 c Triv
CV E FE solved for C Subst

CNF (subst(C))
Cv[F,U"=hnV]" GegB!
L ] Y Flex/Rigid

CV|[F=G]"V[FU=hV|'

Fig. 1. Lifted Higher-Order (pre-)unification rules

extensionality principle and eliminate the top A-binder in unification constraints
of functional type. The Skolem term s, is an existential witness for the fact
that the functions are different. Since clauses are implicitly universally quanti-
fied, this witness may depend on the values of all free variables occurring in the
clauses, so it must be a Skolem term for this clause. Decomposition (rule Dec)
is analogous to the first-order case and the rule Triv allows to remove reflexivity
pairs. Rule Dec will be discussed again in connection with the extensionality
rules in section 3.3.

The rule Subst eliminates variables that are solved in a clause: we call a
unification constraint U := [X, = N,|¥ or U := [N, = X,]¥ solved iff X, is
not free in N. In this case X is called the solved variable of U. Let C := L'V
- VLPVU'W--- VU™ be a clause with unification constraints U\ --- v U™
(1 < m). Then a disjunction U V --- vV U™ (i; € {1,---,m}1 < j < k)
of solved unification constraints occurring in C is called solved for C' iff for
every U% (1 < j < k) holds: the solved variable of U% does not occur free in
any of the U% for [ # j;1 < | < k. Note that each solved set of unification
constraints F for a clause C' can be associated with a substitution substg which
is the most general unifier of E. Thus the rule Subst essentially propagates the
information from the unification constraints to the proper clause parts. Since the
instantiation of flexible literals (i.e. literals, where the head is a free variable)
may result in pre-literals, the result of this propagation may cease to be a clause,
therefore it needs to be reduced to clause normal form.

Remark 3 (Eager Unification). The set of rules described up to now is termi-
nating and confluent, so that higher-order unification applies it eagerly to filter
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out all clauses with an unsolvable unification constraint®. It leads to unification
constraints, where both sides are applications and where at least one side is flex-
ible, i.e. where the head is a variable. In this case, the higher-order unification
problem can be reduced to the problem of finding most general formulae of a
given type and a given head symbol.

Definition 3 (General Binding). Let o = (' — ~), and h be a constant
or variable of type (8, — 7) in T, then G = )\Xél.hw is called a general
binding of type o and head h, if Vi = HiX—A. The H' are new variables of

types E — 8%, It is easy to show that general bindings indeed have the type and
head claimed in the name and are most general in the class of all such terms.
General bindings, where the head is a bound variable Xéj are called projec-

tion bindings (we write them as GJ,) and imitation bindings (written G")
else. Since we need both imitation and projection bindings for higher-order uni-
fication, we collect them in the set of approximating bindings for h and «

(GBa = {GhyU{GL | <1})

Since there are only finitely many general bindings (one imitation binding
and at most [ projection bindings) the Flex/Rigid rule is finitely branching. We
never have to consider the so-called Flex/Flex literals”, since F. lex/Flex equa-
tions can always be solved by instantiating the head variables with suitable con-
stant functions that absorb their arguments. This observation is due to Gérard
Huet [Hue73] and defines higher-order pre-unification, a computationally more
feasible (but still undecidable) variant of higher-order unification. However, even
if Flex/Flex pairs are solvable, we cannot simply delete them like trivial pairs,
since one or both of the heads may be instantiated making the term rigid, so
that the pair has to be subject to pre-unification again.

3.2 Higher-Order Resolution

Definition 4 (Higher-Order Resolution). The higher-order resolution
calculus HORES consists of the inference rules in figure 2 together with the
unification rules in figure 1. We call a clause empty, iff it consists entirely of
Flex/Flex unification constraints and say hat a HORES-derivation of an empty
clause from a set ® of clauses is a refutation of ®. For a sentence A, we call
a refutation of CNF(=A) a refutation for A.

As in first-order we have resolution and factorization rules Res and Fac. But
instead of solving the unification problems immediately within a rule application
we delay their solution and incorporate them explicitly as unification constraints
in the resulting clauses. Note that the resolution rule as well as the factorization
rule are allowed to operate on unification constraints.

6 As we will see later this solution is too strong if we want to be complete in Henkin
models since an unsolvable unification constraint might be solvable by using the
extensionality rules.

" For a refutation, we do not need to enumerate all unifiers for a given unification
problem but to seek for one possible instantiation of a given problem which leads to
the contradiction.
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N|*VC M]PVD a#p IN]*V[M]*VC ac€{T,F}
CVDVN=MF e NJ*VCV[N =M

Fac

[Q,UF* vC P egpivIvmser’y
[@,U**vCVIQ=P]"

k

Prim

Fig. 2. Higher-order resolution rules

To find a refutation for a given problem we may have to instantiate the head
variables of flexible literals by material that contains logical constants. Unfor-
tunately these instantiations cannot be generated by the unification rules, since
all logical constants have been eliminated from the clause set by normalization,
thus they enter the refutation by unification. Therefore the rule Prim allows
to instantiate head variables (), by general bindings P of type v and head in
{=,V} U{IIP|3 € T}. Thus the necessary logical constants are introduced into
the refutation one by one, hence the name primitive substitutions.

For instance the sentence A := 3X,.X is valid in all Henkin models, but
CNF(-A) = {[X]¥'} cannot be refuted without some kind of a primitive sub-
stitution rule, since none of the other rules apply. With Prim, we can deduce
[(X]F v [X = -H]¥ and then [Y]? by Subst. These two unit literals can be re-
solved to [X = Y]¥, which is an empty clauses, since [X = Y] is a Flex/Flex
unification constraint.

The primitive substitution rules have originally been introduced by Peter
Andrews in [And89] (Gérard Huet uses a set of so-called “splitting rules” for
the same purpose in [Hue73]). Note that the set of general bindings is infinite,
since we need one for every quantifier II* and the set of types is infinite. Thus
in contrast to the goal-directed search for instantiations in unification, the rule
Prim performs blind search and even worse, is infinitely branching. Therefore,
the problem of finding instantiations for predicate variables is conceived as the
limiting factor to higher-order automated theorem proving.

It has been a long-standing conjecture that in machine-oriented calculi it is
sufficient to restrict the order of primitive quantifier substitutions to the order
of the input formulae. In [BK97], we have established a finer-grained variant
of theorem 1 that we can use as a basis to prove this conjecture. Let us now
introduce the necessary definitions.

Definition 5 (Order). For a type a € T, we define the order ord(«) of « as
ord(t) = ord(o) = 0, and ord(a — ) = max{ord(«),ord(()} + 1. Note that
the set TF = {a € T | ord() < k} is finite for any order k. We will take the
order of a formula to be the highest order of any type of any of its subterms, and
the order of a set of formulae to be the maximum of the orders of its members.
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Theorem 2 (Model Existence with Order). The model existence theorem
holds even if we weaken the condition Ny of an abstract consistency class to

VF  IfTI°F € @, then ® x FG € Ty for each G € wfff (X)) with ord(G) <
ord(®).

In [BK97] we establish this theorem for arbitrary well-founded orderings on
types such that ord(«),ord(8) < ord(aw — (3). This allows us to restrict in-
stantiation in ER to formulae of the order of the input formulae. Note that this
only effects the primitive substitution rule, since all other instantiations are per-
formed by unification, which is order-restricted by construction. In particular,
the non-standard definition of order above ensures finite branching of the primi-
tive substitution rule. This ordering, that takes the lengths of argument lists into
account leads to an increased order of the input set compared to the standard
definition of order (ord (@, — () = max,{«a;} + 1) and effectively restricts the
number of necessary instantiations.

Our result justifies the practice of higher-order theorem provers to restrict
the search for primitive substitutions and gives a road-map towards complete
procedures. Of course there is still a lot of room for experimentation with the
respective orderings.

3.3 Extensionality

The higher-order resolution calculus HORES defined above is not complete with
respect to Henkin models, as the following example will show.

Ezample 1. The following formulae E1-E5® are not provable in HORES without
using additional axioms for functional extensionality and/or extensionality on
truth values.

El a, =0, = (VP,—,.Pa = Pb)
This is the non-trivial direction of the extensionality property for truth val-
ues: if a, is equivalent to b, then a, is equal to b, (a, = b, = a = b).

E2 VP, ,.P(a, ANb,) = P(bAa).
Any property which holds for a A b also holds for b A a (or simply that
aNb=0bAa).

E3 (po—oto A pb,) = p(bAa)
In other words, an arbitrary property p,_., which coincidently holds for a,
and b, also holds for their conjunction.

E4 (VX,.VP_o(P(m,—~.X) = Pn_.X))) = (VQu-)-oQAX.mX) =
Q(AX,.nX))
This formula can be interpreted as an instance of the &-rule (VX,.m,—, X =
n—.X) = (AX,.,mX) = (AX,.nX) (See for instance [Bar84]).

E5 (VX,.VP,_o.P(m,,X)= P(n.X)) = (VQ(-n)—o@m = Qn)
This is an instance of the non-trivial direction of the functional extensionality
axiom for type ¢t — v: (VX,.(m,—,X) = (n,—,X) = m =n).

8 In Problems E1, E2, E4, and E5 we have used Leibniz definition of equality to remove
the intuitive equality symbols.
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CV[M, =N," CV[Ma=Nu" ac{o:}
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CNF(CV M, = NJJ)  ° CNF(C'V [VPa—oPM = PNJ)
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Func

Fig. 3. Extensionality rules

For a proof of E1 note that the clause normal form of the succedent consists
of the two unit clauses [p°a]®” and [p°b]7, where p° is the Skolem constant for
the variable P. These can be resolved upon to obtain the clause [p’a = p°b]¥,
which can be decomposed to [a, = b,]F. Obviously, this unification constraint
cannot be solved by higher-order unification, and hence the refutation fails. In
this situation, we need the principle of extensionality on truth values, which
allows to replace each negated equality on type o by an equivalence. This leads
to the clause normal form of [a, = b,]¥", which contradicts the antecedent of E1
and finally gives us the refutation.

Similar investigations show that the other examples cannot be proven by
HORES too.

Our aim is to find an extension of HORES, which is both Henkin-complete
and adequate for an implementation. Surely, the introduction of axioms for the
extensionality principles can solve the completeness problem in theory, but this
will lead to an explosion of the search space which has to be avoided in prac-
tice. In particular, we do not change the purely negative spirit of the resolution
calculus by introducing axioms but introduce special inference rules.

Definition 6 (Extensional Higher-Order Resolution). The extensional
higher-order resolution calculus ER is HORES extended with the inference
rules in figure 3.

The Rule Leib instantiates the equality symbol by its Leibniz definition and
applies clause normalization. Rule Equiv is directly motivated by the proof at-
tempt of E1 discussed in example 1. Thus rule Fquiv reflects the extensionality
property for truth values but in a negative way: if two formulas are not equal
then they are also not equivalent. Rule Func does the same for functional ex-
tensionality: if two functions are not equal then there exists an argument s, on
which these functions differ. To ensure soundness s, has to be a new Skolem
term which contains all the free variables occurring in the given clause.

The new rules strongly connect the unification part of our calculus with
the resolution part. In some sense, they make the unification part extensional,
since they allow to modify unification problems, which are not solvable by pre-
unification alone in an extensional appropriate way and to translate them back
into usual literals, such that we can try to find the right argumentation for
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the solvability of the unification constraints in the general refutation process by
possibly respecting the additionally given clauses in the search space.

Remark 4 (Rule Func). Note that we have already introduced two rules — a and
7 in unification (see figure 1) — which are very similar to this one. In fact we can
restrict rule Func to the case were N and M are non-abstractions or vice-versa,
we can remove the a and 7 rules from simplification as they are subsumed by
the rule Func as purely type-based and apply (-reduction to both sides of the
modified unification constraint.

Remark 5 (Unification Constraints). We have lifted the unification constraints
to clause level by coding them into negated equation literals. Hence the question
arises whether or not resolution and factorization rules are allowed to be applied
on these unification constraints. In order to obtain a Henkin complete calculus
this is not necessary — as our completeness proof shows — if we add the three ex-
tensionality rules discussed in the next subsection. Consequently the unification
constraints do not necessarily have to be coded as negative equation literals, any
other form will work as well.

The coding of unification constraints as negated equation literals becomes
important if one considers an alternative version of extensional higher order
resolution — which we will also motivate below —, where the rule Leib is avoided.

Note that none of the three new extensionality rules introduces any flexible
literal and even better, they introduce no new free variable at all; even if they
heavily increase the search space for refutations, they behave much better —
as experiments show with the LEO theorem prover [BK98,Ben97] — than the
extensionality axioms, which introduce lots of flexible literals in the refutation
process.

3.4 Examples

We now demonstrate the idea of the extensional resolution calculus on examples
E3 and E5:

E3 VPy_.o(Pa, A Pby) = P(a Ab)

CNF(—E3) (po—o is a new Skolem constant):

cl: [pa)T c2: [pb)¥ c3: [p(a AD)F
Res(cS’ cl): c4: [p(a Ab) = pa]¥
Res(c3,c2): c¢5: [p(a Ab) = pblF
Dec(c4): c6: [(a Ab) = a]F
Dec(cH): c7: [(a Nb) = b)F
Equiv(c6): c8: [a)F v [b]F c9: [a)T v [b]T c10: [a)T
Equiv(c7): cl1: [a]¥ Vv [b]F c12: [a]T v [b]T c13: [b]T

The rest is obvious: Resolve ¢10 and c13 against ¢8 (or c11). O
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E5 (VX,.VP,_o.P(m ., X)= P(n,.X)) = (VQ(-,)—o@m = Qn)

CNF(-E5) (q is a new Skolem constant):

cl: [P(mX)]F v [P(nX)]T c2: [qm]T c3: [qn)¥
Res(c2,¢3): c4: [gqm = qn]¥
Dec(c4): c5: [m = n)¥
Func(ch) (s, is a new Skolem constant): c6: [ms = ns]¥
Leib(c6) (p,—o is a new Skolem constant): c7: [p(ms)]t e8: [p(ns)]F

Note that resolving c¢2 and c& immediately against ¢! does not lead to a solv-
able unification constraint. Instead we made a detour to the pre-unification
part of the calculus and modified the clauses ¢2 and ¢8 in an extensionally
appropriate way. Now ¢2 and ¢8 have their counterparts in ¢7 and c¢8, but
in contrast to ¢2 and c3 the new clauses can successfully be resolved against
cl. O

The proofs of the other examples are discussed in [Ben97].

Remark 6 (Optimization of Extensionality). Note the order in which the ex-
tensionality rules were applied in the examples above. For a practical imple-
mentation these examples suggest the following extensionality treatment of
unification constraints: First decompose the unification constraint as much as
possible. Then use rule Func to add as many arguments as possible to both
hand sides of the resulting unification constraints. And last use rule Leib and/or
Equiv to finish the extensionality treatment. In this sense the above rules can
be combined to form only one rule Fxt-Treat.

Remark 7 (Rule Leib). Due to an idea of Frank Pfenning every refutation which
uses rule Leib can possibly be done without this rule by resolving against the
extensional modified unification constraint instead, and hence rule Leib may be
superfluous. For example the application of rule Leib in the proof of example E5
can be replaced by an immediate resolution step between clause c¢1 and c6:

c7: [P(mX)|FV[P(nX) = (ms = ns)]¥. And by pre-unification (P + \Y,.(ms =
Y) and X < s) we immediately get the empty clause. Note that in this case it
is essential that unification constraints are encoded as negative equality literals
(see Remark 5).

However, there are two reasons why rule Leib seems to be very appropriate.
First the completeness proof with respect to Henkin models seems to be more
complicated without rule Leib and isn’t done yet. Additionally the experience
from the implementation work of the system LEO is, that rule Func eases the
implementation and the integration of heuristics. See [Ben97] for a more detailed
discussion.
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4 Soundness and Completeness

Theorem 3 (Soundness of ER). The calculus ER is sound with respect to
Henkin semantics.

Proof. The soundness of HORES is discussed in detail in [Koh94], the only
major difference to the first-order case is the treatment of Skolemization, which
has been discussed in [Mil83].

The soundness of the three new extensionality rules are obvious, as they do
only apply the two extensionality principles and the Leibniz definition, which
are valid in Henkin models.

For the completeness result, we will need a series of disjunction Lemmata,
which are well-known for first-order logic, and which can be proven with the same
techniques, only considering the extra inference rules of £R in the inductions.

Lemma 1. Let &, A,T1, Ty C wf(2) and A, B € wff'(L). We have
1. If CONF(®% A) Fer O and CNF(®%B) Fer O, then CNF(® % AV B) Fgr O

2. If CNF(®+x-AxB) Fer O and CNF(®+Ax—B) Fer O, then CNF(®x—(A =
B)) Fer O

Proof. For the proof of the first assertion we first verify that CNF(®x A Vv B) =
CNF(®) UCNF(A) UCNF(B), where ' WA = := {CVD|C € CNF(4)},D €
CNF(B)}. Then we use that ®UT'; UT's Fegg O, provided that ®UT; Fgg O and
® U5 Fegr O. The second involves a tedious but straightforward calculation.

Lemma 2 (Lifting Lemma). Let ® be a set of clauses and o a substitution,
then ® is refutable by ER, provided that 6(P) is.

Proof. The claim is proven by an induction on the structure of the refutation
Dy:0(P) Fer O be a refutation of §(P) constructing a refutation D for ® that
is isomorphic to Dy.

For this task it is crucial to maintain a tight correspondence w: ® — 6(®)
between the respective clause sets. This is formalized by a clause set isomor-
phism, i.e. a bijection of clause sets, that corresponding clauses are isomorphic,
i.e. for a w respects literal polarities and is compatible with 6, i.e. for any lit-
eral N® we have w(N) = #(N). The main difficulty with lifting properties in
higher-order logic is the fact that due to the existence of predicate variables at
the head of formulae, the propositional structure of formulae can change during
instantiation. For instance if 0(F) = AX,.GX V p, and AT = Fa', then the
pre-literal 0(F) is split Dy but not in the ER-derivation already constructed.
The solution of this problem is to apply the rule Prim with a suitable general
binding GY_., = AMX,.(H'X) vV (H2X) and obtain a pre-literal (H'a vV H?a)",
to which can be split in order to regain a clause set isomorphism. Since GY_
is more general than 6(F) there is a substitution p, such that 6(F) = p(GY_,),
therefore w((H'a Vv H?a)") = ¢'((H'a Vv H?a)") where 8/ = 6 U p.



Extensional Higher-Order Resolution 69

Theorem 4 (Completeness of ER). The calculus ER is complete with respect
to Henkin semantics.

Proof. Let Iz be the set of X-sentences which cannot be refuted by calculus ER
(I = {® C wf*'(X)|CNF(®) Her O}), then we show that T is a saturated
abstract consistency class for Henkin models. This entails completeness of ER
by theorem 1.

Let ® € I;. We show that ® mets the conditions required in definition 1:

V.  Suppose that A, —A € ®. Since A is atomic we have CNF(® x A « —A) =
CNF(®) % [A]T % [A]F and hence we can derive O with Res and Triv. This
contradicts our assumption.

In all of the remaining cases, we show the contrapositive, e.g. in the next case
we prove, that for all ® € Iy, if & * = —A x A ¢ Iy, then ® x =—A ¢ I3, which
entails the assertion.

V., If CNF(® * =—=A x A) Fegr O, then also CNF(® x =—A) Fgr O, since

Vs, Analog to V., since CNF(® x A x A |, ) = CNF(® x A).

YV, If CNF(® * AV B % A) Fgr O and CNF(® « A V B % B) Fer O, then
CNF(® * AV B) Fgr O by lemma 1(3).

Vi If CNF(® % ~(AVB) %A % —B) Fgr O, then CNF(® * (A V B)) Fer O,
since ONF(® % ~(A V B)  —A % -B) = CNF(®  —(A V B)).

WV By the lifting lemma 2.

Vs Let CNF(® x —IIF * =Fw) 5, O and note that CNF(® * —IIF * ~Fw) =
CNF(® *« ~Fw’ * =Fw). Now let w” be any new constant symbol which does
not occur in ® or F. Since also w and w’ do not occur in ® or F it is
easy to verify that their is a derivation CNF(® % —Fw") F5, 0, where each
occurrence of =Fw’ or =Fw is replaced by =Fw”. Hence CNF (® % —IIF) Fgr
L.

Vo We show that if CNF(®*—(A =° B)*-~A*B) Fer O and CNF(®—(A =°
B) * A * —=B) Feg O, then CNF(®  =(A = B) Fgr 0. Note that CNF( *
~(A = B)) = CNF(®+~II[(AP.~PAV PB)) = CNF(®)* [rA]T «[rB]¥, with
Skolem constant r,_.,. Now consider the following derivation

[rA]" [rB]”
rA=rB]" °
A= BJF ec .
Equiv

CNF(—(A = B))

Hence CNF(® x ~(A = B)) Fgr CNF(® *x =(A = B)) U CNF(~(A = B))
and we get the conclusion as a simple consequence of lemma 1(4).

V, We show that if CNF(® * ~(F =*7" G) x =(Fw =’ Gu)) Fer O, then
CNF(®x—(F = G)) Fgr O. Note that CNF(®*—(F = G)*-(Fw = Gw)) =
CNF (®+-II(AQ.~QF VQG)+—-II(\P.—~P(Fw)V P(Gw))) = CNF(®)*[qF]" *
[qG]F *[p(Fw)]T *[p(Gw)]F and that CNF (®*—(F = G)) = CNF(®)[rF]T x
[rG]¥', where pg_o, q(a—pB)—o and (4 ), are new Skolem constants. Now
consider the following derivation:
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['F]" [rG]”

[rF = rG]F DR;ecS

F=GI"

Fs=Gsl"
[t(Fs)]"
[t(Gs)]"

Here again s, and t3_,, are new Skolem constants. Hence CNF (®) [rF]T *
[rG]E Fer CNF(®) * [rF|T + [rG]F « [t(Fs)]T * [t(Gs)T.

Now the conclusion follows from the assumption since s,t and r are only
renamings of the Skolem symbols w, p and ¢ and all do not occur in .

To see that I3 is saturated let A € wff,(X) and ® C wff* (L) with ® Her 0. We
have to show that ®x A Fer O or ®x—A t/er 0. For that suppose @ t/er O, but
O+ Aber Oand ® x —A Fer O. By lemma 1(3) we get that &« AV —A Fegg O,
and hence, since AV —A is a tautology, it must be the case that ® Fgr [, which
contradicts our assumption.

5 Conclusion

We have presented an extensional higher-order resolution calculus that is com-
plete relative to Henkin model semantics. The treatment of the extensionality
principles — necessary for the completeness result — by specialized (goal-directed)
inference rules practical applicability, as an implentation of the calculus in the
LEO-System [BK98] shows.
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Abstract. State-of-the-art first-order automated theorem proving sys-
tems have reached considerable strength over recent years. However, in
many areas of mathematics they are still a long way from reliably prov-
ing theorems that would be considered relatively simple by humans. For
example, when reasoning about sets, relations, or functions, first-order
systems still exhibit serious weaknesses. While it has been shown in the
past that higher-order reasoning systems can solve problems of this kind
automatically, the complexity inherent in their calculi and their ineffi-
ciency in dealing with large numbers of clauses prevent these systems
from solving a whole range of problems.

We present a solution to this challenge by combining a higher-order and a
first-order automated theorem prover, both based on the resolution prin-
ciple, in a flexible and distributed environment. By this we can exploit
concise problem formulations without forgoing efficient reasoning on first-
order subproblems. We demonstrate the effectiveness of our approach on
a set of problems still considered non-trivial for many first-order theorem
provers.

1 Introduction

When dealing with problems containing higher-order concepts, such as sets, func-
tions, or relations, today’s state-of-the-art first-order automated theorem provers
(ATPs) still exhibit weaknesses on problems considered relatively simple by hu-
mans (cf. [14]). One reason is that the problem formulations use an encoding
in a first-order set theory, which makes it particularly challenging when trying
to prove theorems from first principles, that is, basic axioms. Therefore, to aid
ATPs in finding proofs, problems are often enriched by hand-picked additional
lemmata, or axioms of the selected set theory are dropped leaving the theory
incomplete. This has recently motivated extensions of state-of-the-art first-order
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calculi and systems, as for example presented in [14] for the SATURATE system.
The extended SATURATE system can solve some problems from the SET domain
in the TPTP [24] which VAMPIRE [21] and E-SETHEO’s [23] cannot solve.

While it has already been shown in [6,2] that many problems of this nature
can be easily proved from first principles using a concise higher-order represen-
tation and the higher-order resolution ATP LEO, the combinatorial explosion
inherent in LEO’s calculus prevents the prover from solving a whole range of
possible problems with one universal strategy. Often higher-order problems re-
quire only relatively few but essential steps of higher-order reasoning, while the
overwhelming part of the reasoning is first-order or even propositional level. This
suggests that LEO’s performance could be improved when combining it with a
first-order ATP to search efficiently for a possible refutation in the subset of
those clauses that are essentially first-order.

The advantages of such a combination — further discussed in Sec. 2 — are
not only that many problems can still be efficiently shown from first principles
in a general purpose approach, but also that problems can be expressed in a
very concise way. For instance, we present 45 problems from the SET domain
of the TPTP-v3.0.1, together with their entire formalisation in less than two
pages in this paper, which is difficult to achieve within a framework that does
not provide A-abstraction. We use this problem set, which is an extension of the
problems considered in [14], in Sec. 4 to show the effectiveness of our approach.
While many of the considered problems can be proved by LEO alone with some
strategy, the combination of LEO with the first-order ATP BLIKSEM [11] is not
only able to show more problems, but also needs only a single strategy to solve
them. Several of our problems are considered very challenging by the first-order
community and five of them (of which LEO can solve four) have a TPTP rating
of 1.00, saying that they cannot be solved by any TPTP prover to date.

Technically, the combination — described in more detail in Sec. 3 — has been
realised in the concurrent reasoning system OANTS [22,8] which enables the co-
operation of hybrid reasoning systems to construct a common proof object. In
our past experiments, OANTS has been successfully employed to check the valid-
ity of set equations using higher-order and first-order ATPs, model generation,
and computer algebra [5]. While this already enabled a cooperation between
LEO and a first-order ATP, the proposed solution could not be classified as a
general purpose approach. A major shortcoming was that all communication of
partial results had to be conducted via the common proof object, which was
very inefficient for hard examples. Thus, the solved examples from set theory
were considered too trivial, albeit they were often similar to those still consid-
ered challenging in the TPTP in the first-order context. In this paper we now
present a novel approach to the cooperation between LEO and BLIKSEM inside
OANTS by decentralising communication. This leads not only to a higher overall
efficiency — Sec. 4 details our results — but also to a general purpose approach
based on a single strategy in LEO.
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2  Why Linking Higher-Order and First-Order?

Existing higher-order ATPs generally exhibit deficits in efficiently reasoning with
first-order problems for several reasons. Unlike in the case of first-order provers,
for which sophisticated calculi and strategies, as well as advanced implementa-
tion techniques, such as term indexing [19], have been developed, fully mech-
anisable higher-order calculi are still at a comparably early stage of develop-
ment. Some problems are much harder in higher-order, for instance, unification
is undecidable, strong constraining term- and literal-orderings are not available,
extensionality reasoning and set variable instantiation has to be addressed. Nev-
ertheless, for some mathematical problem domains, such as naive set theory, for
instance, automated higher-order reasoning performs very well.

We motivate the need for linking higher-order and first-order ATPs with some
examples from Table 1. It contains a range of challenging problems taken from
the TPTP, against which we will evaluate our system in Sec. 4. The problems are
given by the identifiers used in the SET domain of the TPTP, and are formalised
in a variant of Church’s simply typed A-calculus with prefix polymorphism. In
classical type theory terms and all their sub-terms are typed. Polymorphism
allows the introduction of type variables such that statements can be made for
all types. For instance, in problem SET014+4 the universally quantified variable
Xoa denotes a mapping from objects of type a to objects of type o. We use
Church’s notation o«, which stands for the functional type o — 0. The reader is
referred to [1] for a more detailed introduction. In the remainder, o will denote
the type of truth values, and small Greek letters will denote arbitrary types.
Thus, X, (resp. its n-longform Ay,.Xy) is actually a characteristic function
denoting the set of elements of type «, for which the predicate associated with
X holds. As further notational convention, we use capital letter variables to
denote sets, functions, or relations, while lower case letters denote individuals.
Types are usually only given in the first occurrence of a variable and omitted if
inferable from the context.

The problems in Table 1 employ defined concepts that are specified in a
knowledge base of hierarchical theories that LEO has access to. All concepts
necessary for defining our problems in Table 1 are given in Table 2. Concepts are
defined in terms of A-expressions and they may contain other, already specified
concepts. For presentation purposes, we use customary mathematical symbols
U, N, etc., for some concepts like union, intersection, etc., and we also use infix
notation. For instance, the definition of union on sets can be easily read in
its more common mathematical representation AU B := {z|x € AV z € B}.
Before proving a problem, LEO always expands — recursively, if necessary — all
occurring concepts. This straightforward expansion to first principles is realised
by an automated preprocess in our current approach.

SET171+3 We first discuss example SET17143 to contrast our formalisation to
a standard first-order one. After recursively expanding the input problem, that is,
completely reducing it to first principles, LEO turns it into a negated unit clause.
Since this initial clause is not in normal form, LEO first normalises it with explicit
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Table 1. Problems from TPTP for the evaluation of OANTS

SET

Problem Formalisation

014+4
017+1
066+1
067+1
076+1
08641
096+1
14343
17143
580+3
60143
60643
60743
609+3
61143
61243
61443
615+3
623+3
62443
63043
640+3
646+3
647+3
64843

651+3
65743
669+3
67043
67143
672+3
67343
680+3

68343

684-+3
68643
716+4
72444
74144
T47+4

752+4
753+4
764+4
77044

649+3| V

VXoas Yoa, Aoar[[X CAAY C Al = (X UY) C A]
Vo, Ya, Zas|UnOrderedPair(xz,y) = UnOrderedPair(z, z) = y = z|
V&, Yar|UnOrderedPair(z,y) = UnOrderedPair(y, x)
V&, Yar|UnOrderedPair(z, x) C UnOrderedPair(z, y)]
VEo,YarVZoanx € Z Ny € Z = UnOrderedPair(z,y) C Z
VZoeIYasly € Singleton(x)]
VXoa,sYan[X C Singleton(y) = [X = 0 vV X = Singleton(y)]]
VXoa:Yoas Zoar (X NY)NZ =XN(Y NZ)
VXoasYoas Zoar | XU (Y NZ)=(XUY)N (X UZ)
VXoas Yoo, Uas[t € ExclUnion(X,Y) & [u€ X & u Y]]
Ve Xoa, Yoo, Zoa (X NY)U (Y NZ)U(ZN X)) =(XUY)N(YUZ)N(ZUX))
VXon, Yoar[X\(X NY) = X\Y]
VX o, Yoar[X U (Y\X) = X UY]
VXoas Yoas Zoan [ X\(Y\Z) = (X\Y) U(Xn2z)
VXon, Your[X MY =0 & X\Y =
VXoa: Yoas Zoan [ X\ (Y U Z) = (X\Y)ﬁ(X\Z)]
VX oo, Yoo, Zoas (X\Y)\Z = X\(Y U 2)]
VXoa You, Zoae[(X UYI\Z = (X\Z) U (Y\2)]
VXoa, Yoa, Zoar [ ExclUnion(EzclUnion(X,Y), Z) = EzclUnion(X, ExclUnion(Y, Z))]
VXoas Yoar Zoas[Meets(X, (Y U Z)) & [Meets(X,Y) V Meets(X, Z)]]
VXoa, Yoan[Misses(X NY, EzclUnion(X,Y))]
VRogas Qopan[Subrel(R, Q) = Subrel(R, (Auan T) X (Avga T))]
Vo, yge[Subrel(Pair(z,y), (Auas T) X (Avga T))]
VRoga, Xoas[(RDom(R) C X) = Subrel(R, X x RCodom(R))]
VRoga; Yops[(RCodom(R) CY) = Subrel(R, RDom(R) X Y]
Ropa, Xoas Yops[[RDom(R) C X A RCodom(R) C Y] = Subrel(R, X x Y)]
VRogan[RDom(R) C Apa = Subrel(R, A X (AugaT))]
VRogas[Field(R) C ((AuasT) U (AvgsT))]
VRouan [Subrel(Id(AuasT), R) = [(AuasT) € RDom(R) A (AuasT) = RCodom(R)]]
VZoo, Rogas XoaYops[IsRelOn(R, X,Y) = IsRelOn(Restrict RDom(R, Z), Z,Y)]
VZoo, Ropas Xoas Yops[[IsRelOn(R,X,Y) AN X C Z] = RestrictcRDom(R, Z) = R]
VZog, Roga, XoaYops[IsRelOn(R, X,Y) = IsRelOn(RestrictRCodom(R, Z), X, Z)]
VZog, Rogas Xoa, Yopu[[IsRelOn(R, X,Y) NY C Z] = Restrict RCodom (R, Z) = R]
YRopo, Xoo, Yogs[IsRelOn(R, X, Y) =

Vuasu € X = [u € RDom(R) < Jugsv € Y A R(u, v)]]]
YRopa, Xoa, Yops [IsRelOn(R, X,Y) =

[Vvgav € Y = [v € RCodom(R) = Juqasu € X A u € RDom(R)]]]
VP,3a, Royp, Ta, zys[RelComp(P, R)xz < JygsPxy A Ryz]
VZoo, Rovyp, Tas[x € InverselmageR(R, Z) < JyanRxy Nz € Z]
¥ Eger, Goyon LI (F) A Inj(G)] = Ing(G o )]
VEpo, Gy, Hyge[[F o G = Fo H A Surj(F)] = G = HJ
VE3a,Gyg,s Hoys[[Ing((F o G) o H) A Surj((G o H) o F) A Surj((H o F) o G)] = Bij(H)]
VFga, Grg, Qaas qgﬁﬂ, <12,W. [[IncreasingF (F,<*, 4?) A DecreasingF (G, <?,<%)] =

DecreasingF (F o G, <", <*)]

VXoa, Yoo, Fas[ImageF (F, X UY) = ImageF (F, X) U ImageF (F,Y)]
VXoa;Yoa, Fgas[ImageF (F, X NY) C ImageF (F, X) N ImageF (F,Y)]
VFgqs[InverselmageF (F,0) = 0]
VRoga, Qopan|[EquivRel(R) A EquivRel(Q)] =
[EquivClasses(R) = EquivClasses(Q) V Disjoint(EquivClasses(R), EquivClasses(Q))]]

clause normalisation rules to reach some proper initial clauses. In our concrete
case, this normalisation process leads to the following unit clause consisting of a
(syntactically not solvable) unification constraint (here Bog, Coq, Don are Skolem
constants and Bz is obtained from expansion of z € B):

[(Azge Bz V (Cx A D)) =" (Azqa(Bx vV Cx) A (Bx V Dx))]

Note that negated primitive equations are generally automatically converted

by LEO into unification constraints. This is why [(Aza.Bz V (Cz A Dzx))




Can a Higher-Order and a First-Order Theorem Prover Cooperate? 419

Table 2. Defined concepts occurring in problems from Table 1

Defined Notions in Theory Typed Set
Ao, Apan[Ax]

Azqnl]

Ao Boan[Vzanz € A = x € B]
Moo, Boas[Azanxz € AV z € B]
Moo, Boas[Azanz € ANz € B]
AMoan[Azanz & A]

Moo, Boas[Azanz € ANz ¢ B]
AAoa, Boar[(A\B) U (B\A)]
AAoa, Boar[AN B = 0]

EzclUnion(-, -)
Disjoint(-, -)

Meets(-,-) = AAoa, Boas[Fzanz € ANz € B]
Misses(-,-) := AAoqa, Boas|["3Tanxz € ANz € B]
Defined Notions in Theory Relation
UnOrderedPair(-,-) = AZa,Yas[Aartt =2V u = y]

Singleton(-) AZan[AUugeu = ]

Pair(-,-) = ATq,Ygs[Aua,vget =z Av =1y]
_X - = Moa, Bops[Aua,vgeu € ANV € B]
RDom(-) := ARopgas|[ATqsIyss Rzy)
RCodom(- ARogan[AygsITan Rzy]

)
Subrel(-,-) = ARoga; Qogar [V onVyas Ry = Qzy]
Id(-) = AAoas[AZTa,Yasxz € ANz =y
Field(-) ARogas[RDom(B) U RCodom(R)]
IsRelOn(-, -, -) ARoBa, AoasABogs Vo, yga Ry = (x € ANz € B)]
Restrict RCodom (-, -) ARoga, Aoan[ATa,ygez € A A Ray]
RelComp(-,-) = ARoga,Qonps[Aa, 2y=3yss Ry A Ryz]
InverseImageR(-,-) := ARoga, Bops[AasIygsy € B A Ray]
Reflexive(-) := ARogas[VZasRxx]
Symmetric(.) ARogan[VEanVyan Rzy = Ryzx]
Transitive(-) := ARogan|[VZasVyanVzas Ry A Ryz = Rxz|
EquivRel(-) := ARogas[Reflexive(R) A Symmetric(R) A Transitive(R)]
EquivClasses(-) 1= ARoqan[AAoarTUaeu € A AVUaav € A & Ruv)

Defined Notions in Theory Function

TG() = AFpar Vo, ym F@) = F(y) = & = 7]
Surj(-) = AFgas[Vygs3zasy = F(x)]
Bij(-) := AFgasSurj(F) A Inj(F)
ImageF (-, -) AFga, Acan[Aygedzasz € ANy = F(x)]

InverselmageF (-, -) AFgq, Bogs[AzasIypay € BAy = F(x)]
_o_ = AFga,Gype[AzanG(F(x))]

IncreasingF (-, -, ) = AFga,<500,9 355.[an,ya.x<1 y = F(z) <® F(y)]
DecreasingF (-, -, -) := /\Fga(,<1(1)C¥C¥7 (Z)Bﬁ.[Vwa,ya.wq y= F(y ) <2 F(x)]

(A2 (Bz V Cx) A (Bzx V Dx))] is generated, and not [(Azq. Bz V (Cx A D)) =
(AZos (BxV Cx) A (BxV Dz))]F. Observe, that we write [.]7 and [.]¥" for positive
and negative literals, respectively. LEO then applies its goal directed functional
and Boolean extensionality rules which replace this unification constraint by the
negative literal (where x is a Skolem constant):

[(BxV (Cz A Dx)) < ((Bx vV Cx) A (Bx vV Dz))]F

This unit clause is again not normal; normalisation, factorisation and subsump-
tion yield the following set of clauses:

[Bx]¥ [Bx)T v [Cx]T [Bx]T v [Dz]T [Cx)F v [Dz]F

This set is essentially of propositional logic character and trivially refutable. LEO

needs 0.56 seconds for solving the problem and generates a total of 36 clauses.
Let us consider now this same example SET17143 in its first-order formula-

tion from the TPTP (see Table 3). We can observe that the assumptions provide
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Table 3. TPTP problem SET171+3 — distributivity of U over N

Assumptions: VB,C,z.[x € (BUC) < x € BVx € ()| (1)
VB,C,z.x € (BNC) <z € BAz e ()] (2)
VB,C.[B=C < BCCACC B] (3)
VB,C.[BUC = CU B] (4)
VB,C.[BNC =Cn B (5)
VB,C.[BC C & Vr.x € B=x € (] (6)
VB,C.[B=C & Va.x € B& x € (] (7)

Proof Goal: VB,C,D.[BU(CND)=(BUC)N(BUD)] (8)

only a partial axiomatisation of naive set theory. On the other hand, the specifi-
cation introduces lemmata that are useful for solving the problem. In particular,
assumption (7) is trivially derivable from (3) with (6). Obviously, clausal normal-
isation of this first-order problem description yields a much larger and more diffi-
cult set of clauses. Furthermore, definitions of concepts are not directly expanded
as in LEO. It is therefore not surprising that most first-order ATPs still fail to
prove this problem. In fact, very few TPTP provers were successful in proving
SET17143. Amongst them are MUSCADET 2.4. [20], VAMPIRE 7.0, and SATU-
RATE. The natural deduction system MUSCADET uses special inference rules for
sets and needs 0.2 seconds to prove this problem. VAMPIRE needs 108 seconds.
The SATURATE system [14] (which extends VAMPIRE with Boolean extension-
ality rules that are a one-to-one correspondence to LEO’s rules for Extensional
Higher-Order Paramodulation [3]) can solve the problem in 2.9 seconds while
generating 159 clauses. The significance of such comparisons is clearly limited
since different systems are optimised to a different degree. One noted difference
between the experiments with first-order provers listed above, and the experi-
ments with LEO and LEO-BLIKSEM is that first-order systems often use a case
tailored problem representation (e.g., by avoiding some base axioms of the ad-
dressed theory), while LEO and LEO-BLIKSEM have a harder task of dealing with
a general (not specifically tailored) representation.

For the experiments with LEO and the cooperation of LEO with the first-order
theorem prover BLIKSEM, A-abstraction as well as the extensionality treatment
inherent in LEO’s calculus [4] is used. This enables a theoretically? Henkin-
complete proof system for set theory. In the above example SET171+3, LEO gen-
erally uses the application of functional extensionality to push extensional unifi-
cation constraints down to base type level, and then eventually applies Boolean
extensionality to generate clauses from them. These are typically much simpler
and often even propositional-like or first-order-like (FO-like, for short), that is,
they do not contain any ‘real” higher-order subterms (such as a A-abstraction or

4 For pragmatic reasons, such as efficiency, most of LEO’s tactics are incomplete. LEO’s
philosophy is to rely on a theoretically complete calculus, but to practically provide
a set of complimentary strategies so that these cover a broad range of theorems.
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embedded equations), and are therefore suitable for treatment by a first-order
ATP or even a propositional logic decision procedure.

SET624+43 Sometimes, extensionality treatment is not required and the origi-
nally higher-order problem is immediately reduced to only FO-like clauses. For
example, after expanding the definitions, problem SET624+3 yields the following
clause (where Boq, Con, Don are again Skolem constants):

[(3%e (Bx A (Cz V D)) < ((3z4. Bx A Cx) V (3x0. Bx A Dx))]F

Normalisation results in 26 FO-like clauses, which present a hard problem for
LEO: it needs approx. 35 seconds (see Sec. 4) to find a refutation, whereas first-
order ATPs only need a fraction of a second.

SET646+3 Sometimes, problems are immediately refuted after the initial clause
normalisation. For example, after definition expansion in problem SET64643 we
get the following clause (where By, Con, Zo are again Skolem constants):

[Az = (Vys. By = (VuaVvg.(u =2 Av=1y) = (L) A (=L))N]F

Normalisation in LEO immediately generates a basic refutation (i.e., a clause
[L]T v [L]T) without even starting proof search.

SET611+3 The examples discussed so far all essentially apply extensionality
treatment and normalisation to the input problem in order to immediately gen-
erate a set of inconsistent FO-like clauses. Problem SET611+3 is more compli-
cated as it requires several reasoning steps in LEO before the initially consistent
set of available FO-like clauses grows into an inconsistent one. After definition
expansion, LEO is first given the input clause:

VAve, Boar (ALas (A A Bx)) = (Mae L)) & (A2on (Az A =Bx)) = (Ao Ax)]F
which it normalises into:
[(AZae (Az A Bz)) =7 (Azae L)] V [(AZas(Az A =Bz)) =" Az Az)]  (9)
[(AZoe (Az A Bz)) = (Azge )]V [(AMas (Az A ~Bz)) = (M- Az)]T (10)
As mentioned before, the unification constraint (9) corresponds to:
[(AZe (A2 A Bx)) = (Azge L)]F V [(A2ge (Az A =Bz)) = (Aze. Az)]F (11)

LEO has to apply to each of these clauses and to each of their literals appro-
priate extensionality rules. Thus, several rounds of LEO’s set-of-support-based
reasoning procedure are required, so that all necessary extensionality reasoning
steps are performed, and sufficiently many FO-like clauses are generated which
can be refuted by BLIKSEM.

In summary, each of the examples discussed in this section exposes a motiva-
tion for our higher-order/first-order cooperative approach to theorem proving.
In particular, they show that:
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— Higher-order formulations allow for a concise problem representation which
often allows easier and faster proof search than first-order formulations.

— Higher-order problems can often be reduced to a set of first-order clauses
that can be more efficiently handled by a first-order ATP.

— Some problems are trivially refutable after clause normalisation.

— Some problems require in-depth higher-order reasoning before a refutable
first-order clause set can be extracted.

3 Higher-Order/First-Order Cooperation via OANTS

The cooperation between higher-oder and first-order reasoners, which we inves-
tigate in this paper, is realised in the concurrent hierarchical blackboard archi-
tecture OANTS [7]. We first describe in Sec. 3.1 the existing OANTS architecture.
In order to overcome some of its problems, in particular efficiency problems, we
devised within OANTS a new and improved cooperation method for the higher-
order ATP LEO and first-order provers (in particular, BLIKSEM) — we describe
this in Sec. 3.2. We address the question of how to generate the necessary clauses
in Sec. 3.3, and discuss soundness and completeness of our implementation of
the higher-order /first-order cooperation in Sec. 3.4.

3.1 OANTS

OANTS was originally conceived to support interactive theorem proving but was
later extended to a fully automated proving system [22,8]. Its basic idea is to
compose a central proof object by generating, in each proof situation, a ranked
list of potentially applicable inference steps. In this process, all inference rules,
such as calculus rules or tactics, are uniformly viewed with respect to three
sets: premises, conclusions, and additional parameters. The elements of these
three sets are called arguments of the inference rule and they usually depend
on each other. An inference rule is applicable if at least some of its arguments
can be instantiated with respect to the given proof context. The task of the
OANTS architecture is now to determine the applicability of inference rules by
computing instantiations for their arguments.

The architecture consists of two layers. On the lower layer, possible instanti-
ations of the arguments of individual inference rules are computed. In particular,
each inference rule is associated with its own blackboard and concurrent pro-
cesses, one for each argument of the inference rule. The role of every process is
to compute possible instantiations for its designated argument of the inference
rule, and to record these on the blackboard. The computations are carried out
with respect to the given proof context and by exploiting information already
present on the blackboard, that is, argument instantiations computed by other
processes. On the upper layer, the information from the lower layer is used for
computing and heuristically ranking the inference rules that are applicable in
the current proof state. The most promising rule is then applied to the central
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proof object and the data on the blackboards is cleared for the next round of
computations.

OANTS employs resource reasoning to guide search.® This enables the con-
trolled integration (e.g., by specifying time-outs) of full-fledged external rea-
soning systems such as automated theorem provers, computer algebra systems,
or model generators into the architecture. The use of the external systems is
modelled by inference rules, usually one for each system. Their corresponding
computations are encapsulated in one of the independent processes in the ar-
chitecture. For example, an inference rule modelling the application of an ATP
has its conclusion argument set to be an open goal. A process can then place
an open goal on the blackboard, where it is picked up by a process that applies
the prover to it. Any computed proof or partial-proof from the external system
is again written to the blackboard from where it is subsequently inserted into
the proof object when the inference rule is applied. While this setup enables
proof construction by a collaborative effort of diverse reasoning systems, the co-
operation can only be achieved via the central proof object. This means that all
partial results have to be translated back and forth between the syntaxes of the
integrated systems and the language of the proof object. Since there are many
types of integrated systems, the language of the proof object — a higher-order
language even richer than LEO’s, together with a natural deduction calculus —
is expressive but also cumbersome. This leads not only to a large communication
overhead, but also means that complex proof objects have to be created (large
clause sets need to be transformed into large single formulae to represent them in
the proof object; the support for this in OANTS to date is inefficient), even if the
reasoning of all systems involved is clause-based. Consequently, the cooperation
between external systems is typically rather inefficient [5].

3.2 Cooperation via a Single Inference Rule

In order to overcome the problem of the communication bottleneck described
above, we devised a new method for the cooperation between a higher-order
and a first-order theorem prover within OANTS. Rather than modelling each
theorem prover as a separate inference rule (and hence needing to translate
the communication via the language of the central proof object), we model the
cooperation between a higher-order (concretely, LEO) and a first-order theorem
prover (in our case study BLIKSEM) in OANTS as a single inference rule. The
cooperation between these two theorem provers is carried out directly and not via
the central proof object. This avoids translating clause sets into single formulae
and back. While in our previous approach the cooperation between LEO and
an FO-ATP was modelled at the upper layer of the OANTS architecture, our
new approach presented in this paper models their cooperation by exploiting the
lower layer of the OANTS blackboard architecture. This is not an ad hoc solution,

5 OANTS provides facilities to define and modify the processes at run-time. But notice
that we do not use these advanced features in the case study presented in this paper.
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but rather, it demonstrates OANTS’s flexibility in modelling the integration of
cooperative reasoning systems.

Concretely, the single inference rule modelling the cooperation between LEO
and a first-order theorem prover needs four arguments to be applicable: (1) an
open proof goal, (2) a partial LEO proof, (3) a set of FO-like clauses in the
partial proof, (4) a first-order refutation proof for the set of FO-like clauses.
Each of these arguments is computed, that is, its instantiation is found, by
an independent process. The first process finds open goals in the central proof
object and posts them on the blackboard associated with the new rule. The
second process starts an instance of the LEO theorem prover for each new open
goal on the blackboard. Each LEO instance maintains its own set of FO-like
clauses. The third process monitors these clauses, and as soon as it detects a
change in this set, that is, if new FO-like clauses are added by LEO, it writes
the entire set of clauses to the blackboard. Once FO-like clauses are posted, the
fourth process first translates each of the clauses directly into a corresponding
one in the format of the first-order theorem prover, and then starts the first-order
theorem prover on them. Note that writing FO-like clauses on the blackboard is
by far not as time consuming as generating higher-order proof objects. As soon
as either LEO or the first-order prover finds a refutation, the second process
reports LEO’s proof or partial proof to the blackboard, that is, it instantiates
argument (2). Once all four arguments of our inference rule are instantiated, the
rule can be applied and the open proof goal can be closed in the central proof
object. That is, the open goal can be proved by the cooperation between LEO
and a first-order theorem prover. When computing applicability of the inference
rule, the second and the fourth process concurrently spawn processes running
LEO or a first-order prover on a different set of FO-like clauses. Thus, when
actually applying the inference rule, all these instances of provers working on
the same open subgoal are stopped.

The cooperation can be carried out between any first-order theorem prover
and LEO instantiated with any strategy, thus resulting in different instantiations
of the inference rule discussed above. While several first-order provers are inte-
grated in OANTS and could be used, BLIKSEM was sufficient for the case study
reported in this paper (see Sec. 4). In most cases, more than one BLIKSEM pro-
cess was necessary. But as the problems were always concerned with only one
subgoal, only one LEO process had to be started.

Our approach to the cooperation between a higher-order and a first-order
theorem prover has many advantages. The main one is that the communication
is restricted to the transmission of clauses, and thus it avoids intermediate trans-
lation into the language of the central proof object. This significantly reduces
the communication overhead and makes effective proving of more involved theo-
rems feasible. A disadvantage of this approach is that we cannot easily translate
and integrate the two proof objects produced by LEO and BLIKSEM into the
central proof object maintained by OANTS, as is possible when applying only
one prover per open subgoal. Providing such translation remains future work.
The repercussions will be discussed in more detail in Sec. 3.4.
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3.3 Extracting FO-Like Clauses from LEO

Crucial to a successful cooperation between LEO and a first-order ATP is obvi-
ously the generation of FO-like clauses. LEO always maintains a heap of FO-like
clauses. In the current LEO system this heap remains rather small since LEO’s
standard calculus intrinsically avoids primitive equality and instead provides
a rule that replaces occurrences of primitive equality with their corresponding
Leibniz definitions which are higher-order. The Leibniz principle defines equal-
ity as follows =,n0:= AZasx AYas [V Poas P2 = Py]. LEO also provides a rule which
replaces syntactically non-unifiable unification constraints between terms of non-
Boolean base type by their respective representations that use Leibniz equality.
While the clauses resulting from these rules are still refutable in LEO, they are
not refutable by BLIKSEM without adding set theory axioms. We illustrate the
effect by the following simple example, where a,, b,, and f,, are constants:

a="b= f(a) = f(b)

Depending on whether we work with primitive equality or Leibniz equality this
problem is reduced to the clause sets in either (12) or (13) respectively (in the
latter P,, is a new free variable, and @,, is a new Skolem constant):

[a = 0]" [f(a) =" f(b)] (12)
[Pa]™ v [PY]" [Q(f(a))]" [R(F ()" (13)

While the former is obviously refutable in BLIKSEM, the latter is not. LEO, how-
ever, still finds a refutation for the latter and generates the crucial substitution
P — Mzo.Q(f(x)) by higher-order pre-unification.

To circumvent this problem, we adapted the relevant rules in LEO. Instead
of immediately constructing Leibniz representation of clauses, an intermediate
representation containing primitive equality is generated and dumped on the
heap of FO-like clauses. As a consequence, additional useful FO-like clauses are
accumulated and the heap can become quite large, in particular, since we do
not apply any subsumption to the set of FO-like clauses (this is generally done
more efficiently by a first-order ATP anyway). Recent research has shown that
Leibniz equality is generally very bad for automating higher-order proof search.
Thus, future work in LEO includes providing support for full primitive equality
and avoiding Leibniz equations.

3.4 Soundness and Completeness of the Cooperation

Clearly, soundness and completeness properties depend on the corresponding
properties of the systems involved, in our case, of LEO and BLIKSEM.

Soundness: The general philosophy of OANTS is to ensure the correctness of
proofs by the generation of explicit proof objects, which can be checked inde-
pendently from the proof generation. In particular, reasoning steps of ATPs have
to be translated into OANTS’s natural deduction calculus via the TRAMP proof
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transformation system [17] to be machine-checkable. Since the cooperative proof
result of LEO-BLIKSEM cannot yet be directly inserted into the centralised proof
object, the generation of a machine-checkable proof object is not yet supported.
One possible solution is to insert BLIKSEM proofs into LEO proofs at the right
places. Then, the modified LEO proofs can be inserted into the centralised proof
object, and hence, explicit proof objects can be generated by OANTS. In princi-
ple, there is no problem with this, however, it is not yet implemented.

While there are many advantages in guaranteeing correctness of proofs by
checking them, it is worth noting that the combination of LEO and BLIKSEM
is sound under the assumption that the two systems are sound. Namely, to
prove a theorem it is sufficient to show that a subset of clauses generated in
the proof is inconsistent. If LEO generates an inconsistent set of clauses, then
it does so correctly by assumption, be it a FO-like set or not. Assuming that
the translation from FO-like clauses to truly first-order clauses preserves consis-
tency/inconsistency, then a set of clauses that is given to BLIKSEM is inconsistent
only if LEO generated an inconsistent set of clauses in the first place. By the as-
sumption that BLIKSEM is sound follows that BLIKSEM will only generate the
empty clause when the original clause set was inconsistent.

Thus, soundness of our cooperative approach critically relies only on the

soundness of the selected transformational mapping from FO-like clauses to
proper first-order clauses. We use the mapping from TRAMP, which has been
previously shown to be sound and is based on [16]. Essentially, it injectively maps
expressions such as P(f(a)) to expressions such as @} (P, Qg (f,a)), where
the @ are new first-order operators describing function and predicate applica-
tion for particular types and arities. The injectivity of the mapping guarantees
soundness, since it allows each proof step to be mapped back from first-order to
higher-order. Hence, our higher-order/first-order cooperative approach between
LEO and BLIKSEM is sound.
Completeness: Completeness (in the sense of Henkin completeness) can in prin-
ciple be achieved in higher-order systems, but practically, the strategies used
are typically not complete for efficiency reasons. Let us assume that we use a
complete strategy in LEO. All that our procedure does is pass FO-like clauses
to BLIKSEM. Hence, no proofs can be lost in this process. That is, completeness
follows trivially from the completeness of LEO.

The more interesting question is whether particular cooperation strategies
will be complete as well. For instance, in LEO we may want to give higher
preference to real higher-order steps which guarantee the generation of first-
order clauses.

4 Experiments and Results

We conducted several experiments to evaluate our hybrid reasoning approach.
In particular, we concentrated on problems given in Table 1. We investigated
several LEO strategies in order to compare LEO’s individual performance with
the performance of the LEO-BLIKSEM cooperation. Our example set differs from
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the one in [14] in that it contains some additional problems, and it also omits
an entry for problem SET108+1. This problem addresses the universal class and
can therefore not be formalised in type theory in the same concise way as the
other examples, but only in a way very similar to the one given in TPTP.

Table 4 presents the results of our experiments. All timings given in the
table are in seconds. The first column contains the TPTP identifier of the prob-
lem. The second column relates some of the problems to their counterparts in the
Journal of Formalized Mathematics (JFM; see mizar.org/JFM) where they orig-
inally stem from. This eases the comparison with the results in [6,2], where the
problems from the JFM article Boolean Properties of Sets were already solved:
the problems are named with prefix ‘B:’. Prefix ‘RS1:” stands for the JFM ar-
ticle Relations Defined on Sets. The third column lists the TPTP (v3.0.1 as of
20 January 2005, see http://www.tptp.org) difficulty rating of the problem,
which indicates how hard the problem is for first-order ATPs (difficulty rating
1.00 indicates that no TPTP prover can solve the problem).

The fourth, fifth and sixth columns list whether SATURATE, MUSCADET
(v2.4) and E-SETHEO (csp04), respectively, can (4) or cannot (—) solve a prob-
lem. The seventh column lists the timing results for VAMPIRE (v7). The results
for SATURATE are taken from [14] (a ‘?” in Table 4 indicates that the result
was not listed in [14] and is thus unavailable). The results for MUSCADET and
E-SETHEO are taken from the on-line version of the solutions provided with the
TPTP. Since the listed results were obtained from different experiments on dif-
ferent platforms, their run-time comparison would be unfair, and was thus not
carried out. The timings for VAMPIRE, on the other hand, are based on private
communication with A. Voronkov and they were obtained on a computer with a
very similar specification as we used for the LEO-BLIKSEM timings. Note, that
the results for VAMPIRE and E-SETHEO reported in [14] differ for some of the
problems to the ones in TPTP. This is probably due to different versions of the
systems tested, for instance, the TPTP uses VAMPIRE version 7, while the results
reported in [14] are based on version 5. The results in columns four through to
seven show that some problems are still very hard for first-order ATPs, as well
as for the special purpose theorem prover MUSCADET. Column eight and nine
in Table 4 list the results for LEO alone and LEO-BLIKSEM, respectively. Each
of these two columns is further divided into sub-columns to allow for a detailed
comparison.

All our experiments (for the values of LEO and LEO-BLIKSEM) were con-
ducted on a 2.4 GHz Xenon machine with 1GB of memory and an overall time
limit of 100 seconds. For our experiments with LEO alone in column eight in
Table 4 we tested four different strategies. Mainly, they differ in their treat-
ment of equality and extensionality. This ranges from immediate expansion of
primitive equality with Leibniz equality and limited extensionality reasoning,
STANDARD (ST), to immediate expansion of primitive equality and moderate
extensionality reasoning, EXT, to delayed expansion of primitive equality and
moderate extensionality reasoning, EXT-INPUT (EI), and finally to delayed ex-
pansion of primitive equality and advanced recursive extensionality reasoning,
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Table 4. Experimental data for the benchmark problems given in Table 1

TPTP- Mizar ||Diffi- || Satu-|| Mus ||E-Se-|| Vamp- LEO LEO-BLIKSEM
Problem |Problem ||culty|| rate ||cadet|| theo || ire 7 [|Strat.|Cl. |Time||Cl.|Time |[FOcl|FOtm|GnCl
SET014+4 .67 + —+ —+ .01 [[ST [41 [.16 34 [6.76 [19 [.01 |7
SETO017+1 .56 - .03 ||EXT |3906|57.52||25 [8.54 (16 [.01 |74
SET066+1 1.00 ? — — — — — — 26 [6.80 |20 10 56
SET067+1 .56 + + + .04 ||ST |6 .02 13 .32 |16 |.01 12
SET076+1 .67 + - + .00 |- - - 10 [.47 |18 |.01 |35
SETO086+1 .22 + - + .04 ||ST |4 .01 4 |.01 |N/A|N/A |N/A
SET096+1 .56 + - + .03 |- - - 27 [7.99 (14 |.01 |25
SET143+3|B:67 .67 + + + 68.71 ||[EIR |37 .38 33 |7.93 |18 .01 19
SET171+3|B:71 .67 + + — ||108.31||EIR (36 |.56 25 |4.75 |19 |.01 |20
SET580+3|B:23 .44 + + + 14.71 ||[EIR |25 .19 6 [2.73 |8 01 13
SET601+4-3|B:72 .22 + + + ||168.40||EIR |145 [2.20 |55 |4.96 |8 01 13
SET606+3|B:77 .78 + + || 62.02 ||EIR |21 |.33 17 110.8 |15 01 |5
SET607+3|B:79 .67 + + + || 65.57 ||EIR |22 |.31 17 |7.79 |15 01 |6
SET609+3|B:81 .89 + + - ||161.78||EIR |37 |.60 26 |6.50 |19 |10 17
SET611+3|B:84 .44 + - + 60.20 ||EIR [996 [12.69(|72 [32.14|38 01 101
SET612+4-3|B:85 .89 + - — ||113.33||EIR |41 |.54 18 |13.95 |6 01 |7
SET614+4-3|B:88 .67 + + 157.88||EIR |38 |.46 19 |4.34 |16 01 17
SET615+3|B:89 .67 + + 109.01||EIR |38 |.57 17 [3.59 |6 01 |9
SET623+3|B:99 1.00 ? - - - EXT |43 8.84 (|23 [9.54 |10 01 14
SET624+3|B:100 .67 + - + .04 ST |4942(34.71||54 [9.61 |46 01 212
SET630+43|B:112 44 + - + || 60.39 [|EIR |11 07 |[|6 |.08 |8 10 4
SET640+4-3|RS1:2 .22 + - + 70.41 ||EIR |2 01 2 [.01 |N/A|N/A |N/A
SET646+3|RS1:8 .56 + - + 59.63 ||EIR |2 .01 2 [.01 |N/A|N/A |N/A
SET647+3|RS1:9 .56 + - + 64.21 ||EIR [26 |.15 13 .30 |13 01 15
SET648+3|RS1:10 || .56 + - + 64.22 ||EIR [26 |.15 14 [.30 |13 01 16
SET649+3|RS1:11 || .33 - - + || 63.77 ||EIR |45 [.30 29 [5.49 |12 01 16
SET651+3|RS1:13 || .44 — — + 63.88 [|[EIR |20 10 11 |.16 10 10 11
SET6574+3|RS1:19 || .67 + - + 1.44 ||EIR |2 01 2 [.01 |N/A|N/A |N/A
SET669+3|RS1:19 || .22 - - + 34 ||[EI |35 .22 35 (.23 |N/A|N/A |N/A
SET670+3|RS1:33 ||1.00|| 7 - - - EXT|15 |.17 17 1.36 |16 01 |6
SET671+3|RS1:34 || .78 - - + ||218.02||EIR |78 [.64 7 [2.71 |10 01 14
SET672+3|RS1:35 || 1.00(| 7 - - - EXT |27 |4 30 [.70 |21 01 11
SET673+4+3|RS1:36 || .78 - + || 47.86 ||EIR |78 |.65 14 15.66 |14 01 16
SET680+3|RS1:47 || .33 + - + 07 ||ST |185 |.88 29 |4.61 |18 01 |24
SET683+3|RS1:50 || .22 + - + 06 |[ST |46 20 35 (8.90 (18 |10 24
SET684+3|RS1:51 || .78 + 33 ||ST |[275 |2.45 ||46 |5.95 |26 01 |47
SET686+3|RS1:53 || .56 - - + 11 ||ST |274 |2.36 ||46 |5.37 |26 01 |46
SETT716+4 .89 + + - - ST |39 45 18 [3.81 |18 01 118
SET724+4 .89 + + - - EXT|154 [2.75 ||18 |[7.21 |15 10 23
SET741+4 1.00|| 7 - - - - - - - |- - - -
SET747+4 .89 - + - - ST |34 46 25 (1.11 |18 |10 10
SETT752+4 .89 ? + - - - - - 50 [6.60 |48 01 |4363
SET753+4 .89 ? + - - - - - 15 [3.07 [12 |10 19
SET764+4 56 + || + || + 02 |[E1 |9 |05 |[|8 [.04 |N/A[N/A |N/A
SET770+4 .89 + + - - - - i - - -

EXT-INPUT-RECURSIVE (EIR). Column eight in Table 4 presents the fastest
strategy for a respective problem (Strat.), the number of clauses generated by
Leo (Cl), and the total runtime (Time). While occasionally there were more
than one LEO strategy that could solve a problem, it should be noted that none
of the strategies was successful for all the problems solved by LEO.

In contrast to the experiments with LEO alone, we used only the EXT-INPUT
strategy for our experiments with the LEO-BLIKSEM cooperation. Column nine in
Table 4 presents the number of clauses generated by LEO (Cl.) together with the
time (Time), and in addition, the number of first-order clauses sent to BLIKSEM
(FOcl), the time used by BLIKSEM (FOtm), and the number of clauses generated
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by BLIKSEM (GnCl). Note, that we give the data only for the first instance that
BLIKSEM actually succeeded in solving the problem. This time also includes
the time needed to write and process input and output files over the network.
While LEO and instances of BLIKSEM were running in separate threads (each
run of BLIKSEM was given a 50 second time limit), the figures given in the
‘Time’ column reflect the overall time needed for a successful proof. That is,
it contains the time needed by all concurrent processes: LEO’s own process as
well as those processes administering the various instances of BLIKSEM. Since
all these processes ran on a single processor, there is potential to ameliorate the
overall runtimes by using real multiprocessing.

Note also, that the number of clauses in LEO’s search space is typically low
since subsumption is enabled. Subsumption, however, was not enabled for the
accumulation of FO-like clauses in LEO’s bag of FO-like clauses. This is why
there are usually more clauses in this bag (which is sent to BLIKSEM) than there
are available in LEO’s search space. Finally, observe that for some problems a
refutation was found after LEO’s clausal normalisation, and therefore BLIKSEM
was not applicable (N/A).

While LEO itself can solve a majority of the considered problems with some
strategy, the LEO-BLIKSEM cooperation can solve more problems and, moreover,
needs only a single LEO strategy. We can also observe that for many problems
that appear to be relatively hard for LEO alone (e.g., SET017+1, SET611+3,
SET624+3), the LEO-BLIKSEM cooperation solves them not only more quickly,
but also it sometimes reduces the problems to relatively small higher-order pre-
processing steps with subsequent easy first-order proofs, as for instance, in the
case of SET017+1.

From a mathematical viewpoint the investigated problems are trivial and,
hence, they should ideally be reliably and very efficiently solvable within a
proof assistant. This has been achieved for the examples in Table 4 (except for
SET74144 and SET770+4) by our hybrid approach. While some of the proof
attempts now require slightly more time than when using LEO alone with a spe-
cialised strategy, they are, in most cases, still faster than when proving with a
first-order system.

5 Related Work and Conclusion

Related to our approach is the TECHS system [12], which realises a coopera-
tion between a set of heterogeneous first-order theorem provers. Similarly to our
approach, partial results in TECHS are exchanged between the different theo-
rem provers in form of clauses. The main difference to the work of Denzinger
et al. (and other related architectures like [13]) is that our system bridges be-
tween higher-order and first-order automated theorem proving. Also, unlike in
TECHS, we provide a declarative specification framework for modelling exter-
nal systems as cooperating, concurrent processes that can be (re-)configured at
run-time. Related is also the work of Hurd [15] which realises a generic inter-
face between HOL and first-order theorem provers. It is similar to the solution
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previously achieved by TRAMP [17] in OMEGA, which serves as a basis for the
sound integration of ATPs into OANTS. Both approaches pass essentially first-
order clauses to first-order theorem provers and then translate their results back
into HOL resp. OMEGA. Some further related work on the cooperation of Is-
abelle with VAMPIRE is presented in [18]. The main difference of our work to
the related systems is that while our system calls first-order provers from within
higher-order proof search, this is not the case for [15,17,18].

One of the motivations for our work is to show that the cooperation of higher-
order and first-order automated theorem provers can be very successful and ef-
fective. The results of our case study provide evidence for this: our non-optimised
system outperforms related work on state-of-the-art first-order theorem provers
and their ad hoc extensions such as SATURATE [14] on 45 mathematical problems
chosen from the TPTP SET category. Among them are four problems which
cannot be solved by any TPTP system to date. In contrast to the first-order
situation, these problems can in fact be proved in our approach reliably from
first principles, that is, without avoiding relevant base axioms of the underlying
set theory, and moreover, without the need to provide relevant lemmata and
definitions by hand.

The results of our case study motivate further research in the automation
of higher-order theorem proving and the experimentation with different higher-
order to first-order transformation mappings (such as the ones used by Hurd)
that support our hybrid reasoning approach. They also provide further evidence
for the usefulness of the OANTS approach as described in [8,5] for flexibly mod-
elling the cooperation of reasoning systems.

Our results also motivate the need for a higher-order extension of the TPTP
library in which alternative higher-order problem formalisations are linked with
their first-order counterparts so that first-order theorem provers could also be
evaluated against higher-order systems (and vice versa).

Future work is to investigate how far our approach scales up to more complex
problems and more advanced mathematical theories. In less trivial settings as
discussed in this paper, we will face the problem of selecting and adding relevant
lemmata to avoid immediate reduction to first principles and to appropriately
instantiate set variables. Relevant related work for this setting is Bishop’s ap-
proach to selectively expand definitions as presented in [9] and Brown’s PhD
thesis on set comprehension in Church’s type theory [10].

Acknowledgements For advice and help we thank Chad Brown, Andreas
Meier, Andrei Voronkov, and Claus-Peter Wirth.
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Abstract. We present the QQ-ANTS theorem prover that is built on top of
an agent-based command suggestion mechanism. The theorem prover inher-
its beneficial properties from the underlying suggestion mechanism such as
run-time extendibility and resource adaptability. Moreover, it supports the
distributed integration of external reasoning systems. We also discuss how
the implementation and modeling of a calculus in our agent-based approach
can be investigated wrt. the inheritance of properties such as completeness
and soundness.

1 Introduction

We present the new 2-ANTS automated theorem proving approach that
is build on top of the Q-ANTS agent-based command suggestion mecha-
nism. This mechanism has been originally developed to support the user
in interactive theorem proving by using available resources in-between user
interactions to search for the next possible proof steps [4]. This is done
via a hierarchical blackboard-architecture where agents concurrently check
for applicable commands (i.e. commands that apply proof rules) and the
most promising commands are dynamically presented to the user. The
faster a command’s applicability can be analysed the faster it will be re-
ported immediately to the user. Further benefits of the distributed 2-ANTS

*The author would like to thank EPSRC for its support by grant GR/M99644.
TThe author’s work was supported by the ‘Studienstiftung des deutschen Volkes’.



command suggestion mechanism are the increased robustness (errors in the
distributed computations do not harm the overall mechanism), its resource-
and user-adaptability, and its run-time extendibility and modifiability [5].

In this paper we present how we achieve the automation of Q-ANTS.
On the one hand the concurrency enables the integration of external rea-
soning systems into the suggestion process. External reasoners can either
be used to suggest whole subproofs or to compute particular arguments of
commands. On the other hand 2-ANTS can be automated directly by exe-
cuting suggested commands automatically instead of just presenting them
to the user. Thereby it is important to restrict the set of involved com-
mands to those suitable for automation and to fix a certain clock speed
determining the period of time the suggestion mechanism may maximally
consume for its computations in-between the automated command execu-
tions. In any proof state where (-ANTS cannot find any new applicable
commands it simply backtracks by retracting the lastly executed command.

The Q-ANTS suggestion mechanism and the Q2-ANTS theorem prover
have been developed and implemented within the MEGA theorem proving
environment [17]. However, the approach is not restricted to a particular
logic, calculus, or theorem proving environment. It can be rather seen
as an approach parameterised over the particular calculus it is working
for. In this respect the question arises how the designer of the 2-ANTS
agents which have to be provided for each calculus rule can ensure that the
modeling guarantees a complete proof search in 2-ANTS. This question is
discussed in the second half of the paper by informally defining properties
of agent societies in 2-ANTS which are necessary to ensure completeness
and by giving some examples how these properties are checked in practice.

This paper is organised as follows: Sec. 2 sketches the Q2-ANTS com-
mand suggestion mechanism (for further details see [4, 5]), illustrates its
declarative agent specification language, and sketches a formal semantics.
Sec. 3 describes how external reasoners can be integrated at different lay-
ers. In Sec. 4 the Q-ANTS theorem prover built on top of the suggestion
mechanism is introduced and completeness aspects are discussed in Sec. 5.
We conclude with discussing some related work and hinting at future work.

2 The (-ANTS suggestion mechanism
In this section we sketch the hierarchical, agent-based suggestion mecha-
nism underlying the 2-ANTS theorem prover. We also discuss the declar-

ative agent specification language supporting the specification and modifi-
cation of agents at run-time, and sketch how this language can be linked
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to a formal semantics.

Agent-based architecture The suggestion mechanism originally aims
at supporting a user in interactive tactical theorem proving to choose an
appropriate proof rule from the generally large set of available ones. It
computes and proposes commands that invoke proof rules that are appli-
cable in a given proof state.! This is basically done in two steps: firstly,
by computing whether there are any possible instantiations for single argu-
ments of a command in the current proof state; and secondly, by gathering
those commands for which at least some arguments could be instantiated
and presenting them in some heuristically ordered fashion to the user.

An important notion for the Q-ANTS mechanism is that of a Partial Ar-
gument Instantiations (PAI) for a command. Considering a command and
its corresponding proof rule there is usually a strong connection between
the formal arguments of both, i.e. the formal arguments of the command
are generally a subset of the formal arguments of the proof rule. As an ex-
ample we observe the proof rule Al and its corresponding command AndI:

A B LConj RConj

ANB M T T cemy  AndI

Here the command’s formal argument Conj needs to be instantiated with
an open proof node containing a conjunction, LConj and RConj with nodes
containing the appropriate left and right conjuncts, respectively. In general,
a command’s formal arguments need to be partially instantiated only, in
order to be applicable. For instance, AndI is also applicable if only the
Conj argument is provided, resulting in the introduction of two new open
proof nodes containing the two conjuncts. Or additionally one of LConj
or RConj or even both could be provided, resulting in the introduction
of only one open node or in simply closing the given open conjunction.
Thus, we can denote partial argument instantiations for a command as a
set relating some of a command’s formal argument to actual arguments for
its execution. One possible PAI for AndI would be (Conj : x,LConj : y)
where 2 and y are proof nodes that contain the appropriate formulas. PATs
can also be seen as functions, indexed by the different command names,
with the set of argument-names as domain and the infinite set of possible
proof lines and parameters as codomain. For instance, PAIs for AndI can
be represented as particular functions

pATAndL . {Conj, LConj, RConj} — Prooflines U Parameters U {e}

1For the remainder of the paper, if we talk about applicability of a command we
always mean the applicability to the corresponding proof rule (e.g., a calculus rule, a
tactic, a proof planning method, or an external system call) in the given proof state.
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Figure 1. The hierarchical, agent-based Q- ANTS-architecture.

where € is a special symbol denoting the empty proofline. In these sense the
PAT (Conj : 2,LConj : y) for AndT is realised by a respective function such
that PATAR4Y (Con i) = &, PATARY (1.conj) = ¢, and PATARL (Reonj) = .

The idea of the suggestion mechanism is to compute in each proof state
for each command PAls as complete as possible, to determine which com-
mands are applicable, and then to give preference to those, e.g., with the
most complete PATs. The first task is done by societies of Argument Agents
(rightmost circles in Fig. 1) where one society is associated with each of the
commands. Each argument agent is associated with one or several of the
command’s formal arguments and has a specification for possible instantia-
tions of these arguments. Its task is to search for proof nodes in the partial
proof or to compute parameters according to its specification. Argument
agents exchange results via Command Blackboards (for each command one
command blackboard is provided) using PAls as messages. Every argu-
ment agent commences its computations only when it finds a PAI on the
command blackboard that contains instantiations of arguments that are
relevant for its own computations.

For example, the AndT argument agent associated with Conj searches
the partial proof for an open node containing a conjunction and, once it
has found one, say in node z, it places a respective PAI (Conj : x) on the
command blackboard. Now the agents for LConj and RConj can use this
result in order to look simultaneously for nodes in the given partial proof
containing the appropriate left or right conjunct. Each argument agent
only reads old suggestions and possibly adds expanded new suggestions,
thus there is no need for conflict resolutions between the agents.

On top of the layer of argument agents are the Command Agents (dotted
circles). Their task is to monitor the command blackboard associated with
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the command and to heuristically order the PAIs from most promising (e.g.,
most complete) to least promising. Whenever their heuristics indicate that
there is a new best PAI on the command blackboard they pass it to the
Suggestion Blackboard. The suggestion blackboard itself is again monitored
by the Suggestion Agent (leftmost double circle) which sorts the entries
with respect to its heuristic criteria and presents them to the user.

When the Q-ANTS mechanism is started all command blackboards are
initialised with the empty PAI. The agents then autonomously search for
applicable commands and the newest suggestions are successively presented
to the user. At any point a command can be executed and when the proof
state has actually been changed the (-ANTS mechanism is re-initialised in
order to compute new suggestions for the modified proof state. (:-ANTS
can also be used to respond to particular user queries, i.e. the user can
interactively specify certain argument instantiations and the mechanism
tries to complete these.

The whole mechanism can be adjusted during run-time by changing
sorting heuristics for the command blackboards and the suggestion black-
board or by removing, adding, or modifying argument agents. Moreover,
Q-ANTS employs a resource mechanism that automatically disables and
enables argument agents with respect to their usefulness and performance
in particular proof states. Although not depicted here, the mechanism also
contains classification agents whose purpose is to classify the focused sub-
problem in terms of logic and mathematical theory is belongs to. This
information is communicated within the blackboard architecture enabling
agents to decide whether they are appropriate (i.e. should be active) in the
current proof state or not. See [5] for further details.

A Declarative Agent Specification Language In Q-ANTS only the
argument agents need to be explicitly specified. All other agents are then
generated automatically (certain heuristics may be adapted by the user,
though). Argument agents are implemented with a Lisp-like declarative
language such as the following two argument agents for the AndI command:

Aq AUq:
(agent~defagent AndI c-predicate (agent~defagent AndI s-predicate
(for Conj) (uses ) (for RConj) (uses Comnj)
(exclude LConj RComj) (definition
(definition (logic right-conjunct—p RConj Conj))))

(logic~conjunction-p Conj)))

The agent 2, is defined as a c-predicate agent, indicating that it will
always restrict its search to open proof nodes, i.e., possible conclusions.
s—predicate agents like 24 in contrast search the support nodes for pos-
sible premises. The proof nodes 2; is looking for are instantiations of the
argument Conj, given in the for-slot. The empty uses-slot indicates that
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{Conj}

Aq: {}{LConj,RConj} AConjs(Conj=ANB)

Ay Eggéﬁj} (RConjy = AConj(Conj=ANB) & (LConj=A)
Az: Efci?lrgr{j},{LConj} = AConj.(Conj=ANB) & (RConj=B)
Ay %;Eﬁ} = ARConj(Conj=AAB) & (RConj=B)

As: 6%5%?}{} = ALConjs(Conj=AAB) & (LConj=A)
{COHJ},

{LConj,RConj}.{}
Figure 2. A society of argument agents for command AndI.

= AConj.(Conj=AAB) & (LConj=A) & (RConj=B)

the agent does not require any already given argument suggestions in a
PAT for its computations. The exclude-slot on the other hand determines
that this agent must not complete any PAI that already contains an in-
stantiation for arguments LConj or RConj. In the special case of 2, this
means the agent is exactly triggered by the empty PAI. The idea for this
exclusion constraint is to suppress redundant or even false computations.

The full set of argument agents for the AndI command is given in Fig. 2
in a specification meta-language. c-predicate and s-predicate agents
are denoted by € and & respectively, the superscript set corresponds to
the for-list, and the uses- and exclude-list to the first and second in-
dex. The subset of the nodes in a partial proof that will be detected by
each argument agent can be formally described by a A-term (characteris-
tic function). When running over the partial proof the agents use these
characteristic functions to test each node before possibly returning an ex-
panded PAI. 4 and B are free meta-variables. = and & are symbols of the
meta-language with the meaning, for instance in agent 2, that given an
arbitrary formula A instantiating argument LConj then Conj has to be of
form A A B, i.e. the left hand side of Conj is determined by the already
given suggestion LConj whereas is right hand side is still free.

This attempt at a formal semantics for our agent definitions by assigning
characteristic functions to them does not yet address the agents functional
behaviour (they pick up & return potentially modified PAIs) nor does it
formally regard the uses and exclude-restrictions. This is the idea of the
A-expression for agent s below. Assuming that PAIs are represented as
functions this term denotes that 2 picks up certain PAIs on the blackboard
and returns possibly modified ones while using an (extended/modified)
characteristic function in the previous sense as filter. Here the [.]-brackets
denote a function which accesses the formula content of the proofline given
as an argument to it (note that PAIs map argument names to prooflines,
while here we want to talk about the formulas of the prooflines?).

2Tn other parts of this paper we do not take this so serious and assume that the user
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A PAI . A Conj, .. «
if PAI(Conj) = € & PAI(LConj) Z ¢ & PAI(RConj) =¢
then if [Conjl = AAB & [PAI( LConj)] = A

then PAI|{1.conj, Roonjy Y {Conj > Congj} — new ext. PAI
else PAI — no new PAI
fi

else PAT — no new PAI

fi

3 Integration of External Reasoning Systems

The following four examples illustrate how external reasoners can be inte-
grated into Q-ANTS. The first row presents four inference rules and the
second the corresponding commands which we want to model in Q2-ANTS.

P . P oper A B=C mp-mod-Otter(A = B)
¢ Mace ¢ mp-mod-CAS(A "=¥' B)
Prem: ... Prem, pgiier Left Impl mp-mod-0tter (Impl-Prob)
Canc Mace Conc mp-mod—CAS (Simpl-Prob)

The first two rules describe the integration of the first-order theorem
prover OTTER and the propositional logic decision procedure MACE. These
commands may be used in a given proof state in order to justify a goal from
its premises by the application of one of these external systems. The next
two rules describe a situation where external reasoners are used within
an inference modulo, in our particular case modus ponens modulo the
validity of an implication (to be checked by OTTER) and modus ponens
modulo the simplifiability of a proposition (to be analyzed by a computer
algebra system). For instance, sensible instances of these commands in
a concrete proof situation would be: Left « Vz.p(x) A ¢(x), Impl « pla) =
r(a), Conc < r(a), and Impl-Prob < (Vz.p(z) A g¢(z)) = p(a) for mp-mod-Otter,
and Left < continuous(Az.l — cos®(z)), Impl < continuous(\z.sin’(z)) =
something(Az.sin?(z)), Conc < something(Az.sin?(z)), Simpl-Prob«—continuous
(Az.1 — cos?(z)) "' continuous(Az.sin?(z)) for mp-mod-CAS. The idea is that
the external systems are used to check the ‘modulo’-side-conditions of these
rules. Note, that in contrast to the theorem proving modulo approach de-
scribed in [9] we explicitly facilitate and support the integration of non-
decision procedures; a strict separation of deduction and computation is
not needed due to the distribution and resource-guidance aspect of the
-ANTS mechanism.

We are here not concerned with correctness issues for the integration
of the external systems. However, since we are working in the QMEGA

recognises whether we address a proof line or its formula content from the context.

7



environment we can make use of the work already done in this area that
ensures the correctness by translating proofs or computations from external
reasoners into primitive inference steps of IMEGA [16, 19].

If we, for example, consider the Otter and the mp-mod-CAS command
we can observe two different ways of integrating the external reasoners
into agents: For the Otter command one agent attacks the focused open
goal in-between user interactions and as soon as OTTER finds a proof the
application of this command is suggested to the user. Thus, the agent
employs the external system to prove an open sub-problem. Similarly,
other external reasoners can be integrated.

In case of the mp-mod-CAS command an agent will first look for appro-
priate implication proof nodes with respect to the open goal. This agent’s
results trigger another agent that which employs an integrated computer
algebra system to look for appropriate proof nodes as instances for argu-
ment Left. More precisely, the latter agent checks whether a proof node
can be matched with the antecedent of the implication with respect to
algebraic simplification of sub-terms. Hence, the agent uses an external
reasoner only to find possible instantiations of arguments.

4 Automation

The Q2-ANTS suggestion mechanism of Sec. 2 can be automated into a full-
fledged proof search procedure by embedding the execution of suggested
commands into a backtracking wrapper. The algorithm is given in Fig. 3.

The basic automation performing a depth first search is straight for-
ward: The suggestion mechanism waits until all agents have performed
all possible computations and no further suggestions will be produced and
then executes the heuristically preferred suggestion (1a&2). When a proof
step is executed and the proof is not yet finished, the remaining suggestions
on each command blackboard are pushed on the backtracking stack (3). In
case no best suggestion could be computed 2-ANTS backtracks by popping
the first element of the backtrack stack and re-instantiating its values on
the blackboards (6). The proof is constructed as an explicit proof plan
data structure of @MEGA [8]. It enables to store proofs in a generalised
natural deduction format, i.e. proof steps cannot only be justified by basic
natural deduction rules but by abstract tactics or computations of external
reasoners as well. Moreover, the proof plan data structure supports the
expansion of externally computed proofs into primitive inference steps and
thus the check for correctness as well as the storage of information for the
automation loop directly in the proof object.
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Figure 3. Main-loop of the Q-ANTS theorem prover.

The simple automation loop is complicated by the distinct features of
Q-ANTS: (i) some agents can perform infinite or very costly computations,
(ii) commands can be executed by the user parallel to the automation,
and (iii) the components of Q2-ANTS can be changed at run-time. Further-
more, the automation can be suspended and revoked especially in order to
perform the latter two interaction possibilities in a coordinated way.

We avoid that ©2-ANTS is paralysed by agents that get stuck in infi-
nite computations by giving a time limit after which the best command,
suggested so far, is executed (cf. step 1b). However, such a proof step
is treated special when backtracking, since then the blackboards will be
re-instantiated with all the values of the proof step, i.e. containing the ex-
ecuted command as well. This way there is a second chance for agents
that could not contribute the first time to add information. The ques-
tion how the Q-ANTS theorem prover can avoid to get lost on an infinite
branch in the search space without ever backtracking will be addressed in
the completeness discussion in Sec. 5.

If a command has been executed by the user the loop proceeds im-
mediately with saving the blackboards’ history without executing another
command (1¢). When backtracking the whole history on the last step is re-
instantiated onto the blackboards, possibly containing also the command
executed by the user, in order not to loose possible proofs (1c&6).

One main feature of Q-ANTS is its run-time adaptability by adding or
deleting agents or changing the filter and sorting heuristics used by the
suggestion and commands agents. These changes also take effect when
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running the automation wrapper (4). The automation wrapper can be
suspended by the user at any time, for instance, in order to analyzed the
current proof state and to add, change or remove certain agents from the
suggestion mechanism. It can then be resumed using all the information
computed so far.

We briefly summarise the user interaction facilities inherited by the
Q-ANTS prover from the 2-ANTS suggestion mechanism:

Pure user interaction/mized initiative reasoning: In automation mode
the entries on the suggestion blackboard are (theoretically®) steadily visible
to the user, who can interfere with the automation wrapper by executing
a command before the automation wrapper does.

Adjustment of resource bounds: The user may want to actively modify
the resource bounds (time, memory, deactivation threshold) in order to
adapt the system to particular needs.

Disable/resume single agents: Q-ANTS allows to disable/resume single
agents, agent societies, or the whole mechanism at run-time.

Modification/addition of argument agents: The user may want to spec-
ify and load new agents at run-time or modify the definition of already given
agents. This is supported by the declarative agent-specification language.

Modification of command/suggestion agents: In order to influence the
provers search through the search space the user may want to choose dif-
ferent heuristics and sorting criteria for these agents.

The Q-ANTS system has been applied to automate the propositional
logic fragment of the normal form natural deduction calculus Nic [7],
see [2] for more details. We currently experiment with the full first-order
fragment of N1C. The integration of external reasoners has been tested
with the propositional logic prover MACE, the first-order provers OTTER
and SPASS, the higher-order prover TPS, and the computer algebra system
MAPLE. The theorems we are working with are still all relatively simple
and nothing any of the involved systems is not able to solve on its own.
The computations involved are mainly to solve equations and compute
derivatives.

5 -AnNTs and Completeness

In this section we introduce and discuss some notions that are necessary to
characterise and guarantee completeness and soundness of a theorem prover
based on Q2-ANTS with respect to the underlying calculus. The discussion

3In our experiments with the Nic calculus, the theorem prover is unfortunately much
faster than the graphical user interface to allow a synchronised displaying.
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is rather informal since we have yet to define completely formal syntax
and semantics for our agent specification language. However, the following
shall both give an intuition for the properties that need to be considered
and contributes to a better understanding of Q-ANTS.

Given a theoretically complete calculus, how can it be modeled in
Q-ANTS such that completeness is still assured in the mechanism? Note,
that we do not address the theoretical completeness of the underlying cal-
culus itself, in fact we do not even need to specify here what particular
logic and calculus we are interested in. We rather aim to ensure that each
calculus rule application that is theoretically possible in a given proof state
can indeed be determined and suggested by the 2-ANTS mechanism. In
particular we will discuss two different notions of completeness in this sense,
namely interaction completeness and automation completeness. This is due
to twofold bias of the -ANTS system as a suggestion mechanism and as an
automated theorem prover. The authors admit that naming these proper-
ties also ‘completeness’ might be slightly misleading. However, automation
(interaction) completeness of the agent societies involved taken together
with the ‘theoretical (logical) completeness’ of a calculus implies that a
complete proof search is actually supported by 2-ANTS.

Theoretical completeness investigations typically assume non-limited
resources like computation time and space. In our case the resources avail-
able to the Q-ANTS-system in-between the command executions are crucial
wrt. completeness as well. However, for the time being we neglect points
possibly interfering with this assumption, in particular cases 1(b) or 1(c)
of the prover’s main-loop in Fig. 3 and the existence of agents with calls to
undecidable procedures such as the OTTER agent in Sec. 3.

Automation Completeness Automation completeness depends in the
first place on the suggestion completeness of the argument agent societies
associated with each rule: A society of suggestion agents working for a sin-
gle command C is called suggestion complete wrt. a given calculus, if in any
possible proof state all PAIs of a command necessary to ensure complete-
ness of the calculus can be computed by the mechanism. Under the resource
abstraction assumption from above suggestion completeness requires that
each particular agent society consists of sufficiently many individual sug-
gestion agents and that their particular definitions are adequate wrt. the
structural dependencies and side-conditions of the respective calculus rule.
Adequacy basically excludes wrong agent specifications, while Sufficiency
refers to the ability of an agent society to cooperatively compute each ap-
plicable PAT in a given proof state.

We call a command agent non-excluding if it indeed always reports at
least one selected entry from the associated command blackboard to the
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suggestion blackboard as soon as the former contains some applicable PATs.
And the suggestion agent is non-excluding if it always reports the complete
set of entries on the command blackboard to the automation wrapper. This
ensures that computed PAls are actually propagated in the mechanism.

We additionally have to ensure that the proof search is organised in a
fair way by ensuring that the execution of an applicable PAI suggested
within a particular proof step cannot be infinitely long delayed. The fair-
ness problem of -ANTS is exactly the same as in other theorem proving
approaches performing depth first search. In our experiments with the
propositional logic fragment of the Nic this problem did not occur as the
considered fragment defines a decision procedure. However to ensure that
the prover does not get lost on infinite search path when working with the
full first-order fragment of NIC we chose iterative deepening search.

Our mechanism can then be called automation complete wrt. to a given
calculus C if (i) the agent societies specified are suggestion complete wrt.
C, and (ii) the command agents for C' and the suggestion agent are non-
excluding, (iii) the search procedure is fair and (iv) the resource bounds and
deactivation threshold are chosen sufficiently high. such that each agents
computation terminates within these bounds.

We illustrate the notions of adequacy and sufficency in more detail with
the example of the AndT agents. We claim that the agents ;.. 24 of Fig. 2
are both (a) adequate and (b) sufficient to apply AndI (whenever possible)
in automated proof search.

(a) To show that all computable suggestions are indeed applicable we
check that each agent produces an adequate predicate if all arguments of
the uses slot are instantiated correctly. We observe this in the case, of
agent 2A; when applying it to a PAI of the form (LConj:a). Here a is
an arbitrary but fixed term. The resulting predicate is Conj=aAB which
permits all conjunctions with left conjunct a and is therefore adequate.

After checking adequacy of all single agents we have to ensure adequacy
of cooperation between agents. That is, to show that no incorrect PATs can
be assembled by cooperation of agents with correct predicates. Here we are
only concerned with agents whose for-, uses-, and exclude-list does not
contain all possible arguments of the command, thus in our case agents 2l
and 2A5. It can be easily seen that even if, for instance, 214 is applied to a
PAT already containing an instantiation for LConj, adding an appropriate
instantiations for RConj will maintain the PAT’s applicability, provided it
was correct to begin with.

(b) To ensure sufficiency we have to show that each PAT of AndT neces-
sary for automation can (cooperatively) be computed. In automatic mode
the NIC calculus is intended for pure backward search and thus the possi-
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ble PATs are of the form? i) (Conj:a A b), ii) (Conj:aAb, LConj:a), iii)
(Conj:anb, RConj:b), or iv) (Conj:a A b, LConj:a, RConj:b), where
a and b are arbitrary but fixed formulas occurring in a partial proof P.
We representatively discuss case ii) and verify that each PAI of form S =
(Conj:aAb, LConj:a) that is applicable in P will actually be computed.
As S is applicable, P must contain an open node containing a A b together
with a support node containing a. Initially the command blackboard con-
tains the empty PAI () to which only 2{; can be applied. Provided the
underlying implementation, i.e. the function logic~conjunction-pis cor-
rect, y’s predicate suffices to compute (Conj:a A b). This PAI in turn
triggers the computations of 24 and s with the respective instantiated
predicates RConj=b and LConj=a. Since the latter is true on the sup-
port node containing a, 2 returns the PAT in question.

When checking all other cases we can observe that for the automation
mode (where pure backward reasoning is assumed) the agents ;,2(4, and
s are already sufficient. And indeed the other three agents are needed to
support user interaction, only. For instance, the user can apply 2-ANTS to
complete a particular PAI like (LConj:a) which will trigger the computa-
tions of agent 2s.

Interaction Completeness Interaction completeness of a calculus im-
plies that one never has to rely on another interaction mechanism besides
Q-ANTS in order to perform possible proof steps within a given calculus.
Therefore, we have to show that all possible PAls to apply a rule interac-
tively can be computed. This is generally a stronger requirement than for
automation completeness as can be easily observed with our AndI exam-
ple. When automated the NiC calculus strictly performs backward search
and only the PAIs (i)—(iv) given above are legitimate. However, when
using the calculus interactively forward reasoning (i.e. a PAI of the form
(LConj:a, RConj:b)) is a perfectly legal option. But it can be easily seen
that this PATI cannot be computed with the given agent society and thus
{A1.. s} are not interaction complete.

When dealing with interaction completeness we have also to consider
all possible initialisations of the command blackboards. While in automa-
tion mode the blackboards are always initialised with the empty PAI, the
user can ask 2-ANTS interactively to complete a particular PAT (such as
(LConj:a)) which is then used as initial value on the blackboard. It is
necessary to show sufficiency and adequacy for all possible initialisations.

Soundness Should not the soundness aspect be addressed here as well?
Our answer is no, as we presuppose that the underlying theorem proving

4PATs are essentially sets and thus the order of the particular entries is not important.
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environment takes care of a sound application of its own proof rules. Fur-
thermore, in systems such as OMEGA soundness is always only guaranteed
on the level of primitive inferences and not necessarily for all proof methods
etc. involved. Thus, soundness requirements when computing suggestions
for methods that do not necessarily lead to a correct proof would not make
sense. Thus, instead of logical soundness we are rather interested in the no-
tion of applicability. This notion relates the PAIs computed by Q-ANTS to
the particular side-conditions of the underlying proof rules (whether they
are logically sound or not).

The effect of non-applicable PAIs suggested to the user or the automa-
tion wrapper might lead to failure when applying the respective command.
In the current implementation such a failure will simply be ignored and
the responsible PAT is discarded. However, too many non-executable sug-
gestions might negatively influence the mechanisms user-acceptance and
especially the performance of the automation wrapper.

6 Related Work

There exist several theorem proving environments where a mixture of in-
teractive and partial automated proving is supported. In systems such as
PVS[18] and HOL [13] special tactics are available that can be used to auto-
matically solve certain problems. These tactics are essentially proof proce-
dures build on top of the primitive inferences of the respective systems but
do not directly construct a proof in terms of primitive inferences, although
the automated parts can be, at least in the case of HOL, expanded. More-
over, there is no possibility for a user of the system to change the behaviour
of the automation tactic during its application. In the TPS system [1] inter-
action and automation can also be interleaved and any automatic proving
attempt can be interrupted, its behaviour changed and restarted by the
user. The automation is achieved by using a mating search technique that
is substantially different from the natural deduction calculus that is used
for interactive proving. Finally, an approach to achieve automation in an
interactive environment is to enable the use of external reasoners which is,
for instance, one of the features of the IMEGA system [17]. However, with-
out the 2-ANTS part, application of rules, tactics and external reasoners
cannot be automated.

As an environment that is especially designed to support the combina-
tion of interactive and automated theorem proving together with the use
of already existing reasoning systems, is the Open Mechanised Reasoning
System [12, 11] that has been extended to facilitate computer algebra sys-
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tems [6]. While the concept of a reasoning structure to represent explicit
proof states is similar to our concept of a proof object, external reason-
ers are connected as plug-and-play components which requires significant
changes to their control components and therefore complicates the use of
existing technology.

7 Conclusion

We presented the 2-ANTS theorem prover build on top of the agent-based
-ANTS suggestion mechanism. This theorem prover inherits interesting
features from the underlying suggestion mechanism and due to the distri-
bution of computations down to a very fine-grained layer (e.g. reasoning
about potential instances of single arguments of the considered inference
rules) it especially supports the integration of external reasoning systems
at various layers. We have illustrated that the Q-ANTS architecture es-
pecially supports deduction modulo computation/deduction performed by
external reasoners. As the same suggestion mechanism that supports user-
interaction is now also used as the main part of the automated theorem
prover’s inference machine the architecture also supports a close integra-
tion of interactive and automated theorem proving. This is underlined by
the various interaction facilities the Q-ANTS prover already supports. The
system can be seen as an open approach that is parameterised over the
particular calculus it is working for (and note that it is only in a technical
sense restricted to the 2MEGA environment in which it has been devel-
oped). The calculus it is working for can even be modified/extended at
run-time, making our system in the long-run also interesting for the in-
tegration of components aiming at learning new inference rules from past
proof experience [15]. The learned rules could then be dynamically added
to the running system.

Immediate further work is a more rigorous formalisation of the agent
specification language as well as to formally model the connection between
Q-ANTs and underlying calculi. Other future work is to analyse whether
our system could benefit from a dynamic agent grouping approach as de-
scribed in [10] and whether it can fruitfully support the integration of proof
critics as discussed in [14]. The Q-ANTS system is also employed as the
basis of the resource-guided and agent-based proof planning approach [3],
currently under development. Extending the 2-ANTS system this approach
also focuses on the cooperation aspect between integrated external reason-
ers and addresses the question how an agent-based proof planner can be
sensibly guided by a resource mechanism.
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Abstract: This paper reports on the integration of the higher-order theorem proving
environment TPs [Andrews et al., 1996] into the mathematical assistant QMEGA [Benz-
miiller et al., 1997]. TPS can be called from QMEGA either as a black box or as an
interactive system. In black box mode, the user has control over the parameters which
control proof search in TPs; in interactive mode, all features of the TPs-system are avail-
able to the user. If the subproblem which is passed to TPs contains concepts defined in
QMEGA’s database of mathematical theories, these definitions are not instantiated but
are also passed to TPs. Using a special theory which contains proof tactics that model
the ND-calculus variant of TPS within QMEGA, any complete or partial proof generated
in TPS can be translated one to one into an QMEGA proof plan. Proof transformation is
realised by proof plan expansion in 2MEGA’s 3-dimensional proof data structure, and
remains transparent to the user.

1 Introduction

Current, theorem proving systems, whether automatic or interactive, are usually
strong in some domains while lacking reasoning power in others. Furthermore,
there are no standardised formats for databases of higher-order problems, as
there are for first-order problems [Sutcliffe et al., 1994], and so higher-order the-
orem provers are generally unable to share databases of problems. In recent years
there have been several attempts to combine two or more systems and hence
to allow various theorem provers with different proof strategies to cooperate
on a problem [Giunchiglia et al., 1996], to allow users of an interactive system
to invoke an external automatic system on a subproblem [Slind et al., 1998a;
Slind et al., 1998b; Meier, 1997; Dahn et al., 1994] or to avoid duplication of
work by sharing databases [Felty and Howe, 1997].

In this paper we describe the integration of the higher-order theorem proving
system TPs into the mathematical assistant QMEGA, and discuss the benefits
that this provides for both systems. For a preliminary report on our work we
refer to [Benzmiiller and Sorge, 1998b].

! Supported by the National Science Foundation under grant CCR-9624683.
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1.1 The TpPs system

Tps [Andrews et al., 1996] is a higher-order theorem proving system for clas-
sical type theory (Church’s simply-typed A-calculus). Proofs in TPS may be
constructed automatically using the matings method (connection method) [An-
drews, 1981], or interactively using an extended variant of Gentzen’s natural
deduction calculus [Gentzen, 1935]. Automatic proofs may be translated into
natural deduction format [Miller, 1984; Pfenning, 1987], and hence the user may
interleave the automatic and interactive proof methods by, for example, invoking
the automatic component on a subproblem of a partially-completed interactive
proof. This translation between automatic and natural deduction proofs provides
the basis for the integration of TPS and QMEGA.

There are several built-in automatic search procedures in TPs, each of which
is governed by a set of parameters (known as flags) which may be adjusted by
the user or even automatically by TPS itself. Furthermore TPS can expand defi-
nitions using the dual instantiation strategy described in [Bishop and Andrews,
1998]; this provides an effective way to decide which abbreviations to instanti-
ate during a proof. TPS provides a library for storing objects such as theorems,
definitions and modes (groups of flag settings), and can also store and retrieve
files containing sequences of commands (work files) or natural deduction proofs
(proof files). All of these facilities are also used in the integration of QMEGA and
Tps.

A more complete description of the capabilities of TPs is provided in [An-
drews et al., 1997], or online at http://www.cs.cmu.edu/~andrews/tps.html.

1.2 The QMEGA system

The OMEGA-system [Benzmiiller et al., 1997] is designed as an interactive mathe-
matical assistant system, aimed at supporting proof development in mainstream
mathematics. It consists of a variety of tools including a proof planner [Huang et
al., 1994], a graphical user interface LQUT [Siekmann et al., 1998], the PROVERB
system [Huang and Fiedler, 1997] for translating proofs into natural language,
and a variety of external systems such as computer algebra systems [Kerber
et al., 1998], automated theorem provers [McCune, 1994; Baumgartner and Fur-
bach, 1994; Weidenbach et al., 1996] and constraint solvers. QMEGA also provides
the built-in higher-order theorem prover LEO [Benzmiiller and Kohlhase, 1998],
which specialises in reasoning about higher-order equality and extensionality.
OMEGA is, like TpPs, a theorem proving system for classical type theory
(Church’s simply-typed A-calculus) which uses a ND calculus variant as its basic
inference mechanism. However the set of basic ND rules in TPS is larger than
that in QMEGA, in order to keep TPs proofs concise and readable. Therefore cer-
tain rules in TPS abstract over small subproofs (such as RuleP, which abstracts
over proofs in propositional logic, cf. Section 3). In QMEGA, however, the set of
basic ND-rules is just large enough to ensure completeness, and all extensions to
the basic ND-calculus (e.g. equality substitution) are defined as tactics. Never-
theless, proofs can be both constructed and displayed on several abstract levels
by using a 3-dimensional data structure (see Section 2) for representing (partial)
proofs. The structure on the one hand enables the user to freely switch back and
forth between different abstract levels and on the other hand provides a means
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for directly integrating results of external reasoners while leaving the expansion
to the calculus level to QMEGA’s tactic mechanism.

Further information and an online version of (IMEGA are available over the
Internet at http://www.ags.uni-sb.de/ omega/.

1.3 Benefits of integrating TpPs and Q2MEGA

Both TPs and (IMEGA use a higher-order logic based on Church’s simply-typed
A-calculus, and both use a Gentzen-style natural deduction calculus; this makes
the integration somewhat easier and more natural than it might otherwise have
been. However, the two systems are still different enough for each to benefit
considerably from the other.

OMEGA is designed to be a mathematical assistant, and so contains a small
basic set of natural deduction rules, plus many defined tactics. QMEGA provides
facilities such as a database of mathematical theories, a proof planner, proof
verbalisation, integration of computer algebra systems and first-order theorem
provers, and a graphical display in which the level of detail provided may be
varied by the user. Since many of the predefined theories contain higher-order
concepts, problems formulated in these theories will naturally lie beyond the
capabilities of the first-order theorem provers which have already been integrated
into QMEGA, and so the principal benefit of the integration for (IMEGA is the
addition of a powerful higher-order automated theorem prover as an external
reasoning component,.

Tps, on the other hand, is designed to be a system for proving theorems in
a specific logic (as well as a tool for research into automated theorem proving).
TPs must keep its proofs as concise as possible, since it has a command-line
interface rather than the graphical interface of 2MEGA, and so it contains a
larger range of natural deduction rules than QOMEGA. TPS has comparatively
few predefined theories, since all but the smallest such theories contain far too
many axioms for any of its automatic search procedures to cope with. Further-
more, TPS cannot invoke any external reasoning components. For TPs, then,
the principal benefits of integration with QMEGA are the addition of a graphical
interface, proof verbalisation, and the ability to use external reasoning systems
(although the present integration does not allow TPs to call such systems itself,
it can in effect call them through QMEGA, since IMEGA can call both TPs and
the other systems, and any proof known to QMEGA can be passed to TPs).

2 Natural Deduction Proofs in QMEGA

The essential prerequisite for a smooth integration of TPS proofs into QMEGA
proofs is QMEGA’s ability to expand abstract inference steps into inferences in
its own calculus. This enables the definition of abstract inference methods that
can incorporate both decision procedures and partial proofs from other systems.
In this section we will elaborate further on this issue by giving an overview of
the core of the MEGA system.

The entire process of theorem proving in QIMEGA can be viewed as an in-
terleaving process of proof planning, plan execution, and verification, centred
around the so-called Proof Plan Data Structure (PDS). A PDS is a hierarchical
data structure which represents a (partial) proof at different levels of abstraction
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controlled plan formation
Tactics, Methods——— = Proof Plan (high-level)

A ‘\ 3
i composition —= expansion,
! via different layers via different layers
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Calculus-Level
Proof (ND)
check proof

v

Calculus-Level
Proof Rules (ND

Figure 1: OQMEGA’s 3-dim. PDS

(called proof plans). It is represented as a directed acyclic graph, where the nodes
are justified by tactics or methods. Conceptually, each justification represents
a proof plan (the expansion of the justification) at a lower level of abstraction
that is computed when the justification is expanded. A proof plan can be recur-
sively expanded until a fully explicit proof on the calculus level (ND) has been
reached. In QMEGA, the original proof plan is kept in a 3-dimensional expansion
hierarchy (cf. Figure 1). Thus the PDS makes explicit the hierarchical structure
of proof plans and retains it for further applications such as proof explanation
or analogical transfer of plans.

Once a proof plan is completed, its justifications can successively be expanded
to verify the well-formedness of the resulting PDS. When the expansion process
is completed, the establishment of correctness of the ND proof relies solely on
the correctness of the verifier and the calculus. This approach also provides a
basis for a controlled integration of external reasoning components — such as an
automated theorem prover or a computer algebra system — if each reasoner’s
results can (on demand) be transformed into a sub-PDS.

A PDS can be constructed by automated or mixed-initiative planning, or
by pure user interaction. In particular, new pieces of the PDS can be added by
directly calling tactics, by inserting facts from a data base, or by calling some
external reasoner.

In order to demonstrate the basic expansion mechanism we consider the ND-
rule Vg and the simple tactic V7;:

Vri,...,xn.A
[t1/$1, - ,tn/a:n]A

The application of the latter would be on an abstract level in the PDS and
its expansion to ND-level would result in a sequence of applications of the V-
rule. Besides providing a means for handling the application and expansion of
these rather small abstractions, the PDS is also the foundation for integrating
deductions from external reasoning components into {IMEGA on a very abstract

Vx.A
[t/x]A

0 Vi(ts, ... tn)
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Figure 2: The integration architecture

level. We exploit this possibility for the integration of TPs by specifying three
different abstraction levels for TPs’s deductions:

1. A single justification expressing that a proof for a particular subproblem has
been found by TPs.

2. A second expansion level incorporates the original TPS proof into QMEGA’S
PDS. On this level the justifications for the respective proof lines contain
the justifications of the original TPs proof.

3. A third level where the TPS justifications are mapped to corresponding
QMEGA tactics. However, this level does not correspond to a proof on the
calculus level, as some of the tactics might need to be expanded even further.

3 The Integration

The general integration approach, as illustrated in Figure 2, is divided into five
steps A—E. Currently the integration is still one-directional; TPS can be used
from within QMEGA, but QMEGA cannot be used from within TPs. We start with
a partial proof plan, on an arbitrary abstraction level in QMEGA, that contains an
open subproblem we want to prove with TPS. In step A the focused subproblem
is extracted and, together with the relevant concepts from QMEGA’s knowledge
base, translated into TPS syntax. In step B TPs reads the translated problem and
either tries to find a proof automatically (when called in automatic mode from
QMEGA) or pops up its command interface for interactive proof development
(when called in interactive mode from (IMEGA; see the screen-shot in Example 3
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in the appendix). The result is a complete or partial proof that is mirrored one-
to-one as an (IMECGA proof plan in step C. In step D, this proof plan is inserted
into QMEGA’s proof data structure (PDS) in order to fill the given gap. Finally, a
TPs proof which has been modelled on QMEGA’s proof tactic level is transformed
into a proper proof in QMEGA’s basic ND-calculus by proof plan expansion in step
E. This transformation may require support from the other external reasoners
already integrated into QOMEGA. Since all of the particular expansion steps in
the proof transformation are stored in QIMEGA’s 3-dimensional PDS, IMEGA’s
expansion /contraction mechanism for proof tactics allows the user to move freely
between the TPs proof on an abstract level, the proof on QMEGA’s basic ND-
calculus level, and all of the intermediate levels of abstraction. This ensures that
proof transformation is transparent to the user, and remains so even as the user
examines the proof on different levels of abstraction.

In the following we will discuss the particular integration steps in more detail,
using the following example as an illustration:

Ezample 1. (THM136)  Vroaq.transitive (transitive-closure r)
This example states that the transitive closure of a relation is transitive?.

This problem is defined within QMEGA’s theory RELATION, which also pro-
vides the recursively entailed defined concepts which are transitive-closure, tran-
sitive and sub-relation. These are defined as follows:
transitive-closure := AToqa Ao - AYa V@oaa-

(sub-relation r q A transitive q) = q © y
transitive := Mona Vo, Yo, 2a-(T T YAT Yy 2) =T T 2
sub-relation := A\rona -AMoaa Vo, Ya. T TY=>q T Y

3.1 A: Calling TPs from QMEGA

When calling TPs within OMEGA the user specifies the subgoal to be proved,
some parameters which specify the proof heuristic to be used by TPs, and a time
limit for this proof attempt. Furthermore the user may specify definitions that
are entailed in the problem but which are not to be passed to TPs, in order to
force TPS to treat them as uninterpreted constants.

Firstly, the focused subproblem is extracted from QMEGA’s PDS, by iden-
tifying the open subgoal explicitly mentioned as a parameter and determining
its support nodes. Then QMEGA computes the set of all defined concepts that
are recursively entailed in the extracted subproblem, and eliminates from this
set all those concepts which the user has explicitly prohibited from being passed
to TPs. Thus for THM136 we get exactly the three definitions shown above,
assuming that the user has permitted all definitions to be passed to TpPs. In the
next step both this subproblem and the selected definitions are translated into
TPs syntax. As both systems implement a logic based upon Church’s simply-
typed A-calculus, and even their representations of types are very similar, this
translation process is rather trivial, and we shall not discuss it in much detail.
However, there are some minor considerations to be taken care of:

% Information on the syntax: In TpS the type (a« — B) — 7 is denoted (y(Ba)). In
particular, the type oaa (i.e. ((oa)a)) is the type @« — a — o of a binary relation
on objects of type a.
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1. TPs uses a small set of constant symbols with a fixed semantics (e.g. the
logical connectives), and these symbols must not be redefined.

2. The polymorphic types which are allowed in QOMEGA must usually be re-
named in order for TPS to interpret them correctly.

3. It is important to maintain a mapping between the initial TPS proof lines in
the translated subproblem and their counterparts in QMEGA’s PDS.

Problems 1 and 2 are solved by setting up hash-tables within OMEGA which store
the necessary information about renamings of constant symbols (in 1) and the
correspondence between the polymorphic type-symbols (in 2). As the line num-
bering in TPS steadily changes, we can not use another hash-table for solving 3.
Fortunately, TPs allows the user to attach arbitrary additional information to
each proof line; we use this feature to mark the TPs proof lines in the translated
subproblem with the names of their counterparts on the QMEGA side.

Apart from the above-mentioned hash-tables, the most important results of
phase A are two files containing all the necessary information for TPS. The
first file — which we call the problem-file — contains the information on the
subproblem in focus and the recursively embedded defined concepts. The second
file — the command-file — contains a sequence of commands to be executed by
Tps. These commands tell TPs to read the problem-file, to set the proof tactic as
specified by the user and, in the case that TPs is called in automatic mode (see
phase B), to invoke TPs’s mating-search procedure. The problem-file created by
OMEGA for our example THM136 is presented in the appendix of this paper (see
Example 2).

3.2 B: Automatic or Interactive Proof Search in TpPS

TPS can be called from QMEGA in either automatic or interactive mode. In the
former case the TPS core image is started as a black box and the only information
visible to the user is the time resource allocated to TPS’s proof attempt. TpPS
executes only the commands which are specified in the command-file created by
OMEGA.

When TPs is called in interactive mode, an xterm with TPS’s command user
interface pops up (see Example 3 in the appendix) and the interactive session
is initialised by the commands stored in the command-file. The user can then
interactively use all the available features of T'Ps in order to construct a complete
or partial ND-style proof.

Tps’s built-in proof transformation procedure [Miller, 1984; Pfenning, 1987]
translates mating proofs into ND-calculus such that, in both interactive and
automatic modes, the final result of the proof attempt is either a complete or
partial proof in TPs’s ND-calculus variant. This (partial) proof is then stored in
a tps-output file* and passed back to OMEGA.

A very important feature of our approach is that TPS can use its mechanism
for dual instantiation [Bishop and Andrews, 1998] within its mating-search pro-
cedure. This is possible because we do not expand all defined concepts before

3 Actually there are two files produced by TPS, one containing the (partial) proof in
ASCII format and one containing the same proof in a Lisp-like presentation. The
former is only used to present the original TPS proof within 2MEGA and the latter,
which is the more important of the two, is used in phase C to translate the Tps
proof to QMEGA.
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passing the subproblem to TPS, but instead pass these concepts as additional
information and leave the subproblem as it is. Thus TPs can decide on its own
whether it is necessary to expand particular defined concepts or not. Example 1,
above, is a good example of a theorem which cannot be proven by TpPs if all
the definitions are expanded before the mating-search procedure is called*. For
a detailed discussion see [Bishop and Andrews, 1998]. The proof generated by
Tps for THM136 is presented in Example 3 in the appendix.

3.3 C & D: Representing TpPS Proofs as QMEGA-Proof Plans and
Insertion of Proof Plans

One main idea of our approach is to provide as transparent a translation mech-
anism as possible, by modelling TPs’s ND-calculus variant on IMEGA’s proof
tactic level. We implement this modelling by defining a special theory TPS in
OMEGA’s knowledge base. For each possible Tps ND justification, the theory
TPS introduces a corresponding QMEGA-tactic; the expansion contents of some
of these tactics are presented in Example 5 in the appendix. There is one ad-
ditional black box tactic tps, which will be used to provide the most abstract
view of subproblems proven by TPs. The concrete proof translation proceeds as
follows:

1. A proof generated by TPS is mirrored one to one as a proof plan in QMEGA
by mapping the particular proof justifications in the TPS proof to the cor-
responding proof tactics provided by the special theory TPS in QMEGA’s
knowledge base. In order to guarantee a correct mapping of the entailed
constants and type symbols, the translation process uses the hash-tables con-
structed by OMEGA in phase A. Furthermore, the correspondence between
the proof lines of the focused Q2MEGA-subproblem and the corresponding
TPs proof lines is given as explicit information in the TPs proof. The proof
plan we obtain for THM136 is presented as Example 4 in the appendix.

2. The resulting proof plan is then stored in QMEGA with a reference to the
subproblem on which TpPs has been called. Some additional information
is also stored, such as the original TPS proof in ASCII format, the proof
parameters and some proof statistics.

In phase D the open line itself is first closed and justified by using the special
black box tactic tps, thereby providing the most abstract view of the proof for
our subproblem in focus. By expanding this special tactic the corresponding
proof plan is inserted in QMEGA’s PDS, and the structure of the original TPs
proof can be visualised in IMEGA’s graphical user interface LQUT [Siekmann et
al., 1998]. Example 6 in the appendix presents the proof structure of the original
Tps proof for THM136 (see Examples 3 and 4), graphically visualised in LQUT.

3.4 E: Transparent Proof Transformation by Proof Plan Expansion

It remains to transform the abstract proof plan representing the TpPS proof
into OMEGA’s own basic ND-calculus variant. Such a proof transformation is

* This theorem is still a challenging problem for current ATP’s. Apart from a proof
constructed by QMEGA’s proof planner using very special control information [Sehn,

1995], TPs is the only system known to the authors that can automatically find a
proof.
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necessary, as {IMEGA’s philosophy on integrated systems is not to trust any
externally-produced proof until it can be transformed and proof checked on
QOMEGA’s basic ND-calculus level. The transformation problem for TPS proofs
has a very simple solution since the ND-calculus variants of both systems are
very similar, and the other external reasoners already integrated to QMEGA
(e.g. OTTER [McCune, 1994]) can fruitfully support the transformation in non-
trivial cases.

Proof transformation is realised via tactic expansion. Each proof tactic de-
fined in OMEGA’s special TPS theory contains specific expansion information
that maps any concrete application of this particular tactic onto a proof on a
lower, more detailed proof level in QMECGA’s PDS. Thus, by stepwise tactic ex-
pansion, the original TPS proof mirrored in 2MEGA can finally be transformed
into QMEGA’s basic ND-calculus level. A nice side effect of this approach is
that the original TPS proof, the corresponding OMEGA ND-proof and all inter-
mediate levels of the proof transformation process are permanently stored in
OMEGA’s PDS. Consequently the flexible tactic expansion/contraction mech-
anism in MEGA allows users to analyse the proof on whatever level interests
them. Example 6 in the appendix presents two different layers in QMEGA’s PDS.

We distinguish four categories of expansion tactics defined in the TPS theory,
as follows:

I Simple mapping: Many rules of the ND-calculus variant of TpPs have direct
counterparts in QMEGA. Examples are presented in Figure 3. Here tactic
tps*ForallE is mapped to QOMEGA’s basic ND-calculus rule Vg and the tactic
tps*Conj is mapped to the tactic Ag, which itself expands into the basic ND-
calculus rules Ag, and Ag,. The expansion content of the tactic tps*ForallE
is presented in Example 5 in the appendix.

IT Case Distinction: Some tactics of the TPS theory need case distinctions in
their expansion mapping. For example, the tactic tps*Neg justifies applica-
tions of the push negation as well as the pull negation principle; see Figure 3.
QOMEGA provides the corresponding tactics Pushneg and Pullneg, and thus
the expansion of tps*Neg simply analyses the situation and maps to either
Pushneg or Pullneg, as appropriate. Both Pushneg and Pullneg are tactics
that expand with case distinction mappings to a lower level in QOMEGA’s
PDS. By subsequent tactic expansion we finally get a medium-sized deriva-
tion in IMEGA’s basic ND-calculus. The definition of the tactic tps*Neg is
presented in Example 5 in the appendix.

IIT Restructuring: Existential quantification elimination in TPS (the particular
rule in TPS is called RuleC) structures a proof slightly differently from the
corresponding rule 35 in OMEGA; see Figure 3. Consequently the expansion
of the tactic tps*RuleC into rule g requires some simple restructuring of
the proof with respect to the dependencies between some proof lines.

IV External Reasoners: TPS abbreviates pure propositional logic derivations in
a complex ND proof with a single-step justification, called RuleP, and hides
the boring details from the user. Thus both RuleP and the (QMEGA-tactic
tps*RuleP mean that a particular proof line follows from some premise lines
by propositional logic. We need a way to expand this rather general justifica-
tion, with so little detailed information available, into a concrete derivation
in OMEGA’s basic ND-calculus. An extravagant solution would be to imple-



Benzmueller Ch., Bishop M., Sorge V.: Integrating TPS and Omega

197

Cat.| Tps tactic in QMEGA Expansion Mapping | QMEGA’s ND-calculus
V. A * Vr.A V. A
——— tps*Forall VLA y _Vr.A
[z « a ps*Foralle(a) o — a4 r(a) o ald 5(a)
I : : :
AAB v ANB AANB , AAB ,
A.Btps Conj A B AE ¥l -E‘l 5 B
I : :
: i
A tps*Neg Va Pushneg 7
: le’
A A
A tps*Neg A Pullneg =y
II : : :
Jr.A
—=L2— tps*Ch
[z + a]A]1 ps oose(a) [z + a]A]l [z a]A]l
b A s WA B
B tps*RuleC’ L 5 o, | X 5 2,
11T ; : -
A
:
< tps*RuleP % call-PL-ATP e“V‘*Al,OH
v : : :

Figure 3: Transparent transformation of TPs proofs into QMECGA proofs, as re-
alised by IMEGA’s tactic expansion mechanism.
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ment a propositional logic prover in QMEGA and to employ this prover in the
expansion of tps*RuleP. Fortunately there are already several systems inte-
grated to OMEGA, such as the first-order provers OTTER [McCune, 1994],
Spass [Weidenbach et al., 1996] or PROTEIN [Baumgartner and Furbach,
1994], which can be used instead. In fact, TPs itself also provides a special
propositional logic mode that can be used to construct detailed proposi-
tional logic proofs. Hence no additional implementation effort with respect
to the expansion of tps*RuleP is necessary; we simply map tps*RuleP to a
recursive call of an arbitrary system, already integrated to QMEGA, that is
able to construct propositional logic derivations (see Figure 3). In the first
implementation we used OTTER in connection with a special mapping from
higher-order to propositional logic. We can also map tps*RuleP back to a call
of TPs in propositional logic mode. Then, by expanding tps*RuleP, QMEGA’s
tactic mechanism automatically performs a recursive call to TPS. The defi-
nition of the tactic tps*RuleP is presented in Example 5 in the appendix.

4 Examples

Our integration approach does not restrict the set of examples that can be proved
by TPs. If one introduces the necessary definitions in QMECA’s knowledge base
then generally all the theorems provable by TPs alone should be provable by
calling TPs from QMEGA as well. Among the TPs examples that have already
been proven by calling TPs from QMEGA (where they can be fully expanded and
proof checked) are®:
Cantor’s theorem:  Vgoa-g9 <qrd (P 9)
The cardinality of the powerset of a set g is greater than the cardinality of g.
THM15b:  Vf,.(3g...(iteratep+ f g)
ANFz,(gz)=x A Nz.(9g2)=2=2=1)

= (F.-((f y) =)
This theorem is discussed in detail in [Andrews et al., 1996]. It states that if
some positive iterate of f has a unique fixed point, then f has a fixed point.
THM/48: VN f,,Ng...(injectivep f) N (injectivep g) = (injectivep (f o g))
The composition of injective functions is injective.
THM134: Vz,V¥g,.(iteratep+ (\z,.z) g) = (Vz,.(g ) = z)
The only positive iterate of a constant function is that function.
THM135: Vf, Vgl Vg2 .(iteratep f g*) A(iteratep f g*) = (iteratep f (g'0g?))
The composition of two iterates of a function f is an iterate of f.

5 These examples from the TPs library are also discussed in [Andrews et al., 1996). The
definitions occurring in the above examples are defined in QMEGA’s knowledgebase
(analogously to TPs’s library) as follows:

<card = Moa-Aog.m3fsa - (surjective g h f)
surjective := Afoa-Agos-Ahga Vo s.(97) = (ya-(fy) A (z = (hy)))
P .= superset, superset := Aoa.Aoa Vo (u ) = (v x
iteratep := Mfaa -Agaa-VPoaa-(P (Ata.u) A (Vjaa-(p 5) = (p (f 0 4)))) = (p 9)
iteratep+ := Mfaa-Aaa -Vpoaa (0 f) A (Vjaa-(p §) = (p (f03))) = (p 9)
injectivep := Af.Vo3.Vys.((f ) = (f y)) = (z =)
0 := Afys.Agpy-AT5.9 (f T)

~
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THM270: ¥ f3a-Ygya-Yhyg. Vro.h (f z) =g x) A (Vyg.3z0.f £ =1y)

A (Yoo VYo f (z ' y) = (f 2) ¥* (f y))

A (Y20 VYa.g (z+' y) = (9 2) ¥° (9 y))

= (YaVys.h (z52 y) = (h2)  (h y))
If f is a surjective homomorphism, g is a homomorphism, and & is any function
such that for all z, h (f ) = g x, then h is a homomorphism.

In the following we present two examples, which are not automatically prov-
able in either TPs or @MEGA alone, and which motivate a cooperation between
the two systems.®
THM262:  Np,(o)-partition p

= 3q(ou)-equivalence-rel q A (equivalence-classes q) = p
This states that if p is a partition, then there is an equivalence relation ¢ whose
equivalence classes are exactly the elements of p. We now demonstrate how a
partly interactive and partly automatic proof can be constructed, and show how
the integration of TpPs and 2MEGA can help with this task.

Suppose that the user begins by providing the appropriate instantiation for
g (namely \z,.\y,.3s,,.p s As A s y).This reduces the problem to two subgoals:
proving that this lambda-term defines an equivalence relation, and proving that
the equivalence classes of this relation are exactly p. In both cases, we have the
hypothesis that p is a partition. The former subgoal can be proven automatically
by TPs in about 35 seconds. The latter subgoal is harder for TpPS; however, by
using the interactive tactics for extensionality and universal generalisation, the
user can reduce it to (equivalence-classes (Ax,.Ay,.3s.p s As x Asy) b)) =pb.
This equivalence can in turn be reduced interactively to a pair of implications,
of which one (the right-to-left direction) can be proven automatically by TPs in
about 30 seconds. This leaves the left-to-right direction of the equivalence as the
only remaining subgoal to be proven. The automatic procedures of TPs cannot
produce a proof of this subgoal, due to the complexity of the equality reasoning
which is required, and so a user constructing this proof from within TPs would
have to complete the proof interactively. The proof of this subgoal is non-trivial,
and requires a significant amount of work on the part of the user.

However, with the integrated system, the user can begin proving THM262
in OMEGA, exactly as above, calling TPS to complete two of the three subgoals
(none of the other systems integrated to IMEGA is known to be able to complete
either subproof). For the remaining subgoal, instead of laboriously constructing
an interactive proof, the user now has the additional option of invoking one of
the other automated provers which are integrated to QMECA or to call QMEGA’s
proof planner. It is very likely that an improved version of OMEGA's own higher-
order theorem prover LEO, which specialises in reasoning about equality and
extensionality, will be able to find an automatic proof of this subgoal.”

5 The definitions used in this examples are as follows:
partition = XSo(0,)-(VDor-5 p = (3.2.p 2))A(Vx,.Tp.s pAp TA(Vo..5 qAg T = q = D))
equivalence-rel := Aro,,.reflexive v A symmetric r A transitive r
equivalence-classes = Aroy,.ASo,-(F2,.58 2) A (V.5 ¢ = (Vy,.s y =7 x y))
reflezive := Aro,, Nx,.r T T symmetric = Aro, N, Yy, rxy=ryzx
transitive = Aro,, Ve, Yy, Nz,.rc yAryz=rx z (ij:: AXo.L

" In principle LEO provides exactly the required extensionality treatment to solve this
subgoal, but due to its prototypical implementation LEO can still handle only small
search spaces; the search space defined by this problem is rather large because many
free predicate variables are involved. A technically improved and heuristically better-
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The following statement (which we admit is rather contrived) serves to il-
lustrate some of the strengths and weaknesses of TPs and LEO, as it is only
provable when both systems cooperate.®

(Fooo0-ToTA=(Lo L)A=(LoT)A(ToL))A(Vme.TEM=(T = T) €m)

The first conjunct claims the existence of the logical connective A which is spec-
ified by its truth table. In order to prove this statement primitive substitution®
has to be employed, which is strongly supported in TPs but widely avoided in
LEo. For the proof of the second statement, on the other hand, the unification of
T € m and (T = T) € m requires a recursive call to the higher-order theorem
prover from within higher-order unification. This most general form of exten-
sionality treatment is supported in LEO but not in TPs. Hence this conjunction
is provable in the combined system with three straightforward interactions.

Both examples illustrate that the integrated system of TPsS and (IMEGA al-
lows the user to complete some proofs in much fewer interactions than would be
required by either system alone. In fact, the few interactions which are required
are already supported by the suggestion mechanism in QMEGA [Benzmiiller and
Sorge, 1998a]. While this in itself is already a major benefit to the user, it also
suggests that it should be possible to use the built-in proof planner of QMEGA to
oversee the cooperation of the various external systems, and to produce proofs
such as the one above without the necessity of user interaction.

5 Conclusion

Our objective was to integrate the two knowledge-based higher-order theorem
proving environments TPS and 2MEGA in a way that would be as transparent to
the user as possible. We believe that the approach to integration described above,
although designed specifically for these two systems, provides some generally
interesting and elegant ideas.

Our work (see also [Benzmiiller and Sorge, 1998b]) is closely related to,
and was developed simultaneously with, the approach for integrating the proof
planner CLAM and the interactive theorem prover HOL [Slind et al., 1998a;
Slind et al., 1998b]. Although we must admit that our work was simplified by
the fact that QMEGA and TPs are much more similar than are HOL and CLAM,
we believe that our approach provides some additional features, e.g. the commu-
nication of definitions between the two systems, and a more transparent proof
transformation process.

In conclusion, we now summarise some of the more interesting general prop-
erties of our integration method.

— The integration of QMEGA and TPs also includes the communication of
system-specific knowledge defined in the systems’ knowledge bases. TPs and

guided version of LEO, which is currently being re-implemented, will most likely be
able to find the proof.

8 Although this example looks rather trivial at first glance, to the knowledge of the
authors it is currently not automatically provable by any system.

9 The primitive substitution principle guesses instantiations for free predicate vari-
ables. In this case the prover has to guess the instantiation A for o and then to verify
the conditions specified by the truth table.
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OMEGA, which are both based on classical higher-order logic, do not need
to agree on common definitions, rules or other logical concepts (apart from
the logical connectives which are in any case identical in both systems), as
is necessary for the integration of, for example, CLAM and HOL [Slind et
al., 1998a; Slind et al., 1998b]. Instead, QMEGA need only communicate to
Tps all of the potentially important definitions and concepts belonging to
the the specific subproblem to be solved. Most importantly, QMEGA does not
expand any definition in the focused subproblem, but leaves the decision as
to whether this is useful or necessary to TPs, which can use its mechanism
for selectively instantiating definitions [Bishop and Andrews, 1998]. The user
may even actively prevent some defined concepts from being passed to TPS.

— TPs is not only integrated as a fully automated black box system, but can
also be called as an interactive theorem prover. Thus QMEGA, with its hier-
archically structured knowledge base, can be seen in the integrated system as
a second user interface to the TPS system, with its own knowledge base. As
an automated black box system, TPS can be called from Q2MEGA either alone
or concurrently with other integrated theorem provers such as the first-order
systems OTTER, SPASS and PROTEIN.

— The QMEGA system models the particular ND-calculus variant used by TPs
by providing corresponding tactics in a special theory TPS which introduces
one IMEGA tactic for each TPs justification. Hence any TPS proof can be
translated one to one into a corresponding QMEGA proof plan using the
tactics from theory TPS. As the structure of the resulting proof plans can be
visualised graphically in QMEGA’s graphical user interface LQUT [Siekmann
et al., 1998] TPs thereby gains a visualisation tool and graphical interface
for free.

— Proof transformation of TPS proofs (mirrored as proof plans in QMEGA)
into proofs in Q@MEGA’s basic ND-calculus is realised by tactic expansion. As
QOMEGA’s 3-dimensional proof data structure (PDS) permanently stores all
different abstraction levels of a proof (the QMEGA basic ND-level proof at
the bottom layer, the mirrored TPS proof at an abstract level, and all in-
termediate abstraction levels between those), proof transformation becomes
and remains transparent to the user, who can freely move between different
levels of abstraction in the proof.

— Non-trivial tactic expansions (such as the one for RuleP) are supported by
other external reasoners that are already integrated to XMEGA, or even by
Tps itself. This saves us from having to define and implement complicated
tactic expansions from scratch. Indeed, this can serve as a general approach
for a tactic-based proof transformation within a system like QMEGA that
already provides other integrated systems: as soon as a particular expan-
sion step seems overly complicated, one can recursively call other integrated
systems that are suited to support this particular expansion step.

— The reuse of mirrored TPS proof plans within an analogy-based theorem
proving approach [Melis and Carbonell, 1998] is supported by our integra-
tion, as these proof plans are explicitly stored and thus available in QMEGA’s
PDS. They can also be stored in QMEGA’s knowledge base.

We are currently investigating whether TPS, QMEGA’s own higher-order the-
orem prover LEO (which is specialised in reasoning about extensionality) and the
various first-order theorem provers which have been integrated with QMECA can
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fruitfully cooperate. We hope to use QMEGA’s PDS as the central data structure
for the necessary information exchange between the cooperating systems, and
QOMEGA’s planning mechanism to guide the cooperation between them.
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In the appendix we illustrate the integration architecture by presenting some con-
crete information on the interaction between QMEGA and TPS when proving THM136
(see Example 1).

A: Translating from QMEGA to TPS

Ezample 2 Problem-file. This is the content of the problem-file for THM136 generated
by QMEGA and passed to TPS. The line with keyword ASSERTION defines the theorem
to be proved and the line with keyword LINES introduces the initial partial proof to be
completed by TPS, which here consists only of one line. A reference to the corresponding
open proof line in QMEGA (the entry “(OMEGA-LABEL THM136)”) and some further
information belonging to 2MEGA can be found at the end of this proof line. Note that
the defined concepts transitive, transitive-closure and sub-relation are not expanded in
this initial partial proof; they are passed to TPs as defined abbreviations (in the three
lines with keyword DEF-ABBREV).

(DEFSAVEDPROOF OMEGA-SUBPROBLEM-THM136 (1998 9 30)
(ASSERTION
"[FORALL R(DaA) [TRANSITIVE(0(OAA)) [TRANSITIVE-CLOSURE(DAA(DAA))R(DAAY] 11 ™)
(NEXT-PLAN-NO 2) (PLANS ((1)))
(LINES
(1 NIL "[FORALL R(DAA) [TRANSITIVE [TRANSITIVE-CLOSURE R(0AA)] 1 1 "
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PLANt NIL NIL "((OMEGA-LABEL THM136) (OMEGA-JUSTIFICATION OPEN))™))
o
((DEF-ABBREV TRANSITIVE (TYPE "O(0AA)") (TYPELIST ("A™))
(PRINTNOTYPE T) (FACE TRANSITIVE) (FO-SINGLE-SYMBOL T)
(DEFN
"[LAMBDA DC-50(DAA)
[FORALL DC-51(A)
[FORALL DC-52(A)
[FORALL DC-53(A)
[IMPLIES [AND [DC-50(DAA)DC-51(A)DC-52(A)] [DC-50(0AA)DC-52(A)DC-53(A)]]
[DC-50(DAA)DC-51(A)DC-53(A)]111111™)
(MHELP
"Definition of the predicate for tramsitivity. (transitive R) is true, iff Rxy and Ryz imply Rxz. "))
(DEF-ABBREV SUB-RELATION (TYPE "O(OAA) (DAA)") (TYPELIST ("A"))
(PRINTNOTYPE T) (FACE SUB-RELATION) (FO-SINGLE-SYMBOL T)
(DEFN
"[LAMBDA DC-54(0AA)
[LAMBDA DC-55(DAA)
[FORALL DC-56(A)
[FORALL DC-57(A) [IMPLIES [DC-54(0AA)DC-56(A)DC-57(A)] [DC-55(0AA)DC-56(A)DC-57(A)]111111")
(MHELP
"Definition of the predicate for sub-relations. (sub-relation R R’) is true, iff Rxy implies R’xy. "))
(DEF-ABBREV TRANSITIVE-CLOSURE (TYPE "OAA(OAA)") (TYPELIST ("A"))
(PRINTNOTYPE T) (FACE TRANSITIVE-CLOSURE) (FO-SINGLE-SYMBOL T)
(DEFN
"[LAMBDA DC-58(DAA)
[LAMBDA DC-59(A)
[LAMBDA DC-60(A)
[FORALL DC-61(DAA)
[TMPLIES [AND [SUB-RELATION(O(DAA) (OAA))DC-58(0AA)DC-61(0AA)] [TRANSITIVE DC-61(0AA)1]
[DC-61(DAA)DC-59 (A)DC-60(A)111111™)
(MHELP "Definition of the tramsitive closure as in TPS. ")))
(COMMENT "OMEGA proof (report problems to the OMEGA group)")
(LOCKED (1)))

B: Proof Construction in TPs

Ezample 3 TPs Proof. Figure 4 presents a screenshot of the TPs interface displaying
the Tps proof for THM136. This proof is discussed in detail in [Bishop and Andrews,
1998].

C & D: Translating from TPsS to QMEGA and Inserting the Proof Plan

Ezample 4 QMEGA Proof Plan. QMEGA’s special theory T'PS provides one proof tactic
for each TPs justification. Thus the proof presented in Example 3 can be translated
one to one into a proof plan using the proof tactics of this theory. Tactics defined
in this special theory have the prefix “TPS”. The structure of this proof plan can
be graphically visualised in Q2MEGA’s graphical user interface LQUI, as presented in
Example 6.

(FORALL [R: (0 BB BB)] TPS*UGEN: (R) (L23)
(TRANSITIVE (TRANSITIVE-CLOSURE R)))
(TRANSITIVE (TRANSITIVE-CLOSURE R)) TPS*EQUIVWFFS: (L22)
(FORALL [DC-51:BB,DC-52:BB,DC-53:BB] TPS*UGEN: (DC-51) (L21)
(IMPLIES
(AND (TRANSITIVE-CLOSURE R DC-51 DC-52)
(TRANSITIVE-CLOSURE R DC-52 DC-53))
(TRANSITIVE-CLOSURE R DC-51 DC-53)))
! (FORALL [DC-52:BB,DC-53:BB] TPS*UGEN: (DC-52) (L20)
(IMPLIES
(AND (TRANSITIVE-CLOSURE R DC-51 DC-52)
(TRANSITIVE-CLOSURE R DC-52 DC-53))
(TRANSITIVE-CLOSURE R DC-51 DC-53)))
! (FORALL [DC-53:BB] TPS*UGEN: (DC-53) (L19)
(IMPLIES
(AND (TRANSITIVE-CLOSURE R DC-51 DC-52)
(TRANSITIVE-CLOSURE R DC-52 DC-53))
(TRANSITIVE-CLOSURE R DC-51 DC-53)))
! (IMPLIES TPS*DEDUCT: (L18)
(AND (TRANSITIVE-CLOSURE R DC-51 DC-52)
(TRANSITIVE-CLOSURE R DC-52 DC-53))
(TRANSITIVE-CLOSURE R DC-51 DC-53))

THM136 ()

L23 O
L22 6]

L2t

r-
0
S

r-
©
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=1 tps3-ultra =10 =]
1 1 - TREANSITIWVE-CLOSURE R o DC-51, DC-52;
~ TRAMSITIVE-CLOSURE R DC-52 DC-53. Hup
2 1 F TRANSITIVE-CLOSURE Roge DC-51.. DC-52. RuleF: 1
{3 1 = TEAMSITIVE-CLOSURE Reoge DC-52, DC-53. RulefF: 1
(d) 1 = WDC-61% cpeeee SUB-RELATION R oo DC— 61‘ ~ TRANSITIVE DC-&1*
= DC-61* DC-52, DC-53. EquivllFfs: 3
G 1 F WOC-61% spege.  SUB-RELATION Rogee DC—61' ~ TRANSITIWVE DC-61°%
= DC-61* DC-51, OC-52, Equivlffs: 2
(6 =] F  SUB-RELATIOM Rowe DC-61 5w ~ TRAMSITIVE DC-61 Hup
7 =] F SUB-RELATION Roge: DC—61 oppe FuleFP: B
(8 =] F  TRANSITIVE DC-61. RuleF: &
(9 =] = wDC-51* . %DC— 52‘NVDC 53% cen DC-61 opee DC-51* DC-52*
~ DC-61 DC-52' DC-53*
= DC-&1 DC-51* DC-53* Eq ulvNFFS‘ 2
10y B = WDC-52! o WDC-53* see  DC—Bl ogee DC—51l, DC-52' » DC-51 DC-52' DC-53*
= OC-61 DC-51 DC-53* ULy DC-51, 9
11 6 F  WOC-53' .., DC-Bls5, DC-51, DC-52, ~ DC-51 DC-52 DC-53*
= DC-61 DC-51 DC-53* UL: DC-52. 10
12y B F DOC-61 ogee OC-51, OC-52; ~ DC-61 DC-52 DC-53, = DC-61 DOC-51 DOC-53
ULy DC-53. 11
13 1 - SUB-RELATIOM Roge: DC-61 opee »~ TRAMSITIVE DC-61
= DNC-61 OC-51., DOC-52 UL: DC-61o0e 5
14 1 - SUB-RELATION Roge. DC-61 opeee » TRAMSITIVE DC-61
= DC-61 DC-52. DC-53. UL: DC-61opm 9
15r 1.6 F DC-61 og DC-51,, DC-53,, RuleP: 7 8 12 13 14
1er 1 - SUB-RELATION Roge. DC-61 opeee » TRAMSITIVE DC-61
= DC-61 DC-51;, DC-53. Deduct: 15
17r 1 = WDOC-61 ogee. SUB— RELATION Rogee OC—61 ~ TRANSITIWVE DC-61
- DC-61 DC-51, DC-53, UGen: DC-61 oo 16
18y 1 F  TRANSITIVE-CLOSURE Rogwe: DC-51. DC =jc Ecquivlffs: 17
{19y = TRAMSITIYE-CLOSURE R ogee DC—51g ot— 52
~ TRANSITIWVE-CLOSURE R DC-52 DC-53
= TRAMSITIVE-CLOSURE R DC-51 DC-53 Deduct: 18
{203 = WOC-53,. TRAMSITIVE-CLOSURE Rogg DC-51, DC-52,
~ TRANSITIVE-CLOSURE R DC-52 DC-53
= TRAMSITIVE-CLOSURE R DC-51 DC-53 UGen: DC-53. 19
(211 F WDC-52.5WDC-53... TRAMSITIVE-CLOSURE Rope DC-51, DC-52
~ TRANSITIVE-CLOSURE R DC-52 DC-53
= TRAMSITIVE-CLOSURE R DC-51 DC-53 UGen: DC-52. 20
(22 F WDC-51.5%DC-52.50C-53 . TRAMSITIVE-CLOSURE Roge DC-51 DC-52
~ TRANSITIVE-CLOSURE R DC-52 DC-53
= TRAMSITIVE-CLOSURE R DC-51 DC-53
UGen: DC-51. 21
{23 F  TRANSITIVE, TRANMSITIWVE-CLOSURE R g EquivlFFs: 22
(247 F YRoge TRANSITIVE,TRANSITIVE-CLOSURE R UGen: Roge 23
{{OMEGR-LABEL THM13&6} {(OMEGA-JUSTIFICATION OFEM::
OMEGA proof {report problems to the OMEGA group:

L18 (L1)
L17 (L1)
L16 (L1)
L15 (L1 L6)
Li4 (L1)
L13 (L1)
L12 (L8)
L1t (L6)
L10 (L6)

Figure 4: Tprs-Xterm with the proof of THM136

(TRANSITIVE-CLOSURE R DC-51 DC-53) TPS*EQUIVWFFS: (L17)
(FORALL [DC-61: (0 BB BB)] TPS*UGEN: (DC-61) (L16)
(IMPLIES

(AND (SUB-RELATION R DC-61)
(TRANSITIVE DC-61))
(DC-61 DC-51 DC-53)))
(IMPLIES TPS*DEDUCT: (L15)
(AND (SUB-RELATION R DC-61)
(TRANSITIVE DC-61))
(DC-61 DC-51 DC-53))
(DC-61 DC-51 DC-53) TPS*RULEP: (L7 L8 L12 L13 L14)
(IMPLIES TPS*UI: (DC-61) (L4)
(AND (SUB-RELATION R DC-61)
(TRANSITIVE DC-61))
(DC-61 DC-52 DC-53))
(IMPLIES TPS*UI: (DC-61) (LS)
(AND (SUB-RELATION R DC-61)
(TRANSITIVE DC-61))
(DC-61 DC-51 DC-52))
(IMPLIES TPS*UI: (DC-53) (L11)
(AND (DC-61 DC-51 DC-52) (DC-61 DC-52 DC-53))
(DC-61 DC-51 DC-53))
(FORALL [DC-53~1:BB] TPS*UI: (DC-52) (L10)
(IMPLIES
(AND (DC-81 DC-51 DC-52)
(DC-81 DC-52 DC-53"1))
(DC-61 DC-51 DC-5371)))
(FORALL [DC-521:BB,DC-53"1:BB] TPS*UI: (DC-51) (L9)
(IMPLIES
(AND (DC-81 DC-51 DC-52~1)
(DC-61 DC-52"1 DC-53"1))
(DC-61 DC-51 DC-5371)))
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L9 (L6) ! (FORALL [DC-51~1:BB,DC-52~1:BB,DC-53"1:BB] TPS*EQUIVWFFS: (L8)
(IMPLIES
(AND (DC-81 DC-51"1 DC-521)
(DC-61 DC-52"1 DC-53"1))
(DC-61 DC-51"1 DC-53"1)))
L8 (L8) ! (TRANSITIVE DC-61) TPS*RULEP: (L6)
L7 (L6) ! (SUB-RELATION R DC-61) TPS*RULEP: (L6)
L6 (L8) ! (AND (SUB-RELATION R DC-61) (TRANSITIVE DC-61)) TPS*HYP
L5 (L1) ! (FORALL [DC-61"1:(0 BB BB)] TPS*EQUIVWFFS: (L2)
(IMPLIES
(AND (SUB-RELATION R DC-61-1)
(TRANSITIVE DC-61"1))
(DC-61"1 DC-51 DC-52)))
L4 (L1) ! (FORALL [DC-61~1:(0 BB BB)] TPS*EQUIVWFFS: (L3)
(IMPLIES
(AND (SUB-RELATION R DC-61-1)
(TRANSITIVE DC-61"1))
(DC-61"1 DC-52 DC-53)))
L3 (L1) ! (TRANSITIVE-CLOSURE R DC-52 DC-53) TPS*RULEP: (L1)
L2 (L1) ! (TRANSITIVE-CLOSURE R DC-51 DC-52) TPS*RULEP: (L1)
Lt (L1) ! (AND (TRANSITIVE-CLOSURE R DC-51 DC-52) TPS*HYP

(TRANSITIVE-CLOSURE R DC-52 DC-53))

E: Transparent Proof Transformation by Proof Plan Expansion

Example 5 Modelling TPS’s calculus in QMEGA’s theory TPS . The tactics in QMEGA’s
special theory TPs contain expansion information that allows proof plans constructed
in this theory to be mapped to QMEGA proofs on a lower abstraction level. We present
some sample expansions here. The simplest is tps*Conj, which is simply mapped to
the QMEGA tactic ande. The expansion of tps*Neg first analyses the given situation
and then maps either to Pushneg or Pullneg. tps*RuleP recursively invokes an external
propositional logic prover integrated to QMEGA.

(defun tpstac=expand-tps*Conj (outline parameters)
(tacl™init outline)
(tacl™apply ’ande outline nil)
(tacl”end))

(defun tpstac=expand-tps*Neg (outline parameters)

(tacl™init outline)

(cond ((tpstac=pushneg-a-p (node”formula (car outline)) (node formula (cadr outline)))
(tacl~apply ’pushneg outline nil))
((tpstac=pullneg-a-p (node formula (cadr outline)) (node formula (car outline)))
(tacl™apply ’pullneg outline nil))
(t (warn "Something went wrong while expanding justification tps+lNeg")))

(tacl”end))

(defun tpstac=expand-tps*RuleP (outline parameters)
(declare (ignore parameters))
(let* ((node (car outline))
(premises (just premises (node~justification node))))

(tacl™init outline)
(tpstac=call-external-atp node premises)
(tacl”end)
(setf (pdsj~status (node~justification node)) "untested")))

Ezample 6 QMEGA-proof. Finally, we present in figure 5 the visualization of the original
TPps proof (as a proof plan) in QMEGA’s graphical user interface LQUI. By expanding
all nodes exactly one step, we reach another layer in QMEGA’s 3-dimensional PDS
which is visualized in the second screenshot. Here the squares represent the recursive
calls to a propositional theorem prover which are obtained by the expansion of tactic
tps*RuleP.
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Figure 5: Transparent proof transformation within QMEGA’s 3-dimensional PDS.
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Abstract

Classical automated theorem proving of today is based on ingenious search techniques to find
a proof for a given theorem in very large search spaces—often in the range of several billion clauses.
But in spite of many successful attempts to prove even open mathematical problems automatically,
their use in everyday mathematical practice is still limited.

The shift from search based methods to more abstract planning techniques however opened up
a paradigm for mathematical reasoning on a computer and several systems of that kind now employ
a mix of interactive, search based as well as proof planning techniques.

The QMEGA system is at the core of several related and well-integrated research projects of the
QMEGA research group, whose aim is to develop system support for a working mathematician as
well as a software engineer when employing formal methods for quality assurance. In particular,
QMEGA supports proof development at a human-oriented abstract level of proof granularity. It is a
modular system with a central proof data structure and several supplementary subsystems including
automated deduction and computer algebra syst@m&GA has many characteristics in common
with systems like NNPRL, CoQ, HoL, Pvs, and ISABELLE. However, it differs from these systems
with respect to its focus oproof planningand in that respect it is more similar to the proof planning
systems €CAM andACLAM at Edinburgh.
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1. Introduction

The vision of computer-supported mathematics and a system which provides inte-
grated support for all work phases of a mathematician has always fascinated researchers
in artificial intelligence, particularly in the deduction systems area, and more recently in
mathematics as well. The dream of mechanizing (mathematical) reasoning dates back to
Gottfried Wilhelm Leibniz in the 17th century with the touching vision that two philoso-
phers engaged in a dispute would one day simply code their arguments into an appropriate
formalism and theralculate(Calculemus!) who is right. At the end of the 19th century
modern mathematical logic was born with Frege’s Begriffsschrift and an important mile-
stone in the formalization of mathematics was Hilbert's program and the 20th century
Bourbakism.

With the logical formalism for the representation and calculation of mathematical argu-
ments emerging in the first part of the twentieth century it was but a small step to implement
these techniques now on a computer as soon as it was widely available.

In 1954 Martin Davis’ Presburger Arithmetic Program was reported to the US Army
Ordnance and the Dartmouth Conference in 1956, which is not only known for giving
birth to artificial intelligence in general but also more specifically for the demonstration of
the first automated reasoning programs for mathematics by Herb Simon and Alan Newell.

However, after the early enthusiasm of the 1960s, in particular the publication of the
resolution principle in 19684], and the developments in the 70s a more sober realization
of the actual difficulties involved in automating everyday mathematics set in and the field
increasingly fragmented into many subareas which all developed their specific techniques
and systems.

It is only very recently that this trend appears to be reversed, with thscGLE-
mMus? and Mkm® communities as driving forces of this movement. IALCULEMUS
the viewpoint is bottom-up, starting from existing techniques and tools developed in the
computer-algebra and deduction systems communitiesv #Mapproaches the goal of
computer-based mathematics for the new millennium by a complementary top-down ap-
proach starting from existing, mainly pen and paper based mathematical practice down to
system support.

The 2MEGA project aims at an integrated approach since its start in the mid 80s and it
is deeply rooted in both initiatives. THeMEGA system is at the core of the project and it
has many characteristics in common with systems like’RL [1], CoQ [34], HoL [47],
Pvs[79], and SABELLE [80,78] However, it differs from these systems with respect to its
focus onproof planningand in that respect it is more similar to the proof planning systems
CLAM andACLAM at Edinburgh83,29]. In this article we shall first provide an overview
of the main developments of tHeMEGA project and then point to current research and
some future goals.

1 The history of the field is presented in a classical paper by Martin OaGjsand also in[36] and more
generally in his history of the first electronic computg8g]. Another source is Jorg Siekmaf6] and more
recently[87].

2 http://www.calculemus.org

3 http://www.mkm-ig.org
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2. QMEGA

The QMEGA project represents one of the major attempts to build an all encompassing
assistance tool for the working mathematician or for the formal work of a software en-
gineer. It is a representative of systems in the paradigpradf planningand combines
interactive and automated proof construction for domains with rich and well-structured
mathematical knowledge. The inference mechanism at the lowest level of granularity is
an interactive theorem prover based on a higher-order natural deduction (ND) variant of a
soft-sorted version of Church’s simply typeetalculus[33]. The logical language, which
also provides some support for partial functions, is calRAS7, for partial functions
andorder sortedtype theory. The search for a proof, however, is usually conducted at a
higher level of granularity defined ligcticsandmethodsAutomated proof search at this
‘abstract’ (i.e., less granular) level is callpdof planning(see Sectior2.3). Proof con-
struction is also supported by already proven assertions, i.e., theorems and lemmata, and
by calls to external systems to simplify or solve subproblems. Resource-guided search for
applicable tactics, methods, and external systems is conductedhly's, an agent-based
reasoning system.

2.1. System overview

At the core of QMEGA is theproof plan data structuré®DS [32], in which proofsand
proof plansare represented at various levels of granularity &gel). The PDS is a di-

Abstract Proof Plan

uoisuedx3

Abstraction

Higher Order Natural Deduction
Proof Object

Fig. 1. The proof plan datastructufgDS is at the core of th@MEGA system.
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rected acyclic graph, whempen nodesepresent unjustified propositions that still need to

be proved andlosed nodesepresent propositions that are already proved. The proof plans
are developed and classified with respect to a taxonomy of mathematical theories in the
mathematical knowledge base MBE [42,56] The user of2MEGA, or the proof planner
MuLTI [73,64] or else the agent-based reasoning systBANTS [19] modify the PDS

during proof development until a complete proof plan, where all nodes are closed, has been
found. They can also invoke external reasoning systems, whose results are included in the
PDS after appropriate transformation. Once a complete proof plan at an appropriate level
of granularity has been found, this plan must be expanded by sub-methods and sub-tactics
into lower levels of granularity until finally a proof at the level of the logical calculus is
established. After expansion of these high-level proofs to the underlying ND-calculus, the
PDS can be checked bMEGA’s proof checker.

Hence, there are two main tasks supported by this system, namely (i) to find a proof
plan, and (ii) to expand this proof plan into a calculus-level proof; and both jobs can be
equally difficult and time consuming. Task (ii) employs a combination of an LCF-style
tactic based expansion mechanism as well as deductive proof search in order to generate
a lower-level proof object. It is a design objective of tR®S that variousproof levels
coexist with their respective dynamic relationships being maintained.

The graphical user interfac@Qi/Z [90] provides both a graphical and a tabular view
of the proof under consideration, and the interactive proof explanation syster{40,
39,41]generates a natural language presentation of the prooF{gee5 and &

The previously monolithic system has been split up and separated into several inde-
pendent modules (sd€ig. 2), which are connected via the mathematical software bus
MATHWEB-SB[99]. An important benefit is that MrHWEeB-SB modules can be distrib-
uted over the Internet and are then remotely accessible by other research groups as well.
There is now a very active MathWeb user community with sometimes several thousand
theorems and lemmata being proven per day. Many theorems are generated automatically
as (currently non-reusable and non-indexed) subproblems in natural language processing
(see the Doris systet)) proof planning and verification tasks.

2.2. Proof objects

The central data structure for the overall search is the proof plan data stri@Ruse
in Fig. 1 and the subsystems cooperate to construct a proof whose status is stored again
in the PDS. The facilities provided by the subsystems include support for interactive and
mixed-initiative theorem proving by the user, the proof planner, and by external systems
such as automated theorem provers and computer algebra systems. These facilities require,
in particular, the representation of proof steps at different levels of granularity ranging from
abstract, human-oriented reasoning to logic-level justifications.

ThereforeQ2MEGA provides a hierarchical proof plan data structure that represents a
(partial) proof at different levels of granularity (called partial proof plans). Technically, the
PDS is a directed acyclic graph consisting of nodes, justifications and hierarchical edges

4 http://www.cogsci.ed.ac.uk/~jbos/doris/
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Fig. 2. The vision of an all encompassing mathematical assistance environment: we have now modularized and
out-sourced many of the support tools (whose names are printed in red) such that they can also be used by other
systems via the MTHWEB-SB software bus. (For interpretation of the references in color in this figure legend,

the reader is referred to the web version of this article.)

(see[32] for more details). Each node represents a sequent and agpeber closed An

open node corresponds to a sequent that is to be proved and a closed node to a sequent
which is already proved or reduced to other sequents using an inferendé:ﬁulél'TAk;

where R may represent a calculus rule, a tactic, a method, or a call to an external sys-
tem. Such a rule denotes that we can conclBdeom Ay, ..., A; or reading it the other

way round thatB can be reduced td1, ... A;. Thus, an inference step is represented by

a justificationR which connects a node, containing the sequer® to nodesuy, ..., ng
containing the sequents,, ... A;. If a node has more than one outgoing justification,
each of them represents a proof attempt of the sequent stored in the source node, but at
different granularity. These justifications are ordered with respect to their granularity us-
ing hierarchical edges. A hierarchical edge connects two justificajipaad j> with the
meaning that justificatiori; represents a more detailed proof attempt than justificgtion
Thus,QMEGA’s PDS explicitly maintains the original proof plan as well as intermediate
expansion layers in an expansion hierarchy.

Normally, the user wants to see the proof only at a specific level of granularity and
therefore he can chose the granularity by selecting the justification for each node in the
PDS. Fig. 3shows an example of how the selection of a justification of a node determines
the level of granularity. It shows a nodewith two outgoing justificationgs and j,, which
are connected by a hierarchical edgfrom j; to j» indicating thatj; is a more granular
justification thanj>. The user can decide whether he wants to see the more detailed version
of the proof given byj; (and its subtre@,) or the more abstract version given lyy(and
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Fig. 3. Representation of @DS node with justifications at different levels of granularity.

PDS PDS Views

Fig. 4. Possible views of proofs at different levels of granularity insidZas.

its subtreey). The two different possible selections are shaded. Selecting the justifications
for each node the user gets a view into ®S-graph, called &#DS-view (seeFig. 4),
at the selected level of granularity.

Note that in contrast to the traditional LCF approach, it is not mandatory to immedi-
ately expand a high-level proof plan to a lower-level, because we explicitly represent the
high-level proof plans in th®DS and thus conceptually separate plan formation from
plan validation (by recursive expansion). Validation of proof plans can thus be postponed
and executed at any time later on. In case of an unsuccessful expansion atempl’s
PDS provides mechanisms which change the status of the affected proof nodgsigrom
tified, i.e., closed to openand then consistently clean up all structures, which depend on
these nodes. Thus, failing expansion may in particular introduce new gaps into a previously
closed proof plan and hence proof planning has to start again in order to fill the gaps and
search for a new plan.

Because thé®DS represents the dependencies among goals and subgoals as well as
between high-level inference rules and lower-level inference rules, we can traverse the
datastructure in many ways for different purposes like visualization, proof explanation,
natural language generation and dependency-directed pruning of the proof object.

In summary, coexistence of several granularity levels and the dynamical maintenance
of their relationship is a central and distinguishing design objectiv@EGA’s PDS.
ThePDS makes the hierarchical structure of proof plans explicit and retains it for further
applications such as proof expansion, proof explanation®itx or an analogical transfer
of plans.
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Currently, however, we cannot change the representatsitieof a proof node, which is
still something to be desired. For example, it would be nice to be able to change the logical
propositions in naive set theory into Venn diagrams such that a diagrammatic reasoning
system could be used. Support for representational shifts of this kind in combination with
different levels of granularity is future work.

The proof object generated SyMEGA for the theorem /2 is irrational”, which has
a well known human proof of less than a dozen lines, is recorded in a technical report
[14], where the unexpanded and the expanded proof objects are presented in great de-
tail: The most abstract proof at the level of the proof plan has about twenty steps and the
fully expanded proof has about 750. The final proof in natural language generated by the
QMEGA-system is shown iifrig. 6. A general presentation of this interesting case study
is [88].

2.3. Proof planning

QMEGA’s main focus is on knowledge-based proof planfi®g,26,74] where proofs
are not conceived in terms of low-level calculus rules, but at a less detailed granularity, i.e.,
a more abstract level, that highlights the main ideas and de-emphasizes minor logical or
mathematical manipulations on formulae.

Knowledge-based proof planning is a paradigm in automated theorem proving,
which swings its motivational pendulum back to the Al origins in that it employs
and further develops many Al principles and techniques such as hierarchical plan-
ning, knowledge representation in frames and control rules, constraint solving, tacti-
cal theorem proving, and meta-level reasoning. It differs from traditional search based
techniques in automated theorem proving not least in its level of granularity: The
proof of a theorem is planned at an abstract-level where an outline of the proof
is found first. This outline, that is, the abstract proof plan, can be recursively ex-
panded to construct a proof within a logical calculus provided the expansion of the
proof plan does not fail. The plan operators, calledthods represent mathematical
techniques familiar to a working mathematician. While the knowledge of a mathe-
matical domain as represented by methods and control rules is specific to the math-
ematical field, the representational techniques and reasoning procedures are general-
purpose. For example, one of our first case stu@ii@$ used the limit theorems pro-
posed by Woody Bledsof23] as a challenge to automated reasoning systems. The
general-purpose planner makes use of the mathematical domain knowledgeprbofs
and of the guidance provided by declaratively represented control rules, which corre-
spond to mathematical intuition about how to prove a theorem in a particular situation.
These rules are the basis for our meta-level reasoning and the goal-directed behav-
ior.

Domain knowledge is encoded into methods, control rules, and strategies. Moreover,
methods and control rules can employ external systems (e.g., one method is to call one of
the computer algebra systems) and make use of the knowledge in these syBiEGS.'s
multi-strategy proof planner MLTI [73,64] searches then for a plan using the acquired
methods and strategies guided by the control knowledge in the control rules.
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2.3.1. Al principles in proof planning

A planning problenis a formal description of aimitial state, agoal, and somepera-
torsthat can be used to transform the initial state via some intermediate states to a state that
satisfies the goal. Applied to a planning problenplannerreturns a sequence attions
that is, instantiated operators (i.e., methods), which reach a goal state from the initial state
when executed. Such a sequence of actions is cakketusion plan

Proof planning considers mathematical theorems as planning prof@ém3he initial
state of a proof planning problem consists of the passfumptionsf the theorem, whereas
the goal is theheoremitself. The operators in proof planning are the methods, traditionally
they are tactics augmented by pre- and postconditions.

In @QMEGA, proof planning is the process that computes actions, that is, instantiations
of methods, and assembles them sequentially in order to derive a theorem from a set of
assumptions. The effects and the preconditions of an action in proof planning are formulae
in the higher-order languag@OS 7T, where the effects are considered as logically inferable
from the preconditions using this method. A proof plan under construction is represented
in the proof plan data structuf@DS, which consists initially of an open node containing
the conjecture to be proven, and closed, i.e., justified nodes for the proof assumptions.
The introduction of a method changes A®S by adding new proof nodes and justifying
the effects of the method by applications of the method to its premises. The aim of the
proof planning process is to reachckbsedPDS, that is, aPDS without open nodes.
Thesolution proof plamproduced is then a record of the sequence of actions that lead to a
closedPDS.

By allowing for forward and backward method3MEGA'’s proof planner MULTI com-
bines forward and backward state-space planning. Thpfaraming stateén MULTI is a
pair of the current world state and the current goal state. The initial world state consists of
the given proof assumptions and is transferred by forward methods into a new world state.
The goal state consists of the initial open node and is transferred by backward methods
into a new goal state containing new open nodes. From this point of view the aim of proof
planning is to compute a sequence of actions that derives a current world state in which all
the goals are satisfied.

As opposed to precondition achievement planning (e.g.[9&g effects of methods
in proof planning do not cancel each other. For instance, a method with effé@ttro-
duced for an open node; does not threaten the effegtintroduced by another method
for an open nodd.,. Dependencies among open nodes result from shared variables for
witness terms and their constraints. Constraints can, for instance, be instantiations for the
variables but they can also be mathematical constraints sueh<as which states that,
whatever the instantiation faris, it has to be smaller than The constraints created during
the proof planning process are collected in the constraint store GfdEEE system[76,

100], which is a domain-independent extension of existing propagation-based constraint
solvers. The extension turned out to be necessary, since proof planning has peculiar re-
guirements that are not met by off-the-shelf constraint solvkrSZE computes symbolic
constraint inferences while respecting the logical side-conditions of proof planning, for in-
stance, the Eigenvariable condition and the logical dependencies between constraints and
their context. The search procedur&ofSZE computes logically correct instantiations for

the meta-variables.
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A proof-planning method is applicable only if its constraints are consistent with the
constraints collected so far. Dependencies among goals with shared variables are difficult
to analyze and can cause various kinds of failures in a proof planning attem b %% éar
more details).

2.3.2. Methods, control rules, and strategies

Methodsare traditionally perceived as tactics in tactical theorem proyng@j aug-
mented with preconditions and effects, call@@misesand conclusions respectively.
A method represents a large inference of the conclusion from the premises based on the
body of the tactic. For instancBptl-m is a (very low-level) method whose purpose is to
prove a goal” - — P by contradiction. INotl-m is applied to a goal” - — P then it closes
this goal and introduces the new goal to prove falsity,under the assumptioR, that
is, I', P ~_1. Thereby,I" = —P is the conclusion of the method, whereg@asP L is the
premise of the methodNotl-m is abackwardmethod, which reduces a goal (the conclu-
sion) to new goals (the premisesprward methods, in contrast, derive new conclusions
from given premises. For instanceSubst-m performs equality substitutions, for exam-
ple, by deriving from the two premisdst P[a] andI” - a = b the conclusion” + P[b],
where an occurrence afis replaced by an occurrenceiafNote thatNotl-m and=Subst-
m are simple examples of domain-independent, logic-related methods, which are needed in
addition to domain-specific, mathematically motivated methods as illustrated below in Sec-
tion 2.3.3 Knowledge-based proof planning expands on these ideas and allows for more
general mathematical methods to be encapsulated into the proof planathgds

Control rulesrepresent mathematical knowledge about how to proceed in the proof
planning process. They can influence the planner’s behavior at choice points (e.g., which
goal to tackle next or which method to apply next) by preferring members of the corre-
sponding list of alternatives (e.g., the list of possible goals or the list of possible methods).
This way promising search paths are preferred and the search space can be pruned.

Strategiesemploy a fixed set of methods and control rules and, thus, tackle a theorem
by some mathematical standard that happens to be typical for this theorem. The reasoning
as to which strategy to employ on a problem is an explicit choice pointin In par-
ticular, MuLTI can backtrack from a chosen strategy and commence search with different
strategies.

Detailed discussions d2MEGA’s method and control rule language can be found in
[63,65] A detailed introduction to proof planning with multiple strategies is givefy8)
64] and more recently if69]. In the following we briefly sketch how proof planning with
generic and domain specific methods along with domain specific control strategies can be
applied to plan “irrationality ok/7 "-conjectures for arbitrary natural numberand! (see
also[88]).

2.3.3. Exploiting domain specific knowledge: proof plannifigproblems

QMEGA can successfully proof plan and proof/disprove the irrationality/bfor arbi-
trary natural numberg and!. In order to find a general approach to tackle these problems,
we first showed the challenge probleny2 is irrational” (se€[97]) and then analyzed
proofs for statements such @8, /(3- 3) — 1, or v/2. We found that some of the concepts
and inference steps we used #@@ are particular to this problem and do not generalize
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whereas others do. Thus, the analysis led to some generalized concepts, theorems, and
proof steps, which we encoded into methods and control rules, which together form one
planner strategyor this kind of problems. We shall now discuss the acquired methods and
control rules.

The essential idea of the proofs is as follows:

1. Use the MBsE-theoremRAT- CRI TERI ON(it states that for each rational number
there are integerg andz, such that - y = z, wherey andz have no common divisor
besides 1) and construct an indirect proof.

2. In order to derive the contradiction show that the two withesses (i.e., the existential
variablesy andz) in RAT- CRI TERI ON, which are supposed to have no common
divisor, actually do have a common divisér

3. In order to find a common divisor transform equations (for examgR, n = m —

2-n? =m?), derive new divisor statements (for example, from:2 = m? derive that

m? has divisor 2, or from the statement that has divisor 2 derive that has divisor

2), and derive from given divisor statements new representations of terms, which can
be used again for equational transformations (for example, from the statement that
has divisor 2 derive that = 2 - k for somek).

Note that we are particularly interested in prime divisors, since only for prime numbers
d is it true that ifd is a divisor ofm/ thend is also a divisor ofn. A corresponding
theorem is available iR MEGA’s knowledge base MBSE.

To realize the first idea (1), the plannerMdri has to decide for an indirect proof, apply
the theorenRAT- CRI TERI ON, and derivel - n/ = m/ for integersm andn, which are
supposed to have no common divisor. These steps are canonical for arbitrargblems.
Hence, we could implement them all into one method. However, to avoid the well known
problem of over-fitting methods, i.e., to make them special just for a particular theorem, we
decided to employ already existing methods from other domaliotsm (contradiction of
negated statements)Assertion-m (apply a theorem or an axiom from the theoBgistsE-

Sort-m (decompose existentially quantified formulag)dE-m (decompose conjunctions).

The application of the methodxistsE-Sort-m, AndE-m, andNotl-m do not need any
further control, but the application &fAssertion-m has to be guided by selecting the theo-
rem or axiom to be applied. This is achieved by a control agdpl y-ratcriteri on,
which determines that the theord®T- CRI TERI ON should be used famAssertion-m,
whenever there is a goal formuldl.

The second idea (2) is realized with the metl@aghtradictionCommonDivisor-m. When
MuLT! tries to apply the method it searches first for an assumption stating that two terms
t1, t have no common divisor, and then it searches for two (derived) assumptions stating
thats1 andr, both have a diviso#l. This method is not guided by control rules, butri
tries to apply it to some derived assumptions in each planning cycle.

The third idea (3) of the proof technique is encoded into several collaborating
methodsTransFormEquation-m, =Subst-m, PrimeFacsProduct-m, PrimeDivPower-m, and
CollectDivs-m. The methodTransFormEquation-m contains knowledge about suitable
equational transformations for our problem domain. It is applied to an equation and derives
a new equation. For instancBansFormEquation-m derives! - n/ = m/ from /1 -n =m,
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or it derivesn? = 2 - k2 from 2- n? = (2 - k)2. The method=Subst-m performs equality
substitutions.

PrimeFacsProduct-m andPrimeDivPower-m encapsulate the knowledge of how to derive
divisor statementsPrimeFacsProduct-m is applied to equations =1/ -y (orl -y = x)
and derives a new assumption which is a conjunction of statements tres particular
prime divisors. The method employsA¥LE to compute the prime divisors éfusing
MAPLE’s functionwi t h( nunt heory, factorset). Itderivesthat has to have all
prime divisors off. For instance, from 2n2 = m? PrimeFacsProduct-m derives thatn?
has the prime divisor 2, from 62 = m? it derives thain? has the prime divisors 2 and 3.
PrimeDivPower-m is applied to an assumption that states ti¥ahas prime divisod/ and
derives thaty has prime divisot.

For a term CollectDivs-m searches for assumptions stating thas some prime divi-
sors. Then, it computes different possible representationbaged on the set of the prime
divisors{ps, ..., p,}. That s, for each subsép’, ..., p/,} of {p1,..., p,} it adds a new
assumption = p;--- p;, - ¢’ for some integet’.

TransFormEquation-m, PrimeFacsProduct-m and PrimeDivPower-m are applied when-
ever possible and no guidance is required. The application of the metiiedtDivs-m,
however, is guided by the control rid@pl y- col | ect di vs, which prefersollectDivs-

m with respect to a term as soon as there are assumptions statingsrthas some prime
divisors. The application o£Subst-m is guided by the control rulappl y- =subst ,

which states that, after an application@dllectDivs-m, the method=Subst-m should be
applied in order to use the equations resulting fi@wshiectDivs-m. When a method such as
=Subst-m, PrimeFacsProduct-m, or PrimeDivPower-m is applied to some premises, then

the same method is afterwards applicable again to the same premises, deriving the same
result. To avoid endless loops of such methods, we added the controkjuéet - | oop,

which blocks the repeated application of a forward method to the same premises.

2.4. QANTS: agent-oriented theorem proving

QANTS has originally been developed to support interactive theorem pr¢t8jgand
later its was extended to a fully automated reasoning sygt&®2] The basic idea of
QANTS is to encapsulate each inference rule into a pro-active agent, which checks au-
tomatically for its own applicability. For each proof situation tR®S is continuously
checked by these agents and thus composes a ranked list of potentially applicable inference
rules. In this process all calculus rules, tactics, external system calls and methods, collec-
tively calledinference rulesare uniformly viewed with respect to three sets: premises,
conclusions, and additional parameters. The elements of these three sets arargalled
mentsof the inference rule and they usually depend on each other. An inference rule is
applicable if at least some of its arguments can be instantiated with respect to the given
proof context. The task of thR ANTS-system is now to determine the applicability of
inference rules by computing instantiations for their arguments.

The QANTS-architecture consists of two layers. On the bottom layer, possible instan-
tiations of the arguments of individual inference rules are computed. In particular, each
inference rule is associated with a blackboard and some concurrent processes, one for
each argument of the inference rule. The role of every process is to compute possible in-
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stantiations for its designated argument of the inference rule, and to record these on the
blackboard. The computation is carried out with respect to the given proof context and
exploits the information already present on the blackboard, that is, argument instantiations
computed by other processes. On the upper layer, the information from the lower layer
is used for computing and heuristically ranking the inference rules that are applicable in
the current proof state. The heuristically most promising rule is then applied to the central
proof object and the data on the blackboards is cleared for the next round of computation.

QANTS uses resource reasoning to guide the sef@2h The integration of external
reasoning systems such as automated theorem provers, computer algebra systems, or model
generators into the architecture @ANTS presupposes the declaration of some resource
limits these reasoning agents are allowed to spend (e.g., by specifying time-outs). The
external systems are encapsulated into inference rules, usually one for each system. For ex-
ample, an inference rule modeling the application of an ATP has its conclusion argument
set as “open goal”. A process can then place this open goal onto the blackboard, where
it is picked up by a process that applies the prover to it. Any computed proof or partial
proof from the external system is again written onto the blackboard from where it is subse-
qguently inserted into th®DS when the inference rule is applied. While this setup enables
proof construction by a collaborative effort of diverse reasoning systems, the cooperation is
achieved via the centr@DS. This means that all partial results have to be translated back
and forth between the syntaxes of the integrated systems and the representation language
of thePDS. In some cases efficient communication between inference systems is difficult
to achievg15]. Therefore we have recently developed an alternative model of cooperating
systems if2ANTS which has been successfully applied to the combination of automated
higher-order and first-order theorem provizg].

2.5. External systems

Proof problems require many different skills for their solution and it is desirable to have
access to several systems with complementary capabilities, to orchestrate their use, and
to integrate their result§2MEGA interfaces heterogeneous external systems sucbras
puter algebra systen(€AS3, higher- and first-ordeautomated theorem proving systems
(ATP9, constraint solvergCS9, andmodel generation systeriéGs).

Their use is twofold: they may provide a solution to a subproblem, or they may give
hints for the control of the search for a proof. In the former case, the output of an incor-
porated reasoning system is translated and inserted as a subproof iR®eThis is
beneficial for interfacing systems that operate at different levels of granularity, and also
for a human-oriented display and inspection of a partial proof. In particular we can now
check the soundness of each contribution by expanding the inserted subproof to a basic
logic-level proof in thePDS and then verify it by@MEGA’s proof checker.

Currently, the following external systems are integrated and us@WinGA:

CASs provide symbolic computation, which can be used in two ways: first, to compute
hints to guide the proof search (e.g., withesses for existential variables), and, sec-
ond, to perform some complex algebraic computation such as to normalize or
simplify terms. In the latter case the symbolic computation is directly translated
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into proof steps iIM2MEGA. CASs are integrated via the transformation and trans-
lation module 3PPER[91]. Currently, QMEGA uses the systems M LE [30]
and GAP[85].

ATPs are employed to solve subgoals. CurrerfiyEGA uses the first-order provers
BLIKSEM [38], EQP[60], OTTER[61], PROTEIN[10], SPASS[95], WALD MEIS-

TER [50], the higher-order systemsrPE [2], and LEO [16,11] and we plan to
incorporate MMPIRE [82]. The first-order ATPs are connected viaAMP [62],
which is a proof transformation system that transforms resolution-style proofs into
assertion-level ND-proofs which can then be integrateditEGA's PDS. TPS
already provides ND-proofs, which can be further processed and checked with lit-
tle transformational efforftL2].

MGs provide either witnesses for free (existential) variables, or counter-models, which
show that some subgoal is not a theorem. Hence, they help to guide the proof
search. Currently2MEGA uses the model generatorai®HMO [58] and M
[98].

CSs  construct mathematical objects with theory-specific properties as witnesses for
free (existential) variables. Moreover, a constraint solver can help to reduce the
proof search by checking for inconsistencies of constraints. CurréRthgGA
employsCoSZ¢E [76,100] a constraint solver for inequalities and equations over
the field of real numbers.

2.6. Interface and system support

QMEGA's graphical user interfac€Qi/Z [90] displays the currenPDS in multiple
modalities: a graphical map of the proof tree, a linearized presentation of the proof nodes
with their formulae and justifications, a term browser, and a natural language presentation
of the proof viaP.rex (seeFigs. 5 and &

When inspecting a part of a proof, the user can switch between alternative levels of
granularity coexisting in th@DS, for example, by expanding an abstract justification of
a proof node into its associated, less abstract partial subproof, which causes appropriate
changes in the other presentation modes. Moreover, an interactive natural laegplage
nation of the proof is provided by the systeRirex [40,39,41] which is adaptive in the
following sense: it explains a proof step at the most abstract level (which the user is as-
sumed to know) and then reacts flexibly to questions and requests, possibly at a lower level
of granularity, for example, by detailing some ill-understood subproof.

Another system support is the guidance mechanism provided by the suggestion module
QANTS (see Sectior2.4), which searches pro-actively for possible actions that may be
helpful in finding a proof and presents them in a preference list.

2.7. Case studies

Early developments of proof planning in Alan Bundy’s group at Edinburgh used proofs
by induction as their favorite case studigd]. The QMEGA system has been used in
several other case studies, which illustrate in particular the interplay of the various compo-
nents, such as proof planning supported by heterogeneous external reasoning systems.
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Fig. 5. Multi-modal proof presentation in the graphical user interia€2/Z.

A typical example for a class of problems that cannot be solved by traditional automated
theorem provers is the class ©f5-proofs[74,71] This class was originally proposed by
Woody Bledsod23] as a challenge and it comprises theorems such as LIM+ and LIM*,
where LIM+ states that the limit of the sum of two functions equals the sum of their lim-
its and LIM* makes the corresponding statement for multiplication. The difficulty of this
domain arises from the need for arithmetic computation in order to find a suitable instanti-
ation of free (existential) variables (such as@epending on an). Crucial for the success
of @MEGA’s proof planning is the integration of suitable experts for these tasks: the arith-
metic computation is done by the computer algebra systexrl¥®, and an appropriate
instantiation fors is computed by the constraint soN&sSZE. We have been able to solve
all challenge problems suggested by Bledsoe and many more theorems in this class taken
from a standard textbook on real analy[§k

Another class of problems we tackled with proof planning is concerned with residue
classeg467,66] In this domain we showed theorems such as: “the residue class structure
(Zs, +) is associative”, “it has a unit element”, and similar properties, whgyés the
set of all congruence classes modulo 5 (i{8s, 1s, 25, 35, 45}) and + is the addition on
residue classes. We have also investigated whether two given structures are isomorphic
or not and altogether we have proved more than 10,000 theorems of this kinN@ZHee
Although the problems in this domain are not too difficult and still within the success range
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Theorem: Leithere be ay in Z such that there existsazinZ
such tha x¥y = z and there is no d in Z such that d is q common
divisor of y and z for ali x in O, Therefore sgrt(2) isn't

razional,

Proof:

Let there be a y in Z such that there exists azin Z such that
x*y =z and there is no d in Z such that d is a common divisor of
yandzforalzin Q.

We prove that sqrt{2) isn't rational by a contradiction, Let
sqrt(2) be rational.

Letnin Z and let there be a dc_251 in Z such that sqrt(2)*n =
dc_251 and there is no de_255 in Z such that de_255 is a common
divisor of n and dc_251. Letmin Z, let sqrt(2)*n = m and let

there be no dc_255 in Z such that de_255 is a common divisor of n
andm. NinZ minZ and sqrt(2)*n=mlead to 2*n"2 = m"2,
Therefore m*2 is even because nin Z and min Z, That implies that
mis even because min Z, That implies that there is adc_263inZ
such that m = 2*dc_263.

LetkinZ andletm=2*k. n"2 =2*¥k"2 sinceninZ minZ kin
Z,m= 2%k and 2*n*2 = m"2, That implies that n*2 is even since n
inZandkinZ Thatleads to evennbecauseninZ Hence2isa
common divisor of n and m since mis even, nin Z and min Z. Thus
we have a confradiction because there is no de_255 in Z such that
dc_255is a common divisor of n and m.

QED

Fig. 6. Natural language proof presentationfbsexin LQUT.

of a traditional automated theorem prover, it was nevertheless an interesting case study for
proof planning, since multi-strategy proof planning generated substantially different proofs
based on entirely different proof ideas.

Another important proof technique is Cantor’s diagonalization technique and we also
developed methods and strategies for this dig&s Important theorems we have been able
to prove are the undecidability of the halting problem and Cantor’s theorem (cardinality of
the set of subsets), the non-countability of the reals in the int¢dval and of the set of
total functions, and similar theorems.

Finally, a good example for a standard proof technique is the excess-literal-number
technique. This is routinely used for completeness proofs of refinements of resolution,
where the theorem is usually first shown at the ground level using the excess-literal-number
technique and then ground completeness is lifted to the predicate calculus level. We have
done this for many refinements of resolution WitivEGA [45].
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However, QMEGA’s main aim is to become a proof assistant for the working math-
ematician. Hence, it should support interactive proof development at a human-oriented
level of granularity. The already mentioned theorem tf2t is irrational, and its well-
known proof dating back to the School of Pythagoras, provides an excellent challenge to
evaluate whether this ambitious goal has been reachg@i7]seventeen systems that have
solved they/2-problem show their results. The protocols of their respective sessions have
been compared on a multi-dimensional scale in order to assess the “naturalness” by which
real mathematical problems of this kind can be shown. This represents an important shift of
emphasis in the field of automated deduction away from the somehow artificial problems
of the past—as represented, for example, in the test set of the TPTP [®8&+~yback to
real mathematical challenges. We participated in this case study essentially with three dif-
ferent contributions. Our initial contribution was an interactive prooRmeGA without
adding any special domain knowledge to the system. This demonstrates theise@h
as atactical theorem prover (444]). The mostimportant albeit not entirely new lesson to
be learned from this experiment is that the level of granularity common in most automated
and tactical theorem proving environments is far too low. While our proof representation in
this first study is already an abstraction (calleddksertion levein [51]) from the calculus
level typical for most ATPs, it is nevertheless clear that as long as a system does not hide
all these excruciating details, no working mathematician will feel inclined to use such a
system. In fact, this is in our opinion one of the critical impediments for using first-order
ATPs and one, albeit not the only one, of the reasons why they are not used as widely as
computer algebra systems. This is the crucial issue of2kE€GA project and our main
motivation for departing from the classical paradigm of automated theorem proving about
fifteen years ago.

Our second contribution to the case study of {i2-problem is based on interactive
island planning70], a technique that expects an outline of the proof, i.e., the user provides
main subgoals, calleidlands together with their assumptions. In fact, we are able to proof
plan arbitrary</I-problems as sketched in Secti@r8.3 Hence, the user can write down
his proof idea in a natural way with as many gaps as there are open at this first stage of
the proof. Closing the gaps is ideally fully automatic, in particular, by exploiting external
systems. However, for difficult theorems it is necessary more often than not that the user
provides additional information and applies the island approach recursively. In comparison
to our first tactic-based solution the island style supports a much more abstract and user-
friendly interaction level. The proofs are now at a level of granularity similar to proofs in
mathematical textbooks.

Our third contribution to the case study of tké&@-problem are fully automatically
planned and expanded proofs i-problems for arbitrary natural numbefsand!. The
details of this important case study, that shows best what can (and what cannot) be achieved
with current proof planning technology are presente[88)89,14]

2.8. Discussion
2.8.1. Proof-planning as an alternative approach to automated theorem proving?

The most important question to ask here is: Can we find the essential and creative steps
automatically, for example, for th¢2-problem discussed in Secti@rB.3? The answer is
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yes, as we have shown [j@8]. However, while we can answer the question in the affirma-
tive, not every reader may be convinced, as our solution touches upon a subtle point, which
opens the Pandora Box of critical issues in the paradigm of proof plaf2idt is always

easy to write some specific methods, which perform just the steps in the interactively found
proof and then calls the proof plannerduri to fit the methods together into a proof plan

for the given problem. This, of course, shows nothing of substance: Just as we could write
down all the definitions and theorems required and sufficient for the problem in first-order
predicate logic and then hand them to a first-order prowee, would just hand-code the

final solution into appropriate methods.

Instead, the goal of the game is to figeneralmethods for a whole class of theorems
within some theory that can solve not only this particular problem, but also all the other
theorems in that class. While our approach essentially follows the proof idea of the interac-
tively constructed proof for the/2-problem, it relies essentially on more general concepts.

However, this is certainly not the end of the story. In order to evaluate the appropriate-
ness of a proof planning approach we suggest the following four criteria:

(1) How general and how rich in mathematical content are the methods and control rules?

(2) How much search is involved in the proof planning process?

(3) What kind of proof plans, that is, what kind of proofs, can we find?

(4) If the proof planning procedure fails on some given conjecture, how likely is it that the
given conjecture is not a theorem?

These criteria should allow us to judge how general and how robust our solution is. The
art of proof planning is to acquire domain knowledge that, on the one hand, comprises
meaningful mathematical techniques and powerful heuristic guidance, and, on the other
hand, is general enough to tackle a broad class of problems. For instance, as one extreme,
we could have methods that encdd®EGA’s ND-calculus and we could run WLTI with-
out any control. This approach would certainly be very general, butmwould fail to
prove any interesting problems. As the other extreme, we could cut a known proof into
pieces, and code the pieces as methods. Guided by control rules that always pick the next
right piece of the proof, MLTI would assemble the methods again to the original proof
without performing any search. However, in that case Vil fails to find a proof then it
is not unlikely that the conjecture is nevertheless a theorem.

2.8.2. What lessons have we learned?

The problem domains on which proof planning has been applied so far are small but
nevertheless typical. Some interesting observations gained from this experience are the
following:

(1) The devil is in the detalil, that is, it is always possible to hide the crucial creative step
(represented as a specific method or represented in the object language by an appro-
priate lemma) and to pretend a level of generality that has not actually been achieved.

5 This was done when €reR tackled they/2-problem; se¢97] for the original ' TER case study anfl.4] for
its replay withQMEGA.
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To evaluate a solutioall tactics, methods, theorems, lemmata and definitions have to
be made explicit.

(2) The enormous distance between the well-known (top-level) proof of the Pythagorean
School, which consists of about a dozen proof steps in comparison to the final (non-
optimized) proof atQMEGA’s ND-calculus level with about 750 inference steps is
striking. This is, of course, not a new insight. While mathematicsicaminciple be
reduced to purely formal logic-level reasoning as demonstrated by Russell and White-
head as well as the Hilbert School, nobody would actually want to do poactice
as the Bourbaki group of French mathematicians states explicitly: The first quarter
of the first volume in the several dozen volume set on the foundation of mathemat-
ics starts with elementary, logic-level reasoning and then proceeds with the crucial
sentencg24]: “No great experience is necessary to perceive that such a project [of
complete formalization] is absolutely unrealizable: the tiniest proof at the beginning
of the theory of sets would already require several hundreds of signs for its complete
formalization”.

(3) Finally and more to the general point of interest in mathematical support systems: Now
that we can prove theorems in thé-problem class, the skeptical reader may still ask:
So whatMWill this ever lead to @eneralsystem for mathematical proof assistance?

We have shown that the class &fs-proofs for limit theorems can indeed be solved
with a few dozen mathematically meaningful methods and control ruleg{d€&2,

63]). Similarly, the domain of group theory with its class of residue theorems can be
formalized with even fewer methods (sg8,66,67).° An interesting observation is

also that these methods by and large correspond to the kind of mathematical knowledge
a freshman would have to learn to master this level of professionalism.

Do the above observations now hold for oiff-problems? The unfortunate answer is
probablyNo! Imagine the subcommittee of the United Nations in charge of the mainte-
nance of the global mathematical knowledge base in a hundred years from now. Would
they accept the entry of our methods, tactics and control rules fof/tigroblems? Prob-
ably not!

Factual mathematical knowledge is preserved in books and monoghalike art of
doing mathematicf81,49]is passed on by word of mouth from generation to generation.
The methods and control rules of the proof planner correspond to important mathematical
techniques and “ways to solve if81], and they make this implicit and informal mathe-
matical knowledge explicit and formal.

The theorems abouf/I-problems are shown by contradiction, that is, the planner de-
rives a contradiction from the equatidnn/ = m/, wheren andm are integers with no
common divisor. However, these problems belong to the more general class to determine
whether two complex mathematical objeétsand)’ are equal. A general mathematical
principle for comparison of two complex objects is to look at their characteristic properties,
for example, their normal forms or some other uniform notation in the respective theory.

6 The generally important observation is not, of course, whether we need a dozen or a hundred methods, but
that we don’t need a few thousand or a million. A few dozen methods seem to be generally enough for a restricted
mathematical domain.
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And this is the crux of the matter: to find general mathematical principles and encode
them into appropriate methods, control rules and strategies such that an appropriately large
class of problemsan be solved with these methods.

3. Thefuture: what next?

The longterm goal of th&MEGA project is an integrated environment of tools support-
ing a wide range of typical mathematical activities. Examples of mathematical activities are
computing, proving, solving, modeling, verifying, structuring, searching, inventing, pub-
lishing, explaining, illustrating, etc. We anticipate that in the long run assistance systems
for mathematics will change mathematical practice and they will have a strong societal
impact, not least in the sense that a powerful infrastructure for mathematical research and
education will become commercially available. Computer supported mathematical reason-
ing tools and integrated assistance systems will be further specialized to have a strong
impact also in many other theoretical fields such as safety and security verification of com-
puter software and hardware, theoretical physics and chemistry and other related subjects.

The research questions we plan to investigate in the immediate future arise from the
following scenario of preparing a mathematical research article with formalized content in
a textbook style and in professional type-setting quality.

Mathematical research article preparation scenarikhe author starts writing a new
mathematical document in a format suitable for publication by using mathematical con-
cepts from different mathematical domains. New mathematical concepts or lemmata in-
troduced in the paper should result in corresponding new formal objects. Furthermore,
when writing the document appropriate service tools can be used to compute intermedi-
ate results for an illustrating example, querying mathematical databases for mathematical
publications introducing similar concepts and send subproblems to be solved to special
reasoning or computation systems. Proofs of lemmata and theorems contained in the doc-
ument should be amenable to formal proof checking techniques such that the submitted
paper can be proof checked semi-automatically by the journal. A long-term goal may be
fully automated verification.

3.1. Formalization and proving at a higher level of granularity

Mathematical reasoning with tHeMEGA system is at the comparatively high level of
the proof planning methods. However, as these methods have to be expanded eventually
to our base-level ND-calculus, the system still suffers from the effect and influence this
logical representation has. In contrast, the proofs developed by a mathematician, say for
a mathematical publication, and the proofs developed by a student in a mathematical tu-
toring system are typically developed at a less fine-grained argumentative level. This level
has been formally categorized p®ofs at the assertion levg1]. While so far assertion
level proofs needed to be constructed from the underlying ND-calculus preayiGA,
the recently developedd@RE system[3,4] supports proof construction directly on the as-
sertion level and defines a communication infrastructure, i.e., a mediator, between the user
and the automatic reasoning procedures. Currently, we exclfamgeA’'s ND-calculus
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by the @RE calculus, which supports the presentation of the proof state via relevant
contextual information about possible proof continuations and also supports hierarchical
proof development. The proof theory ofoRE is uniform for a variety of logics and ex-
ploits proof-theoretic annotations in formulas for an assertion-level contextual reasoning
style.

An unfortunate aspect of typical mathematical proofs is theiter-specificatiof for
example, missing references to premise assertions, to rule and instantiation specifications
or simply the specific part of the formula the author is talking about. One particular
challenge here is to define an appropriate proof format which allows to represent human-
constructed proofs as they are and to develop means to resolve the under-specification
later by deductive methods. First steps in that direction and a description of the types of
under-specifications can be found13].

3.2. Mathematical knowledge representation

A mathematical proof assistance system relies upon different kinds of knowledge: First,
of course, the formalized mathematical domain as organized in structured theories of de-
finitions, lemmata, and theorems. Secondly, there is mathematical knowledge on how to
prove a theorem, which is encoded in tactics and methodR@ ANTS agents, in control
knowledge and in strategies. This type of knowledge can be general, theory specific or even
problem specific.

The integration of a mathematical proof assistant into the typical and everyday activities
of a mathematician requires, however, other types of knowledge as well. For example,
a tutoring system for maths students may rely upon a database with different samples of
proofs and proof plans linked by meta-data in order to advise the student. Another example
is the support for mathematical publications: The documents containing both formalized
and non-formalized parts need to be related to specific theories, lemmata, theorems, and
proofs. This raises the research challenge on how the usual structuring mechanisms for
mathematical theories (such as theory hierarchies or the import of theories via renaming
or general morphisms) can be extended to tactics and methods as well as to proofs, proof
plans and mathematical documents. Furthermore, changing any of these elements requires
maintenance support as any change in one part may have consequences in other parts. For
example, the validity of a proof needs to be checked again after changing parts of a theory,
which in turn may affect the validity of the mathematical documents. Thus, technology
supporting thenanagement of changj@,8,6,52,77] originally developed for evolutionary
formal software engineering at the DFKiyill now be integrated into th@&MEGA system
as well.

Hierarchically structured mathematical knowledge, i.e., an ontology of mathemati-
cal theories and assertions has initially been storedMEGAS hardwired mathematical

7 “Under-specification” is a technical term borrowed from research on the semantics of natural language.
Roughly it means that certain aspects in the semantic representation of a natural language utterance are left unin-
terpreted, such that their proper treatment can be deferred to later stages of processing in which more contextual
information is available.

8 http://www.dfki.de


http://www.dfki.de

$51570-8683(05)00073-X/FLA AID:88 Vol.eee(eee) |88 [DTD5] P.21 (1-27)
JAL:mla v 1.50 Prn:17/11/2005; 11:16 Ja by:Jolanta p. 21

J. Siekmann et al. / Journal of Applied Logi€e (eeee) soo—see 21

knowledge base. This mathematical knowledge base was later (end of the 90s) out-sourced
and linked to the development of MBE [43]. We now assume that a mathematical
knowledge base also maintains domain specific control rules, strategies, and linguistic
knowledge. While this is not directly a subject of research inShe&eGA project, rely-

ing here on other groups of the MKM community and especially tieD@c format? we

shall nevertheless concentrate on one aspect, namely how to find the appropriate informa-
tion as outlined in the next paragraph.

3.2.1. Semantic mediators for mathematical knowledge bases

Knowledge acquisition and retrieval in the currently emerging large repositories of for-
malized mathematical knowledge should not be based purely on syntactic matching, but it
needs to be supported bgmantianediators.

To prove a mathematical theorem in a particular domain is initially blind. Indeed, in
order to prevent a search space explosion, only part of the relevant knowledge is made
available at the start. For instance, in RBIEGA system the proof planner ML.TI selects
a subset of the available knowledge which consists, for each theorem, of a set of assertions
(axioms, definitions, lemmata), tactics and proof-planning methods. As this selection is
naturally incomplete, there is the need to incrementally incorporate additional knowledge
if needed.

We are working on appropriately limited higher-order reasoning agents for domain-
and context-specific retrieval of mathematical knowledge from a mathematical knowledge
base. For this we shall adapt a two stage approach[&Zjywhich combines syntactically
oriented pre-filtering with semantic analysis. The pre-filter employ efficiently processable
criteria based on meta-data and ontologies that identify sets of candidate theorems of a
mathematical knowledge base that are potentially applicable to a focused proof context.
The higher-order agents then act as post-filters to exactly determine the applicable theo-
rems of this set.

3.3. MathServ: a global web for mathematical services

The Internet provides a vast collection of data and computational resources. For exam-
ple, a travel booking system combines different information sources, such as the search
engines, price computation schemes, and the travel information in distributed very large
databases, in order to answer complex booking requests. The access to such specialized
travel information sources has to be planned, the obtained results combined, and, in ad-
dition, the consistency of time constraints has to be guaranteed. We want to transfer and
apply this methodology to mathematical problem solving and develop a system that plans
the combination of several mathematical information sources (such as mathematical data-
bases), computer algebra systems, and reasoning processes (such as theorem provers or
constraint solvers). Based on the well-developedrMWEB-SB network of mathemati-
cal services, the existing client-server architecture will be extended by advanced problem
solving capabilities and semantic brokering of mathematical service§l(G&p.

9 http://mwww.mathweb.org/omdoc/
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Fig. 7. Documents in TeXmacs: The user will be supported by different mathematical reasoning services that
“understand” the document content.

3.4. Support for mathematical activities

Proof construction is an important but only a small part of a much wider range of math-
ematical activities an assistance system for mathematics should support.

3.4.1. Certified mathematics texts

A mathematician or software engineer writes a paper usually in a LaTeX-like environ-
ment. The definitions, lemmata, theorems and especially their proofs give rise to extensions
of the original theory he started with. If the proofs of the new theorems and their consis-
tency with previous assertions are computer checked, we have mathematical documents
in a publishable style which in addition are formally validated, hence obtaireniified
mathematical document4 first step in that direction is currently under development by
linking the WYSIWYG mathematical editorX MACS [94] with the QMEGA system (see
Fig. 7).

The TEXMACS-system provides LaTeX-like editing and macro-definition features, and
we are defining macros for theory-specific knowledge such as types, constants, axioms, and
lemmata. This allows us to translate new textual definitions and lemmata into the formal
representation, as well as to translate (partial) textbook proofs into (partial) proof plans.

3.4.2. Mathematical advice in tutoring systems
We are also involved in the DFKI project ActiveMdffb], which develops an e-learning
tool for tutoring maths students, in particular in advising a student how to prove a theorem.
This scenario is currently also under investigation in thal®GC project[13,21] and,
aside from all linguistic analysis problems, gives rise to the problem to bridge the gap

10 The DIALOG project is a collaboration between the Computer Science and Computational Linguistics de-
partments of Saarland University as part of the Collaborative Research CerRessonrce-Adaptive Cognitive
ProcessesSFB 378 http://www.coli.uni-saarland.de/projects/sth3)78/
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between the human style of proofs and machine-oriented proof representations. Human-
authored proofs are often imprecise in several respects, namely (i) the used inference rule
is not mentioned, (iij) some of the premises needed for a step in the derivation are not
mentioned, and (iii)) some steps of the derivation are completely omitted.

Another interesting and novel application for theorem proving systems in ithieod
project is proof step evaluation (sg&l]): Each proof step uttered by a student within a
tutorial context has to be analyzed with respect to the following criteria:

Soundness Can the proof step be reconstructed by a formal inference system and logically
and tutorially verified?

Granularity. Is the ‘argumentative complexity’ or ‘size’ of the proof step logically and
tutorially acceptable?

Relevance Is the proof step logically and tutorially useful for achieving the final goal?
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PROOF DEVELOPMENT WITH QOMEGA: THE
IRRATIONALITY OF /2

The well-known theorem asserting the irrationality of v/2 was proposed as a
case study for a comparison of fifteen (interactive) theorem proving systems
[Wiedijk, 2002]. This represents an important shift of emphasis in the field
of automated deduction away from the somehow artificial problems of the
past back to real mathematical challenges.

We present an overview of the IMEGA system as far as it is relevant
for the purpose of this paper, and then we discuss three different styles of
proof development in QMEGA using the example of the irrationality of v/2:
The first follows the traditional tactical theorem proving approach without
any mathematical knowledge, the second employs the idea of interactive
island proof planning, and the third is a fully automated proof based on
planning with QMEGA’s proof planner MULTI. Moreover, we illustrate the
expansion and subsequent verification of the proofs at the logic level. We
also discuss the knowledge engineering process by which the main ideas of
the interactive island proof are generalized into respective proof methods,
such that automatic proof planning becomes feasible for this domain.

1 QMEGA

The QOMEGA proof development system [Siekmann et al., 2002] is at the
core of several related and well-integrated research projects of the QMEGA
research group, whose aim is to develop system support for the working
mathematician.

(OMEGA is a mathematical assistant tool that supports proof develop-
ment in mathematical domains at a user-friendly level of abstraction. It
is a modular system with a central proof data structure and several sup-
plementary subsystems. 2MEGA has many characteristics in common with
systems like NUPRL [Allen et al., 2000], CoQ [Coq Development Team,
1999-2003], HoL [Gordon and Melham, 1993], PVS [Owre et al., 1996], and
Isabelle [Paulson, 1994; Nipkow et al., 2002]. However, it differs signifi-
cantly from these systems with respect to its focus on proof planning and
in that respect it is more similar to the proof planning systems CLAM and
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ACLAM at Edinburgh [Richardson et al., 1998; Bundy et al., 1990]. We shall
now present an overview of the architecture of the AMEGA system and show
some of its novel features, which include facilities to access several external
reasoning systems and to integrate their results into a single proof struc-
ture; substantial support for interactive proof development through some
non-standard inspection facilities and for guidance in the search for a proof;
and finally methods to develop proofs at a human-oriented, higher level of
abstraction.

1.1 System Qverview

The QIMEGA project currently represents one of the largest attempts world-
wide to build an assistant tool for the working mathematician. It is a
representative of systems in the new paradigm of proof planning and com-
bines interactive and automated proof construction for domains with rich
and well-structured mathematical knowledge. The inference mechanism at
the lowest level of abstraction is an interactive theorem prover based on
a higher-order natural deduction (ND) variant of a soft-sorted! version of
Church’s simply typed A-calculus [Church, 1940]. The logical language,
which also supports partial functions, is called POST, for partial functions
order sorted type theory. While this represents the “machine code” of the
system the user will seldom want to see, the search for a proof is usually
conducted at a higher level of abstraction defined by tactics and methods.
Automated proof search at this abstract level is called proof planning (see
Section 1.3). Proof construction is also supported by already proven as-
sertions and theorems and by calls to external systems to simplify or solve
subproblems, as will be shown in Section 1.2.

At the core of OMEGA is the proof plan data structure PDS [Cheikhrouhou
and Sorge, 2000], in which proofs and proof plans are represented at var-
ious levels of granularity and abstraction. The PDS is a directed acyclic
graph, where open nodes represent unjustified propositions that still need to
be proved and closed nodes represent propositions that are already proved.
The proof plans are developed and classified with respect to a taxonomy
of mathematical theories, which is currently being replaced by the mathe-
matical knowledge base MBASE [Franke and Kohlhase, 2000; Kohlhase and
Franke, 2001]. The user of QMEGA, or the proof planner MULTI [Melis
and Meier, 2000], or else the suggestion mechanism Q-ANTS [Benzmiiller
and Sorge, 2000] modify the PDS during proof development until a com-
plete proof plan has been found. They can also invoke external reasoning
systems, whose results are included in the PDS after appropriate trans-
formation. Once a complete proof plan at the most appropriate level of
abstraction has been found, this plan must be expanded by sub-methods

1Unary predicates are interpreted as sorts and theorems of a certain syntactical form
as sort declarations. Sort inferences using this information are explicit proof steps.
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and sub-tactics into lower levels of abstraction until finally a proof at the
level of the logical calculus is established. After expansion of these high-
level proofs to the underlying ND calculus, the PDS can be checked by
QOMEGA’s proof checker.

Hence, there are two main tasks supported by this system, namely (i) to
find a proof plan, and (ii) to expand this proof plan into a calculus-level
proof; and both jobs can be equally difficult and time consuming. Task
(ii)) employs an LCF-style tactic expansion mechanism, proof search or a
combination of both in order to generate a lower-level proof object. It is
a design objective of the PDS that various proof levels coexist with their
respective relationships being dynamically maintained. Failing expansions
of proof steps typically lead to open nodes at a lower proof level and thus
result in an incomplete proof. The reasons for the failure can in principle
be analyzed in the PDS in the sense of proof critics [Ireland and Bundy,
1996], however, this option has not yet been further explored.

User interaction is supported by the graphical user interface LOUZ [Siek-
mann et al., 1999], which provides both a graphical and a tabular view of
the proof under consideration, and the interactive proof explanation sys-
tem Prez [Fiedler, 2001a; Fiedler, 2001b], which provides the user with a
natural-language presentation of the proof.

The previously monolithic system has been split up and separated into
several independent modules, which are connected via the mathematical
software bus MATHWEB-SB [Zimmer and Kohlhase, 2002]. An important
benefit is that MATHWEB modules can be distributed over the Internet
and are then remotely accessible by other research groups as well. There
is a very active user community with sometimes several thousand theorems
and lemmata being proved per day; most theorems are generated automat-
ically as (currently non-reusable and non-indexed) subproblems in natural
language processing (see the Doris system [Doris, 2001]), proof planning
[Meier et al., 2002b; Sorge, 2001], and verification tasks.

1.2  Eaxternal Systems

Proof problems require many different skills for their solution. Therefore,
it is desirable to have access to several systems with complementary ca-
pabilities, to orchestrate their use, and to integrate their results. (MEGA
interfaces heterogeneous external systems such as computer algebra systems
(CASs), higher- and first-order automated theorem proving systems (ATPs),
constraint solvers (CSs), and model generation systems (MGs).

Their use is twofold: they may provide a solution to a subproblem, or they
may give hints for the control of the search for a proof. In the former case,
the output of an incorporated reasoning system is translated and inserted
as a subproof into the PDS. This is beneficial for interfacing systems that
operate at different levels of abstraction, and also for a human-oriented
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display and inspection of a partial proof. Importantly, it also enables us to
check the soundness of each contribution by refining the inserted subproof
to a logic-level proof to be verified by OQMEGA’s proof checker.

Currently, the following external systems are integrated in QMEGA:

CASs provide symbolic computation, which can be used in two ways: first,
to compute hints to guide the proof search (e.g., witnesses for exis-
tential variables), and, second, to perform some complex algebraic
computation such as to normalize or simplify terms. In the latter case
the symbolic computation is directly translated into proof steps in
OMEGA. CASs are integrated via the transformation and translation
module SAPPER [Sorge, 2000]. Currently, IMEGA uses the systems
MAPLE [Char et al., 1992] and GAP [Schénert and others, 1995).

ATPs are employed to solve subgoals. Currently 2MEGA uses the first-
order provers BLIKSEM [de Nivelle, 1999], EQP [McCune, 1997], O1-
TER [McCune, 1994], PROTEIN [Baumgartner and Furbach, 1994],
Spass [Weidenbach et al., 1999], WALDMEISTER [Hillenbrand et al.,
1999], the higher-order systems TPS [Andrews et al., 1996], and
LEO [Benzmiiller and Kohlhase, 1998; Benzmiiller, 1999], and we
plan to incorporate VAMPIRE [Riazanov and Voronkov, 2001]. The
first-order ATPs are connected via TRAMP [Meier, 2000], which is a
proof transformation system that transforms resolution-style proofs
into assertion-level ND proofs to be integrated into QMEGA’s PDS.
TPS already provides ND proofs, which can be further processed and
checked with little transformational effort [Benzmiiller et al., 1999].

MGs provide either witnesses for free (existential) variables, or counter-
models, which show that some subgoal is not a theorem. Hence, they
help to guide the proof search. Currently, OMEGA uses the MGs
SaTcuMO [Manthey and Bry, 1988] and SEM [Zhang and Zhang,
1995].

CSs construct mathematical objects with theory-specific properties as wit-
nesses for free (existential) variables. Moreover, a CS can help to
reduce the proof search by checking for inconsistencies of constraints.
Currently, OMEGA employs CoSZE [Melis et al., 2000], a CS for in-
equalities and equations over the field of real numbers.

1.8 Proof Planning

(IMEGA’s main focus is on knowledge-based proof planning [Bundy, 1988;
Melis and Siekmann, 1999], where proofs are not conceived in terms of low-
level calculus rules, but at a much higher level of abstraction that highlights
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the main ideas and de-emphasizes minor logical or mathematical manipu-
lations on formulae.

Knowledge-based proof planning is a new paradigm in automated theo-
rem proving, which swings the motivational pendulum back to its AT origins
in that it employs and further develops many AT principles and techniques
such as hierarchical planning, knowledge representation in frames and con-
trol rules, constraint solving, tactical theorem proving, and meta-level rea-
soning. It differs from traditional search-based techniques in automated
theorem proving not least in its level of abstraction: the proof of a theorem
is planned at an abstract level where an outline of the proof is found. This
outline, that is, the abstract proof plan, can be recursively expanded to con-
struct a proof within a logical calculus provided the proof plan does not fail.
The plan operators represent mathematical techniques familiar to a work-
ing mathematician. While the knowledge of such a mathematical domain
as represented within methods and control rules is specific to the mathe-
matical field, the representational techniques and reasoning procedures are
general-purpose. For example, one of our first case studies [Melis and Siek-
mann, 1999] used the limit theorems proposed by Woody Bledsoe [Bledsoe,
1990] as a challenge to automated reasoning systems. The general-purpose
planner makes use of this mathematical domain knowledge and of the guid-
ance provided by declaratively represented control rules, which correspond
to mathematical intuition about how to prove a theorem in a particular situ-
ation. These rules provide a basis for meta-level reasoning and goal-directed
behavior.

In OMEGA, domain knowledge is encoded in methods, control rules, and
strategies. Moreover, methods and control rules can employ external sys-
tems (e.g., computer algebra systems) and make use of the knowledge in
these systems. (MEGA’s multi-strategy proof planner MULTI [Melis and
Meier, 2000] searches then for a plan using the acquired methods and strate-
gies guided by the control knowledge in the control rules.

AT Principles in Proof Planning

In Al a planning problem is a formal description of an initial state, a goal,
and some operators that can be used to transform the initial state via some
intermediate states to a state that satisfies the goal. Applied to a planning
problem, a planner returns a sequence of actions, that is, instantiated op-
erators, which reach a goal state from the initial state when executed. Such
a sequence of actions is also called a solution plan.

A simple, yet very influential language is the STRIPS representation [Fikes
and Nilsson, 1971; Fikes et al., 1972]. Formalized in propositional logic,
STRIPS describes the initial state by a set of ground literals. A goal is
described by a conjunction of positive literals. Operators in STRIPS have
preconditions and effects, which formalize to which states the operator can
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be applied and how these states are changed by its application, respectively.
Whereas the preconditions of an operator are represented by a conjunction
of positive literals, the effects are represented by a conjunction of positive
and negative literals. The positive literals in the operator’s effects are called
the add list of the operator, while the negative literals are called the delete
list of the operator.

The classical approach to planning problems is precondition achieve-
ment planning [Drummond, 1994], which goes back to the General Problem
Solver, GPS [Newell and Simon, 1963]. The planning process starts from
the goal, which is considered as an unachieved precondition. First, the
add list of all operators is checked to see whether it contains an effect that
achieves some literal of the goal. Then, one such operator is chosen and
appropriately instantiated, and the resulting action is inserted into the plan
under development, thus satisfying part of the goal. The preconditions of
the introduced action become new unsatisfied preconditions of the plan, and
the planning process recurses on those.

Proof planning considers mathematical theorems as planning problems
[Bundy, 1988]. The initial state of a proof planning problem consists of the
proof assumptions of the theorem, whereas the goal is the theorem itself.
The operators in proof planning are the methods.

In OMEGA, proof planning is the process that computes actions, that is,
instantiations of methods, and assembles them in order to derive a theorem
from a set of assumptions. The effects and the preconditions of an action in
proof planning are proof nodes with formulae in the higher-order language
POST, where the effects are considered as logically inferable from the pre-
conditions. A proof plan under construction is represented in the proof
plan data structure PDS (see Section 1.5). Initially, the PDS consists of
an open node containing the statement to be proved, and closed, that is,
justified, nodes for the proof assumptions. The introduction of an action
changes the PDS by adding new proof nodes and justifying the effects of
the action by applications of the method of the action to its premises. The
aim of the proof planning process is to reach a closed PDS, that is, a PDS
without open nodes. The solution proof plan produced is then a record of
the sequence of actions that lead to a closed PDS.

By allowing for forward and backward actions {2MEGA’s proof planning
combines forward and backward state-space planning. Thus, a planning
state is a pair of the current world state and the current goal state. The
initial world state consists of the given proof assumptions and is transfered
by forward actions into a new world state. The goal state consists of the
initial open node and is transfered by backward actions into a new goal
state containing new open nodes. From this point of view the aim of proof
planning is to compute a sequence of actions that derives a current world
state in which all the goals in the current goal state are satisfied.

As opposed to precondition achievement planning (e.g., see [Weld, 1994]),
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effects of methods in proof planning do not cancel each other. For instance,
an action with effect —F introduced for the open node L; does not threaten
the effect F' introduced by another action for the open node L,. Depen-
dencies among open nodes result from shared variables for witness terms
and their constraints. Constraints can be, for instance, instantiations for
the variables but they can also be mathematical constraints such as = < ¢,
which states that, whatever the instantiation for z is, it has to be smaller
than ¢. The constraints created during the proof planning process are col-
lected in a constraint store. An action introducing new constraints is appli-
cable only if its constraints are consistent with the constraints collected so
far. Dependencies among goals with shared variables are difficult to analyze
and can cause various kinds of failures in a proof planning attempt. First
results about how to analyze and deal with such failures are discussed in
[Meier, 2003].

Methods, Control Rules, and Strategies

In QOMEGA, methods can be perceived as tactics in tactical theorem proving
augmented with preconditions and effects, called premises and conclusions,
respectively. A method represents the inference of the conclusion from the
premises. For instance, Notl-M is a method whose purpose is to prove a goal
I' F =P by contradiction. If Notl-M is applied to a goal I' - =P then
it closes this goal and introduces the new goal to prove falsity, L, under
the assumption P, that is, T',P FL1. Thereby, I' - =P is the conclusion
of the method, whereas I',P kL is the premise of the method. Notl-M
is a backward method, which reduces a goal (the conclusion) to new goals
(the premises). Forward methods, in contrast, derive new conclusions from
given premises. For instance, =Subst-m performs equality substitutions by
deriving from two premises I' + Pla] and ' F a = b the conclusion
'+ P[b] where an occurrence of a is replaced by an occurrence of b. Note
that Notl-M and =Subst-m are simple examples of domain-independent,
logic-related methods, which are needed in addition to domain-specific,
mathematically motivated methods. Examples of the latter will be dis-
cussed in detail in Section 3.

Control rules represent mathematical knowledge about how to proceed
in the proof planning process. They can influence the planner’s behavior
at choice points (e.g., which goal to tackle next or which method to apply
next) by preferring members of the corresponding list of alternatives (e.g.,
the list of possible goals or the list of possible methods). This way promising
search paths are preferred and the search space can be pruned. We shall
discuss examples for control rules in Section 3.1.

Strategies employ different sets of methods and control rules and, thus,
tackle the same problem in different ways. The reasoning as to which strat-
egy to employ on a problem is an explicit choice point in MULTI. In partic-
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Figure 1. Multi-modal proof presentation in the graphical user interface
LOUT.

ular, MULTI can backtrack from chosen strategies and search at the level of
strategies.

Detailed discussions of Q@MEGA’s method and control rule language can
be found in [Meier et al., 2002a). A detailed introduction to proof planning
with multiple strategies is given in [Melis and Meier, 2000].

1.4 Interface and System Support

(QIMEGA’s graphical user interface LOUZ [Siekmann et al., 1999] displays
the current proof state in multiple modalities: a graphical map of the proof
tree, a linearized presentation of the proof nodes with their formulae and
justifications, a term browser, and a natural language presentation of the
proof via Prez (see Fig. 1 and 2).

When inspecting portions of a proof by these facilities, the user can switch
between alternative levels of abstraction, for example, by expanding a node
in the graphical map of the proof tree, which causes appropriate changes
in the other presentation modes. Moreover, an interactive natural language
explanation of the proof is provided by the system Prezx [Fiedler, 2001a;
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Figure 2. Natural language proof presentation by Prex in LOUZ.
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Fiedler, 2001b; Fiedler, 2001c], which is adaptive in the following sense: it
explains a proof step at the most abstract level (which the user is assumed
to know) and then reacts flexibly to questions and requests, possibly at
lower levels of abstractions, for example, by detailing some ill-understood
subproof.

Another system support feature of QMEGA is the guidance mechanism
provided by the suggestion module Q-ANTS [Benzmiiller and Sorge, 1998;
Benzmiiller and Sorge, 2000; Sorge, 2001)], which searches proactively for
possible actions that may be helpful in finding a proof and orders them in
a preference list. Examples for such actions are an application of a partic-
ular calculus rule, the call of a tactic or a proof method as well as a call
of an external reasoning system, or the search for and insertion of facts
from the knowledge base MBASE. The general idea is the following: ev-
ery inference rule, tactic, method or external system is “agentified” in the
sense that every possible action searches concurrently for the fulfillment of
its application conditions and once these are satisfied it suggests its exe-
cution. User-definable heuristics select and display the suggestions to the
user. 2-ANTS is based on a hierarchical blackboard, which collects the data
about the current proof state.

1.5 Proof Objects

The central data structure for the overall search is the proof plan data struc-
ture PDS. This is a hierarchical data structure that represents a (partial)
proof at different levels of abstraction (called partial proof plans). Tech-
nically, it is an acyclic graph, where the nodes are justified by tactic ap-
plications. Conceptually, each such justification represents a proof plan
(the expansion of the justification) at a lower level of abstraction, which is
computed when the tactic is executed. In QMEGA, we explicitly keep the
original proof plan as well as intermediate expansion layers in an expansion
hierarchy. The coexistence of several abstraction levels and the dynamical
maintenance of their relationship is a central design objective of QMEGA’s
PDS. Thus the PDS makes the hierarchical structure of proof plans ex-
plicit and retains it for further applications such as proof explanation with
Prez or analogical transfer of plans. The lowest level of abstraction of a
PDS represents the ND calculus.

The proof object generated by QMEGA for the “irrationality of v/2” the-
orem is recorded in a technical report [Benzmiiller et al., 2002], where the
unexpanded and the expanded proof objects are presented in great detail,
that is in a little less than a thousand proof steps.
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1.6 Case Studies

Early developments of proof planning in Alan Bundy’s group at Edinburgh
used proofs by induction as their favorite case studies [Bundy, 1988]. The
OMEGA system has been used in several other case studies, which illustrate
in particular the interplay of the various components, such as proof planning
supported by heterogeneous external reasoning systems.

A typical example for a class of problems that cannot be solved by tra-
ditional automated theorem provers is the class of e-6—proofs [Melis and
Siekmann, 1999; Melis, 1998]. This class was originally proposed by Woody
Bledsoe [Bledsoe, 1990] and it comprises theorems such as LIM+ and LIM*,
where LIM+ states that the limit of the sum of two functions equals the
sum of their limits and LIM* makes the corresponding statement for multi-
plication. The difficulty of this domain arises from the need for arithmetic
computation in order to find a suitable instantiation of free (existential) vari-
ables (such as a § depending on an €). Crucial for the success of QMEGA’s
proof planning is the integration of suitable experts for these tasks: the
arithmetic computation is done by the computer algebra system MAPLE,
and an appropriate instantiation for ¢ is computed by the constraint solver
CoSTE. We have been able to solve all challenge problems suggested by
Bledsoe and many more theorems in this class taken from a standard text-
book on real analysis [Bartle and Sherbert, 1982].

Another class of problems we tackled with proof planning is concerned
with residue classes [Meier et al., 2002b; Meier et al., 2001]. In this domain
we show theorems such as: “the residue class structure (Zs, +) is associa-
tive”, “it has a unit element”, and similar properties, where Zs is the set of
all congruence classes modulo 5 {05, 15, 25, 35,45} and + is the addition on
residue classes. We have also investigated whether two given structures are
isomorphic or not and altogether we have proved more than 10,000 theorems
of this kind (see [Sorge, 2001]). Although the problems in this domain are
still within the range of difficulty a traditional automated theorem prover
can handle, it was nevertheless an interesting case study for proof planning,
since multi-strategy proof planning generated substantially different proofs
based on entirely different proof ideas.

Another important proof technique is Cantor’s diagonalization technique
and we also developed methods and strategies for this class [Cheikhrouhou
and Siekmann, 1998]. Important theorems we have been able to prove are
the undecidability of the halting problem and Cantor’s theorem (cardinality
of the set of subsets), the non-countability of the reals in the interval [0, 1]
and of the set of total functions, and similar theorems.

Finally, a good candidate for a standard proof technique are complete-
ness proofs for refinements of resolution, where the theorem is usually first
shown at the ground level using the excess-literal-number technique and
then ground completeness is lifted to the predicate calculus. We have done
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this for many refinements of resolution with QMEGA [Gebhard, 1999].

2 A CASE STUDY: v/2 IS NOT RATIONAL

QIMEGA’s main aim is to become a proof assistant tool for the working
mathematician. Hence, it should support interactive proof development at a
user-friendly level of abstraction. The mathematical theorem that v/2 is not
rational, and its well-known proof dating back to the School of Pythagoras,
provides an excellent challenge to evaluate whether this ambitious goal has
been reached. In the remainder of the paper, we will refer to this proof
problem as the v/2-problem. In [Wiedijk, 2002] fifteen systems that have
solved the v/2-problem show their respective results. The protocols of their
respective sessions have been compared on a multi-dimensional scale in order
to assess the “naturalness” by which real mathematical problems of this kind
can be proved within the respective system.

This represents an important shift of emphasis in the field of automated
deduction away from the somehow artificial problems of the past — as
represented, for example, in the test set of the TPTP library [Sutcliffe et
al., 1994] — back to real mathematical challenges.

We participated in this case study essentially with three different contri-
butions. Our initial contribution was an interactive proof in QMEGA without
adding special domain knowledge to the system. For further details on this
case study, which particularly demonstrates the use of {IMEGA as a usual
tactical theorem prover, we refer to [Benzmiiller et al., 2002]. The most
important albeit not entirely new lesson to be learned from this experiment
is that the level of abstraction common in most automated and tactical
theorem proving environments is far too low. While our proof representa-
tion is already an abstraction (called the assertion level in [Huang, 1994])
from the calculus level typical for most ATPs, it is nevertheless clear that
as long as a system does not hide all these excruciating details, no working
mathematician will feel inclined to use such a system. In fact, this is in
our opinion one of the critical impediments for using ATPs and one, albeit
not the only one, of the reasons why they are not used as widely as, say,
computer algebra systems.

This is the crucial issue in the QMEGA project and our main motivation
for departing from the classical paradigm of automated theorem proving
about fifteen years ago.

Our second contribution to the case study of the v/2-problem is based
on interactive island planning [Melis, 1996], a technique that expects an
outline of the proof and has the user provide main subgoals, called islands,
together with their assumptions. The details of the proof, eventually down
to the logic level, are postponed. Hence, the user can write down his proof
idea in a natural way with as many gaps as there are open at this first stage
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of the proof. Closing the gaps is ideally fully automatic, in particular, by
exploiting the external systems interfaced to QMEGA. However, for diffi-
cult theorems it is necessary more often than not that the user provides
additional information and applies the island approach recursively.

In comparison to our first tactic-based solution the island style supports
a much more abstract and user-friendly interaction level. The proofs are
now at a level of abstraction similar to proofs in mathematical textbooks.

Our third contribution to the case study of the \/2-problem is a fully
automatically planned and expanded proof of the theorem as presented in
Section 3.

In the following sections we shall first describe the problem formaliza-
tion (Section 2.1). Then, we shall present part of the tactic-level proof
(Section 2.2) and the interactive island approach (Sections 2.3 to 2.5). Fi-
nally, in Section 3 we show the fully automated solution and we provide a
generalization of it covering a whole class of similar problems. The actual
challenge, attributed to the Pythagorean School, is as follows:

THEOREM. v/2 is irrational.

Proof. [by contradiction] Assume /2 is rational, that is, there exist natural
numbers m,n with no common divisor such that v/2 = m /n. Then nyv2 =
m, and thus 2n2 = m?2. Hence m? is even and, since odd numbers square to
odds, m is even; say m = 2k. Then 2n? = (2k)? = 4k2, that is, n®> = 2k>.
Thus, n? is even too, and so is n. That means that both n and m are even,
contradicting the fact that they do not have a common divisor. |

2.1 Problem Formalization

The theorem is initially formulated in Q2MEGA’s knowledge base as an open
problem in the theory REAL. The problem is encoded in POST syntax,
which is the logical input language for QMEGA:

(th~defproblem sqrt2-not-rat (in real)
(conclusion (not (rat (sqrt 2))))
(help "sqrt 2 is not a rational number."))

The concepts of the rational numbers (rat) and the square root (sqrt)
are defined in the knowledge base as well. Since they are not needed in the
interactive session at this abstract level and because of lack of space, we do
not display them here (cf. [Benzmiiller et al., 2002] for the details).

To prove the given problem, further mathematical knowledge is required.
Our proof employs the definition of evenness (evenp) and some theorems
about rational numbers, evenness, and common divisors (common-divisor).
However, the definition of sqrt is not needed in the main proof, because
we use the computer algebra system MAPLE to justify the transformation



284 ﬁEKMANN}BENZMﬁLLERJﬂEDLER,MEEmaNORMANN;ANDPOLLET

of nv/2 = m into 2n?> = m2. To do so, expressions in QMEGA such as
V/2 are mapped to corresponding MAPLE representations, and MAPLE uses
its own built-in knowledge to manipulate them. Using and verifying these
computation steps requires the expansion of MAPLE’s computations to the
calculus layer in QMEGA. As shown in [Sorge, 2000], this can be done by
replaying MAPLE’s computation by special computational tactics in (IMEGA,
which may also unfold some definitions such as sqrt. These tactics and
their expansions are part of the SAPPER system and correspond directly
to the mathematical definitions available in QMEGA’s knowledge base. For
example, the number 2 is defined in theory NATURAL as s(s(0)). Again,
this knowledge is only required when expanding the abstract proof to the
basic calculus layer and it is not visible to the user at this stage. However,
SAPPER is still too weak in general, this is a subject of further development.

We now give examples for definitions and theorems used in our proofs of
the \/i—problem.

(th~defdef evenp (in integer)
(definition
(lam (x num) (exists-sort (lam (y num) (= x (times 2 y))) int)))
(help "Definition of even."))

(th~deftheorem rat-criterion (in real)
(conclusion (forall-sort (lam (x num)
(exists-sort (lam (y num)
(exists-sort (lam (z num)
(and (= (times x y) z)
(not (exists-sort (lam (d num)
(common-divisor y z d))
int))))
int))
int))
rat))
(help "x rational implies there exist integers y,z which
have no common divisor and furthermore z=x*y."))

(th"deftheorem square-even (in integer)
(conclusion (forall-sort (lam (x num) (equiv (evenp (power x 2))
(evenp x)))
int))
(help "x is even, iff x"2 is even."))

2.2 Tactical Theorem Proving in (IMEGA

One way to construct proofs in MEGA interactively is based on tradi-
tional tactical theorem proving. When employed in this mode QMEGA is
comparable to many other interactive systems like NUPRL [Allen et al.,
2000], CoQ [Coq Development Team, 1999-2003], HoL [Gordon and Mel-
ham, 1993], PVS [Owre et al., 1996], and Isabelle [Paulson, 1994; Nipkow et
al., 2002]. However, a characteristic special to IMEGA is that several tools
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(e.g., the various external systems) are available to support the interactive
proof development process (cf. Section 1.2).

Our first case study on the v/2-problem used the tactical theorem proving
approach and proved the theorem in 33 interactive steps. These steps were
automatically recorded by QIMEGA in a so-called replay file, which contains
all information that is needed to automatically replay a proof.?2 Here, we
only sketch the interactions required for the problem by presenting the con-
tent of this replay file. A detailed description of the interactive proof can
be found in [Benzmiiller et al., 2002].

Step 0: OMEGA-BASIC PROVE (SQRT2-NOT-RAT)

Step 1: DECLARATION DECLARE ((CONSTANTS (M NUM) (N NUM) (X NUM)))
Step 2: RULES NOTI default default

Step 3: MBASE IMPORT-ASS (RAT-CRITERION)

Step 4: TACTICS FORALLE-SORT default default ((SQRT 2)) default
Step 5: TACTICS EXISTSE-SORT default default (N) default

Step 6: TACTICS ANDE default default default

Step 7: TACTICS EXISTSE-SORT (L7) default (M) default

Step 8: TACTICS ANDE* (L8) (NIL)

Step 9: OMEGA-BASIC LEMMA default ((= (POWER M 2) (TIMES 2 (POWER N 2))))

Step 10: TACTICS BY-COMPUTATION (L13) ((L11))

Step 11: OMEGA-BASIC LEMMA (L9) ((EVENP (POWER M 2)))

Step 12: RULES DEFN-CONTRACT default default default

Step 13: OMEGA-BASIC LEMMA (L9) ((INT (POWER N 2)))

Step 14: TACTICS WELLSORTED default default

Step 15: TACTICS EXISTSI-SORT (L15) ((POWER N 2)) (L13) (L16) default
Step 16: MBASE IMPORT-ASS (SQUARE-EVEN)

Step 17: TACTICS ASSERT ((EVENP M)) ((SQUARE-EVEN L10 L14)) (NIL)

Step 18: RULES DEFN-EXPAND (L17) default default

Step 19: TACTICS EXISTSE-SORT default default (K) default

Step 20:  TACTICS ANDE (L19) default default

Step 21: OMEGA-BASIC LEMMA default ((= (POWER N 2) (TIMES 2 (POWER K 2))))
Step 22: TACTICS BY-COMPUTATION (L23) ((L13 L22))

Step 23: OMEGA-BASIC LEMMA default ((EVENP (POWER N 2)))

Step 24: RULES DEFN-CONTRACT default default default

Step 25: OMEGA-BASIC LEMMA (L20) ((INT (POWER X 2)))

Step 26: TACTICS WELLSORTED (L26) ((L21))

Step 27:  TACTICS EXISTSI-SORT default ((POWER K 2)) (L23) default default
Step 28: TACTICS ASSERT ((EVENP N)) ((SQUARE-EVEN L6 L24)) (NIL)

Step 29: MBASE IMPORT-ASS (EVEN-COMMON-DIVISOR)

Step 30: OMEGA-BASIC LEMMA (L20) ((INT 2))

Step 31: TACTICS WELLSORTED (L28) (NIL)

Step 32: TACTICS ASSERT (FALSE) ((EVEN-COMMON-DIVISOR L10 L6 L12 L17 L27 L28)) (NIL)
Step 33: RULES WEAKEN default default

The lesson to be learned from this protocol is that the wrong level of
abstraction is still common in most automated and tactical theorem proving
environments. This is our conviction even though De Bruijn’s conjecture
that the formalized proof object is at most a linear blow-up of the informal
mathematical proof can be argued to actually hold for this example.

In the following section, we shall show how a proof at a more user-friendly
level of abstraction can be achieved.

2The structure of a line entry of a replay file is as follows: First an identifier of the
command category (e.g., MBASE) is given. Then follows the command to be executed
(e.g., IMPORT-ASS) and a sequence of parameters (e.g., RAT-CRITERION). The parameter
information “default” leaves the choice of the parameter to OMEGA.



286 SIEKMANN, BENZMI"JLLER, FIEDLER, MEIER, NORMANN, AND POLLET

2.3 Interactive Island Proof Development in (IMEGA

The v/2-problem can also be solved interactively in QMEGA along the lines of
the previously given textbook proof (cf. the introduction of Section 2). Due
to space restrictions we cannot show the proof development using QMEGA’s
graphical user interface LOQUZ, but the more cumbersome command line
interface of the emacs editor. Otherwise we would have to show a LOQUZ
screen shot for every user interaction. Thus, the following presentation gives
an insufficient impression of the interaction with (XMEGA, which is in the
style of the final island proof plan in LOUZ and Prex as shown in Fig. 1
and 2.

For every command we show both the newly introduced proof nodes and
the previously open proof nodes that are closed by the command. The
input to QMEGA (entered after the OMEGA prompt) and its output are given
in typewriter font.

We present the steps of the proof in a linearized style and therefore call
proof nodes also proof lines. In the following, we shall write proof lines as
L (A) F ¢ R, where L is a unique label, (A) + ¢ denotes that the
formula ¢ can be derived from the formulae whose labels are in the list A,
and R is the justification for this derivation of ¢ from A by naming the
used inference rule, tactic, or method along with parameters and premises.

Step 0 We start by loading the theory REAL, in which the problem is
declared.

OMEGA: load-problems real

;33 Rules loaded for theory REAL.

;3; Theorems loaded for theory REAL.
;33 Tactics loaded for theory REAL.
;33 Methods loaded for theory REAL.
;33 Strategies loaded for theory REAL.

Now, we set the focus on our problem and declare some constant symbols,
which we shall use later.
OMEGA: prove sqrt2-not-rat

Changing to proof plan SQRT2-NOT-RAT-1
SQRT2-NOT-RAT () |- (NOT (RAT (SQRT 2))) OPEN

OMEGA: declare (constants (m num) (n num) (k num))

Step 1: We prove the goal indirectly, that is, we use the inference rule
noti.

OMEGA: noti
NEGATION (NDLINE) A negated line: [SQRT2-NOT-RAT]
FALSITY (NDLINE) A falsity line: [()]

L1 (L1) |- (RAT (SQRT 2)) HYP
L2 (L1) |- FALSE OPEN
SQRT2-NOT-RAT () |- (NOT (RAT (SQRT 2))) NOTI: (L2)
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Step 2: We load from the database the theorem RAT-CRITERION, which
states that for each rational number z, there are integers y and z, such that
Z -y = z, where y and z have no common divisor beside 1 (as the formal-
ization of common-divisor states, cf. [Benzmiiller et al., 2002]). As a side
effect, the newly introduced proof line containing that theorem is implicitly
added to the hypotheses lists of all other proof lines. The retrieval of this
theorem and its application in the appropriate context is non-trivial, since
the only syntactical criterion that can be exploited to restrict the potentially
large set of applicable theorems is the predicate symbol RAT. Automatic ac-
quisition of theorems is a challenging problem and requires a combination
of syntax-oriented and semantics-oriented tools. First ideas in this direc-
tion are presented in [Benzmiiller et al., 2003], assertion application based
on resolution is described in [Vo et al., 2003]. However, dynamic retrieval
of appropriate assertions from a very large data base with mathematical
knowledge is unsolved.

OMEGA: import-ass rat-criterion

RAT-CRITERION (RAT-CRITERION) |- (FORALL-SORT ([XI. THM
(EXISTS-SORT ([Y].
(EXISTS-SORT ([Z].
(AND (= (TIMES X Y) Z)
(NOT (EXISTS-SORT ([D].
(COMMON-DIVISOR Y Z D))
INT))))
INT))
INT))
RAT)

Step 3: We eliminate the sorted universal quantifier by instantiating its
variable X with v/2. This step is again non-trivial. A naive approach to
automation, however, is to identify and subsequently instantiate terms of
appropriate sort occurring in the proof context.

OMEGA: foralle-sort

UNIV-LINE (NDLINE) Universal line: [RAT-CRITERION]
LINE (NDLINE) A line: [()]

TERM (TERM) Term to substitute: (sqrt 2)

SO-LINE (NDLINE) A line with sort: [L1]
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L3 (L1) |- (EXISTS-SORT ([DC-248]. FORALLE-SORT: ((SQRT 2))
(EXISTS-SORT ([DC-2511. (RAT-CRITERION L1)
(AND (= (TIMES (SQRT 2) DC-248) DC-251)
(NOT (EXISTS-SORT ([DC-255].
(COMMON-DIVISOR DC-248 DC-251 DC-255))
INT))))
INT))
INT)

Step 4: We eliminate the two sorted existential quantifiers by introducing
the constants n and m. Since the quantifiers are soft-sorted, this introduces
the additional information that n and m are integers. The newly introduced
hypotheses L4 and L5, which express this sort information, are decomposed
right away.

OMEGA: mexistse-sort*

CONCLINE (NDLINE) Conclusion Line.: [L2]

EXLINE (NDLINE) An existentially quantified line: [L3]

SUBGOAL (NDLINE) Subgoal Line.: [()]

PARAMETER (TERMSYM-LIST) Termsym List.: [(dc-2481 dc-2511)1(n m)

L4 (L4) |- (AND (INT N) HYP
(EXISTS-SORT ([DC-251].
(AND (= (TIMES (SQRT 2) N) DC-251)
(NOT (EXISTS-SORT ([DC-255].
(COMMON-DIVISOR N DC-251 DC-255))
INT))))
INT))
L6 (L4) |- (INT N) ANDEL: (L4)
L5 (L5) |- (AND (INT M) HYP
(AND (= (TIMES (SQRT 2) N) M)
(NOT (EXISTS-SORT ([DC-255].
(COMMON-DIVISOR N M DC-255))
INT))))
L8 (L5) |- (INT M) ANDEL: (L5)
L9 (L5) |- (AND (= (TIMES (SQRT 2) N) M) ANDER: (L5)
(NOT (EXISTS-SORT ([DC-255].
(COMMON-DIVISOR N M DC-255))
INT)))
L10 (L4 L5 L1) |- FALSE OPEN
L2 (L1) |- FALSE Existse-Sort*-m: ((N M)) (L3 L10)

Step 5: Line L9 is further decomposed:

OMEGA: ande

CONJUNCTION (NDLINE) Conjunction to split: [L9]
LCONJ (NDLINE) Left conjunct: [()]

RCONJ (NDLINE) Right conjunct: [()]

Li1 (L5) |- (= (TIMES (SQRT 2) N) M) ANDE: (L9)
L12 (L5) |- (NOT (EXISTS-SORT ([DC-255]. ANDE: (L9)
(COMMON-DIVISOR N M DC-255)) INT))

Step 6: While the previous five steps were essentially canonical, we shall
now start the island approach to sketch the refutation argument. First, we
need some calculations to infer 2n2 = m?2 from v/2n = m. To do S0, we
use the tactic ISLAND-TACTIC, which allows us to insert arbitrarily large
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steps into our proof. The correctness of these steps is checked later when
ISLAND-TACTIC is expanded. Note that we specify the premises we want
to employ. This is important information because if we specify premises
that are too weak, this may have the effect that the island gap cannot be
successfully closed later on.

OMEGA: island-tactic

CONC (NDLINE) Conclusion of step: nil

PREMS (NDLINE-LIST) Premises of step: (L11 L6 L8)

PARAM (TERM) Formula of Conclusion: (= (times 2 (power n 2)) (power m 2))

L13 (L4 L5) |- (= (TIMES 2 (POWER N 2)) (POWER M 2)) ISLAND-TACTIC: (L11 L6 L8)

Step 7: Next, we infer from 2n2 = m?2 that m? is even. ..

OMEGA: island-tactic nil (L13 L6 L8) (evenp (power m 2))

Li4 (L4 L5) |- (EVENP (POWER M 2)) ISLAND-TACTIC: (L13 L6 L8)

Step 8: ... and therefore m is even, too.

OMEGA: island-tactic nil (L14 L8) (evenp m)

L15 (L4 L5) |- (EVENP M) ISLAND-TACTIC: (L14 L8)

Step 9: Next, we unfold? the definition of EVENP.

OMEGA: defn-expand

LINE (NDLINE) Line to be rewritten: [RAT-CRITERION]L15
DEFINITION (THY-ASSUMPTION) Definition to be expanded: [EVENP]
POSITION (POSITION) Position of occurrence: [(0)]

L16 (L4 L5) |- (EXISTS-SORT ([DC-263]. DefnE: (L15)
(= M (TIMES 2 DC-263))) INT)

Step 10: As before, we eliminate the sorted existential quantifier by in-
troducing the constant k. Again, the information that k is an integer is
added automatically.

OMEGA: mexistse-sort*

CONCLINE (NDLINE) Conclusion Line.: [L10]

EXLINE (NDLINE) An existentially quanitified line: [L3]L16
SUBGOAL (NDLINE) Subgoal Line.: [()]

PARAMETER (TERMSYM-LIST) Termsym List.: [(dc-2631)] (k)

L17 (L17) |- (AND (INT K) (= M (TIMES 2 X))) HYP
L18 (L17) |- (INT X) ANDEL: (L17)
L19 (L17) |- (=M (TIMES 2 X)) ANDER: (L17)
L20 (L17 L4 L5 L1) |- FALSE OPEN
L10 (L4 L5 L1) |- FALSE Existse-Sort*-m: ((K)) (L16 L20)

3The folding and unfolding of definitions have historically been called definition con-
traction (defn-contract) and expansion (defn-expand) in QMEGA.
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Step 11: Now, we can go on with our calculation using the ISLAND-
TACTIC. By inserting 2k for m in 2n? = m? we obtain n? = 2k2.

OMEGA: island-tactic nil (L19 L13 L6 L8 L18)
(= (power n 2) (times 2 (power k 2)))

L21 (L4 L5 L17) |- (= (POWER N 2) (TIMES 2 (POWER K 2)))
ISLAND-TACTIC: (L19 L13 L6 L8 L18)

Step 12: That means that n? is even...

OMEGA: island-tactic nil (L21 L6 L18) (evenp (power n 2))

L22 (L5 L4 L17) |- (EVENP (POWER N 2)) ISLAND-TACTIC: (L21 L6 L18)

Step 13: ... and sois n.

OMEGA: island-tactic nil (L22 L6) (evenp n)

L23 (L17 L5 L4) |- (EVENP N) ISLAND-TACTIC: (L22 L6)

Step 14: Since both n and m are even, they have a common divisor,
namely 2.

OMEGA: island-tactic nil (L15 L23 L6 L8) (common-divisor n m 2)

L24 (L17 L4 L5) |- (COMMON-DIVISOR N M 2) ISLAND-TACTIC: (L15 L23 L6 L8)

Step 15: This proves our contradiction and we are done.

OMEGA: island-tactic L20 (L12 L24) false

L20 (L17 L4 L5 L1) |- FALSE ISLAND-TACTIC: (L12 L24)

A verbal presentation of this proof is given in Fig. 2.

2.4 Closing the Gaps

The application of ISLAND-TACTIC does not necessarily result in an auto-
matically verifiable logic-level proof, as filling the gaps can become a chal-
lenging task in its own right.

We shall now describe the (semi-automated) task of closing the gaps
between the islands in our case study, which leads to a verifiable proof object
at the logic level. IMEGA supports this process by providing interfaces to
external systems. In particular, we use the theorem prover OTTER and
the computer algebra system MAPLE. Although these external systems
are essentially capable of closing the gaps in this case, the user still has
to call them “in the right way” and to provide missing information. For
instance, the user has to decide which system he wants to employ, he has to
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load additional theorems from the database, and he has to manually unfold
some definitions.

The first step when dealing with ISLAND-TACTIC is always to expand
its application and we present this step only for the first application of
ISLAND-TACTIC. By expanding the tactic its conclusion node becomes open
(i-e., unjustified) again and all its premises are now support nodes, that
is, the open node is supposed to be derivable from these support nodes.
Moreover, theorems and axioms imported from the database automatically
become support nodes as well.

Note that the expansion of a tactic application in 2MEGA can result in
proof segments that again contain tactic applications. Thus, expanding a
tactic down to the ND level is a recursive process over several levels. We
call the recursive process over all necessary levels until an ND-level proof
is reached the full expansion of a tactic, whereas with expansion of a tactic
we mean only the direct one-level expansion.

Proving L20 (n and m were supposed to have no common divisor
but they actually do have 2 as a common divisor, hence contra-
diction): Line L20 is justified by an application of ISLAND-TACTIC to the
premises L12 and L24. When we expand L20, it becomes open again and
its support nodes specify that RAT-CRITERION, L12 and L24 can be used to
close it (indeed, RAT-CRITERION is not necessary as we shall see later).

OMEGA: expand-node L20
Expanding the node L20 ...

L20 (L17 L4 L5 L1) |- FALSE OPEN

OMEGA: show-supports L20
RAT-CRITERION L12 L24

L12 (L5) |- (NOT (EXISTS-SORT ([DC-255]. ANDE: (L9)
(COMMON-DIVISOR N M DC-255))
INT))

L24 (L17 L4 L5) |- (COMMON-DIVISOR N M 2) ISLAND-TACTIC: (L15 L23 L6 L8)

Although the formulae involved are in first-order logic, OTTER fails to
prove L20 with these supports.

OMEGA: call-otter-on-node L20

Normalizing ...

Calling otter process 27411 with time resource 10sec .
otter Time Resource in seconds: 10sec

Search stopped because sos empty.

Parsing Otter Proof ...

OTTER HAS FAILED TO FIND A PROOF

OTTER fails because one premise is missing, which is not inferable from
the context, namely that 2 is an integer. Thus, we speculate this statement
as a lemma for L20. This creates the new line L25, which is added as support
for 1L20. We can prove L25 directly with the tactic WELLSORTED.
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OMEGA: lemma L20 (INT 2)
125 (L17 L4 L5 L1) |- (INT 2) OPEN
OMEGA: wellsorted 125 ()

L25 (L17 L4 L5 L1) |- (INT 2) WELLSORTED: ()

We apply OTTER again to L20, and this time it succeeds. TRAMP auto-
matically translates the OTTER proof to an ND proof at the more abstract
assertion level [Huang, 1994].

OMEGA: call-otter-on-node L20
Normalizing ...

Calling otter process 27554 with time resource 10sec
otter Time Resource in seconds: 10sec
———————— PROOF --------

Search stopped by max_proofs option.
Parsing Otter Proof ...

OTTER HAS FOUND A PROOF

Creating Refutation-Graph ...
Translating ...

Translation finished!

L12 (L5) |- (NOT (EXISTS-SORT ([DC-255]. ANDE: (L9)
(COMMON-DIVISOR N M DC-255))
INT))
L24 (L17 L4 L5) |- (COMMON-DIVISOR N M 2) ISLAND-TACTIC: (L15 L23 L6 L8)
L28 (L5) |- (NOT (EXISTS [DC-97457] DEFNE: (L12)

(AND (INT DC-97457)
(COMMON-DIVISOR N M DC-97457))))

L30 (L17 L4 L5) |- (NOT (INT 2)) ASSERTION: (L28 L24)
L25 (L17 L4 L5 L1) |- (INT 2) WELLSORTED: ()
L31 (L1 L17 L4 L5) |- FALSE NOTE: (L25 L30)
L29 (L17 L4 L5 L1) |- FALSE WEAKEN: (L31)
L20 (L17 L4 L5 L1) |- FALSE WEAKEN: (L29)

This proves that L20 is derivable from L12 and L24 at a lower level of
abstraction. However, the nodes L30 and L25 are still not at the ND level,
but justified by tactics. To verify these steps we have to fully expand them
also, which works automatically and results in an ND-level subproof for L25
that consists of 13 steps and an ND-level subproof for L30 with 40 steps.

Proving L15 (m? is even implies m is even) and L23 (n? is even im-
plies n is even): In order to close the gap between L15 and its premises
L14 and L8 and between L23 and its premises L22 and L6 we need the the-
orem SQUARE-EVEN from the database. With this theorem OTTER manages
to prove L15 and L23, respectively, and TRAMP outputs the correspond-
ing assertion level proofs, which consist essentially of an application of the
assertion SQUARE-EVEN. When fully expanded, the subproofs, that is, the
ND-level proof deriving L15 from L14 and L8 and the ND-level proof deriv-
ing L23 from L22 and L8, consist of 6 steps each.

Proving L14 (2n? = m? implies m? is even) and L22 (n? = 2k? im-
plies n? is even): The proof line L14 is justified by an application of
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ISLAND-TACTIC to L13, L6, and L8. OTTER fails to prove L14 with respect
to these supports. Indeed, using OTTER to obtain a proof for L14 requires
some further steps: (1) we have to unfold the definition of EVENP in L14,
and (2) we have to speculate that n? is an integer as a lemma for L14, which
is added as node L41 to the proof. L41 can then be closed by applying the
tactic WELLSORTED with L6 as premise such that afterwards the problem has
the following form:

L13 (L4 L5) |- (= (TIMES 2 (POWER N 2)) (POWER M 2)) ISLAND-TACTIC: (L11 L6 L8)

L41 (L4 L5) |- (INT (POWER N 2)) WELLSORTED: (L6)

L40 (L4 L5) |- (EXISTS-SORT ([DC-98774]. OPEN
(= (POWER M 2) (TIMES 2 DC-98774))) INT)

L14 (L4 L5) |- (EVENP (POWER M 2)) DEFNI: (L40)

After applying OTTER successfully to L40, TRAMP provides a proof that
derives L40 in 5 steps from L13 and L41. A fully expanded subproof at the
ND level consists of 11 steps. When the application of WELLSORTED is fully
expanded, L41 is derived from L6 by a subproof consisting of 17 steps.

Closing the gap between L22 and its premises L21, L6, and L18 works
similarly. The only difference is that instead of the lemma that n? is an
integer, the lemma that k2 is an integer has to be speculated. This lemma
can be closed by an application of the tactic WELLSORTED to the node L18
with formula (INT K).

Proving L24 (since n and m are even they have 2 as a common
divisor): Before we can exploit OTTER to obtain a proof for the gap
between L24 and its supports L15, 1L23, L6, and L8 we have to unfold some
defined concepts and speculate some lemmata. In L24, we have to unfold
the defined concept COMMON-DIVISOR, which closes L24 and results in a new
open node L59. In L59 we then have to unfold all occurrences of the defined
concept DIVISOR, which closes L59 and creates a new open node L60. L60
inherits the supports of 1L24 via L59. Next, we have to unfold EVENP in the
two support nodes L15 and L23, which creates the two new supports L61
and L62 for L60 that contain the formulae resulting from unfolding EVENP.
Moreover, for L60 we have to speculate the two lemmata that 1 # 2 and
that 2 is an integer, which are introduced as nodes L63 and L64 in the proof.

The open node L60 and its supports can now be proved using OTTER.
TrAMP translates OTTER’s proof into an ND-level proof that consists of 16
steps. We already proved that 2 is an integer in L25. To prove the second
lemma, 1 # 2, is actually not as trivial as it may seem. The numbers 1 and
2 are defined concepts in IMEGA and they are more convenient representa-
tions of (S ZERO) and (S (S (ZERD))), where S is the successor function.
After unfolding 1 and 2 we have to prove that (NOT (= (S ZERD) (S (S
ZERD)))) holds. We can prove this statement with OTTER, but to do so we
need to import the following axioms from the database into the proof: ZERO
is a natural number, the successor of a natural number is again a natural
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number, the successor function is injective, and ZERO has no predecessor.
Then TRAMP provides as output an assertion-level proof that consists of 8
steps. When fully expanded, the subproof for L63 consists of 28 steps.

Proving L13 (v2n = m implies 2n?> = m?) and L21 (m = 2k and
2n? = m? imply n? = 2k?): So far, we always used OTTER and TRAMP to
expand applications of ISLAND-TACTIC. Indeed, automated theorem proving
was the right choice for this task, since all subproofs essentially rely on some
theorems or definitions, which — after being imported from the database
— can be used by OTTER to derive a proof.

In contrast, the steps deriving L13 from L11, L6, and L8 as well as de-
riving L21 from L19, L13, L6, L8, and L18 represent algebraic computa-
tions, for which ATPs are not particularly well suited. In QMEGA, the tac-
tic BYCOMPUTATION employs the computer algebra system MAPLE to check
whether an equation containing arithmetic expressions follows from a set of
other equations. To do so, BYCOMPUTATION passes all equations to MAPLE
and calls MAPLE’s is function to check whether the conclusion equation
holds assuming the premise equations. This tactic succeeds when applied
to L13 and L21. For example, it closes L13 as follows:

L11 (L5) |- (= (TIMES (SQRT 2) N) M) ANDE: (L9)
L13 (L4 L5) |- (= (TIMES 2 (POWER N 2)) (POWER M 2)) BYCOMPUTATION: (L11)

Currently, the tactic BYCOMPUTATION can only be partially expanded into
an ND-level proof, namely for computations with polynomials. We are
working on extensions of SAPPER to cover more cases, such as the equation
above. The two applications of BYCOMPUTATION that justify L13 and L21 are
therefore only “verified” by MAPLE, but not automatically by an ND-level
proof.4

Result: When fully expanded, the island proof consists of 282 nodes,
where the nodes L13 and L21 are justified by the unexpanded tactic
BYCOMPUTATION. Hence, IMEGA’s checker verifies that the proof is correct
modulo the correctness of these computations. Fully expanding and check-
ing the proof takes about 300 seconds on a 1.8 GHz Pentium III machine
with 512 MB RAM running LINUX.

2.5 Automation of Proof Tasks

As described in detail in Sections 2.3 and 2.4, the proof of the v/2-problem
is constructed in two phases: First an abstract proof is outlined, in which

4 Applications of mathematical systems for simplification make their efficient compu-
tation available to the construction of the top-level proof plan. The time-consuming
verification is left to the expansion mechanism.
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islands are coupled by tactics without care for the detailed logical depen-
dencies between them. Next, the gaps between the islands are closed in the
second phase with detailed ND-proof segments. So far both tasks require
fairly detailed user interaction: at the abstract level the user has to provide
the islands (and to apply some tactics); and for the expansion into the logic
level he has to speculate the right lemmata, import the right theorems, and
unfold the right definitions up to the right level.

The main research in {MEGA is currently to better automate these tasks.
To this end, we examine two approaches:

First, proof planning with MULTI [Meier, 2003] is the means to automati-
cally create island proofs at a user-friendly level of abstraction. In Section 3
we shall show the knowledge-engineering process that generalizes the main
ideas underlying the interactive proof into corresponding proof methods
and control knowledge for MuULTI. Using this knowledge MULTI is capable
of automatically planning the proofs for theorems of the generalized /I-
problems, that is, whether /7 is irrational. We also have expansion tactics
for the employed methods such that the expansions of the proof plans for
¥/l-problems can be done automatically and we can in fact fully expand and
verify them with our proof checker (again, modulo the computer algebra
system computations).

Second, semi-automated agent-based reasoning with Q-ANTS is a means
to obtain logic-level proofs for the interactively generated island proof plans
with fewer user interactions. Expanding and closing island gaps is often
more challenging than in proof planning, since there is no knowledge im-
mediately available. In general, the expansion of the tactic ISLAND-TACTIC
corresponds to a completely new theorem, which may be solved by providing
more specific islands. The idea is that after some hierarchical decomposition
the gaps become so small that they can be filled in automatically. To obtain
a better degree of automation for closing the island gaps, we are working
on the following ideas:

e (-ANTS “agentifies” methods, tactics, calculus rules, and heteroge-
neous external reasoners in the sense that these search proactively
for their respective applicability. It should be possible to link the
ISLAND-TACTIC with appropriate 2-ANTS agents such that these au-
tonomously and cooperatively try to close the gaps in the background
while the user works on the next island steps. In case Q-ANTS can-
not close a gap automatically, the user will be informed and he may
rethink the island step or he may provide further knowledge that can
be used by Q-ANTS.

e We are currently also examining the 2-ANTS mechanism as a medi-
ator between a knowledge base and proof planning (first results are
reported in [Benzmiiller et al., 2003]). The mediator supports the idea
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of semantically guided retrieval of mathematical knowledge (theorems,
definitions) from the database MBASE.

e The speculation of suitable lemmata can be supported by a model
generator. For instance, when applying the model generator MACE or
SATCHMO to the failing proof attempt with OTTER for L20 a counter-
model is generated, in which 2 is not an integer. A general mechanism
that employs model generation for the speculation of missing lemmata,
(such as the one asserting that 2 is an integer) is certainly possible
and promising.

e A better support for unfolding definitions is to adapt Bishop and An-
drew’s selective unfolding mechanism [Bishop and Andrews, 1998] to
our proof planning context.

3 PROOF PLANNING THE v2-PROBLEM

The user has to apply the island tactic eight times in the proof discussed
in Section 2 (namely in steps 6, 7, 8, 11, 12, 13, 14, and 15). These are the
crucial and creative steps that provide the essential idea of this proof.

Now, the question is: Can we find these creative steps automatically?
The answer is yes, as we shall show in this section. However, while we can
answer the question in the affirmative, not every reader may be convinced
that this is really the final answer, as our solution touches upon a subtle
point, which opens the Pandora Box of critical issues in the paradigm of
proof planning [Bundy, 2002]. It is easy to write some specific methods,
which perform just the steps in the interactively found proof and then call
the proof planner MULTI to fit the methods together into a proof plan for
our problem. This, of course, shows nothing of substance: Just as we could
write down all the definitions and theorems required for the problem in first-
order predicate logic and hand them to a first-order prover such as OTTER,?
we would just hand-code the final solution into appropriate methods.

Instead, the goal of the game is to find general methods for a whole
class of theorems within some theory that can solve not only this particular
problem, but also all the other theorems in that class. While our approach
essentially follows the proof idea of the interactively constructed proof for
the v/2-problem, it relies essentially on more general concepts such that we
can solve, for example, ¥/I-problems for arbitrary natural numbers j and .
However, as we shall discuss in Section 3.4, this is certainly not the end of
the story.

5As it was done when tackling the v/2-problem with OTTER; see [Wiedijk, 2002] for
the original OTTER case study and [Benzmiiller et al., 2002] for its replay with QMEGA.
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3.1 The Knowledge Acquisition

In order to find a general approach for ¢/I-problems for arbitrary natu-
ral numbers j and I, we first analyzed proofs for statements such as v/8,
V(3-3) =1, or ¥/2. We found that some of the concepts and inference
steps we used for /2 are particular to this problem and do not generalize
whereas others do. Thus, the analysis led to some generalized concepts, the-
orems, and proof steps, which we encoded into methods and control rules,
that together form one planner strategy for this kind of problems. We shall
now discuss the acquired methods and control rules.
The essential ideas of the proof in Section 2 are as follows:

(1) Use the theorem RAT-CRITERION and construct an indirect proof.

(2) In order to derive the contradiction show that the two constants (ex-
istential variables) in RAT-CRITERION, which are supposed to have no
common divisor, actually do have a common divisor d.

(3) In order to find a common divisor transform equations (for example,
V2-n =m — 2-n%? = m?), derive new divisor statements (for
example, from 2 -n? = m? derive that m? has divisor 2, or from the
statement that m? has divisor 2 derive that m has divisor 2), and
derive from given divisor statements new representations of terms,
which can be used again for equational transformations (for example,
from the statement that m has divisor 2 derive that m = 2 - k).

Note that we are particularly interested in prime divisors, since only
for prime numbers d is it true that if d is a divisor of m/ then d
is also a divisor of m. A corresponding theorem, which generalizes
SQUARE-EVEN, is now available in 2MEGA’s database:

(th~deftheorem POWER-PRIME-DIVISOR (in integer)
(conclusion (forall-sort (lam (n num)
(forall-sort (lam (d num)
(forall-sort (lam (x num)
(implies (prime-divisor d (power x n))
(prime-divisor d x)))
INT))
INT))
NAT)))

To realize idea (1) the planner MULTI has to decide to try an indirect
proof, apply the theorem RAT-CRITERION, and derive I - n/ = m/ for inte-
gers m and n, which are supposed to have no common divisor. These steps
are canonical for arbitrary ¥/1 problems. Hence, we could implement them
all into one method. However, to avoid the well known problem of over-
fitting methods we decided to employ already existing methods from other
domains: Notl-M (prove by contradiction), MAssertion-M (apply a theo-
rem or an axiom from the theory), ExistsE-Sort-M (decompose existentially
quantified formulae), AndE-M (decompose conjunctions).



298 SIEKMANN, BENZMI"JLLER, FIEDLER, MEIER, NORMANN, AND POLLET

The application of the methods ExistsE-Sort-M, AndE-M, and Notl-M do
not need any further control, but the application of MAssertion-M has to be
guided by selecting the theorem or axiom to be applied by the method. This
is achieved by a control rule apply-ratcriterion, which determines that
the theorem RAT-CRITERION should be used for MAssertion-M, whenever
there is a formula ¥/1.

Idea (2) is realized with the method ContradictionCommonDivisor-M. When
MuLTI tries to apply the method it searches first for a proof line that states
that two terms ¢, t2 have no common divisor, and second for two proof lines
that state that ¢; and t3, respectively, have a divisor d. This method is not
guided by control rules, but MULTT tries to apply it to some derived proof
lines in each planning cycle.

Idea (3) of the proof technique is encoded into several collaborating meth-
ods: TransFormEquation-M, =Subst-m, PrimeFacsProduct-M, PrimeDivPower-
M, and CollectDivs-M. The method TransFormEquation-M contains the knowl-
edge about suitable equational transformations for our problem domain.
It is applied to an equation and derives a new equation. For instance,
TransFormEquation-M derives [ - n/ = m? from ¥/1-n = m, or it derives
n? =2 k? from 2-n? = (2- k)2. The method =Subst-m performs equality
substitutions.

PrimeFacsProduct-M and PrimeDivPower-M encapsulate the knowledge of
how to derive divisor statements. PrimeFacsProduct-M is applied to equa-
tions x = -y (or I -y = z) and returns a proof line whose formula is a
conjunction of statements that x has particular prime divisors. The method
employs MAPLE to compute the prime divisors of [ using MAPLE’s function
with(numtheory,factorset). It derives that = has to have all prime divi-
sors of [. For instance, from 2 - n?2 = m? PrimeFacsProduct-M derives that
m? has the prime divisor 2, from 6 - n2 = m? it derives that m? has the
prime divisors 2 and 3. PrimeDivPower-M is applied to an assumption that
states that y7 has prime divisor d and derives that y has prime divisor d.

For a term ¢ CollectDivs-M searches for proof lines that state that ¢ has
some prime divisors. Then, it computes different possible representations of
t based on the set of the prime divisors {p, ..., pn}. That is, for each subset
{p1ry---, 0 } Of {p1,...,pn} it returns the proof line t = py: - ... p, - ¢ for
some integer c'.

TransFormEquation-M,  PrimeFacsProduct-M  and  PrimeDivPower-M
are applied whenever possible and no guidance is required. The applica-
tion of the method CollectDivs-M, however, is guided by the control rule
apply-collectdivs, which prefers CollectDivs-M with respect to a term ¢
as soon as there are proof lines that state that ¢ has some prime divisors. The
application of =Subst-m is guided by the control rule apply-=subst, which
states that, after an application of CollectDivs-M, the method =Subst-m
should be applied in order to use the equations resulting from CollectDivs-M.
When a method such as =Subst-m, PrimeFacsProduct-M, or PrimeDivPower-
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M is applied to some premises, then the same method is afterwards applica-
ble again to the same premises, deriving the same result. To avoid endless
loops of such methods, we added the control rule reject-loop, which blocks
the repeated application of a forward method to the same premises.

3.2 Applying MULTI to the \/2-Problem

MULTI constructs now a proof plan as follows:

First, it applies the methods MAssertion-M, Notl-M, ExistsE-Sort-M, AndE-
M, and TransFormEquation-M, in order to apply the theorem RAT-CRITERION,
to establish an indirect proof, and to decompose existing existentially quan-
tified formulae or conjunctions.®

L3 (L3) |- (EXISTS-SORT ([DC-626]. HYP
(EXISTS-SORT ([DC-629].
(AND (= (TIMES (SQRT 2) DC-626) DC-629)
(NOT (EXISTS-SORT ([DC-633].
(COMMON-DIVISOR DC-626 DC-629 DC-633))

INT))))
INT))
INT)
L5 (L5) |- (AND (INT CONST1) HYP

(EXISTS-SORT ([DC-629].
(AND (= (TIMES (SQRT 2) CONST1) DC-629)
(NOT (EXISTS-SORT ([DC-633].
(COMMON-DIVISOR CONST1 DC-629 DC-633))

INT))))
INT))
L7 (L5) |- (INT CONST1) AndE-m: (L5)
L8 (L5) |- (EXISTS-SORT ([DC-629]. AndE-m: (L5)

(AND (= (TIMES (SQRT 2) CONST1) DC-629)
(NOT (EXISTS-SORT ([DC-633].
(COMMON-DIVISOR CONST1 DC-629 DC-633))
INT))))
INT)
L9 (L9) |- (AND (INT CONST2) HYP
(AND (= (TIMES (SQRT 2) CONST1) CONST2)
(NOT (EXISTS-SORT ([DC-633].
(COMMON-DIVISOR CONST1 CONST2 DC-633))
INT))))

L11 (L9) |- (INT CONST2) AndE-m: (L9)
L12 (L9) |- (AND (= (TIMES (SQRT 2) CONST1) CONST2) AndE-m: (L9)
(NOT (EXISTS-SORT ([DC-633].

(COMMON-DIVISOR CONST1 CONST2 DC-633))

INT)))
L13 (L9) |- (= (TIMES (SQRT 2) CONST1) CONST2) AndE-m: (L12)
L14 (L9) |- (NOT (EXISTS-SORT ([DC-633]. AndE-m: (L12)
(COMMON-DIVISOR CONST1 CONST2 DC-633))
INT)))
L15 (L9) |- (= (TIMES 2 (POWER CONST1 2)) TRANSFORMEQUATION-M: (L13)

(POWER CONST2 2))

6 Actually, MAssertion-M, which applies RAT-CRITERION, also introduces the open line
L1, which is closed by the method Reflex-M. This line results from variable bindings inter-
nal to the theorem application process. It states that the variable X1, which corresponds
to the universally quantified variable in RAT-CRITERION, has to be bound to the term
(SQRT 2). This binding has already been applied to the rest of the proof (e.g., in L2).
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L10 (L9 L5 L3) |- FALSE OPEN
L6 (L5 L3) |- FALSE Existse-Sort-m: (L8 L10)
L4 (L3) |- FALSE Existse-Sort-m: (L3 L6)
L2 () |- (NOT (EXISTS-SORT ([DC-6261]. NOTI-M: (L4)

(EXISTS-SORT ([DC-629].
(AND (= (TIMES (SQRT 2) DC-626) DC-629)
(NOT (EXISTS-SORT ([DC-633].
(COMMON-DIVISOR DC-626 DC-629 DC-633))

INT))))
INT))
INT))
L1 O I- (= X1 (SQRT 2)) REFLEX-M
SQRT2-NOT-RAT () |- (NOT (RAT (SQRT 2))) MAssertion-M: (L2)

Next, using the equation 2 - const1? = const2? in line L157 the methods
PrimeFacsProduct-M and PrimeDivPower-M derive that const2 has the prime
divisor 2.

L16 (L5 L9) |- (PRIME-DIVISOR 2 (POWER CONST2 2)) PRIMEFACS-PRODUCT-M: (L15)
L17 (L5 L9) |- (PRIME-DIVISOR 2 CONST2) PRIMEDIV-POWER-M: (L16)

Then, CollectDivs-M computes a representation for const2 with respect
to line L17. Since CollectDivs-M introduces a new hypothesis in line L19 it
reduces also the open line L10 to the new open line L20, which also contains
the new hypothesis.

L19 (L19) |- (AND (INT CONST3) (= CONST2 (TIMES 2 CONST3))) HYP
L21 (L19) |- (INT CONST3) AndE-m: (L19)
L22 (L19) |- (= CONST2 (TIMES 2 CONST3)) AndE-m: (L19)
L20 (L19 L9 L5 L3) |- FALSE OPEN
L10 (L9 L5 L3) |- FALSE COLLECTDIVS-M: (L20 L17)

Next, the methods =Subst-m and TransFormEquation-M derive with the
new representation for const2 the equation in line L25.

L24 (L19 L9) |- (= (TIMES 2 (POWER CONST1 2)) =subst-m: (L15 L22)
(POWER (TIMES 2 CONST3) 2))
L25 (L9 L19) |- (= (POWER CONST1 2) TRANSFORMEQUATION-M: (L24)

(TIMES 2 (POWER CONST3 2)))

Then, with respect to this equation the methods PrimeFacsProduct-M
and PrimeDivPower-M derive that constl has the prime divisor 2.

L26 (L5 L19 L9) |- (PRIME-DIVISOR 2 (POWER CONST1 2))
PRIMEFACS-PRODUCT-M: (L25)
L27 (L9 L19 L5) |- (PRIME-DIVISOR 2 CONST1) PRIMEDIV-POWER-M: (L26)

Finally, ContradictionCommonDivisor-M closes the open line L20 and MuLTI
terminates with the final line:

L20 (L19 L9 L5 L3) |- FALSE CONTRADICTIONCOMMONDIVISOR-M: (L14 L27 L17)

"Here, the automatically generated constants const1 and const2 replace the constants
n and m, respectively, in the interactive proof given in Section 2.
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This automatically generated proof plan required less than four seconds
CPU time on a 1.8 GHz Pentium IIT machine with 512 MB RAM running
LINUX. A considerable amount of time was required to call the external com-
puter algebra system MAPLE twice within the applications of the method
PrimeFacsProduct-M. The complete proof plan can then be passed to P rez,
which produces a natural language presentation of the proof as given in
Fig. 3. This concludes the first phase, that is, the automated construction
of a proof plan, and we shall now look at the second phase, that is, the
expansion of this proof plan to an ND-level proof.

3.8  Ezrpansion

All methods used in Q2MEGA have as part of their specification the knowledge
on how to expand. A method contains a schematic proof segment that
shows how to derive its conclusions from its premises using tactics and rules.
When an application of the method is expanded, then the proof schema is
instantiated and introduced into the proof plan justifying the conclusions of
the method from its premises at a lower level of abstraction. Note that the
methods only specify their direct expansion level, the recursive expansion
is part of the overall expansion process.

As an example, consider the expansion of PrimeDivPower-M and
PrimeFacsProduct-M, which demonstrate in particular how additional theo-
rems and sort statements are found and treated in the expansion process.

The expansion schema for PrimeDivPower-M is as follows:

(DECL-CONTENT
(50 () (PRIME-DIVISOR N (POWER A M)))

(S1 () (NAT M) ("WELLSORTED" ()))
(52 () (INT N) ("WELLSORTED" ()))
(83 O (INT A) ("WELLSORTED" (IA)))
(S4 () (IMPLIES (PRIME-DIVISOR N (POWER A M))

(PRIME-DIVISOR N A)) ("FORALLE-SORT*" (PPD S1 S2 S3)))
(S5 () (PRIME-DIVISOR N A) ("IMPE" () (S4 S0))))

This proof segment represents a proof at tactic level. It shows how to
derive line S5 (the conclusion of the method) from line SO (the premise of
the method). This proof segment uses the Power-Prime-Divisor theorem,
whose incorporation into the proof plan during the expansion of an applica-
tion of PrimeDivPower-M is specified in the method by a so-called expansion
computation (see [Meier et al., 2002a]). The Power-Prime-Divisor theo-
rem is abbreviated in the proof segment as PPD and it is used to derive S4.
To apply the theorem we have to establish some sort statements for m, n,
and a in the lines S0, S1, and S2, respectively. Since m and m occur in
the application part of the method, there is a concrete natural number and
a concrete integer, respectively. We can prove these sort statements with
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& LML Browser 101 x|
File Help

Location:

Theorern: Sgref2) isn't radiondl I
Froof:

We prove that there is no de_322 in Z such that there exists a
de_325 in Z such that sqrt(2)*de_322 = dc_325 and there doesn't
exst ade 329 in Z such that de_329 iz a cornmon divisor of de_322
and dc_325 in order to prove that sqrt{2) isn't rational.

We prove that there is no de_322 in Z such that there exists a
de_325 in Z such that sqrt{2)*dc_322 = dc_325 and there is no
de_329 in Z such that de_329 is a common divisor of de_322 and
dc_325 by a contradiction. Let there be a de_322 in Z such that
there exists a dc_325in Z such that sqrt(2)*dc_322 =dc 325 and
there isno de_32% in Z such that de_329 iz a cornmon divisor of

dc 322 and dc_325,

Let const_1in Z and let there be a de_325 in Z such that
sqrii2i*const_1=dec 325 and there is no de_322 in Z such that
de_329is a common divisor of const_1 and dc_325,

Let const 2 in Z, let sqrt(2)*const_1 = const 2 and let there be

no de_329 in Z such that de_329 is a common divisor of const_1 and
const 2.

Let const_3 in Z and let const_2 =2*const 3, 2*const_1"2 =

const 2°2 because sqrif2)*const_1 = const_2, Then 2 is a prime
divisor of const 272, Hence 2 is a prime divisor of const 2. That
irnplies that 2*const_1"2 = 2*const_3"2 since const_2 = 2*const_3,
Thatleads to const_ 12 = 2*const 3°2. Therefore 2 is a prime
divisor of const 142, Thatleads to 2 being a privne divisor of
const_1, That implies that we have a contradiction since there is

no de_329 in Z such that de_329 iz a common divisor of const_1 and
conhst_ 2,

QED
El

Figure 3. Natural language proof presentation of the planned proof by P, rez.
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the tactic WELLSORTED. The variable a does not represent a concrete num-
ber, thus we have to derive from existing hypotheses that a is an integer.
This derivation is part of the applicability check of the method and these
hypotheses are represented above as IA in S3.

PrimeDivPower-M derives line L17. When it is expanded, the following
proof segment is added to the proof plan:

L16 (L5 L9) |- (PRIME-DIVISOR 2 (POWER CONST2 2)) PRIMEFACS-PRODUCT-M: (L15)

128 () |- (NAT 2) WELLSORTED: ()
L29 () |- (INT 2) WELLSORTED: ()
L30 (L9) |- (INT CONST2) WELLSORTED: (L11)
L31 (L9) |- (IMPLIES FORALLE-SORT#: (PPD L28 L29 L30)

(PRIME-DIVISOR 2 (POWER CONST2 2))
(PRIME-DIVISOR 2 CONST2))
L17 (L5 L9) |- (PRIME-DIVISOR 2 CONST2) IMPE: (L31 L16)

Here, PPD stands for the Power-Prime-Divisor theorem. This theorem
is now inserted into the proof plan as:

PPD (PPD) |- (FORALL-SORT ([N]. THM
(FORALL-SORT ([D].
(FORALL-SORT ([X]. (IMPLIES (PRIME-DIVISOR D (POWER X N))
(PRIME-DIVISOR D X)))
INT))
INT))
NAT)))

WELLSORTED and FORALLE-SORT* are tactics, whose applications can be
expanded automatically. If all of this is done, the resulting logic-level proof
segment derives L17 from L16 in 19 steps.

The proof schema of PrimeFacsProduct-M specifies that the conclusion
of the formula, line S2, is derived by an application of the tactic EXPAND-
-PRIMEFACSPRODUCT to the premise of the method in line S1:

(DECL-CONTENT
(81 OO (= AB))
(52 () CONJUNCTION ("EXPAND-PRIMEFACSPRODUCT" () (S1 SORT-PREMS))))

Here, CONJUNCTION is a substitute for the actual conjunction of terms
(PRIME-DIVISOR P X), which are computed during the application of the
method. As opposed to the expansion of a method, which is stated declar-
atively, the expansion of a tactic is given by a LISP function.

The method PrimeFacsProduct-M derives line L16. When it is expanded,
no new proof lines are added, but the justification of L16 is changed:

L11 (L9) |- (INT CONST2) AndE-m: (L9)
L7 (L5) |- (INT CONST1) AndE-m: (L5)
L15 (L9) |- (= (TIMES 2 (POWER CONST1 2)) TRANSFORMEQUATION-M: (L13)

(POWER CONST2 2))
L16 (L5 L9) |- (PRIME-DIVISOR 2 (POWER CONST2 2))
EXPAND-PRIMEFACS-PRODUCT: (L15 L11 L7)
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In this case, lines L11 and L7 are mandatory premises for the tactic
EXPAND-PRIMEFACSPRODUCT. They provide the necessary sort information.

The expansion of EXPAND-PRIMEFACSPRODUCT works as follows: The first
premise of EXPAND-PRIMEFACSPRODUCT is an equation x = [ -y, and its
conclusion is a conjunction of terms (PRIME-DIVISOR P X). Moreover, fur-
ther premises of EXPAND-PRIMEFACSPRODUCT are necessary sort statements.
First, for each conjunct (PRIME-DIVISOR P X) of the conclusion the defini-
tion of PRIME-DIVISOR is expanded.

(th"defdef prime-divisor (in integer)
(definition (lam (x num) (lam (y num) (and (divisor x y) (prime x)))))
(help "The predicate for prime divisors."))

This results in two new subgoals, respectively, namely that p is a prime
number, formalized as (PRIME P), and that p is a divisor of x, formalized
as (DIVISOR P X). By rewriting the term [ -y to p- (r - y) (r is computed
from [ and p by MAPLE), the expansion establishes that z = p- (r-y) holds.
Since this is essentially the definition of divisor in (IMEGA’s database, the
expansion can derive (DIVISOR P X).

(th"defdef divisor (in integer)
(definition
(lam (x num)
(lam (y num)
(and (and (int x) (int y))
(exists-sort (lam (z num) (= y (times x z))) int)))))

The sort premises are needed, since the divisor definition requires that y,
p, and r - x are of sort integer.

To rewrite [-y as stated above, the expansion has to establish that [ = p-r
holds, where [, p, and r are concrete numbers. This is currently justified by
an application of the tactic BYCOMPUTATION, that is, it is verified by M APLE.
The same holds for the statements (PRIME P) for concrete numbers p. They
are also justified by BYCOMPUTATION.

The expansion of EXPAND-PRIMEFACSPRODUCT in turn employs other tac-
tics (e.g., tactics for definition expansion and equality substitution). The
recursive expansion of all tactics that prove L16 results in a proof segment
that derives L16 from L15, L11, and L7 in 75 steps at the logic level. The
proof segment is verified except for the mentioned proof nodes justified by
applications of BYCOMPUTATION.

The expansion of all other methods works similarly. Note that the meth-
ods CollectDivs-M and ContradictionCommonDivisor-M expand to proof seg-
ments that use the tactic OTTER. When this tactic is expanded, it employs
OTTER in order to justify the conclusion of the tactic application from its
premises and the resulting proof lines are inserted.

Completely expanded, the proof of the +/2-problem consists of
753 steps. The proof is verified except for the nodes justified by the tactic
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BYCOMPUTATION, which is used 6 times, that is, currently we trust MAPLE.
Note that the expansion mechanism operates locally and schematically and
therefore does not optimize the final proof for its size.

3.4  Discussion

In order to evaluate the appropriateness of our approach we suggest the
following three criteria:

(1) How general and how rich in mathematical content are the methods
and control rules?

(2) How much search is involved in the proof planning process?

(3) What kind of proof plans, that is, what kind of proofs, can we find?

These criteria should allow us to judge how general and how robust our
solution is. The art of proof planning is to acquire domain knowledge that,
on the one hand, comprises meaningful mathematical techniques and power-
ful heuristic guidance, and, on the other hand, is general enough to tackle a
broad class of problems. For instance, as one extreme, we could have meth-
ods that encode QMEGA’s ND calculus and we could run MULTI without any
control. This approach would certainly be very general, but MULTI would
fail to proof plan any interesting problems. As the other extreme case, we
could cut a known proof into pieces, and code the pieces as methods. Guided
by control rules that always pick the next right piece of the proof MULTI
would assemble the methods again to the original proof without performing
any search.

The amount of search and the variety of potential proof plans for a given
problem are measures for the generality of the methods and also for the
appropriateness for tackling the class of problems by planning. If tight
control rules or highly specific methods restrict the search to just one branch
in the search tree, then the resulting proof plans will merely instantiate a
pattern. In this case, a single tactic or method that realizes the proof steps
of the underlying pattern is more suitable than planning. The possibility of
creating a variety of proof plans with the given methods and control rules
is thus an important feature.

In the following, we shall discuss proof planning for ¥/I-problems with
respect to these three criteria.

(1) The methods Notl-M, ExistsE-Sort-M, AndE-M, =Subst-m, and
MAssertion-M of our approach encode logic-level steps (Notl-M, AndE-M,
=Subst-m) or tactic steps very close to the logic-level (ExistsE-Sort-M,
MAssertion-M). Thus, they are very general, but they do not encode spe-
cific domain knowledge, and they are in fact still in the spirit of Gerhard
Gentzen’s analysis of mathematical proofs [Gentzen, 1935).
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PrimeFacsProduct-M and CollectDivs-M encode domain knowledge about
integers. PrimeFacsProduct-M encodes the extraction of prime divisors for
integers from equations on integers. CollectDivs-M computes different rep-
resentations for integers, for which some divisors are known. The function-
alities of these methods are currently rather restricted and focused on our
actual problem domain (e.g., CollectDivs-M could deal also with divisors
and not only with prime divisors, PrimeFacsProduct-M could handle a more
general class of equations). However, suitably extended, these two methods
will be useful for many problem classes dealing with integers.®

PrimeDivPower-M applies the theorem POWER-PRIME-DIVISOR. This could
be done also by the MAssertion-M method. We encoded the application of
this theorem into an extra method in order to hide the sort goals. Thus,
PrimeDivPower-M is a very specific method just fitted to the particular needs
of our problem class. The same holds for TransFormEquation-M, which per-
forms exactly the equation transformations that we need to deal with our
problem class.

ContradictionCommonDivisor-M is not specific to our domain and should
also be useful for other problem classes dealing with divisors.

The control rules apply-collectdivs, apply—=subst, and reject-loop
contain no particular domain knowledge, but force MULTI into the
right search branch. Hence, they are useful for any search. Only
apply-ratcriterion touches a subtle point: this control rule encodes
the knowledge that the theorem RAT-CRITERION should be applied via the
method MAssertion-M and is hence fitted to our particular problem domain.
We are currently examining a mediator mechanism between our knowledge
base and proof planning (first results are reported in [Benzmiiller et al.,
2003]), which supports a semantically guided retrieval of theorems and def-
initions. This approach should replace particular control rules for theorem
retrieval (such as apply-ratcriterion) by a more general mechanism.

(2) MurtI performs depth-first search, which typically involves back-
tracking from search branches with no solutions. In our domain and with
the described methods and control rules, however, there is no backtracking.
Rather, the search consists of all possible transformations and derivations
for finding two prime divisors that yield the contradiction.

For instance, when tackling the v/6-problem, MULTI derives from 6-n? =
m? that m has two prime divisors 2 and 3. With respect to these prime
divisors it computes the following three representations of m: m = 2 - a,
m=23-b, m=2-3-c¢, and each representation is used to substitute m in
the equation 6 - n? = m?2.

8To extend the capabilities of the methods we would also have to extend the tactics
for the expansion of the methods. Since this is not trivial for both methods, we instead
decided for now to implement these “light” versions for which the expansion is fully
specified and leave the generality to future work.
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Not all proof plans we found are similar to the proof plan for the v/2-
problem. For instance, the proof plan for the v/8-problem has the following
steps: From 8-n% = m? MULTI derives that m has the prime divisor 2. With
respect to this prime divisor m can be written as m = 2 - a. Substituting
m in the initial equation and simplifying the equation yields 2 - n? = a2.
From this equation no prime divisors of n can be derived, which would then
yield a contradiction with the prime divisors of m as in the proof plan for
the v/2-problem. Instead, MULTI derives that 2 is a prime divisor of a and
computes a new representation for a: a = 2-b. Substituting a with respect
to this equation then yields that n? = 2 - b? from which MULTI can derive
that n has the prime divisor 2 which yields the contradiction to the fact
that m has also the prime divisor 2.

Although the proof plans for different problems can be different we found
that they vary only very little. The main variations are with respect to the
numbers of “detect prime divisors for ¢”—“represent ¢ as ¢ = p-c'”—
“substitute ¢ in prior equations” cycles. In particular, the proof plans for
every ,/p-problem, where p is a prime number, looks exactly as the proof
plan for the v/2-problem.

(3) The number of potential proof plans depends on the particular prob-
lem. For prime numbers p the proof plan is the same as for the v/2-problem
(modulo instantiations). For numbers [ that have several prime divisors
there are typically several proof plans that vary with respect to the com-
mon divisors.?

This concludes the actual descriptions of how the v/2-problem (respec-
tively its generalization, the ¥/I-problem) was solved with QMEGA.

What general lessons can we learn from small, albeit typical mathematical
challenges of this kind?

1. The devil is in the detail, that is, it is always possible to hide the crucial
creative step in some small pre-programmed step and to pretend a
level of generality that has not actually been achieved. To evaluate a
solution all tactics, methods, theorems and definitions have to made
explicit.

In this paper, we have tried to strike a balance and to provide enough
information to judge the strength (and weakness) of the current state
of the art in the new paradigm of proof planning without providing
too many details.

9For instance, when tackling +/6 MULTI derives from 6-n2 = m? that m has the prime
divisors 2 and 3 and hence m can be represented as m = 2-3:a. From this representation
MuLTI derives that n2 = 6 - a2. This equation yields that n has the prime divisors 2 and
3. Now, MULTI can use both 2 and 3 to derive a contradiction.
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2. The enormous distance between the well-known (top-level) proof of

the Pythagorean School, which consists of about a dozen single proof
steps in comparison to the final proof at the ND level with 753 is
striking.
This is, of course, not a new insight. While mathematics can in princi-
ple be reduced to purely formal logic-level reasoning as demonstrated
by Russell and Whitehead as well as the Hilbert School, nobody
would actually want to do so in practice as the influential Bourbaki
group showed: only the first quarter of the first volume in the several
dozen volume set on the foundation of mathematics starts with ele-
mentary, logic-level reasoning and then proceeds with the crucial sen-
tence [Bourbaki, 1968]: “No great experience is necessary to perceive
that such a project [of complete formalization] is absolutely unreal-
izable: the tiniest proof at the beginning of the theory of sets would
already require several hundreds of signs for its complete formaliza-
tion.”

3. Finally and more to the point of the concrete contribution of this
paper: Now that we can prove theorems in the /I-problem class, the
skeptical reader may still ask So what? Will this ever lead to a general
system for mathematical assistance?

We have demonstrated in [Melis and Siekmann, 1999; Melis, 1998] that
the class of e-6-proofs for limit theorems can indeed be solved with
a few dozen mathematically meaningful methods and control rules.
Similarly, the domain of group theory with its class of residue theorems
can be formalized with even less [Meier and Sorge, 2000; Meier et al.,
2001; Meier et al., 2002b], and the crucial general observation is that
these methods correspond to the kind of mathematical knowledge a
freshman would have to learn to master this level of professionalism.

Is the same true for ¥/I-problems? The unfortunate answer is probably
No! Imagine the subcommittee of the United Nations in charge of the
maintenance of the global mathematical knowledge base in a hundred
years from now. Would they accept the entry of our methods, tactics
and control rules for the ¥/I-problems? Probably not!

4 MATHEMATICAL KNOWLEDGE ENGINEERING

Mathematical knowledge is preserved in books and monographs, but the art
of doing mathematics [Polya, 1973; Hadamard, 1944] is passed on by word
of mouth from generation to generation. The methods and control rules
of the proof planner correspond to important mathematical techniques and
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“ways to solve it”, and they make this implicit and informal mathematical
knowledge explicit and formal'©.

The theorems about ¥/I-problems are shown by contradiction, that is, the
planner derives a contradiction from the equation I-n? = m7, where n and m
are integers with no common divisor. However, these problems belong to the
more general class to determine whether two complex mathematical objects
X and Y are equal. A general mathematical principle for comparison of two
complex objects is to look at their characteristic properties, for example,
their normal forms or some other uniform notation in the respective theory.
If there is a characteristic property that distinguishes the two objects then
they cannot be equal.

In order to tackle v/I-problems we have to find a property that distin-
guishes the integers [ - n/ and mJ. Since each integer can be represented
as a product of prime numbers, the normal forms in the integer theory are
products of primes. If P[i] denotes the prime product of ¢, then we can
write [ - n/ and m/ as P[l]- P[n?] and P[m’]. For instance, for [ = 2, j = 2
this is 2 - P[n?] and P[m?2]. A characteristic property distinguishing these
two integers is the quantity of prime numbers in the normal form. For P[n?]
and P[m?] we do not know the exact quantity, but we do know for both that
the quantity is even, since each occurrence in P[z] is duplicated in P[z?].
The quantity of prime numbers for 2 is 1, thus, we know that the quantity
of prime numbers in 2- P[n?] is odd, whereas the quantity of prime numbers
in P[m?] is even. Thus, they cannot be equal. Note that for this argument
the premise that n and m have no common divisor is not necessary.

The use of normal forms and characteristic properties as in the above
argument is a common mathematical principle. For example, in polynomial
rings over finite fields irreducible polynomials play the role of prime num-
bers. That is, each polynomial can be expressed as a product of irreducible
polynomials. For instance, the irreducible polynomials of grade 1 in Fs[z]
are z+1 and £+2. Can there be two polynomials n[z] and m[z] inF3[z] such
that (z+ 1) -n[z]? = (x +2)-m[z]?? The answer is no, and the argument is
essentially the same as for integers and their prime number representations.
Whereas the quantity of occurrences of the irreducible polynomial z + 1 in
a normal form representation of (z + 2) - n[z]? has to be even, it is odd in a
normal form representation of (x + 1) - m[xz]?.

A similar argument is used in set theory, where the reasoning about
two sets can sometimes be reduced to their cardinality, that is, a uniform
representation of the two sets under scrutiny.

Hence, we have now a general principle and argument used in set the-
ory, number theory and polynomial rings (and probably also other areas of
mathematics), from which the argument for the irrationality of v/2 is just
a special instance. We are currently working on methods, tactics and con-

10Tn the sense of coding it into some representational formalism.
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trol rules to mechanize this more general approach, and to demonstrate its
feasibility in much larger and diverse fields of mathematics.

The general idea here is to represent objects via normal forms and to use
projection in order to rewrite these representations until a distinguishing
property becomes obvious. For our problem class at hand a distinguishing
property can be computed as follows: Compute the prime product normal
form of [. This can be done with a computer algebra system. Let [ = (p;)°!-
...~ (pr)°, that is, 0; is the quantity of occurrences of the prime p;. Then,
there exists an o € {o1, ..., 0}, which is not divisible by j, since otherwise
¥/1 would be rational (again the divisibility for each o; can be checked with
a computer algebra system). Let p be the prime number corresponding to
o. For an integer z let d,(z) be the number of occurrences of p in the prime
product of z. 4, is a homomorphism with respect to multiplication and
addition, that is, 6, (z-y) = 0p(z) +d,(y). Moreover, we know that d,(2?) =
y - dp(z). The application of J, to both sides and repeated applications of
these equations rewrite the initial equation as follows:

i - mi
= §,(1-nd) = §,(m?)
= () +p(n?) = dp(m!)
= o+j-d,(n) = j-d0p(m)

Now, it is clearly visible that the left hand side of the equation is not
divisible by j whereas the right hand side is.

This is a far more general approach and the corresponding methods are
certainly more likely candidates for an entry into the international knowl-
edge base on mathematics in the centuries to come.

We are now working on formalizing these methods in rather general terms
and then instantiate them with appropriate parameters to the domain in
question (number theory, set theory, or polynomial rings) — and the crucial
creative step of the system MULTI is then to find the instantiation by some
general heuristics.
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Abstract

We study challenges that are imposed to mathematical
domain reasoning in the context of natural language tu-
torial dialog on mathematical proofs. The focus is on
proof step evaluation:

(i) How can mathematical domain reasoning support
the resolution of ambiguities and underspecified parts
in proof steps uttered by a student?

(ii) How can mathematical domain reasoning support
the evaluation of a proof step with respect to the criteria
soundness, granularity, and relevance?

Introduction

The final goal of the DIALOG project? is a natural tutorial
dialog on mathematical proofs between a student and an as-
sistance system for mathematics. Natural language (NL) tu-
torial dialog on mathematical proofs is a multi-disciplinary
scientific challenge situated between (i) advanced NL pro-
cessing, (ii) flexible tutorial dialog, and (iii) dynamic, ab-
stract level mathematical domain reasoning (MDR?). There
is still relatively few data available that can guide research
in this area. We, therefore, approached the project by using
a methodology with a strong initial emphasis on empirical
investigations and a top-down modeling of the over-all ar-
chitecture followed by refinements of the architecture, down
to implementation.

First a relevant corpus has been collected and analyzed in
the DIALOG project. The phenomena that have been iden-
tified through corpus analysis demonstrate, for instance, the
need for deep semantical analysis, the importance of a tight
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2\We use ‘MDR’ in the remainder as an abbreviation for both
’mathematical domain reasoning” and 'mathematical domain rea-
soner’; the precise meaning will be clear in each context.

integration of NL processing and MDR, and the relevancy
of dynamic, abstract-level proof development techniques
supporting human-oriented MDR. In particular, the explicit
abstract-level representation of proof steps (logically sound
or unsound) as uttered by the students is a crucial prerequi-
site for their subsequent analysis by MDR means in a tuto-
rial dialog setting. Additionally, from a logical point of view,
proof steps are highly underspecified (e.g. logically relevant
references are left implicit) causing an additional challenge
for bridging the gap between NL analysis and MDR.

In this paper we focus on the challenges imposed to MDR:

(i) How can MDR support the resolution of ambiguities
and underspecified parts in proof steps uttered by a student?

(if) How can MDR support the evaluation of a student
proof step with respect to the criteria soundness, granularity,
and relevance?

In the next section we present an example dialog from our
DiIALOG corpus and point to some revealed phenomena. We
then discuss the MDR challenges from a general viewpoint.
Subsequently we present our first concrete approach to solve
these challenges. Finally, we discuss some related work and
conclude the paper.

Phenomena and Challenges

A Wizard-of-Oz experiment (Dahlbéck, Jonsson, & Ahren-
berg 1993) has been performed in the DIALOG project in
order to obtain a corpus of tutorial dialogs on mathematical
proofs. Twenty four subjects with varying background in hu-
manities and sciences participated in this experiment. Their
prior mathematical knowledge ranged from little to fair. The
experiment employed typed user and tutor (wizard) input as
opposed to spoken language. This experiment and the corpus
obtained is discussed in more details in (Wolska et al. 2004).
The complete corpus comprises 66 recorded dialogs contain-
ing on average 12 turns and is available from the DIALOG
web-page®. It contains 1115 sentences in total, of which 393
are student sentences. An example dialog is shown in Fig. 1.

Investigation of the corpus resulted in an overwhelming
list of key phenomena raising interesting and novel research
challenges (Benzmiiller et al. 2003). This was not expected,
in particular, because of the simplicity of the mathematical
domain (naive set theory) chosen for this experiment. Many

Shttp://www.ags.uni-sb.de/~chris/dialog/
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T1: Bitte zeigen Sie: K((AUB)N(CUD)) = (K(A)NK(B))U
(K(C)nK(D))! [Engl.: Please show: K ((AU B) N (CUD)) =
(K(A) N K(B)) U (K(C) N K(D))]

S1: nach deMorgan-Regel-2 ist K ((AUB)N(CUD)) = (K(AU
B)U K(CUD)). [Engl.: by deMorgan-Rule-2 K ((A U B) N (C U
D)) = (K(AU B) U K(C U D)) holds.]

T2: Das istrichtig!  [Engl.: This is correct!]

S2: K(AU B) ist laut deMorgan-1 K (A) N K (B)
B)is K(A) N K(B) according to deMorgan-1]

T3: Das stimmt auch.  [Engl.: Thatis also right.]
S3:und K(C U D) ist ebenfalls laut deMorgan-1 K (C) N K (D)
[Engl.: and K (C U D) isalso K (C) N K (D) according to deMorgan-1]

T4: Auch das stimmt.  [Engl.: That also is right.]

S4: also folgt letztendlich: K((AU B) N (C U D)) = (K(A) N
K(B))U(K(C)n K(D)). [Engl.: hence follows finally: K ((A U
B)Nn(Cu D)) =(K(A)NK(B))U(K(C)NK(D))]

T5: Das stimmt ... [Engl.: This is correct ...]

[Engl.: K(AU

Figure 1: An example dialog. T and S mark tutor (i.e. wizard)
and student turns respectively. ‘K refers to the ‘set complement’
relation. German has been the language of choice.

of the identified phenomena are relevant not only for the tu-
torial NL dialog context but have a much wider impact for
NL interactions in human-oriented theorem proving. This
paper focuses on phenomena that are relevant for MDR:

Notion of Proof. For analyzing the notion of human-
oriented mathematical proofs, primarily shaped-up textbook
proofs have been investigated in the deduction systems com-
munity (Zinn 2004). The DIALOG corpus provides an im-
portant alternative view on it, since textbook proofs neither
reveal the actual dynamics of proof construction nor do they
show the weaknesses and inaccuracies of the student’s ut-
terances, i.e., the student’s proof step directives. The corpus
also illustrates the style and logical granularity of human-
constructed proofs. The style is mainly declarative, for ex-
ample, the students declaratively described the conclusions
and some (or none) of the premises of their inferences. This
is in contrast to the procedural style employed in many proof
assistants where proof steps are invoked by calling rules, tac-
tics, or methods, i.e., some proof refinement procedures.

The hypothesis that assertion level reasoning (Huang
1994) plays an essential role in this context has been con-
firmed. The phenomenon that assertion level reasoning may
by highly underspecified in human-constructed proofs, how-
ever, is a novel finding (Autexier et al. 2003).

Underspecification is a well known phenomenon in lin-
guistic analysis. The corpus reveals that underspecifica-
tion also occurs in the content and precision of mathemat-
ical utterances (proof step specification) and thus carries
over to MDR. Interestingly underspecification also occurs in
shaped-up textbook proofs but has only very recently been
addressed (Zinn 2004). To illustrate the underspecification
aspect we use example utterance S4 in Fig. 1: Utterance S4
is logically strongly underspecified. Here, it is neither men-
tioned from what assertion(s) in the discourse this statement
exactly follows nor how these assertions are used. However,
such detailed information is typically required in proof as-
sistants to execute the student’s proof step directive, i.e., to
‘understand’ and ‘logically follow’ the student’s argumenta-
tion.

Proof Step Evaluation (PSE) is an interesting novel ap-
plication for theorem proving systems. A (next) proof step
uttered by a student within a tutorial context has to be ana-
lyzed with respect to the following criteria:

Soundness: Can the proof step be reconstructed by a formal
inference system and logically and tutorially verified?

Granularity: Is the “argumentative complexity’ or ’size’ of
the proof step logically and tutorially acceptable?

Relevance: Is the proof step logically and tutorially useful
for achieving the goal?

Resolution of underspecification and PSE maotivate a spe-
cific module supporting these tasks in tutorial NL dialog on
proofs; in the remainder we call such a module proof man-
ager (PM).

MDR Challenges from a General Viewpoint

Ambiguity and Underspecification Resolution The cor-
pus reveals that ambiguities may arise at different phases of
processing between the linguistic analysis and MDR. Con-
sider, for instance, the following student utterance:

S: Aenthaelt B [Engl.: A contains B]

In this utterance ‘enthaelt’ (‘contains’) is ambiguous as it
may refer to the set relations ‘element-of’ and ‘subset-of’.
The ambiguity arises during linguistic analysis. It can be re-
solved, for instance, by type-checking provided that type in-
formation on A and B is available: if both symbols are of
the same ‘set type’ then ‘enthaelt’ means ‘subset-of’. How-
ever, type checking cannot differentiate between ‘C’ and
‘C’ as potential readings. The phenomenon is even better
illustrated by the following two utterances in which impor-
tant bracketing information is missing (‘K refers to the ‘set
complement’ operation and ‘P’ to the ‘Power set’ opera-
tion):

S P(AUC)N(BUC)) =PCU (AN B)
s™ K(AUC)N(BUC)) = KCU (AN B)

In S’ type information (if available) can be employed to rule
out the reading P(C') U (A N B) for the term to the right.
However, type information is not sufficient to differentiate
between the readings K (C)U (AN B)and K(CU(ANB))
in S”. Here only MDR can detect that the first reading leads
to a logically wrong statement and the second reading to a
correct one. As we cannot assume that the domain model
statically represents all correct mathematical statements this
calls for dynamic MDR support in the resolution of ambigu-
ities that, as given here, may arise during linguistic analysis.
Now consider the following slight modification (wrt. refer-
ence to deMorgan rule) of utterances T1 and S1 from Fig. 1.

T1: Please show : K((AU B) N (C U D)) = (K(A) N
K(B))U (K(C)nK(D))

S1’: by the deMorgan rule we have K ((AUB)N(CUD)) =
(K(AUB)UK(CUD)).

S1’ does not lead to an ambiguity during linguistic analysis.

It nevertheless leads to an ambiguity in the domain reasoner
since the suggested proof step is highly underspecified from
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Proof State
Some Student Utterances
(Al) AN B. ]
(A2) A= C. (a) From the assertions follows D.
(A3) C = D. (b) B holds.
(A4) F = B. (c) It is sufficient to show D.
(d) We show E.
(G) DVE.

Figure 2: PSE example scenario: (A1)-(A4) are assertions that
have been introduced in the discourse and that are available to
prove the proof goal (G). (a)-(d) are examples for possible proof
step directives of the student in this proof situation.

a proof construction viewpoint: S1” can be obtained directly
from the deMorgan rule VX, Y. K (XNY) = K(X)UK(Y)
(denoted as deMor gan- 2) by instantiating X with (A U
B) and Y with (C' U D). Alternatively it could be inferred
from T1 when applying deMorgan rule VX, Y. K (X UY) =
K(X)NK(Y) (denoted as deMor gan- 1) from right to left
to the subterms of T1: K(A) N K(B) and K(C) N K (D).
Differentiating between such alternatives could be crucial in
tutoring mathematical proofs.

Proof Step Evaluation: PSE supports the dynamic step-
by-step analysis (with criteria soundness, granularity, rele-
vance) of the proof constructed by the student. All three cri-
teria have a pure logical dimension and additionally a tuto-
rial dimension. For instance, a proof step may be formally
relevant by pure logical means but it may be considered as
not relevant when additional tutorial aspects are taken into
account. On the other hand, a student utterance which is suf-
ficiently close to a valid next proof step may be considered
tutorially relevant while being logically irrelevant. In this pa-
per we mainly focus on the logical dimension; the hypoth-
esis is that their solution is one important prerequisite for
solving the general PSE problem involving also the tutorial
dimension. Much further research in this direction is clearly
needed. The PSE challenge will now be further illustrated
using the artificially simplified example in Fig. 2.
Soundness: Determining whether an uttered proof step is
sound requires that the MDR can represent, reconstruct and
validate the uttered proof step (including all the justifications
used by the student) within the MDR’s representation of the
proof state. Consider, for instance, utterance (a) in Fig. 2:
Vferification of the soundness of this utterance boils down to
adding D as a new assertion to the proof state and to proving
that: (P1) (AA B),(A = C),(C = D),(F = B) + D.
Solving this proof task confirms the logical soundness of ut-
terance (a). If further explicit justifications are provided in
the student’s utterance (e.g. a proof rule) then we have to
take them into consideration and, for example, prove (P1)
modulo these additional constraints. Soundness is a fairly
tractable criterion for which different techniques are readily
available (Zinn 2004). PSE with respect to the criteria gran-
ularity and relevance, however, is novel and challenging.
Granularity evaluation requires analyzing the ‘complex-
ity’ or ‘size’ of proofs instead of asking for the mere exis-
tence of proofs. For instance, evaluating utterance (a) above

boils down to judging the complexity of the generated proof
task (P1). Let us, for example, use Gentzen’s natural deduc-
tion (ND) calculus as the proof system F. As a first and naive
logical granularity measure, we may determine the number
of --steps in the smallest F-proof of the proof task for the
proof step utterance in question; this number is taken as the
argumentative complexity of the uttered proof step. For ex-
ample, the smallest ND proof for utterance (a) has ‘3’ proof
steps: we need one ‘Conjunction-Elimination’ step to extract
A from A A B, one ‘Modus Ponens’ step to obtain C' from
Aand A = C, and another ‘Modus Ponens’ step to obtain
D from C and C = D. On the other hand, the smallest
ND proof for utterance (b) requires only ‘1’ step: B fol-
lows from assertion A A B by ‘Conjunction-Elimination’.
If we now fix a threshold that tries to capture, in this sense,
the ‘maximally acceptable size of an argumentation’ then
we can distinguish between proof steps whose granularity
is acceptable and those which are not. This threshold may
be treated as a parameter determined by the tutorial setting.
However, the ND calculus together with naive proof step
counting doesn’t always provide a cognitively adequate ba-
sis for granularity analysis. The reason is that two intuitively
very similar student proof steps (such as (i) from A = B and
B = Cinfer A = Cand (ii) from A < Band B < C infer
A & C) may actually expand into base-level ND proofs of
completely different size. Also related literature has pointed
out that standard ND calculus does not adequately reflect
human-reasoning (Rips 1994). This problem could become
even worse if we chose a machine-oriented calculus such as
resolution. Two important and cognitively interesting ques-
tions thus concern the appropriate choice of a proof system
F and ways to measure the ‘argumentative complexity’ of a
proof step.

Relevance. Relevance asks questions about the usefulness
and importance of a proof step with respect to the original
proof task. For instance, in utterance (c) the proof goal DV E
is refined to the new proof goal D using backward reasoning,
i.e., the previously open goal DV E is closed and justified by
a new goal. Answering the logical relevance question in this
case requires to check whether a proof can still be generated
in the new proof situation. In our case, the task is thus identi-
cal to proof task (P1). A backward proof step that is not rel-
evant according to this criterion is (d) since it reduces to the
proof task: (P2) (AA B), (A= C),(C = D),(F= B)F
E for which no proof can be generated. Thus, (d) is a sound
refinement step that is not relevant. This simple approach
appears plausible but needs to be refined. The challenge is
to exclude detours and to take tutorial aspects into account
(in a tutorial setting we are often interested in teaching par-
ticular styles of proofs, particular proof methods, etc.). This
also applies to the more challenging forward reasoning case
to identify that, for instance, utterance (b) describes a non-
relevant proof step.

Relevance and granularity are interesting, ambitious and
important challenges for tutoring of proofs. To address these
problems, it’s not sufficient to merely establish the existence
of proofs but the system has to construct proofs with par-
ticular properties. It may be the case that evaluating dif-
ferent criteria requires different ‘suitable’ theorem provers.
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Moreover, the system also needs to closely mirror and reflect
reasoning steps as they are typically performed by humans.
Generally, the system will need to adapt to the capabilities of
individual students and the requirements of varying tutorial
settings.

PSE in the DiALOG Demonstrator

We have implemented a demonstrator version of a PM which
provides dynamic support for resolution of underspecifica-
tion and PSE based on heuristically guided abstract-level
MDR realized on top of the QMEGA-CORE framework (Au-
texier 2003). The PM has been integrated into the overall
demonstrator of the DIALOG project in which it communi-
cates with other components of the system including the lin-
guistic analyzer, the dialog manager, the tutorial manager,
and the NL generator. More information on the role of the
PM in the DIALOG demonstrator system and on its inter-
play with other modules is given in (Buckley & Benzmiiller
2005). Note that we do not address tutoring aspects directly
in the PM. Instead the result of the PM’s proof step anal-
ysis is passed to the tutorial manager which then proposes
a tutoring move to the dialog manager of the overall sys-
tem. Tutoring aspects of the DIALOG project are discussed
in (Fiedler & Tsovaltzi 2003).

The complete system has been applied to several exam-
ple dialogs from the DIALOG corpus and it has been demon-
strated in the course of the evaluation of the DIALOG project
that the system is particularly able to support variations of
the dialog presented in Fig.1 (which we will use for illustra-
tion purposes). However, our system is currently only appli-
cable to a very restricted subset of example proofs in naive
set theory. For these examples the PM’s computation costs
are acceptable. It remains to be seen whether this is still the
case when moving to less elementary mathematical problem
domains.

Proof Step Representation and Resolution of Underspec-
ification. The PM needs to “understand” the incoming stu-
dent proof step and to fit it into the current proof context.

In our implementation, the student proof step is first for-
matted into a tuple ( LABEL, TYPE, DIR, FORMULA,
JUSTIFICATION-LIST ): LABEL provides a reference to this
proof step. Ty PE indicates whether the student proof step is,
for example, an inference step, a variable assignment, or a
local hypothesis introduction (these are the options we cur-
rently support). Given the proof step type inference, DIR in-
dicates the direction of this step as linguistically extracted
from the student’s utterance. The alternatives are forward,
backward, sideward, and closing. For instance, when the
student asserts that “¢ follows from ¢ and 6” and if we
know that ¢ and 6 are the two premises of the current proof
task, then the input analyzer should be able to assign for-
ward inference to DIR. FORMULA is the asserted formula
in this proof step, e.g., the ¢ from above. JUSTIFICATION-
LIST contains all the information the student uses to justify
FORMULA.

In our current approach, all of these fields except from
FORMULA can be left underspecified (i.e. empty). LABEL

can in general be easily generated by referring to FORMULA
or by NL references such as “the previous proof step”, “your
second proof step”, etc. The other fields are usually more
ambitious to determine. Before we proceed with describ-
ing our solution to underspecification resolution, we elab-
orate the JUSTIFICATION-LIST. JUSTIFICATION-LIST is a
list (J1, ..., Jy) of justifications J; (for 0 < i < n). When
n = 0 then JUSTIFICATION-LIST is underspecified. Each
justification J; is a tuple (NAME, FORM, SUBST): NAME
refers to an assertion. It can be the label of a previous proof
step or of an assertion in a mathematical knowledge base,
for example, ‘deMorgan-2’. FORM is a formula used to jus-
tify the asserted proof step. For instance, instead of referring

to deMorgan-2, the student may say: “Since AN (BUC) =

AUBUC, from ®[A N (B U C)] we obtain §[AUB U C].”
SUBST is an explicitly mentioned instantiation of variables
the student has applied in the proof step.

All justifications fields can be left underspecified.
The field SuBsT has been introduced mainly for the
purpose of exhaustively capturing the student input in
our representation. Given an underspecified justification
(NAME, FORM, SUBST), FORM is generally equivalent to
dereference(NAME) + SUBST. Assume, for example, that
we already have information on FORM := AN (BUC) =
AU BUC. The PM can determine a possible assertion
which has been used (e.g. deMorgan-2) together with the
substitution the student has applied (here [A — X, (B U
C) — Y1). In fact, in most proof step utterances in the Di-
ALOG corpus the student justifies her proof step with a ref-
erence to the employed assertion NAME and by specifying
the inferred formula FORMULA: For instance, a student may
say: “By deMorgan-2, we have ®”. Unification and heuristi-
cally guided theorem proving is employed in the PM to sup-
port the analysis and completion of different combinations
of given and missing information in justifications. Problem-
atic cases typically arise when the student leaves the justifi-
cation for her proof step underspecified altogether.

The proof step representation language presented here is
the one that has been implemented in the PM. In the mean-
time this language has been further developed in theory (Au-
texier et al. 2003).

Example 1 The underspecified proof step S1 in the exam-
ple dialog (see Fig. 1) is represented in the PM as follows:*

(input (label 1_1)

(formula (= (C(N(Uab) (Uc d)))
(U(C(Uab)) (C(Ucd))))

(type ?)
(direction ?)
(justifications
(j ust (reference deMrgan-2)
(formula ?)
(substitution ?))))

Our PM employs the 2MEGA-CORE calculus (Autexier
2003) as a sound and complete base framework (for classical
higher-order reasoning) to support resolution of underspec-
ification and PSE. The internal proof representation of the

4C, N, and U stand for complement, intersection, and
union, respectively. ? denotes underspecification.
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PM is based on task structures which are defined on top of
the QMEGA-CORE calculus; for more details on this proof
representation framework we refer to (Hubner et al. 2004).

In some sense, tasks resemble and generalize sequents in
sequent calculi. Proof construction in this “QMEGA-CORE
+ tasks”-framework employs and generalizes well-known
techniques in tableau-based theorem proving (cf. (Hahnle
2001) and the references therein) and the matrix method
(Andrews 1981; Bibel 1983). See also (Vo, Benzmiiller, &
Autexier 2003) for further details.

We present two example strategies employed by the PM
to relate the student proof step to the PM’s internal represen-
tation of the current proof state and to formally reconstruct
it in order to determine missing information.

Justify by a unifiable premise: The system looks for sub-
terms of the premises of the present task and for subterms
of the available assertions in a knowledge base which are
unifiable to the student proof step. Such a justification may
require further conditions to be discharged. These conditions
are extracted with the help of the QMEGA-CORE framework
and they form additional proof obligations which are ana-
lyzed by an automated theorem prover.

Justify by equivalence transformation and equality rea-
soning: This case is a generalization of the above one in
the sense that the asserted formula does only follow via
equivalence transformation and equality reasoning from the
premises and assertions available in the proof state. For this
strategy we employ a specifically adapted tableau-based rea-
soner implemented within the QMEGA-CORE framework.

Example 1 (contd.) Our simple example illustrates the
above strategies:

1. The asserted formula in the student proof step is unifiable
at top-level with the deMor gan- 2 rule. Thus, we recom-
pute a forward proof step:

(AuUB)N(CUD)=(AUuB)U(CUD,)
is obtained by deMbr gan- 2 using the substitution:
[X — (AUB);Y — (CUD)]

2. On the other hand, our system is able to identify the
discrepancies between the asserted formula and the goal
formula of the current proof task. Identifying a possible
backward reasoning step the system thus carries out the
following transformation:

(AuB)N(CuD)=(AnB)u(CnD)

is reduced to the new goal formula

(AUB)N(CuD)=(AUB)U(CUD)

by rewriting the subterms: (AN B) and (C' N D) with the
subterms (AU B) and (C U D), respectively, using the
rule deMor gan- 1.

For the initially underspecified input proof step represen-
tation we have thus computed two possible fully specified
logical interpretations.

Proof Step Evaluation The PM is now facing the problem
of evaluating both identified proof step interpretations along
the PSE criteria. Note that soundness has already been partly
addressed during the above phase, since we were able to re-
construct the underspecified proof step in at least one way in
the current proof state.

Employing heuristically guided theorem proving tech-
niques, our PM finally identifies the following ratings and
annotations for our two proof step interpretations:®

1. (eval uation
(reference ...)
(formula (= (C(N(Uab) (Uc d)))
(U(C(Uab)) (C(Uc d))))
(substitution ((x (Uab) y (Uc d))))
(directi on FORWARD)
(justification DeMrgan-2)
(soundness 1)
(rel evance 0.9)
(granularity 1))

2. (eval uation
(reference ...)
(formula (= (C(N(Uab) (Uc d)))

(U(C(Uab)) (C(Uc d))))
(substitution ...)
(directi on BACKWARD)
(justification (((C(Uc d)) .
((C(Uab)) .

(N (Cc) (Cd)))
(N (Ca) (Ch)))))
(soundness 1)

(rel evance 0.9)

(granularity 0.5))

The overall system then determines a preference for inter-
pretation (1.) since it shares the justification used by the stu-
dent, viz. the rule deMor gan- 2. Furthermore, the former
inference is considered to be granularly more appropriate
than the latter. This is because the former employs only one
application of the rule deMor gan- 2 while the latter applies
the rule deMbr gan- 1 twice. As discussed in the previous
section, this is generally an over-simplified way to determine
the relative granularity of a proof step. A more precise, sep-
arate soundness investigation in the PSE phase would also
rule out interpretation (2.), provided that the students explicit
reference to deMorgan-2 is taken into account.

Further Proof Management Tasks It is important that
the system and the student share a mutual understanding
about the situation they are confronting. And we have al-
ready motivated that the system should be capable of ade-
quately representing the context and the situation in which
the student is currently operating and reasoning about. Gen-
erally, we consider different classes of situations. Two ex-
amples are:

Problem-solving situations: In these situations, alterna-
tive problem solving strategies are considered to tackle the
problem, e.g. looking for similar problems whose solutions

5The ellipses indicate that the field refers to some internal rep-
resentation which is left out to save space. Note also that the rel-
evance rating for both interpretations is 0.9 to allow a margin for
error unless the proof step is found to be used in every possible
proofs in which case the relevance rating will be 1.
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are known, finding a lemma whose application could bridge
the gap between the premises and the goal, searching for
applicable proving methods such as proof by induction, di-
agonalization proof, etc.

Proof situations: Once a student proof step has been
identified as related to an available proof situation in the
maintained proof history, a new current proof situation is
computed and updated into the proof history. The current
proof situation consists of the “relevant” proof fragments
which have been identified up to this point.

The tasks of reconstructing theorem prover-oriented proof
fragments from the student proof steps, organizing the rele-
vant proof fragments into (partial) proofs, keeping track of
the proof history and other relevant information for future
backtracking, etc. are all handled by the PM. It’s also impor-
tant to note that while the problems of resolving underspec-
ification and PSE have been discussed separately, they are
solved in combination since they are mutually dependent.

In general, judging the student’s utterances in a mathemat-
ics tutoring scenario is a very complex task addressing many
Al problems including NL understanding, plan recognition,
ambiguity resolution, step-wise proof construction, manage-
ment of proofs, etc. In our first implementation of the PM,
we clearly had to make several simplifications which can
later be generalized if future experiments indicate the need
for this. We give some examples:

Granularity and the Direction of Inference: If the direction
of an inference is not made explicit by the student, the PM
tries to determine it by considering the granularity of the
proof justifying a forward reasoning step and the granularity
of the proof justifying a backward directed goal reduction
step; cf. our example from before. If the former is consid-
ered to be more difficult than the latter, the system conjec-
tures that this proof step is a forward proof step; otherwise,
it is considered to be a backward proof step.

Student Modeling: The granularity of a proof step is relative
to the student’s knowledge and expertise in the domain un-
der consideration. In the present implementation, the student
model and other relevant information have not been taken
into account when appraising the student proof step.

Related Work

Empirical findings in the area of intelligent tutoring show
that flexible natural language dialog supports active learn-
ing (Moore 1993). In the DIALOG project, therefore, the
focus has been on the development of solutions allowing
flexible dialog. However, little is known about the use of
natural language in dialog settings in formal domains, such
as mathematics, due to the lack of empirical data.

Input analysis in dialog systems is for most domains com-
monly performed using shallow syntactic analysis combined
with keyword spotting; slot-filling templates, however, are
not suitable in our case. Moreover, tight interleaving of nat-
ural and symbolic language makes key-phrase spotting dif-
ficult because of the variety of possible verbalizations. Sta-
tistical methods are employed in tutorial systems to com-
pare student responses with a domain-model built from pre-
constructed gold-standard answers (Graesser et al. 2000).

In our context, such a static domain-modeling solution is
impossible because of the wide quantitative and qualitative
range of acceptable proofs, i.e., generally, our set of gold-
standard answers is even infinite.

Related work with regard to interpreting mathematical
texts is (Zinn 2004) which analyzes comparably complete,
carefully structured textbook proofs, and relies on given
text-structure, typesetting and additional information that
identifies mathematical symbols, formulae, and proof steps.
With respect to our goal of ambiguity and underspecification
resolution, (Bos 2003) provides an algorithm for efficient
presupposition and anaphora resolution which uses state-of-
the-art traditional automated theorem provers for checking
consistency and informativeness conditions.

Recent research into dialog modeling has delivered a va-
riety of approaches more or less suitable for the tutorial di-
alog setting. For instance, scripting is employed in Autotu-
tor (Person et al. 2000) and knowledge construction dialogs
are implemented in Geometry Tutor (Matsuda & VanlLehn
2003). Outside the tutorial domain, the framework of Infor-
mation State Update (ISU) has been developed in the EU
projects TRINDI® and SIRIDUS” (Traum & Larsson 2003),
and applied in various projects targeting flexible dialog. An
ISU-based approach with several layers of planning is used
in the tutorial dialog system BEETLE (Zinn et al. 2003).

Finally, the dialogs in our corpus reveal many challenges
for human-oriented theorem proving. Traditional automated
theorem provers (e.g. OTTER and Spass) work on a very
fine-grained logic level. However, interactive proof assis-
tants (e.g. PVS, Cog, NuPRL, Isabelle) and in particular
proof planners (e.g. OMEGA and AClam) support abstract-
level reasoning. The motivation for abstract-level reasoning
is twofold: (a) to provide more adequate interaction support
for the human and (b) to widen the spectrum of mechaniz-
able mathematics. Proof assistants are usually built bottom-
up from the selected base-calculus; this often imposes con-
straints on the abstract-level reasoning mechanisms and the
user-interface.

Conclusion

We have identified novel challenges and requirements to
MDR in the context of tutorial NL dialogs on mathemati-
cal proofs. For instance, we must be able to explicitly repre-
sent and reason about ambiguous and underspecified student
proof steps in the PM. The represented proof steps may be
unsound, of unacceptable granularity or not relevant. The
analysis of these criteria is then the task of PSE. Gener-
ally, resolution of underspecification and PSE are mutually
dependent. Except for pure logical soundness validation of
proof steps, none of these requirements can currently be eas-
ily supported within state-of-the-art theorem provers. Thus,
novel and cognitively interesting challenges are raised to the
deduction systems community.

PSE can principally be supported by different approaches
— including ones that avoid dynamic theorem proving as

Ghttp://vwm ling.gu.sel/research/projects/trindi/
7ht'[p://wvwv.ling.gu.se/proj ekt/siridus/
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presented in this paper. We list some alternative approaches
according to increasing difficulty:

1. We could statically choose one or a few ‘golden proofs’
and match the uttered partial proofs against them.

2. We first generate from the initially chosen golden proofs
larger sets modulo, for instance, (allowed) re-orderings of
proof steps and match against this extended set.

3. We dynamically support PSE with heuristically guided
abstract-level MDR.

4. We interpret the problem as challenge to proof theory and
try to develop a proper proof theoretic approach to differ-
entiate between ’tutorially good proofs and proof steps’
and ’tutorially less good proofs and proof steps’ in the
space of all proofs for a given problem.

The space of all proofs that solve a proof problem is gen-
erally infinite which is one reason why a static modeling of
finitely many "golden solutions’ as in approaches (1) and (2)
is generally insufficient in our context. Approach (3) is our
currently preferred choice and a first, still rather naive, ap-
proach to the logical dimension of this challenge has been
presented in this paper. Much further research is clearly
needed. Approach (4) is the approach we want to addition-
ally investigate in the future; some relevant related work in
proof theory to capture a notion of good proofs is presented
in (Dershowitz & Kirchner 2003).

For (3) we have developed a heuristically guided MDR
tool that is capable of representing, constructing and analyz-
ing proofs at the assertion level. In the first place these proofs
maybe sound or non-sound. For naive set theory (our math-
ematical domain of choice so far) this tool has been able to
reconstruct and represent student proofs at the same level
of argumentative complexity as given in the DIALOG cor-
pus. We conjecture that this is a basic requirement for PSE
in tutorial settings. We have also shown how (in the same
mathematical domain) our PM resolves ambiguities and un-
derspecification in the student input and how it evaluates the
student input along the three major dimensions of sound-
ness, relevance, and granularity. The application of our ap-
proach to more challenging mathematical domains and its
evaluation therein is future work.
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Abstract. Research in dialogue systems has been moving towards re-
usable and adaptable architectures for managing dialogue execution and
integrating heterogeneous subsystems. In this paper we present a formali-
sation of ADMP, an agent-based architecture which supports the develop-
ment of dialogue applications. It features a central data structure shared
between software agents, it allows the integration of external systems,
and it includes a meta-level in which heuristic control can be embedded.

1 Introduction

Research in dialogue systems has been moving towards reusable and adaptable
architectures for managing dialogue execution and integrating heterogeneous
subsystems. In an architecture of this type, different theories of dialogue man-
agement can be formalised, compared and evaluated. In this paper we present a
formalisation of ADMP!, an architecture which uses software agents to support
the development of dialogue applications. It features a central data structure
shared between agents, it allows the integration of external systems, and it in-
cludes a meta-level in which heuristic control can be embedded.

We have instantiated the system to support dialogue management. Dialogue
management involves maintaining a representation of the state of a dialogue, co-
ordinating and controlling the interplay of subsystems such as domain processing
or linguistic analysis, and deciding what content should be expressed next by the
system. ADMP applies the information state update (ISU) approach to dialogue
management [1]. This approach uses an information state as a representation of
the state of the dialogue, as well as update rules, which update the information
state as the dialogue progresses. The ISU approach supports the formalisation
of different theories of dialogue management.

The framework of our research is the DIALOG project?, which investigates
flexible natural language dialogue in mathematics, with the final goal of natural
tutorial dialogue between a student and a mathematical assistance system. In

* This work was supported by the DAAD (German Academic Exchange Service),
grant number A/05/05081 and by the DFG (Deutsche Forschungsgemeinschaft),
Collaborative Research Centre 378 for Resource-adaptive Cognitive Processes.

! The Agent-based Dialogue Management Platform

2 http://www.ags.uni-sb.de/dialog/



the course of a tutorial session, a student builds a proof by performing utter-
ances which contain proof steps, thereby extending the current partial proof.
The student receives feedback from the DIALOG system after each proof step.
This feedback is based on the computations and contribution of numerous sys-
tems, such as a domain reasoner or a natural language analysis module. The
integration of these modules and the orchestration of their interplay as well as
the selection of a next dialogue move which generates the feedback is the task
of the dialogue manager.

The work presented in this paper is motivated by an initial prototype dia-
logue manager for the DIALOG demonstrator [2]. After its development we were
able to pinpoint some features which we consider necessary for the DIALOG
system, and which the platform presented here supports. The overall design of
ApMP is influenced by the design of £2-Ants [3], a suggestion mechanism which
supports interactive theorem proving and proof planning. It uses societies of
software agents, a blackboard architecture, and a hierarchical design to achieve
concurrency, flexibility and robust distributed search in a theorem proving envi-
ronment.

Although ADpMP has been developed to support dialogue systems, it can
be seen as a more general architecture for collaborative tasks which utilise a
central data store. For example, we have used ADMP to quickly implement a
lean prototype resolution prover for propositional logic.

Our work is related to other frameworks for dialogue management such as
TrindiKit, a platform on top of which ISU based dialogue applications can be
built. TrindiKit provides an information state, update rules and interfaces to
external modules. Another such framework is Dipper [4], which uses an agent
paradigm to integrate subsystems.

This paper is structured as follows. In Section 2 we give an overview of the
DIALOG project and the role a dialogue manager plays in this scenario. Section
3 outlines the architecture of ADMP. Section 4 presents the formalisation of the
system, and Section 5 concludes the paper.

2 The Di1ALOG Project

The DIALOG project is researching the issues involved in automating the tutoring
of mathematical proofs through the medium of flexible natural language. In or-
der to achieve this a number of subproblems must be tackled. An input analyser
[5] must perform linguistic analysis of utterances. These typically contain both
natural language and mathematical expressions and exhibit much ambiguity. In
addition to the linguistic analysis the input analyser delivers an underspecified
representation of the proof content of the utterance. Domain reasoning is en-
capsulated in a proof manager [6], which replays and stores the status of the
student’s partial proof. Based on the partial proof, it must analyse the correct-
ness, relevance and granularity of proof steps, and try to resolve ambiguous proof
steps. Pedagogical aspects are handled by a tutorial manager [7], which decides
when and how to give which hints.



These three modules, along with several others such as a natural language
generator, collaborate in order to fully analyse student utterances and to com-
pute system utterances. Their computation must be interleaved, since they work
with shared information, and this interplay is orchestrated by the dialogue man-
ager. Fig. 1 shows the modules involved in the DIALOG system.

Tutorial
GUI
s Manager
Dialogue Management
e Platform
Input
Analyser Dialogue Manager
“— ) Proof
Information Update Rules Man r
—— State EINELgS
NL Generator |
“—
|

Domain Info
Manager

Dialogue Move

Recogniser

Fig. 1. The DIALOG system.

We illustrate how the system works with an example from the DIALOG corpus
[8] in Fig. 2, where K stands for the complement operation and U is the universal
set. The student has made a correct step (Studl) and thus has begun building
a partial proof of the theorem. Later in the proof he makes an irrelevant step
(Stud2). We now consider how the modules of the system interact to generate
the response in (Sys2).

The student’s utterance first goes to the input analyser, which calculates
its linguistic meaning and underspecified proof content. The proof content in
this case is a representation of the content of the formula which is given in the
utterance. This is then taken up by the proof manager. In the given proof context
it assigns the proof step category correct, since the formula holds under the
assumptions, but also irrelevant, because the step does not lead to a proof, or
at least does not appear in a proof of the theorem. Simultaneously the dialogue
move recogniser uses the linguistic meaning to determine the function of the
utterance in the dialogue, and encodes this function in a dialogue move [9]. A
dialogue move is a multi-dimensional abstraction of the functions of an utterance
in a dialogue, such as question or assertion. In the example the utterance is a
domain contribution , since it asserts a new piece of information in the theorem
proving task.

A domain information manager determines what domain information was
addressed by the proof step by accessing static mathematical knowledge re-



Sys0: Bitte zeigen Sie: Wenn A C K(B), dann B C K(A)
Please show that: If A C K(B) then B C K(A)
Studl: U/A = K(A)
U/A=K(A)
Sysi: Das ist richtig! Und weiter?
That’s correct! And now?

Stud2: also ist AZ B
Therefore it holds that A £ B
Sys2: Nein, das bringt nichts. Wissen Sie, was Sie mit der wenn-dann-Beziehung
anfangen miissen?
No, that doesn’t help. Do you know what to do with the if-then relation?

Fig. 2. Excerpt from the DIALOG corpus, session soc20k.

sources. The tutorial manager uses a combination of these results to add hinting
information to the dialogue moves. In this case it decides to explicitly indicate
the inappropriateness ( “No”) and irrelevance ( “that doesn’t help”) of the step.
Furthermore, a combination of a student and tutor model result in an explicit
hint, namely to draw the student’s attention to dissolving the if-then relation
which is the head of the theorem.

In general, the result of each module’s computation is a contribution of con-
tent to some system dialogue move. The final step is that a natural language
generator generates the utterances constituting the system’s response in (Sys2)
from these dialogue moves. Since a module’s computations depend only on in-
formation stored in a subset of the information state, their execution order is
only partially constrained. This means that many computations can and should
take place in parallel, as in the case of the proof manager and dialogue move
recogniser in the example above.

DIALOG is an example of a complex system in which the interaction of many
non-trivial components takes place. This interaction requires in turn non-trivial
control to facilitate the distributed computation which results in the system
response. This control function resides in the dialogue manager. As shown in
Fig. 1, the dialogue manager forms the hub of the system and mediates all
communication between the modules. It furthermore controls the interplay of
the modules.

We realised a first DIALOG demonstrator in 2003. It includes a dialogue man-
ager built on top of Rubin [10], a commercial platform for dialogue applications.
This dialogue manager integrates each of the modules mentioned above and con-
trols the dialogue. It provides an information state in which data shared between
modules is stored, input rules which can update the information state based on
input from modules, and interfaces to the system modules.

However, we identified some shortcomings of this first dialogue manager for
the demonstrator, and these have formed part of the motivation for the devel-
opment of ADMP:



— The modules in the system had no direct access to the information state,
meaning they could not autonomously take action based on the state of the
dialogue.

— The dialogue manager was static, and neither dialogue plans nor the inter-
faces to modules could be changed at runtime.

— There was also no way to reason about the flow of control in the system.

ADMP solves these problems by using a software agent approach to information
state updates and by introducing a meta-level. The meta-level is used to reason
about what updates should be made, and provides a place where the execution
of the dialogue manager can be guided.

3 Architecture

The central concepts in the architecture of ADMP are information states and
update rules, and these form the core of the system. An information state consists
of slots which store values, and can be seen as an attribute-value matrix. It is
a description of the state of the dialogue at a point in time, and can include
information such as a history of utterances and dialogue move, the results of
speech recognition or a representation of the beliefs of dialogue participants.
Update rules encode transitions between information states, and are defined by
a set of preconditions, a list of sideconditions, and a set of effects. Preconditions
constrain what information states satisfy the rule, sideconditions allow arbitrary
functions to be called within the rule, and effects describe the changes that
should be made to the information state in order to carry out the transition
that the rule encodes.

An update rule is embodied by an update rule agent, which carries out the
computation of the transition that the update rule encodes. These check if the
current information state satisfies the preconditions of the rule. When this is the
case, they compute an information state update representing the fully instanti-
ated transition. An information state update is a mapping from slotnames in the
information state to the new values they have after the update is executed. We
introduce information state updates as explicit objects in ADMP in order to be
able to reason about their form and content at the meta-level.

As an example, we consider the information state in (1), a subset of the
information state of the DIALOG system®. Here the user’s utterance is already
present in the slot user_utterance, but the linguistic meaning in the slot 1m has
not yet been computed. The slot 1u stores a representation of the proof content
of the utterance, and eval_lu stores its evaluated representation.

(1) user_utterance "alsoist A Z B"
1m nn
1u nn

eval_lu "

3 In general an information state will contain richer data structures such as XML
objects, but for presentation we restrict ourselves here to strings.



The update rule in (2) represents transitions from information states with a
non-empty user_utterance slot to information states in which the 1m and 1lu
slots have been filled with the appropriate values.

{non_emPtY(user_utterance)} <:r:::IHPUt_analyser(user_utterance%
(2) . - p := extract_Im(r),
{lm—p, lu—q} q := extract_lu(r) >

In ADMP’s update rule syntax this rule is defined as:

(3) (ur~define-update-rule
:name "Sentence Analyser"
:preconds ((user_utterance :test #’ne-string))
:sideconds ((r :function input_analyser
:slotargs (user_utterance))
(p :function extract-lm :varargs (r))
(q :function extract-lu :varargs (r))

)
reffects ((Im p) (1u q))
)

The precondition states that the slot user_utterance must contain a non-empty
string. When this is the case, the rule can fire. It carries out its sideconditions,
thereby calling the function input_analyser, which performs the actual compu-
tation and calls the module responsible for the linguistic analysis of utterances.
Rule (2) thus represents the input analyser. The result of this computation is an
object containing both the linguistic meaning of the utterance and an underspec-
ified representation of the proof content. The functions extract_Im and extract_lu
access the two parts and store them in the variables p and q, respectively. The
information state update that the rule computes maps the slot name 1m to the
linguistic meaning of the utterance and the slot name 1lu to its proof content.

Rule (4) represents the proof manager, and picks up the proof content of the
utterance in the slot lu.

(4) {non_empty(lu)}

:= pm_anal 1
{ovallu — ] < r := pm_analyse(1lu) >

The proof manager augments the information in lu by attempting to resolve
underspecification and assign correctness and relevance categories, and the re-
sulting update maps eval_lu to this evaluated proof step. A similar update
rule forms the interface to the dialogue move recogniser, which uses the linguis-
tic meaning of the utterance in 1m to compute the dialogue move it represents.
Since these two computations are both made possible by the result of the update
from the input analyser, they can run in parallel.

Fig. 3 shows the architecture of ADMP. On the left is the information state.
Update rules have in their preconditions constraints on some subset of the in-
formation state slots and are embodied by update rule agents, which are shown
here next to the information state. When an update rule agent sees that the
preconditions of its rule hold, the rule is applicable and can fire. The agent then
executes each of the sideconditions of the rule, and subsequently computes the



information state update that is expressed by the rule’s effects. The resulting in-
formation state update is written to the update blackboard, shown in the middle
of the diagram.

Information State Update Rule Agents Update Blackboard Update Agent
Slot 1 Z IS Update 1
Slot 2 ISUs IS Update 2 Chosen ISU
Slot 3 IS Update 3 o
Slot 4 <
ISU execution

Fig. 3. The architecture of ADMP.

The update blackboard collects the proposed updates from the update rule
agents. These agents act in a concurrent fashion, so that many of them may
be simultaneously computing results; some may return results quickly and some
may perform expensive computations, e.g. those calling external modules. Thus
the set of entries on the update blackboard can grow continually. On the far
right of the diagram is the update agent, which surveys the update blackboard.
After a timeout or some stimulus it chooses the heuristically preferred update
(or a combination of updates) and executes it on the current information state.
This completes a transition from one information state to the next.

Finally the update agent resets the update rule agents. Agents for whom
the content of the slots in their preconditions has not changed can continue to
execute since they will then be computing under essentially the same conditions
(i.e. the information that is relevant to them is the same). Agents for whom
the slots in the preconditions have changed must be interrupted, even if their
preconditions still happen to hold. This is because they are no longer computing
within the correct current information state.

4 A Formal Specification of Abmp

We now give a concise and mathematically rigorous specification of ADMP.
We introduce the concepts and terminology necessary to guarantee the well-
definedness of information states and update rules, and we give an algorithmic
description of the update rule agents and the update agent.

Information States and Information State Updates First, we fix some
data structures for the slot names and the slot values of an information state.



In our scenario it is sufficient to work with strings in both cases (alternatively
we could work with more complex data structures). Let A and B be alphabets.
We define the language for slot names as Slotld := A* and the language for slot
values as SlotVal := B*. In our framework we want to support the checking of
certain properties for the values of single slots. Thus we introduce the notion
of a Boolean test function for slot values. A Boolean test function is a function
f € BT := SlotVal — {T, L}

Next, we define information state slots as triples consisting of a slot name,
a slot value, and an associated Boolean test function. The set of all possible
information state slots is Slots := Slotld x BT x SlotVal. Given an information
state slot u = (s, b,v), the slot name, the test function, and the slot value can be
accessed by the following projection functions: slotname(u) := s, slotfunc(u) :=b
and slotval (u) = v.

Information states are sets of information state slots which fulfil some addi-
tional conditions. Given r C Slots, we call r a valid information state if r # ()
and for all uy,us € r we have slotname(u1) = slotname(us) = u1 = uaz. We
define ZS C P(Slots) to be the set of all valid information states. The set of all
slot names of a given information state r € ZS can be accessed by a function
slotnames : TS — P(Slotld) which is defined as follows

slotnames(r) = {s € Slotld | 3u € r . slotname(u) = s}

We define a function read : ZS x Slotld — SlotVal to access the value of a slot
in an information state where read(r, s) = slotval(u) for the unique u € r with
slotname(u) = s.

In our framework information states are dynamically updated, i.e. the values
of information state slots are replaced by new values. Such an information state
update is a mapping from slots to their new values. The set of all valid information
state updates p is denoted by ZSU, the largest subset of P(Slotld x SlotVal) for
which the following restriction holds: V(s1,v1), (s2,v2) € . $1 = 2 = v1 = v9
for all p € ZSU. We define ZSU | :=ZSU U {L}. An information state update
1 € ZSU is executable in an information state r € ZS if the slot names addressed
in p actually occur in r and if the new slot values suggested in p fulfil the
respective Boolean test functions, i.e.

executable(r, p) iff V(s,v) € p.3u € r . slotname(u) = s A slotfunc(u)(v) =T

We overload the function slotnames from above and analogously define it for
information state updates. Information state updates are executed by a function
execute_update : TS x ISU — ZS. Given an information state r € ZS and an
information state update p € ZSU we define

r if not executable(r, i)

execute_update(r, ) =
P (rsn) {r Urt  otherwise
where

r~ = (r\ {(s,b,v) € r|s € slotnames(u)}

o= {(V,0) | (8,0) € pATu € r. s = slotname(u) A b = slotfunc(u)}



Update Rules Update rules use the information provided in an information
state to compute potential information state updates. They consist of precondi-
tions, sideconditions and effects.

The preconditions of an update rule identify the information state slots that
the rule accesses information from. For each identified slot an additional test
function is provided which specifies an applicability criterion. Intermediate com-
putations based on information in the preconditions are performed by the side-
conditions of the update rules. For this, a sidecondition may call complex external
modules, such as the linguistic analyser or the domain reasoner. The results of
these side-computations are bound to variables in order for them to be accessible
to subsequent sideconditions and to pass them over from the sideconditions to
the effects of a rule. We now give a formal definition of each part in turn.

Let s € Slotld and b € BT. The tuple (s, b) is called an update rule precondi-
tion. The set of all update rule preconditions is denoted by C := Slotld x BT. We
define projection functions pc_slotname : C — Slotld and pc_test func: C — BT
such that pc_slotname(pc) = s and pe_testfunc(pc) = b for all pc = (s,b). An
information state r € IS satisfies an update rule precondition pc = (s,b)
if the function b applied to the value of the slot in r named s returns T,
i.e. satisfies(r,pc) iff Ju € r. pc_testfunc(pe)(slotval(u)) = T A slotname(u) =
pe_slotname(pc). We overload the predicate satisfies and define it for sets of pre-
conditions C’ C C and information states r € ZS as follows: satisfies(r,C’) holds
if each precondition in C’ is satisfied by r.

Let v € Var be a variable where Var is a set of variables distinct from
the languages A* and B*, let (vi...v,) € Var™ be an m-tuple of variables,
let (s1...8,) € Slotld™ be an n-tuple of slot names, and let f : SlotVal" —
SlotVal™ — SlotVal be a function? (n,m > 0). A single sidecondition is thus
given by the quadruple (v, (s1,...,84), (V1,...,0m), ). The set of all single side-
conditions is denoted by D := Var x SlotId™ x Var™ x (SlotVal™ — SlotVal™ —
SlotVal).

Given the set D of single sideconditions sc;, the sideconditions of an up-
date rule are now modelled as lists [ := <scy,...,8¢, >, n > 0. We further
provide projection functions scwar : D — Var, sc_slottuple : D — Slotld",
sc_slotnames : D — P(Slotld), scvartuple : D — Var™, scvarnames : D —
P(Var) and sc_func : D — (SlotVal™ — SlotVal™ — SlotVal), such that
for all sc = (v,(s1,--.,8n), (V1,...,0m), f) € D it holds that scvar(sc) = v,
sc_slottuple(sc) = (s1,...,8n), sc-slotnames(sc) = {s1, ..., S$n}, scovartuple(sc)
= (V1,...,0m), scwarnames(sc) = {v1,..., vy} and sc_func(sc) = f.

A sidecondition list [ is called valid if two conditions hold: for all sc;, sc; € 1
with i # j we must have sc_var(sc;) # sc_var(sc;) and for all sc; € [ we must
have sc_varnames(sc;) C {v|3 sc; € 1. j <iAv = scevar(scj)}. The set of all
valid sidecondition lists is denoted as D;.

Let s € Slotld and v € Var be a variable. The tuple (s, v) is called an update
rule effect. The set of all update rule effects is denoted by £ := Slotld x Var.

4 We assume the right-associativity of — .
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We provide projection functions e_slotname : € — Slotld and e_var : € — Var
such that e_slotname((s,v)) = s and e_var((s,v)) = v.

Let U be a set of rule names (distinct from A*, B*, and Var). An update rule is
aquadruple v € UR :=UXP(C)xD;xP(E). Anupdaterulev = (n,c,d,e) e UR
is well-defined w.r.t. the information state r if

1. the slotnames mentioned in the preconditions actually occur in 7, i.e, for all
pe € ¢ we have pe_slotname(pc) € slotnames(r),

2. each slot that is accessed by a sidecondition function has been mentioned
in the preconditions, i.e., (Uy,cq sc-slotnames(d;)) C {s € Slotld | 3 pc €
¢ . pe_slotnames(pc) = s},

3. the variables occurring in the effects have been initialised in the sidecon-
ditions, i.e., {v € Var | 3 e; € e . ewar(e;) = v} C {v € Var | 3 sc €
d . scovar(sc) = v}, and

4. the slotnames in the effects refer to existing slots in the information state r,
ie., {s € Slotld | Je; € e . e_slotname(e;) = s} C slotnames(r).

Let v = (n,¢,d,e) € UR be an update rule and r € ZS be an information
state. v is called applicable in r if v is well-defined w.r.t. r and satisfies(r,c)
holds. This is denoted by applicable (r,v).

Update Rule Agents Update rule (software) agents encapsulate the update
rules, and their task is to compute potential information state updates. The
suggested updates are not immediately executed but rather they are passed to
an update blackboard for heuristic selection. Update rule agents may perform
their computations in a distributed fashion.

An update rule agent embodies a function ezecute_ur_agent : UR — (ZS —
ZSU ). The function ezecute_ur_agent(v) takes an update rule v and returns
a function (lambda term) representing the computation that that rule defines.
The new function can then be applied to a given information state in order to
compute a suggestion for how to update this information state. For each update
rule we obtain a different software agent.

We introduce a macro sc_evaluate which abbreviates the retrieval of the
values in the variables and slotnames in the body of sidecondition and the com-
putation of the value which is to be stored in the sidecondition’s variable. We
use function_call to apply a function to the arguments which follow it and
value_of to retrieve the value stored in a variable.

sc_evaluate(sc) =
let (s1,...,8n) := sc_slottuple(sc)

let (vi,...,vm) 1= sc_vartuple(sc)
let (t1,...,tm) := (value_of(v1),. .., value_of(vy,))
function_call(sc_func(sc), (read(r,s1),...,read(r,sn)), (t1, ..., tm))

We now define execute_ur_agent as
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ezecute_ur_agent(v = (n,c,d,e)) =
Ar . if applicable(r, v)
then
let <sci,...,scp>:=d
let sc_var(sci) := sc_evaluate(sci)
let sc_var(scz) := sc_evaluate(sca)

let sc_var(sc,) := sc_evaluate(scy,)
{(s,v)|3(s, sc_var(sc;)) € e . v = value_of(sc_var(sc;))}
else L

Update Blackboard and Update Agent An update blackboard is modelled
as a set of information state updates w € UB := P(ZSU), and stores pro-
posed updates to the current information state. The update agent investigates
the entries on the update blackboard, heuristically chooses one of the proposed
information state updates and executes it. We assume a user-definable function
choose : UB — ZSU which realises the heuristic choice based on some heuristic
ordering criterion > yp : ZSU x ZSU. A simple example of a partial ordering
criterion >y is

w1 >up po iff slotnames(us) C slotnames(uy)

In fact, choose may be composed of several such criteria, and clearly the overall
behaviour of the system is crucially influenced by them. The update agent now
embodies a function update_agent : UB x (UB — ISU) x IS — IS which is
defined as

update_agent(w, choose,r) = execute_update(r, choose(w))

5 Conclusion

In this paper we have presented a formalisation of ADMP, a platform for devel-
oping dialogue managers using the information state update approach. We were
motivated by the need to integrate many complex and heterogeneous modules
in a flexible way in a dialogue system for mathematical tutoring. These modules
must be able to communicate and share information with one another as well as
to perform computations in parallel.

ADMP supports these features by using a hierarchical agent-based design. The
reactive nature of the update rule agents allows for the autonomous concurrent
execution of modules triggered by information in the information state. This
furthermore obviates the need for a strict pipeline-type control algorithm often
seen in dialogue systems, since agents can execute without being explicitly called.
Interfacing the dialogue manager with system modules is also simplified by using
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the agent paradigm, because adding a new module involves only declaring a new
update rule. Finally, the meta-level provides a place where overall control can
take place if needed.

ADMP thus allows the formalisation of theories of dialogue in the information
state update approach, offering the functionality of related systems like TrindiKit
and Dipper. However by introducing an explicit heuristic layer for overall control
it allows reasoning about the execution of the dialogue manager which these two
systems do not support.

An instantiation of ADMP is achieved by declaring an information state, a set
of update rules which operate on the information state, and a choose function,
whereby a developer can fall back to a default function such as suggested in the
previous section. A user-defined choose function should compute valid ZSUs,
also in the case where ZSUs from the update blackboard are merged. As an
example, a conservative merge strategy would simply reject the merging of pairs
of ZS8U's whose slotname sets intersect. Update rule agents and the update agent
are automatically generated from the update rule declarations.

We have recently implemented ADMP and given an instantiation for the
DI1ALOG system which uses eleven update rules and requires no declaration of
control structure. We have also shown that we can implement a propositional
resolution prover in ADMP with four agents and five information state slots,
which corresponds to just 40 lines of code. Extensions such as a set of support
strategy can be realised simply by adding agents, possibly at runtime.

We foresee as future work the extension of our agent concept to include for
instance resource sensitivity, and the investigation of further default heuristics
for the dialogue scenario. Other interesting work is to turn the specification given
in this paper into a formalisation within a higher-order proof assistant such as
ISABELLE/HOL, HOL or OMEGA and to verify its properties.
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Abstract. We present DiaWOz-11, a configurable software environment
for Wizard-of-Oz studies in mathematics and engineering. Its interface
is based on a structural wysiwyg editor which allows the input of com-
plex mathematical formulae. This allows the collection of dialog corpora
consisting of natural language interleaved with non-trivial mathemati-
cal expressions, which is not offered by other Wizard-of-Oz tools in the
field. We illustrate the application of DiaWOz-II in an empirical study
on tutorial dialogs about mathematical proofs, summarize our experi-
ence with DiaWOz-II and briefly present some preliminary observations
on the collected dialogs.

Key words: Dialog systems, natural language dialog in mathematics,
tutoring systems, Wizard-of-Oz experiments

1 Introduction

For the development of natural language dialog systems, experiments in the
Wizard-of-Oz (WOZ) paradigm are a valued source of dialog corpora.?
Existing environments for WOZ experiments, even those for the domain of
mathematics tutoring, generally operate in domains that either require only sim-
ple mathematical formulae (with operators like + and x), or they separate the
mathematical objects (geometric figures or equations) from the tutorial dialog
(such as in the Wooz tutor [2], for example). In this paper we present our WOZ

* This work has been funded by the DFG Collaborative Research Center on Resource-
Adaptive Cognitive Processes, SFB 378 (http://www.coli.uni-saarland.de/
projects/sfb378/).

3 A Wizard-of-Oz experiment [1] serves to test the usability of a hypothetical software
system. The system is (partially) simulated by a human expert, the wizard. Typically,
a mediator software partially implements the functionality of the simulated system.



environment DiaWOz-II which, in contrast to that, enables the collection of di-
alogs where natural language text is interleaved with mathematical notation,
as is typical for (informal) mathematical proofs. The interface components of
DiaWOz-II are based on the what-you-see-is-what-you-get scientific text editor
TrXyacs? [3]. DiaWOz-I1 provides one interaction window for the user and one
for the wizard, together with additional windows displaying instructions and
domain material for the user, and additional notes and pre-formulated text frag-
ments for the wizard. All of these windows allow for copying freely from one to
the other. Furthermore, our DiaWOz-II allows the wizard to annotate user dialog
turns with their categorization. DiaWOz-II is also connected to a spell-checker
for checking both the user’s and the wizard’s utterances.

This paper is organized as follows: In Sect. 2 we motivate the design of our
system. In Sect. 3.1 we describe the TEXyacs wysiwyg editor, on which the
interface of DiaWOQz-II is based. The DiaWOz-II system is discussed in detail
in Sect. 3. In Sect. 4 we discuss the application of DiaWOz-II in a recently
completed series of experiments. Section 5 concludes the paper.

2 Design Aspects

General Requirements for WOZ Tools. We list some general requirements
we considered in the development of DiaWOz-11I:

Plausibility and Comfort. For WOZ experiments, it is crucial to maintain the
user’s belief that he is interacting with a fully artificial system. Therefore,
the software that mediates between wizard and student should enable the
wizard to conceal his human identity. This is not a trivial pursuit, since it is
common sense that “people are flexible, computers are rigid (or consistent),
people are slow at typewriting, computer output is fast” [4]. Thus, the WOZ
tool is required to enable the wizard to respond to the participant quickly
and comfortably and in a plausible way.

Suitability for Book-keeping. The main goal of WOZ experiments is the analysis
of the interactions between the subjects and the simulated system. Therefore,
the WOZ tool is required to record the dialogs using a representation format
suitable for further processing and analysis.

Flexibility and Simplicity. The WOZ tool should be easily adjustable, so that it
can be used under different experimental conditions and in different domains.
Adjustments to the software should not significantly add to the complexity
of carrying out a series of experiments, a process which by itself poses enough
challenges.

Tool Integration. The WOZ tool should support the integration of other soft-
ware components, for example, modules that already realize single parts of
the simulated overall system.

* wuw.texmacs.org



Specific Requirements for DiaWOz-II. DiaWOz-II has been developed for
application in the DIALOG project [5], which investigates the use of natural lan-
guage dialog for teaching mathematical proofs. The particular research foci of
the DIALOG project are natural language analysis, domain reasoning for math-
ematics, and tutorial aspects of mathematics tutoring.

In 2003, we carried out a first empirical study [6] in the WOZ paradigm
in which we collected a corpus of tutorial dialogs on mathematical proofs in
German. The study concentrated on the comparison between three tutoring
strategies, namely the Socratic, didactic and the minimal feedback strategies.
For this purpose, we developed the DiaWoZ [7] environment, the predecessor of
DiaWOz-II. DiaWoZ supports complex dialog specifications, which were needed
in order to specify a particular hinting algorithm used in the Socratic tutoring
condition. DiaWoZ allows keyboard-to-keyboard interaction between the wizard
and the student. The interfaces consist mainly of a text window with the dialog
history and a menu bar providing mathematical symbols. Furthermore, the wiz-
ard can assign dialog state transitions and speech act categories to student turns
w.r.t. the underlying dialog model. The DiaWoZ interface allowed free mixing
of natural language text with mathematical symbols. Still, there was room for
improvement with respect to the plausibility and comfort criterion postulated
above. For example, the experiment participants suggested the use of the key-
board instead of the mouse for inserting mathematical symbols.

The first study motivated a second series of experiments [8], which we briefly
describe in Sect. 4. In contrast to the first study, the more recent study imposes
less constraints on the wizards’ tutoring and assumes a rather simple dialog
model. However, in comparison to the first study, the second study is more
focused on linguistic phenomena and mathematical domain reasoning in tutorial
dialogs and the interplay between these two.

Related Work. A variety of WOZ tools and dialog system toolkits already
exist. Examples are the simulation environment ARNE [4], the SUEDE proto-
typing tool for speech user interfaces [9] and MD-WOZ [10].

In the domain of mathematics, a WOZ simulation of the ALPS environment
[11] and the Wooz tutor [2] should be mentioned. In the case of ALPS, the
Synthetic Interview (SI) method is used, i.e. the student formulates free-form
questions in a chat window, and receives a video clip with an answer. In the ALPS
system, these video clips are pre-recorded, stored in a database, and retrieved
as answers for the questions from the user, whereas in the WOZ simulation of
ALPS, the wizard’s responses are spontaneous. The ALPS tutor is designed to
be an algebra tutor. Typical problems in the domain of ALPS are for example
the computation of area and perimeter of geometric figures.

The Wooz tutor is also a tool for keyboard-to-keyboard interaction in the
domain of algebra. It offers a chat window displaying the tutorial dialog, a
dedicated window displaying the problem statement and a dedicated editor for
editing equations. A typical problem given to the participants is “please factor
112% — 11z + 67.



The interfaces of these two systems are not intended for mixing natural lan-
guage input with the mathematical notation employed for proving theorems,
which we investigate in the DIALOG project. For our dialog system we aim for an
interface that allows flexible and easy input for mathematical formulae and natu-
ral language text. This requirement is addressed by the interface in DiaWOz-II.

3 The DiaWOz-1I System

We decided to build a new WOZ tool rather than trying to improve the existing
DiaWoZ system. An important motivation was to use TEXyacs [3] as a platform
for the new system in order to benefit from its typesetting abilities, its config-
urable GUI and its event-handling as a building block for the creation of a more
lightweight software.

DiaWOz-1II is realized as a classical client-server architecture, and consists
of a server and two client interfaces for the student and the tutor respectively.
The architecture allows keyboard-to-keyboard interaction between the student
and the tutor. Furthermore, the server fulfills other central functions, namely
the recording of the interaction in a log file, controlling turn-taking between
the dialog participants, and providing an interface to a spell-checker. We first
describe TEXyacs and its role in DiaWOQOz-II before we further elaborate on each
of these aspects in turn.

3.1 TEXmacs

TEXMacs 1s a scientific text editor with strong support for mathematical typeset-
ting which is inspired by TEX and GNU emacs. The internal representation of a
TEXMacs-document is well organized in a tree-like structure. TEXyacg provides
two alternative editing modes: (i) a wysiwyg interface that allows to directly
manipulate the typeset document and (i) a source mode that provides a view
of the internal document representation in the underlying, structured TEXpracs
markup language. This language supports the definition of macros, which are
generally easy to read and understand. It is also worth noting that the standard
TEXMacs markup language inherits many usual I TEX constructs, in such a way
that for IMTEX-literate persons, starting to use TEXyacs is usually straightfor-
ward. Thus, extending the markup (namely, defining new kinds of tags together
with how these newly defined tags must be typeset) can be done in a very con-
venient way using macros. For more sophisticated behavior, for example, the
implementation of an interactive application, one can use Scheme, the standard
TEXMmacs scripting language.

TEXymacs fulfills the plausibility and comfort requirement introduced in Sect.
2 by offering various advanced modes of input for mathematical symbols, and in
particular it enables XTEX commands. Using TEXyacs also fulfills the flexibility
and simplicity requirement, since it can be reconfigured with little effort.

The TEX\acs editor has already been adapted as an interface to a diversity
of external tools, most of which are computer algebra systems. However, using
TEXpacs as an interface for a (simulated) tutoring system is novel.



3.2 TEXmacs as Base Component of DiaWOz-11

A TEXmacs application as employed in DiaWOz-1I has the overall structure
shown in Fig. 1. Such an application consists of (i) a set of TEXyacg macros which
implement the wvisualization of the different parts of the wuser
interface (i.e. what are their
shapes, their locations, the
text attributes (e.g. color,
font, ...), etc.), and (2) a set
of Scheme scripts, which im-
plement the mechanism which
interprets the events (e.g., a
mouse click, a key press, etc.)
and modifies the interface ac-
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cordingly.
Event
Mouse, A TEXyiacs i Processing
Macros. A very basic ex- Keyboard  documentisa | (Scheme scripts)
ample of a TEXyacg macro Markup Tree ----

that can be used to turn a

part of the document into Fig. 1. Structure of a TEXyacs application
italics underlined text is (cf.

[12] for more details on the macro language):

<underlined-italics|x> => <with|font-shapel|italic|<underline|<arg|x>>>

The left-hand side of this expression defines the use of the macro (i.e., the non-
expanded markup, as it can be found in a TEXyacg document file) and the
right-hand side its expansion. Given this macro definition, the TEXpacs markup
fragment <underlined-italics|This is italics underlined text.>

is first rewritten by the macro processor as <with|font-shapel|italic]|
<underline|This is italics underlined text.>> and then displayed in
TEXMacs as This s italics underlined text.

Processing the Markup Using Scheme. The event processor can be ex-
tended by plugins written as Scheme scripts. These scripts can manipulate the
internal markup tree that represents the user interface, typically as a reaction
to an event (e.g., mouse, keyboard, network, etc.). As a reaction to the changes
in the markup, the macros are reevaluated, and the display is then updated.

3.3 Student and Wizard Interfaces

The dialog system simulated by DiaWOz-II is presented to the student as a
window, referred to as the interaction window. It consists of menu bars and a
text field, as shown in Fig. 2. The dialog history and the prompt for the current
input are displayed in the same text field, separated by a horizontal bar at the
bottom in Fig. 2. The utterances from the tutor and the student are displayed in
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Fig. 2. Interaction window of the student interface

different colors for better readability. The student can send messages by pressing
the “absenden” (submit) button. Upon submitting, the message becomes part
of the dialog history. The answers by the tutor are accompanied by an acoustic
signal.

In a second window, which is independent of the interaction window, supple-
mentary study material with mathematical concepts and definitions is displayed.

The wizard’s interface, as shown in Fig. 3, is conceptually similar to the
student’s interface. In addition, the wizard is asked to categorize each student
turn w.r.t. three dimensions: correctness, granularity and relevance; the wizard
fills out the fields of a small table referring to the three dimensions by making
choices in pull-down menus, or directly by typing. The wizard’s button for send-
ing messages is only enabled once all the fields have been filled. If the student’s
utterance does not represent a mathematical statement the wizard fills in default
values (N/A).

We now turn in more detail to the methods for inserting mathematical sym-
bols in DiaWOz-II, which are made available by TEXyacs. Mathematical sym-
bols (e.g., #) can be created by using ITEX commands (e.g., \emptyset) or
by using additional commands defined when designing the interface (e.g., the
command \emptyset in German language, i.e. \leeremenge). These commands
are also made available in the menu bar. DiaWOz-II also allows for structured
commands, e.g. commands that create pairs of brackets for pair (O, OJ) and for
set notation { J|O}. An example is the macro paar (German for pair):

<paar|left|right> => ( <argl|left> , <arglright> )
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Fig. 3. The interaction window of the wizard interface

Invoking \paar with the arguments x and y yields the formula (z,y). The
two arguments need not necessarily be provided when invoking the macro, their
respective placeholders can be also filled in interactively and modified later.
Macros can be nested, and most importantly, they avoid missing parentheses
when the user writes expressions using the pair notation. The set of macros
provided with DiaWOz-II can be easily extended with further TEXyacg macros.

TEXMmacs furthermore makes it possible to distinguish between mathematical
symbols created via the menu bar and via ITEX commands, even if they appear
to be the same at the typesetting level.

Using structured building blocks for constructing mathematical formulae via
macros is similar to the MATHS TILES approach [13]. MATHS TILES are graphical
tiles that can contain text, diagrammatic shapes and sockets, which are place-
holders where other MATHS TILES can be inserted to form composite objects.
TEXMacs has the advantage over MATHS TILES that it already includes by de-
fault a large set of macros for constructing formulae, such as a large number of
macros that represent IKTEX commands.

3.4 The Server

The central capabilities of DiaWOQOz-II reside in the server. Its main task is to
pass the dialog contributions back and forth between the student and the wizard
interface. Furthermore, it provides the following other central services:

Log-file Mechanism. All dialogs are recorded in a log-file in DiaWOz-11. The
log-file format is based on the representation format of TEXyacg, which is a



structured, extensible and open document format. Naturally, the annotations
performed by the wizard for each student turn are also stored in the log-file.
Spell-Checking. Spelling mistakes by the wizard can be a giveaway of human
simulation. Therefore, our server (optionally) integrates a spell-checker. If
spell-checking is activated, a message from the wizard is only passed on
by the server if it passes the spell-checker, otherwise the wizard is asked
to correct the message. The student’s input is also spell-checked. Messages
exceeding a threshold of spelling errors are refused (i.e. not passed on to
the wizard). The underlying rationale is that it would be implausible that
an automated system could deal with such misspelled input.
We currently employ the spell-checker GNU Aspell® with the standard Ger-
man dictionary provided with Aspell together with an extra dictionary of
mathematical jargon. The latter was compiled from the introductory math-
ematics materials and gradually extended during the experiments.
Turn-Taking Control. DiaWOz-II imposes strict turn-taking on the student:
once the student makes a turn, the sending of new messages is disabled
(i.e., the dedicated button for “sending” is deactivated and displayed in a
darker shade) until the tutor provides a response. Without this constraint,
it might become unclear to which turn of the student an answer from the
wizard belongs. However, the tutor is allowed to barge in at any time, which
enables him to offer support or prompt if the student appears to be inactive.

3.5 Implementation

Figure 4 illustrates the archi-
tecture of DiaWOz-II. In or-

der to customize the client in- Client Client
terfaces, we have |TEXMACS’£TUtOT) | |T]"_):AXMACS (Student) |

— adapted the menu bars
and buttons to the needs Sending a command
of our application and

— restricted the editing fa- Server
cilities so that the student
can only type in a desig-
nated text area with all
other TEXyacs function- [Spellchecker | | Logging |
alities disabled (for exam-
ple, inserting an image,
or editing the dialog his-
tory).

/
/> Dispatching changes / Re-
configuring the interface

Fig. 4. System architecture

On the server side, turn-taking is controlled by a finite-state automaton. A
message received by the server is written to the log-file and sent to a spell-
checker. If it passes, it is broadcast to the clients. If it does not pass, it is

® http://aspell.sourceforge.net/



sent back to the sender for correction. Disallowing the student from sending new
messages until the wizard makes a turn is technically realized by server messages
to the student’s client to reconfigure the client’s interface (i.e. enable/disable the
interface’s elements according to the current state).

The combination of macros and Scheme provided in TeXmacs has turned out
to be very useful for our development of DiaWOz-II. In particular, the amount
of code we wrote (a dozen of Scheme files of approximately 100 Kb in total) is
relatively small considering the implemented functionality, and it remained man-
ageable over time (as opposed to the previous version of DiaWoZ that consisted
of about 200 Kb Java code spread among 70 files). The environment enabled also
people who are not professional software developers to participate in develop-
ing the system. Thus, TeXmacs has proven to be a good choice for our WOZ
software, both from the point of view of the level of functionality it offers (word
processing with ITEX-like mathematical typesetting in a customizable editor)
as well as from the point of view of prototyping and extending the software.
The combination of the Scheme programming language with the large set of fea-
tures already provided by TeXmacs allows for a lightweight, inclusive software
development process.

4 An Empirical Study Using DiaWOz-11

Exploiting the DiaWOz-II system, we carried out a series of experiments in July
2005. In this study (see [8]), we collected a corpus of tutorial dialogs in German
on mathematical proofs in the domain of binary relations. The collected data
serves to investigate linguistic phenomena related to the mixing of mathemat-
ical formulae and natural language, underspecification phenomena, qualitative
aspects of proof steps and mutual dependencies between natural language anal-
ysis and non-trivial mathematical domain reasoning.

4.1 Method

Thirty-seven students from Saarland University participated in the experiments.
They were instructed to solve proof exercises collaboratively with a computer
system that was described to them as a natural language dialog system on math-
ematics. This system was simulated with the DiaWOQOz-II software and four ex-
perts®, who took the role of the wizard in turn (the set-up is shown in Fig.
5).

The wizards were given general instructions on the Socratic style of tutoring
(cf. [14]), which is characterized by the use of questions to elicit information from
the student. The tutors were instructed to reject utterances outside the math-
ematical domain and to respond in a uniform manner. Apart from that, the
wizards were not restricted in the verbalization of their answers to the students.

5 The experts consisted of the lecturer of a course Foundations of Mathematics, a
maths teacher, and two maths graduates with teaching experience.



Fig. 5. An experiment in progress: The participant (left) and the wizard, experimenter
and research assistant in the control room (right)

This allowed us to investigate the use of mathematical language without possi-
bly influencing it by a-priori restrictions, even if more restrictions might have
contributed to making the simulated system appear even more machine-like. In
addition to the interaction window of DiaWOz-I1, the tutors were provided with
a second TeXmacs window in which they could save text and formulae for re-use.

The exercises were taken from the domain of relations, and were centered
around the concepts of relation composition and relation inverse. Because of the
advanced character of the exercises, the participants were required to have taken
part in at least one mathematics course at university level. First, the subjects
were required to fill out a questionnaire, asking about previous experiences with
dialog systems and mathematics background. Subjects were also given study ma-
terial with the mathematical definitions that were required to solve the exercises
which was studied for approximately 25 minutes. The materials were handed
out on paper and were also available as a TeXmacs document on the screen.
This helped to achieve a uniform (and thus plausible) appearance of the system.
Prior to the tutoring session, the students received a short introduction to the
interface, during which the different modes of input for mathematical symbols
— as menu items, as IIEX commands or via commands in German language —
and the copy & paste facility were demonstrated.

The largest part of the two-hour experimental session was allotted to the
interaction between the student and the simulated system. In addition to the
log-files recorded by DiaWOz-II, screen recordings were made. Furthermore, the
participants were encouraged to “think aloud” and they were audio-recorded
and filmed. This comprehensive collection of data not only documents the text
of the tutorial dialogs, but also allows us to analyze how the participants used
the interface and the study material.

At the end of the experimental session, the participants were required to
fill out a second questionnaire asking about their verdict on the usability of the
system, how difficult they found the exercises, and suggestions for improvements
of the system.



S33: Nach Aufgabe W ist
(So (SUR)™ ™! = ((SUR)~
By Exercise W
(So(SUR)™!)~!
holds

T34: Das ist richtig! That is correct!
S34: Dies ist nach Theorem 1 gleich

1)71 o 871

=((SUR)™") tos™!

(SUR) oS 7!
This is by Theorem 1 equal to
(SUR) o 8§ !

T35: Das ist auch richtig!

That is also correct!

S35: Ein Element (a,b) ist genau dann
in dieser Menge, wenn es ein zeM gibt
mit (a,2)€SUR und (z,b)eS ~*

An element (a,b) is in this set exactly
when there is a z€M with (a,2)€SUR
und (2,b)eS ~*

T36: Das ist korrekt! That is correct!
S36: Also (b,z)€S. Therefore (b,z)€S.
T37: Auch das ist korrekt!

That is also correct!

S37: DAmit [sic] kann aber nicht die
geforderte Gleichheit bewiesen werden.
But with this the given equality cannot be
proven.

T38: Das haben Sie gut erkannt! Was
fehlt Thnen dazu?

You have made a good observation! What
s missing?

S25: (RUS)oS = {(x,y) | 3 z(z € M A
((x,2) € RV (x,2) € S) A (z,y) € S}
T28: Diese Beziehung hat Relevanz fuer
die Aufgabe. Sie muessen sich also etwas
dabei gedacht haben, als Sie diese ver-
muteten. Koennen Sie begruenden, wie
sie mit der Aufgabe zusammenhaengt?
This relation is relevant for the exercise.
You must have considered something as
you proposed it. Can you justify how it is
related to the exercise?

T29: Thre Formel ist richtig.

Your formula is correct.

T30: Koennen Sie die Behauptung unter
zusaetzlichen Voraussetzungen beweisen?
Can you prove the expression wunder
additional assumptions?

S26: {(x,y) | 3z(z € M A ((x,2) € RV
(x2) € 8) A (zy) € S} = {(xy) | 3 2(=
EMA (v,z) €S A ((x ) RV (x,2) €
S)} < ((v2) € SA (zy) € 5)}

T31: Auf der rechten Seite ist z nicht
spezifiziert. Meinten Sie vielleicht < oder
etwas Aehnliches [sic] statt A?

On the right side z is not specified.
Do you perhaps mean < or something
similar instead of N?

Fig. 6. Excerpts of dialogs in the two conditions: VM-group (left) and FM-group
(right). English translations are given in italics. S_ and T- indicate student and wizard
turns, respectively.

4.2 Discussion

The experiments resulted in a large and diverse corpus of dialogs. During a
session, a participant made on average 24 dialog turns, excluding those that
were rejected for bad spelling. We briefly discuss how DiaWOz-1II fulfilled its
role, how the participants coped with the interface. Furthermore, the collected
data hints at a potential influence of the interface features in combination with
the reading material on the resulting tutorial dialogs.

Observations from the Corpus. An example of two dialog fragments from
the experiment is given in Fig. 6. These dialogs were obtained under two different
modes of presentation of the study material: formal (FM) vs. verbose (VM). Note



that the dialogs clearly differ in the employed mathematical style and that in
Fig. 6 (right), the mathematical operations performed by the student can be
characterized as term rewriting steps, i.e. a subformula of a term is replaced by
an equivalent subformula. Also note that in Fig. 6 (right), the student uses no
natural language. Even though all subjects were informed before the interaction
that the system can handle a combination of natural language and formula input,
we observed great variations in the amount of natural language used by the
subjects.

Corpus analysis reveals differences in the use of natural language and math-
ematical expressions that was at least partially influenced by the mode of pre-
sentation of the study material. The group presented with the verbose material
tended to use more natural language than the formal material group and the
dialog turns of the VM-subjects contained more, but shorter, mathematical ex-
pressions. The formal material group tended to use more and longer formulas
overall, and less natural language. More details on the differences in language
production between the two conditions can be found in [15].

The copy & paste facilities provided by DiaWOz-II allowed copying defini-
tions from the study material into the dialog contributions, and allowed copying
previously uttered formulae for constructing new formulae. We observed that
many subjects constructed larger and larger formulae with several levels of nest-
ing. No such phenomenon was observed in the first study [6]. Even though the
predecessor DiaWoZ software used in this study allowed copy & paste, this fea-
ture was not explained to the users and discovered only by some. Furthermore,
in the first study the introduction material was only presented on paper, so that
students could not copy from there as was possible in the second study. Another
difference is the mathematical domain itself - the proofs concerning relations
in the second experiment series require considerably longer formulae than those
concerning naive set theory in the first experiment.

Usability of DiaWOz-II. The students were required to fill out post-
experiment questionnaires, which among other things asked questions about the
interface.

Students were asked if they had problems while using the interface, and to
qualify their answer by a rating on a five-point scale between one (no problems)
and five (great problems). Their ratings’” (median 2, average 2.14, standard
deviation 0.85) indicate that the participants generally had little trouble using
the DiaWOz-II interface.

Even though a direct comparison between DiaWoZ and DiaWOz-1I would re-
quire an experiment on its own (the two reported experiments involved different
mathematical domains and different requirements imposed on the participants),
these ratings are not far from those obtained in the first series of experiments

" The ratings from thirty-six participants are distributed as follows: A rating of 1
was assigned by 7 participants, a rating of 2 by 21 participants, a rating of 3 by 4
participants and a rating of 4 by 4 participants. No participant gave a rating of 5.



Table 1. Most frequent comments on the DiaWOz-1I interface (number of participants
indicated in brackets)

Positive Comments

— Variety of formula input methods' — Interface is simple to use/clear (5)
(7) — Questions can be formulated in
— I¥TEX commands available! (6) NL (4)

— Math symbols in menu® (5)
! In total, 20 subjects mentioned at least one positive aspect w.r.t. to formula input.
Negative Comments
— TEXmacs-specific problems (14) — Interface delay (10)
— Bad screen size/font size (8) — Sending messages not via return key
— No direct keyboard shortcuts for (6)
math symbols available (3)

with DiaWoZ. There, students had also been asked the same question, where
they indicated a rating of 1.59 on average and a median of 1.

A small number of participants commented to the experimenter that they
suspect a human teacher. However, comments by other subjects indicated that
these were convinced of having interacted with an automated system.

Participants were asked to give comments about the system in general and
the interface in particular, which are summarized in Table 1. The fact that the
input facilities of DiaWQz-II were positively mentioned by numerous partici-
pants can be contrasted with the first series of experiments, where eight of the
seventeen participants complained that the sole input method for mathematical
symbols via the menu bar required constant switching between the mouse and
the keyboard for inputting mathematical formulae.

A serious criticism concerned the speed of the system. This refers to two
aspects: (1) the fact that the students had to wait for the answers from the
system, and (2) the behavior of the interface itself. The waiting times consisted
in the time spent by the tutor to read the dialog contributions from the students
and to write an answer (even with the help of pre-formulated answers), but also
the message-passing between the client, the server and the spell-checker. An
important fact was that the wizards were sometimes challenged by the size of
formulae created by the students, which made checking them particularly time-
consuming. The insufficient speed attributed to the system’s interface refers to
a small but noticeable delay when typing symbols in DiaWOz-II. This delay is
not experienced when using a standard TeXmacs, but results from the extra
mechanism that protects the dialog history from being edited mentioned above.
Another criticism concerns the window layout. For the experiment we used a
screen capturing software and a low screen resolution to save disk space, which
was commented on negatively by the subjects.

In summary, the questionnaires show that the input methods for mathemat-
ical text available in DiaWOz-II were well received by many participants, but
that other mainly technical difficulties remain. A possible improvement proposed
by some of the participants is an option for the user to withdraw a message after



it is sent, in case the user himself becomes aware of a minor error and wants to
correct it himself.

5 Conclusion

We have presented DiaWOz-1I, our mediator software for WOZ experiments
based on the wysiwyg editor TEXyacs. DiaWOz-1I allows various modes of input
for mathematical symbols, such as ITEX commands, customized commands and
menu items, and editing facilities that allow for the creation of complex formulae.
Furthermore, DiaWOz-II inherits high quality typesetting from TEXpacs- One
purpose of this paper is to advocate DiaWOz-1I to the Al community for similar
WOZ studies in domains such as engineering, physics, economics, etc. where
mathematical input in combination with natural language plays a crucial role.

We also briefly addressed the set-up and some results of a series of exper-
iments conducted with DiaWOz-II. The corpus we obtained is important to
guide our research in the DIALOG project. It is currently being evaluated and
can be obtained from http://www.ags.uni-sb.de/~dialog (see [8] for a pre-
liminary analysis). We have observed that the capabilities of DiaWOz-1I for
editing and copying mathematical formulae introduced artifacts into some of
the tutorial dialogs that we collected, which we did not observe in the previous,
similar experiment. These manifest themselves in a term-rewriting style of prov-
ing mathematical theorems leading to unnecessarily large and nested formulae.
This hints at the importance of incorporating didactic knowledge into tutoring
systems in our field (as simulated by DiaWOz-II) which prevent students from
abusing such a system’s features in a technology-driven manner, and to help the
students to use these features purposefully and with moderation.

As a part of our ongoing work, we are combining the dialog specification
mechanism from DiaWoZ with the DiaWOz-II system to obtain an environment
that reflects our expertise gained with both systems. The DiaWOz-II system can
be downloaded from http://www.ags.uni-sb.de/"dialog/diawoz2.

Acknowledgments. We would like to thank all of the members of the Dialog
team for their input and comments on initial drafts of this paper, and of course
for their contributions to DiaWOz-II and the experiments.
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