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2S
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tWe investigate 
ut-elimination and 
ut-simulation in impredi
ative (higher-order) log-i
s. We illustrate that adding simple axioms su
h as Leibniz equations to a 
al
ulusfor an impredi
ative logi
 � in our 
ase a sequent 
al
ulus for 
lassi
al type theory �is like adding 
ut. The phenomenon equally applies to prominent axioms like Booleanand fun
tional extensionality, indu
tion, 
hoi
e, and des
ription. This 
alls for thedevelopment of 
al
uli where these prin
iples are built-in instead of being treatedaxiomati
ally.
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21 Introdu
tionOne of the key questions of automated reasoning is the following: �When does a set Φof senten
es have a model?� In fa
t, given reasonable assumptions about 
al
uli, mostinferen
e problems 
an be redu
ed to determining (un)-satis�ability of a set Φ of senten
es.Sin
e building models for Φ is hard in pra
ti
e, mu
h resear
h in 
omputational logi
has 
on
entrated on �nding su�
ient 
onditions for satis�ability, e.g. whether there is aHintikka set H extending Φ.Of 
ourse in general the answer to the satis�ability question depends on the 
lass ofmodels at hand. In 
lassi
al �rst-order logi
, model 
lasses are well-understood. In impred-i
ative higher-order logi
, there is a whole lands
ape of plausible model 
lasses di�eringin their treatment of fun
tional and Boolean extensionality. Satis�ability then stronglydepends on these 
lasses, for instan
e, the set Φ := {a, b, qa,¬qb} is unsatis�able in amodel 
lass where the universes of Booleans are required to have at most two members (seeproperty b below), but satis�able in the 
lass without this restri
tion.In [5℄ we have shown that 
ertain (i.e. saturated) Hintikka sets always have models andhave derived synta
ti
al 
onditions (so-
alled saturated abstra
t 
onsisten
y properties) forsatis�ability from this fa
t. The importan
e of abstra
t 
onsisten
y properties is that one
an 
he
k 
ompleteness for a 
al
ulus C by verifying proof-theoreti
 
onditions (
he
kingthat C-irrefutable sets of formulae have the saturated abstra
t 
onsisten
y property) insteadof performing model-theoreti
 analysis (for histori
al ba
kground of the method in �rst-order logi
, 
f. [10, 13, 14℄). Unfortunately, the saturation 
ondition (if Φ is abstra
tly
onsistent, then one of Φ∪ {A} or Φ∪ {¬A} is as well for all senten
es A) is very di�
ultto prove for ma
hine-oriented 
al
uli (indeed as hard as 
ut elimination).In this paper we investigate further the relation between the la
k of the subformulaproperty in the saturation 
ondition (we need to �guess� whether to extend Φ by A or ¬Aon our way to a Hintikka set for all senten
es A) and the 
ut rule (where we have to �guess,i.e. sear
h for in an automated reasoning setting� the 
ut formula A). A side result is theinsight that there exist �
ut-strong� formulae whi
h support the e�e
tive simulation of 
utin 
al
uli for impredi
ative logi
s.In Se
tion 2, we will �x notation and review the relevant results from [5℄. We de�nein Se
tion 3 a basi
 sequent 
al
ulus and study the 
orresponden
e between saturation inabstra
t 
onsisten
y 
lasses and 
ut-elimination. In Se
tion 4 we introdu
e the notion of�
ut-strong� formulae and sequents and show that they support the e�e
tive simulation of
ut. In Se
tion 5 we demonstrate that the pertinent extensionality axioms are 
ut-strong.We develop alternative extensionality rules whi
h do not su�er from this problem. Furtherrules are needed to ensure Henkin 
ompleteness for this 
al
ulus with extensionality. Thesenew rules 
orrespond to the a

eptability 
onditions we propose in Se
tion 6 to ensure theexisten
e of models and the existen
e of saturated extensions of abstra
t 
onsisten
e 
lasses.



32 Higher-Order Logi
In [5℄ we have re-examined the semanti
s of 
lassi
al higher-order logi
 with the purpose of
larifying the role of extensionality. For this we have de�ned eight 
lasses of higher-ordermodels with respe
t to various 
ombinations of Boolean extensionality and three forms offun
tional extensionality. We have also developed a methodology of abstra
t 
onsisten
y(by providing the ne
essary model existen
e theorems) needed for instan
e, to analyze
ompleteness of higher-order 
al
uli with respe
t to these model 
lasses. We now brie�ysummarize the main notions and results of [5℄ as required for this paper. Our impredi
ativelogi
 of 
hoi
e is Chur
h's 
lassi
al type theory.Syntax: Chur
h's Simply Typed λ-Cal
ulus. As in [8℄, we formulate higher-orderlogi
 (HOL) based on the simply typed λ-
al
ulus. The set of simple types T is freelygenerated from basi
 types o and ι using the fun
tion type 
onstru
tor →.For formulae we start with a set V of (typed) variables (denoted by Xα, Y, Z, X1
β, X

2
γ . . .)and a signature Σ of (typed) 
onstants (denoted by cα, fα→β, . . .). We let Vα (Σα) denotethe set of variables (
onstants) of type α. The signature Σ of 
onstants in
ludes the logi
al
onstants ¬o→o, ∨o→o→o and Πα

(α→o)→o for ea
h type α; all other 
onstants in Σ are 
alledparameters. As in [5℄, we assume there is an in�nite 
ardinal ℵs su
h that the 
ardinality of
Σα is ℵs for ea
h type α (
f. [5℄(3.16)). The set of HOL-formulae (or terms) are 
onstru
tedfrom typed variables and 
onstants using appli
ation and λ-abstra
tion. We let w�α(Σ) bethe set of all terms of type α and w�(Σ) be the set of all terms.We use ve
tor notation to abbreviate k-fold appli
ations and abstra
tions as AUk and
λXk A, respe
tively. We also use Chur
h's dot notation so that stands for a (missing)left bra
ket whose mate is as far to the right as possible (
onsistent with given bra
kets).We use in�x notation A ∨ B for ((∨A)B) and binder notation ∀Xα A for (Πα(λXα Ao)).We further use A ∧ B, A ⇒ B, A ⇔ B and ∃Xα A as shorthand for formulae de�ned interms of ¬, ∨ and Πα (
f. [5℄). Finally, we let (Aα

.
=α

Bα) denote the Leibniz equation
∀Pα→o (PA) ⇒ PB.Ea
h o

urren
e of a variable in a term is either bound by a λ or free. We use free(A)to denote the set of free variables of A (i.e., variables with a free o

urren
e in A). We
onsider two terms to be equal if the terms are the same up to the names of bound variables(i.e., we 
onsider α-
onversion impli
itly). A term A is 
losed if free(A) is empty. We let
w�α(Σ) denote the set of 
losed terms of type α and 
w�(Σ) denote the set of all 
losedterms. Ea
h term A ∈ w�o(Σ) is 
alled a proposition and ea
h term A ∈ 
w�o(Σ) is 
alleda senten
e.We denote substitution of a term Aα for a variable Xα in a term Bβ by [A/X]B. Sin
ewe 
onsider α-
onversion impli
itly, we assume the bound variables of B avoid variable
apture.Two 
ommon relations on terms are given by β-redu
tion and η-redu
tion. A β-redex
(λX A)B β-redu
es to [B/X]A. An η-redex (λX CX) (where X /∈ free(C)) η-redu
es to
C. For A,B ∈ w�α(Σ), we write A≡βB to mean A 
an be 
onverted to B by a series of
β-redu
tions and expansions. Similarly, A≡βηB means A 
an be 
onverted to B using both
β and η. For ea
h A ∈ w�(Σ) there is a unique β-normal form (denoted A↓β) and a unique



4
βη-normal form (denoted A↓βη). From this fa
t we know A≡βB (A≡βηB) i� A↓β ≡ B↓β(A↓βη ≡ B↓βη).A non-atomi
 formula in w�o(Σ) is any formula whose β-normal form is of the form
[cAn] where c is a logi
al 
onstant. An atomi
 formula is any other formula in w�o(Σ).Semanti
s: Eight Model Classes. For ea
h ∗ ∈ {β,βη,βξ,βf,βb,βηb,βξb,βfb} (thelatter set will be abbreviated by in the remainder) we de�ne M∗ to be the 
lass of all Σ-models M su
h that M satis�es property q and ea
h of the additional properties {η, ξ, f, b}indi
ated in the subs
ript ∗ (
f. [5℄(3.49)). Spe
ial 
ases of Σ-models are Henkin models andstandard models (
f. [5℄(3.50 and 3.51)). Every model in Mβfb is isomorphi
 to a Henkinmodel (see the dis
ussion following [5℄(3.68)).Saturated Abstra
t Consisten
y Classes and Model Existen
e. Finally, we reviewthe model existen
e theorems proved in [5℄. There are three stages to obtaining a modelin our framework. First, we obtain an abstra
t 
onsisten
y 
lass ΓΣ (usually de�ned asthe 
lass of irrefutable sets of senten
es with respe
t to some 
al
ulus). Se
ond, given a(su�
iently pure) set of senten
es Φ in the abstra
t 
onsisten
y 
lass ΓΣ we 
onstru
t aHintikka set H extending Φ. Third, we 
onstru
t a model of this Hintikka set (and hen
ea model of Φ).A Σ-abstra
t 
onsisten
y 
lass ΓΣ is a 
lass of sets of Σ-senten
es. An abstra
t 
on-sisten
y 
lass is always required to be 
losed under subsets (
f. [5℄(6.1)). Sometimes werequire the stronger property that ΓΣ is 
ompa
t, i.e., a set Φ is in ΓΣ i� every �nite subsetof Φ is in ΓΣ (
f. [5℄(6.1,6.2)).To des
ribe further properties of abstra
t 
onsisten
y 
lasses, we use the notation S ∗ afor S ∪ {a} as in [5℄. The following is a list of properties a 
lass ΓΣ of sets of senten
es 
ansatisfy with respe
t to arbitrary Φ ∈ ΓΣ (
f. [5℄(6.5)):
∇c If A is atomi
, then A /∈ Φ or ¬A /∈ Φ.
∇¬ If ¬¬A ∈ Φ, then Φ ∗ A ∈ ΓΣ.
∇β If A≡βB and A ∈ Φ, then Φ ∗ B ∈ ΓΣ.
∇η If A≡βηB and A ∈ Φ, then Φ ∗ B ∈ ΓΣ.
∇∨ If A ∨ B ∈ Φ, then Φ ∗ A ∈ ΓΣ or Φ ∗ B ∈ ΓΣ.
∇∧ If ¬(A ∨B) ∈ Φ, then Φ ∗ ¬A ∗ ¬B ∈ ΓΣ.
∇∀ If Πα

F ∈ Φ, then Φ ∗ FW ∈ ΓΣ for ea
h W ∈ cw�α(Σ).
∇∃ If ¬Πα

F ∈ Φ, then Φ ∗¬(Fw) ∈ ΓΣ for any parameter wα ∈ Σα whi
h does not o

ur inany senten
e of Φ.
∇b If ¬(A

.
=o

B) ∈ Φ, then Φ ∗A ∗ ¬B ∈ ΓΣ or Φ ∗ ¬A ∗ B ∈ ΓΣ.
∇ξ If ¬(λXα M

.
=

α→β
λXα N) ∈ Φ, then Φ ∗ ¬([w/X]M

.
=

β
[w/X]N) ∈ ΓΣ for any param-eter wα ∈ Σα whi
h does not o

ur in any senten
e of Φ.
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∇f If ¬(G

.
=α→β

H) ∈ Φ, then Φ ∗ ¬(Gw
.
=β

Hw) ∈ ΓΣ for any parameter wα ∈ Σα whi
hdoes not o

ur in any senten
e of Φ.
∇sat Either Φ ∗ A ∈ ΓΣ or Φ ∗ ¬A ∈ ΓΣ.We say ΓΣ is an abstra
t 
onsisten
y 
lass if it is 
losed under subsets and satis�es ∇c,
∇¬, ∇β, ∇∨, ∇∧, ∇∀ and ∇∃. We let Accβ denote the 
olle
tion of all abstra
t 
onsisten
y
lasses. For ea
h ∗ ∈ we re�ne Accβ to a 
olle
tion Acc∗ where the additional properties
{∇η,∇ξ,∇f,∇b} indi
ated by ∗ are required (
f. [5℄(6.7)). We say an abstra
t 
onsisten
y
lass ΓΣ is saturated if ∇sat holds.Using ∇c (atomi
 
onsisten
y) and the fa
t that there are in�nitely many parametersat ea
h type, we 
an show every abstra
t 
onsisten
y 
lass satis�es non-atomi
 
onsisten
y.That is, for every abstra
t 
onsisten
y 
lass ΓΣ, A ∈ 
w�o(Σ) and Φ ∈ ΓΣ, we have either
A /∈ Φ or ¬A /∈ Φ (
f. [5℄(6.10)).In [5℄(6.32) we show that su�
iently Σ-pure sets in saturated abstra
t 
onsisten
y 
lassesextend to saturated Hintikka sets. (A set of senten
es Φ is su�
iently Σ-pure if for ea
htype α there is a set Pα of parameters of type α with 
ardinality ℵs and su
h that noparameter in P o

urs in a senten
e in Φ.)In the Model Existen
e Theorem for Saturated Sets [5℄(6.33) we show that these satu-rated Hintikka sets 
an be used to 
onstru
t models M whi
h are members of the 
orre-sponding model 
lasses M∗. Then we 
on
lude (
f. [5℄(6.34)):Model Existen
e Theorem for Saturated Abstra
t Consisten
y Classes: For all
∗ ∈ , if ΓΣ is a saturated abstra
t 
onsisten
y 
lass in Acc∗ and Φ ∈ ΓΣ is a su�
iently
Σ-pure set of senten
es, then there exists a model M ∈ M∗ that satis�es Φ. Furthermore,ea
h domain of M has 
ardinality at most ℵs.In [5℄ we apply the abstra
t 
onsisten
y method to analyze 
ompleteness for di�erent nat-ural dedu
tion 
al
uli. Unfortunately, the saturation 
ondition is very di�
ult to prove forma
hine-oriented 
al
uli (indeed as we will see in Se
tion 3 it is equivalent to 
ut elimina-tion), so Theorem [5℄(6.34) 
annot be easily used for this purpose dire
tly.In Se
tion 6 we therefore motivate and present a set of extra 
onditions for Accβfb we
all a

eptability 
onditions. The new 
onditions are su�
ient to prove model existen
e.



63 Sequent Cal
uli, Cut and SaturationBasi
 Rules (Gβ) A atomi
 (and β-normal)
G(init)

∆ ∗ A ∗ ¬A

∆ ∗ A
G(¬)

∆ ∗ ¬¬A

∆ ∗ ¬A ∆ ∗ ¬B
G(∨−)

∆ ∗ ¬(A ∨ B)

∆ ∗ A ∗ B
G(∨+)

∆ ∗ (A ∨ B)

∆ ∗ ¬ (AC)


y

β
C ∈ 
w�α(Σ)

G(Π C

− )
∆ ∗ ¬Πα

A

∆ ∗ (Ac)


y

β
cα ∈ Σ new

G(Π c
+)

∆ ∗ Πα
AInversion Rule ∆ ∗ ¬¬A

G(Inv
¬)

∆ ∗AWeakening and Cut Rules ∆
G(weak)

∆ ∪ ∆′

∆ ∗ C ∆ ∗ ¬C
G(cut)

∆Figure 1: Sequent Cal
ulus RulesWe will now study 
ut-elimination and 
ut-simulation with respe
t to (one-sided) sequent
al
uli.Sequent Cal
uli G. We 
onsider a sequent to be a �nite set ∆ of β-normal senten
esfrom 
w�o(Σ). A sequent 
al
ulus G provides an indu
tive de�nition for when ⊢⊢G ∆ holds.We say a sequent 
al
ulus rule
∆1 · · · ∆n

r
∆is admissible in G if ⊢⊢G ∆ holds whenever ⊢⊢G ∆i for all 1 ≤ i ≤ n. For any naturalnumber k ≥ 0, we 
all an admissible rule r k-admissible if any instan
e of r 
an be repla
edby a derivation with at most k additional proof steps. Given a sequent ∆, a model M,and a 
lass M of models, we say ∆ is valid for M (or valid for M), if M |= D for some

D ∈ ∆ (or ∆ is valid for every M ∈ M). As for sets in abstra
t 
onsisten
y 
lasses, weuse the notation ∆ ∗A to denote the set ∆ ∪ {A} (whi
h is simply ∆ if A ∈ ∆). Figure 1introdu
es several sequent 
al
ulus rules. Some of these rules will be used to de�ne sequent
al
uli, while others will be shown admissible (or even k-admissible).Abstra
t Consisten
y Classes for Sequent Cal
uli. For any sequent 
al
ulus G we
an de�ne a 
lass ΓG
Σ of sets of senten
es. Under 
ertain assumptions, ΓG

Σ is an abstra
t
onsisten
y 
lass. First we adopt the notation ¬Φ and Φ↓β for the sets {¬A|A ∈ Φ} and
{A↓β |A ∈ Φ}, resp., where Φ ⊆ cw�o(Σ). Furthermore, we assume this use of ¬ bindsmore strongly than ∪ or ∗, so that ¬Φ ∪ ∆ means (¬Φ) ∪ ∆ and ¬Φ ∗ A means (¬Φ) ∗ A.De�nition 3.1 Let G be a sequent 
al
ulus. We de�ne ΓG

Σ to be the 
lass of all �nite
Φ ⊂ cw�o(Σ) su
h that ⊢⊢G ¬ Φ↓β does not hold.



7In a straightforward manner, one 
an prove the following results (see the Appendix).Lemma 3.2 Let G be a sequent 
al
ulus su
h that G(Inv
¬) is admissible. For any �nitesets Φ and ∆ of senten
es, if Φ ∪ ¬∆ /∈ ΓG

Σ , then ⊢⊢G ¬ Φ↓β ∪ ∆↓β holds.Theorem 3.3 Let G be a sequent 
al
ulus. If the rules G(Inv
¬), G(¬), G(weak), G(init),

G(∨−), G(∨+), G(Π C

− ) and G(Π c
+) are admissible in G, then ΓG

Σ ∈ Accβ.We 
an furthermore show the following relationship between saturation and 
ut (see theAppendix).Theorem 3.4 Let G be a sequent 
al
ulus.1. If G(cut) is admissible in G, then ΓG
Σ is saturated.2. If G(¬) and G(Inv

¬) are admissible in G and ΓG
Σ is saturated, then G(cut) is admissiblein G.Sin
e saturation is equivalent to admissibility of 
ut, we need weaker 
onditions than sat-uration. A natural 
ondition to 
onsider is the existen
e of saturated extensions.De�nition 3.5 (Saturated Extension) Let ∗ ∈ and ΓΣ, Γ′

Σ ∈ Acc∗ be abstra
t 
on-sisten
y 
lasses. We say Γ′
Σ is an extension of ΓΣ if Φ ∈ Γ′

Σ for every su�
iently Σ-pure
Φ ∈ ΓΣ. We say Γ′

Σ is a saturated extension of ΓΣ if Γ′
Σ is saturated and an extension of ΓΣ.There exist abstra
t 
onsisten
y 
lasses Γ in Accβfb whi
h have no saturated extension.Example 3.6 Let ao, bo, qo→o ∈ Σ and Φ := {a, b, (qa),¬(qb)}. We 
onstru
t an abstra
t
onsisten
y 
lass ΓΣ from Φ by �rst building the 
losure Φ′ of Φ under relation ≡β and thentaking the power set of Φ′. It is easy to 
he
k that this ΓΣ is in Accβfb. Suppose we havea saturated extension Γ′

Σ of ΓΣ in Accβfb. Then Φ ∈ Γ′
Σ sin
e Φ is �nite (hen
e su�
ientlypure). By saturation, Φ ∗ (a

.
=o b) ∈ Γ′

Σ or Φ ∗¬(a
.
=o b) ∈ Γ′

Σ. In the �rst 
ase, applying ∇∀with the 
onstant q, ∇∨ and ∇c 
ontradi
ts (qa),¬(qb) ∈ Φ. In the se
ond 
ase, ∇b and ∇c
ontradi
t a, b ∈ Φ.Existen
e of any saturated extension of a sound sequent 
al
ulus G implies admissibility of
ut. The proof uses the model existen
e theorem for saturated abstra
t 
onsisten
y 
lasses(
f. [5℄(6.34)). The full proof is in the Appendix.Theorem 3.7 Let G be a sequent 
al
ulus whi
h is sound for M∗. If ΓG
Σ has a saturatedextension Γ′

Σ ∈ Acc∗, then G(cut) is admissible in G.Sequent Cal
ulus Gβ. We now study a parti
ular sequent 
al
ulus Gβ de�ned by therules G(init), G(¬), G(∨−), G(∨+), G(Π C

− ) and G(Π c
+) (
f. Figure 1). It is easy to showthat Gβ is sound for the eight model 
lasses and in parti
ular for 
lass Mβ.



8The reader may easily prove the following Lemma.Lemma 3.8 Let A ∈ cw�o(Σ) be an atom, B ∈ cw�α(Σ), and ∆ be a sequent.1. ∆ ∗ A ⇔ A := ∆ ∗ ¬(¬(¬A ∨ A) ∨ ¬(¬A ∨A)) is derivable in 7 steps in Gβ.2. ∆ ∗ B
.
=α

B := ∆ ∗ Πα(λPα→o ¬(PB) ∨ (PB)) is derivable in 3 steps in Gβ.The proof of the next Lemma is by indu
tion on derivations and is given in the Appendix.Lemma 3.9 The rules G(Inv
¬) and G(weak) are 0-admissible in Gβ.Theorem 3.10 The sequent 
al
ulus Gβ is 
omplete for the model 
lass Mβ and the rule

G(cut) is admissible.Proof: By Theorem 3.3 and Lemma 3.9, Γ
Gβ

Σ ∈ Accβ. Suppose ⊢⊢Gβ
∆ does not hold. Then

¬∆ ∈ Accβ by Lemma 3.2. By the model existen
e theorem for Accβ (
f. [6℄(8.1)) thereexists a model for ¬∆ in Mβ. This gives 
ompleteness of Gβ . We 
an use 
ompleteness to
on
lude 
ut is admissible in Gβ .Andrews proves admissibility of 
ut for a sequent 
al
ulus similar to Gβ in [1℄. The proofin [1℄ 
ontains the essential ingredients for showing 
ompleteness.We will now show that G(cut) a
tually be
omes k-admissible in Gβ if 
ertain formulaeare available in the sequent ∆ we wish to prove.4 Cut-SimulationCut-Strong Formulae and Sequents. k-
ut-strong formulae 
an be used to e�e
tivelysimulate 
ut. E�e
tively means that the elimination of ea
h appli
ation of a 
ut-rule intro-du
es maximally k additional proof steps, where k is 
onstant.De�nition 4.1 Given a formula A ∈ cw�o(Σ), and an arbitrary but �xed number k > 0.We 
all formula A k-
ut-strong for G (or simply 
ut-strong) if the following 
ut rule variantis k-admissible in G:1
∆ ∗ C ∆ ∗ ¬C

G(cutA)
∆ ∗ ¬AOur examples below illustrate that 
ut-strength of a formula usually only weakly dependson 
al
ulus G: it only presumes standard ingredients su
h as β-normalization, weakening,and rules for the logi
al 
onne
tives.We present some simple examples of 
ut-strong formulae for our sequent 
al
ulus Gβ . A
orresponding phenomenon is observable in other higher-order 
al
uli, for instan
e, for the
al
uli presented in [1, 4, 7, 11℄.1Here, we 
ould alternatively use (k-)derivability (see [9℄) to give a stronger but less general notion of

k-
ut-strongness. In fa
t, all axioms we dis
uss in this paper would remain k-
ut-strong. From a prooftheoreti
 point of view one may argue that this alternative notion leads to a more interesting result althoughit may generally apply to fewer axioms.



9Example 4.2 Formula ∀Po P := Πo(λPo P ) is 3-
ut-strong in Gβ. This is justi�ed bythe following derivation whi
h a
tually shows that rule G(cutA) for this spe
i�
 
hoi
e of
A is derivable in Gβ by maximally 3 additional proof steps. The only interesting proof stepis the instantiation of P with formula D := ¬C ∨ C in rule G(Π D

− ). (Note that C mustbe β-normal; sequents su
h as ∆ ∗ C by de�nition 
ontain only β-normal formulae.)
∆ ∗ C

∆ ∗ ¬¬C
G(¬)

∆ ∗ ¬C

∆ ∗ ¬(¬C ∨ C)
G(∨−)

∆ ∗ ¬Πo(λPo P )
G(Π D

− )Clearly, ∀Po P is not a very interesting 
ut-strong formula sin
e it implies falsehood, i.e.in
onsisten
y.Example 4.3 The formula ∀Po P ⇒ P := Πo(λPo ¬P ∨ P ) is 3-
ut-strong in Gβ. Thisis an example of a tautologous 
ut-strong formula. Now P is simply instantiated with
D := C in rule G(Π D

− ). Ex
ept for this �rst step the derivation is identi
al to the one forExample 4.2.Example 4.4 Leibniz equations M
.
=α

N := Πα(λP ¬PM ∨ PN) (for arbitraryformulae M,N ∈ cw�α(Σ) and types α ∈ T ) are 3-
ut-strong in Gβ . This in
ludes thespe
ial 
ases M
.
=α

M. Now P is instantiated with D := λXα C in rule G(Π D

− ). Ex
eptfor this �rst step the derivation is identi
al to the one for Example 4.2.Example 4.5 The original formulation of higher-order logi
 (
f. [12℄) 
ontained 
ompre-hension axioms of the form C := ∃Pα1→···→αn→o∀Xn PXn ⇔ Bo where Bo ∈ w�o(Σ)is arbitrary with P /∈ free(B). Chur
h eliminated the need for su
h axioms by for-mulating higher-order logi
 using typed λ-
al
ulus. We will now show that the instan
e
CI := ∃Pι→o ∀Xι PX ⇔ X

.
=ι X is 17-
ut-strong in Gβ (note that G(weak) is 0-admissible).This motivates building-in 
omprehension prin
iples instead of treating 
omprehension ax-iomati
ally. 3 steps; see 3.8....

∆ ∗ ¬(pa ⇒ a
.
=ι

a) ∗ a
.
=ι

a

∆ ∗ ¬(pa ⇒ a
.
=ι

a) ∗ ¬¬(a
.
=ι

a)
G(¬)

D

∆ ∗ ¬(pa ⇒ a
.
=ι

a) ∗ ¬(¬(a
.
=ι

a) ∨ pa)
G(∨−)

∆ ∗ ¬(pa ⇒ a
.
=ι

a) ∨ ¬(a
.
=ι

a ⇒ pa)
G(∨+)

∆ ∗ ¬¬(¬(pa ⇒ a
.
=ι

a) ∨ ¬(a
.
=ι

a ⇒ pa))
G(¬)

∆ ∗ ¬Πι(λXι pX ⇔ X
.
=ι

X)
G(Π aι

− )

∆ ∗ Πι→o(λP ι→o ¬Πι(λXι PX ⇔ X
.
=ι

X))
G(Π pι→o

+ )

∆ ∗ ¬CI
G(¬)Derivation D is:

∆ ∗ pa ∗ ¬pa
G(init)

∆ ∗ ¬¬pa ∗ ¬pa
G(¬)

∆ ∗C ∆ ∗ ¬C.... 3 steps; see 4.4
∆ ∗ ¬(a

.
=o

a)

∆ ∗ ¬(a
.
=ι

a) ∗ ¬pa
G(weak)

∆ ∗ ¬(¬pa ∨ a
.
=ι

a) ∗ ¬pa
G(∨−)



10As we will show later, many prominent axioms for higher-order logi
 also belong to the
lass of 
ut-strong formulae.Next we de�ne 
ut-strong sequents.De�nition 4.6 A sequent ∆ is 
alled k-
ut-strong (or simply 
ut-strong) if there exists aa k-
ut-strong formula A ∈ cw�o(Σ) su
h that ¬A ∈ ∆.Cut-Simulation. The 
ut-simulation theorem is a main result of this paper. It says that
ut-strong sequents support an e�e
tive simulation (and thus elimination) of 
ut in Gβ.E�e
tive means that the size of 
ut-free derivation grows only linearly for the number of
ut rule appli
ations to be eliminated.We �rst �x the following 
al
uli: Cal
ulus Gcut
β extends Gβ by the rule G(cut) and 
al
ulus

GcutA

β extends Gβ by the rule G(cutA) for some arbitrary but �xed 
ut-strong formula A.Theorem 4.7 Let ∆ be a k-
ut-strong sequent su
h that ¬A ∈ ∆ for some k-
ut-strongformula A. For ea
h derivation D: ⊢⊢Gcut
β

∆ with d proof steps there exists an alternativederivation D′: ⊢⊢
GcutA

β

∆ with d proof steps.Proof: Note that the rules G(cut) and G(cutA) 
oin
ide whenever ¬A ∈ ∆. Intuitively,we 
an repla
e ea
h o

urren
e of G(cut) in D by G(cutA) in order to obtain a D′ of samesize. Te
hni
ally, in the indu
tion proof one must ensure ¬A stays in the sequent and 
arryout a parameter renaming to make sure the eigenvariable 
ondition is satis�ed.Theorem 4.8 Let ∆ be a k-
ut-strong sequent su
h that ¬A ∈ ∆ for some k-
ut-strongformula A. For ea
h derivation D: ⊢⊢
GcutA

β

∆ with d proof steps and with n appli
ations ofrule G(cut) there exists an alternative derivation D′: ⊢⊢Gβ
∆ with maximally d + nk proofsteps.Proof: A is k-
ut-strong so by de�nition G(cutA) is k-admissible in Gβ . This means that

G(cutA) 
an be eliminated inD and ea
h single elimination of G(cutA) introdu
es maximally
k new proof steps. Now the assertion 
an be easily obtained by a simple indu
tion over n.Corollary 4.9 Let ∆ be a k-
ut-strong sequent. For ea
h derivation D: ⊢⊢Gcut

β
∆ with dproof steps and n appli
ations of rule G(cut) there exists an alternative 
ut-free derivation

D′: ⊢⊢Gβ
∆ with maximally d + nk proof steps.



115 The Extensionality Axioms are Cut-StrongWe have shown 
omprehension axioms 
an be 
ut-strong (
f. Example 4.5). Further promi-nent examples of 
ut-strong formulae are the Boolean and fun
tional extensionality axioms.The Boolean extensionality axiom (abbreviated Bo in the remainder) is
∀Ao ∀Bo (A ⇔ B) ⇒ A

.
=o BThe in�nitely many fun
tional extensionality axioms (abbreviated Fαβ) are parameterizedover α, β ∈ T .

∀Fα→β ∀Gα→β (∀Xα FX
.
=β GX) ⇒ F

.
=α→β GThese axioms usually have to be added to higher-order 
al
uli to rea
h Henkin 
omplete-ness, i.e. 
ompleteness with respe
t to model 
lass Mβfb. For example, Huet's 
onstrainedresolution approa
h as presented in [11℄ is not Henkin 
omplete without adding extensional-ity axioms. For instan
e, the need for adding Boolean extensionality is a
tually illustratedby the set of unit literals Φ := {a, b, (qa),¬(qb)} from Example 3.6. As the reader mayeasily 
he
k, this 
lause set Φ, whi
h is in
onsistent for Henkin semanti
s, 
annot be provenby Huet's system without, e.g, adding the Boolean extensionality axiom. By relying on re-sults in [1℄, Huet essentially shows 
ompleteness with respe
t to model 
lass Mβ as opposedto Henkin semanti
s.We will now investigate whether adding the extensionality axioms to a ma
hine-oriented
al
ulus in order to obtain Henkin 
ompleteness is a suitable option.Theorem 5.1 The Boolean extensionality axiom Bo is a 14-
ut-strong formula in Gβ.Proof: The following derivation justi�es this theorem (ao is a parameter).7 steps; see 3.8....

∆ ∗ a ⇔ a

∆ ∗ ¬¬(a ⇔ a)
G(¬)

∆ ∗C ∆ ∗ ¬C.... 3 steps; see 4.4
∆ ∗ ¬(a

.
=o

a)

∆ ∗ ¬(¬(a ⇔ a) ∨ a
.
=o

a)
G(∨−)

∆ ∗ ¬Bo
2 × G(Π a

−)Theorem 5.2 The fun
tional extensionality axioms Fαβ are 11-
ut-strong formulae in Gβ.Proof: The following derivation justi�es this theorem (fα→β is a parameter).3 steps; see 3.8....
∆ ∗ fa

.
=β

fa

∆ ∗ (∀Xα fX
.
=β

fX)
G(Π aα

+ )

∆ ∗ ¬¬∀Xα fX
.
=β

fX
G(¬)

∆ ∗ C ∆ ∗ ¬C.... 3 steps; see 4.4
∆ ∗ ¬(f

.
=α→β

f)

∆ ∗ ¬(¬(∀Xα fX
.
=β

fX) ∨ f
.
=α→β

f)
G(∨−)

∆ ∗ ¬Fαβ
2 × G(Π f

−)
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∆ ∗ ¬Fαβ α → β ∈ T

G(Fαβ)
∆

∆ ∗ ¬Bo
G(B)

∆Figure 2: Axiomati
 Extensionality Rules
∆ ∗ (∀Xα AX

.
=β

BX)




y

β
G(f)

∆ ∗ (A
.
=α→β

B)

∆ ∗ ¬A ∗ B ∆ ∗ ¬B ∗ A
G(b)

∆ ∗ (A
.
=o

B)Figure 3: Proper Extensionality RulesIn [4℄ and [7℄ we have already argued that the extensionality prin
iples should not betreated axiomati
ally in ma
hine-oriented higher-order 
al
uli and there we have developedresolution and sequent 
al
uli in whi
h these prin
iples are built-in. Here we have nowdeveloped a strong theoreti
al justi�
ation for this work: Theorems 5.1, 5.2 and 4.9 tell usthat adding the extensionality prin
iples Bo and Fαβ as axioms to a 
al
ulus is like addinga 
ut rule.In Figure 2 we show rules that add Boolean and fun
tional extensionality in an axiomati
manner to Gβ . More pre
isely we add rules G(Fαβ) and G(B) allowing to introdu
e theaxioms for any sequent ∆; this way we address the problem of the in�nitely many possibleinstantiations of the type-s
hemati
 fun
tional extensional axiom Fαβ. Cal
ulus Gβ enri
hedby the new rules G(Fαβ) and G(B) is 
alled GE
β . Soundness of the the new rules is easy toverify: In [5℄(4.3) we show that G(Fαβ) and G(B) are valid for Henkin models.Repla
ing the Extensionality Axioms. In Figure 3 we de�ne alternative extension-ality rules whi
h 
orrespond to those developed for resolution and sequent 
al
uli in [4℄and [7℄. Cal
ulus Gβ enri
hed by G(f) and G(b) is 
alled G−

βfb. Soundness of G(f) and G(b)for Henkin semanti
s is again easy to show.Our aim is to develop a ma
hine-oriented sequent 
al
ulus for automating Henkin 
om-plete proof sear
h. We argue that for this purpose G(f) and G(b) are more suitable rulesthan G(Fαβ) and G(B).Our next step now is to show Henkin 
ompleteness for GE
β . This will be relatively easysin
e we 
an employ 
ut-simulation. Then we analyze whether 
al
ulus G−

βfb has the samededu
tive power as GE
β .First we extend Theorem 3.3. The proof is given in the Appendix.Theorem 5.3 Let G be a sequent 
al
ulus su
h that G(Inv

¬) and G(¬) are admissible.1. If G(f) and G(Π c
+) are admissible, then ΓG

Σ satis�es ∇f.2. If G(b) is admissible, then ΓG
Σ satis�es ∇b.



13Theorem 5.4 The sequent 
al
ulus GE
β is Henkin 
omplete and the rule G(cut) is 12-admissible.Proof: G(cut) 
an be e�e
tively simulated and hen
e eliminated in GE

β by 
ombining rule
G(Fαβ) with the 11-step derivation presented in the proof of Theorem 5.2.Let Γ

GE
β

Σ be de�ned as in De�nition 3.1. We prove Henkin 
ompleteness of GE
β byshowing that the 
lass Γ

GE
β

Σ is a saturated abstra
t 
onsisten
y 
lass in Accβfb. We hereonly analyze the 
ru
ial 
onditions ∇b, ∇f and ∇sat. For the other 
onditions we refer toTheorem 3.3. Note that 0-admissibility of G(Inv
¬) and G(weak) 
an be shown for GE

β by asuitable indu
tion on derivations as in Lemma 3.9.
∇f G(Π c

+) is a rule of GE
β and thus admissible. A

ording to Theorem 5.3 it is thus su�
ientto ensure admissibility of rule G(f) to show ∇f. This is justi�ed by the followingderivation where N := A

.
=α→β

B and M := (∀Xα AX
.
=β

BX)


y

β
(for β-normal

A,B).
∆ ∗ (∀Xα AX

.
=β

BX)




y

β

∆ ∗ N ∗M
G(weak)

∆ ∗ N ∗ ¬¬M
G(¬)

derivable....
∆ ∗ N ∗ ¬N

∆ ∗ N ∗ ¬(¬M ∨ N)
G(∨−)

∆ ∗ N ∗ ¬Fαβ
G(Π A

− ),G(Π B
− )

∆ ∗ A
.
=α→β

B

G(Fαβ)

∇b With a similar derivation using G(B) we 
an show that G(b) is admissible. We 
on
lude
∇b by Theorem 5.3.

∇sat Sin
e G(cut) is admissible we get saturation by Theorem 3.4.Does G−

βfb have the same dedu
tive strength as GE
β ? I.e., is G−

βfb Henkin 
omplete? We showthis is not yet the 
ase.Theorem 5.5 The sequent 
al
ulus G−

βfb is not 
omplete for Henkin semanti
s.We illustrate the problem by a 
ounterexample.Example 5.6 Consider the sequent ∆ := {¬a,¬b,¬(qa), (qb)} where ao, bo,
qo→o ∈ Σ are parameters. For anyM ≡ (D, @, E , υ) ∈ Mβfb, either υ(E(a)) ≡ F, υ(E(b)) ≡ For E(a) ≡ E(b) by property b. Hen
e sequent ∆ is valid for every M ∈ Mβfb. However,
⊢⊢

G
−

βfb
∆ does not hold. By inspe
tion, ∆ 
annot be the 
on
lusion of any rule.
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∆ ∗ (A

.
=o

B) (†)
G(Init

.
=)

∆ ∗ ¬A ∗B

∆ ∗ (A1 .
=α1

B
1) · · · ∆ ∗ (An .

=αn
B

n) (‡)
G(d)

∆ ∗ (hAn .
=β

hBn)

(†) A,B atomi
 (‡) n ≥ 1, β ∈ {o, ι}, hαn→β ∈ Σ parameterFigure 4: Additional Rules G(Init
.
=) and G(d)In order to rea
h Henkin 
ompleteness and to show 
ut-elimination we thus need to addfurther rules. Our example motivates the two rules presented in Figure 4. G(Init

.
=) intro-du
es Leibniz equations su
h as qa

.
=o qb as is needed in our example and G(d) realizes therequired de
omposition into a

.
=

o
b.We thus extend sequent 
al
ulus G−

βfb to Gβfb by adding the de
omposition rule G(d) andthe rule G(Init
.
=) whi
h generally 
he
ks if two atomi
 senten
es of opposite polarity areprovably equal (as opposed to synta
ti
ally equal).Is Gβfb 
omplete for Henkin semanti
s? We will show in the next Se
tion that this indeedholds (
f. Theorem 6.3).With GE and Gβfb we have thus developed two Henkin 
omplete 
al
uli and both 
al
uliare 
ut-free. However, as our exploration shows �
ut-freeness� is not a well-
hosen 
rite-rion to di�erentiate between their suitability for proof sear
h automation: GE inherentlysupports e�e
tive 
ut-simulation and thus 
ut-freeness is meaningless.The 
riterion we propose for the analysis of 
al
uli in impredi
ative logi
s is �freeness ofe�e
tive 
ut-simulation�.Other Rules for Other Model Classes. In [6℄ we developed respe
tive 
omplete and
ut-free sequent 
al
uli not only for Henkin semanti
s but for �ve of the eight model 
lasses.In parti
ular, no additional rules are required for the β, βη and βξ 
ase. Meanwhile, the

βf 
ase requires additional rules allowing η-
onversion. The limited spa
e does not allowus to present and analyze these 
ases here.



156 A

eptability ConditionsWe now turn our attention again to the existen
e of saturated extension of abstra
t 
onsis-ten
y 
lasses.As illustrated by the Example 3.6, we need some extra abstra
t 
onsisten
y propertiesto ensure the existen
e of saturated extensions. We 
all these extra properties a

eptability
onditions. They a
tually 
losely 
orrespond to additional rules G(Init
.
=) and G(d).De�nition 6.1 (A

eptability Conditions) Let ΓΣ be an abstra
t 
onsisten
y 
lass in

Accβfb. We de�ne the following properties:
∇m If A,B ∈ 
w�o(Σ) are atomi
 and A,¬B ∈ Φ, then Φ ∗ ¬(A

.
=o

B) ∈ ΓΣ.
∇d If ¬(hAn .

=β hBn) ∈ Φ for some types αi where β ∈ {o, ι} and hαn→β ∈ Σ is aparameter, then there is an i (1 ≤ i ≤ n) su
h that Φ ∗ ¬(Ai .
=αi

B
i) ∈ ΓΣ.We now repla
e the strong saturation 
ondition used in [5℄ by these a

eptability 
onditions.De�nition 6.2 (A

eptable Classes) An abstra
t 
onsisten
y 
lass ΓΣ ∈ Accβfb is 
alleda

eptable in Accβfb if it satis�es the 
onditions ∇m and ∇d.One 
an show a model existen
e theorem for a

eptable abstra
t 
onsisten
y 
lasses in

Accβfb (
f. [6℄(8.1)). From this model existen
e theorem, one 
an 
on
lude Gβfb is 
ompletefor Mβfb (hen
e for Henkin models) and that 
ut is admissible in Gβfb.Theorem 6.3 The sequent 
al
ulus Gβfb is 
omplete for Henkin semanti
s and the rule
G(cut) is admissible.Proof: The argumentation is similar to Theorem 3.10 but here we employ the a

eptability
onditions ∇m and ∇d.One 
an further show the Saturated Extension Theorem (
f. [6℄(9.3)):Theorem 6.4 There is a saturated abstra
t 
onsisten
y 
lass in Accβfb that is an extensionof all a

eptable ΓΣ in Accβfb.Given Theorem 3.7, one 
an view the Saturated Extension Theorem as an abstra
t 
ut-elimination result.The proof of a model existen
e theorem employs Hintikka sets and in the 
ontext ofstudying Hintikka sets we have identi�ed a phenomenon related to 
ut-strength whi
h we
all the Impredi
ativity Gap. That is, a Hintikka setH is saturated if any 
ut-strong formula
A (e.g. a Leibniz equation C

.
= D) is in H. Hen
e we 
an reasonably say there is a �gap�between saturated and unsaturated Hintikka sets. Every Hintikka set is either saturated or
ontains no 
ut-strong formulae.



167 Con
lusionWe have shown that adding 
ut-strong formulae to a 
al
ulus for an impredi
ative logi
 islike adding 
ut. For ma
hine-oriented automated theorem proving in impredi
ative logi
s �su
h as 
lassi
al type theory � it is therefore not re
ommendable to naively add 
ut-strongaxioms to the sear
h spa
e. In addition to the 
omprehension prin
iple and the fun
tionaland Boolean extensionality axioms as elaborated in this paper the list of 
ut-strong axiomsin
ludes:Other Forms of De�ned EqualityFormulas A
..
=α

B are 4-
ut-strong in Gβ where ..
=α is

λXα λYα ∀Qα→α→o (∀Zα (Q Z Z)) ⇒ (Q X Y ) (
f. [3℄).Proof: Instantiate Q with λXα λYα C.Axiom of Indu
tionThe Axiom of Stru
tural Indu
tion for the naturals ∀Pι→o P0∧(∀Xι PX ⇒ P (sX)) ⇒
∀Xι PX is 18-
ut-strong in Gβ . (Other well-founded ordering axioms are analogous.)Proof: Instantiate P with λXι a

.
=o a for some parameter ao.Axiom of Choi
e

∃I(α→o)→o ∀Qα→o ∃Xα QX ⇒ Q(IQ) is 7-
ut-strong in Gβ .Proof: Instantiate Q with λXα C.Axiom of Des
riptionThe des
ription axiom ∃I(α→o)→o ∀Qα→o (∃1Yα QY ) ⇒ Q(IQ) (see [2℄), where ∃1Yα QYstands for ∃Yα QY ∧ (∀Zα QZ ⇒ Y
.
= Z) is 25-
ut-strong in Gβ .Proof: Instantiate Q with λXα a

.
=

α
X for some parameter aα.As we have shown in Example 4.5, 
omprehension axioms 
an be 
ut-strong. Chur
h'sformulation of type theory (
f. [8℄) used typed λ-
al
ulus to build 
omprehension prin
iplesinto the language. One 
an view Chur
h's formulation as a �rst step in the program toeliminate the need for 
ut-strong axioms. For the extensionality axioms a start has beenmade by the sequent 
al
uli in this paper (and [6℄), for resolution in [4℄ and for sequent
al
uli and extensional expansion proofs in [7℄. The extensional systems in [7℄ also providea 
omplete method for using primitive equality instead of Leibniz equality. For improvingthe automation of higher-order logi
 our exploration thus motivates the development ofhigher-order 
al
uli whi
h dire
tly in
lude reasoning prin
iples for equality, extensionality,indu
tion, 
hoi
e, des
ription, et
., without using 
ut-strong axioms.



17Referen
es[1℄ Peter B. Andrews. Resolution in type theory. Journal of Symboli
 Logi
, 36(3):414�432,1971.[2℄ Peter B. Andrews. General models and extensionality. Journal of Symboli
 Logi
,37(2):395�397, 1972.[3℄ Peter B. Andrews. An Introdu
tion to Mathemati
al Logi
 and Type Theory: To TruthThrough Proof. Kluwer A
ademi
 Publishers, se
ond edition, 2002.[4℄ Christoph Benzmüller. Equality and Extensionality in Automated Higher-Order Theo-rem Proving. PhD thesis, Saarland University, 1999.[5℄ Christoph Benzmüller, Chad Brown, and Mi
hael Kohlhase. Higher-order semanti
sand extensionality. Journal of Symboli
 Logi
, 69(4):1027�1088, 2004.[6℄ Christoph Benzmüller, Chad E. Brown, and Mi
hael Kohlhase. Semanti
 te
hniquesfor higher-order 
ut-elimination. SEKI-Report SR�2004�07, Saarland University, Saar-brü
ken, Germany, to appear. Available at: http://www.ags.uni-sb.de/~
hris/papers/R37.pdf.[7℄ Chad E. Brown. Set Comprehension in Chur
h's Type Theory. PhD thesis, Departmentof Mathemati
al S
ien
es, Carnegie Mellon University, 2004.[8℄ Alonzo Chur
h. A formulation of the simple theory of types. Journal of Symboli
Logi
, 5:56�68, 1940.[9℄ Roger J. Hindley and Jonathan P. Seldin. Introdu
tion to Combinators and Lambda-Cal
uls. Cambridge University Press, Cambridge, 1986.[10℄ K. Jaakko J. Hintikka. Form and 
ontent in quanti�
ation theory. A
ta Philosophi
aFenni
a, 8:7�55, 1955.[11℄ Gérard P. Huet. A me
hanization of type theory. In Pro
eedings of the 3rd InternationalJoint Conferen
e on Arti�
ial Intelligen
e, pages 139�146, 1973.[12℄ Bertrand Russell. Mathemati
al logi
 as based on the theory of types. Ameri
anJournal of Mathemati
s, 30:222�262, 1908.[13℄ Raymond M. Smullyan. A unifying prin
iple for quanti�
ation theory. Pro
. Nat. A
adS
ien
es, 49:828�832, 1963.[14℄ Raymond M. Smullyan. First-Order Logi
. Springer, 1968.



18AppendixProof of Lemma 3.2 Suppose Φ ∪ ¬∆ /∈ ΓG
Σ . By de�nition, ⊢⊢G ¬ Φ↓β ∪ ¬¬ ∆↓β holds.Applying G(Inv

¬) to ea
h member of ∆↓β, we have ⊢⊢G ¬ Φ↓β ∪ ∆↓β.Proof of Theorem 3.3: We prove ΓG
Σ is 
losed under subsets and satis�es ∇c, ∇¬, ∇∨,

∇∧ and ∇β . The remaining 
onditions are proven analogously.Suppose Φ ∈ ΓG
Σ , If Φ0 ⊆ Φ and Φ0 /∈ ΓG

Σ , then ⊢⊢G ¬ Φ0↓β and so ⊢⊢G ¬ Φ↓β byadmissibility of G(weak). Hen
e ΓG
Σ is 
losed under subsets.Suppose Φ ∈ ΓG

Σ and A,¬A ∈ Φ where A is atomi
. By admissibility of G(init),
⊢⊢G ¬ Φ↓β ∗ A↓β sin
e ¬ A↓β ∈ ¬ Φ↓β. By admissibility of G(¬), ⊢⊢G ¬ Φ↓β sin
e ¬¬ A↓β ∈

¬ Φ↓β, 
ontradi
ting Φ ∈ ΓG
Σ . Thus ∇c holds.Suppose Φ ∈ ΓG

Σ , ¬¬A ∈ Φ and Φ ∗ A /∈ ΓG
Σ . Hen
e ⊢⊢G ¬ Φ↓β ∗ ¬ A↓β and so

⊢⊢G ¬ Φ↓β ∗ ¬¬¬ A↓β by admissibility of G(¬). Sin
e ¬¬A ∈ Φ, we know ¬ Φ↓β is equal to
¬ Φ↓β ∗ ¬¬¬ A↓β . Hen
e ⊢⊢G ¬ Φ↓β, 
ontradi
ting Φ ∈ ΓG

Σ . Thus ∇¬ holds.Suppose Φ ∈ ΓG
Σ , (A ∨ B) ∈ Φ, Φ ∗ A /∈ ΓG

Σ and Φ ∗ B /∈ ΓG
Σ . Hen
e ⊢⊢G ¬ Φ↓β ∗ ¬ A↓βand ⊢⊢G ¬ Φ↓β ∗ ¬ B↓β. Applying G(∨−), we have ⊢⊢G ¬ Φ↓β sin
e ¬ (A ∨B)



y

β
∈ ¬ Φ↓β,
ontradi
ting Φ ∈ ΓG

Σ . Thus ∇∨ holds.By a similar argument, admissibility of G(Π C

− ) implies ∇∀.Suppose Φ ∈ ΓG
Σ , ¬(A ∨ B) ∈ Φ and Φ ∗ ¬A ∗ ¬B /∈ ΓG

Σ . By Lemma 3.2, ⊢⊢G ¬ Φ↓β ∗

A↓β ∗ B↓β. Applying G(∨+), we have ⊢⊢G ¬ Φ↓β ∗ (A ∨B)


y

β
. Applying G(¬), we have

⊢⊢G ¬ Φ↓β sin
e ¬(A ∨ B) ∈ Φ, 
ontradi
ting Φ ∈ ΓG
Σ . Thus ∇∧ holds.By a similar argument, admissibility of G(Π c

+), G(Inv
¬) and G(¬) imply ∇∃.Suppose Φ ∈ ΓG

Σ , A ∈ Φ, A≡βB and Φ∗B /∈ ΓG
Σ . Hen
e ⊢⊢G ¬ Φ↓β∗¬ B↓β, 
ontradi
ting

A↓β ∈ Φ↓β and Φ ∈ ΓG
Σ . Thus ∇β holds.Proof of Theorem 3.4: Suppose G(cut) is admissible, Φ ∈ ΓG

Σ , A ∈ cw�o(Σ), Φ∗A /∈ ΓG
Σand Φ ∗ ¬A /∈ ΓG

Σ . Hen
e ⊢⊢G ¬ Φ↓β ∗ ¬ A↓β and ⊢⊢G ¬ Φ↓β ∗ ¬¬ A↓β. Using G(cut), wehave ⊢⊢G ¬ Φ↓β, 
ontradi
ting Φ ∈ ΓG
Σ .Suppose ΓG

Σ is saturated, ⊢⊢G ∆∗C and ⊢⊢G ∆∗¬C hold but ⊢⊢G ∆ does not. Applying
G(¬) to every member of ∆ and to C we have ⊢⊢G ¬¬∆ ∗ ¬¬C and ⊢⊢G ¬¬∆ ∗ ¬C. ByLemma 3.2, we know ¬∆ ∈ ΓG

Σ . By saturation, we must have ¬∆∗C ∈ ΓG
Σ or ¬∆∗¬C ∈ ΓG

Σ .The �rst 
ase 
ontradi
ts ⊢⊢G ¬¬∆∗¬C while the se
ond 
ase 
ontradi
ts ⊢⊢G ¬¬∆∗¬¬C.



19Proof of Lemma 3.7: Suppose Γ′
Σ ∈ Acc∗ is a saturated extension of ΓG

Σ . Assume
⊢⊢G ∆ ∗ C and ⊢⊢G ∆ ∗ ¬C hold and ⊢⊢G ∆ does not. By Lemma 3.2, we know ¬∆ ∈ ΓG

Σ .Sin
e ¬∆ is �nite (hen
e su�
iently pure), ¬∆ ∈ Γ′
Σ. By the model existen
e theorem forsaturated abstra
t 
onsisten
y 
lasses (
f. Theorem [5℄(6.34)), there is a model M ∈ M∗su
h that M |= ¬∆. By soundness of ΓG

Σ , we know both ∆ ∗ C and ∆ ∗ ¬C must be validin M. Sin
e M |= ¬∆, we must have M |= C and M |= ¬C, a 
ontradi
tion.Proof of Lemma 3.9: We 
an argue 0-admissibility of G(Inv
¬) and G(weak) by indu
tionon derivations. We use the notation ⊢⊢n

Gβ
∆ to indi
ate there is a derivation with size atmost n of ∆. For negation inversion, we need to show ⊢⊢n

Gβ
∆ ∗A whenever ⊢⊢n

Gβ
∆ ∗¬¬A.First assume ¬¬A is a prin
ipal formula of the last rule applied. This is only possible if thelast rule is G(¬). Examining G(¬), we have either ⊢⊢n−1

Gβ
∆∗A or ⊢⊢n−1

Gβ
∆∗¬¬A∗A. In the�rst 
ase, we are done. Otherwise, we apply the indu
tion hypothesis to ⊢⊢n−1

Gβ
∆∗¬¬A∗Aand obtain ⊢⊢n−1

Gβ
∆ ∗ A as desired. Next assume ¬¬A is not a prin
ipal formula of thelast rule. In this 
ase, the appli
ation of rule r 
on
ludes ⊢⊢n

Gβ
(∆′ ∗ ¬¬A) ∪ ∆0 from

⊢⊢ni

Gβ
(∆′ ∗ ¬¬A) ∪ ∆i (with 1 ≤ i ≤ m) where ∆0 
ontains the prin
ipal formulae of therule appli
ation (a singleton unless the rule is G(init)) and n1 + · · ·+nm ≤ n−1. Applyingthe indu
tive hypothesis, we have ⊢⊢ni

Gβ
(∆′ ∗ A) ∪ ∆i for 1 ≤ i ≤ m. Applying rule r wehave ⊢⊢n

Gβ
(∆′ ∗ A) ∪ ∆0. (For the 
ase where r is G(Π c

+) we use the fa
t that the sameparameters o

ur in A and ¬¬A.)To prove 0-admissibility of weakening, we generalize the statement to in
lude a param-eter renaming (to handle the G(Π c
+) rule). A parameter renaming θ is a well-typed mapfrom parameters to parameters extended to operate on arbitrary terms. Note that if A is

β-normal, then θ(A) is also β-normal. Also, if A is atomi
, then θ(A) is atomi
. We provefor any n, ∆, ∆′ and parameter renaming θ, if ⊢⊢n
Gβ

∆ and θ(A) ∈ ∆′ for every A ∈ ∆, then
⊢⊢n

Gβ
∆′. Applying this with the identity parameter renaming θ, we have 0-admissibility of

G(weak).Suppose ⊢⊢n
Gβ

∆ and θ(A) ∈ ∆′ for every A ∈ ∆. First, assume the last rule appli
ationis G(Π c
+) with prin
ipal formula (Πα

G) ∈ ∆. In this 
ase we know ⊢⊢n−1
Gβ

∆0 ∗ (Gcα)


y

βwhere ∆0 ∗ (ΠG) is ∆ and c does not o

ur in any senten
e in ∆. Choose a parameter dαsu
h that d does not o

ur in any senten
e in ∆′. Let θ′ be the parameter renaming givenby θ′(c) := d and θ′(w) := θ(w) for parameters w other than c. Let ∆′′ be ∆′∗ (θ(G)d)


y

β
.For ea
h A ∈ ∆0 ⊆ ∆, we know θ′(A) ≡ θ(A) ∈ ∆′ ⊆ ∆′′ (sin
e c does not o

ur in anysenten
e in ∆). Also, sin
e c does not o

ur in G, θ′((Gc)



y

β
) ≡ (θ(G)d)



y

β
∈ ∆′′. Hen
ewe 
an apply the indu
tion hypothesis with n − 1, ∆0 ∗ (Gc)



y

β
, ∆′′ and θ′ to 
on
lude

⊢⊢n−1
Gβ

∆′ ∗ (θ(G)dα)


y

β
. Sin
e d does not o

ur in ∆′ and θ(ΠG) ∈ ∆′, we 
an apply G(Π d

+)to 
on
lude ⊢⊢n
Gβ

∆′.Next, assume the last rule applied is G(Π C

− ). Hen
e ⊢⊢n−1
Gβ

∆0 ∗ ¬ (GC)


y

β
where ∆0 ∗

¬(ΠG) is ∆. We apply the indu
tion hypothesis with n−1, ∆0∗ (GC)


y

β
, ∆′∗¬ (θ(GC))



y

βand θ to 
on
lude ⊢⊢n−1
Gβ

∆′ ∗¬ (θ(GC))


y

β
. Applying the rule G(Π

θ(C)
− ), we obtain ⊢⊢n−1

Gβ
∆′as desired. (Note that θ(¬ΠG) ∈ ∆′.)Finally, assume the last rule appli
ation is not G(Π c

+) and not G(Π C

− ). Let r be the last



20rule applied. The rule r 
on
ludes ⊢⊢n
Gβ

∆ from ⊢⊢ni

Gβ
∆0 ∪ ∆i where ∆0 ⊆ ∆, 1 ≤ i ≤ mand n1 + · · · + nm ≤ n − 1. For ea
h i, we 
an apply the indu
tion hypothesis with ni,

∆0 ∪ ∆i, ∆′ ∪ {θ(A)|A ∈ ∆i} and θ to 
on
lude ⊢⊢ni

Gβ
∆′ ∪ {θ(A)|A ∈ ∆i}. Applying thesame rule r we 
on
lude ⊢⊢n

Gβ
∆′.Proof of Theorem 5.3: Assume the rules G(f) and G(Π c

+) are admissible. If ¬(G
.
=α→β

H) ∈ Φ and ⊢⊢G ¬ Φ↓β ∗ (Gw
.
=β

Hw)




y

β
(with wα new) holds, then we 
an show ⊢⊢G ¬ Φ↓βholds using G(Π w

+ ) and G(f).Assume the rule G(b) is admissible. Suppose Φ ∈ ΓG
Σ , ¬(A

.
=o

B) ∈ Φ, Φ ∗A ∗¬B /∈ ΓG
Σand Φ∗¬A∗B /∈ ΓG

Σ . By Lemma 3.2, ⊢⊢G ¬ Φ↓β ∗¬ A↓β ∗ B↓β and ⊢⊢G ¬ Φ↓β ∗ A↓β ∗¬ B↓β.Applying G(b), ⊢⊢G ¬ Φ↓β ∗ (A
.
=o

B)


y

β
. Applying G(¬), ⊢⊢G ¬ Φ↓β sin
e ¬(A

.
=o

B) ∈ Φ,
ontradi
ting Φ ∈ ΓG
Σ . Thus ∇b holds.


