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Cut-Simulation in Imprediative LogisChristoph Benzmüller1, Chad E. Brown1,and Mihael Kohlhase2

1FR Informatik, Saarland University, Germany{hris|ebrown}�ags.uni-sb.de
2Shool of CS, Int. University Bremen, Germanym.kohlhase�iu-bremen.dePre-Version for Internal Use Only,Submitted June 15, 2006AbstratWe investigate ut-elimination and ut-simulation in imprediative (higher-order) log-is. We illustrate that adding simple axioms suh as Leibniz equations to a alulusfor an imprediative logi � in our ase a sequent alulus for lassial type theory �is like adding ut. The phenomenon equally applies to prominent axioms like Booleanand funtional extensionality, indution, hoie, and desription. This alls for thedevelopment of aluli where these priniples are built-in instead of being treatedaxiomatially.
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21 IntrodutionOne of the key questions of automated reasoning is the following: �When does a set Φof sentenes have a model?� In fat, given reasonable assumptions about aluli, mostinferene problems an be redued to determining (un)-satis�ability of a set Φ of sentenes.Sine building models for Φ is hard in pratie, muh researh in omputational logihas onentrated on �nding su�ient onditions for satis�ability, e.g. whether there is aHintikka set H extending Φ.Of ourse in general the answer to the satis�ability question depends on the lass ofmodels at hand. In lassial �rst-order logi, model lasses are well-understood. In impred-iative higher-order logi, there is a whole landsape of plausible model lasses di�eringin their treatment of funtional and Boolean extensionality. Satis�ability then stronglydepends on these lasses, for instane, the set Φ := {a, b, qa,¬qb} is unsatis�able in amodel lass where the universes of Booleans are required to have at most two members (seeproperty b below), but satis�able in the lass without this restrition.In [5℄ we have shown that ertain (i.e. saturated) Hintikka sets always have models andhave derived syntatial onditions (so-alled saturated abstrat onsisteny properties) forsatis�ability from this fat. The importane of abstrat onsisteny properties is that onean hek ompleteness for a alulus C by verifying proof-theoreti onditions (hekingthat C-irrefutable sets of formulae have the saturated abstrat onsisteny property) insteadof performing model-theoreti analysis (for historial bakground of the method in �rst-order logi, f. [10, 13, 14℄). Unfortunately, the saturation ondition (if Φ is abstratlyonsistent, then one of Φ∪ {A} or Φ∪ {¬A} is as well for all sentenes A) is very di�ultto prove for mahine-oriented aluli (indeed as hard as ut elimination).In this paper we investigate further the relation between the lak of the subformulaproperty in the saturation ondition (we need to �guess� whether to extend Φ by A or ¬Aon our way to a Hintikka set for all sentenes A) and the ut rule (where we have to �guess,i.e. searh for in an automated reasoning setting� the ut formula A). A side result is theinsight that there exist �ut-strong� formulae whih support the e�etive simulation of utin aluli for imprediative logis.In Setion 2, we will �x notation and review the relevant results from [5℄. We de�nein Setion 3 a basi sequent alulus and study the orrespondene between saturation inabstrat onsisteny lasses and ut-elimination. In Setion 4 we introdue the notion of�ut-strong� formulae and sequents and show that they support the e�etive simulation ofut. In Setion 5 we demonstrate that the pertinent extensionality axioms are ut-strong.We develop alternative extensionality rules whih do not su�er from this problem. Furtherrules are needed to ensure Henkin ompleteness for this alulus with extensionality. Thesenew rules orrespond to the aeptability onditions we propose in Setion 6 to ensure theexistene of models and the existene of saturated extensions of abstrat onsistene lasses.



32 Higher-Order LogiIn [5℄ we have re-examined the semantis of lassial higher-order logi with the purpose oflarifying the role of extensionality. For this we have de�ned eight lasses of higher-ordermodels with respet to various ombinations of Boolean extensionality and three forms offuntional extensionality. We have also developed a methodology of abstrat onsisteny(by providing the neessary model existene theorems) needed for instane, to analyzeompleteness of higher-order aluli with respet to these model lasses. We now brie�ysummarize the main notions and results of [5℄ as required for this paper. Our imprediativelogi of hoie is Churh's lassial type theory.Syntax: Churh's Simply Typed λ-Calulus. As in [8℄, we formulate higher-orderlogi (HOL) based on the simply typed λ-alulus. The set of simple types T is freelygenerated from basi types o and ι using the funtion type onstrutor →.For formulae we start with a set V of (typed) variables (denoted by Xα, Y, Z, X1
β, X

2
γ . . .)and a signature Σ of (typed) onstants (denoted by cα, fα→β, . . .). We let Vα (Σα) denotethe set of variables (onstants) of type α. The signature Σ of onstants inludes the logialonstants ¬o→o, ∨o→o→o and Πα

(α→o)→o for eah type α; all other onstants in Σ are alledparameters. As in [5℄, we assume there is an in�nite ardinal ℵs suh that the ardinality of
Σα is ℵs for eah type α (f. [5℄(3.16)). The set of HOL-formulae (or terms) are onstrutedfrom typed variables and onstants using appliation and λ-abstration. We let w�α(Σ) bethe set of all terms of type α and w�(Σ) be the set of all terms.We use vetor notation to abbreviate k-fold appliations and abstrations as AUk and
λXk A, respetively. We also use Churh's dot notation so that stands for a (missing)left braket whose mate is as far to the right as possible (onsistent with given brakets).We use in�x notation A ∨ B for ((∨A)B) and binder notation ∀Xα A for (Πα(λXα Ao)).We further use A ∧ B, A ⇒ B, A ⇔ B and ∃Xα A as shorthand for formulae de�ned interms of ¬, ∨ and Πα (f. [5℄). Finally, we let (Aα

.
=α

Bα) denote the Leibniz equation
∀Pα→o (PA) ⇒ PB.Eah ourrene of a variable in a term is either bound by a λ or free. We use free(A)to denote the set of free variables of A (i.e., variables with a free ourrene in A). Weonsider two terms to be equal if the terms are the same up to the names of bound variables(i.e., we onsider α-onversion impliitly). A term A is losed if free(A) is empty. We letw�α(Σ) denote the set of losed terms of type α and w�(Σ) denote the set of all losedterms. Eah term A ∈ w�o(Σ) is alled a proposition and eah term A ∈ w�o(Σ) is alleda sentene.We denote substitution of a term Aα for a variable Xα in a term Bβ by [A/X]B. Sinewe onsider α-onversion impliitly, we assume the bound variables of B avoid variableapture.Two ommon relations on terms are given by β-redution and η-redution. A β-redex
(λX A)B β-redues to [B/X]A. An η-redex (λX CX) (where X /∈ free(C)) η-redues to
C. For A,B ∈ w�α(Σ), we write A≡βB to mean A an be onverted to B by a series of
β-redutions and expansions. Similarly, A≡βηB means A an be onverted to B using both
β and η. For eah A ∈ w�(Σ) there is a unique β-normal form (denoted A↓β) and a unique
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βη-normal form (denoted A↓βη). From this fat we know A≡βB (A≡βηB) i� A↓β ≡ B↓β(A↓βη ≡ B↓βη).A non-atomi formula in w�o(Σ) is any formula whose β-normal form is of the form
[cAn] where c is a logial onstant. An atomi formula is any other formula in w�o(Σ).Semantis: Eight Model Classes. For eah ∗ ∈ {β,βη,βξ,βf,βb,βηb,βξb,βfb} (thelatter set will be abbreviated by in the remainder) we de�ne M∗ to be the lass of all Σ-models M suh that M satis�es property q and eah of the additional properties {η, ξ, f, b}indiated in the subsript ∗ (f. [5℄(3.49)). Speial ases of Σ-models are Henkin models andstandard models (f. [5℄(3.50 and 3.51)). Every model in Mβfb is isomorphi to a Henkinmodel (see the disussion following [5℄(3.68)).Saturated Abstrat Consisteny Classes and Model Existene. Finally, we reviewthe model existene theorems proved in [5℄. There are three stages to obtaining a modelin our framework. First, we obtain an abstrat onsisteny lass ΓΣ (usually de�ned asthe lass of irrefutable sets of sentenes with respet to some alulus). Seond, given a(su�iently pure) set of sentenes Φ in the abstrat onsisteny lass ΓΣ we onstrut aHintikka set H extending Φ. Third, we onstrut a model of this Hintikka set (and henea model of Φ).A Σ-abstrat onsisteny lass ΓΣ is a lass of sets of Σ-sentenes. An abstrat on-sisteny lass is always required to be losed under subsets (f. [5℄(6.1)). Sometimes werequire the stronger property that ΓΣ is ompat, i.e., a set Φ is in ΓΣ i� every �nite subsetof Φ is in ΓΣ (f. [5℄(6.1,6.2)).To desribe further properties of abstrat onsisteny lasses, we use the notation S ∗ afor S ∪ {a} as in [5℄. The following is a list of properties a lass ΓΣ of sets of sentenes ansatisfy with respet to arbitrary Φ ∈ ΓΣ (f. [5℄(6.5)):
∇c If A is atomi, then A /∈ Φ or ¬A /∈ Φ.
∇¬ If ¬¬A ∈ Φ, then Φ ∗ A ∈ ΓΣ.
∇β If A≡βB and A ∈ Φ, then Φ ∗ B ∈ ΓΣ.
∇η If A≡βηB and A ∈ Φ, then Φ ∗ B ∈ ΓΣ.
∇∨ If A ∨ B ∈ Φ, then Φ ∗ A ∈ ΓΣ or Φ ∗ B ∈ ΓΣ.
∇∧ If ¬(A ∨B) ∈ Φ, then Φ ∗ ¬A ∗ ¬B ∈ ΓΣ.
∇∀ If Πα

F ∈ Φ, then Φ ∗ FW ∈ ΓΣ for eah W ∈ cw�α(Σ).
∇∃ If ¬Πα

F ∈ Φ, then Φ ∗¬(Fw) ∈ ΓΣ for any parameter wα ∈ Σα whih does not our inany sentene of Φ.
∇b If ¬(A

.
=o

B) ∈ Φ, then Φ ∗A ∗ ¬B ∈ ΓΣ or Φ ∗ ¬A ∗ B ∈ ΓΣ.
∇ξ If ¬(λXα M

.
=

α→β
λXα N) ∈ Φ, then Φ ∗ ¬([w/X]M

.
=

β
[w/X]N) ∈ ΓΣ for any param-eter wα ∈ Σα whih does not our in any sentene of Φ.
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∇f If ¬(G

.
=α→β

H) ∈ Φ, then Φ ∗ ¬(Gw
.
=β

Hw) ∈ ΓΣ for any parameter wα ∈ Σα whihdoes not our in any sentene of Φ.
∇sat Either Φ ∗ A ∈ ΓΣ or Φ ∗ ¬A ∈ ΓΣ.We say ΓΣ is an abstrat onsisteny lass if it is losed under subsets and satis�es ∇c,
∇¬, ∇β, ∇∨, ∇∧, ∇∀ and ∇∃. We let Accβ denote the olletion of all abstrat onsistenylasses. For eah ∗ ∈ we re�ne Accβ to a olletion Acc∗ where the additional properties
{∇η,∇ξ,∇f,∇b} indiated by ∗ are required (f. [5℄(6.7)). We say an abstrat onsistenylass ΓΣ is saturated if ∇sat holds.Using ∇c (atomi onsisteny) and the fat that there are in�nitely many parametersat eah type, we an show every abstrat onsisteny lass satis�es non-atomi onsisteny.That is, for every abstrat onsisteny lass ΓΣ, A ∈ w�o(Σ) and Φ ∈ ΓΣ, we have either
A /∈ Φ or ¬A /∈ Φ (f. [5℄(6.10)).In [5℄(6.32) we show that su�iently Σ-pure sets in saturated abstrat onsisteny lassesextend to saturated Hintikka sets. (A set of sentenes Φ is su�iently Σ-pure if for eahtype α there is a set Pα of parameters of type α with ardinality ℵs and suh that noparameter in P ours in a sentene in Φ.)In the Model Existene Theorem for Saturated Sets [5℄(6.33) we show that these satu-rated Hintikka sets an be used to onstrut models M whih are members of the orre-sponding model lasses M∗. Then we onlude (f. [5℄(6.34)):Model Existene Theorem for Saturated Abstrat Consisteny Classes: For all
∗ ∈ , if ΓΣ is a saturated abstrat onsisteny lass in Acc∗ and Φ ∈ ΓΣ is a su�iently
Σ-pure set of sentenes, then there exists a model M ∈ M∗ that satis�es Φ. Furthermore,eah domain of M has ardinality at most ℵs.In [5℄ we apply the abstrat onsisteny method to analyze ompleteness for di�erent nat-ural dedution aluli. Unfortunately, the saturation ondition is very di�ult to prove formahine-oriented aluli (indeed as we will see in Setion 3 it is equivalent to ut elimina-tion), so Theorem [5℄(6.34) annot be easily used for this purpose diretly.In Setion 6 we therefore motivate and present a set of extra onditions for Accβfb weall aeptability onditions. The new onditions are su�ient to prove model existene.



63 Sequent Caluli, Cut and SaturationBasi Rules (Gβ) A atomi (and β-normal)
G(init)

∆ ∗ A ∗ ¬A

∆ ∗ A
G(¬)

∆ ∗ ¬¬A

∆ ∗ ¬A ∆ ∗ ¬B
G(∨−)

∆ ∗ ¬(A ∨ B)

∆ ∗ A ∗ B
G(∨+)

∆ ∗ (A ∨ B)

∆ ∗ ¬ (AC)


y

β
C ∈ w�α(Σ)

G(Π C

− )
∆ ∗ ¬Πα

A

∆ ∗ (Ac)


y

β
cα ∈ Σ new

G(Π c
+)

∆ ∗ Πα
AInversion Rule ∆ ∗ ¬¬A

G(Inv
¬)

∆ ∗AWeakening and Cut Rules ∆
G(weak)

∆ ∪ ∆′

∆ ∗ C ∆ ∗ ¬C
G(cut)

∆Figure 1: Sequent Calulus RulesWe will now study ut-elimination and ut-simulation with respet to (one-sided) sequentaluli.Sequent Caluli G. We onsider a sequent to be a �nite set ∆ of β-normal sentenesfrom w�o(Σ). A sequent alulus G provides an indutive de�nition for when ⊢⊢G ∆ holds.We say a sequent alulus rule
∆1 · · · ∆n

r
∆is admissible in G if ⊢⊢G ∆ holds whenever ⊢⊢G ∆i for all 1 ≤ i ≤ n. For any naturalnumber k ≥ 0, we all an admissible rule r k-admissible if any instane of r an be replaedby a derivation with at most k additional proof steps. Given a sequent ∆, a model M,and a lass M of models, we say ∆ is valid for M (or valid for M), if M |= D for some

D ∈ ∆ (or ∆ is valid for every M ∈ M). As for sets in abstrat onsisteny lasses, weuse the notation ∆ ∗A to denote the set ∆ ∪ {A} (whih is simply ∆ if A ∈ ∆). Figure 1introdues several sequent alulus rules. Some of these rules will be used to de�ne sequentaluli, while others will be shown admissible (or even k-admissible).Abstrat Consisteny Classes for Sequent Caluli. For any sequent alulus G wean de�ne a lass ΓG
Σ of sets of sentenes. Under ertain assumptions, ΓG

Σ is an abstratonsisteny lass. First we adopt the notation ¬Φ and Φ↓β for the sets {¬A|A ∈ Φ} and
{A↓β |A ∈ Φ}, resp., where Φ ⊆ cw�o(Σ). Furthermore, we assume this use of ¬ bindsmore strongly than ∪ or ∗, so that ¬Φ ∪ ∆ means (¬Φ) ∪ ∆ and ¬Φ ∗ A means (¬Φ) ∗ A.De�nition 3.1 Let G be a sequent alulus. We de�ne ΓG

Σ to be the lass of all �nite
Φ ⊂ cw�o(Σ) suh that ⊢⊢G ¬ Φ↓β does not hold.



7In a straightforward manner, one an prove the following results (see the Appendix).Lemma 3.2 Let G be a sequent alulus suh that G(Inv
¬) is admissible. For any �nitesets Φ and ∆ of sentenes, if Φ ∪ ¬∆ /∈ ΓG

Σ , then ⊢⊢G ¬ Φ↓β ∪ ∆↓β holds.Theorem 3.3 Let G be a sequent alulus. If the rules G(Inv
¬), G(¬), G(weak), G(init),

G(∨−), G(∨+), G(Π C

− ) and G(Π c
+) are admissible in G, then ΓG

Σ ∈ Accβ.We an furthermore show the following relationship between saturation and ut (see theAppendix).Theorem 3.4 Let G be a sequent alulus.1. If G(cut) is admissible in G, then ΓG
Σ is saturated.2. If G(¬) and G(Inv

¬) are admissible in G and ΓG
Σ is saturated, then G(cut) is admissiblein G.Sine saturation is equivalent to admissibility of ut, we need weaker onditions than sat-uration. A natural ondition to onsider is the existene of saturated extensions.De�nition 3.5 (Saturated Extension) Let ∗ ∈ and ΓΣ, Γ′

Σ ∈ Acc∗ be abstrat on-sisteny lasses. We say Γ′
Σ is an extension of ΓΣ if Φ ∈ Γ′

Σ for every su�iently Σ-pure
Φ ∈ ΓΣ. We say Γ′

Σ is a saturated extension of ΓΣ if Γ′
Σ is saturated and an extension of ΓΣ.There exist abstrat onsisteny lasses Γ in Accβfb whih have no saturated extension.Example 3.6 Let ao, bo, qo→o ∈ Σ and Φ := {a, b, (qa),¬(qb)}. We onstrut an abstratonsisteny lass ΓΣ from Φ by �rst building the losure Φ′ of Φ under relation ≡β and thentaking the power set of Φ′. It is easy to hek that this ΓΣ is in Accβfb. Suppose we havea saturated extension Γ′

Σ of ΓΣ in Accβfb. Then Φ ∈ Γ′
Σ sine Φ is �nite (hene su�ientlypure). By saturation, Φ ∗ (a

.
=o b) ∈ Γ′

Σ or Φ ∗¬(a
.
=o b) ∈ Γ′

Σ. In the �rst ase, applying ∇∀with the onstant q, ∇∨ and ∇c ontradits (qa),¬(qb) ∈ Φ. In the seond ase, ∇b and ∇contradit a, b ∈ Φ.Existene of any saturated extension of a sound sequent alulus G implies admissibility ofut. The proof uses the model existene theorem for saturated abstrat onsisteny lasses(f. [5℄(6.34)). The full proof is in the Appendix.Theorem 3.7 Let G be a sequent alulus whih is sound for M∗. If ΓG
Σ has a saturatedextension Γ′

Σ ∈ Acc∗, then G(cut) is admissible in G.Sequent Calulus Gβ. We now study a partiular sequent alulus Gβ de�ned by therules G(init), G(¬), G(∨−), G(∨+), G(Π C

− ) and G(Π c
+) (f. Figure 1). It is easy to showthat Gβ is sound for the eight model lasses and in partiular for lass Mβ.



8The reader may easily prove the following Lemma.Lemma 3.8 Let A ∈ cw�o(Σ) be an atom, B ∈ cw�α(Σ), and ∆ be a sequent.1. ∆ ∗ A ⇔ A := ∆ ∗ ¬(¬(¬A ∨ A) ∨ ¬(¬A ∨A)) is derivable in 7 steps in Gβ.2. ∆ ∗ B
.
=α

B := ∆ ∗ Πα(λPα→o ¬(PB) ∨ (PB)) is derivable in 3 steps in Gβ.The proof of the next Lemma is by indution on derivations and is given in the Appendix.Lemma 3.9 The rules G(Inv
¬) and G(weak) are 0-admissible in Gβ.Theorem 3.10 The sequent alulus Gβ is omplete for the model lass Mβ and the rule

G(cut) is admissible.Proof: By Theorem 3.3 and Lemma 3.9, Γ
Gβ

Σ ∈ Accβ. Suppose ⊢⊢Gβ
∆ does not hold. Then

¬∆ ∈ Accβ by Lemma 3.2. By the model existene theorem for Accβ (f. [6℄(8.1)) thereexists a model for ¬∆ in Mβ. This gives ompleteness of Gβ . We an use ompleteness toonlude ut is admissible in Gβ .Andrews proves admissibility of ut for a sequent alulus similar to Gβ in [1℄. The proofin [1℄ ontains the essential ingredients for showing ompleteness.We will now show that G(cut) atually beomes k-admissible in Gβ if ertain formulaeare available in the sequent ∆ we wish to prove.4 Cut-SimulationCut-Strong Formulae and Sequents. k-ut-strong formulae an be used to e�etivelysimulate ut. E�etively means that the elimination of eah appliation of a ut-rule intro-dues maximally k additional proof steps, where k is onstant.De�nition 4.1 Given a formula A ∈ cw�o(Σ), and an arbitrary but �xed number k > 0.We all formula A k-ut-strong for G (or simply ut-strong) if the following ut rule variantis k-admissible in G:1
∆ ∗ C ∆ ∗ ¬C

G(cutA)
∆ ∗ ¬AOur examples below illustrate that ut-strength of a formula usually only weakly dependson alulus G: it only presumes standard ingredients suh as β-normalization, weakening,and rules for the logial onnetives.We present some simple examples of ut-strong formulae for our sequent alulus Gβ . Aorresponding phenomenon is observable in other higher-order aluli, for instane, for thealuli presented in [1, 4, 7, 11℄.1Here, we ould alternatively use (k-)derivability (see [9℄) to give a stronger but less general notion of

k-ut-strongness. In fat, all axioms we disuss in this paper would remain k-ut-strong. From a prooftheoreti point of view one may argue that this alternative notion leads to a more interesting result althoughit may generally apply to fewer axioms.



9Example 4.2 Formula ∀Po P := Πo(λPo P ) is 3-ut-strong in Gβ. This is justi�ed bythe following derivation whih atually shows that rule G(cutA) for this spei� hoie of
A is derivable in Gβ by maximally 3 additional proof steps. The only interesting proof stepis the instantiation of P with formula D := ¬C ∨ C in rule G(Π D

− ). (Note that C mustbe β-normal; sequents suh as ∆ ∗ C by de�nition ontain only β-normal formulae.)
∆ ∗ C

∆ ∗ ¬¬C
G(¬)

∆ ∗ ¬C

∆ ∗ ¬(¬C ∨ C)
G(∨−)

∆ ∗ ¬Πo(λPo P )
G(Π D

− )Clearly, ∀Po P is not a very interesting ut-strong formula sine it implies falsehood, i.e.inonsisteny.Example 4.3 The formula ∀Po P ⇒ P := Πo(λPo ¬P ∨ P ) is 3-ut-strong in Gβ. Thisis an example of a tautologous ut-strong formula. Now P is simply instantiated with
D := C in rule G(Π D

− ). Exept for this �rst step the derivation is idential to the one forExample 4.2.Example 4.4 Leibniz equations M
.
=α

N := Πα(λP ¬PM ∨ PN) (for arbitraryformulae M,N ∈ cw�α(Σ) and types α ∈ T ) are 3-ut-strong in Gβ . This inludes thespeial ases M
.
=α

M. Now P is instantiated with D := λXα C in rule G(Π D

− ). Exeptfor this �rst step the derivation is idential to the one for Example 4.2.Example 4.5 The original formulation of higher-order logi (f. [12℄) ontained ompre-hension axioms of the form C := ∃Pα1→···→αn→o∀Xn PXn ⇔ Bo where Bo ∈ w�o(Σ)is arbitrary with P /∈ free(B). Churh eliminated the need for suh axioms by for-mulating higher-order logi using typed λ-alulus. We will now show that the instane
CI := ∃Pι→o ∀Xι PX ⇔ X

.
=ι X is 17-ut-strong in Gβ (note that G(weak) is 0-admissible).This motivates building-in omprehension priniples instead of treating omprehension ax-iomatially. 3 steps; see 3.8....

∆ ∗ ¬(pa ⇒ a
.
=ι

a) ∗ a
.
=ι

a

∆ ∗ ¬(pa ⇒ a
.
=ι

a) ∗ ¬¬(a
.
=ι

a)
G(¬)

D

∆ ∗ ¬(pa ⇒ a
.
=ι

a) ∗ ¬(¬(a
.
=ι

a) ∨ pa)
G(∨−)

∆ ∗ ¬(pa ⇒ a
.
=ι

a) ∨ ¬(a
.
=ι

a ⇒ pa)
G(∨+)

∆ ∗ ¬¬(¬(pa ⇒ a
.
=ι

a) ∨ ¬(a
.
=ι

a ⇒ pa))
G(¬)

∆ ∗ ¬Πι(λXι pX ⇔ X
.
=ι

X)
G(Π aι

− )

∆ ∗ Πι→o(λP ι→o ¬Πι(λXι PX ⇔ X
.
=ι

X))
G(Π pι→o

+ )

∆ ∗ ¬CI
G(¬)Derivation D is:

∆ ∗ pa ∗ ¬pa
G(init)

∆ ∗ ¬¬pa ∗ ¬pa
G(¬)

∆ ∗C ∆ ∗ ¬C.... 3 steps; see 4.4
∆ ∗ ¬(a

.
=o

a)

∆ ∗ ¬(a
.
=ι

a) ∗ ¬pa
G(weak)

∆ ∗ ¬(¬pa ∨ a
.
=ι

a) ∗ ¬pa
G(∨−)



10As we will show later, many prominent axioms for higher-order logi also belong to thelass of ut-strong formulae.Next we de�ne ut-strong sequents.De�nition 4.6 A sequent ∆ is alled k-ut-strong (or simply ut-strong) if there exists aa k-ut-strong formula A ∈ cw�o(Σ) suh that ¬A ∈ ∆.Cut-Simulation. The ut-simulation theorem is a main result of this paper. It says thatut-strong sequents support an e�etive simulation (and thus elimination) of ut in Gβ.E�etive means that the size of ut-free derivation grows only linearly for the number ofut rule appliations to be eliminated.We �rst �x the following aluli: Calulus Gcut
β extends Gβ by the rule G(cut) and alulus

GcutA

β extends Gβ by the rule G(cutA) for some arbitrary but �xed ut-strong formula A.Theorem 4.7 Let ∆ be a k-ut-strong sequent suh that ¬A ∈ ∆ for some k-ut-strongformula A. For eah derivation D: ⊢⊢Gcut
β

∆ with d proof steps there exists an alternativederivation D′: ⊢⊢
GcutA

β

∆ with d proof steps.Proof: Note that the rules G(cut) and G(cutA) oinide whenever ¬A ∈ ∆. Intuitively,we an replae eah ourrene of G(cut) in D by G(cutA) in order to obtain a D′ of samesize. Tehnially, in the indution proof one must ensure ¬A stays in the sequent and arryout a parameter renaming to make sure the eigenvariable ondition is satis�ed.Theorem 4.8 Let ∆ be a k-ut-strong sequent suh that ¬A ∈ ∆ for some k-ut-strongformula A. For eah derivation D: ⊢⊢
GcutA

β

∆ with d proof steps and with n appliations ofrule G(cut) there exists an alternative derivation D′: ⊢⊢Gβ
∆ with maximally d + nk proofsteps.Proof: A is k-ut-strong so by de�nition G(cutA) is k-admissible in Gβ . This means that

G(cutA) an be eliminated inD and eah single elimination of G(cutA) introdues maximally
k new proof steps. Now the assertion an be easily obtained by a simple indution over n.Corollary 4.9 Let ∆ be a k-ut-strong sequent. For eah derivation D: ⊢⊢Gcut

β
∆ with dproof steps and n appliations of rule G(cut) there exists an alternative ut-free derivation

D′: ⊢⊢Gβ
∆ with maximally d + nk proof steps.



115 The Extensionality Axioms are Cut-StrongWe have shown omprehension axioms an be ut-strong (f. Example 4.5). Further promi-nent examples of ut-strong formulae are the Boolean and funtional extensionality axioms.The Boolean extensionality axiom (abbreviated Bo in the remainder) is
∀Ao ∀Bo (A ⇔ B) ⇒ A

.
=o BThe in�nitely many funtional extensionality axioms (abbreviated Fαβ) are parameterizedover α, β ∈ T .

∀Fα→β ∀Gα→β (∀Xα FX
.
=β GX) ⇒ F

.
=α→β GThese axioms usually have to be added to higher-order aluli to reah Henkin omplete-ness, i.e. ompleteness with respet to model lass Mβfb. For example, Huet's onstrainedresolution approah as presented in [11℄ is not Henkin omplete without adding extensional-ity axioms. For instane, the need for adding Boolean extensionality is atually illustratedby the set of unit literals Φ := {a, b, (qa),¬(qb)} from Example 3.6. As the reader mayeasily hek, this lause set Φ, whih is inonsistent for Henkin semantis, annot be provenby Huet's system without, e.g, adding the Boolean extensionality axiom. By relying on re-sults in [1℄, Huet essentially shows ompleteness with respet to model lass Mβ as opposedto Henkin semantis.We will now investigate whether adding the extensionality axioms to a mahine-orientedalulus in order to obtain Henkin ompleteness is a suitable option.Theorem 5.1 The Boolean extensionality axiom Bo is a 14-ut-strong formula in Gβ.Proof: The following derivation justi�es this theorem (ao is a parameter).7 steps; see 3.8....

∆ ∗ a ⇔ a

∆ ∗ ¬¬(a ⇔ a)
G(¬)

∆ ∗C ∆ ∗ ¬C.... 3 steps; see 4.4
∆ ∗ ¬(a

.
=o

a)

∆ ∗ ¬(¬(a ⇔ a) ∨ a
.
=o

a)
G(∨−)

∆ ∗ ¬Bo
2 × G(Π a

−)Theorem 5.2 The funtional extensionality axioms Fαβ are 11-ut-strong formulae in Gβ.Proof: The following derivation justi�es this theorem (fα→β is a parameter).3 steps; see 3.8....
∆ ∗ fa

.
=β

fa

∆ ∗ (∀Xα fX
.
=β

fX)
G(Π aα

+ )

∆ ∗ ¬¬∀Xα fX
.
=β

fX
G(¬)

∆ ∗ C ∆ ∗ ¬C.... 3 steps; see 4.4
∆ ∗ ¬(f

.
=α→β

f)

∆ ∗ ¬(¬(∀Xα fX
.
=β

fX) ∨ f
.
=α→β

f)
G(∨−)

∆ ∗ ¬Fαβ
2 × G(Π f

−)



12
∆ ∗ ¬Fαβ α → β ∈ T

G(Fαβ)
∆

∆ ∗ ¬Bo
G(B)

∆Figure 2: Axiomati Extensionality Rules
∆ ∗ (∀Xα AX

.
=β

BX)




y

β
G(f)

∆ ∗ (A
.
=α→β

B)

∆ ∗ ¬A ∗ B ∆ ∗ ¬B ∗ A
G(b)

∆ ∗ (A
.
=o

B)Figure 3: Proper Extensionality RulesIn [4℄ and [7℄ we have already argued that the extensionality priniples should not betreated axiomatially in mahine-oriented higher-order aluli and there we have developedresolution and sequent aluli in whih these priniples are built-in. Here we have nowdeveloped a strong theoretial justi�ation for this work: Theorems 5.1, 5.2 and 4.9 tell usthat adding the extensionality priniples Bo and Fαβ as axioms to a alulus is like addinga ut rule.In Figure 2 we show rules that add Boolean and funtional extensionality in an axiomatimanner to Gβ . More preisely we add rules G(Fαβ) and G(B) allowing to introdue theaxioms for any sequent ∆; this way we address the problem of the in�nitely many possibleinstantiations of the type-shemati funtional extensional axiom Fαβ. Calulus Gβ enrihedby the new rules G(Fαβ) and G(B) is alled GE
β . Soundness of the the new rules is easy toverify: In [5℄(4.3) we show that G(Fαβ) and G(B) are valid for Henkin models.Replaing the Extensionality Axioms. In Figure 3 we de�ne alternative extension-ality rules whih orrespond to those developed for resolution and sequent aluli in [4℄and [7℄. Calulus Gβ enrihed by G(f) and G(b) is alled G−

βfb. Soundness of G(f) and G(b)for Henkin semantis is again easy to show.Our aim is to develop a mahine-oriented sequent alulus for automating Henkin om-plete proof searh. We argue that for this purpose G(f) and G(b) are more suitable rulesthan G(Fαβ) and G(B).Our next step now is to show Henkin ompleteness for GE
β . This will be relatively easysine we an employ ut-simulation. Then we analyze whether alulus G−

βfb has the samededutive power as GE
β .First we extend Theorem 3.3. The proof is given in the Appendix.Theorem 5.3 Let G be a sequent alulus suh that G(Inv

¬) and G(¬) are admissible.1. If G(f) and G(Π c
+) are admissible, then ΓG

Σ satis�es ∇f.2. If G(b) is admissible, then ΓG
Σ satis�es ∇b.



13Theorem 5.4 The sequent alulus GE
β is Henkin omplete and the rule G(cut) is 12-admissible.Proof: G(cut) an be e�etively simulated and hene eliminated in GE

β by ombining rule
G(Fαβ) with the 11-step derivation presented in the proof of Theorem 5.2.Let Γ

GE
β

Σ be de�ned as in De�nition 3.1. We prove Henkin ompleteness of GE
β byshowing that the lass Γ

GE
β

Σ is a saturated abstrat onsisteny lass in Accβfb. We hereonly analyze the ruial onditions ∇b, ∇f and ∇sat. For the other onditions we refer toTheorem 3.3. Note that 0-admissibility of G(Inv
¬) and G(weak) an be shown for GE

β by asuitable indution on derivations as in Lemma 3.9.
∇f G(Π c

+) is a rule of GE
β and thus admissible. Aording to Theorem 5.3 it is thus su�ientto ensure admissibility of rule G(f) to show ∇f. This is justi�ed by the followingderivation where N := A

.
=α→β

B and M := (∀Xα AX
.
=β

BX)


y

β
(for β-normal

A,B).
∆ ∗ (∀Xα AX

.
=β

BX)




y

β

∆ ∗ N ∗M
G(weak)

∆ ∗ N ∗ ¬¬M
G(¬)

derivable....
∆ ∗ N ∗ ¬N

∆ ∗ N ∗ ¬(¬M ∨ N)
G(∨−)

∆ ∗ N ∗ ¬Fαβ
G(Π A

− ),G(Π B
− )

∆ ∗ A
.
=α→β

B

G(Fαβ)

∇b With a similar derivation using G(B) we an show that G(b) is admissible. We onlude
∇b by Theorem 5.3.

∇sat Sine G(cut) is admissible we get saturation by Theorem 3.4.Does G−

βfb have the same dedutive strength as GE
β ? I.e., is G−

βfb Henkin omplete? We showthis is not yet the ase.Theorem 5.5 The sequent alulus G−

βfb is not omplete for Henkin semantis.We illustrate the problem by a ounterexample.Example 5.6 Consider the sequent ∆ := {¬a,¬b,¬(qa), (qb)} where ao, bo,
qo→o ∈ Σ are parameters. For anyM ≡ (D, @, E , υ) ∈ Mβfb, either υ(E(a)) ≡ F, υ(E(b)) ≡ For E(a) ≡ E(b) by property b. Hene sequent ∆ is valid for every M ∈ Mβfb. However,
⊢⊢

G
−

βfb
∆ does not hold. By inspetion, ∆ annot be the onlusion of any rule.
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∆ ∗ (A

.
=o

B) (†)
G(Init

.
=)

∆ ∗ ¬A ∗B

∆ ∗ (A1 .
=α1

B
1) · · · ∆ ∗ (An .

=αn
B

n) (‡)
G(d)

∆ ∗ (hAn .
=β

hBn)

(†) A,B atomi (‡) n ≥ 1, β ∈ {o, ι}, hαn→β ∈ Σ parameterFigure 4: Additional Rules G(Init
.
=) and G(d)In order to reah Henkin ompleteness and to show ut-elimination we thus need to addfurther rules. Our example motivates the two rules presented in Figure 4. G(Init

.
=) intro-dues Leibniz equations suh as qa

.
=o qb as is needed in our example and G(d) realizes therequired deomposition into a

.
=

o
b.We thus extend sequent alulus G−

βfb to Gβfb by adding the deomposition rule G(d) andthe rule G(Init
.
=) whih generally heks if two atomi sentenes of opposite polarity areprovably equal (as opposed to syntatially equal).Is Gβfb omplete for Henkin semantis? We will show in the next Setion that this indeedholds (f. Theorem 6.3).With GE and Gβfb we have thus developed two Henkin omplete aluli and both aluliare ut-free. However, as our exploration shows �ut-freeness� is not a well-hosen rite-rion to di�erentiate between their suitability for proof searh automation: GE inherentlysupports e�etive ut-simulation and thus ut-freeness is meaningless.The riterion we propose for the analysis of aluli in imprediative logis is �freeness ofe�etive ut-simulation�.Other Rules for Other Model Classes. In [6℄ we developed respetive omplete andut-free sequent aluli not only for Henkin semantis but for �ve of the eight model lasses.In partiular, no additional rules are required for the β, βη and βξ ase. Meanwhile, the

βf ase requires additional rules allowing η-onversion. The limited spae does not allowus to present and analyze these ases here.



156 Aeptability ConditionsWe now turn our attention again to the existene of saturated extension of abstrat onsis-teny lasses.As illustrated by the Example 3.6, we need some extra abstrat onsisteny propertiesto ensure the existene of saturated extensions. We all these extra properties aeptabilityonditions. They atually losely orrespond to additional rules G(Init
.
=) and G(d).De�nition 6.1 (Aeptability Conditions) Let ΓΣ be an abstrat onsisteny lass in

Accβfb. We de�ne the following properties:
∇m If A,B ∈ w�o(Σ) are atomi and A,¬B ∈ Φ, then Φ ∗ ¬(A

.
=o

B) ∈ ΓΣ.
∇d If ¬(hAn .

=β hBn) ∈ Φ for some types αi where β ∈ {o, ι} and hαn→β ∈ Σ is aparameter, then there is an i (1 ≤ i ≤ n) suh that Φ ∗ ¬(Ai .
=αi

B
i) ∈ ΓΣ.We now replae the strong saturation ondition used in [5℄ by these aeptability onditions.De�nition 6.2 (Aeptable Classes) An abstrat onsisteny lass ΓΣ ∈ Accβfb is alledaeptable in Accβfb if it satis�es the onditions ∇m and ∇d.One an show a model existene theorem for aeptable abstrat onsisteny lasses in

Accβfb (f. [6℄(8.1)). From this model existene theorem, one an onlude Gβfb is ompletefor Mβfb (hene for Henkin models) and that ut is admissible in Gβfb.Theorem 6.3 The sequent alulus Gβfb is omplete for Henkin semantis and the rule
G(cut) is admissible.Proof: The argumentation is similar to Theorem 3.10 but here we employ the aeptabilityonditions ∇m and ∇d.One an further show the Saturated Extension Theorem (f. [6℄(9.3)):Theorem 6.4 There is a saturated abstrat onsisteny lass in Accβfb that is an extensionof all aeptable ΓΣ in Accβfb.Given Theorem 3.7, one an view the Saturated Extension Theorem as an abstrat ut-elimination result.The proof of a model existene theorem employs Hintikka sets and in the ontext ofstudying Hintikka sets we have identi�ed a phenomenon related to ut-strength whih weall the Imprediativity Gap. That is, a Hintikka setH is saturated if any ut-strong formula
A (e.g. a Leibniz equation C

.
= D) is in H. Hene we an reasonably say there is a �gap�between saturated and unsaturated Hintikka sets. Every Hintikka set is either saturated orontains no ut-strong formulae.



167 ConlusionWe have shown that adding ut-strong formulae to a alulus for an imprediative logi islike adding ut. For mahine-oriented automated theorem proving in imprediative logis �suh as lassial type theory � it is therefore not reommendable to naively add ut-strongaxioms to the searh spae. In addition to the omprehension priniple and the funtionaland Boolean extensionality axioms as elaborated in this paper the list of ut-strong axiomsinludes:Other Forms of De�ned EqualityFormulas A
..
=α

B are 4-ut-strong in Gβ where ..
=α is

λXα λYα ∀Qα→α→o (∀Zα (Q Z Z)) ⇒ (Q X Y ) (f. [3℄).Proof: Instantiate Q with λXα λYα C.Axiom of IndutionThe Axiom of Strutural Indution for the naturals ∀Pι→o P0∧(∀Xι PX ⇒ P (sX)) ⇒
∀Xι PX is 18-ut-strong in Gβ . (Other well-founded ordering axioms are analogous.)Proof: Instantiate P with λXι a

.
=o a for some parameter ao.Axiom of Choie

∃I(α→o)→o ∀Qα→o ∃Xα QX ⇒ Q(IQ) is 7-ut-strong in Gβ .Proof: Instantiate Q with λXα C.Axiom of DesriptionThe desription axiom ∃I(α→o)→o ∀Qα→o (∃1Yα QY ) ⇒ Q(IQ) (see [2℄), where ∃1Yα QYstands for ∃Yα QY ∧ (∀Zα QZ ⇒ Y
.
= Z) is 25-ut-strong in Gβ .Proof: Instantiate Q with λXα a

.
=

α
X for some parameter aα.As we have shown in Example 4.5, omprehension axioms an be ut-strong. Churh'sformulation of type theory (f. [8℄) used typed λ-alulus to build omprehension priniplesinto the language. One an view Churh's formulation as a �rst step in the program toeliminate the need for ut-strong axioms. For the extensionality axioms a start has beenmade by the sequent aluli in this paper (and [6℄), for resolution in [4℄ and for sequentaluli and extensional expansion proofs in [7℄. The extensional systems in [7℄ also providea omplete method for using primitive equality instead of Leibniz equality. For improvingthe automation of higher-order logi our exploration thus motivates the development ofhigher-order aluli whih diretly inlude reasoning priniples for equality, extensionality,indution, hoie, desription, et., without using ut-strong axioms.
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18AppendixProof of Lemma 3.2 Suppose Φ ∪ ¬∆ /∈ ΓG
Σ . By de�nition, ⊢⊢G ¬ Φ↓β ∪ ¬¬ ∆↓β holds.Applying G(Inv

¬) to eah member of ∆↓β, we have ⊢⊢G ¬ Φ↓β ∪ ∆↓β.Proof of Theorem 3.3: We prove ΓG
Σ is losed under subsets and satis�es ∇c, ∇¬, ∇∨,

∇∧ and ∇β . The remaining onditions are proven analogously.Suppose Φ ∈ ΓG
Σ , If Φ0 ⊆ Φ and Φ0 /∈ ΓG

Σ , then ⊢⊢G ¬ Φ0↓β and so ⊢⊢G ¬ Φ↓β byadmissibility of G(weak). Hene ΓG
Σ is losed under subsets.Suppose Φ ∈ ΓG

Σ and A,¬A ∈ Φ where A is atomi. By admissibility of G(init),
⊢⊢G ¬ Φ↓β ∗ A↓β sine ¬ A↓β ∈ ¬ Φ↓β. By admissibility of G(¬), ⊢⊢G ¬ Φ↓β sine ¬¬ A↓β ∈

¬ Φ↓β, ontraditing Φ ∈ ΓG
Σ . Thus ∇c holds.Suppose Φ ∈ ΓG

Σ , ¬¬A ∈ Φ and Φ ∗ A /∈ ΓG
Σ . Hene ⊢⊢G ¬ Φ↓β ∗ ¬ A↓β and so

⊢⊢G ¬ Φ↓β ∗ ¬¬¬ A↓β by admissibility of G(¬). Sine ¬¬A ∈ Φ, we know ¬ Φ↓β is equal to
¬ Φ↓β ∗ ¬¬¬ A↓β . Hene ⊢⊢G ¬ Φ↓β, ontraditing Φ ∈ ΓG

Σ . Thus ∇¬ holds.Suppose Φ ∈ ΓG
Σ , (A ∨ B) ∈ Φ, Φ ∗ A /∈ ΓG

Σ and Φ ∗ B /∈ ΓG
Σ . Hene ⊢⊢G ¬ Φ↓β ∗ ¬ A↓βand ⊢⊢G ¬ Φ↓β ∗ ¬ B↓β. Applying G(∨−), we have ⊢⊢G ¬ Φ↓β sine ¬ (A ∨B)



y

β
∈ ¬ Φ↓β,ontraditing Φ ∈ ΓG

Σ . Thus ∇∨ holds.By a similar argument, admissibility of G(Π C

− ) implies ∇∀.Suppose Φ ∈ ΓG
Σ , ¬(A ∨ B) ∈ Φ and Φ ∗ ¬A ∗ ¬B /∈ ΓG

Σ . By Lemma 3.2, ⊢⊢G ¬ Φ↓β ∗

A↓β ∗ B↓β. Applying G(∨+), we have ⊢⊢G ¬ Φ↓β ∗ (A ∨B)


y

β
. Applying G(¬), we have

⊢⊢G ¬ Φ↓β sine ¬(A ∨ B) ∈ Φ, ontraditing Φ ∈ ΓG
Σ . Thus ∇∧ holds.By a similar argument, admissibility of G(Π c

+), G(Inv
¬) and G(¬) imply ∇∃.Suppose Φ ∈ ΓG

Σ , A ∈ Φ, A≡βB and Φ∗B /∈ ΓG
Σ . Hene ⊢⊢G ¬ Φ↓β∗¬ B↓β, ontraditing

A↓β ∈ Φ↓β and Φ ∈ ΓG
Σ . Thus ∇β holds.Proof of Theorem 3.4: Suppose G(cut) is admissible, Φ ∈ ΓG

Σ , A ∈ cw�o(Σ), Φ∗A /∈ ΓG
Σand Φ ∗ ¬A /∈ ΓG

Σ . Hene ⊢⊢G ¬ Φ↓β ∗ ¬ A↓β and ⊢⊢G ¬ Φ↓β ∗ ¬¬ A↓β. Using G(cut), wehave ⊢⊢G ¬ Φ↓β, ontraditing Φ ∈ ΓG
Σ .Suppose ΓG

Σ is saturated, ⊢⊢G ∆∗C and ⊢⊢G ∆∗¬C hold but ⊢⊢G ∆ does not. Applying
G(¬) to every member of ∆ and to C we have ⊢⊢G ¬¬∆ ∗ ¬¬C and ⊢⊢G ¬¬∆ ∗ ¬C. ByLemma 3.2, we know ¬∆ ∈ ΓG

Σ . By saturation, we must have ¬∆∗C ∈ ΓG
Σ or ¬∆∗¬C ∈ ΓG

Σ .The �rst ase ontradits ⊢⊢G ¬¬∆∗¬C while the seond ase ontradits ⊢⊢G ¬¬∆∗¬¬C.



19Proof of Lemma 3.7: Suppose Γ′
Σ ∈ Acc∗ is a saturated extension of ΓG

Σ . Assume
⊢⊢G ∆ ∗ C and ⊢⊢G ∆ ∗ ¬C hold and ⊢⊢G ∆ does not. By Lemma 3.2, we know ¬∆ ∈ ΓG

Σ .Sine ¬∆ is �nite (hene su�iently pure), ¬∆ ∈ Γ′
Σ. By the model existene theorem forsaturated abstrat onsisteny lasses (f. Theorem [5℄(6.34)), there is a model M ∈ M∗suh that M |= ¬∆. By soundness of ΓG

Σ , we know both ∆ ∗ C and ∆ ∗ ¬C must be validin M. Sine M |= ¬∆, we must have M |= C and M |= ¬C, a ontradition.Proof of Lemma 3.9: We an argue 0-admissibility of G(Inv
¬) and G(weak) by indutionon derivations. We use the notation ⊢⊢n

Gβ
∆ to indiate there is a derivation with size atmost n of ∆. For negation inversion, we need to show ⊢⊢n

Gβ
∆ ∗A whenever ⊢⊢n

Gβ
∆ ∗¬¬A.First assume ¬¬A is a prinipal formula of the last rule applied. This is only possible if thelast rule is G(¬). Examining G(¬), we have either ⊢⊢n−1

Gβ
∆∗A or ⊢⊢n−1

Gβ
∆∗¬¬A∗A. In the�rst ase, we are done. Otherwise, we apply the indution hypothesis to ⊢⊢n−1

Gβ
∆∗¬¬A∗Aand obtain ⊢⊢n−1

Gβ
∆ ∗ A as desired. Next assume ¬¬A is not a prinipal formula of thelast rule. In this ase, the appliation of rule r onludes ⊢⊢n

Gβ
(∆′ ∗ ¬¬A) ∪ ∆0 from

⊢⊢ni

Gβ
(∆′ ∗ ¬¬A) ∪ ∆i (with 1 ≤ i ≤ m) where ∆0 ontains the prinipal formulae of therule appliation (a singleton unless the rule is G(init)) and n1 + · · ·+nm ≤ n−1. Applyingthe indutive hypothesis, we have ⊢⊢ni

Gβ
(∆′ ∗ A) ∪ ∆i for 1 ≤ i ≤ m. Applying rule r wehave ⊢⊢n

Gβ
(∆′ ∗ A) ∪ ∆0. (For the ase where r is G(Π c

+) we use the fat that the sameparameters our in A and ¬¬A.)To prove 0-admissibility of weakening, we generalize the statement to inlude a param-eter renaming (to handle the G(Π c
+) rule). A parameter renaming θ is a well-typed mapfrom parameters to parameters extended to operate on arbitrary terms. Note that if A is

β-normal, then θ(A) is also β-normal. Also, if A is atomi, then θ(A) is atomi. We provefor any n, ∆, ∆′ and parameter renaming θ, if ⊢⊢n
Gβ

∆ and θ(A) ∈ ∆′ for every A ∈ ∆, then
⊢⊢n

Gβ
∆′. Applying this with the identity parameter renaming θ, we have 0-admissibility of

G(weak).Suppose ⊢⊢n
Gβ

∆ and θ(A) ∈ ∆′ for every A ∈ ∆. First, assume the last rule appliationis G(Π c
+) with prinipal formula (Πα

G) ∈ ∆. In this ase we know ⊢⊢n−1
Gβ

∆0 ∗ (Gcα)


y

βwhere ∆0 ∗ (ΠG) is ∆ and c does not our in any sentene in ∆. Choose a parameter dαsuh that d does not our in any sentene in ∆′. Let θ′ be the parameter renaming givenby θ′(c) := d and θ′(w) := θ(w) for parameters w other than c. Let ∆′′ be ∆′∗ (θ(G)d)


y

β
.For eah A ∈ ∆0 ⊆ ∆, we know θ′(A) ≡ θ(A) ∈ ∆′ ⊆ ∆′′ (sine c does not our in anysentene in ∆). Also, sine c does not our in G, θ′((Gc)



y

β
) ≡ (θ(G)d)



y

β
∈ ∆′′. Henewe an apply the indution hypothesis with n − 1, ∆0 ∗ (Gc)



y

β
, ∆′′ and θ′ to onlude

⊢⊢n−1
Gβ

∆′ ∗ (θ(G)dα)


y

β
. Sine d does not our in ∆′ and θ(ΠG) ∈ ∆′, we an apply G(Π d

+)to onlude ⊢⊢n
Gβ

∆′.Next, assume the last rule applied is G(Π C

− ). Hene ⊢⊢n−1
Gβ

∆0 ∗ ¬ (GC)


y

β
where ∆0 ∗

¬(ΠG) is ∆. We apply the indution hypothesis with n−1, ∆0∗ (GC)


y

β
, ∆′∗¬ (θ(GC))



y

βand θ to onlude ⊢⊢n−1
Gβ

∆′ ∗¬ (θ(GC))


y

β
. Applying the rule G(Π

θ(C)
− ), we obtain ⊢⊢n−1

Gβ
∆′as desired. (Note that θ(¬ΠG) ∈ ∆′.)Finally, assume the last rule appliation is not G(Π c

+) and not G(Π C

− ). Let r be the last



20rule applied. The rule r onludes ⊢⊢n
Gβ

∆ from ⊢⊢ni

Gβ
∆0 ∪ ∆i where ∆0 ⊆ ∆, 1 ≤ i ≤ mand n1 + · · · + nm ≤ n − 1. For eah i, we an apply the indution hypothesis with ni,

∆0 ∪ ∆i, ∆′ ∪ {θ(A)|A ∈ ∆i} and θ to onlude ⊢⊢ni

Gβ
∆′ ∪ {θ(A)|A ∈ ∆i}. Applying thesame rule r we onlude ⊢⊢n

Gβ
∆′.Proof of Theorem 5.3: Assume the rules G(f) and G(Π c

+) are admissible. If ¬(G
.
=α→β

H) ∈ Φ and ⊢⊢G ¬ Φ↓β ∗ (Gw
.
=β

Hw)




y

β
(with wα new) holds, then we an show ⊢⊢G ¬ Φ↓βholds using G(Π w

+ ) and G(f).Assume the rule G(b) is admissible. Suppose Φ ∈ ΓG
Σ , ¬(A

.
=o

B) ∈ Φ, Φ ∗A ∗¬B /∈ ΓG
Σand Φ∗¬A∗B /∈ ΓG

Σ . By Lemma 3.2, ⊢⊢G ¬ Φ↓β ∗¬ A↓β ∗ B↓β and ⊢⊢G ¬ Φ↓β ∗ A↓β ∗¬ B↓β.Applying G(b), ⊢⊢G ¬ Φ↓β ∗ (A
.
=o

B)


y

β
. Applying G(¬), ⊢⊢G ¬ Φ↓β sine ¬(A

.
=o

B) ∈ Φ,ontraditing Φ ∈ ΓG
Σ . Thus ∇b holds.


