@)

&2

o)

Z,
==
Ep=
23,
< 2 &
5
Eafistie
2EE:
Egg
o
ZE
= A
> 22
7z 5
o= A

SEKI Report

GERMANY

WWW: http://www.ags.uni-sb.de/

An Adaptation of Paramodulation and
RUE-Resolution to Higher-Order Logic

Christoph Benzmiller

chris@cs.uni-sb.de

SEKI Report SR-98-07

5 ool

CONTENTS !

Abstract

This techreport presents two approaches to primitive equality treatment in higher-order
(HO) automated theorem proving: a calculus £P adapting traditional first-order (FO)
paramodulation [RW69] , and a calculus ERUE adapting FO RUE-Resolution [Dig79] to HO
logic (based on Church’s simply typed A-calculus). £P and ERUE extend the extensional HO
resolution approach £R [BK98a]. In order to reach Henkin completeness without the need
for additional extensionality axioms both calculi employ new. positive extensionality rules
analogously to the respective negative ones provided by £R that operate on unification con-
straints. As the extensionality rules have an intrinsic and unavoidable difference-reducing
character the HO paramodulation approach looses its pure term-rewriting character. On the
other hand examples demonstrate that the extensionality rules harmonise rather well with
the difference-reducing HO RUE-resolution idea.

Contents
1 Introduction 2
2 Higher-Order Logic 4
3 Extensional Higher-Order Resolution: &R 7
3.1 A Review of HORES and ER 7
3.2 Basic Definitions L 12
3.3 Lifting Properties L 15
3.4 Completeness L 16
3.5 Theorem Equivalence L 18
4 Primitive Equality 20
5 Extensional Higher-Order Paramodulation: &P 21
5.1 A Naive and Incomplete Adaption of Paramodulation 21
5.2 Positive Extensionality Rules o o 25
5.3 Basic Definitions 25
5.4 TLifting Properties L 26
5.5 Completeness 27
5.6 Theorem Equivalence L 33
6 Extensional Higher-Order RUE-Resolution: ERUE 33
6.1 Resolution on Unification Constraints 33
6.2 Basic Definitionso 34
6.3 Lifting Properties 35
6.4 Completeness L 35
6.5 Theorem Equivalence L 40
7 Examples 40
7.1 Decomposition in ER 40
7.2 Leibniz Equality and Alternative Definitionsin ER 42
7.3 Positive Extensionality Rulesin EP and ERUE 43
74 Comparing EP and ERUE 45

8 Conclusion 50

9 1 INTRODUCTION

1 Introduction

The efficient and adequate mechanisation of the equality relation is one of the most challenging
questions in automated theorem proving. Within the context of first-order automated theorem
proving many different techniques and calculi have been developed after Robinson came up with his
resolution calculus in 1965 [Rob65] and a few years later with the paramodulation calculus [RW69].
They can be roughly divided into to term-rewriting approaches and difference-reducing approaches.
Typical representatives for the former class are paramodulation [RW69] and all its refinements such
as the state of the art superposition calculi [BGLS92]. A typical representative for the latter class
is RUE-resolution [Dig79] which can be seen as a generalisation of E-resolution [Dar68]. If one
considers the results of the first-order, term-rewriting based theorem provers such as Spass [Wei97]
or WaLnpmEISTER [HBVLI7] at the the CADE-14 and CADE-15 system competitions it seems
that recently in first-order context the term-rewriting approaches have taken the lead over the
difference-reducing ones — if one ignores the admittedly important field of induction based theorem
proving.

For higher-order logic only a few calculi have been discussed in literature so far and the most fa-
mous approaches are the resolution calculi by Andrews [And71], Jensen and Pietrzykowski [JP72],
and [Hue72, Hue73a]. And in contrast to the first-order context the available approaches for
an efficient and suitable equality treatment in higher-order theorem proving are rather limited.
Sure, there are interesting developments in the field of higher-order term-rewriting and many
publications, e.g. [NR95, JR96, JR98, LB98, Pred8, NQ92], concentrate on the development of
well-founded term orderings for (fragments of) higher-order languages which is the basic prereq-
uisite for the adaptation of first-order term-rewriting approaches to the higher-order setting. But
unfortunately rather few discuss the applicability of term-rewriting techniques within higher-order
theorem proving sufficiently.!

In this paper we motivate why an efficient and suitable integration of a higher-order term-
rewriting approach into a Henkin complete theorem prover is very challenging — aside from the
well-founded ordering problem. Concretely we define the calculus EP for extensional higher-order
paramodulation that extends the extensional higher-order resolution calculus ER [BK98a] for clas-
sical higher-order logic based on Church simply typed A-calculus. We show that the naive and
straightforward adaption of first-order paramodulation to the higher-order setting does not auto-
matically lead to calculus that is complete with respect to Henkin models? — although Henkin
completeness without the need for additional axioms has been shown in [BK98a] for the under-
lying extensional higher-order resolution calculus ER. The new problems are (again) caused by
the extensionality principles which express that two functions are equal iff they are equal on all
arguments (functional extensionality) and that on booleans the equality relation coincides with
the equivalence relation (boolean extensionality). Sure, the problems dissappear as soon as one
adds respective extensionality axioms to the calculus as it is, for instance, necessary in the higher-
order resolution approaches [And71, JP72, Hue72, Hue73a] or [Wol94]. But this is obviously
awkward to manage in practice as the extensionality axioms heavily increase the search space
and as generally infinitely many functional extensionality axioms are needed (note that there are
infinitely many functional types). Another solution — as for instance suggested in [Wol93] - is to
employ higher-order F-unification. In this case we have to add the extensionality principles to
the theory E. which means that we are employing extensional higher-order F-unification. Now
consider the following extensional higher-order unification problem defined by the two set descrip-
tions AX,qt- (X < 10) A (FYnat- (V x 2) = X) and AX, 0t (FVnae- (X = (Y X 2)) A (X < 10).
It becomes obvious that a Henkin complete higher-order theorem prover needs to be recursively
employed within extensional higher-order unification or extensional higher-order E-unification.

In higher-order theorem we are interested especially in examples like (2o Abo) = co A (poso (bAa)) = pe.
A term-rewriting approach that employs Pure syntactical matching or unification is obviously to weak in order to
find the trivial refutation for this example.)

2Whereas there can no complete calculi with respect to the intuitive standard semantics, it is well known by
Henkin [Hen50] that there are complete calculi if one considers a weaker notion of semantics, that only presupposes
that the respective function domains are subsets of the sets of all functions belonging to a certain functional type.
Henkin semantics is the most general notion that is known to allow complete calculi.

Higher-order E-unification approaches are discussed in [Sny90, Sny91, NQ91, Nip93, MW94]; but
from the perspective of automated higher-order theorem proving these papers do not sufficiently
tackle the problem of extensionality.

The extensional higher-order resolution calculus ER introduced in [BK98a], which works within
a higher-order language that omits a primitive notion of equality and treats equality as defined
concept instead (by Leibniz’ definition or any other definition principle), solves the extensionality
problem for a higher-order language without primitive equality by adding special extensionality
rules to the unification rules. They turn the embedded higher-order (pre-)unification calculus
due to the ideas of [Hue75] into a corresponding test calculus for extensional higher-order (pre-
Junification or even for extensional higher-order E-(pre-)unification if we add the equations defin-
ing (the axiomatisable) theory E as positive unit equations into the search space. This is nicely
illustrated by the example discussed in subsection 7.1. The new extensionality rules operate on
unification constraints and it is not surprising that they realise a close interleaving of the unifica-
tion process and the overall refutation search by allowing for recursive calls of the overall refutation
process from within the unification process.

As we will discuss in this paper the extensionality treatment on unification constraints turns
out to be not sufficient if one additionally adds primitive equality symbols to the higher-order
language. Even if we add a paramodulation (and reflexivity) rule to the extensional higher-order
resolution approach the extended approach still lacks Henkin completeness. The reason is that
new problem with the extensionality principles arises as in contrast to the first-order case isolated
positive equations can be contradictory by themselves in higher-order logic (consider for instance
the unit clause [a, = —|ao]T or the examples discussed in subsection 7.3). In order to obtain
a Henkin complete approach again additional extensionality rules are needed in our extensional
higher-order paramodulation approach EP. In contrast to the negative extensionality rules for
unification constraints in the underlying calculus ER, they operate on positive equation literals.

Unfortunately the new positive extensionality rules have (which is not surprising) an intrinsic
difference reducing character such that the question arises if and how they can fruitfully be em-
ployed in a calculus with an overall term-rewriting idea. We want to point out that this not only
affects the adaptation of first-order paramodulation to higher-order logic but also the potential
adaption of all refinements of paramodulation such as the superposition calculus [BGLS92].

As an opposing candidate to extensional higher-order paramodulation &P we therefore also
adapt the first-order RUE-resolution approach [Dig79] into the extensional higher-order RUE-
resolution calculus ERUE. Analogously to the paramodulation case we can proof Henkin complete-
ness only if we add the new positive extensionality rules. But the RUE-resolution approach and the
new extensionality rules share a difference-reducing character such that at least from an abstract
point of view they may harmonise much better as the paramodulation and positive extensionality
rules.

In this paper we discuss Henkin completeness for all three approaches ER, EP and ERUE. One
aim thereby is to illustrate the similarities and differences between the three approaches and to
present the completeness proofs in a uniform way. On the one hand these proofs are oriented
on the ideas of the corresponding completeness proof already presented for extensional higher-
order resolution calculus ER in [BK98a]. On the other hand we here want to get rid of the
rather unintuitive clause isomorphism within the complicate lifting lemma employed in [BK98a]
or [Koh94] which are susceptible to errors. This can be achieved by adding the well known
FlexFler-unification rule to the calculus. Thus, the Henkin completeness proofs presented in this
paper take this additional rule into account and thereby gains clarity and simplicity — especially
within the lifting lemmata. In practice one certainly wants to omit this infinitely branching rule
which guesses instantiations for flexible heads of unification pairs. The fact that this rule is
unsuitable in practice was also a main motivation for Huet’s important contribution in [Hue75]
where he discusses higher-order pre-unification, i.e. a higher-order unification test that avoids rule
FlexFlex. Higher-order pre-unification is known to be sufficient within a refutation approach,
e.g. for Huet’s traditional higher-order resolution [Hue72, Hue73a] as one is only interested in
finding one instantiation of the given clause set that makes it contradictory.

It is thus clear that we want to get rid of the FlexFlex rule in our approach as well. But

4 2 HIGHER-ORDER LOGIC

unfortunately the author was up to now not able to carry out a formal proof for the admissibility of
rule FlezFlex in either one of the approaches ER, EP or ERUE. Consequently Henkin completeness
of all three approaches (without rule FlexFlez) is presented only as a conjecture which gains
evidence by the examples examined in this paper as well as by the case studies carried out with
the LEo-prover for extensional higher-order resolution (and meanwhile for the new paramodulation
or RUE-resolution approaches). It is not surprising that for the proof of the admissibility claim
for rule FlexFlex, which the author expects to be analogous for all three approaches, a rather
complicate proof transformation argument will be needed. This is due to the fact that different
to Huet’s traditional higher-order resolution approach eager unification becomes essential within
our extensional higher-order resolution (paramodulation or RUE-resolution) approach is nicely
illustrated by example E3 in [BK98a] or EP°¢ in subsection 7.1 in this paper.

All completeness proofs are presented in a uniform way and most of the needed lemmata are
analogous or even identical. For our completeness proofs we employ the abstract consistency
method which was first introduced by Smullyan [Smu63] for first-order logic and later extended to
higher-order logic by Peter Andrews [And71]. Unfortunately, the latter does not allow complete-
ness proofs with respect to Henkin semantics but only for a weaker notion of semantics. In our
proofs we therefore employ the abstract consistency method discussed in [BK97b] which further
extends [AndT71] and which ensures completeness with respect to Henkin semantics (even with
primitive equality).

The paper is organised as follows: The basic concepts are introduced in section 1 and the
extensional higher-order resolution calculus R is reviewed in section 3. We briefly discuss some
important aspects of defined and primitive equality in higher-order logic in section 4. The exten-
sional higher-order paramodulation calculus £P and the extensional higher-order RUE-resolution
calculus ERUE are then presented in sections 5 and 6. Section 7 illustrates the practical usage of
all three approaches by examples and we conclude the paper in section 8.

2 Higher-Order Logic

We consider a higher-order logic based on Church’s simply typed lambda calculus [Chu40] and
choose the set of base types BT to consists of the types ¢ and o, where o denotes the set of truth
values and ¢ the set of individuals. The set of all types 77 is inductively defined over BT and the
type constructor —. We assume that our signature X contains a countably infinite set of variables
V: and constants C, for every type 7 € 7. Additionally we postulate the existence of the logical
connectives =150, Voyo0: Il(am0)50 (in short 11?) for every type a € 7 in Y. A signature that
contains additionally the logical connectives =,_, 4, (in short =) for all types a € T is noted by
Y=, All the logical logical connectives in X or £¥= denote their intuitive semantical counterparts.

The remaining logical connectives are defined as abbreviations of the given ones: A A
B ::—|(—|A vV —|B),A = B=-AVBA & B:= (A = B) A (B = A),VXQ. A, =
H(aﬁo)_}o(/\XQ. A).3X.. A, = VX,. -A,. All other constants are called parameters, since
the argumentation in this paper is parametric in their choice?.

Unlike stated otherwise, variables are printed as upper-case (e.g. X,), constants as lower-case
letters (e.g. ¢») and arbitrary terms appear as bold capital letters (e.g. T,). If the type of a
symbol or term is either not of importance or uniquely determined by the given context we avoid
its explicit mention.

We denote the set of all terms over signature ¥ (X%) by Lx (Lx=). Terms of type o are
also called propositions and closed propositions are called sentences. A is called atomic if its
Bn-normalform does not have a logical connective at head position.

In order to avoid confusion we clarify the meaning of the different equality symbols used in this
paper. As already specified =*€ C,— -, 18 the syntactic equality constant in our higher-order
language. We will illustrate below that equality can also be defined in higher-order logic and we

3In particular, we do not assume the existence of description or choice operators. For a detailed discussion of
the semantic issues raised by the presence of these logical constants see [And72].

refer to this definition with =. The intuitive semantical equality relations in Dom,_,,_,, are
denoted by q*. For the meta-level argumentations in this paper we use = and for definitions :=.

To ease readability we assume right-associativity for the type constructor — and left-
associativity of function application (Ao 5+ Ba Cp = ((Aasps+y Ba) Cg)). Sometimes we ab-
breviate function applications by ha,—...y0,—p U2 which stands for (- (hay—..sa,5p UL,) -
U7). Adot “7 occurring in a A-term stands for a left bracket whose mate is as far to the right
as consistent with all other brackets and the construction of the term. We allow further to avoid
brackets in every case, where the construction of an expression is uniquely determined by the
context.

The structural equality relation of HOL is induced by #n-reduction

(AX. A) B —; [B/X]A (AX.C X) —, C

where X is not free in C. Tt is well-known (c.f. [Bar84]), that the reduction relations 3, 5, and
(Bn are terminating and confluent, so that there are unique normal forms for each term T denoted
by Ty,,.T,.Ty,. Another important normal form used in this paper is the head normal form
(which is unique only with respect to Bn-equality): a term AX™. AU™ is in head-normal form iff
h is a variable or a constant. The head-normal form of a term T is denoted by T, .

The definitions of free and bound variables, substitutions and the application of substitution are
as usual (see [Bar84]). In this paper we denote the set of free variables of a term T (analogously
for literals and clauses) by Free(T). Whereas the usual application of a substitution [A/X] to
T is denoted by [A/X]T, we refer with T(s,x] to the combination of usual substitution with
subsequent reduction of the resulting term (literal or clause) to head normal form.

When we speak of a Skolem term s, for a clause C' and Free(C) = {X!, .- -X7.}, then
S 18 an abbreviation for the term (21—>~~~—>Q"—>QX1 -+ X™), where f is a new constant from
Cors...samn—o and n specifies the number of necessary arguments for f. The latter is important
as a naive treatment of Skolemisation results in a calculus that is not sound with respect to Henkin
models, since Skolem functions are special choice functions*, which are not guaranteed to exist in
Henkin models. A solution due to [Mil83] is to associate with each Skolem constant the minimum
number of arguments the constant has to be applied to. Skolemisation becomes sound, if any
Skolem function f" only occurs in a Skolem term. i.e. a formula S = f? A”. where none of the
A contains a bound variable. Thus the Skolem terms only serve as descriptions of the existential
witnesses and never appear as functions proper.

For a general introduction to higher-order unification and especially for the definition of a set
of general bindings ng for a type v and a (head-)constant h we refer to [GS89].

The calculi in this paper are defined on clauses which are disjunctions of lterals (e.g.,
[fa—s0XalT V [PaseXall V[ca = X,]F). For literals we differentiate between pre-literals and
proper literals. A pre-literal consists of a proposition N, in head-normal form (atom) and a po-
larity T' or F stating if this literal is positive or negative. We call a literal proper iff it contains
no logical constant beside = at head position.

We further differentiate between positive literals, negative literals and unification constraints.
Unification constraints refer to negative literals with primitive equations as atoms. We want to
point out that for the calculi discussed in this paper unification constraints are treated in one of
the following ways:

e As special negative literals with a special head symbol =*¢ C, i.e. =* is not a logical

connective. By special literal we mean that this literal is treated as a unification constraint
only, which means that no rule but the unification rules are allowed to operate on them.
(This will be the case in the extensional higher-order resolution &R discussed in section 3.)

e As a special negative literals with a logical connective =*€ C as head symbol. Special

negative literal means that despite the fact that =*

is a logical connective provided by the
signature no rule but the unification rules are allowed to operate on them. (This will be the

case in the extensional higher-order paramodulation calculus EP in section 5.)

4They choose an existential witness from the set of possible witnesses for an existential formula.

6 2 HIGHER-ORDER LOGIC

e As ordinary negative literals with the logical connective =*€ C as head symbol. In this case
all rules, e.g. the resolution and factorisation rules, are allowed to operate on these literals.
(This holds for the extensional higher-order paramodulation calculus ERUE in section 6)

A clause C is called a proper clause iff it is in clause normal form, i.e. if all literals of C are
proper. Otherwise we call C a pre-clause. Similar a clause C is in head-normal form iff all its
literals are.

An unification constraint U :=[X, = N,]¥ or U =[N, = X,]¥ is called solved iff X, ¢
Free(N,). In this case X is called the solved variable of U. Furthermore, a unification constraint
is in head-normal form [(H U™) = (G V™)]F" where n > 1 is called a flez-flex constraint (flex-rigid
constraint) iff H and G are variables (either H or G is a variable), i.e. if both hand sides of the
unification constraint are in head-normal form.

Let C:=L'V---VI?VU!'V---VU™ be a clause with unification constraints UV -- -V U™
(1 < m). Then a disjunction Ut V ---V U™ (i; € {1,---,m;1 < j < k) of solved unification
constraints occurring in C is called solved for C iff for every U (1 < j < k) holds: the solved
variable of U%s does not occur free in any of the U for [# j:1 <1< k.

We define a clause C to be empty (denoted by O) iff C consists only of flez-flex constraints. As
it is well known that any set of flez-flex constraints is unifiable we know that O is satisfiable.

Given a calculus R, i.e. a set of rules r,(n > 0) defined on clauses, we define the following
derivation relations: ® F"= C (C' F"= C) iff C is the result of the one step application of rule », € R
to premise clauses C; € ® (to premise clause C’'). Multiple step derivations within a calculus R,
e.g. @1 F L FT @ (or G FTo L FTik Cr) where k > 0, are abbreviated by @1 Fr ® (or
C1 Fr Ci). Derivations in a calculus r of exactly n steps are symbolised by F%.

A rule r is called admissible in one of our resolution calculi R, iff adding rule r to R does
not increase the set of refutable formulas. Furthermore, a rule r is called derivable in R iff each
application of rule r can be replaced by an alternative derivation in R.

It is matter of folklore that equality can directly be expressed in HOL, e.g. by the Leibniz
definition, so that a pimitive notion of equality (expressed by a primitive constant = in X) is not
strictly needed; we will use this observation in this paper when we treat equality as a defined
notion. Leibniz equality defines two terms to be equal, iff they have the same properties:

=% == AX,.\Y,.V¥Py .. PX = PY

The functional extensionality principle says that two functions are equal iff they are
equal on all arguments, which can be formulated by the following schematic A-term:
VMo VNosp (VX (MX) = (NX)) & (M = N). This term is schematic with respect to
the (arbitrary) types a and 3. The extensionality principle for truth values states that on the set
of truth values equality and equivalence relation coincide: VP, VQ,. (P = Q) & (P & Q).

A standard model for HOL provides a fixed set D, of individuals, and a set D, := {T,F} of truth
values. All the domains for the complex types are defined inductively: D,_, 5 is the set of functions
f:D, — Dg. The evaluation 7, with respect to an interpretation Z:% — D of constants and an
assignment ¢ of variables is obtained by the standard homomorphic construction that evaluates a
A-abstraction with a function, whose operational semantics is specified by §-reduction.

Henkin models only require that D,_,5 has enough members that any well-formed formula
can be evaluated®. Note that with this generalised notion of a model, there are less formulae
that are valid in all models (intuitively, for any given set of formulae there are more possibilities
for counter-models). Thus the generalisation to Henkin models restricts the set of valid formulae
sufficiently, so that all of them can be proven by the resolution calculus presented in this paper.

In Henkin models (as well as in standard semantics) Leibniz equality denotes the intuitive
equality relation and both extensionality principles are valid. For details we refer to [BK97b].

We define satisfiability and validity of a formula F or set of formulas ® with respect to a model
M as usual and we refer to he latter notion with M = F or M = ®.

5In other words: the functional universes are rich enough to satisfy the comprehension axioms.

For our completeness proofs, we will employ the abstract consistency method. This proof
principle was first introduced by Smullyan [Smu63] for first-order logic and later extended to higher-
order logic by Andrews [And71]. Unfortunately the latter one does not allow completeness proofs
with respect to Henkin semantics but only for the rather weak semantical notion of V-complexes
(see [AndT71]; each Henkin models is also an V-complex, but not vice a versa). Therefore we
employ the abstract consistency method described in [BK97b] which extends Andrews definition
such that completeness proofs with respect to Henkin semantics become possible. The main result
in [BK97b] is the model existence theorem as stated below. For the proof we refer to [BK97b].

Theorem 2.1 (Henkin Model Existence). 1. Let ® C Ly be a set of closed formulas and
let Ty, be a saturated abstract consistency class (ACC) for Henkin models (see definition 2.2)
and ® € Tz, then there exists a Henkin model M such that M = ®.

2. Let ® C Lx= be a set of closed formulas and Let Is be a saturated abstract consistency class
(ACC) for Henkin models with primitive equality (see definition 2.3) and ® € Ty, then there
exists a Henkin model M such that M = ®.

Definition 2.2 (ACC for Henkin Models). Let X be a signature and let I5 be a class of sets
of X-propositions. If the following conditions hold for all A,B € cuff,(X), F,G € cwﬁa_,ﬁ(Z)G
and ® € Iy then we call Iz an abstract consistency class for Henkin models.

Saturated Tf A is closed then PU{A} €Ty or DU {-A} € T}.

V. If Ais atomic, then A ¢ ® or A ¢ ®.

V., If-—Ac®, then ®+A € L.

\Y% If A € ® and B is the gn-normal form of A, then ®x B € 5.

W fAVBe®, then®dxAclzror®dxBelyx.

Va I ~(AVB)€®, then ®U{-A, B} I.

Y If TI®F € @, then ® x FW € Iy, for each W € cuff, (X).

V3 If =II*F € @, then &« —|(Fw) € Iz for any constant w € X, which does not occur in ®.

Vs If-(A="B)€® then PU{A,-B}clxor ®U{-A B} cL.

\/ If =(F =P G) € @, then & * =(Fuw = Guw) € Iy for any constant w € X,, which

does not occur in ®.

Definition 2.3 (ACC for Henkin models with primitive equality). An abstract consis-
tency class for Henkin models Iy that fulfils V, for all A,B € cuff,(X), F € cuff,_,,(X) and
® ¢ Iy is called an Abstract Consistency Class for Henkin models with primitive equal-
ity.

Ve (r) "(A=*A)¢ o
(s) if F[A], € ® and A =B € ®, then ®xF[B], € Ix

3 Extensional Higher-Order Resolution: &R
3.1 A Review of HORES and ER

In this section we slightly modify the extensional higher-order resolution calculus ER as introduced
in [BK98a]. This calculus is the first machine oriented higher-order refutation calculus that is
complete with respect to Henkin semantics without the need for additional axioms such as the
extensionality axioms. The calculus rules of ER can be divided into the following three groups:
clause normalisation rules, resolution rules and extensional higher-order pre-unification rules. The
set of clause normalisation rules are displayed in figure 1 and the resolution and unification rules of
ER in figure 2. We want to point out that we assume commutativity of V and = and associativity of
V. Furthermore we assume that after each application of a rule the generated clause is transformed
into head-normal form.

81In the following we will use ¢ * A as an abbreviation for ¢ U {A}.

8 3 EXTENSIONAL HIGHER-ORDER RESOLUTION: ER

CvlavB]" = CV[AAB})" = CVI[AAB]"
cv[A”v BT ¥ cva” ! cvpr 7

cv[-A]f . CV[-A)F - CV [M*A]T X, new variable
CVI[A]F CVIA]T CVI[A X]T

n’T

C VvV [II*A]7 sk, is a Skolem term for this clause
CVI[A sk,]7

Figure 1: Clause normalisation rules in calculus CNVF

We want to remark that in the formal proofs we do not assume idem potence of V and do not
factorise identical literals in the clause normalisation process as this eases our argumentations. In
practice one is certainly interested to optimise clause normalisation as far as possible.

Before we discuss the rules of R in detail, we briefly sketch the idea of traditional first-order
resolution [Rob65]: First-order resolution can be seen as two layered approach where the overall
search for a refutation based on the resolution rule resolve and the factorisation rule factorise) is
performed on the upper layer. The upper layer passes subproblems to the lower layer, such as the
initial clause normalisation process or the intermediate unification problems. Very important is
that all the side computations performed on the lower layer are decidable.

In our higher-order setting clause normalisation remains uncritical and the set of clauses
CNF(®) for a given set of higher-order formulas ® can easily be computed with the clause normal-
isation rules”. Thus in calculus ER clause normalisation is still employed as a side computation
(evoked by rule Cnf) whenever it seems to be appropriate.

In contrast to clause normalisation higher-order unification is undecidable [GS89] and thus
higher-order unification can no longer be employed as a filtering side computation like in the
traditional first-order setting. Huet solved this problem in [Hue72, Hue73a] by delaying unification
in his original constraint resolution approach instead of employing it as a filter. As a resolution
approach that generally delays the unification filter until an empty clause is derived can certainly
not form the basis of an efficient higher-order theorem prover, Kohlhase allows within in his
sorted variant of Huet’s resolution calculus HORES (see [Koh94]) for eager unification (note that
in practice many unification constraints have none or only finitely many solutions and that this
information can positively influence the search space).

The unsorted variant of HORES also provides the basis for the calculi ER, EP and ERUE
discussed in this paper. But unfortunately HORES as presented in [Koh94] is neither sound
(e.g. one can proof that any function has a fix-point in HORES) nor complete for functional
Y-models® (or Henkin models) This is the main motivation for the modifications of £R over
HORES. For instance, as the author did not find a way to correct the extra logical treatment
of Skolemisation in calculus HORES (which annotates special variable conditions to each clause)
we will use traditional Skolemisation again; more precisely we will use Miller’s sound approach for
higher-order Skolemisation [Mil83]. Another, more notational modification belongs to the encoding
of unification constraints which we uniformly present as negated equations in all new calculi. And
the most important modification is that we add new extensionality rules to the calculus HORES

"The clause normalisation algorithm that transforms a set ® of formulas or a pre-clause C into respective clause
sets CNF(®) (or CNF(C)) proceeds as follows: Initially all formulas A € ® are replaced by pre-clause [A.L;,]T and
then the clause normalisation rules are exhaustively applied to ®.

8 This notion of semantics is weaker than Henkin-semantics and for instance the boolean extensionality property
is not valid in all functional X-models. On the other hand the functional extensionality principle still holds in
functional X-models but HORES is not able to show this.

3.1

A Review of HORES and ER

| Clause Normalisation:| (defined for arbitrary clauses)

D C F(D
€ CNF (D) Cnf
C
(defined on proper clauses only)
[Al*VC [BPVD a#p [A]*V[B]*VC a€{T, F}
Res
CVvDVI[A =B}* [N*VCVI[A =B]¥

[Q, TRov e Pegpl-VIvimisery
— Prim

@, Ur*vCV[Q=P]"

‘ Extensional (Pre-)Unification: ‘ (defined for arbitrary clauses)

CV[M,,5 = NQ_W]F sa Skolem term for this clause

F
CV[Ms=N s]" une
Cv [Aﬂ_wg C, = Ba_>ﬁ DQ]F
ya 7 Dec
CV[A=B]"VI[C=D]
CVI[A=A)F CVI[X =A]" X ¢ Free(A)
—c Triv C — Subst
{A/X}
CV[F, U =h V™" Gegp!
— —— FlexRigid
CV[F=G)'V[FU"=hV7)F
CV[M, =N,]" , CV M, =N,]F
+ Equiv 7 Leib
CV[M, & N, CV[VP,4,. P M = P N]

ac

Figure 2: Extensional Higher-Order Resolution calculus ER

10 3 EXTENSIONAL HIGHER-ORDER RESOLUTION: ER

in order to reach Henkin completeness. The rules of HORES that are directly reflected in ER are
the clause normalisation rules presented in figure 1, the resolution and the pre-unification rules —
except for the extensionality rules Equiv and Leib — as stated in figure 2.

We now discuss the calculus R presented in figure 2 in detail and start with those rules that
are imported from in Kohlhase’s extensionally incomplete calculus HORES® The higher-order
resolution rule (Res) and factorisation rule (Fac) employed in ER (and HORES) differ from their
first-order counterparts. Instead of using unification as a filter they add — as suggested by Huet
— respective unification constraints to the generated clauses. As already mentioned, our calculus
allows for eager pre-unification. This is realised by rule Subst which propagates (early) solved
unification constraints back to the other literals. After applying this rule, clause normalisation
may become necessary in order to obtain proper clauses again. This is due to the fact that
instantiating predicate variables at head positions of some literals (flexible heads) may lead to
pre-clauses instead of proper ones. The clause normalisation process is evoked by the application
of rule Cnf which hides and groups each exhaustive CNF-derivation of a proper clause C from a
pre-clause €' with the CNF-rules in only one rule application of Cnf in the calculus ER.

It is well known for higher-order resolution (see [And71]) that primitive substitution rule Prim
is needed as unification is to weak within a resolution approach to compute all necessary instan-
tiations for flexible literal heads. This rule allows to instantiate flexible literal heads by a general
binding that imitates a logical constant given in our signature. The importance of this rule can
be illustrated by the example 3X,3Y,. X VY which is certainly a theorem with respect to Henkin
semantics. By negation and clause normalisation we obtain the two unit clauses [X] and [Y]F.
Both clauses consists of exactly one negated literal with a flexible head. Neither resolution nor
factorisation is applicable and thus without the primitive substitution rule we cannot find a refu-
tation. The application of Prim with the general binding {X ¢+ —X’} on clause [X] results after
clause normalisation with rule Cnf in [X’]7. Thus, with primitive substitution rule Prim we add
important but probably missing logical structure to our clauses, such that a refutation with the
calculus rules becomes possible.

Despite the undecidability of higher unification the overall idea of calculus ER (and HORES)
is to apply unification rules as early as possible in order to filter out all those clauses with non-
unifiable constraints or to propagate obvious variable instantiations from the unification con-
straints to the other literals of the clause.

Unfortunately HORES lacks completeness with respect to Henkin semantics. The problem is
that despite the primitive substitution rule which in some sense supports the embedded higher-
order unification algorithm the unification rules are still to weak to handle the extensionality
principles sufficiently. More precisely, higher-order unification as employed in HORES or in
Huet’s original approach is a pure syntactically oriented algorithm for equalising terms. But what
we really need is unification with respect to the theory defined by the extensionality principles.
For example, in higher-order theorem proving we are also interested to unify terms like A, A B,
and B, AA, oreven AXa. Agso XAB.L, X and AX,.Bayo X AALL, X.

In order to reach Henkin completeness calculus HORES as well as Huet’s or Andrews’ higher-
order resolution approaches require the extensionality axioms to be added to the search space.
But this is certainly awkward to handle in practice as these additional axioms on the one hand
introduce many flexible heads in the search space and on the other hand negatively influence the
few remaining goal oriented aspects of higher-order resolution.

Therefore calculus ER extends calculus HORES and provides three new extensionality rules.
The extensionality rule Leib (see figure 2) simply instantiates the equality symbol within unification
constraints by its Leibniz definition and rule Equiv which is directly motivated by the proof attempt
of E1 discussed in [BK98a] reflects the extensionality property for truth values but in a negative
way: if two formulas are not equal then they are also not equivalent. Rule Func analogously reflects
functional extensionality: if two functions are not equal then there exists an argument s, on which

9[Koh95] presents a tableaux calculus analogous to HORES that aims to reach Henkin completeness without
extensionality by adding rule Fquiv. But unfortunately this calculus, which also influenced the work presented here,
still lacks Henkin completeness as it not realises a suitable interaction of the functional and boolean extensionality
principles.

3.1 A Review of HORES and ER 11

these functions differ. To ensure soundness, s, has to be a new Skolem term which contains all
the free variables occurring in the given clause. The reader may be astonished why rule Func is
also presented as usual unification rule here. The simple reason is that the pre-unification rules
a and 7 as presented in HORES (and which are still explicitly mentioned in [BK98a]) already
partly realize the negative aspect of the functional extensionality principle:

CV[AXa A) = (A\Y,. B)]F Sq Skolem term for this clause
CV[{s/X}A = {s/Y}B]"

«Q

CV[(AXas A) =B]¥ S Skolem term for this clause .
CV[{s/X}A = (Bs)"

Note that the purely type information based rule Func extends and generalises these two rules and
thus rule Func has the following two meanings in our calculus: On the one hand it is a rule that
functions like the traditional a- and n-rule as for instance used in [BK98a] and [Koh94]. On the
other hand Func realizes the functional extensionality principle (especially when the unification
constraint in focus is not of one of the forms required in the a- or n-rule), i.e. both hand sides are
non-abstraction terms.

In cooperation the new extensionality rules connect the unification part of our calculus with the
resolution part by allowing for recursive calls of the whole calculus from within the unification pro-
cess. This turns our calculus into an test algorithm for extensional higher-order E-pre-unification.

We want to point out that none of the three new extensionality rules introduces any flexible
literal and even better, they introduce no new free variable at all; even if they heavily increase
the search space for refutations, they behave much better — as experiments show with the LEO
theorem prover [BK98b, Ben97] — than the extensionality axioms, which introduce lots of flexible
literals in the refutation process.

One important aspect that is illustrated by the examples in this paper as well as the examples
discussed in [BK98a] is that eager pre-unification is essential in our extensional resolution approach
and many proofs cannot be found when delaying the unification process till the end. Aside from
the new extensionality rules this the most important difference to Huet’s original approach.

We have lifted the unification constraints to clause level by coding them into negated equation
literals. Hence the question arises whether or not resolution and factorisation rules are allowed to
be applied on these unification constraints. In order to obtain a Henkin complete calculus this is
not necessary — as the completeness proofs in [BK98a, BK97a] and the alternative one in this paper
shows. Consequently the unification constraints do not necessarily have to be coded as negative
equation literals, any other form will work as well. But the encoding of unification constraints
as negated equation literals is essential for the extensional higher-order RUE-resolution calculus
presented in sections 6.

We have already mentioned that the presentation of the extensional higher-order resolution
approach ER slightly differs from the presentation in [BK98a] and we briefly sum up the particular
modifications:

e The unification rules a and n employed in [BK98a] are avoided as they are subsumed by rule
Func.

e Instead of employing clause normalisation in the definitions of rule Subst and the extension-
ality rules Equiv and Leib we add the extra clause normalisation rule Cnf to the calculus.

e We slightly modify the decomposition rule Dec. This modification is illustrated in detail by
the example given in subsection 7.1.

For another discussion of the calculus £R and some simple but interesting proof examples we
refer to [BK98a, Ben97]. The calculus is implemented in the LEO-theorem prover [BK98b, Ben97]
which is integrated to the mathematical assistant OMEGA [BCF+97].

In this paper we will first present an alternative proof for the Henkin completeness of calcu-
lus ER to the one presented in [BK98a, BK97a]. The motivation for this new proof is threefold:

12 3 EXTENSIONAL HIGHER-ORDER RESOLUTION: ER

(1) We have slightly modified the calculus ER in this paper. (ii) The completeness proofs of the
new, further extended calculi P (extensional higher-order paramodulation) and ERUE (exten-
sional higher-order RUE-Resolution) are carried out analogously, such that many lemmata can be
directly reused or with minor modifications. (iii) The lifting lemma in the completeness proofs
in [BK98a, BK97a] builds up on an argumentation also employed in [Koh94] which uses a rather
complicate notion of clause isomorphisms susceptible to errors. In this paper we present a lifting
argument that omits this rather complicate and unintuitive notion. This is possible as we analyse a
generalised resolution calculus ERy. instead of ER. This enriched calculus additionally employs the
instantiation guessing FlexFler-rule (see figure 3) and applies the single clause normalisation rules
instead of grouping them into exhaustive clause normalisation chains with rule Cnf. Consequently,
in subsection 3.5 we will discuss the theorem equivalence between ERy. and ER.

An important convention for this and the following sections concerns a-equality of clauses and
the arity of Skolem terms:

Remark 3.1 (Equality of clauses). In resolution based theorem proving one usually assumes all
clauses to be variable disjunct. In practice this is achieved by automatically renaming the variables
within each freshly generated clause. In this paper we implicitly use this convention too.

Another implicit convention concerns the Skolem terms. We briefly illustrate this aspect by
an example. Assume that the following pre-clause is given:

Ci: VX, piso X VT VIVZ,. q Z)F
Clause normalisation either leads to
Co:[pso X Y]V (sY)]" orto Ca:lpse XY]"V]g(s X YV)"

where (s,, V) and (s,,-, X Y) are Skolem terms. The first clause Cs is the result of applying
rule TI7 first and TI7 to the result, whereas the second clause Cs is the result of applying first
M7 and then TIT. Both results differ with respect to the arity of the new Skolem terms. Tt is
well known for refutation approaches that each refutation using only one of this clauses can be
analogously carried out with the other one. For a discussion of this Skolemisation aspect in the
context of of sequent calculi we refer to [AMS98]. In the following we will therefore ignore the
different arities of Skolem terms caused by switching the order of single applications of clause
normalisation rules (switching the order of clause normalisation rules will be employed in some of
proofs within this paper).

For those readers which are still not familiar with the main ideas of our extensional higher-
order resolution approach we refer to the illustrating example in subsection 7.1 or the examples
discussed in [BK98a]. A good intuition of the practical usage of the extensional higher-order
resolution approach will support a better understanding of the following formal proofs.

3.2 Basic Definitions

We already pointed out that instead of an direct discussion of Henkin completeness for ER we
first analyse the slightly enriched calculus £Ry.. Aside from the ungrouping of exhaustive clause
normalisation derivations this calculus provides the well known FlexFlex rule displayed in figure 3.
In case a clause contains a flez-flex-unification constraint this rule allows to guess a instantiation
for one of the flexible heads such that the unification process can proceed with its eager unification
attempts. It was already pointed out by Huet [Hue72] that in practice we are interested to avoid
this possibly infinitely branching rule (there may be infinitely many constants in the signature)
and it turned out that within a refutation approach one can in fact do without the FlexFlea-rule
and delay the operations on flez-flez-constraints until one of the head variables gets bound. On the
other hand employing this additional rule within the lifting lemma eases the proofs as it turns our
eager pre-unification approach into an eager unification approach. This makes it possible to get rid
of the clause isomorphisms that are needed in the analogous proofs in [Koh94]. The motivation for
the ungrouping of exhaustive clause normalisation derivation by rejecting rule Cnf and Lifting the

3.2 Basic Definitions 13

CV[Fr,, Ut=Hs . V' GegGBL. forah,eC,

Y=o "= Y=o

CV[FU =h Vo' V[F = G]F

FlexFlex

Figure 3: The FlexFlex rule

clause normalisation rules to calculus level is the same: We want to ease the proofs in this section
and especially the analogous but slightly more complicate ones for the extensional higher-order
paramodulation calculus EP and extensional higher-order RUE-resolution calculus ERUE.

Unfortunately a formal proof for the admissibility of rule FlezFlex has not been carried out yet
but evidence is given by the direct proof of Henkin completeness in [BK98a] (which admittedly
lacks a bit of transparency and clarity within the lifting argument) and the case studies with the
L.Eo prover [BK98b] which implements extensional higher-order resolution approach. All examined
examples so far do not require the application of rule FlezFlex, although many of them require
eager (pre-)unification.

Definition 3.2 (Clause Normalisation). The calculus CNF consists of the clause normalisa-
tion rules displayed in figure 1. We assume that the result of each rule application is transformed
into head-normal form.!? By exhaustively applying these rules to a pre-clause [A]* (a € {7, F'}
one can derive the set CVF([A]%) of proper clauses derivable from [A]*.

Lemma 3.3 (Soundness of CNF). The rules CNF\{I1"'} preserve validity and the rule TI¥ pre-
serves satisfiability with respect to standard models.

Proof: The proofs for the rules in CVF\{IT"'} are analogous to the first-order case and Skolemi-
sation has been corrected for higher-order logic by Miller in [Mil83, Mil91, Mil92]. O

Definition 3.4 (Unification). We define the following two calculi for higher-order unification
and higher-order pre-unification:

UNTI The calculus UNZ consists of the pre-unification rules Triv, Func, Dec, FlexRigid and
Subst. We assume that the result of each rules application is transformed into head-
normal normal form.'' These rules are a rather close variant of the higher-order pre-
unification calculus discussed in [Koh94] and [GS89]. As discussed before, rule Func
subsumes the rules @ and 7 used in [BK98a] and [Koh94].

UNT The calculus UNZ is defined as UNZU {FlexFlex}.

Theorem 3.5 (Higher-Order Unification and Pre-Unification).
1. UNT is a sound and complete calculus for higher-order pre-unification.
2. UNT; is a sound and complete calculus for higher-order pre-unification.

Proof: We will not present a formal proof here and refer to [Koh94] instead as the set of
rules discussed there is very similar to the one discussed here. The only difference is that [Koh94]
additionally examines sorts and uses a extra-logical form of Skolemisation. Note that the set of
rules presented only slightly adapt the rules discussed in [GS89]. O

The first complete set for higher-order unification was defined in [Pie73] and undecidability of
higher-order unification was first discussed in [Hue73b]. Huet then introduced higher-order pre-
unification in [Hue75]. For a modern presentation of higher-order unification and pre-unification
we refer to [GS89]. Sorted higher-order unification and pre-unification is discussed in [Koh94].

10Remember the special definition of head-normal form for unification constraints.
1Note that this is the main difference to the pre-unification rules presented in [GS89] which presupposes that all
results are reduced to #n-normal form.

14 3 EXTENSIONAL HIGHER-ORDER RESOLUTION: ER

As the calculus UNZ\{ Fquiv, Leib} realises higher-order unification and as rule Subst allows
to propagate solutions back to the non-unification constraints of a clause we get the following
corollary.

Corollary 3.6 (Higher-Order Unification). Let CV E be a clause with unification constraints
E. Then for each unifier o of E we have that CV E byng Cs.

Definition 3.7 (Extensional Higher-Order Resolution).

ER 'The calculus ER consists of the following inference rules displayed in figure 2,
ie. ER .= {Cnf, Res. Fac, Prim} UUNT
ER; 'The extension ER; of calculus ER that employs full higher-order unification instead of
higher-order pre-unification is defined as ERy := ER U {FlexFlex}.
ER;s. The calculus ERy. that employs stepwise instead of exhaustive clause normalisation is

defined by ERy := (ER\{Cnf}) UCNF.

For all calculi we assume that the result of each rules application is transformed into head-normal
normal form. A set of formulas ® is refutable in calculus R € {ER,ERy.ERy} iff there is a
derivation A : ®y kg O where &, := {[F},]7|F € ®} is the set obtained from ® by simple
pre-clausification. We again point out that unification constraints are treated as special literals
which are only accessible to the unification rules.

Remark 3.8 (General Higher-Order E-Unification). The extensional higher-order resolution
calculus ER (ERy or ERy.) can also be interpreted as a test calculus for general higher-order E-pre-
unifiability (E-unifiability): Assume an arbitrary set of equations E; ...E, describing a theory
and a F-unification problem T; = T is given. If we pass clauses [E4]7 ...[E,]7 and [T; = Ts]"
as an input problem to our calculus, then the calculus &R tests if the unification constraint
[T, = T3]" is solvable with respect to theory F enriched by the extensionality properties. The
overall answer substitution computed by the refutation is obviously also an answer substitution
to our E-unification problem.

Theorem 3.9 (Soundness of Extensional Higher-Order Resolution). The calculi &R,
ER; and ERy. are sound.

Proof: We already know by lemma 3.3 that the rules in CNF either preserve validity or
satisfiability with respect to standard models and thus the latter also holds for rule Cnf. All
unification rules apart from Func as well as the rules Res, Fac can easily be shown to preserve
validity with respect to standard models. And it is easy to check that the rules Func (which simply
employs Skolemisation) and Prim (which instantiates a free variable) preserve satisfiability. Now
the assertion follows from the well known result that preservation of satisfiability ensures soundness
within a refutation approach. O

Lemma 3.10 (Proper Derivations). For each non proper clause C, proper clause C' and clause
set ® such that ® * C Fgr,, C' we have that ® UCNF(C) ber,, C'. This statement analogously holds
for calculus ER.

Proof: The proof is by induction on the length of derivation ® x C Fgg, C'. In the base
case (n = 0) we know that that ¢’ € ® as ¢’ must be different from C. Thus the assertion follows
trivially. In the induction step (n > 0) we consider the first step in derivation ®*C F" ®xC*D Fgr,,
C' If C is not a premise clause for the application of rule r then the assertion follows immediately
by induction hypotheses. Thus, let us assume that C is a premise clause for the application of
rule r. By induction hypotheses applied to clause D we get that (® * C) U CNF(D) ker,, C'. As
the resolution rules Res, Prim, Fac are defined on proper clauses only we know that the only
rules that are possible for r are the unification rules in #NZ and the rule Cnf. Tt is easy to
check that in all those cases we have that CNF(C) Fer,, CNF(D). And thus, we finally get that
O UCNF(C) Fer,, ®UCNF(C) UCNF(D) ker, ' O

3.3 Lifting Properties 15

3.3 Lifting Properties

This subsection examines some lifting properties of calculus &Rs.. First we will prove a lifting
argument for all clause normalisation rules in CNVF before we then present the lifting lemma for
ERy.. The lifting lemma for calculus Ry turns out to be rather trivial. The reason is that &Ry
provides rule FlexFler and that the clause normalisation rules are not grouped into one single
rule Cnf but treated as single inference rules for their own. The main idea in the lifting lemma
for calculus ERy is to show that for each derivation step performed on an instantiated set of
clauses there exists an analogous step (or multiple step derivation) on the abstract level as well.
And in blocking situations — this is when the abstract, uninstantiated level does not contain
enough structural information as some free variables occur at head positions of some literals or
at head position in one of the two terms in an unification constraint — then either rule Prim or
rule FlexFler can be used to unblock the situation by restricting the free head variables in an
appropriate but still most general way.

Lemma 3.11 (Lifting of Clause Normalisation). Let the D1, Dy be clauses and o a be sub-
stitutions. For each derivation Ay : (D1)o '_%N}“ Dy erxists a clause D3, a substitution § and a
derivation Ay : Dy bFer, D3 such that (P3)oos = Do.

Proof: The proof is by case distinction on the rules in CNF. As all cases are analogous
we only consider the VlF rule here. In this case we have that (D), and D, have the form
(L1)o V...V (La)o V[A, VB, and (L1), V...V (Ly)o V[A,]" for some literals (I;), and terms
A,.B,.C,. We now consider the possible structure of the focused literal in the uninstantiated
clause Dy : L1V...VL,V[C]". In case [C]" = [AVB]” the we can obviously apply V/" to this clause
leading to D3 : L1V...VL,V[A]F. Then the assertion follows trivially. In the other possible case we
have [C]F = [H U™]" such that (H U™), = A,VB,, H, = AX™.LVR, (L[U"/X™), = A, and
(R[U™/X™), = B,. We then apply rule Prim to clause D; with general binding AX™. (H; X™)V
(Hy X™) for predicate variable H (H', H? are new predicate variables of appropriate type) and
obtain clause Dy : L1 V...VL,V[C]F'V[H = AX™, (H; X™)V (Hy X™)]¥'. With rule Subst we get
clause D5 : (L1),V...V(L,), V[(H' Um)V(H? Um)|F where 7 := [AX™, (H; X™)V (H, X™)/H].
Now rule VI is applicable which leads to clause D3 : (L1), V...V (L), V[(H' Un)]F. 1t is easy
to verify that 7 is more general than ¢ and that hence there must be a substitution 5 that
appropriately instantiates the new predicate variables H' and H? and that coincides with o on
all other variables such that we have (L;)yor = (Li)o, (H' U")y0r = A,. This finally proves the
assertion as (D3)yor = Do. O

We are now ready to prove the lifting lemma for calculus £Ry.. The main statement (see
statement 3.12(2)) is that for any substitution ¢ and clause set @ holds that & is refutable in
calculus ER;. provided that @, is.

Lemma 3.12 (Lifting Lemma for ERy). Let ® be a set of clauses, D1 be a clause and o «a
substitution. We have that:

1. For each derivation Ay : @, F}Rﬁ D1 there exists a substitution §, a clause Dy and a
derivation As : @ l—ngC Ds such that (D2)s = Ds.

2. For each deriwvation Ay : ®, bgg, Dy there emists a substitution §, a clause Dy and a
derivation Ay : ® Fer, Dy such that (D)5 = D;.

Proof:
(1) The proof is by case distinction on all rules in Ry, and in all cases we will motivate that
there 1s a derivation Ay as required.

Res Assume the first step in Ay employs resolution rule Res to clauses [A,]* V C5 and
[A,])? V D, with resolvent D1 : C, V Dy V [A; = B,]¥". Then an analogous resolution
step is possible between [A]*VC and [A]°V D leading to resolvent D5 : CVDV[A = B]¥.
We trivially have that (Ds), = Cy.

16 3 EXTENSIONAL HIGHER-ORDER RESOLUTION: ER

Prim Assume the first step in Ay employs rule Prim to a flexible literal in a clause C, V
[H (A,)"]* leading to clause Dy : C, V [H(A,)"]* V [H = G]¥, where G is a general
binding for variable H imitating a logical connective. Then an analogous proof step with

an identical general binding is possible on the uninstantiated clause C'V[H A"]* leading

to Dy : CVI[H A")*V [H = G] such that (Ds), = D;.

Fac This case is analogous to Res.

Triv, Dec, Func, FlexFlex, Leib, Fquiv These case are all analogousto Prim. We want to point
out that = is a special symbol not available in the signature and thus the abstract literal
must also have head =. Therefore all these rules must be applicable on the abstract
level as well.

FlexRigid Whereas we know that the abstract literal must have head = the abstract literal
is possibly a FlexFlex-constraint. In this case we employ the additional rule FlexFlex
and Subst in order to introduce the corresponding rigid head of the instantiated literal.
Thereby the FlexRigid step performed on the instantiated level becomes possible on the
abstract level as well. It is easy to verify that the resulting clause on the abstract level
is more general than the instantiated counterpart.

FlexFlex Like Prim, this rule is obviously applicable on the abstract level as well.

Subst In this case the ground literal has form [X = A,]F. Tt is easy to verify that the
corresponding abstract literal must have the form [Y = A]¥ for a variable Y. Tt can not
be of form [(AZ. X)B = A]” as the left hand side is not in head-normal form. Therefore
this case is analogous to case Prim.

r € CNF By clause normalisation lifting lemma 3.11.

(2) The proof is by induction on the length of derivation A;. The base case is trivial and in
the induction step we first employ statement (1) and then the induction hypothesis. O

3.4 Completeness

In this subsection we focus on the main proof of Henkin completeness for calculus ERp.. First we
will present a lemma stating that reduction to head-normal form is sufficient in calculus £Ry. (note
our special definition of head-normal form for unification constraints as described in section 2). A
second lemma provides important refutational properties of our calculus. Finally in the prove of
theorem 3.16 we show that the set of propositions that can not be refuted in calculus ERy. defines
an abstract consistency property for Henkin models 2.2. The latter entails Henkin completeness

for ERy. by theorem 2.1(1).

Lemma 3.13 (Head-Normal Form). Let ® be a set of clauses. If A : ®, Fer, O then
A (I).Lh I—ngC O

Proof: The proofis by induction on the length n of A and the base case (n = 0) is trivial. In the
step case (n > 0) we consider the first derivation stepin @, F" ® I O. In case r € {Res, Fac} the
assertion follows immediately by induction hypotheses as both rules are applicable independently
from the structure of the literals atoms. In case r € {Prim} U CNF the heads of the atoms
obviously play an important role. But note that for each atom we have that the head symbols in
the gn-normal form and the head-normal form coincide such that each rule r is applicable in the
head-normal form case as well. Therefore we again get the assertion by induction hypotheses. In
case r € UNT our special definition of head-normal form for unification constraints (which requires
both hand sides of the constraint to be reduced to head-normal form) ensures the assertion with
an analogous argumentation as in the previous case. O

Remark 3.14 (Head-Normal Form). We want to point out that it is not essential for our calculi
whether we keep our clauses and literals in head-normal form or #n-normal form. The reason why
we have chosen reduction to head-normal form is that this is less expensive in practice. If the
reader does not trust in head-normal form here he can choose fn-normal form instead. This
difference will hardly influence any of the discussions in this paper.

3.4 Completeness 17

Lemma 3.15. Let ® be a set of clauses and A, B be formulas. We have that:
1. If @+ [A]T ber, O and @ + [B])” ber, O then ® x [AV B]7 bgr, O.
2. If @ * [A]" % [B]¥ Fer,, O and @ x [A]" * [B]! Fer, O then @ + [A & B} Fer, O.

Proof: (1) As A and B are sentences we can assume without loss of generality that the pre-
clauses [A]” and [B]7 are variable disjunct. We can replay derivation ® x[A]7 kg, O in context
®+[AVB]” such that we get for each clause C € CVF([B]”) ®+[AVB]” Faoyr [A]TVCFer, CVE
for a set of FlexFlexr constraints F containing no variables that occur in [B]¥ or C. By lemma 3.6
we know that each unifier ¢ of E can be derived in UNZ; and thus we get for each unifier ¢ of
clause CV E that CV E byng Co. Now the assertion follows by lemma 3.10 as @ + [B]” Fgg, O
and as the domain of ¢ contains none of the free variables in C and thus C, = C for each clause
C € CNVF([B]T).

(2) This statement (which is also well known from first-order) can be proven by a tedious but
straightforward computation which we only roughly sketch here. From the two assumptions we get
by lemma 3.10 that (i) ®+CNVF([A]T)«CNF([B]F) Fer, O and (i) ®xCNF([A]7)«CNF(B]7) Fer,,
0. The idea now is to apply exhaustive clause normalisation to the clause [A < B]¥ and then
to show that (iii) ® *+ CVF([A & B]F) Fer, O. Note that CNF([A & B/"):={CVD|C ¢
CNF([A]*) and D € CNF([B]*) for a € {T.F}}. Thus, the task is to show that (iii) is
a consequence of (i) and (ii) which is possible, for instance, by simultaneous induction on the
structure of A and B. O

Theorem 3.16 (Completeness of ERy.). The calculus ERy. is complete with respect to Henkin
models.

Proof: We adapt the analogous proof given in [BK98a].

Let Ty be the set of Y-sentences which cannot be refuted by the calculus ERp (T = {® C
cwff,(X)|® er, O}), then we show that Ty is a saturated abstract consistency class for Henkin
models 2.2 which entails Henkin completeness for ERs. by theorem 2.1(1).

In particular have to verify that Iz ensures the abstract consistency properties
Ve, Vo, Vs, W, Va, W, Va3, Vg, V. Furthermore we have to show that Iz is saturated.

V. Suppose that A, —A € ®. Since A is atomic we have & *[A]T *[-A]T Feng @or* [A]T %

[A]F and hence we can derive O with Res and T'riv. This contradicts our assumption.

In all of the remaining cases, we show the contrapositive, e.g. in the next case we prove, that for
all ® € Iy, if ® % A x A ¢ Iz, then & x 7—A ¢ I, which entails the assertion.

V. Let us assume that ®¢ x [-=A]7 % [A]7 Fer, 0. We immediately get the assertion since
[-=A]T Fovr [A]T.

\Yi If @+ [A]T % [A},, " Fer, O, then we get that @ * [A]” Fer, O by lemma 3.13 (note
that A is assumed to be in hnf).

W I ®y*x[AVB]T+[A]T ber, Oand @, +[AVB]*[B]” Fer, O, then @ *[AVB]? bFer, O
by lemma 3.15(1).

Vs Analogous to V, as [=(A vV B)]T beyr [2A]T and [-(A V B)]T Fevr [-B]7.

W Let @ [1* F]7 % [F A]” Fgr, O for each closed formula A. By lifting lemma 3.12
we get that @ * [TT1* F]7 [F X]7 bgr, O for a new variable X and thus obviously
@cl * [HQ F]T I—ngc .

Va Let us assume that @, x [=11 F]”7 « [-F w]” Fgr, O. Note that =l F is a closed
formula and furthermore that w does not occur in @ * [T F]T. We get the assertion
immediately as [=IT F]T Feovr [-F w]T.

Vo We show that if @y * [2(A =° B)]T « [A]? % [B]Y Fer, O and @ * [-(A =° B)]L *
[A)" « [-B] Fgr, O, then @ % [+(A = B)]? Fgr, O. Note that @, % [-(A = B)] =
Dy [-II(AP. -P AV P B)]T Feyvre ®or * [r A]T « [r B]Y where r,, is a new Skolem
constant. Now consider the following derivation

18 3 EXTENSIONAL HIGHER-ORDER RESOLUTION: ER

[r A]" [r B]"

[r A =rB]F . .
A—iB]F Dec, Triv
7[[A — B Equiv
&

Hence @, % [-(A = B)]! Fer, ®a*[~(A = B)] #[A & B)]¥ and we get the conclusion
as a consequence of lemma 3.15(2).

V, We show that if & [=(F =77 G)]” # [~(F w =’ G w)] O, then &y # [-(F =

T
G))]” Fer,. O. Note that &+ [=(F = G)]T+[~(F w = G w)]” ? b, * ﬁH(,\Q -(Q F)
(Q G))I" # [FII(AP. =(P (F w)) V(P (G w)))]" Feoyr ®e * g] *[q G]" « [p (F w)]"

p (G u)]F and that @, * [~(F = G)] Feyr Per * [F]? « [r G}, where PB—o: q(a_,ﬁ)_,o
and r(,—p), are new Skolem constants. Now consider the following derivation:
[rF]" [rG)"
TES G
F=af
[Fs=G s
[t (F s))"
[t (G s)]"
Here again s, and tg_,, are new Skolem constants. Hence @ * [r F]T x [r G]¥ Fer,

O+ [r FIT [r G]F x [t (F s)]7 x [t (G s)]". Now the conclusion follows from the
assumption as s,? and r are only renamings of the Skolem symbols w, p and ¢ and as all

es
Dec, T'riv

do not occur in ®;.

To see that Iy is saturated let A € wff,(X) and @ C cuff, () with ®. Her, 0. We have to show
that @ * A Fer,, O or O * A Her, O. For that suppose @ ler, O, but @ *A"gpﬂ, O and
P x 0A |—ng O. By lemma 3.15(1) we get that &, x AV -A "ng O, and hence, since A V —A
is a tautology, it must be the case that ®. Fgg, O, which contradicts our assumption. (]

Remark 3.17 (Eager Unification). Different to Huet [Hue72, Hue73a] eager unification is es-
sential within our approach. This is illustrated by the argumentations for V4 and V; in the
completeness proof 3.16 as well as most of the examples presented in section 7.

Remark 3.18 (Restricted rule Leib). Even though rule Leib is employed to arbitrary types in the
completeness proof (see 5.20(V;)) the author claims that this rule can be restricted to unification
constraints between terms of primitive type:

CV[M, =N, aec{o:}
CV[VPaso P M= P NIF

Leid!

Unfortunately a formal proof for this conjecture which is of great practical importance is still
missing. It would be enough to prove that if ®. * [A —ah B)]" ber,. O then ®q x [A s =F

B s5]" kg, O for any new Skolem term s,. Note that [VXa. AX =" BX] boyr [A s =B 5|7
Thus, this lemma expresses one direction of the functional extensionality property formulated
with Leibniz equality and with this lemma we could reduce the applications of rule Lezb in all
completeness proofs discussed in this paper to the restricted rule Leib’. This result would be of
practical importance as it allows to restrict the search space extremely. When we later extend our
extensional higher-order resolution into a corresponding RUE-resolution approach it may even be
the case that rule Leib generally becomes admissible (c.f. remark 6.1)

3.5 Theorem Equivalence

With respect to our theoretical goal of proving Henkin completeness it does not make a difference
whether exhaustive clause normalisation derivations are grouped together in only one rule Cnf like
in calculi ER; and &R, or if the single clause normalisation rules are lifted as single inference rules

3.5 Theorem Equivalence 19

to calculus level as in calculus ERy.. But note that there is a practical motivation as well: calculus
ERy. allows to avoid redundant applications of identical unification derivations to all proper clauses
belonging to the same abstract clause. For instance, it may be more appropriate first to apply
unification rules to a non-proper clause and then to apply clause normalisation rule to the result
than the other way around.

In the following lemma we make use of the following two important conventions for this paper:

Remark 3.19 (Convention).

1. Whereas the CNF and the UNZ rules aside from Subst do not directly influence each others
applicability we have to admit that they may indirectly influence each others applicability
via Skolemisation. More precisely if o is rule TI7 and r; is rule Func the arity of the Skolem
term that is introduced in Func increases its arity when switching 1 and r3. We have already
pointed out in remark 3.1 that we ignore this fact here.

2. Another important and simplifying convention in all proof transformations in this paper is
that we consider proper proof trees instead of proof graphs such that each derived clause in
a derivation 1s used exactly once as a premise clause in one of the following derivation steps.
An important and simplifying convention in all proof transformations in this paper is that
we consider proper proof trees instead of proof graphs such that each derived clause in a
derivation is used exactly once as a premise clause in one of the following derivation steps.

Lemma 3.20 (Derivability of Proper Clauses). For each proper clause C and clause set ®
such that Ay : ® Fer, C we have that there is a ERy-derivation Ay : ® ber, C.

Proof: The proof idea is to show that the single, distributed clause normalisation steps can be
grouped in exhaustive CNVF-chains again which can then be replaced by rule Cnf. The proof is by
induction on the length n of derivation Ay and the base case (n = 0) is trivial. In the induction
step (n > 0) we consider the first step in derivation Ay : &% F™ & x Dy |_ng€ C where 71 € ERye
and proceed by examining all possibilities for rq:

r1 € {Res, Fac, Prim} As these rules operate only on proper clauses we have on the one hand
that the first step is also a proper £R; derivation step. On the other hand we know by
induction hypothesis that there is a proper £R; derivation ®*D; Fgr, C. Thus, ® Feg, C.

r1 € UNZ Analogous to above the first step is also a proper ERy derivation step and thus the
assertion follows immediately by induction hypotheses.

r1 € CNF 1In this case we look for the first step in derivation A that employs a non CAVF-rule.
Without loss of generality let us assume that this happens in step n for an n > 1. Then
Aq has form Ay @ F" ®4Dy 72 L Fmt @k Dk 4Dy BT @Dk Dy beg,, C
such that r; € CNF for 1 < j < n. Without loss of generality let us assume that each
of the steps r; employ the freshly generated clause from the previous step as premise
clause (we can reorder the derivation steps in Ay without any influence to the particularly

derived clauses such that this assumption is met).
If r, € {Res, Fac, Prim} D, must be a proper clause, such that we can obviously replace

the initial n — 1 derivation steps in Ay by a single app]l(‘.atlon of rule Cnf in calculus
ER;. Now we again employ the convention that we consider proper proof trees instead
of proof graphs in our formal proofs such that each derived clause in a derivation is used
exa(‘ﬂy once as a premise clause in one of the following derivation steps. Consequently

c @ ey *D, F C. Now the assertion follows by induction hypotheses.
If rn, € ./\f we verlfym%at the clause normalisation steps r; for 1 < j < n do definitely

not affect the unification constraints of the involved clauses. Thus we can obviously apply
rule 7, in the first place in A1 as well. Furthermore note that the clause normalisation
steps r; for 1 < j < n are applicable to the result of this new first step in Ay (note that
if r, = Subst, then this step does not introduce a non-proper literal) and that the result
of this derivation chain in the n-th step is clause D,,. Now the assertion follows again
by induction hypotheses.

20 4 PRIMITIVE EQUALITY

O

As O is also a proper clause we immediately get the following corollary.

Corollary 3.21 (Theorem Equivalence of Ry and &ERy). The calculi ERy. and ERy are the-
orem equivalent, i.e. ® Fer, O, iff ® Feg, 0.

Whereas we already hinted that in our extensional higher-order resolution approach it is no
longer possible to delay all (pre-)unification rules our claim will be that the additional rule FlexFlex
can still be delayed until the end of a refutation. This will give us that rule FlezFlex is not needed
at all as O is defined modulo flez-flex constraints.

Conjecture 3.22 (Theorem Equivalence of ER and &Ry (or ER;)). The calculi ER and
ERy. (or ERy) are theorem equivalent.

Even though a formal proof for this important conjecture has not yet been carried out formally
there is strong evidence given for its validity. None of the challenging examples discussed in this or
in any of the papers [BK98a, BK98b, Ben97, BK97a] needs rule FlezFlex. Furthermore, none of the
more than 200 with respect to extensionality very interesting examples from the MIZAR-articles
Boolean and Basic Properties of Sets [TS89, Byl89] needs to employ the FlezFlex rule within our
case study with the extensional higher-order resolution prover LEo [BK98b]. And strong evidence
is given by the direct proof carried out in [BK98a] (which admittedly lacks a bit of transparency
within the lifting lemma).

4 Primitive Equality

In the extensional higher-order resolution approach discussed in the previous section equality is
treated as a concept defined by Leibniz” principle. While this way of treating equality is theoret-
ically a convenient and suitable solution it turns out that this solution is rather inappropriate in
practice!? as Leibniz equality introduces new flexible literals into the search space and thereby
increases the amount of blind search with primitive resolution rule Prim. Furthermore proofs for
problem formulations that employ Leibniz equality are rather unintuitive and hardly to under-
stand for non-experts. Tllustrating examples for such unintuitive problem formulations and proofs
when using Leibniz equality are E4 and E5 as discussed in [BK98a].

Thus our aim is to avoid Leibniz definition of equality and to use primitive equality instead.
Very important for the further discussion in this section is that unlike in first-order logic we do not
have the choice in higher-order to consider equality as either defined or as primitive. Instead we are
generally forced to consider a mixed (primitive and defined) treatment of equality. The reason is
that when assuming Henkin semantics infinitely many definitions of equality are implicitly provided
by our higher-order language and there is no way to get rid of them. A definition of equality that is
different from Leibniz equality is, for instance, discussed in [And86] at page 155. Furthermore, this
paper provides illustrating examples in subsection 7.2. And aside from all the sensible definitions of
equality in higher-order logic there is always ways to introduce additional artificial ones. This can,
for instance, be done by adding arbitrary tautologous sub-formulas to a definition of equality. For
example, if A’ ... A" and B' ... B" are tautologous sentences then we can define equality based on
Leibniz equality also by =% 1= AX,. A\Y,. VP,_s,. (ATA...AAPAP X) = (PYAAAA A, . .AA™.
It is obvious that by this trick we can introduce infinitely many valid but different definitions of
equality. And as it is undecidable whether a formulais a tautology we also get that it is undecidable
if an expression is equivalent to Leibniz equality and describes the intended equality relation. This
argumentation immediately gives us the following corollary:

Corollary 4.1 (Defined equality in higher-order logic). Given a higher-order sentence A.
There is no procedure that can decide if A contains a sub-formula that expresses the equality
between two terms.

12Even though the already mentioned successful case study with the LEO-system on the the examples from the
MIZAR-articles Boolean and Basic Properties of sets showed that Leibniz equality is sufficient for proving simple
problems about sets.

21

Paramodulation:| (defined for proper clauses only)

[A[Ts]l°vC [L=°R]"VD
[A[R]]*VCV DVI[T = L)

Para

[Al*vC [L=R]TVD
[PassoR]*VCV DVI[A =° P51

!
+ Para

Figure 4: Adapted paramodulation rule Para and a higher-order specific reformulation Para’

A consequence of this lemma is that we generally have to assume the presence of some defined
equations in input problems passed to our calculus which we can not detect and remove by primitive
equations. Thus, even if we add a primitive equality treatment to our calculus we still have to
ensure that our calculus — like the calculus €R discussed in the last section — can handle Leibniz
equality as well as all alternative definitions of equality.'®. This is different to the first-order case,
where one has the choice to define equality (e.g. by axiomatising equality as a congruence relation)
or to consider it as a primitive notion and to add special equality rules (e.g. paramodulation rules)
to the calculus. Thus in our setting we first have to leave the calculus £R as it is and we can not —
as one might wish to — remove the extensionality rules from the beginning. Sure, when adding some
special primitive equality rules we can then examine if some of the given rules become admissible
and hence superfluous (c.f. remark 6.1).

We will now focus on the first-order paramodulation approach and try to adapt it to our
higher-order setting. The anticipated result of this attempt is that just adapting the first-order
paramodulation rules is not sufficient to ensure Henkin completeness. Again the problem is caused
by the extensionality properties and as will see additional extensionality rules are needed — but
this time with respect to positive equations. Unfortunately the resulting higher-order paramod-
ulation calculus seems to be inappropriate within specific domains — e.g. for examples about
sets, when sets are coded as characteristic functions and where extensionality properties play an
important role — as it looses its pure term-rewriting character.

And aside from the problem that well founded reduction orderings are hardly to define in
higher-order logic the higher-order term-rewriting idea has to face a second problem: it seems to
be rather complicate to guide an approach with a mixed term-rewriting and difference-reducing
character in practice. Thus, we will later develop a second calculus that adapts the ideas of first-
order RUE-resolution [Dig79]. The latter extensional higher-order RUE-resolution approach has
a pure difference reducing character which might be easier to guide in practice.

5 Extensional Higher-Order Paramodulation: &P

5.1 A Naive and Incomplete Adaption of Paramodulation

Figure 4 displays the traditional paramodulation rule and introduces a more elegant higher-order
reformulation'® which is simply motivated by the corresponding resolution step with the clause
obtained by interpreting the first literal as a positive Leibniz equation.

Note that we assume the symmetric case for both rules. The adapted traditional paramod-
ulation rule Para allows to replace an arbitrary subterm Ty by Rjp provided that T and L are

13We want to point out that this argumentation even holds for the weaker semantical notion of functional -
models with property q (9% s) as introduced in [BK97b]. Even though this semantical notion is weaker than Henkin
semantics equality can still be defined.

14This rule was suggested by Michael Kohlhase in a private conversation.

22 5 EXTENSIONAL HIGHER-ORDER PARAMODULATION: EP

unifiable. Analogous to higher-order resolution and factorisation rules unification has to be de-
layed and thus a unification constraint [T = L]” is added to the resulting clause. Unfortunately
15 as many new clauses into the
search space as subterms T, of type a are given in the term A. Consider for example the
unit clauses c/: [p (f (f @))]T and Ca : [f = h]T, where p, 0, fissi; hies, and a, are constants.
By application of paramodulation in left to right direction we obtain the follwing two clauses:
Ca:[p(h (Fa)]FV[f=f1F and cf:[p (f (ha))]* V[f = f]¥'. The unification constraints can be

immediately eliminated with rule Triwv here.

we thereby introduce with each application of rule Para twice

Rule Para’ combines the expressivness of our higher-order language with the power of higher-
order (pre-)unification and avoids to introduce too many clauses into the search space but instead
introduces only one new clause with a new flexible literal head. On can easily convince himself
that this rule has a very simple motivation: It simply describes the clause that we obtain from
the right premise when replacing the primitive equality with Leibnizequality and applying clause
normalization: [P L]¥ vV [P R]T V D (or by a additional primitive substitution step: [P L]T Vv
[P R]"V D).

When applying rule Para’ to the clauses C; and Cy above from left to right we introduce only
one new clause: Cs : [P AX,.a]T V[p (f (f a)) = P f]'. But note that by eager pre-unification
we can generate the following four instantiations for P and propagate this partial solutions with
rule Subst to the literal [P AX,. a]T:

1) P AZp (f(f a)) 2) P Misip (Z (f a))
NP L,.p(f(Za)) 4) P A,5,.p (Z (7 a))

The pure imitation solution (1) introduces clause C; again and is thus redundant.'® By back-
propagation of solutions (2) and (3) we obtain exactly the clauses C3 and C4, which are the results
of traditional paramodulation rule. Solution (4) is the most interesting one as it encodes the
simultaneous application of [f = h]T to both subterms fin [p (f (f a))]7 with the traditional rule
Para. Thus, the only clause resulting from the application of rule Para’ encodes all the possible
traditional paramodulation steps together with all simultaneous applications and even the origi-
nal clause itself. The only problem for practical applications is that we introduce a new flexible
head with rule Para’ and hence primitive substitution rule becomes applicable. As this rather
less useful, a probably good heuristic in practice is to avoid such primitive substitution steps on
flexible heads generated by rule Para’.

Remark 5.1 (Reflexivity Resolution). We want to point out that reflexivity resolution is al-
ready embedded into the calculus €R. The reader can easily convice himself that reflexivity
resolution is derivable with the help of the unification rules. The unification rules already operate
on negated equality literals — also called unification constraints — and thus each negative equation
between two unifiable terms are tackled by them.

Remark 5.2 (Paramodulation into Unification Constraints). Tt turns out that paramodu-
lation on unification constraints is not neccessary and in fact we can show derivability.

Ci:CVI[A[T,] =B]F C:[L="R]TVD
C3:CVDVI[AR,.] =B]" v[T =" L]"

Para

Each such step that employs paramodulation on unification constraints can be replaced by the
following derivation (p is a Skolem constant):

Leib(Cy),CNF . D, :CV[p A[T,]"
DQ : C V [p B]F
Para(Dq,Cs) : Ds:CVDV[pAR,]" V[T =* L]
Res(Ds, Ds), Fac, Triv: Dy :CVDV[(p A[R,]) = (p B)]F V[T == L]
Dec(Dy), Triv : Ds:CVDVI[A[R,] =B]" V[T =>L]"

15Because of symmetry.

160n the other hand this possibly leads to interesting heuristics in practice: When applying rule Para’ we can
remove the left premise clause from the search space, as this clause gets encoded into the result of the paramodulation
step.

5.1 A Naive and Incomplete Adaption of Paramodulation 23

On the one hand paramodulation into unification constraints shortens proofs and in some examples
this seems to be very appropriate, but on the other hand this may be hard to guide in practice.

Definition 5.3 (P 4ive). The calculus P, iy, consists of the rules of calculus ER (see figure 2)
enriched by the paramodulation rule Para (see figure 4). We assume that the result of each rules
application 1s transformed into head-normal form. A set of formulas @ is refutable in calculus
EPpaive iff there is a derivation A : &, Fep,.... O, where &, = {[F,]"|F € ®} is the set
of clauses obtained from ® by simple pre-clausification. We want to point out that primitive
equations are not expanded by Leibniz definition.

Next, we discuss soundness of the extended calculus &P, qive and show by a counterexample
that EPy aive 18 not complete with respect to Henkin semantics.

Theorem 5.4 (Soundness of EP,4ive). The calculus EPpaive is sound with respect to standard
semantics.

Proof: Soundness of the traditional paramodulation rule Para is obvious: Given a standard
model M for the two premise clauses then one can easily show that the paramodulant is also
valid in M as either the unification constraint evaluates to L and we are done or it evaluates to
T giving reason to the validity of literal [A[R]]]* in case [A[T]]]* guaranteed the validity of the
first premise clause and [L = R]7 the validity of the second premise (all other cases are trivial).

The proof of soundness for the new rule Para’ is analogous, even though this rules looks more
complicate: We consider all possible variable assignments ¢ that map variable P,_,, to a function
in the domain D,_,, and employ an analogous argumentation like above. O

Theorem 5.5 (Incompleteness of EPqive). The calculus EPyaive is incomplete with respect to
Henkin semantics.

Proof: The assertion is proven by the following counterexamples to the assumption of Henkin
completeness of calculus EP,, qipe:
Ezample 5.6 (Incompleteness of Paramodulation).
Efare —3X,. (X = =X)
This formula expresses that the negation operator is fix-point free which is obviously the

case in Henkin semantics. Our calculus is not able to find a proof as clause normalisation of
the negated assertion leads to the single clause
Cy: [a=-a]”

where a, is a new Skolem constant. The only rule that is applicable is self-paramodulation

on positions (1), (2) and () leading to the following clauses:
Para(C1,C1) at (1): Ca: [a==alTV[~a=d]" C3: [a==a]TV]a=d"
Para(C1,C1) at (2): Ca: [a==al"V]a==a]" C5: [a=a]T V[~a=d"
Para(C1,C1) at {): Cs: [a)T V[~a=(a==a)]’ C7: [a]F V][a=(a==a)l

Case distinction on the possible denotations {T, L} for a shows that all these clauses are
tautologies. Thus no refutation is possible in EPy..

Efv? 3G, 4,40 VP ,. 3X,.G X ='7° P
This is a simple formulation of cantor’s theorem stating that there exists no surjective func-
tion from the set of individuals into the set of sets of individuals. Clause normalisation
results in

Cl . [G X =t p]T

where p,_,, is a Skolem constant. Analogous to above, the positive extensionality properties
a refutation is not possible.

24 5 EXTENSIONAL HIGHER-ORDER PARAMODULATION: EP

E3P““‘ AM, 0. M # 0 where @,_,, is defined as AX,. L. This formula expresses that there exists a
set of Booleans that is not empty. As the set of Booleans is fixed in Henkin semantics and
has exactly two elements this assertion is obviously valid. Clause normalisation results in

Ci: [M=)X,. 1]
where M,_, is a free variable. Analogous to Ef”a no refutation is possible.

EPare —3M,,,. M = M where the set complement operator “(0m0)=(00) 18 defined by
ASosor AXoe 2(X € V) and €,54(050)50 is just function (predicate) application
AX,. AS,0. SX. This formula expresses that there is no set M of Booleans in Henkin
semantics such that M and its complementary set M are identical. Clause normalisation
leads to

Ci: [m=AX, ~(mX)]*

where m,_, is a fresh Skolem constant for M. In contrast to Ef;“” there is no free variable.
Again no refutation is possible.

EPara 1f VP sis0)sisisim0) (P @isiso = P 1is5,) Then (VX ¢ X # AZ. =(r X 7).
The first equation expresses that all relations of type ¢+ — ¢ — ¢ — o that can be defined
based upon relation ¢ or r are equal (which in fact means that ¢ and » must be equal).
The second inequation in some sense says that ¢ is the complement set of r, but uses an
artificially complicated form (we employed the functional extensionality property once to
q# ANV;. Z;. =(r V Z)). This assertion is again valid as in Henkin semantics the set of truth

values contains exactly two elements. Our problem normalises to
Cl : [P q e s e P T’]T CQ . [p X _t—o /\ZL. —|(7’ X Z)]T

where P, 405 (1515150); X, are free variables and q,, 5, 7,—5,—, are function constants.
Note that aside from self-paramodulation no rule is applicable. Especially there is no
paramodulation step possible between the clauses C; and Cy as there is no subterm of type
t — o in C; and no subterm of type + = ¢+ — ¢+ — o in Cs such that a type conform
term-rewriting becomes possible.

O

The overall problem in the first three examples is that our calculus provides no mechanism
to detect positive equations with an implicitly embedded contradiction. For example the clause
[a, = —a]T is is implicitly contradictory with respect to the boolean extensionality principle.
Examples EF®a and EF?% show that also functional extensionality is involved as the implicit
contradiction follows here only with respect to both extensionality principles. The general problem
is that in higher-order logic (when considering Henkin semantics as well as some weaker notions like
the -models in [BK97b] or Andrews V-complexes [And71]) infinitely many semantical domains
contain a fix point free function such as the negation operator or the set complement operator
on a non-empty domain such as the set of truth values or the domain of all functions from truth
values to truth values, etc.

In example EF%7® none of the positive equality literals is contradictory by itself but only in
connection with the other one. Here again a refutation is not possible in calculus ERz. Here
we need to employ the extensionality properties to the positive equation in order to introduce a
positive equation of appropriate type, thereby making paramodulation rule applicable.

Remark 5.7 (Fiz-point free functions). Given a functional type a — o. The semantical do-
main Dom,_;0)—s(a—0) contains a fix-point free function provided that it is not empty (which
must be the case in Henkin Semantics, as at least the identity function, i.e. the evaluation of
APo 00 Poyo, must be an element of this domain). For instance, for Domy(,,)50)—s((1=1)=0)
we can choose the set complement operator defined with the help of the negation operator:

AS(ios1)sor AFiyie (S F).

5.2 Positive Extensionality Rules 25

> Equiv’
CVvM, o N,J7 *

CV[Ma,p =Nasg]? X new free variable
CVIM X =N x|

Func'

Figure 5: Positive extensionality treatment.

5.2 Positive Extensionality Rules

Before stepping further in the examination of our extensionality problem on positive equation
literals let us first reconsider the analogous problem for negative equations which is already solved
in our calculus. For example [a, = =—a]’" is an negative equation which is implicitly contradictory
with respect to boolean extensionality. Our calculus already provides a solution to this problem
as it interprets negative equation literals automatically as unification constraints for which an
appropriate extensionality treatment is already available by the extensionality rules Leib, Func
and FEquiv. We already pointed out that reflexivity resolution is therefore superfluous. But even
better, we do not need additional extensionality rules for negative equation literals here.

Unfortunately we do have to face the lack of extensionality principles in case of positive equation
literals and as we have seen in the examples above, our calculus so far does not provide a solution
to it. What we need is a way to test the inequality of the two hand sides of a positive equation with
respect to the extensionality principles and also with respect to the knowledge provided by the
other clauses in the search space (see for example E£97¢). This suggests to introduce analogous
extensionality rules to Func, Fquiv and Leib but now for positive equations as suggested in figure 5.
It turns out that a positive counterpart to rule Leib is not needed:

Remark 5.8 (Rule Leib’). A positive counterpart for rule Leib would have the following form:

CV[M,=N,T aec{o:}
CV[VPaso P M = P NJT

Leid!

This rule is not needed in our motivating examples and the completeness proof below. Thus, it
should be possible to prove that rule Leib’ is admissible for calculus EP.

The reader is probably interested now in the concrete proofs of our challenging examples
within our higher-order paramodulation calculus enriched by the positive extensionality rules.
This refutations are presented in detail in subsection 7.3.

5.3 Basic Definitions

Analogous to section 3 we first further extend our extensional higher-order paramodulation ap-
proach by adding rule FlezFler and lifting the single clause normalisation rules to calculus level
instead of grouping exhaustive clause normalisation derivations together with rule Cnf.

The definitions for clause normalisation calculus CNF (see 3.2), UNT and UNE (see 3.4) need
not to be modified and the lemmata 3.3 (Soundness of CVF) and 3.5, 3.6 (properties of higher-order
unification) will be employed in this section again.

Definition 5.9 (Extensional Higher-Order Paramodulation).

EP The calculus EP consists of the rules of calculus ER (see figure 2) enriched by the
paramodulation rule Para (see figure 4) and the positive extensionality rules displayed
in figure 5, i.e. EP := ER U {Para, Equiv’, Func'}.

26 5 EXTENSIONAL HIGHER-ORDER PARAMODULATION: EP

EP; The extension &P; of calculus EP that employs full higher-order unification instead of
higher-order pre-unification is defined as EPy := EP U {FlexFlex}.
EPs. The calculus &Py, that employs stepwise instead of exhaustive clause normalisation is

defined by EPy. := (EP;\{Cnf}) UCNF.

For all calculi we assume that the result of each rule application is transformed into head-normal
form. A set of formulas ® is refutable in calculus €P iff there is a derivation A : &, Fgp O where
@, = {[F,]7|F € ®} is the set obtained from ® by simple pre-clausification. Unification literals
are still only accessible to the unification rules.

Theorem 5.10 (Soundness of Extensional Higher-Order Paramodulation). The calculi
EP, EP; and EPy. are sound with respect to standard semantics.

Proof: We already know by 5.4 that calculus &P qive is sound. The soundness of the new
positive extensionality rules is obvious as they simply apply the extensionality properties which
are valid in standard semantics. O

We will proceed analogous to section 3 and adapt lemma 3.12 which is hardly affected by the
slight modifications to our calculus. Lemma 3.11 is not affected at all.

Lemma 5.11 (Proper Derivations). For each non-proper clause D, proper clause C and clause

set ® such that ® x D kep, C we have that ® U CNF(D) kep,. C.

Proof: Analogous to lemma 3.10. In the induction step the case where » = Para is analogous
to the cases r € {Res, Fac, Prim} and the cases r € {Func’, Equiv'} are analogous to the case

r e UNT. O

5.4 Lifting Properties

The clause normalisation lifting property stated in lemma 3.11 is not affected by the modifications
to the calculus and will be employed in the following lifting lemma for calculus EPf.. The new
problem within this lemma is that we have to take care of the additional logical connectives =* in
the extended signature. But fortunately rule Prim got automatically extended as well and allows
now to introduce all logical connectives = at head position analogous to the connectives —, v, I1¢

so far.

Lemma 5.12 (Lifting Lemma for £Pr). Let ® be a set of clauses, D1 be a clause and o a
substitution. We have that:

1. For each derivation Ay : ®, l—épfc D1 there exists a substitution §, a clause Dy and a
derivation Ay : ® Fep, Dy such that (D2); = Dy.

2. For each derwation A1 : @, l—gpfc D1 there exists a substitution §, a clause Dy and a
derivation Ay : @ Fep,, Do such that (D2)s; = Ds.

Proof:
(1) The proof is by case distinction on all rules in Py, and in all cases we will motivate that
there 1s a derivation A, as required.

Res, Prim, Fac, Cnf,Subst The corresponding argumentations in 3.12 are not affected by the
additional rules or the availability of primitive equality symbols =* in the signature.

Triv, Func, Dec, FlexRigid, FlexFlex, Fquiv, Leib This cases are affected by the new primitive
equality symbols = a in the signature. More concretely we may have a unification
constraint [Ty = T»]” on the instantiated level but a negative literal with a flexible
head [H U"]¥ on the abstract level. In order to enable the application of the particular
unification on the abstract layer as well we can use primitive substitution rule Prim
in connection with rule Subst in order to introduce the logical connective = at head
position leading to the abstract unification constraint [H; U" = H, W]F The latter
unification constraint is obviously more general as the instantiated one. The remaining
argumentations are analogous to the corresponding ones discussed in 3.12.

5.5 Completeness o7

Leib’, Equiv’,Para The argumentation is analogous to the above cases.

(2) The proof is by induction on the length of derivation Aj. The base case is trivial and in
the induction step we first employ statement (1) and then the induction hypothesis. O

5.5 Completeness

Analogous to subsection 3.4 we analyse in this subsection Henkin completeness of calculus EPy..
The calculi Py and EP are then discussed in subsection 5.6. Like in the case of extensional higher-
order resolution, theorem equivalence between &P and EPy. has not been formally proven yet and
will thus only be presented as a conjecture.

Before we present the completeness theorem 5.20 for £Py. we first adapt the two lemmata 3.15
and 3.15. The first one compares refutability of clause sets in head-normal form with the refutabil-
ity of clauses in #n-normal form and the second one discusses some important refutational prop-
erties.

Lemma 5.13 (Head-Normal Form). Let ® be a set of clauses. If A : @, Fep, O, then
A/ : (I).Lh I_ngc |

Proof: The proof is analogous to lemma 3.13. In the induction step we additionally have
to consider the cases where r € {Para, Func’, Equiv’} which are analogous to the cases where

r € {Prim} UCNF. O

Lemma 5.14. Let ® be a set of clauses and A, B be formulas. We have that:
1. If® x [A]T bep, O and @ * [B]” bgp, O then ® x [AVB]T Fgp, O.
2. If @+ [A]T « [B])Y Fep, O and @ * [A]F « [B]T Fep, O then @+ [A & B]¥

Proof: Analogous to lemma 3.15. The new rules do not affect the argumentations. O

In the completeness proof below we will employ a generalised paramodulation rule GPara
that is allowed to operate also on non-proper clauses but which only rewrites identical terms and
employs only unit equations instead of conditional equations.

Definition 5.15 (Generalised Paramodulation Rule). The generalised paramodulation rule
GPara is defined as follows:

[T[Ap]]*vC [A="B]"
[T[B]]*V C

G Para

This rule is not restricted to proper clauses and is furthermore allowed to operate on unification
constraints. Thus GPara generalises rule Para. On the other hand GPara also restricts Para as
unification is not employed and thus only identical terms can be replaced when applying this rule.
Furthermore the second premise clause is assumed to consists only of a single positive equation
literal.

We want to point out that rule GPara is specially designed for being employed in the complete-
ness proof 5.20 to ensure abstract consistency property V;(s), and the only reason we introduce
the latter restriction for rule GPara is that we want to ease the proofs of the lemmata below as
much as possible.

Definition 5.16 (Generalised Resolution Rules). The generalised resolution rules GResy,
(GRess and GRess are defined as follows:

[Al*VC [A)PVD a#p
(C'v D)

GR681

28 5 EXTENSIONAL HIGHER-ORDER PARAMODULATION: EP

[AY"]2VC [XTPVvD a+#pand Y™ ¢ Free(T™)
(CV D)a/x 77 /77

GRESQ

[Ayo TE]°VC [A5,, X31PVD a#p
(CV D)rw %)

GR683

These rules are not restricted to proper clauses and in this sense they extend rule Res. But note
that the new rules are defined within special contexts only and in this sense they also restrict the
rule Res.

We will now show that these three generalised resolution rules as well as the generalised
paramodulation rule are in a weak sense (modulo subsequent clause normalisation) derivable
in calculus £Pp.. The proof for the weak derivability of GPara thereby employs the generalised
resolution rules GRes; and GRess. GResy is only needed within for the within the proof of the
weak derivability property for the generalised resolution rules itself.

Lemma 5.17 (Weak Derivability of Generalised Resolution Rules).

1. Let C : [A]*V C and Cs : [B]? VD be clauses such that there are clauses C3 : C' v D' and
Ca and a derivation Ay : {C1,Ca} V" C3 Fear Ca where v € {GRes1, GRess, GRess}. If [A]*
and [B]? are proper literals, then there is a derivation As : {C1,Ca} Fep, Ca.

2. Let C4 be a proper clause and Cy,Ca2,C3 be clauses. For each derivation Ay : {C1,Ca} F7
Cs Fenr Cq where v € {GResy, GResy, GResg}, there is a derivation Ay : {C1,Ca} Fep,, Ca.

Proof:
(1) The proof is by induction on the length of the CAVF-derivation. In the base case the clauses (;
and Cy must be proper and thus the application of the generalised resolution rule can be replaced
by an application of the ordinary resolution rule Res and subsequent eager unification. In the
step case we simply switch the generalised resolution step with the first clause normalisation step
(which is obviously applicable either to C; or Cy as well and does operate on [A]T or [B]T as these
literals are assumed to be proper). The assertion then follows by induction hypotheses.
(2) The proof is by induction on the number of logical connectives in the premise clauses and we
discuss all three rules separately:
G Resy: In this case the clauses {C1,C2,C3} are of form C; : [A]*VC, C2: [A]PV D, C3: CVD. In
the base case we have that literals [A]* and [A]? are proper and thus the assertion follows by (1).
In the induction step we have to consider the following cases: (i) A = (- M), (ii) A = (I M), and
(iii) A = (V M N). Concerning the polarities we only consider the case where a =T and § = F.
The argumentation for the dual constellation is analogous. Let us discuss the complicate case (iii)
first. The clauses C;.Cs,C3 are of form C; : [V M N]T vV C, Cy : [[VM NI Vv D, C3: CVD.
Obviously we can perform the following clause normalisation steps:

C;:[VMNI"vVD
G:VMNIvVe Y A
G MIVINTvC Y and G :[N]FVD

Thus, we can derive Cs (and consequently Cs4) also from clauses {Cs, Cs, C7} with GResy:

Ci:[VMN]"'vC = C:[VMN]"vD .
G M VINTvC Y T C.mMFvD ! Co:[VMN]F VD

GResy. Fac, Triv vF
¢, [NTVCVD LA It T U INFV D
CsCVD GResy

- CNF

Cs

5.5 Completeness 29

By induction hypotheses applied to the latter application of GRes; we know that there exists a
derivation

C c
Ve
T GRES] C_7 \/f
&Py
Ca

Our aim is to apply the induction hypotheses also to the first application of G Resy but unfortu-
nately the preconditions are not met as C} is not necessarily a proper clause. Therefore we first
apply lemma 5.11 which gives us that

507/%6 GR651 5 C% 6 GR681
CNF . CNF C:
D, D, Cr, 7
&Py
Ca

where CNF(C4) = {D1,.... Dy }. The preconditions for the induction hypotheses are now met for
Di. ..., D, and by applying induction hypotheses for n times we get:

C_] T ﬁ F C_] T ﬁ F
Cs . Vi Cs o V1
Dl Dn C7 "
L EPg
Cy

The cases (i) and (ii) are proven along the same ideas. But these cases are much simpler as we
need to apply the induction hypotheses only once (cf. the cases discussed for GRess and G Ress
below) and we can omit the application of lemma 5.11.

G Ress: In this case the clauses {C;, Co, C3} are of form C; : [AY"]*VC, Cy : [X T?]PV D, C3:
(Cv D)[A/X?T—,,/Y—,,]. The argumentation is analogous to the above case for GResy and the base

case follows by (1). In the induction step we have to consider the following cases: (i) A = (= Y),
(i) A = (TTY), (i) A= (VY Y?)and (iv) A = ((V M) Y). As a representative we consider
here the induction step for the case where [A Y7]* is of form [(= Y)]" and thus [X T7]° is of
form [X T,]”. Obviously we have that

C: [XT|ITVD

Prim, Subst
C:[-Y]Fve Co:[X' T vD ’ C: [XT)ITVD _
T -r 7 Res, Fac, Uni, Subst
Cs:[Y]" vC C7 : [T] VDGR
es
Cg : (C V D)[T/Y] 2
. CNF
Ca

Induction hypotheses is applicable and we get that
C:[X T vD
r 2|]F Prim, Subst T
Cli[—!Y] VC F C6Z[)(/T] VD CQZ[XT] VD
CsZ[Y]TVC - C7Z[T]FVD
: P
Ca

Res, Fac, Unt, Subst

30 5 EXTENSIONAL HIGHER-ORDER PARAMODULATION: EP

which proves the assertion.
GResg: In this case the clauses {C;, (s, C3} are of form C; : [A5_;, T_gl]o‘ VC,Cy: [Ax, Y_;l]ﬁ \Y
D.C53: (CV D)[T_n/F] and the base case again follows by (1). But this time we have to consider

more cases in the induction step, as [Ay5, T2]* can be of form [V Ty Ty]T, [V T1 T2]F where
n=2or [~ T7, [~ T, I T7, T T]7, (VA1) T1]7, [(V A1) T1]" where n = 1, and finally
[~ A7, [A7 [T AT [T AT [V Ay A9]T. [V Ay Ao]T where n = 0. As a representative

we discuss the case where [A5_,, T7]% is of form [l T1]7 for n = 1. Obviously we have that

'7]

CG:mTy"ve , G [x;"vn
CsZ[T1Y]TVCH C@Z[X18]FVD2
C3: (CV D)ry/x,.5/v] fess
. CNF
Ca

F

Where Y is an new variable and s a new Skolem term of appropriate type. Induction hypotheses
is applicable and we get that

Co:[MTFVvD -
Ceo: [T1 S]F v D

L &Py

Ca

F

which proves the assertion. O

The following paramodulation lemma now shows that also the generalised paramodulation rule
GPara is weakly derivable in EPy.. The proof employs the (weakly derivable) generalised resolution
rules GResy and GGRess.

Lemma 5.18 (Weak Derivability of Generalised Paramodulation Rule).
1. Let C1 be a clause and Cs be a proper clause.
(a) Ci :[A]*V D and Cy : [A = B]T or
(b) Cr i [A5so T5]* VD and Ca : [(A55o X7) = (Byso X3)]"

Then in case (1a) there exist a derivation Ay : {C1,Ca} Fep, C3: [B]*V D and case (1b) a

derivation Ay : {C1,Ca} Fep,, Cs 1 [By, TH]*V D.

2. Let Cy : [T[A],]* VD, Co: [A = B]T and C3 : [T[B],]* V D such that there is a derivation
A1 {C1.Co} FEPa 8 Cabonr Cy for a proper clause Cy derived by clause normalisation from
C3. Then there exists a derivation Ag : {C1,Ca} Fep,. Ca.

Proof: (1) We first concentrate on case (la) and consider the following CNF-derivation:

C::[A =B]" Eouiv!
Ci:[A] o BT
CNF

Depending on the polarity a of literal [A]® in clause €1 we now either apply the generalised
resolution rule GResy to C1 and Cs or to €y and Cg thereby deriving clause Cs : [B]*V D. Together

5.5 Completeness 31

with lemma 5.17(2) we finally get that there is a derivation Ay : {C1,Ca} Fep, C3. The case (1b)
is analogous as

o [(Ayoo X7) = (Byoo X2)]T y
0 — = Fquiv
Cy : [(Aso, XT) & (Byoo X7)]

L CNF

CQ : [AV_“) X_,;l]F \% [Bﬁﬂo X_,;l)]T

Co - [Ayso X211V By, XI))Y
and thus the application of GRess to €1 and Cs or to €y and Cs derives clause C3 : [By_, T_QL]QVDl.
Again the assertion follows by lemma 5.17(2).
(2) The tedious proof is by induction on the length n of the embedded CNF derivation Cs Fene Ca.

n =0 : In the base case C3 must be a proper clause, i.e. the clause rests D consist only of

proper literals and the literal [T[B],]* is proper. We now consider the possible cases for literal
[T[A]]".

1. [T[A],]7 is a proper literal and C; is a proper clause. Instead of general paramodulation we
can apply in this case the standard paramodulation rule Para to C; in order to derive C4 by

AQ : {C1 s CQ} }_Para [T[B]p]T \% D] Vv [A = A]F }_TM.U C4.

2. [T[A],)" is a proper literal and C; is a proper clause. If [T[A],]" is not a unification
constraint then the argumentation is analogous to the above case. In case [T[A],]" is a
unification constraint it is (without loss of generality) of form [T}[A] = Ty]". In this case
we employ a derivation that is analogous to the one already discussed in remark 5.2:

Leib(Cy), CNF : Dy : CV[p T1[AL]]T
DQ :CV [p TQ]F
Para(Dq,Cq), Triv : D3 : CVIp Ti[B.]]F
Res(Ds, D), Fac, Triv: Dy:CV DV [(p T1[B.]) = (p T2)]F

Dec(Dy), Triv : Ds: CV DVI[Ti[B,] = Ts]"

3. [T[A],]* is not a proper literal, i.e. has a logical connective different from = at head position.
We consider the possible subterm positions p of term A in T.

(a) As this would contradict our assumption ([T[B],]* is a proper literal) we know that for
literal [T[A],]* the following cases are impossible: [~ (M[A],/)]*, [V (M[A],/) N]*,
[V M (N[A]p/)]* and [IT (M[A],1)]*.

A A A
. —~N —— ~ = .
(b) Literal [T[A],]* has form [- M]*, [V M N]* or [IT M]*. Then (> is of form [(-M) =

B]*, [(Vv M N) = B]* and [(IT M) = B]* respectively. For all these cases the assertion
now follows by (1).
A A A A
(c) Literal [T[A]p]* has form [’/—:\ M2, [’.\/./\ M N]2, [,/H\ M]* or [(V M) NJ°.
Then analogous to above Cs is of form [~ = B]®, [V = B]?, [II = B]* and [(V M) =
B]* respectively. Applying positive extensionality rule Func’ to these clauses leads to
[(=X)=(BX)]" [(VXY)=(BXY)*[(IlP)=(BP)|"and [(VM X) = (B X)]".

For all these cases the assertion now follows by (1).

n > 0 : In the induction step we know that literal [T[B],]* must have a logical connective at
head position, as otherwise the length of the CNF-derivation is 0. We now distinguish the following
two cases:

1. At least one of the literals in D is not proper. In this case it is obvious that we can
reorder the CNF-derivation such that one of the clause normalisation steps that modifies D
comes first. Without loss of generality let us assume that CNF-rule r transforms in step

32 5 EXTENSIONAL HIGHER-ORDER PARAMODULATION: EP

k (0 < k < n) of derivation A; the clause rest D into D’. Then we can reorder derivation
A and obtain a derivation Ag : {Cy,Ca} FEFPa C3 7 Ch - [T[B],]* V D' Feyr C4 where
rule 7 is applied first. Obviously we can also switch the first two steps in Ag such that we
get Ay : {C1,Ca} F7 {C} : [T[A]]* V D', Ca} P Chb-opr Cy4. Now induction hypotheses
is applicable and we get that there is EPp-derivation Ay : {C],Ca} Fep,. C4.

2. D consist only of proper literals. We again examine the structure of literal [T[A],]* and
distinguish between all possible subterm positions p of term A in T.

(a) Literal [T[A],]* is of form [- (M[A]y)]*, [V (M[A],) N]*, [V M (N[A],)]* or
[IT (M[A],:)]*. As the proofs are analogous we only present the following case here.
Assume C is of form [V M (N[A],/)]7 Vv D. Consider now derivation Ay which obviously
applies the CNF-rule VT first within the normalisation process (note that 1) contains
only proper literals). Thus we have A; : {Cy, Co} FEFa™e O3 YT ey M]TV[N[B],]” Vv
D Fenr C4. We can obviously switch the first two steps in A such that we get an alter-
native derivation A% : {C1,Co} FY" {C - [M]T V [N[A]]7 V D, Co} FGPa CLborrr Cy.
By induction hypotheses we now get that there is a derivation A} : {C;,Cs} FvT
{C1.C2} Fep,. Ca.

A A A

(b) Literal [T[A],]* is of form [= M]*, [V M N]* or [IT M]®. Then C, is of form [(- M) =
B]*, [(Vv M N) = B]* or [(TT M) = B]®. In all cases the assertion follows immediately
by (1).

A A A A
. . = = —

(c) Literal [T[A]p]® is of form (=" M]*, [V MN]* [II M]* or [(VM) N]J°
Then analogous to above s is of form [- = B]*, [V = B]*, [l = B]* and [(V M) =
B]* respectively. Applying positive extensionality rule Func’ to these clauses leads to
[(=X)=BX)]* [(vXY)=BXY)* [(ITP)=(BP)*and [(VM X) = (B X)]*.

For all these cases the assertion now follows by (1).

O

As O is just a special proper clause we immediately get the following corollary.

Corollary 5.19 (Admissibility of Generalised Paramodulation Rule). The generalised pa-
ramodulation rule GPara is admissible in calculus EPy..

Theorem 5.20 (Completeness of EPy.). The calculi EPy. is complete with respect to Henkin
models.

Proof:

Let Ty be the set of X-sentences which cannot be refuted by the calculus &P (Ix :={® C
cuwff,(X)|®er tep,, O}), then we show that Iy is a saturated abstract consistency class for Henkin
models with primitive equality (c.f. 2.3). This entails completeness with the model existence
theorem for Henkin models with primitive equality 2.1(2).

First we have to verify that Iy validates the abstract consistency properties V., V., Vg, W,
Va. Y. Va3, V. V; and that Iy is saturated. For all of these cases the proofs are identical to
the corresponding argumentations in theorem 3.16. The only difference is that we employ the
lemmata 5.14(1)-(2) and 5.12 instead of 3.15(1)-(2) and 3.12. Thus, all we need to ensure is the

validity of the additional abstract consistency property V; for primitive equality.

Ve (r) "(A="A)¢d
(s) if F[A], € ® and A =B € ®, then &+ F[B], € Iy

(r) We have that [A =% A]" F7"" O and thus —(A = A) cannot be in ®.

5.6 Theorem Equivalence 33

(s) Analogous to the cases in 3.16 we show the contrapositive of the assertion and thus we assume
that there is derivation Ay : @ * [F[B],]” Fep,, O Now consider the following EPyp.-derivation:

[F[A]]" [A=B)7
[F[B,]"

GPara

By corollary 5.19 we know that the generalised paramodulation rule GPara is admissible for cal-
culus &Py, and thus there is a EPp-derivation {[F[B],]*.[A = B]?} Fgp, [F[B],]?. Consequently
there is a derivation Ay : @+ [F[A]]T «[A = B]! Fep, @u[F[A]]Y #[A = B]? «[F[B],]! Fep, O
which completes the proof. O

5.6 Theorem Equivalence

Analogously to subsection 3.5 we now prove that &Py and £P; are theorem equivalent. Theorem
equivalence of Py and &P is then presented as a conjecture that has not yet been formally proven
yet.

Lemma 5.21 (Proper Clauses in &P and &Py). For each non-proper clause C and clause set
® such that @+ bgp,, C we have that ® Fgp, C.

Proof: Analogous to lemma 3.20. In the induction step the case for rule Para is treated anal-
ogously to the cases r € {Res, Fac, Prim} and the rules Func’ and Equiv’ are treated analogously
to the unification rules. O

As O is also a proper clause we immediately get the following corollary:

Corollary 5.22 (Theorem Equivalence of £Py. and EP¢). The calculi EPy. and EP; are theo-
rem equivalent.

Conjecture 5.23 (Theorem Equivalence of EP and &Py (or &Py)). The calculi EP and EPy,
(or EPy) are theorem equivalent.

Obviously the proof for the latter conjecture will be analogous to the proof of the theorem
equivalence for calculi ERy. and £R and thus also gains evidence by the examples already carried out
with the LEo-prover [BK98b] for extensional higher-order resolution as well as the new challenging
examples for extensional higher-order paramodulation discussed in section 7.

6 Extensional Higher-Order RUE-Resolution: ERUE

6.1 Resolution on Unification Constraints

In this section we will adapt the Resolution by Uunification and Equality approach [Dig79] to
our higher-order setting. The key idea is to allow resolution and factorisation rules also to operate
on unification constraints. This implements the main ideas of first-order RUE-resolution directly
in our higher-order calculus. More precisely our approach allows to compute partial F-unifiers
with respect to a specified theory E (where E is specified in form of a set of unitary or even
conditional equations in clause form in the search space) by employing resolution on unification
within constraint the calculus itself. This is due to the fact that the extensional higher-order
resolution approach already realizes a test calculus for general higher-order E-pre-unification (or
general higher-order E-unification in case we also add rule FlezFlez). Furthermore, each partial
E-(pre-)unifier can be applied to a clause with rule Subst. Finally, like in the traditional first-order
RUE-resolution approach, the non-solved unification constraints are coded as still open unification
constraints within the particular clauses.

Remark 6.1 (Resolution on Unification Constraints). The idea to resolve on unification
constraints arised while discussing the necessity of Rule Leib within extensional higher-order reso-
lution with Frank Pfenning during a stay at Carnegie Mellon University in 1997. At that time the

34 6 FEXTENSIONAL HIGHER-ORDER RUE-RESOLUTION: ERUE

author not interested in a calculus for primitive equality but focused on the question whether it
is possible to avoid rule Leib in calculus ER. And as is demonstrated by an example in [Ben97] at
least some applications of rule Leib become superfluous in ER if one allows resolution and factori-
sation on unification constraints. Thus, it seems to be a very interesting task to examine whether
rule Leib is admissible in the extensional higher-order RUE-resolution approach ERUE. Because
lack of time this question has not been investigated in detail yet. Anyway, the idea of resolution
on unification constraints turned out to be a very fruitful idea.

Remark 6.2 (Incompleteness of a naive RUE-Resolution approach). Analogous to our a
naive adaption of the first-order paramodulation approach, we obtain a Henkin incomplete RUE-
resolution approach if we not additionally add the positive extensionality to our calculus. This
is nicely illustrated by example EF2"® already used in the incompleteness proof 5.5 for £P. The
reader may easily check that no single rule is applicable to the unit clause C; : [a = —a]”.

6.2 Basic Definitions

Analogously to section 3 we first further extend our extensional higher-order RUE-resolution
approach by adding rule FlezFlex and lifting the single clause normalisation rules to calculus level
instead of grouping exhaustive clause normalisation derivations together with rule Cnf.

The definitions for clause normalisation calculus CNF (see 3.2), UNZ and UNZ (see 3.4) need
not to be modified and the lemmata 3.3 (soundness of CNF) and 3.5, 3.6 (properties of higher-order
unification) will be employed in this section again.

Definition 6.3 (Extensional Higher-Order RUE-Resolution).
ERUE The calculus ERUE consists of the rules of calculus ER (see figure 2) enriched by the

positive extensionality rules displayed in figure 5. The most important aspect is that we
allow to resolve and factorise on unification constraints. Furthermore we want to point
out again that unification constraints are assumed to be symmetric which could also be
formulated by the following rule:

Ci:CVI[A =B
CQICV[B:A]F

sym

We employ this convention despite the fact that the symmetry rule sym is derivable
(c.f.remark 6.4) in ERUE — as well as in ER and EP — as it shortens and eases derivations
in practice and is with respect of its complexity acceptable.

ERUE; The extension ERUE; of calculus ERUE that employs full higher-order unification instead
of higher-order pre-unification is defined as ERUE; = ERUE U {Flex Flex}.

ERUE;. The calculus ERUE;. that employs stepwise instead of exhaustive clause normalisation

is defined by ERUE;. = (ERUEN{Cnf}) UCNF.

We furthermore assume that the result of each rule application is transformed into head-normal
form. A set of formulas ® is refutable in calculus ERUE iff there is a derivation A : @, Fere O
where ®.; := {[F]7|F € ®} is the set obtained from ® by simple pre-clausification.

Remark 6.4 (Derivability of symmetry rule). The following derivation shows that the sym-
metry rule is derivable in ERUE (ER and EP):

Leib(Cy) : Di:CVp AT

Dy : CV [p B]F
Res(Da,D1), Fac, Triv: D3z :CV[pB=pAl"
Dec(Ds), Triv : C>:CV[B=A"

Theorem 6.5 (Soundness of Extensional Higher-Order RUE-Resolution). The calculi
ERUEs., ERUE; and ERUE are sound with respect to standard semantics.

6.3 Lifting Properties 35

Proof: Soundness of most of our calculus rules have already been discussed in lemmata 3.9
and 5.10. We additionally have to verify that resolution and factorisation on unification constraints
issound. Note that unification constraints are treated as ordinary negative literals with a primitive
equality symbol at head position. Thus there is nothing new to show here and we can employ the
standard argumentation for soundness of the resolution and factorisation rule. (]

Lemma 6.6 (Proper Derivations). For each non-proper clause C, proper clause C' and clause
set @ such that ® * C Ferye,, C' we have that ® U CNF(C) Fep,. C'.

Proof: Analogous to lemma 3.10 and 5.11. Tt does not cause any problems that we allow to
resolve on unification constraints. O

6.3 Lifting Properties

The clause normalisation lifting lemma 3.11 is not affected by the modifications to the calculus
and will be employed in the following lifting lemma for calculus ERUE;, as well.

And the proof of the adapted main lifting lemma is analogous to the one presented for ERy..
Resolution on unification constraints does not cause a new problem as primitive substitution rule
Prim can be employed to unblock the abstract derivation in case a proper unification constraint
is given on the instantiated level and a corresponding flexible negative literal is given at the
uninstantiated level causing the blocking situation.

Lemma 6.7 (Lifting Lemma for ERUE:). Let ® be a set of clauses, D1 be a clause and ¢ a
substitution. We have that:

1. For each derivation Ay : @, I_é'Mfc D1 there exists a substitution §, a clause Dy and a
derivation Ay @ ® Ferye,, Do such that (Da)s = D;.

2. For each derwation Ay : ®, bFeryg,. Dy there erists a substitution §, a clause Dy and a
dertvation As : ® l—mfc Ds such that (D2)s = D1. (Note that this claim is stronger than:
® is refutable by ERUE;., provided that O, is.)

Proof:

(1) ERUE;. only slightly modifies calculus EPp. as it does not employ rule Para but a slightly
extended resolution instead. As mentioned above this does not cause any problems new problems
and thus the argumentation is analogous to 5.12(1). The main idea is again to employ rule Prim
in order to introduce logical connectives at head position such that the needed structure becomes
available at the abstract level as well.

(2) Analogous to 5.12(2) O

6.4 Completeness

Analogously to the subsections 3.4 and 5.5 we analyse in this subsection Henkin completeness of
calculus ERUE;.. The calculi ERUE; and ERUE are then examined in subsection 6.5. Like in the
case of extensional higher-order resolution theorem equivalence between ERUE and ERUE;. has not
been proven formally yet and will only be presented as a conjecture.

We first adapt the two lemmata 5.14 and 5.17. The former lemma compares refutability of
clause sets in head-normal form with the refutability of clauses in gnp-normal form and the latter
one discusses some important refutational properties.

Lemma 6.8 (Head-Normal Form). Let ® be a set of clauses. If @, Fere, O then
(I>¢h f—mfc O

Proof: The proof is analogous to lemma 3.13. In the induction step we additionally have
to consider the cases where r € {Para, Func’, Equiv’} which are analogous to the cases where

r € {Prim} UCNF. O

36 6 FEXTENSIONAL HIGHER-ORDER RUE-RESOLUTION: ERUE

Lemma 6.9. Let ® be a set of X-sentences and ®.; be the corresponding set of pre-clauses. Fur-
thermore let A, B be formulas and C.D be clauses. We have that:

1. If @y * [A]T Fm{gfc O and @, * [B]T }—mfc O then @, * [A V B]T mec O.
2. If <I)cl * [A]T * [B]F Fngc O and (I)cl * [A]F * [B]T mec O then (I)cl * [A < B]F

Proof: Analogous to lemma 3.15 and 5.14. The new or slightly modified rules do not affect
the argumentations. (]

Analogously to section 5 we will now show that the three generalised resolution rules
GResi, GRess and G Ress are in a weak sense (modulo subsequent clause normalisation) derivable
in calculus ERUEs.. 'This fact will then be employed to establish the admissibility of generalised
resolution rule GPara for calculus ERUE;.. We will finally use the latter result in the main com-
pleteness proof for calculus ERUE;. .

Lemma 6.10 (Weak Derivability of Generalised Resolution Rules).

1. Let Cy : [A]*V C and Cs : [B]’ VD be clauses such that there are clauses C3 : C' VD' and
C4 and a derivation Ay : {C1.Co} " C3 Fovr Cy. If [A]® and [B]? are proper literals, then
there is a derivation Ay : {C1,Ca} Ferue;, Ca-

2. For each proper clause Cy, (pre-)clauses C1,Ca, C3 and derivation Ay : {C1,Ca} F" Cs Fenr Ca
where r € {GRes1,GRes2, GRes3}, there is a derivation Ay : {C1, Ca} Feru,. Ca-

Proof: The argumentation is analogous to 5.17 and resolution on unification constraints does
not cause any serious problems. O

The following paramodulation lemma now shows that the generalised paramodulation rule
GPara is admissible in ERUE;, .

Whereas statement 6.11(1) is analogous to lemma 5.18(1) we can prove in 6.11(2) only admis-
sibility instead of the weak derivability property in 5.18(2). This is because in 5.18 we were able to
reduce the applications of the generalised paramodulation rule either to the generalised resolution
rules and thus finally to the proper resolution rule Res or to the proper paramodulation rule Para.
Whereas all reductions to rule Res are analogous here as well, we cannot employ the reductions
to the proper paramodulation Para here. Instead we have to show that alternative reductions
are possible which employ the RUE-resolution idea to resolve against unification constraints. The
latter causes the loss of the weak derivability property. But fortunately admissibility is sufficient
for our purposes.

Lemma 6.11 (Admissibility of Generalised Paramodulation Rule).
1. Let C1 be a clause and Cy be a proper clause.
(a) Ci :[A]*V D and Cy : [A = B]T or
(b) €t + [Ago T2V D and Cs : [(Agso X7) = (Bysy, XT))7
Then in case (1a) there exist a derivation Ay : {C1.Ca} Ferug,. C3 @ [B]* V D and case (1b)

a derivation As : {C1,Ca} Ferue,. Cs [Bs—o ﬁ]a Vv D.

2. Let C1[A/B]p be a clause that is obtained from clause C be replacing the occurrences of term
B at positions p € P by term A and let ® be a set of clauses. If Ay : @ x C1[A/B]p x [A =
B]? FGFara ¢ « C1[A/Blp x [A = B]! « C1[A/B]p\(p} Ferue,. O then there is a derivation
AQZ(I)*[A:B]T "mfc 0.

Proof:
(1) In both cases (la) and (1b) the proof is analogous to the corresponding argumentation in
lemma 5.18(1). The only difference is that we employ lemma 6.10 instead of 5.17.
(2) The proof is by induction on the length of Aq. Here the base step is the most complicate case
as applications of the non-generalised paramodulation rule Para have to be replaced by derivations
employing the RUE-resolution idea.

6.4 Completeness 37

1:

n —

If 00 € @ the assertion follows trivially, therefore let us assume that 0 = C1[A/B]p\ {}-
Hence C1[A/B]p has form C{[A/B]p, V [T[A/B]p,]* where all but one literal must
be flex-flex unification constraints. Without loss of generality we assume that this is
the literal [T[A/B]p,]*. Then the new clause Ci[A/B]p\(p) looks like Ci[A/B]p, V
[T[A/B]p,\ (p}]* where position p’ in literal [T[A/B]p, (p11]* specifies the position
the replacement has been taken place. Obviously this clause must consist only of flex-
flex unification constraints (and hence polarity @ must be F) as otherwise it would be
different from O. Thus, the literal [T[A/B]p,\ (p11]* is now a flex-flex constraint. We now
consider the position p’ in literal [T[A/B]p,]!" where the generalised paramodulation
step has been applied to. The first two possibilities concentrate on replacements that
include the head position in this literal.

o If p' specifies the replacement of the whole atom of the literal in focus,
i.e. T[A/B]p, = A, then we get the assertion by (1a) which means that we replace
the generalised paramodulation step by a derivation that employs the generalised
resolution rules instead.

e If p' specifies the replacement of a proper prefix of the atom T[A/B]p,
(i.e. T[A/B]p, looks like (A U")) then we first apply the positive functional ex-
tensionality rule Func’ for n-times to [A = B]7 thereby generating a proper clause
[A X? = B X"]T. Now (1b) is applicable which means that we again replace
the generalised paramodulation step by a derivation that employs the generalised

resolution rules and which gives us the assertion.
Next we examine the cases where a proper subterm of the atom of [T[A/B]p,]" gets re-
placed. As the replacement must lead to a flex-flex unification constraint we already
know that [T[A/B]p,]” must be a unification constraint and thus must have form
[T1[A/B]p, = T:[A/B]p,]".

e If p/ refers to proper subterm of either T1[A/B]p, or T2[A/B]p,, then it must be
the case that the generalised paramodulation step was not necessary as the literal
[T[A/B]p,]" already is a flex-flex unification constraint and thus C;[A/B]p = O,
which trivially gives us the assertion.

e Without loss of generality let us assume that p’ refers to a prefix of term
T1[A/B]p,. We then know that [T;[A/B]p, = T2[A/B]p,]" must have form
[A (U[A/B]},)=H V[A/B]gsm]p where n > 0 and m =0 (if m > 0 we cannot
obtain a flex-flex constraint by the replacement). As the replacement of A by B in-

troduces a flex-flex constraint we know that term B must have a flexible head, i.c. B
has form (F Rl) such that [4+n > 0. Now consider term A: If the head of A is a vari-
able then again the replacement of A is not necessary as we already have a flex-flex
constraint without employing generalised paramodulation. Thus Ci[A/B]p = O
which trivially gives us the assertion. If on the other hand A has a rigid head, i.e. A
has form (a W) for k > 0, then the proofis a bit more complicate as we have to con-
struct a refutation using C;[A/B]p and [A = B]? without employing generalised
paramodulation. Before discussing this derivation let us sum up the restrictions
about the structure of clauses C;[A/B]p and [A = B]7 in this case: The clause

Ci[A/B]p looks like C{[A/Blp, V [((a WF) (U[A/B];,) = (H V[A/B]p_)"
and clause [A = B]” has form [(a WF) =2 (F RI)]T where Ay 5 (7a—s0) 1S @
predicate constant and F,,_(,,5,) a predicate variable. We apply rule FlezRigid

to the former clause and positive extensionality rule Func’ for n-times to the latter
clause.

C> : C{[A/Blp, V [((« WF) (U[A/BI},)) = (H VIA/BJE,)]
VIH =)X7™. a (K Z_m)k+n]F
Cs:[(a WF) Y7 = (F RI) V7|7

The variable K in C» and the variables Y in C3 are new free variables. We substi-

38 6 FEXTENSIONAL HIGHER-ORDER RUE-RESOLUTION: ERUE

tute the imitation binding in clause Cy. (Thereby we assume that variable H does
not occur in any of the literals in C{[A/B]p,. If on the other hand H occurs in
Ci[A/B]p, then we only get a problem if H occurs at head position. We can then
use an analogous argumentation to the following one for these literals as well.)

Cs : C4[A/Blp, V [(a WF) (OTA/BIp,) = (a(K VIA/BIB,_)*+))"

and resolve'” between C4 and C5 (note that that the unification terms of both
unification constraints must have the same type)

Cs : C[A/Blp, V[((a WF) (UTA/BIp,) = (a(K VIA/BJg,)+n))
= ((« WF) 77 =* (F) Y7)*
We now apply the decomposition rule (2 times) and immediately replace the trivial
pair [===]¥ with rule Triv.

Cs : Ci[A/Blp, V [((« WF) (UTA/B],)) = ((a WF) Y7)|"

Pan
VI(a(K VIA/BJE,)*+7) = ((F

R!) Y7))"
This latter two unification constraints are obviously solvable with substitution
[(U[A/B]p, /Y™ AZ"7, (a(K V[A/B]E,)k+7)/F] and as neither F nor the Y™
can occur in any other unification constraint in Cs we get that Cs l—w\a]; O which
proves the assertion.

n>1: In the step case we consider the second derivation step (the first one following
the generalised paramodulation step) in Ay : & x C1[A/B]p x [A = B]f pG&Fara
D C1[A/B]'p * C1 [A/B]p\{p} BT @ % C1[A/B]'p * C1 [A/B]'p\{p} * CQ l‘ngC O. If the
premise clause(s) within the application of rule r are different from Ci[A/B]p\{p} we
can obviously switch the first two derivation steps of Ay such that we get the assertion
trivially by employing the induction hypotheses. This even holds if the application of
rule r indeed uses C;[A/B]p\(p} but operates on a literal that was not affected by the
initial generalised paramodulation step, i.e. on a literal different from the position where
p refers to. Thus, for all of the following cases let us assume that clause C1[A/B]p\ ()
is of form [T1[A/B]pnp3]* V Ci[A/B]pn (for respective positions P, P and the po-
sition p’ (the rest list of p) specifying the subterm that was modified within the initial
generalised paramodulation step) and that 7 operates in the second derivation step on lit-
eral [T1[A/B]pn(,13]*. Note that that under this assumption the non-modified original
clause C1[A/B]p is of form [T1[A/B]p:]* V C|[A/B]pu.

r € {Res, Fac}: As both rules do not depend on the term structure of the resolu-
tion or factorisation literals we can in both cases switch the initial derivation
steps such the assertion easily follows by induction hypotheses. We will briefly
illustrate this here for rule Res. The argumentation for Fac is analogous. For
the resolution step let us assume that there is a clause C5 € ® that is of form
[T2]? vV C4 and that

[T1[A/Blpngn]° V ClA/Blps T2 v Oy
CiTA/Blpi V G4V [(T1[A/Blpn) = Tl

Res

Then an analogous resolution proof step is possible between Cy and the non-

modified clause [T1[A/B]p:]* V C{[A/B]px

[T1[A/B]p]* VCi[A/Blpr [T2)’V
Ci[A/Blpn vV Cy V [(T1[A/B]p:) = T]"

€S

17We do not need to switch the latter unification constraint here as C4 and Cs already have the right constellation.
But generally it might be necessary to employ the symmetry rule to clause Cs.

6.4 Completeness 39

We can obviously apply generalised paramodulation rule GPara to the latter
clause (at position p’ in the new unification constraint) thereby generating
exactly the same clause as in the above original derivation.

Ci[A/Blpy v C V [T = (T:[A/Blp)l” [A = B
Ci[A/Blpi V C5 V [(T1[A/Blpngpy) = Tol”

GPara

Now the assertion follows by induction hypothesis.

r € {Prim, Func', Equiv’'}: The three cases are analogous and therefore we only
discuss rule Prim here. Thereby we consider the position p’ of the subterm
that has been rewritten in the generalised paramodulation step. (i) If the
position p’ in literal [T1[A /B]p: yp1]* refers to a proper subterm then we get
the assertion analogously to the cases for r € {Res, Fac} above by switching
the first two derivation steps and employing the induction hypotheses. (ii) In
the other case position p' refers to a flexible prefix term of T1[A/B]pn (3.

ie.
A
[(...(...(H Uy)...Ug)...U,)" (%)
for 0 < k < n. In case k¥ = n we can replace the initial paramodulation

step in Ay by an alternative one not employing generalised paramodulation
by (la) and get the assertion by induction hypothesis. In case & < n we
first apply positive extensionality rule Func’ for (k — n)-times to the clause
[A = B]7 leading to [A Yk-7 = B Y#-n]T_ This time we can replace the
initial paramodulation step in Ay by an alternative one by (1b) and then
employ induction hypothesis.

r € {Subst, Triv, Func, Dec, FlexRigid, Flex Flex, Equiv, Leib}: If position p’ in
literal [T1[A/B]pn(p13]* refers to a flexible prefix term as illustrated in (*)
above we get the assertion analogously to above either immediately by (1a)
and induction hypotheses, or by (1b) in combination with an appropriate mod-
ification of clause [A = B]”T with rule Func’. Tf on the other hand position
p refers to a proper subterm of [T1[A/B]pnp3]® then we get the result by
employing derivation that is analogous to one already employed in remark 5.2.

r=Cnf: We again differentiate between the following two cases: (i) position p’
in [T1[A/B]pnp3]* refers to proper subterm of the literals atom and (ii)
position p’ in [T1[A/B]pnp1}]* refers to a prefix term of the atom (see (*)
above). In case (i) the assertion follows by induction hypothesis after switching
the first two derivation steps. This is possible as derivation step r is obviously
also applicable to the initial clause first such that an subsequent application of
rule Para leads to Cs. In case (ii) the argumentation is analogous to the case
(ii) for r € {Prim, Func', Equiv'} discussed above, i.e. we get the assertion
by employing either (1a) and induction hypotheses or by (1b) in combination
with an n-times application of rule Func’ to literal [A = B]7 and induction
hypotheses.

O

Theorem 6.12 (Completeness of ERUE:). The calculus ERUE;. is complete with respect to
Henkin models.

Proof: Let Iz be the set of X-sentences which cannot be refuted by the calculus ERUE.
(I :={® C cuff,(X)|Pu Vere, O}), then we show that Is is a saturated abstract consistency
class for Henkin models with primitive equality 2.3. This entails completeness with the model
existence theorem for Henkin models with primitive equality 2.1(2).

First we have to verify that Ix validates the abstract consistency properties V., V., Vg, W,
Va, Y. Va3, V. V; and that Iy is saturated. For all of these cases the proofs are identical to

40 7 EXAMPLES

the corresponding argumentations in theorem 3.16. The only difference is that we employ the
lemmata 6.9(1)-(2) and 6.7 instead of 3.15(1)-(2) and 3.12. Thus, all we need to ensure is the
validity of the additional abstract consistency property V, for primitive equality.

Ve (r) "(A="A)¢®
(s) if F[A], € ® and A =B € ®, then & xF[B], € I;
(r) We have that [A == A} 77" O and thus —=(A = A) ¢ ®.

(s) Analogously to 5.20 we show the contrapositive of the assertion and thus we assume that there
is derivation Aq : ®,; * [F[B]p]T Ferue,. 0. Now consider the following ERUE.-derivation:

[F[A],]” [A=B]
[F[B],]"

(GRue

By lemma 6.11(2) we know that the generalised paramodulation rule GPara is admissible for
calculus ERUE;, and thus there is a ERUEs-derivation {[F[A]]7.[A = B]"} Feme, [F[B]]”.
Consequently there is a derivation Ay : ® * [F[A]]” * [A = B]” Ferye, ®a® * [F[A]]7 x [A
B]” # [F[B],])” terug,. O which completes the proof.

O

6.5 Theorem Equivalence

Analogously to subsections 3.5 and 5.6 we now prove that ERUE;. and ERUE; are theorem equivalent.
Theorem equivalence of ERUE;, and ERUE is then presented as a conjecture that has not been
formally proven yet.

Lemma 6.13 (Proper Clauses in ERUE and ERUEs). For each non-proper clause C and clause
set ® such that ®* Ferye,, C we have that @ Ferye, C.

Proof: Analogously to lemmata 3.20 and 5.21. Resolution on unification constraints does not
cause any additional problems. O

As O is also a proper clause we immediately get the following corollary:

Corollary 6.14 (Theorem Equivalence of ERUE:.. and ERUE). The calculi ERUE; and ERUE;

are theorem equivalent.

Conjecture 6.15 (Theorem Equivalence of ERUE and ERUE;. (or ERUE:)). The calculi ERUE
and ERUEs. (or ERUEs) are theorem equivalent.

Again the author expects that the proof for this conjecture will be analogous to the proof
of the theorem equivalence for calculi ERy. and ER (or EPy and EP) and thus this conjecture
gains evidence by the examples already carried out with the LEo-prover [BK98b] for extensional
higher-order resolution as well as the new challenging examples discussed for extensional higher-
order paramodulation discussed those for extensional higher-order paramodulation discussed in
section 7. There is example known to the author that demonstrates the necessity of rule FlexFlez.

7 Examples

This section presents a couple of interesting examples that illustrate the basic ideas of the calculi
ER, EP and ERUE discussed in this paper or even compare refutations in the different calculi
with each other. Furthermore, nearly all examples demonstrate the importance of an appropriate
extensionality treatment in a higher-order theorem prover.

7.1 Decomposition in R

This examples demonstrates the basic ideas of extensional higher-order resolution and illustrates
that this approach can also be seen as test calculus for extensional higher-order FE-unification.

7.1 Decomposition in ER 41

Furthermore, it focuses on the role of the decomposition rule in connection with the extensionality
rules and compares the slightly modified decomposition rule used in this paper with the rule Dec’
used in [BK98a]:
CV[h T =h V"
cvul=vifyv.. v[u"=v"F

Dec’

Our example extends example E1 from [BK98a]: Suppose we have four function constants
(f(a_m)_m_m, J(asa)sa—sa: Nasa and Ja—a) and we know that f equals g and h equals j
(in the F-unification perspective we can assume that this two equations define our theory F). We
want to prove that under this assumptions (under this theory) (f h) equals (¢ j). Depending on
the concrete encoding of the assumptions and the assertion this proof problem is either trivial or
challenging for a automated theorem prover (as we may need to employ the extensionality princi-
ples). A challenging formulation that uses Leibniz equality is:

EPC (VX Wou (f X V) = (9 X V) A (VZa. (h Z2) = (2)) = (f h) = (9 J)

When expanding the definition of =, negating the theorem and applying pre-clausification we
obtain the following pre-clauses for this example:

Ci [VPassor VX om0 VYo = f X Y) V(P (g X Y)
C? . [VQQ—HJVZQ- . _'(Q (h Z)) Z))]
Ca: [F(VR(assa)m o (2(R (f h))) ((g "

By clause normalisation (rule Cnf) we get:

Cat[P(FXYIVIP (g XY)]IT C:[Q (R 2N VIQ (G Z)
Co:[r (f R)IF Cr:[r (g NI”
The reader may easily check that resolving Cs and C7 against C4 does not lead to successful proof

attempt (c.f. discussion of example E1 in [BK98a]).
A refutation 1s obviously possible with decomposition rule Dec’:

Res(Cs,Cr) : Cs:[r (fFR)y=r (g)]F
Dec (Cg), Triv: Co:[f h=g jI¥
Ded(C) : Cio:[f=g)" VIh=j]"
2x Fune(Cio): Cii:[fts=gts]fVhu=ju¥
2x Leib(Cr1) : Ciz: [VPassor (P (f 1 5)) V(P (9t)" VVQaso =(Q (R)V (Q (j u))]”
Cnf(Ci2) : Cis:[p (ft9)]" Vg (hw)]” Ciat[p (F9)]" Vg (5 w]"
Cis:[p (9t 5)]" Vg (hu)]" Cio:[p (gt s)]" Vg (5)"
Prim(C4) : Cir: [P (fF XV)TVIP (9 X YT
Prim(Cs) : Cis: [Q (h 2)]" VIQ' (5 Z)IF

Within this derivation ta—a. Sa, Ua; Paso and ¢a—so are new Skolem terms and P._, . QL _,,

new predicate variables. The rest of the refutation is now simple straightforward resolution be-
tween the clauses C13—C16 and our assumption clauses C4,Cs.C17 and Cis.
A alternative refutation that uses the rule Dec is a bit more tricky:

Res(Ce.C7) 1 Cs:[r (f h)=r (g)]
Dec(Cs) : Co:[fh=g"

are

Fune(Cq) : Cro:[fhs=gjs]"
Leib(Cro): Cit i [VPasse ~(P (f R 8)) V(P (g5 8)]7
Cnf(Ci): Ciotlp (fhs)]" Cia:[p (9.5)"

Res(C12.Ca): Ca: [P (g X YV)TVI[p(fhs)=P (f X V)
Res(Crs,Ca) : Cis [P (F XY VIp(gjs)=P (g X V)T

Note that the unification constraint in Ci4 as well as in Cis 1s solvable with an imita-
tion and a projection solution and that this solutions can be computed by eager unifica-

42 7 EXAMPLES

tion with the pre-unification rules. In our proof we choose for Ci4 the “projection” solution
o1 = [AXa. pX/P,h/X,s/Y] and for Cy5 the simple imitation solution s := [AX,.p (g j s)/P’].
We propagate this solutions back to the non-unification literals of the clauses and proceed as fol-
lows:

UNI(614) : 616 : [p (g h S)]T

UNZ(C:5) - Ciz:[p (97 9)]"

Res(Cre.C17) 1 Cis:[p (9 hs)=p (g s)]"

2x Dec(Cig) : Cig:[hs=7j)t

Leib(Cro) . Con: ¥Quoror ~(@ (h) V (@ (5]

Cnf(Ca) : Ca1 2 [g (b s)]" Coz g (5 9)]"
Res(Cor.Cs) = Cos 1Q (j)] VIa (h) =Q (h Z)]"

Res(Cor.Co) : Cay - [Q' (h 2P Vg (j 5) = Q' (7 2)]F

Res(Cos, Cos) : 1Q G 7) = @ (h 201" VI (h's) = Q (h 207 Vg (5 5) =@ (G 7))

This unification constraint is obviously solvable with unifier o .= [AX,. ¢ (h $)/Q. AXa.q X/Q'. s/ 7]
and this solution can be computed with the pre-unification rules.

When considering this examples the question arises whether rule Dec or rule rule Dec’ is better
suitable within calculus ER. This problem should be examined and clarified by experiments in
the Lro-prover. As an alternative to [BK98a] and in order to easify the proofs we decided in this
paper to use Dec.

7.2 Leibniz Equality and Alternative Definitions in &R

The examples discussed in this sub-section focus on the equivalence of Leibniz equality and alter-
native definitions for equality in higher-order logic.

The definitions for equality that are compared are:
Leibniz Equality =% = \X,. \Y,.VP,,,. PX = PY
Reflexivity Definition =% = AX,. A\Y,. VQory om0 (VZa- (Q Z Z2)) = (Q X V)

Modified Leibniz Equality =% := AX,. A\Y,. VP, .. ((a,V=a,)AP X) = ((b,V=b,)APY)
Leibniz equality employs the substitutivity principle whereas the second alternative definition'®
employs the reflexivity principle. The third (artificial) definition illustrates that there are infinetely
many analogous modifications of Leibniz equality (and also of the Reflexivity Definition) which
in Henkin semantics all denote the same relation, namely equality. This examples furthermore
illustrates that it is not possible to decide whether a given formula denotes the equality relation
as this would require to decide the equivalence of two formulas.

ET (i) (u =" v) = (v =% v) and (ii) (u =% v) = (u =" v)

In case (i) we use the following refutation (ga—a—, is a new Skolem constant):

C/V]:(l) N C1 : [
CQ : [
Cs:[q uv]
Res(Cy,C3) : Cq:|
UNT(Cys) mit {AX.qu X/P}: C5:]
Res(C2,Cs), Triv : O

A refutation in case (ii) looks like (p,_, is a new Skolem constant):

18 This definition is presented and discussed in Andrews textbook [And86] at page 155.

7.3 Positive Extensionality Rules in EP and ERUE 43

CNF (i) : Ci:1Qz 2] v[Q u]
Co:[pul”
Cs:[pv]”
Prim(Cy), Subst : Ca: Q' 22T VI[Q uv]F
Res(Cq,C3) : Cs:[Q 22" VIQuuv=p]F
UNT(Cs) mit {A\X,Y.pY/P}: Cs:[p2]"
Res(C4,Co) : Cr:[Q 22" VIQ uv=pull
UNT(Cs) mit {AX,Y.p X/P}: Cs:[p=2]T
Res(Cs.Cs), Triv : O

EF (i) (u =" v) = (v =% v) and (ii) (v =% v) = (u =" v)

In case (i) we proceed as follows:

CNF (i) : Ci:[PuF V[P

Cy: [pult viat

Cs:[p U]T Vv [(J]F

Ca:[pv)f' VI[a]®

Cs : [p v]¥ Vv [a)F
Res(C2,C3), Fac,2x Triv: Cs:[p U]T
Res(C4,C5), Fac,2x Triv: Cr:[p 1;]T
Res(C1,Cs) : Cs: [P v]T V[P u=pu]
Res(Cs,Cr) : Co: [Pu=pul" V[P v=py
UNT(Cy) with [p/P]: O

For (ii) we have

CNF (i) - Ci:[a]" VIPu]F vV[B]F V[P T
Cy:[a]" V[P u]lf VBT V[P]T
Ca:[a]T VIP T VBT V[P]T
Ca:[a)T VP uF V[T VI[P 4T
Cs:[pul”
Ce: [pv]F
RES(C1 C2),3 x Fac,4 x Triv: Cr:[a]f V[P u]F V[P v]T
Res(Cs,C4),3 x Fac,4 x Triv: Cg:[a]T V[P u]F V[P v]T
5(C7 Cg).2 x Fac,3 x Triv: Co: V[P u]f' V[P v]T
Res(Co, Cy) : Cio[P v]T V[P u = pu]”
Res(Cio,Cs) : Ci1[P u=pu]" V[P v =puv]"
UNT(Cy1) with [p/P]: O

(Alternatively we can also prove that :'aia_m_mia) which is a bit more complicate.)

7.3 Positive Extensionality Rules in &P and ERUE

The examples discussed here illustrate that the positive extensionality rules (or extensionality
axioms which we want to avoid) are unavoidable in order to reach a Henkin completeness for our
higher-order paramodulation approach &P and RUE-resolution approach ERUE. As discussed in
detail in section 4 none of these examples can be proven within naive higher-order paramodulation
approach EPpnqive (or in an analogous naive RUE-resoluttion approach).

Ef ¢ [a = —a]T Refutation in P and ERUE
Equiv'(Cy), CNF Co: [AIF VIAIF C3:[A]T v[A]T
Fac(Cs),UNT, Fac(C3),UNT: C4: [A)F Cs : [A]T
Res(Ca,Cs), UNT: Ce : O

Obviously paramodulation rule is not needed and thus this proof is also possible in calculus

44

Para
E2

Para
E3

Para
E4

Para
E5

7 EXAMPLES

ERUE .

C:[G X ==pT Refutation in EP and ERUE
Fund(Cy) : C: [GXY="pY]"
Equiv' (Cy) G [GXYIFVvpYT C:[GXY|TVvpY]r
Prim(C3), Subst : Cs:[G' X Y]Tv[pY]T

Prim(C4), Subst : Co : [G" X V]IV [p Y]
Fac(Cs), UNT: Cr[pY]T

Fac(Ce), UNT : Cs:[p Y]

RES(C7, Cg),UNI: Cg :d

Paramodulation rule is not needed and thus this proof is also possible in calculus ERUE.

Ci:[m=AX, (IXo- X A —|X)]T Refutation in P and ERUE
Fund(Cy) : Co:[MY,=(3X,. XA —|X)]T
Equiv'(Cs) : Cs:[M Y)F v I[s]F Ca:[M Y]V I[s])F
Prim(Cs), Subst : Cs: [H YT v[s]T
Fac(Ca),UNT, Fac(Cs),UNL: Cs : [s]T Cr: [s]7
Res(Cs,C7),UNT: Cs: O

where s, is a skolem constant for X. The paramodulation rule is not needed and thus this
proof is also possible in calculus ERUE.

C1:[m=XX,. ~(m X)]T Refutation in P and ERUE
Fund'(Cy) : Co:[mY ==(mY)]T
Equiv'(C) : Cs:mY]TVmY]T Ci:[mY]FV[mY]F
Fac(C3),UNT, Fac(Ca),UNT: C5:[m Y]T Co : [m YIF
Res(Cs, Ce) UNT : Cr:d

The paramodulation rule is not needed and thus this proof is also possible in calculus ERUE.

Cl . [P q —t===0 p T]T CQ . [q X =t—o _|(7, X)]T
where Py, 50)—s(1—1—10): X, are free variables and q,, ., 7,5, , are function constants.
Refutation in &P

3x Fund(Cy): C3:[PqYY2Y2="PrY!V2V3T
Fund'(Cs) : Ca:lg X Z,=°=(r X Z)]T
Para(Cs.Cs): Cs [P ¥ Y2 YT VIP g V) V2VP =2 (¢ X 720 =(r X 2))]"

Now (pre)-unification applied to Cs is able to compute the following unifier for the unifi-
cation constraint: {AU,,,. V., W,,T,. U V W =° =(r V W)/P,V/Y',W/Y?}. By eager

substitution with rule Subst we therefore get:
UNT(Cs), Subst : Co:[r X 7 ="=(r X Z)|F

The rest of the refutation is analogous to EFare.
Refutation in ERUE

3 x Fund' (Cy) : C3:[PqY'Y2Y2=PrYv!'V2V3T
Fund(C») : Ca:lg X 7, ="=(r X 2)]T
Equiv'(C3) : Cs:[Pq Y, Y2YIPVPry! V2YIT
Co: [P g Y Y2YITV[PrY! V2 YA
Equiv'(C4),Cnf: Cr:lg X 21 Vv[r X 717 Cs: g X Z2]7"Vv[rXx 77

The rest of the refutation is straightforward resolution on Cs, Cs.

7.4 Comparing EP and ERUE 45

7.4 Comparing EP and ERUE
7.4.1 Properties of Primitive Equality

In this examples we prove that primitive equality denotes an extensional congruence relation in
all Henkin models (i.e. the intended equality relation). The single properties to be checked are
reflexivity, symmetry, transitivity, congruence and extensionality.

E-

E:

S

t

E:

€

VA, A =A. Clause normalisation leads to (a, is a new Skolem constant):

Refutation in £P: immediately by unification.
Refutation in ERUE: immediately by unification.

VAs, Bo. (A =% B) = (B =* A). Clause normalisation leads to (aa, ba,pa—yo are new
Skolem constants):

Refutation in &P:
Leib(Cy), CNF Ca:[pa]l Cy:[pb]”
Para(Cy,Cs), Triv: Cs: [pb]”
Res(C4,C5), Triv: O

Refutation in ERUE:

Res(C1,Cs), Triv: O (possible beause of symmetry convention for unification constraints)

VA4, Bo,Coao (A = B)A(B = C) = (A C). Clause normalisation leads to

(an, ba Co: Pa—so are new Skolem constants):
Ci:fa=b" Co:[b=¢]” Cs:[a=c"

Refutation in &P:
Leib(Cs), CNF Ca:[pat Cs:[pc*
Para(Cy,Cq), Triv: Cs: [pb]T
Para(C2,Ce), Triv: Cr7:[pc]”
Res(Ce,C7), Triv: O

Refutation in ERUE:
Res(c3,¢2) : Ca:lla=c)=(b=c)F
2 x Dec(cd), Triv: Cs:[a=b]F
Res(cl, b)), UNT: (g :0O

VFasp. YAg, Bo. (A =* B) = (F A =F F B). Clause normalisation leads to
(ag,ba fa_w Pp—o are new Skolem constants):

Ci:la=0b"t Co:[fa=fbF

Refutation in &P:
Leib(Ca). CNF - Ca:[p(f a)]T Ca:[p(f b)]F
Para(Cy,C3), Triv: Cs:[p (f b)]T
Res(Cs,C4), Triv: O
Refutation in ERUE:
Dec(c2), Triv : Cs:la=0b"
Res(cl,e3),UNT: C4:0

VFusp.Gaspge (VAo (F A =P G A) = (F = G). Clause normalisation leads to

(fasp.9a=p. Pp—o. Sp are new Skolem constants):

Clz[fA:gA]T CQI[f:g]F

46 7 EXAMPLES

Refutation in &P:
Func(Cs) : Cs:[fs=gs|
Leib(Cs), CNF Ca:[p(f
Para(Ca,C1),UNZ: Cs:[p (g
365(06,05),UNI: O

Refutation in ERUE:
Func(Cs) : Ca:[fs=gs)F
Res(cl,¢e3),UNLZ: C4:0O

Especially EZ shows that in extensional higher-order paramodulation it might be useful to allow
paramodulation also on unification constraints in order to get shorter and easier proofs whithout
recursive calls from within the unification process. On the other hand allowing unification process
to interact with unrestricted paramodulation and recursive calls to the overall proof search (which
can still not be avoided generally) seems to be hardly tractable in practice.

7.4.2 Primitive Equality and Leibniz Equality

Here we analyze in our extensional higher-order paramodulation approach whether Leibniz equality
and primitive equality denote the same relation. Analogous proofs are also possible in extensional

higher-order RUE-resolution.
T We prove that =*=2722°=2 je that (AX. A\Y.VP,,, P X = P y)=o7emo=>

Refutation in &P (u,, vo and po—yo. §o—o: To—o are Skolem constants)

CNF(EZ) : Ci: [(AX.AY. VP P X = P Y) =0@m0—a]F
2 x Func(Cy) : Cy: [(VPassor Pu= Pv)=° (u="v))¥
Equiv(C2),CNF : C3:[pu]t vu=2]¥

Ca:lpulf' Vviu==v]¥

Cs: [Po]f viu=2v]t VP ¥
Res(C3,Cq), Triv: Cs:[u=2>v]"V[u==v]"
2 x Letb(Ce) : Cr: [VQosso @ u=Q v]' V[VRasyor Ru= R vl
CNF(Cr) - Cs:[qgu]T VIru]T
Co: [qgu]T VIrF
Cio:[qgv]F Vv [ru]T
Ci1:[qv]F v[ro]F
Prim(Cs) : Cia: [P o]T V]u="v]T V[P u]F
V[P =*7° X X. (Ha_m X) = (H,_, X)]
Subst(C12) : Ciz: [(H v) = (H' v)]T V[u="]T VI[(H u) => (H" u)|"
Fac(Cia) : Cig:u="4]TV [(H u) = (H' u)]¥
VI((H v) =* (H' v)) =° (u = 1/)]F
2 x Dec(C1a) : Cis [u="o]" V[(H u) =" (H' u)]" V[(H v) = u]"
V[(H' v) = v]F
2 x FlexRigid(Ci5) : Cig:[u="v]TV [(H u) a(H)P V[H v)=uF

VI(H') =1]" V [H = AX.)" V[H AX .. X]F

2 x Subst(Cy¢) : Ciz:[u="vTVu=2ulVu=nu]l [’b]
VIH = XX,. u]" V [H' = \X,. X]¥
2 x Triv(Ci7) : Cig: [u=>v]T

4 x Para({Cs,...,Ci1},Cis), Triv :
Cio: [qv]T Vru]T Co:[qge]T VIro]" Cor:[qgu]" VIro]T Caz:qgu]f V[re]F
Straight forward Resolution on Cig,...,Cq9:0
Refutation in ERUE
We replay the derivation above and instead of the paramodulation steps between Cs,C1
and Ci1g we resolve between Ci1g and the unification constraint Cs.

ES We prove that =270 je. that VQ(asaso)so)r (@ (AX. AY. VP, P X =

7.4 Comparing EP and ERUE 47

PY))=(Q@ =)

Refutation in P (¢(a—a—0)=0 is a Skolem constant):

CNF(ET) : Ci:lg M X.AY. VP, ,,.PX=PY)T
Cy:lg ="1"
Res(Cy.Co) : Cs:[(¢ AX.AY.VPyso. P X = PY))=27270 (¢ =2)]F
Dec(Cs), Triv: Ca:[(AX.AY.VPysyoe P X = PY) =000l
C4 is identical to €y in the corresponding refutation for ET above:...O

Refutation in ERUE
Analogous to the ERUE-refutation for ET.

7.4.3 Reasoning about Sets

E:¢* If the set of odd numerals is defined as the set of non-even numerals then the powerset
of the set of odd numerals greater than 100 is equal to the powerset of the set of even
numerals greater that 100:

{X| odd X Anum X} ={X| - ev X Anum X} =
2{X| odd XAnum XAX>100} _ 2{X| - ev XAnum XAX>100}

where the powerset is defined by AMy 0. ANg 0. VX0 N X = M X. Clause normali-
sation leads to:

Ci - [AX. (odd X Anum X) = AX. (= ev X Anum X)]|T
Cy: [AN.VX. N X = ((odd X Anum X) A X > 100)) =
(AN.VX. N X = ((=ev X Anum X)A X > 100)))]"

A short refutation in paramodulation calculus &P looks like:

Fund'(Cy) : Cs:[(odd Y Anum Y) = (= ev Y Anum Y)|'

Fune(Co) : Cs : [(VX.n X = ((odd X Anum X)AX > 100))
=(VX.n X = ((- ev X Anum X)A X > 100)))]¥

Equiv(Cs) : Cs: VX.n X = ((odd X Anum X) A X > 100)]Tv

VX.n X = ((— ev X Anum X) A X > 100)]7
Ce: VX.n X = ((odd X Anum X) A X > 100)]FV
VX.n X = ((— ev X Anum X)A X > 100)]F
Para(Cs,Cs), Triv: C7:[VX.n X = ((mev X Anum X)A X > 100)]Tv
VX.n X = ((— ev X Anum X) A X > 100)]7
Fac(Cr), Triv : Cg:[VX.n X = ((—ev X Anum X) A X > 100)]7
Para(Cs,C3), Triv: Co:[VX.n X = ((= ev X Anum X) A X > 100)]"V
VX.n X = ((mev X Anum X)A X > 100)]"
Fac(Cy), Triv : Cio: [VX.n X = ((= ev X Anum X)A X > 100))7
Res(Cs,Cio), Triv: O

The ERUE-refutation seems to have a more goal directed character and is at least not
more complicate than the above paramodulation proof:

Func'(Cq) : Ca:[(odd Y Anum Y) = (= ev Y Anum Y)]!

Fune(Cs) : Cs:[(VX.n X = ((odd X Anum X) A X > 100))
=(VX.n X = ((mev X Anum X) A X > 100)))]"

Dec(C4), Triv Cs: [(AX.n X = ((odd X Anum X) A X > 100))
=(AX.n X = ((mev X Anum X) A X > 100)))]"

Fune(Cs) : Cs : [(n s = ((odd s Anum s) As > 100))

=(ns= ((-evsAnums)As>100)))]"
3 x Dec(Cs), Triv: Cz:[(odd s Anum s) = (= ev s Anum s)]¥
Res(C7,C3),UNZ: O

48 7 EXAMPLES

If we slightly modify the example by switching the first two conjuncts in the defini-
tion of odd numerals (i.e. C; : [AX. (num X Aodd X) = AX. (= ev X Anum X)|T
and C3 : [(odd X Anum X) = (= ev X Anum X)]T), then both refutations obviously
needs to employ additional recursive calls from within unification in order to show that
[(num X Aodd X) = (odd X Anum X)]F is a solvable extensional unification prob-
lem. More precisely in an analogous paramodulation refutation additional recursive calls
are necessary to justify the paramodulation steps leading to Cs and C1g. These clauses
would look like Cs : [VX.n X = ((-mev X Anum X)AX > 100)]T V [(num X A
odd X) = (odd X A num X)]F and Cig : [VX.n X = (- ev X Anum X)AX >
100)] V [(num X Aodd X) = (odd X Anum X)]¥ and in both cases the unification
constraints can be eliminated by recursive calls to overall proof procedure. In an RUE-
resolution refutation that is analogous to the above one the last derivation step would
result in Res(C5,C3) : C7 : [(odd s Anum s) = (= ev s Anum s) = (num s A odd s) =
(= ev s Anum s)]¥ such that decomposition and subsequent elimination of trivial pairs
leads to Cg : [(num X A odd X) = (odd X Anum X)]¥. Then an recursive call to the
overall proof procedure leads to the refutation.

Our examples above demonstrates that a refutation based on a term-rewriting idea most likely
needs to perform recursive calls that are itself based on the difference reduction idea in case
syntactical unification is not strong enough to justify the particular rewrite steps. Thus in practice
the paramodulation approach needs both: appropriate heuristics in order to guide a proof along
the term-rewriting idea and appropriate heuristics that guide the side computations based on the
difference reduction idea.

The following example demonstrates that in some situations the term-rewriting idea even seems
to be completely inappropriate. The problem in this example which again only slightly modifies
example Ef¢* above is that the term structure of the involved terms does not allow the positive
equation to rewrite at the right subterms. This example additionally illustrates that an efficient
paramodulation approach is probably not easy to mechanize in practice (even if suitable reduction
orderings are available).

E$*" We now artificially complicate problem E$¢* by switching the conjuncts in the conclu-
sion such that the term-rewriting idea seems to completely inappropriate. Instead we
obviously have to employ difference reduction as main proof idea. Qur sligthly modified
problem is given by:

{X]odd X Anum X} ={X| ~ev X Anum X} =
2{X| (odd XAX>100)Anum X} _ 2{X| (7 ev XAX>100)Anum X}

Clause normalisation leads to:

Ci : [AX. (odd X Anum X) = AX. (= ev X Anum X)|T
Cy : [(AN.YX. N X = ((odd X A X > 100) A num X))
= (AN.VX. N X = ((mev X AX > 100) Anum X))

——

We proceed analogous to example E§¢¢:

Func'(C1): Cs:[(odd X Anum X) = (= ev X Anum X)]T
Fune(C) 1 Cq:[(VX.n X = ((odd s As > 100) A num s)) =

(VX.n X = ((— ev s As > 100) Anum s))]¥

In we follow the paramodulation based refutation for E{¢ we would perform a recur-
sive call to the refutation process with rule Fquiv and then try to rewrite the resulting
clauses:

Equiv(Cs): C5:[VX.n X = ((odd X A X > 100) Anum X)]Tv
VX.n X = ((mev X AX > 100) Anum X)]T

Co: [VX.n X = ((odd X A X > 100) A num X)]¥'v
VX.n X = ((— ev X A X > 100) A num X)]¥

7.4 Comparing EP and ERUE 49

Sure there are many different rewwrite steps possible with C3, but as the reader may
convince himself, none of these rewrite steps leads to unification constraints that are solv-
able (even recursive calls to the overall proof procedure cannot help and unfortunately
only overwhelm the search space with useless clauses). The problem is that the right
paramodulation step is not possible because of the unfortunately chosen term-structure
(i.e. order of the conjuncts in the literals to be rewritten). The only way the author
explored to find a refutation is to employ difference-reduction techniques as motivated

by the corresponding RUE-resolution based derivation in example E$¢* above:

Dec(Ca). Triv: Cs:[(AX.n X = ((odd X A X > 100) A num X))

=(AX.n X = ((-ev X AX > 100) Anum X)))]¥
Func(Cs) : Cs : [(n s = ((odd s As > 100) A num s))

= (n s= ((— ev s A s> 100) A num s)))]’
Dec(Cs), Triv . C7:[((odd s As > 100) Anum s) = ((— ev s A s > 100) A num)]

Instead of immediately resolving beetween C7 and Cs as in the corresponding derivation
for E$¢* we employ the extensionality rules to both clauses and proceed with a straight-
forward resolution proof.

Equiv(C7)CNF,

Fac,UNT: Cs : [odd s]T V [ev 5]
Co : [odd s]T V [s > 100]T (subsumed by Ci2)
Cio : [odd s]T V [num s]T (subsumed by Cis)

Ci1:[s > 10017 V [ev s]F (subsumed by Ci2)
012 : [S > 100]T

Ciz: [s > 10017 V [num s]T (subsumed by Ci2)
Cia : [num s]T V[ev s]F' (subsumed by Ci6)
Cis : [num s]T v [s > 100]7 (subsumed by Cis)
Cig : [num s]T

Ci7 : [odd s]T v [s > 10017V [num s]T V [ev s]T

Equiv'(C3), CNF,
Fac,UNT: Cis : [odd X]F V [num X]F'V [ev X]F
Cio : [odd X]T V [num X7V [ev X7

Res(Ci2,Ci7), UNT: Cop : [0dd s|FV [num s]F V [ev s]T

Res(Cig, Cao), UNL: Co : [0dd s]F v [ev s]T

Res(Cig, Ci8), UNL: Cao : [0dd XV [ev X
Res(Cis,C19), UNL: Cas : [odd X]T V [ev X]T

Straightforward resolution refutation withCs, Ca1, Ca9, Cas

An alternative Refutation in RUE-resolution approach that illustrates the difference-
reduction idea even better is the following:
Res(C3,C7) : Cs: [((odd X Anum X) = (= ev X Anum X)) =
(((odd s A's > 100) Anum s) = ((= ev s A s > 100) A num s)]"
Equiv(Cs),Cnf :
C7: [(odd X Anum X) = (= ev X Anum X)]Tv
[((odd s A's > 100) Anum s) = ((— ev s A's > 100) A num s)]7
Cs : [(odd X Anum X) = (= ev X Anum X))V
[((odd s As > 100) Anum s) = ((— ev s As > 100) A num s)]¥
2 x Equiv'(C7),Cnf, Fac, Triv :
Co : [odd s]T V [ev s]T V [odd X]T V [ev X]T V [num s]T V [s > 10017 V [num X]F
Cio : [odd X]T V [ev X]T V [ev s]T V [num s]7 V [s > 10017V [odd s]7 V [num X]F
Ci1 : [odd 5|7V [ev s]T V [num s]F V [s > 10017 V [ev X]T V [num X]F V [odd X]F
Cia : [ev 8]V [num]V [s > 10017V [odd s]T V [ev X]T V [num X]F V [odd X]F

50 REFERENCES

2 x Equiv'(C7),Cnf, Fac, Triv :
Ciz : [num S]T \Y% [mlm X

Ciq i [s> 100] V [num X7

Cis : [odd s]T V [num X]T \Y [EL‘ s]F

Cig i [s > 100] V [odd X] V[ev X7

Ci7 : [odd s]T V [odd X]T [ev s]F v [ew X)F

Cig : [s > 100] Viev X7V [odd X]F V [num X]F

Cio : [ev s]T V [num X]T V [odd s]7 V [num s]¥ v [s > 100]"

Cao : [ev s]T V [odd X]T V [odd S]F V [num s]F v [s > 10017 V [ev X

Cor : [ev s]T V [ev X]T V [odd s]T V [num s]T v [s > 10017 V [odd X]¥" V [num X
Straight forward resolution proof on Cqy,...,Co1 : O

We could even resolve immediately between Cs and C4 and proceed with a recursive call
to the overall proof procedure as illustrated above. The resulting set of clauses then
again increases a bit but a straightforward resolution proof is still easy to find.

8 Conclusion

We presented the two approaches &P and ERUE for extensional higher-order paramodulation and
RUE-resolution which extend the extensional higher-order resolution approach ER [BK98a] by a
primitive equality treatment. All three approaches avoid the extensionality axioms and employ
more goal directed extensionality rules instead. An interesting difference to Huet’s original con-
straint resolution approach [Hue72] is that eager (pre-)unification becomes essential and is not
generally delayable when an extensionality treatment is needed.

Henkin completeness has been proven for the slightly extended approaches ERy. Py and ERUE; .
which additionally employ the guessing FlexFlex unification rule. Completeness of the pure ap-
proaches was presented only as a challenging claim and the crucial task will be to prove the
admissibility of rule FlexFlex.

Furthermore, it has been motivated that some problems that require an extensionality treat-
ment cannot be solved in the paramodulation approach €P by following the term-rewriting idea
only. And it seems to be rather difficult to find suitable heuristics combining the term-rewriting
and difference-reducing aspects of our approach in practice. As on the other hand the difference-
reducing calculus ERUE seems to harmonise rather well with the (difference-reducing) extension-
ality rules (or axioms), this paper concludes with the question: Can HO adaptations of term-
rewriting approaches keep their superiority (at least in many domains) known from FO if one is
interested in Henkin completeness and extensionality, e.g. when reasoning about sets, where sets
are encoded as characteristic functions? Further work will be to examine this aspect with the help
of the LEQO-system [BK98b] and to investigate the open questions of this paper.

Acknowledgments The work reported here was funded by the Deutsche Forschungsgemein-
schaft under grant HOTEL. The author is grateful to M. Kohlhase, F. Pfenning, P. Andrews,
V. Sorge and S. Autexier for stimulating discussions and support.

References

[AMS98] Serge Autexier, Heiko Mantel, and Werner Stephan. Simultaneous quantifier elimina-
tion. In O. Herzog and A. Ginter, editors, K1-98: Advances in Artificial Intelligence,
22nd Annual German Conference on Artificial Intelligence, Bremen, Germany, 1998.
Springer Verlag, LNCS 1504.

[And71] Peter B. Andrews. Resolution in type theory. Journal of Symbolic Logic, 36(3):414-432,
1971.

REFERENCES 51

[And72]

[And86]

[Bar80]

[Bar84]
[BCF+97]

[Ben97]

[BGLS92]

[BK97a]

[BK97b]

[BK98a]

[BK98b]

[Byl89]
[Chu40]

[Dar68]

[Dig79]

[GS89]

[HBVL97]

[Hen50]

[HueT2]

Peter B. Andrews. General models descriptions and choice in type theory. Journal of

Symbolic Logic, 37(2):385-394, 1972.

Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To Truth
Through Proof. Academic Press, 1986.

Hendrik P. Barendregt. The Lambda-Calculus: Its Syntar and Semantics. North-
Holland, 1980.

H. P. Barendregt. The Lambda Calculus. North Holland, 1984.

C. Benzmiller, L. Cheikhrouhou, D. Fehrer, A. Fiedler, X. Huang, M. Kerber,
M. Kohlhase, K. Konrad, E. Melis, A. Meier, W. Schaarschmidt, J. Siekmann, and
V. Sorge. QMEGA: Towards a mathematical assistant. In William McCune, editor,
Proceedings of the 14th Conference on Automated Deduction, number 1249 in LNAI,
pages 252-255, Townsville, Australia, 1997. Springer Verlag.

Christoph Benzmuiiller. A calculus and a system architecture for extensional higher-
order resolution. Research Report 97-198, Department of Mathematical Sciences,
Carnegie Mellon University, Pittsburgh,USA, June 1997.

Leo Bachmair, Harald Ganzinger, Christopher Lynch, and Wayne Snyder. Basic
paramodulation and superposition. In Kapur [Kap92]. pages 66-78.

Christoph Benzmuller and Michael Kohlhase. Resolution for Henkin models. SEKI-
Report SR-97-10, Universitat des Saarlandes, 1997.

Christoph Benzmiiuller and Michael Kohlhase. Model existence for higher-order logic.
SEKI-Report SR-97-09. Universitat des Saarlandes, 1997.

Christoph Benzmiiller and Michael Kohlhase. Extensional higher order resolution. In
Kirchner and Kirchner [KK98], pages 56—72.

Christoph Benzmiller and Michael Kohlhase. LEQO, a higher order theorem prover. In
Kirchner and Kirchner [KK98], pages 139-144.

Czeslaw Bylinski. Basic properties of sets. Journal of Formalized Mathematics, 1, 1989.

Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic Logic,
5:56-68, 1940.

J. L. Darlington. Automatic theorem porving with equality substitutions and mathe-
matical induction. Machine Intelligence, 3:113-130, 1968.

Vincent J. Digricoli. Resolution by unificatoin and equality. In William H. Joyner,
editor, Proceedings of the jth Workshop on Automated Deduction, Austin, Texas, USA,
1979.

Jean H. Gallier and Wayne Snyder. Complete sets of transformations for general F-
unification. Theoretical Computer Science, 1(67):203-260, 1989.

Th. Hillenbrand, A. Buch, R. Vogt, and B. Lochner. Waldmeister: High-performance
equational deduction. Journal of Automated Reasoning, 18(2), 1997.

Leon Henkin. Completeness in the theory of types. Journal of Symbolic Logic, 15(2):81~
91, 1950.

Gérard P. Huet. Constrained Resolution: A Complete Method for Higher Order Logic.
PhD thesis, Case Western Reserve University, 1972.

52

[Hue73a]

[Hue73b)

[HueT75]

[JPT72]

[JRI6]

[JR9S]

[Kap92]

[KK98]

[Koh94]

[Koh95]

[LBYS]

[Mil83]

[Mil91]

[Mi192]

[MW94]

[Nip93]

REFERENCES

Gérard P. Huet. A mechanization of type theory. In Donald E. Walker and Lewis
Norton, editors, Proceedings of the 3rd International Joint Conference on Artificial
Intelligence, pages 139-146, 1973.

Gérard P. Huet. The undecidability of unification in third order logic. Information and
Control, 22(3):257-267, 1973.

Gérard P. Huet. An unification algorithm for typed A-calculus. Theoretical Computer
Science, 1:27-57, 1975.

D. C. Jensen and Thomasz Pietrzykowski. A complete mechanization of (Omega)-order
type theory. In Proceedings of the ACM annual Conference, volume 1, pages 82-92,
1972.

Jean-Pierre Jouannaud and Albert Rubio. A recursive path ordering for higher-order
terms in 7-long B-normal form. In Harald Ganzinger. editor, Proceedings of the 7th
International Conference on Rewriting Techniques and Applications (RTA-96), volume
1103 of LNCS, pages 108-122, New Brunswick, NJ, USA, 1996. Springer-Verlag.

Jean-Pierre Jouannaud and Albert Rubio. Rewrite orderings for higher-order terms in
n-lon B-normal form and the recursive path ordering. Theoretical Computer Science,

1998. to appear.

D. Kapur, editor. Proceedings of the 11th Conference on Automated Deduction, volume
607 of LNCS, Saratoga Spings. NY, USA, 1992. Springer Verlag.

Claude Kirchner and Helene Kirchner, editors. Proceedings of the 15th Conference
on Automated Deduction, number 1421 in LNAI, Lindau, , Germany, 1998. Springer
Verlag.

Michael Kohlhase. A Mechanization of Sorted Higher-Order Logic Based on the Reso-
lution Principle. PhD thesis, Universitat des Saarlandes, 1994.

Michael Kohlhase. Higher-Order Tableaux. In P. Baumgartner, R. Hahnle, and
J. Posegga, editors, Theorem Proving with Analytic Tableaur and Related Methods,
volume 918 of Lecture Notes in Artificial Intelligence, pages 294-309. 1995.

Maxim Lifantsev and Leo Bachmeier. An Ipo-based termination ordering for higher-
order terms without A-abstraction. In Jim Grundy and Malcolm Newey, editors, Pro-
ceedings of the 11th International Conference Theorem Proving in Higher Order Log-
ics (TPHOLs’98), volume 1479 of LNCS, pages 277-293, Canberra, Australia, 1998.
Springer.

Dale Miller. Proofs in Higher-Order Logic. PhD thesis, Carnegie-Mellon University,
1983.

Dale Miller. A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. Journal of Logic and Computation, 4(1):497-536, 1991.

Dale Miller. Unification under a mixed prefix. Journal of Symbolic Computation,

14:321-358, 1992.

Olaf Miiller and Franz Weber. Theory and practice of minimal modular higher-order
E-unification. In Alan Bundy, editor, Proceedings of the 12th Conference on Automated
Deduction, number 814 in LNAIT, pages 650-677, Nancy, France, 1994. Springer Verlag.

Tobias Nipkow. Functional unification of higher-order patterns. In Proceedings of
the 8th Annual IEEE Symposium on Logic in Computer Science (LICS-8), Montreal,
Canada, 1993. IEEE Computer Society Press.

REFERENCES 53

(NQ91]

[NQ92]

[NR95]

[Pie73]

[Pre98]

[Rob65]

[RW69)

[Smu63]

[Sny90]

[Sny91]

[TS89]

[WeidT]

[Wol93]
[Wol94]

Tobias Nipkow and Zhenyu Qian. Modular higher-order E-unification. In Ronald V.
Book, editor, Proceedings of the 4" International Conference on Rewriting Techniques
and Applications, number 488 in LNCS, pages 200-214. Springer Verlag, 1991.

Tobias Nipkow and Zhenyu Qian. Reduction and unification in lambda calculi with
subtypes. In Kapur [Kap92]. pages 66-78.

R. Nieuwenhuis and A. Rubio. Theorem proving with ordering and equality constrained
clauses. Journal of Symbolic Computation, 19(4):321-352, 1995.

Thomasz Pietrzykowski. A complete mechanization of second-order type theory. Jour-

nal of the Association for Computing Machinery, 20:333-364, 1973.

Christian Prehofer. Solving Higher-Order Equations: From Logic to Programming.
Progress in theoretical computer science. Birkhauser, 1998.

J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of
the Association for Computing Machinery, 12(1):23-41, 1965.

Arthur Robinson and Larry Wos. Paramodulation and TP in first order theories with
equality. Machine Intelligence, 4:135-150, 1969.

Raymond M. Smullyan. A unifying principle for quantification theory. Proc. Nat. Acad
Sciences, 49:828-832, 1963.

Wayne Snyder. Higher order F-unification. In Mark Stickel, editor, Proceedings of
the 10th Conference on Automated Deduction, number 449 in LNCS, pages 573-578,
Kaiserslautern, Germany, 1990.

Wayne Snyder. A Proof Theory for General Unification. Progress in Computer Science
and Applied Logic. Birkhauser, 1991.

Z. Trybulec and H. Swieczkowska. Boolean properties of sets. Journal of Formalized
Mathematics, 1, 1989.

Christoph Weidenbach. SPASS: Version 0.49. Journal of Automated Reasoning,
18(2):247-252, 1997. Special Issue on the CADE-13 Automated Theorem Proving
System Competition.

David A. Wolfram. The Clausal Theory of Types. Cambridge University Press, 1993.

David A. Wolfram. A semantics for A-PROLOG. Theoretical Computer Science, 136(1),
1994.

