A Faithful Semantic Embedding of the Dyadic Deontic Logic E in HOL
Christoph Benzmüller, Ali Farjami and Xavier Parent
University of Luxembourg
c.benzmueller@gmail.com, ali.farjami@uni.lu, xavier.parent@uni.lu

Isabelle/HOL: Modal Operators

Isabelle/HOL: Modal Operators

Isabelle/HOL: Modal Operators

References
Recent advances in Logic and Knowledge Representation. First Workshop of the European Network on Logic and Knowledge Representation.
Accepted for presentation at DEON 2018. To appear in IfCoLog.

A Faithful Semantic Embedding of the Dyadic Deontic Logic E in HOL

Shallow Semantical Embedding

A semantic embedding of a target logical system defines the syntactic elements of the target language in a background logic (HOL) [2].

Comprehension axiom:
\[\neg \varphi = \{ x \mid \neg \varphi(x) \} = \lambda x. \neg \varphi(x) \]
\[M, s \models \neg \varphi \text{ if and only if } M, s \not\models \varphi \text{ (that is, not } M, s \models \varphi) \]

System E: Syntax

Axiom defined dyadic deontic logic system E [1] by the following axioms and rules: (S5-schemata for necessity) and (-(--)) (for conditional obligation)

\[\Box(\phi \rightarrow \psi) \rightarrow (\Box \phi \rightarrow \Box \psi) \]
\[\Box(\psi) \rightarrow \Box(\psi) \]
\[\Diamond(\phi \rightarrow \psi) \rightarrow (\Diamond \phi \lor \Diamond \psi) \]
\[\Box(\psi) \rightarrow \Box(\psi) \]
\[\Box(\psi) \land \Box(\psi) \rightarrow \Box(\psi) \lor \Box(\psi) \]

Soundness and Completeness System E is (strongly) sound and complete with respect to the class of all preference models [1].

Contrary-To-Duties

Chisholm’s CTD-paradox [4] (a) It ought to be that a certain man go to help his neighbours.
(b) It ought to be that if he goes then he is coming.
(c) If he does not go, he ought not to tell them he is coming.
(d) He does not go.

For example actual world \(s \) satisfies:
\[\Box(\psi) \rightarrow \Box(\psi) \]
\[\Diamond(\psi) \rightarrow \Diamond(\psi) \]
\[\Box(\psi) \land \Box(\psi) \rightarrow \Box(\psi) \lor \Box(\psi) \]

Formulas E as Certain HOL Terms

We assume a set of basic types \(B T = \{ o, i \} \). The mapping \([\cdot] \) translates E formulas \(s \) into HOL terms \(t \) of type \(o \rightarrow o \). Type \(o \rightarrow o \) is abbreviated as \(r \) in the remainder.

\[|\phi| = \begin{cases} \text{true} & \text{if } \phi, \\ \text{false} & \text{otherwise} \end{cases} \]
\[|s \land t| = |s| \land |t| \]
\[|s \lor t| = |s| \lor |t| \]
\[|\neg s| = |\neg| \]

\[\neg \neg s = \lambda x. \neg \lambda x = \lambda x \]
\[\lambda \neg \neg s = \lambda x = \lambda x \]

Corresponding Preference Model \(M_t \) for Henkin Model \(H \)

For every Henkin model \(H = \langle (D_t)_{t \in T}, I \rangle \) there exists a corresponding preference model \(M_t \). Corresponding means that for all \(E \) formulas \(\delta \) and for all assignment \(g \) and worlds \(s, ||\delta||_{M_t} = T \) if and only if \(M_t(s) \models \delta \). We construct the corresponding preference model \(M_t \) as follows:

\[S = D_t \]
\[s \models \varphi \text{ for } s, u \in S \text{ iff } \varphi \text{ at } u \]
\[s \models \psi \text{ if } \exists \tau \in S \text{ such that } \tau \models \psi \text{ at } s \]

Result: Soundness and Completeness of the Embedding

Given \(\varphi \), \(\models_{\text{HOL}} \varphi \) if and only if \(\models_{E} \varphi \)

Isabelle/HOL: Propositional Connectives

Isabelle/HOL: Propositional Connectives

Isabelle/HOL: Propositional Connectives

Isabelle/HOL: Propositional Connectives

Acknowledgment
This work has been supported by the European Unions Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 690747.