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SEMANTIC TECHNIQUES FOR CUT-ELIMINATION IN

HIGHER-ORDER LOGICS

CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

Abstract. This paper is part of an ongoing effort to examine the role of extensionality

in higher-order logic and provide tools for analyzing higher-order calculi.

In an earlier paper, we have presented eight classes of higher order models with re-

spect to various combinations of Boolean extensionality and three forms of functional

extensionality. Furthermore, we have developed a methodology of abstract consistency

methods (by providing the necessary model existence theorems) needed to analyze com-

pleteness of higher-order calculi with respect to these model classes. This framework,

employs a strong saturation criterion which prevents analysis of, e.g., the deductive power

of machine-oriented calculi.

In this paper we extend our saturated abstract consistency approach and obtain anal-

ogous model existence results without assuming saturation. For this, we replace the satu-

ration conditions by a set of weaker acceptability conditions which are sufficient to prove

model existence. We further show that saturation can be as hard to prove as cut elim-

ination. We apply our extended abstract consistency approach to show completeness of

five different sequent calculi (with varying strength regarding Boolean and functional ex-

tensionality reasoning) with respect to five of our eight model classes. We conclude that

cut-elimination holds for each of these five calculi.
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§1. Motivation. In [4], we have introduced and studied eight different model
classes (including Henkin models) for classical type theory which generalize the
notion of standard models and which allow for complete (recursively axiomati-
zable) calculi. Unfortunately, the model existence theorems presented there are
too weak to support completeness proofs for many higher-order machine-oriented
calculi, such as higher-order resolution [9, 5] and tableau-based calculi [3, 10],
since they assume saturation of abstract consistency classes. The saturation con-
dition is fulfilled by an abstract consistency class ΓΣ if for all Φ ∈ ΓΣ and for all
(closed) formulae A we have Φ∪{A} ∈ ΓΣ or Φ∪{¬A} ∈ ΓΣ. We will show that
saturation corresponds to admissibility of cut (which is hard to show for higher-
order calculi). In fact, we will show the stronger result that admissibility of cut
for certain sequent calculi is equivalent to the existence of saturated extensions
of abstract consistency classes.

Cut-elimination states that every proof in a sequent calculus C that employs
a cut rule can be transformed into an alternative C proof without cut. Using
induction, cut-elimination can easily be reduced to the problem admissibility of
the cut rule (essentially eliminating one application of the cut rule). In [1], Peter
Andrews applies his Unifying Principle to cut-elimination in a non-extensional
sequent calculus: He proves the calculus complete (relative to a Hilbert style
calculus Tβ) without the cut rule and concludes that cut-elimination holds for
this calculus. Because of the saturation condition we cannot obtain extensional
cut-elimination theorems (as in [15, 16]) using the model existence theorem of
[4].

In this paper we present strong model existence theorems for some of the model
classes presented in [4] using extensions of Peter Andrews’ υ-complexes [1]. For
this we weaken the saturation assumption from [4] to certain acceptability con-
ditions for abstract consistency classes. We use sequent calculi to demonstrate
that the acceptability conditions correspond to reasonable rules in a cut-free,
machine-oriented calculus. Using the stronger versions of the model existence
theorems, we can show the cut-free sequent calculi are complete. Hence cut-
elimination holds for each sequent calculus. In general, to show completeness
of a higher-order machine-oriented calculus C, one can consider the class Γ of
C-irrefutable sets of sentences and show that it is an acceptable abstract consis-
tency class.

If we restrict our attention to five of the eight cases, then we can use the model
existence theorem to show that every acceptable abstract consistency class can
be extended to a saturated one. In fact, we can use each model class to define a
single saturated abstract consistency class which extends all acceptable abstract
consistency classes. We give examples to show that without acceptability there
are abstract consistency classes which have no saturated extension (in spite of
the fact that the saturation condition does hold with respect to atomic formulae).

In Section 2 we will review the necessary material from [4] to make this article
self-contained. Section 3 explores the connection between saturation and cut
elimination for sequent calculi. In Section 4, we motivate and present our set of
acceptability conditions that are weaker than saturation, but sufficient to prove
model existence. In Section 5 we define cut-free sequent calculi which we will
show complete. In Section 6 we introduce acceptable Hintikka sets as a basis for
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model construction and we define and study the notion of Hintikka compatibility.
We then introduce methods for constructing models in Section 7. This frame-
work is then exploited in Section 8 for the proof of the Strong Model Existence
Theorem that forms a primary result of this paper. Together with the material
in Section 5, this yields prototypical machine-oriented calculi (sound, complete,
and cut-free) for all of the semantic notations identified in [4]. Finally, in Sec-
tion 9 we prove another important result in the paper: the Saturated Extension
Theorem.

§2. Abstract Consistency and Saturation in Higher-Order Logic. We
review the fundamental framework from [4] (which can be consulted for details).

2.1. Higher-Order Logic (HOL). As in [7], we formulate higher-order logic
(HOL) based on the simply typed λ-calculus. The set of simple types T is freely
generated from basic types o and ι using the function type constructor →.

We start with a set V of (typed) variables (denoted by Xα, Y, Z,X
1
β, X

2
γ . . . )

and a signature Σ of (typed) constants (denoted by cα, fα→β, . . . ). We let Vα
(Σα) denote the set of variables (constants) of type α. The signature Σ of
constants includes the logical constants ¬o→o, ∨o→o→o and Πα

(α→o)→o for each

type α. All other constants in Σ are called parameters. As in [4], we assume
there is an infinite cardinal ℵs such that the cardinality of Σα is ℵs for each type
α (cf. Remark 3.16 in [4]). The set of HOL-formulae (or terms) are constructed
from typed variables and constants using application and λ-abstraction. We let
wffα(Σ) be the set of all terms of type α and wff(Σ) be the set of all terms.

We use vector notation to abbreviate k-fold applications and abstractions as

AUk and λXk A, respectively. We also use Church’s dot notation so that
stands for a (missing) left bracket whose mate is as far to the right as possible
(consistent with given brackets). We use infix notation A ∨B for ((∨A)B) and
binder notation ∀Xα A for (ΠαλXαAo). We further use A∧B, A⇒ B, A⇔ B
and ∃Xα A as shorthand for formulae defined in terms of ¬, ∨ and Πα (cf. [4]).
Finally, we let (Aα

.
=
α

Bα) denote the Leibniz equation ∀Pα→o (PA)⇒ (PB).
Each occurrence of a variable in a term is either bound by a λ or free. We

use free(A) to denote the set of free variables of A (i.e., variables with a free
occurrence in A). We consider two terms to be equal if the terms are the same
up to the names of bound variables (i.e., we consider α-conversion implicitly).
A term A is closed if free(A) is empty. We let cwffα(Σ) denote the set of
closed terms of type α and cwff(Σ) denote the set of all closed terms. Each
term A ∈ wffo(Σ) is called a proposition and each term A ∈ cwffo(Σ) is called a
sentence.

We denote substitution of a term Aα for a variable Xα in a term Bβ by
[A/X ]B. Since we consider α-conversion implicitly, we assume the bound vari-
ables of B avoid variable capture. Similarly, we consider simultaneous substitu-
tions σ for finitely many free variables. A substitution σ, [A/X ] is the substi-
tution such that (σ, [A/X ])(X) ≡ A and (σ, [A/X ])(Y ) ≡ σ(Y ) for variables Y
other than X .

Two common relations on terms are given by β-reduction and η-reduction.
A β-redex (λX A)B β-reduces to [B/X ]A. An η-redex (λX CX) (where X /∈
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free(C)) η-reduces to C. For A,B ∈ wffα(Σ), we write A≡βB to mean A can
be converted to B by a series of β-reductions and expansions. Similarly, A≡βηB
means A can be converted to B using both β and η. For each A ∈ wff(Σ) there
is a unique β-normal form (denoted A↓β) and a unique βη-normal form (denoted
A↓βη). From this fact we know A≡βB (A≡βηB) iff A↓β ≡ B↓β (A↓βη ≡ B↓βη).

A non-atomic formula in wffo(Σ) is any formula whose β-normal form is of the
form [cAn] where c is a logical constant. An atomic formula is any other formula
in wffo(Σ).

2.2. Semantics for HOL. A model of HOL is given by four objects: a typed
collection of nonempty sets (Dα)α∈T , an application operator @: Dα→β×Dα −→
Dβ , an evaluation function E for terms and a valuation function υ : Do −→ {T, F}.
A pair (D,@) is called a Σ-applicative structure (cf. Definition 3.1 in [4]). If E
is an evaluation function for (D,@) (cf. Definition 3.18 in [4]), then we call the
triple (D,@, E) a Σ-evaluation. If υ satisfies appropriate properties, then we call
the tuple (D,@, E , υ) a Σ-model (cf. Definitions 3.40 and 3.41 in [4]).

Given an applicative structure (D,@), an assignment ϕ is a (typed) function
from V to D. An evaluation function E maps an assignment ϕ and a term
Aα ∈ wffα(Σ) to an element Eϕ(A) ∈ Dα. Evaluations E are required to satisfy
four properties (cf. Definition 3.18 in [4]):

1. Eϕ
∣∣
V ≡ ϕ.

2. Eϕ(FA) ≡ Eϕ(F)@Eϕ(A) for any F ∈ wffα→β(Σ) and A ∈ wffα(Σ) and
types α and β.

3. Eϕ(A) ≡ Eψ(A) for any type α and A ∈ wffα(Σ), whenever ϕ and ψ
coincide on free(A).

4. Eϕ(A) ≡ Eϕ(A↓β) for all A ∈ wffα(Σ).

If A is closed, then we can simply write E(A) since the value Eϕ(A) cannot
depend on ϕ.

Given an evaluation (D,@, E), Figure 1 shows the definition of several proper-
ties a function υ : Do −→ {T, F} may satisfy (cf. Definition 3.40 in [4]). A valua-
tion υ : Do −→ {T, F} is required to satisfy L¬(E(¬)), L∨(E(∨)) and Lα∀ (E(Πα))
for every type α.

prop. where holds when for all

L¬(n) n ∈ Do→o υ(n@a) ≡ T iff υ(a) ≡ F a ∈ Do
L∨(d) d ∈ Do→o→o υ(d@a@b) ≡ T iff υ(a) ≡ T or υ(b) ≡ T a, b ∈ Do
Lα∀ (π) π ∈ D(α→o)→o υ(π@f) ≡ T iff ∀a ∈ Dα υ(f@a) ≡ T f ∈ Dα→o
Lα=(q) q ∈ Dα→α→o υ(q@a@b) ≡ T iff a ≡ b a, b ∈ Dα

Figure 1. Logical Properties in Σ-Models

Given a model M := (D,@, E , υ), an assignment ϕ and a proposition A (or
set of propositions Φ), we say M satisfies A (or Φ) and write M |=ϕ A (or
M |=ϕ Φ) if υ(Eϕ(A)) ≡ T (or υ(Eϕ(A)) ≡ T for each A ∈ Φ). If A is closed (or
every member of Φ is closed), then we simply write M |= A (or M |= Φ) and
say M is a model of A (or Φ).
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In order to define model classes M∗ which correspond to different notions
of extensionality, we define five properties of models (cf. Definitions 3.46, 3.21
and 3.5 in [4]). Let M := (D,@, E , υ) be a model. We say M has property

q: iff for all α ∈ T there is some qα ∈ Dα→α→o such that Lα=(qα) holds.
η: iff (D,@, E) is η-functional (i.e., for each A ∈ wffα(Σ) and assignment ϕ,
Eϕ(A) ≡ Eϕ(A↓βη))

ξ: iff (D,@, E) is ξ-functional (i.e., for each M,N ∈ wffβ(Σ), X ∈ Vα and as-
signment ϕ, Eϕ(λXα Mβ) ≡ Eϕ(λXα Nβ) whenever Eϕ,[a/X](M) ≡ Eϕ,[a/X](N)
for every a ∈ Dα).

f: iff (D,@) is functional (i.e., for each f, g ∈ Dα→β , f ≡ g whenever f@a ≡ g@a
for every a ∈ Dα).

b: iff Do has at most two elements.

For each ∗ ∈ {β,βη,βξ,βf,βb,βηb,βξb,βfb} we define M∗ to be the class of
all Σ-models M such that M satisfies property q and each of the additional
properties {η, ξ, f, b} indicated in the subscript ∗ (cf. Definition 3.49 in [4]).

Notation 2.1. Let denote the set {β,βη,βξ,βf,βb,βηb,βξb,βfb}. Let
denote the set {β,βη,βξ,βf,βfb} of five indices on which we will often focus.

We always include β in the subscript ∗ ∈ to indicate that β-equal terms
are always interpreted as identical elements. We do not include property q as
an explicit subscript; q is treated as a basic, implicit requirement for all model
classes. See Remark 3.52 in [4] for a discussion on why we require property
q. Since we are varying four properties, one would expect to obtain 16 model
classes. However, we showed in [4] that f is equivalent to the conjunction of ξ
and η. Hence we obtain 8 model classes. These model classes are depicted as a
cube in Figure 2.

Mβfb

MβηbMβξbMβf

Mβξ Mβη Mβb

Mβ

ξ

η

η

ηξ

f

ξ

f

b

b

b

b

ξη

Figure 2. The landscape of Higher-Order Semantics
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Special cases of Σ-models are Henkin models and standard models (cf. Def-
initions 3.50 and 3.51 in [4]). A Henkin model is a model in Mβfb such that
the applicative structure (D,@) is a frame, i.e., Dα→β is a subset of the func-
tion space (Dβ)Dα for each α, β ∈ T and @ is function application. A standard
model is a Henkin model in which Dα→β is the full function space (Dβ)Dα . Ev-
ery model in Mβfb is isomorphic to a Henkin model (see the discussion following
Theorem 3.68 in [4]).

2.3. Abstract Consistency, Hintikka Sets and Model Existence. Fi-
nally, we review the model existence theorems proved in [4]. There are three
stages to obtaining a model in our framework. First, we obtain an abstract con-
sistency class ΓΣ (usually defined as the class of irrefutable sets of sentences with
respect to some calculus). Second, given a (sufficiently pure) set of sentences Φ
in the abstract consistency class ΓΣ we construct a Hintikka set H extending Φ.
Third, we construct a model of this Hintikka set (hence a model of Φ).

A Σ-abstract consistency class ΓΣ is a class of sets of Σ-sentences. An abstract
consistency class is always required to be closed under subsets (cf. Definition 6.1
in [4]). Sometimes we require the stronger property that ΓΣ is compact, i.e., a set
Φ is in ΓΣ iff every finite subset of Φ is in ΓΣ (cf. Definition 6.1 and Lemma 6.2
in [4]).

To describe the remaining properties of an abstract consistency class, we use
the notation S ∗ a for S ∪ {a} as in [4]. The following is a list of properties
a class ΓΣ of sets of sentences can satisfy with respect to arbitrary Φ ∈ ΓΣ (cf.
Definition 6.5 in [4]):

∇c: If A is atomic, then A /∈ Φ or ¬A /∈ Φ.
∇¬: If ¬¬A ∈ Φ, then Φ ∗A ∈ ΓΣ.
∇β: If A≡βB and A ∈ Φ, then Φ ∗B ∈ ΓΣ.
∇η: If A≡βηB and A ∈ Φ, then Φ ∗B ∈ ΓΣ.
∇∨: If A ∨B ∈ Φ, then Φ ∗A ∈ ΓΣ or Φ ∗B ∈ ΓΣ.
∇∧: If ¬(A ∨B) ∈ Φ, then Φ ∗ ¬A ∗ ¬B ∈ ΓΣ.
∇∀: If ΠαF ∈ Φ, then Φ ∗ FW ∈ ΓΣ for each W ∈ cwffα(Σ).
∇∃: If ¬ΠαF ∈ Φ, then Φ ∗ ¬(Fw) ∈ ΓΣ for any parameter wα ∈ Σα which

does not occur in any sentence of Φ.
∇b: If ¬(A

.
=
o

B) ∈ Φ, then Φ ∗A ∗ ¬B ∈ ΓΣ or Φ ∗ ¬A ∗B ∈ ΓΣ.

∇ξ: If ¬(λXα M
.
=
α→β

λXα N) ∈ Φ, then Φ ∗ ¬([w/X ]M
.
=
β

[w/X ]N) ∈ ΓΣ
for any parameter wα ∈ Σα which does not occur in any sentence of Φ.

∇f: If ¬(G
.
=
α→β

H) ∈ Φ, then Φ ∗ ¬(Gw
.
=
β

Hw) ∈ ΓΣ for any parameter
wα ∈ Σα which does not occur in any sentence of Φ.

∇sat: Either Φ ∗A ∈ ΓΣ or Φ ∗ ¬A ∈ ΓΣ.

We say ΓΣ is an abstract consistency class if it is closed under subsets and satisfies
∇c,∇¬,∇β ,∇∨,∇∧,∇∀ and ∇∃. We let Accβ denote the collection of all abstract

consistency classes. For each ∗ ∈ we refine Accβ to a collection Acc∗ where
the additional properties {∇η,∇ξ ,∇f,∇b} indicated by ∗ are required (cf. Defi-
nition 6.7 in [4]). We say an abstract consistency class ΓΣ is saturated if ∇sat
holds.

Using ∇c (atomic consistency) and the fact that there are infinitely many
parameters at each type, we can show every abstract consistency class satisfies



SEMANTIC TECHNIQUES FOR CUT-ELIMINATION IN HIGHER-ORDER LOGICS 7

non-atomic consistency. That is, for every abstract consistency class ΓΣ, A ∈
cwffo(Σ) and Φ ∈ ΓΣ, we have either A /∈ Φ or ¬A /∈ Φ (cf. Lemma 6.10 in [4]).

In order to obtain a Hintikka set extending a set Φ, we must have parameters
which will act as witnesses. For this we require sufficient purity of Φ. A set Φ of
Σ-sentences is called sufficiently Σ-pure (cf. Definition 6.3 in [4]) if for each type
α there is a set Pα of parameters of type α with cardinality ℵs (the cardinality
of wffα(Σ)) and such that no parameter in P occurs in a sentence in Φ. Note
that since Σ is assumed to have infinite cardinality ℵs for each type, every finite
set of Σ-sentences is sufficiently Σ-pure.

A Hintikka set is a set of sentences satisfying certain properties. The following
is a list of properties a set H of sentences may satisfy (cf. Definition in [4]):

~∇c: A /∈ H or ¬A /∈ H.
~∇¬: If ¬¬A ∈ H, then A ∈ H.
~∇β: If A ∈ H and A≡βB , then B ∈ H.
~∇η: If A ∈ H and A≡βηB, then B ∈ H.
~∇∨: If A ∨B ∈ H, then A ∈ H or B ∈ H.
~∇∧: If ¬(A ∨B) ∈ H, then ¬A ∈ H and ¬B ∈ H.
~∇∀: If ΠαF ∈ H, then FW ∈ H for each W ∈ cwffα(Σ).
~∇∃: If ¬ΠαF ∈ H, then there is a parameter wα ∈ Σα such that ¬(Fw) ∈ H.
~∇b: If ¬(A

.
=
o

B) ∈ H, then {A,¬B} ⊆ H or {¬A,B} ⊆ H.
~∇ξ: If ¬(λXα M

.
=
α→β

λX N) ∈ H, then there is a parameter wα ∈ Σα such

that ¬([w/X ]M
.
=
β

[w/X ]N) ∈ H.
~∇f: If ¬(G

.
=
α→β

H) ∈ H, then there is a parameter wα ∈ Σα such that

¬(Gw
.
=
β

Hw) ∈ H.
~∇sat: Either A ∈ H or ¬A ∈ H.

A set H of sentences is called a Σ-Hintikka set if ~∇c, ~∇¬, ~∇β , ~∇∨, ~∇∧, ~∇∀ and ~∇∃
hold. We define the following collections of Hintikka sets: Hintβ , Hintβη , Hintβξ ,
Hintβf, Hintβb, Hintβηb, Hintβξb, and Hintβfb, where we indicate by indices which

additional properties from {~∇η, ~∇ξ , ~∇f, ~∇b} are required (cf. Definition 6.20 in

[4]). We call a Hintikka set H saturated if ~∇sat holds (cf. Definition 6.24 in [4]).
One of the main theorems of [4] is the Model Existence Theorem for Saturated

Sets (cf. Theorem 6.33) which states the following:

Theorem: For all ∗ ∈ we have: If H is a saturated Hintikka set in Hint∗,
then there exists a model M ∈M∗ that satisfies H. Furthermore, each domain
Dα of M has cardinality at most ℵs.

Since saturated abstract consistency classes give rise to saturated Hintikka
sets, we conclude a corresponding model existence theorem for saturated abstract
consistency classes (cf. Theorem 6.34):

Theorem: For all ∗ ∈ , if ΓΣ is a saturated abstract consistency class in
Acc∗ and Φ ∈ ΓΣ is a sufficiently Σ-pure set of sentences, then there exists a model
M ∈ M∗ that satisfies Φ. Furthermore, each domain of M has cardinality at
most ℵs.

However, in this paper we consider abstract consistency classes which may
not be saturated. When we obtain a Hintikka set H using such an abstract



8 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

consistency class, H may or may not be saturated. If H is saturated, then
we can (and will) apply Theorem 6.33 in [4] to obtain a model of H. Hence
we primarily focus on constructing models for a Hintikka set H which is not
saturated.

The importance of model existence theorems for abstract consistency classes is
that one can check completeness for a calculus by verifying proof-theoretic con-
ditions instead of performing model-theoretic analysis (for historical background
of the method in first-order logic, cf. [8, 12, 13]).

For each ∗ ∈ we can use the model existence theorem for saturated abstract
consistency classes (cf. Theorem 6.34 in [4]) to show the completeness of a
particular calculus C as follows: We first show the class ΓΣ of sets of sentences
Φ that are C-consistent (i.e., cannot be refuted in C) is a saturated abstract
consistency class in Acc∗. Assume a sentence A is valid in every model in M∗.
Then ¬A does not have a model. By the model existence theorem, {¬A} /∈ ΓΣ

and so ¬A is C-inconsistent. This shows refutation completeness of C. For many
calculi C, this also shows A is provable, thus establishing completeness of C.

Unfortunately, the saturation condition is very difficult to prove for machine-
oriented calculi (indeed as we will see in Section 3 it is equivalent to cut elim-
ination), so Theorem 6.34 in [4] cannot be used for this purpose directly. In
the Section 4, we will motivate and present a set of conditions we call accept-
ability conditions that are weaker than saturation, but sufficient to prove model
existence.

§3. Saturation and Cut Elimination for Higher-Order Sequent Cal-
culi. Since the task of showing an abstract consistency class is saturated appears
to be difficult in many cases, we instead investigate abstract consistency classes
which possess a saturated extension. The main purpose of an abstract consis-
tency class ΓΣ is to ensure the existence of models for every sufficiently Σ-pure
Φ ∈ ΓΣ (cf. Definition 6.3 in [4]). As this is the case, we only require that an
extension of ΓΣ contains all the sufficiently Σ-pure sets in ΓΣ.

Definition 3.1 (Saturated Extension). Let ∗ ∈ and ΓΣ,Γ
′

Σ ∈ Acc∗ be ab-
stract consistency classes. We say Γ′Σ is an extension of ΓΣ if Φ ∈ Γ′Σ for every
sufficiently Σ-pure Φ ∈ ΓΣ. We say Γ′Σ is a saturated extension of ΓΣ if Γ′Σ is
saturated and an extension of ΓΣ.

We now look at two examples demonstrating that not every abstract consis-
tency class can be extended to a saturated one. Later we will use these examples
to motivate the acceptability conditions.

Example 3.2 (Unsaturated Accβb without a Saturated Extension).
Let ao, bo, qo→o ∈ Σ and Φ = {a, b, (qa),¬(qb)}. We construct an abstract

consistency class ΓΣ from Φ by first building the closure Φ′ of Φ under relation
≡βη and then taking the powerset of Φ′. (We must close Φ at least under β-
conversion to ensure ∇β in the definition of abstract consistency classes.) It is
easy to check that this ΓΣ is in Accβfb, Accβηb, Accβξb and Accβb. Suppose we
have a saturated extension Γ′Σ of ΓΣ in Accβb. (Note that Γ′Σ is in Accβb whenever
it is in Accβfb, Accβηb or Accβξb.) Then Φ ∈ Γ′Σ since Φ is finite (hence sufficiently
pure). By saturation, Φ ∗ (a

.
=
o
b) ∈ Γ′Σ or Φ ∗ ¬(a

.
=
o
b) ∈ Γ′Σ. In the first case,
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applying ∇∀ with the constant q, ∇∨ and ∇c contradicts (qa),¬(qb) ∈ Φ. In the
second case, ∇b and ∇c contradict a, b ∈ Φ. One can also extend this example
by letting Φ := {¬(qo→obo)}∪{A|A atomic, β-normal and A 6≡ (qb)} to obtain
a member of Accβfb which is atomically saturated (saturated with respect to
atomic formulae) and yet has no saturated extension.

Example 3.3 (Unsaturated Accβf without a Saturated Extension).
Similar to the previous example we assume q(ι→ι)→o, gι→ι ∈ Σ and choose a
ΓΣ constructed from Φ = {¬q(λXι gX), qg} by closing under ≡β (not ≡βη) and
taking the power set. Again it is easy to check that this is in Accβfb, hence in
Accβf. Suppose we have a saturated extension Γ′Σ of ΓΣ in Accβf. Then we must
either have Φ ∗ ((λX gX)

.
=
ι→ι

g) ∈ Γ′Σ or Φ ∗ ¬((λX gX)
.
=
ι→ι

g) ∈ Γ′Σ by
saturation. In the first case, we obtain a contradiction to ¬(q(λX gX)), (qg) ∈
Φ using ∇∀ with constant q, ∇∨ and ∇c. In the second case, we obtain Φ ∗
¬((λX gX)w

.
=
ι→ι

gw) ∈ Γ′Σ for some new w ∈ Σι by∇f and hence Φ∗¬(gw
.
=
ι→ι

gw) ∈ Γ′Σ by ∇β , contradicting ∇r.
=

(cf. Lemma 6.12 in [4]).

Let us now consider the relationship between abstract consistency classes and
sequent calculi. We consider a sequent to be a finite set ∆ of sentences from
cwffo(Σ). A sequent calculus G provides an inductive definition for when `̀G ∆
holds. We say a sequent calculus rule

∆1 · · · ∆n

∆

is admissible if `̀G ∆ holds whenever `̀G ∆i for all 1 ≤ i ≤ n. Given a sequent
∆ and a model M, we say ∆ is valid for M if M |= D for some D ∈ ∆. For a
class M of models, we say ∆ is valid for M if ∆ is valid for every M ∈M. As
for sets in abstract consistency classes, we use the notation ∆ ∗A to denote the
set ∆ ∪ {A} (which is simply ∆ if A ∈ ∆).

We will consider sequent calculi G in general before we specialize to consider
sequent calculi corresponding to our eight model classes in Figure 2. In Figure 3
we show basic rules which we will often assume are admissible in a sequent
calculus G. When we define particular sequent calculi, these rules will be included
explicitly. In Figure 4 we show rules for β-reduction and βη-reduction. In
particular cases, we will explicitly include either G(β) or G(βη). In Figure 5 we
show inversion rules for negation, β-reduction and βη-reduction and in Figure 6
we show weakening and cut rules. We will not explicitly include the rules in
Figure 5 or Figure 6 in the definitions of our sequent calculi, but admissible of
these rules will be important. Finally, we consider various extensionality rules
in Figure 7.

For any sequent calculus G we can define a class ΓGΣ of sets of formulas. Under

certain assumptions, ΓGΣ is an abstract consistency class. First we adopt the
notation ¬Φ for the set {¬A|A ∈ Φ} where Φ ⊆ cwffo(Σ). Furthermore, we
assume this use of ¬ binds more strongly than ∪ or ∗, so that ¬Φ ∪ ∆ means
(¬Φ) ∪∆ and ¬Φ ∗A means (¬Φ) ∗A.

Definition 3.4. Let G be a sequent calculus. We define ΓGΣ to be the class of
all finite Φ ⊂ cwffo(Σ) such that `̀G ¬Φ does not hold.
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A atomic G(init)
∆ ∗A ∗ ¬A

∆ ∗A G(¬)
∆ ∗ ¬¬A

∆ ∗ ¬A ∆ ∗ ¬B G(∨−)
∆ ∗ ¬(A ∨B)

∆ ∗A ∗B G(∨+)
∆ ∗ (A ∨B)

∆ ∗ ¬AC C ∈ cwffα(Σ)
G(ΠC

−)
∆ ∗ ¬ΠαA

∆ ∗Ac cα ∈ Σ new G(Πc
+)

∆ ∗ΠαA

Figure 3. Basic Higher-Order Sequent Calculus Rules

∆ ∗ A↓β
G(β)

∆ ∗A

∆ ∗ A↓βη
G(βη)

∆ ∗A

Figure 4. Conversion Rules

∆ ∗ ¬¬A G(Inv¬)
∆ ∗A

∆ ∗A G(β↓)
∆ ∗ A↓β

∆ ∗A G(βη↓)
∆ ∗ A↓βη

Figure 5. Inversion Rules

∆ G(weak)
∆ ∪∆′

∆ ∗C ∆ ∗ ¬C G(cut)
∆

Figure 6. Weakening and Cut Rules

Before relating admissibility of rules to abstract consistency conditions, we
show a helpful lemma.

Lemma 3.5. Let G be a sequent calculus such that G(Inv¬) is admissible. For
any finite sets Φ and ∆ of sentences, if Φ ∪ ¬∆ /∈ ΓGΣ , then `̀G ¬Φ ∪∆ holds.

Proof. Suppose Φ∪¬∆ /∈ ΓGΣ . By definition, `̀G ¬Φ∪¬¬∆ holds. Applying
G(Inv¬) to each member of ∆, we have `̀G ¬Φ ∪∆. a

We now consider abstract consistency conditions satisfied by ΓGΣ .

Theorem 3.6. Let G be a sequent calculus such that G(Inv¬), G(¬), G(β) and
G(β↓) are admissible.
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∆ ∗ ¬(∀Xα M
.
=
β

N)
G(ξ)

∆ ∗ (λXα M
.
=
α→β

λXα N)

∆ ∗ ¬(∀Xα AX
.
=
β

BX)
G(f)

∆ ∗ ¬(A
.
=
α→β

B)

∆ ∗ ¬A ∗B ∆ ∗ ¬B ∗A G(b)
∆ ∗ (A

.
=
o

B)

Figure 7. Extensionality Rules

1. If the rules G(weak), G(init), G(∨−), G(∨+), G(ΠC
−) and G(Πc

+) are admis-

sible in G, then ΓGΣ ∈ Accβ.

2. If G(βη) and G(βη↓) are admissible, then ΓGΣ satisfies ∇η.

3. If G(ξ) and G(Πc
+) are admissible, then ΓGΣ satisfies ∇ξ.

4. If G(f) and G(Πc
+) are admissible, then ΓGΣ satisfies ∇f.

5. If G(b) is admissible, then ΓGΣ satisfies ∇b.

Proof. First, assume G(weak), G(init), G(∨−), G(∨+), G(ΠC
−) and G(Πc

+) are

admissible in G. We prove ΓGΣ is closed under subsets and satisfies ∇c, ∇¬, ∇∧
and ∇β . The remaining conditions are proven analogously.

Suppose Φ ∈ ΓGΣ , If Φ0 ⊆ Φ and Φ0 /∈ ΓGΣ , then `̀G ¬Φ0 and so `̀G ¬Φ by

admissibility of G(weak). Hence ΓGΣ is closed under subsets.

Suppose Φ ∈ ΓGΣ and A,¬A ∈ Φ where A is atomic. By admissibility of
G(init), `̀G ¬Φ ∗ A since ¬A ∈ ¬Φ. By admissibility of G(¬), `̀G ¬Φ since
¬¬A ∈ ¬Φ, contradicting Φ ∈ ΓGΣ . Thus ∇c holds.

Suppose Φ ∈ ΓGΣ , ¬¬A ∈ Φ and Φ ∗ A /∈ ΓGΣ . Hence `̀G ¬Φ ∗ ¬A and so
`̀G ¬Φ ∗¬¬¬A by admissibility of G(¬). Since ¬¬A ∈ Φ, we know ¬Φ is equal
to ¬Φ∗¬¬¬A. Hence `̀G ¬Φ, contradicting Φ ∈ ΓGΣ . Thus ∇¬ holds. By similar
arguments, admissibility of G(∨−) implies ∇∨ and admissibility of G(ΠC

−) implies
∇∀.

Suppose Φ ∈ ΓGΣ , ¬(A ∨ B) ∈ Φ and Φ ∗ ¬A ∗ ¬B /∈ ΓGΣ . By Lemma 3.5,
`̀G ¬Φ ∗A ∗B. Applying G(∨+), we have `̀G ¬Φ ∗ (A ∨B). Applying G(¬),

we have `̀G ¬Φ since ¬(A ∨B) ∈ Φ, contradicting Φ ∈ ΓGΣ . Thus ∇∧ holds. By
a similar argument, admissibility of G(Πc

+), G(Inv¬) and G(¬) imply ∇∃.
Suppose Φ ∈ ΓGΣ , A ∈ Φ, A≡βB and Φ ∗ B /∈ ΓGΣ . Hence `̀G ¬Φ ∗ ¬B,
`̀G ¬Φ ∗¬ B↓β (by G(β↓)) and `̀G ¬Φ ∗¬A (by G(β)). This contradicts A ∈ Φ

and Φ ∈ ΓGΣ . Thus ∇β holds.
Now, we turn to the various extensionality conditions. In all of these cases we

continue to assume G(Inv¬), G(¬), G(β) and G(β↓) are admissible.
If G(βη) and G(βη↓) are admissible, then one can prove ∇η analogously to the
∇β case.

Assume G(ξ) and G(Πc
+) are admissible. Suppose Φ ∈ ΓGΣ , ¬((λX M)

.
=
α→β

λX N) ∈ Φ, wβ is a parameter which does not occur in any sentence in Φ and Φ∗
¬([w/X ]M

.
=
β

[w/X ]N) /∈ ΓGΣ . By Lemma 3.5, `̀G ¬Φ∗([w/X ]M
.
=
β

[w/X ]N).
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Applying G(β↓) and G(β), we have `̀G ¬Φ ∗ ((λX (M
.
=
β

N))w). Applying

G(Πc
+) and G(ξ), we obtain `̀G ¬Φ∗ (∀XM

.
=
β

N) and `̀G ¬Φ∗ (λXM)
.
=
α→β

λX N. Applying G(¬), we conclude `̀G ¬Φ since ¬((λX M)
.
=
α→β

λX N) ∈ Φ,
contradicting Φ ∈ ΓGΣ . Thus ∇ξ holds.

Assume the rules G(f) and G(Πc
+) are admissible. This is analogous to the ∇ξ

case. If ¬(G
.
=
α→β

H) ∈ Φ and `̀G ¬Φ ∗ (Gw
.
=
β

Hw) (with wα new) holds,
then we can show `̀G ¬Φ holds using G(β), G(β↓), G(Πc

+) and G(f).

Assume the rule G(b) is admissible. Suppose Φ ∈ ΓGΣ , ¬(A
.
=
o

B) ∈ Φ,

Φ ∗A ∗ ¬B /∈ ΓGΣ and Φ ∗ ¬A ∗B /∈ ΓGΣ . By Lemma 3.5, `̀G ¬Φ ∗ ¬A ∗B and
`̀G ¬Φ ∗A ∗ ¬B. Applying G(b), `̀G ¬Φ ∗ (A

.
=
o

B) ∈ Φ. Applying G(¬),
`̀G ¬Φ since ¬(A

.
=
o

B) ∈ Φ, contradicting Φ ∈ ΓGΣ . Thus ∇b holds. a
We can also show ΓGΣ is saturated whenever G(cut) is admissible in G (without

assuming admissibility of any other rule).

Lemma 3.7. Let G be a sequent calculus such that G(cut) is admissible. Then
ΓGΣ satisfies ∇sat.

Proof. Suppose Φ ∈ ΓGΣ , A ∈ cwffo(Σ), Φ ∗A /∈ ΓGΣ and Φ ∗¬A /∈ ΓGΣ . Hence
`̀G ¬Φ ∗ ¬A and `̀G ¬Φ ∗ ¬¬A. Using G(cut), we have `̀G ¬Φ, contradicting

Φ ∈ ΓGΣ . a
We can also show a partial converse.

Lemma 3.8. Let G be a sequent calculus such that G(¬) and G(Inv¬) are ad-
missible. If ΓGΣ satisfies ∇sat, then G(cut) is admissible in G.

Proof. Suppose `̀G ∆ ∗ C and `̀G ∆ ∗ ¬C hold but `̀G ∆ does not.
Applying G(¬) to every member of ∆ and to C we have `̀G ¬¬∆ ∗ ¬¬C and
`̀G ¬¬∆ ∗ ¬C. By Lemma 3.5, we know ¬∆ ∈ ΓGΣ . By saturation, we must

have ¬∆ ∗C ∈ ΓGΣ or ¬∆ ∗ ¬C ∈ ΓGΣ . The first case contradicts `̀G ¬¬∆ ∗ ¬C
while the second case contradicts `̀G ¬¬∆ ∗ ¬¬C. a

Assuming soundness of the sequent calculus, we can show a stronger version
of the converse.

Definition 3.9 (Soundness). Let M ⊆ Mβ be a class of models G be a se-
quent calculus. We say G is sound for the model class M if ∆ is valid for every
M∈M whenever `̀G ∆.

Existence of any saturated extension of a sound sequent calculus implies ad-
missibility of cut.

Theorem 3.10. Let ∗ ∈ and G be a sequent calculus which is sound for
M∗. If ΓGΣ has a saturated extension Γ′Σ ∈ Acc∗, then G(cut) is admissible in G.

Proof. Suppose Γ′Σ ∈ Acc∗ is a saturated extension of ΓGΣ . Assume `̀G ∆∗C

and `̀G ∆ ∗ ¬C hold and `̀G ∆ does not. By Lemma 3.5, we know ¬∆ ∈ ΓGΣ .
Since ¬∆ is finite (hence sufficiently pure), ¬∆ ∈ Γ′Σ. By the model existence
theorem for saturated abstract consistency classes (cf. Theorem 6.34 in [4]),
there is a model M ∈ M∗ such that M |= ¬∆. By soundness of ΓGΣ , we know
both ∆ ∗ C and ∆ ∗ ¬C must be valid in M. Since M |= ¬∆, we must have
M |= C and M |= ¬C, a contradiction. a



SEMANTIC TECHNIQUES FOR CUT-ELIMINATION IN HIGHER-ORDER LOGICS 13

Therefore, showing an abstract consistency class ΓGΣ has a saturated extension
in one of our eight classes Acc∗ is as hard as showing admissibility of cut in G.

Remark 3.11 (Resolution Calculi). One can also do a similar analysis for res-
olution calculi. In that case, showing saturation corresponds to showing that one
can derive the empty clause from a set of clauses Φ whenever one can derive the
empty clause from Φ ∗ (A ∨ ¬A).

We now define a higher-order sequent calculus G−∗ for each ∗ ∈ . Each
G−∗ will be sound with respect to the model class M∗, but only three will be
complete. Later we will introduce additional rules to obtain complete calculi for
five of the eight model classes in Figure 2.

Definition 3.12 (Sequent Calculi G−∗ ). For each ∗ ∈ , the sequent calculus
G−∗ is defined by the rules in Figure 3 and the additional rules listed in Figure 8.

for ∗ = G−∗ includes the following rules

β G(β)
βη G(βη)
βξ G(β) and G(ξ)
βf G(β) and G(f)
βb G(β) and G(b)
βηb G(βη) and G(b)
βξb G(β), G(ξ) and G(b)
βfb G(β), G(f) and G(b)

Figure 8. Extensional Higher-Order Sequent Calculi G−∗

We will not discuss soundness of these calculi (though each is sound with
respect to the corresponding model class). Instead, we show the calculi G−βf ,

G−βb, G−βηb, G−βξb and G−βfb are incomplete. The examples showing incompleteness
directly correspond to Examples 3.2 and 3.3.

Example 3.13. Let ∗ ∈ {βb,βηb,βξb,βfb} and ∆ be {¬a,¬b,¬(qa), (qb)} where
ao, bo, qo→o ∈ Σ are parameters. For any M ≡ (D,@, E , υ) ∈ M∗, either
υ(E(a)) ≡ F, υ(E(b)) ≡ F or E(a) ≡ E(b) by property b. Hence the sequent
∆ is valid for every M ∈ M∗. However, `̀G−∗ ∆ does not hold. To prove
this, suppose D is a derivation of `̀G−∗ ∆ which uses a minimal number of rule
applications. By inspection, ∆ cannot be the conclusion of any rule used to
define G−∗ except G(β) or G(βη). Assume D1 is a derivation of the premise of
this rule. Since every member of ∆ is βη-normal, D1 is also a derivation of ∆,
contradicting minimality of D. Furthermore, G(cut) is not admissible in G−∗ (for
∗ ∈ {βb,βηb,βξb,βfb}). In particular, one can show `̀G−∗ ∆ ∗ (a

.
=
o
b) and

`̀G−∗ ∆ ∗ ¬(a
.
=
o
b).

Example 3.14. Let ∆ be the sequent {q(λXι gX),¬(qg)} where q(ι→ι)→o and
gι→ι are parameters. By Lemma 3.24 in [4], E(λX gX) ≡ E(g) for every M ≡
(D,@, E , υ) ∈ Mβf. Hence ∆ is valid for every M ∈ Mβf. However, `̀G−βf

∆
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does not hold. Suppose D is a derivation of `̀G−
βf

∆ using a minimal number of

rule applications. By inspection, the last rule of D must be G(β). Since every
member of ∆ is β-normal (though not βη-normal), the derivation of the premise is
a derivation of ∆, contradicting minimality of D. Again, G(cut) is not admissible
in Gβf since one can show `̀ ∆ ∗ ((λX gX)

.
= g) and `̀ ∆ ∗ ¬((λX gX)

.
= g).

On the other hand, one can show Γ
G−∗

Σ ∈ Acc∗ for each ∗ ∈ . We conclude
there is no hope for a general model existence theorem for any ΓΣ ∈ Acc∗. Instead,
we must ensure ΓΣ ∈ Acc∗ satisfies extra properties in order to obtain model
existence.

§4. Acceptable Abstract Consistency Classes. As illustrated by the Ex-
amples 3.2 and 3.3 we need some extra abstract consistency properties to ensure
the existence of saturated extensions. We call these extra properties acceptability
conditions.

Definition 4.1 (Acceptability Conditions). Let ΓΣ be an abstract consistency
class in Acc∗. We define the following properties:

∇m If A,B ∈ cwffo(Σ) are atomic and A,¬B ∈ Φ, then Φ ∗ ¬(A
.
=
o

B) ∈ ΓΣ.

∇d If ¬(hAn .
=
β
hBn) ∈ Φ for some types αi where β ∈ {o, ι} and hαn→β ∈ Σ

is a parameter, then there is an i with 1 ≤ i ≤ n such that Φ ∗ ¬(Ai .=
αi

Bi) ∈ ΓΣ.

Definition 4.2 (Acceptable Classes). Every abstract consistency class ΓΣ in
Accβ [Accβη, Accβξ ] is called acceptable in Accβ [Accβη, Accβξ]. For ∗ ∈ {βf,βfb},
an abstract consistency class ΓΣ is called acceptable in Acc∗ if it satisfies the
conditions in Figure 9.

for ∗ = ΓΣ is acceptable in Acc∗ if it satisfies

βf ∇η .

βfb ∇m and ∇d.

Figure 9. Acceptability Conditions for Acc∗

A main result of this paper will be presented as Theorem 9.3 in Section 9. It
is called the Saturated Extension Theorem and states:

For each ∗ ∈ , there is a saturated abstract consistency class in Acc∗ that
is an extension of all acceptable ΓΣ in Acc∗.

By Theorem 3.10, we know the existence of a saturated extension implies cut-
elimination for certain sequent calculi. Thus (for ∗ ∈ ) we can conclude that
for any sequent calculus G (sound for M∗), if ΓGΣ is acceptable, then G(cut) is
admissible in G. It is well-known that strong proof methods are required to show
cut-elimination for a higher-order logic such as Gβ since cut-elimination implies
consistency of analysis (see [2] and the references cited there). Consequently,
we can conclude that the Saturated Extension Theorem requires strong proof
methods as well.
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We next extend Lemma 6.18 in [4] to include the new acceptability conditions.

Lemma 4.3 (Compactness of abstract consistency classes).
For each abstract consistency class ΓΣ there exists a compact abstract consistency

class Γ′Σ satisfying the same ∇∗ properties such that ΓΣ ⊆ Γ′Σ.

Proof. (following and extending Lemma 6.18 in [4])
We choose Γ′Σ := {Φ ⊆ cwffo(Σ)

∣∣ every finite subset of Φ is in ΓΣ}. Now sup-
pose that Φ ∈ ΓΣ. ΓΣ is closed under subsets, so every finite subset of Φ is in ΓΣ

and thus Φ ∈ Γ′Σ. Hence ΓΣ ⊆ Γ′Σ.
We have shown in the proof of Lemma 6.18 in [4] that Γ′Σ is compact and hence

closed under subsets.
Next we show that if ΓΣ satisfies ∇∗, then Γ′Σ satisfies ∇∗ for the acceptability

conditions in Definition 4.1. All the others have been covered in Lemma 6.18 in
[4].

∇m: Let Φ ∈ Γ′Σ and A,¬B ∈ Φ for atomic A,B ∈ cwffo(Σ). Furthermore,
let Ψ be any finite subset of Φ ∗ ¬(A

.
=
o

B) and Θ := (Ψ \ {¬(A
.
=
o

B)} ∪ {A,¬B}). Θ is a finite subset of Φ, hence Θ ∈ ΓΣ. Since ΓΣ is an
abstract consistency class and A,¬B ∈ Θ, we get Θ ∗ ¬(A

.
=
o

B) ∈ ΓΣ
by ∇m for ΓΣ. We know that Ψ ⊆ Θ ∗ ¬(A

.
=
o

B) and ΓΣ is closed under
subsets, hence Ψ ∈ ΓΣ. Thus every finite subset Ψ of Φ ∗ ¬(A

.
=
o

B) is in
ΓΣ and therefore by definition Φ ∗ ¬(A

.
=
o

B) ∈ Γ′Σ.

∇d: Let Φ ∈ Γ′Σ and ¬(hAn .
=
β
hBn) ∈ Φ, where β ∈ {o, ι} and hαn→β ∈ Σ

is a parameter for some types αi. Assume Φ ∗ ¬(Ai .
=
αi

Bi) /∈ Γ′Σ for all

1 ≤ i ≤ n. Then there are finite subsets Ψi of Φ such that Ψi ∗ ¬(Ai .=
αi

Bi) /∈ ΓΣ for all 1 ≤ i ≤ n. Let Ψ := (
⋃

1≤i≤n Ψi)∗¬(hAn .
=
β
hBn). Ψ is a

finite subset of Φ and thus Ψ ∈ ΓΣ. By ∇hd we get Ψ∗¬(Ai .=
αi

Bi) ∈ ΓΣ for

some i with 1 ≤ i ≤ n. ΓΣ is closed under subsets, so Ψi∗¬(Ai .=
αi

Bi) ∈ ΓΣ
for some i with 1 ≤ i ≤ n. This is a contradiction, and we conclude that

Φ ∗ ¬(Ai .=
αi

Bi) ∈ Γ′Σ for some 1 ≤ i ≤ n.

a

§5. Five Complete Higher-Order Sequent Calculi. In order to obtain
complete higher-order sequent calculi, we must include rules corresponding to
the new acceptability conditions. We show such rules in Figure 10.

Definition 5.1 (Sequent Calculi G∗). For each ∗ ∈ {β,βη,βξ}, let G∗ be the
sequent calculus G−∗ . Let Gβf be the sequent calculus defined by the rules in
Figure 3 along with the rules G(βη) and G(f). Let Gβfb be the sequent calculus

defined by the rules for G−βfb along with G(Init
.
=) and G(d).

For each ∗ ∈ other than ∗ ≡ βf, the sequent calculus G∗ is defined to include
at least the rules for G−∗ . Hence for these calculi `̀G∗ ∆ whenever `̀G−∗ ∆. We

have used G(βη) instead of G(β) in the definition of Gβf. This is necessary for
completeness. We will show G(β) is admissible in Gβf (cf. Lemma 5.2) and hence
`̀Gβf

∆ whenever `̀G−βf
∆ as well. We could also replace G(β) with G(βη) in the

definition of Gβfb, but this is not necessary for completeness.
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∆ ∗ (A
.
=
o

B) A and B atomic
G(Init

.
=)

∆ ∗ ¬A ∗B

∆ ∗ (A1 .
=
α1 B1) · · · ∆ ∗ (An .

=
αn Bn) (†)

G(d)
∆ ∗ (hAn .

=
β
hBn)

(†) n ≥ 0, β ∈ {o, ι}, hαn→β ∈ Σ parameter

Figure 10. Rules for Completeness

We note the necessary additional rules are admissible for each sequent calculus
in order to conclude ΓG∗Σ ∈ Acc∗.

Lemma 5.2. Let ∗ ∈ be given. We have the following:

1. The rule G(weak) is admissible in G∗.
2. If ∗ ∈ {βη,βf}, then the rules G(βη↓) and G(β) are admissible in G∗.
3. The rule G(β↓) is admissible in G∗.
4. The rule G(Inv¬) is admissible in G∗.

Proof. The primary proof technique to prove these is induction on deriva-
tions. To prove admissibility of G(weak) one must generalize to allow renaming
of witness parameters (due to the rule G(Πc

+) which requires a new parameter
c).

Suppose ∗ ∈ {βη,βf} and so G(βη) is a rule in G∗. One can show by induction
that if `̀G∗ ∆, then `̀G∗ {A↓βη |A ∈ ∆}. Once one knows this, the rule G(βη)

can be used to βη-expand every formula except the principal formula of G(βη↓).
Given G(βη) and admissibility of G(βη↓), one can easily show G(β) and G(β↓)
are admissible.

If ∗ ∈ {βη,βf}, then we already know G(β↓) is admissible. Otherwise, the rule
G(β) is included in G∗. As above, prove `̀G∗ {A↓β |A ∈ ∆} whenever `̀G∗ ∆.

Finally, to show G(Inv¬) is admissible, we can use G(β↓) (or G(βη↓) if ∗ ∈
{βη,βf}) to assume the principal formula is normal. Then a simple induction
proof shows admissibility where G(¬) is the only significant case. a

Theorem 5.3 (Soundness).

G∗ is sound for M∗ where ∗ ∈ . That is, if `̀G∗ ∆ is derivable, then the
sequent ∆ is valid in M∗.

Proof. This result can be shown by induction on the derivation of `̀G∗ ∆.
The essential task is to show soundness of the individual inference rules, i.e. to
show that they preserve validity with respect to the model class M∗. In fact, for
every rule other than G(Πc

+) (where we may need to change the interpretation
of the parameter c), we can show the rule preserves validity with respect to each
modelM∈M∗. The cases of the rules from Figure 3 are absolutely standard, so
we omit their proof in the interest of brevity and concentrate on the new rules.
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The rules G(Init
.
=) and G(d) Figure 10 are sound with respect to anyM∈Mβ .

Let M ≡ (D,@, E , υ) ∈Mβ and ϕ be an arbitrary assignment. Note that by
Lemma 4.2 in [4] (since M∈Mβ satisfies property q) we know Eϕ(C) ≡ Eϕ(D)
iff M |=ϕ (C

.
=
α

D) for any C,D ∈ wffα(Σ).

G(Init
.
=): If M |= A and M |= A

.
=
o

B, then υ(E(B)) ≡ υ(E(A)) ≡ T and

soM |= B. Using this fact, we can show soundness of the rule G(Init
.
=) as

follows: Assume the premise ∆ ∗ (A
.
=
o

B) is valid for M but ∆ ∗ ¬A ∗B
is not valid for M. Then M |= A, M 6|= B and M 6|= D for each D ∈ ∆.
By validity of the premise for M, we know M |= A

.
=
o

B. However, we
have shownM |= B wheneverM |= A andM |= A

.
=
o

B, a contradiction.
(For the remaining rules, except G(b), the final verification of soundness of
the rule is omitted as it follows using this same pattern.)

G(d): Suppose M |= Ai .= Bi and so E(Ai) ≡ E(Bi) for each i ∈ {1, . . . , n}.
Let ci := E(Ai) and choose a (new) variable Y iαi for each i ∈ {1, . . . , n}.
Let ψ be the variable assignment ϕ, [c1/Y 1], . . . , [cn/Y n]. Using the Substitution-
Value Lemma (cf. Lemma 3.20 in [4]) n times and the fact that E respects
β-conversion, we compute

E(hAn) ≡ Eψ(hY m) ≡ E(hBn).

This concludes the cases, where we could argue for any model in M∈Mβ . We
now check soundness of the G(βη) rule and the rules in Figure 7 with respect to
models in the corresponding model classes. Let M ≡ (D,@, E , υ) ∈ M∗ and ϕ
be arbitrary.

G(βη): The rule G(βη) is only included when ∗ ∈ {βη,βf}. In each case,
M∈M∗ satisfies property η (either by definition or by Lemma 3.24 in [4]).
Hence E(A) ≡ E(A↓βη) and so M |= A iff M |= A↓βη.

G(f): We check soundness of G(f) when ∗ is βfb and soM satisfies f. We show

that M |= G
.
=
α→β

H whenever M |= ∀Xα (GX)
.
=
β

(HX). Suppose

M |= ∀Xα (GX)
.
=
β

(HX). Hence M |=ϕ,[a/X] GX
.
=
β

HX and so
Eϕ(G)@a ≡ Eϕ(H)@a for all a ∈ Dα. By f we conclude Eϕ(G) ≡ Eϕ(H)

and so M |= G
.
=
α→β

H.
G(b): We check soundness of G(b) when ∗ is βfb and soM satisfies b. Suppose

∆ ∗ ¬A ∗ B and ∆ ∗ ¬B ∗A are valid for M. Assume ∆ ∗ (A
.
=
o

B) is
not valid for M. Hence M 6|= (A

.
=
o

B) and M 6|= D for each D ∈ ∆.
Either M |= A or M 6|= A. First, assume M |= A. By validity of
∆ ∗ ¬A ∗B for M, we have M |= B and so υ(E(A)) ≡ T ≡ υ(E(B)). By
property b, E(A) ≡ E(B) and so M |= (A

.
=
o

B), a contradiction. Next,
assume M 6|= A. In this case, M 6|= B (by validity of ∆ ∗ ¬B ∗A) and so
υ(E(A)) ≡ F ≡ υ(E(B)). Again, by property b, we have E(A) ≡ E(B) and
M |= (A

.
=
o

B), a contradiction.

a
We now show ΓG∗Σ is an acceptable abstract consistency class.

Theorem 5.4. For each ∗ ∈ , ΓG∗Σ ∈ Acc∗ and ΓG∗Σ is acceptable in Acc∗.

Proof. We immediately conclude ΓG∗Σ ∈ Acc∗ from Lemma 5.2 and Theo-
rem 3.6. We only must check acceptability.
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There is nothing to check if ∗ ∈ {β,βη,βξ}. We know ∇η holds for Γ
Gβf

Σ by

Theorem 3.6 since G(βη) and G(βη↓) are admissible (by Lemma 5.2). Hence Γ
Gβf

Σ

is acceptable in Acc∗.
We now consider the remaining conditions when ∗ is βfb.

∇m: Assume Φ ∈ ΓG∗Σ , A,¬B ∈ Φ are atomic and Φ ∗ ¬(A
.
=
o

B) /∈ ΓG∗Σ .

By Lemmas 3.5 and 5.2, `̀G∗ ¬Φ ∗ (A
.
= B). Applying G(Init

.
=), `̀G∗

¬Φ ∗ B (since ¬A ∈ ¬Φ). Applying G(¬), `̀G∗ ¬Φ (since ¬¬B ∈ ¬Φ),

contradicting Φ ∈ ΓG∗Σ .

∇d: Assume Φ ∈ ΓG∗Σ , hαn→β ∈ Σ is a parameter, β ∈ {o, ι}, ¬(hAn .
=
β

hBn) ∈ Φ and Φ ∗¬(Ai .=
αi

Bi) /∈ ΓG∗Σ for each 1 ≤ i ≤ n. By Lemmas 3.5
and 5.2, `̀G∗ ¬Φ ∗ (Ai .

= Bi) for each 1 ≤ i ≤ n. Applying G(d), `̀G∗
¬Φ ∗ (hAn .

= hBn). Applying G(¬), `̀G∗ ¬Φ (since ¬(hAn .
= hBn) ∈ Φ),

contradicting Φ ∈ ΓG∗Σ .

a

§6. Acceptable Hintikka Sets and Hintikka-Compatibility. In this sec-
tion we will study the notion of acceptable Hintikka sets. Hintikka sets provide
the basis for the model constructions in the model existence theorems (see [4]).
We define the Hintikka equivalents for the acceptability conditions and provide
a version of the abstract extension lemma for them: In the absence of satura-
tion, we will need Hintikka sets to satisfy appropriate conditions to ensure the
existence of models.

Definition 6.1 (Hintikka Acceptability Conditions). LetH be a Hintikka set
in Hint∗. We define the following properties:

~∇m If A,B ∈ cwffo(Σ) are atomic and A,¬B ∈ H, then ¬(A
.
=
o

B) ∈ H.
~∇d If ¬(hAn .

=
β
hBn) ∈ H where β ∈ {o, ι} and h is a parameter, then there

is an i with 1 ≤ i ≤ n such that ¬(Ai .= Bi) ∈ H.

These conditions directly correspond to the ones in Definition 4.1, except they
are closure conditions for H instead of extensibility conditions for members of
ΓΣ.

Every Hintikka set H in Hintβ [Hintβη, Hintβf] is acceptable in Hintβ [Hintβη ,
Hintβf]. For ∗ ∈ {βf,βfb}, we say a Hintikka set H is acceptable in Hint∗ if it
obeys the conditions in Figure 11.

for ∗ = H is acceptable in Hint∗ if it satisfies

βf ~∇η .

βfb ~∇m and ~∇d.

Figure 11. Acceptability Conditions for Hint∗

In [4] we constructed Hintikka sets as maximal elements of abstract consistency
classes (cf. Lemma 6.21 in [4]). In order to account for the new acceptability
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conditions, we show maximal sets in abstract consistency classes satisfy the cor-
responding acceptability conditions.

Lemma 6.2 (Acceptable Hintikka Lemma). Let ∗ ∈ and ΓΣ be an abstract
consistency class in Acc∗. Suppose a set H ∈ ΓΣ is maximal in ΓΣ with respect
to subset (i.e., for each sentence D ∈ cwffo(Σ) such that H∗D ∈ ΓΣ, we already

have D ∈ H). If ΓΣ satisfies ∇m [∇d], then H satisfies ~∇m [~∇d].
Proof. Suppose ΓΣ satisfies ∇m, A,B ∈ cwffo(Σ) are atomic and A,¬B ∈ H.

By ∇m, H ∗ ¬(A
.
=
o

B) ∈ ΓΣ. Since H is maximal in ΓΣ, ¬(A
.
= B) ∈ H as

desired. The ∇d follows similarly. a
We can now modify the abstract extension lemma from [4] to include the

acceptability conditions.

Theorem 6.3 (Abstract Extension Lemma). Let ΓΣ be a compact abstract con-
sistency class in Acc∗ and let Φ ∈ ΓΣ be sufficiently Σ-pure. Then there exists a
Σ-Hintikka set H ∈ Hint∗ such that Φ ⊆ H. Furthermore, if ∗ ∈ and ΓΣ is
acceptable in Acc∗, then H is acceptable in Hint∗.

Proof. The lemma extends the abstract extension lemma (Lemma 6.32 in
[4]) by the acceptability consideration in the last sentence. The Hintikka set
constructed in the proof of Lemma 6.32 in [4] is maximal in ΓΣ (as is explicitly
proven). If ΓΣ is acceptable in Acc∗, then we can conclude H is acceptable in
Hint∗ by Lemma 6.2. a

When constructing models in M∗ of a Hintikka set H, we must verify property
q. For this purpose, the assumption that H contains no Leibniz equations is very
helpful.

Definition 6.4. Let H be a set of formulae. We say H is Leibniz-free if there
do not exist terms Aα,Bα such that (A

.
=
α

B) ∈ H.

We can now show every Hintikka set is either saturated (in which case we have
already constructed models in [4]) or Leibniz-free. Hence we will only need to
construct models for Leibniz-free Hintikka sets.

Theorem 6.5 (Impredicativity Gap). Let H be a Hintikka set. Either H is
saturated or H is Leibniz-free.

Proof. SupposeH is not Leibniz-free. Then (A
.
=
α

B) ∈ H for some Aα,Bα.

We show H satisfies ~∇sat. Let Co be a closed formula. Since (∀Qα→oQA ⇒
QB) ∈ H, we know (¬C ∨ C) ∈ H by ~∇∀ (with the term λXα C) and ~∇β . By
~∇∨, either ¬C ∈ H or C ∈ H. a

With a similar argument we could show that Hintikka sets are either satu-
rated or free of sentences such as ∀Po P ⇒ P (a generalized tautology) and
∀Pα→o (Pzα ∧ (∀Xα PX ⇒ P (fα→αX)))⇒ ∀YαPY (an induction axiom).

We now introduce the notion of Hintikka-compatibility (H-Compatibility) and
prove some useful lemmas. We begin by defining when two closed terms are
weakly compatible relative to a Hintikka set H.

Definition 6.6 (H-Weak Compatibility). Let H be a Hintikka set. We say
two closed terms A,B ∈ cwffα(Σ) are H-weakly compatible (written A G B) if
¬(A

.
=
α

B) /∈ H and ¬(B
.
=
α

A) /∈ H.
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We next strengthen weak compatibility to compatibility.

Definition 6.7 (H-Compatibility). Let H be a Hintikka set. We define when
two closed terms A,B ∈ cwffα(Σ) are H-compatible (written A‖B) by induction
on the type α.

o: Ao‖Bo if {A,¬B} 6⊆ H and {¬A,B} 6⊆ H.
ι: Aι‖Bι if A G B.
β → γ: Aβ→γ‖Bβ→γ if AC‖BD whenever C,D ∈ cwffβ(Σ) and C‖D.

We say a set S ⊆ cwffα(Σ) is H-compatible if A‖B for every pair A,B ∈ S.

Intuitively, if two terms areH-compatible, then they might be equal in a model
of H. Notice that H-compatibility is not an equivalence relation, as it need not
be transitive.

Lemma 6.8. Let H be a Hintikka set. For any A,B ∈ cwffα(Σ), A G B iff
A↓β G B↓β. Also, A‖B iff A↓β ‖ B↓β.

Proof. We know the result for G since ¬(A
.
=
α

B) ∈ H iff ¬(A↓β
.
=
α

B↓β) ∈
H for all A,B ∈ cwffα(Σ) by ~∇β . The result for ‖ follows by an easy induction
on the type α. In particular, for A,B ∈ cwffι(Σ), the equivalence follows from
the equivalence for G.

By ~∇β , we know {A,¬B} ⊆ H iff {A↓β ,¬ B↓β} ⊆ H for all A,B ∈ cwffo(Σ).
Hence A‖B iff A↓β ‖ B↓β for all A,B ∈ cwffo(Σ).

At type β → γ, let C,D ∈ cwffβ(Σ) with C‖D be given. By induction, we

know (AC)‖(BD) iff (AC)
y
β
‖ (BD)

y
β

iff (A↓β C)‖(B↓β D). We can simply

generalize over C and D to obtain A‖B iff A↓β ‖ B↓β . a
Without certain closure conditions on H, there may be constants which are

not compatible with themselves (consider q in Example 3.2). The acceptability
conditions on Hintikka sets in Hintβfb will guarantee that constants (indeed all
closed terms) are compatible with themselves.

Lemma 6.9. Let H be an acceptable Hintikka set in Hintβfb.

1. For any A,B ∈ cwffα(Σ), if A‖B, then A G B.
2. For any n ≥ 0 and parameter hα1→···→αn→α, if Ci,Di ∈ cwffαi(Σ) and

Ci G Di for 1 ≤ i ≤ n, then (hCn)‖(hDn).

Proof. We can prove this by mutual induction on the type α.

ι: We know A G B if A‖B by definition.
o: Assume A‖B holds and A G B fails. Then ¬(A

.
=
o

B) ∈ H or ¬(B
.
=
o

A) ∈ H. By ~∇b, either {A,¬B} ⊆ H or {B,¬A} ⊆ H, contradicting A‖B.

β → γ: Assume A‖B holds and A G B fails. Then ¬(A
.
=
β→γ

B) ∈ H or

¬(B
.
=
β→γ

A) ∈ H. By ~∇f, there is a parameter wβ such that ¬((Aw)
.
=
γ

(Bw)) ∈ H or ¬((Bw)
.
=
γ

(Aw)) ∈ H. Hence (Aw) G (Bw) fails. On the
other hand, applying the induction hypothesis for part 2 at type β to w
(with no arguments), we know w‖w. Thus (Aw)‖(Bw) holds since A‖B.
This contradicts the induction hypothesis for part 1 at type γ.

We now turn to the second statement.
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ι: Suppose (hCn)‖(hDn) fails. Then (hCn) G (hDn) fails and so either

¬((hCn)
.
=
ι

(hDn)) ∈ H or ¬((hDn)
.
=
ι

(hCn)) ∈ H. Since H is ac-

ceptable, ~∇d holds and so there is some i such that 1 ≤ i ≤ n and either
¬(Ci .= Di) ∈ H or ¬(Di .= Ci) ∈ H. Either case contradicts Ci G Di.

o: Suppose {(hCn),¬(hDn)} ⊆ H or {¬(hCn), (hDn)} ⊆ H. Since H is

acceptable, ~∇m and ~∇d hold. By ~∇m, either ¬((hCn)
.
= (hDn)) ∈ H or

¬((hDn)
.
= (hCn)) ∈ H. By ~∇d, there is some i such that 1 ≤ i ≤ n and

either ¬(Ci .= Di) ∈ H or ¬(Di .= Ci) ∈ H, contradicting Ci G Di. Hence
(hCn)‖(hDn).

β → γ: To show (hCn)‖(hDn), let A,B ∈ cwffβ(Σ) with A‖B be given. By
the inductive hypothesis for part 1, we have A G B. So, we can apply the
induction hypothesis to the two terms hC1 · · ·CnA and hD1 · · ·DnB at
type γ to obtain (hC1 · · ·CnA)‖(hD1 · · ·DnB).

a
We can now show reflexivity of ‖ by induction on terms.

Lemma 6.10. Let H be an acceptable Hintikka set in Hintβfb. Then, for every
closed term Aα, A‖A.

Proof. We prove the stronger statement that given any term Aα ∈ wffα and
substitutions θ and ψ defined on the free variables of A such that θ(X)‖ψ(X)
for every Xβ ∈ free(A) then θ(A)‖ψ(A). We prove this by induction on the

term A. Since H is acceptable in Hintβfb, it satisfies ~∇m, ~∇d, ~∇f and ~∇b.
If A is a variable, the assertion follows directly from the assumption. We

can apply Lemma 6.9(2) to determine A is H-compatible with itself if A is a
parameter. We next consider logical constants.

The most interesting logical constants are the Πβ for each type β. If Πβ

is H-incompatible with itself, there must be two H-compatible closed terms
B,C ∈ cwffβ→o(Σ), such that ΠB and ΠC are H-incompatible. Without loss of

generality, we have ΠB,¬(ΠC) ∈ H. By ~∇∃, there is a parameter wβ with ¬Cw ∈
H. By ~∇∀, Bw ∈ H. Hence Bw and Cw are H-incompatible by definition. Since
we know w‖w for parameters already, this contradicts B‖C.

To check ¬, suppose ¬ is not H-compatible with itself. There must be H-
compatible B,C ∈ cwffo(Σ) where ¬B and ¬C are H-incompatible. Without

loss of generality, we have {¬B,¬¬C} ⊆ H. Using ~∇¬, we have {¬B,C} ⊆ H,
contradicting B‖C.

To check ∨, suppose ∨ is notH-compatible with itself. There exist B,C,D,E ∈
cwffo(Σ) with B‖C, D‖E such that B ∨ D and C ∨ E are H-incompatible.

Without loss of generality, {(B ∨ D),¬(C ∨ E)} ⊆ H. By ~∇∧ and ~∇∨, either
{B,¬C,¬E)} ⊆ H (contradicting B‖C) or {D,¬C,¬E)} ⊆ H (contradicting
D‖E).

For the application case let A be of the form GB. By induction, we have
θ(G)‖ψ(G) and θ(B)‖ψ(B). By definition of H-compatibility at function types,
we have θ(GB) ≡ θ(G)θ(B)‖ψ(G)ψ(B) ≡ ψ(GB).

Suppose A is of the form λXβ Dγ . Let B,C ∈ cwffβ(Σ) be H-compatible
terms. We must show θ(A)B and ψ(A)C are H-compatible. Let θ′ := θ, [B/X ]
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and ψ′ := ψ, [C/X ] be the obvious substitutions extending θ and ψ. By in-
duction, we have θ′(D)‖ψ′(D). Since θ′(D)

y
β
≡β (θ(A)B)

y
β

and ψ′(D)
y
β
≡

(ψ(A)C)
y
β
, we know by Lemma 6.8 that θ(A)B‖ψ(A)C. Generalizing over B

and C, we know θ(A)‖ψ(A). a

§7. Constructing Models. We now introduce techniques for constructing
models. These techniques will be used to prove a model existence theorem (cf.
Theorem 8.1) for acceptable abstract consistency classes.

7.1. Per Evaluations. When constructing models below, we will make use
of quotients obtained from partial equivalence relations (pers), i.e., symmetric,
transitive relations. This is more general than taking quotients by a total equiva-
lence relations, but for the quotient to be well-defined requires more assumptions.
We develop a theory of per quotients. A similar theory is developed in [6].

Since we need the domains of the quotient to be nonempty, we are typically
interested in nonempty pers. A per is nonempty if there is some a and b such
that a ∼ b.

Definition 7.1 (Σ-Per Evaluation). A Σ-per evaluation is a triple P := (J ,∼
, υ) where J ≡ (D,@, E) is a Σ-evaluation, υ : Do → {T, F} and ∼α is a nonempty
per on Dα for each type α. (We usually write simply ∼ instead of ∼α.)

Given any typed collection of domains D and typed binary relation ∼, we use
the notation D∼α for {a ∈ Dα|a ∼ a}. Furthermore, for any two typed functions
ϕ and ψ from V to D, we use the notation ϕ ∼ ψ to indicate that ϕ(X) ∼ ψ(X)
for every variable X .

Lemma 7.2. If P := (J ,∼, υ) is a Σ-per evaluation where J ≡ (D,@, E) is a
Σ-evaluation, then D∼α is nonempty for every type α.

Proof. Let α be a type. By Definition 7.1, ∼α is nonempty on Dα and so
there exist a, b ∈ Dα such that a ∼ b. By symmetry and transitivity, a ∼ b ∼ a
and so a ∼ a. Thus a ∈ D∼α . a

We now consider a number of conditions a per evaluation may satisfy.

Definition 7.3 (Σ-Per Evaluation Properties). Let P := (J ,∼, υ) be a Σ-
per evaluation with J := (D,@, E). We define the following properties for P :

∂Σ: For every constant cα ∈ Σ, E(c) ∈ D∼α (i.e. E(c) ∼ E(c) in Dα).
∂@: For every g, h ∈ Dα→β and a, b ∈ Dα, if g ∼ h and a ∼ b, then g@a ∼ h@b.
∂sub: For every type α, every A ∈ wffα(Σ), and all assignments ϕ and ψ, if
ϕ ∼ ψ, then Eϕ(A) ∼ Eψ(A).

∂υ: For all a, b ∈ Do, a ∼ b implies υ(a) ≡ υ(b).
∂TF: There exist t, f ∈ Do such that t ∼ t, f ∼ f, υ(t) ≡ T and υ(f) ≡ F.
∂¬: For all a ∈ D∼o , υ(E(¬)@a) ≡ T iff υ(a) ≡ F.
∂∨: For all a, b ∈ D∼o , υ(E(∨)@a@b) ≡ T iff υ(a) ≡ T or υ(b) ≡ T.
∂Π: For all f ∈ D∼α→o, υ(E(Πα)@f) ≡ T iff υ(f@a) ≡ T for each a ∈ D∼α .
∂q: At each type α ∈ T , there is an element qα ∈ D∼α→α→o, such that for all

a, b ∈ D∼α we have υ(qα@a@b) ≡ T iff a ∼ b.
∂η: For every type α, A ∈ wffα(Σ), and assignment ϕ, we have Eϕ(A) ∼
Eϕ(A↓βη).
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∂ξ: For all α, β ∈ T , M,N ∈ wffβ(Σ), assignments ϕ with ϕ ∼ ϕ, and vari-
ablesXα, Eϕ(λXα Mβ) ∼ Eϕ(λXα Nβ) whenever Eϕ,[a/X](M) ∼ Eϕ,[a/X](N)

for every a ∈ D∼α .
∂f: For every g, h ∈ Dα→β , g ∼ h whenever for every a, b ∈ Dα a ∼ b implies

g@a ∼ h@b.
∂b: There are only two ∼-equivalence classes on Do.

Note that the properties ∂@ and ∂f determine ∼ on function types. We can
also show ∂Σ, ∂@ and ∂f imply ∂sub.

Lemma 7.4. Let P := (J ,∼, υ) be a Σ-per evaluation with J := (D,@, E).
Suppose P satisfies ∂Σ, ∂@ and ∂f. Then P satisfies ∂sub.

Proof. One can easily show Eϕ(A) ∼ Eψ(A) for all assignments ϕ and ψ and
every A ∈ wffα(Σ) by induction on A. If A is a variable xα, this follows from
the assumption ϕ(x) ∼ ψ(x). The condition ∂Σ is used if A is a constant, ∂@ is
used if A is an application, and ∂f is used if A is a λ-abstraction. a

Theorem 7.5. Let P ≡ (J ,∼, υ) be a Σ-per evaluation with J ≡ (D,@, E).
Suppose P satisfies ∂Σ, ∂@, ∂sub, ∂υ, ∂TF, ∂¬, ∂∨ and ∂Π. Then, there is a
Σ-model M ≡ (D∼,@∼, E∼, υ∼) such that υ∼(E∼(A)) ≡ υ(E(A)) for all A ∈
cwffo(Σ). Furthermore, we have:

1. If P satisfies ∂q, then M satisfies property q.
2. If P satisfies ∂η, then M satisfies property η.
3. If P satisfies ∂ξ, then M satisfies property ξ.
4. If P satisfies ∂f, then M satisfies property f.
5. If P satisfies ∂b, then M satisfies property b.

Proof. We define the domains D∼ of M as D∼α := {[[a]]∼|a ∈ D∼α }. It is
helpful to choose representatives A? ∈ A of the equivalence classes A ∈ D∼α .
Note that [[a]]?∼ ∼ a for every a ∈ D∼α . So, for each A ∈ D∼α , we have A? ∈ D∼α
and A ≡ [[A?]]∼. It follows that if A,B ∈ D∼α and A? ∼ B?, then A ≡ [[A?]]∼ ≡
[[B?]]∼ ≡ B. Also, for any a ∈ D∼α , a ∈ [[a]]∼ and [[a]]?∼ ∈ [[a]]∼, so we have a ∼ [[a]]?∼.

We define @∼ by G@∼A := [[G?@A?]]∼ for G ∈ D∼α→β and A ∈ D∼α . Note that

for any g ∈ D∼α→β and a ∈ D∼α , we have [[g]]?∼@[[a]]?∼ ∼ g@a by ∂@, g ∼ [[g]]?∼ and

a ∼ [[a]]?∼. As a result, we have [[g]]∼@∼[[a]]∼ ≡ [[g@a]]∼.
By Lemma 7.2, we know D∼α is nonempty and so D∼α is nonempty. Hence

(D∼,@∼) is an applicative structure.
For each assignment ϕ taking variables Xα to D∼α , we define ϕ? to be an

assignment taking variables Xα to D∼α by ϕ?(X) := ϕ(X)?. We next define
E∼ϕ (A) := [[Eϕ?(A)]]∼. To check this is well-defined, we need to know Eϕ?(Aα) ∈
D∼α for each A ∈ wffα(Σ). This follows directly from ∂sub since ϕ?(X) ∼ ϕ?(X)
for every variable X .

We check E∼ is an evaluation function.

1. For each variable xα, E∼ϕ (x) ≡ [[ϕ?(x)]]∼ ≡ ϕ(x).
2. E∼ preserves application since E∼ϕ (GC) ≡ [[Eϕ?(GC)]]∼ ≡ [[Eϕ?(G)@Eϕ?(C)]]∼ ≡

[[Eϕ?(G)]]∼@∼[[Eϕ?(C)]]∼ ≡ E∼ϕ (G)@∼E∼ϕ (C).
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3. If ϕ and ψ coincide on the free variables of A, then so do ϕ? and ψ?.
So, Eϕ?(A) ≡ Eψ?(A) since J is a Σ-evaluation. This directly implies
E∼ϕ (A) ≡ E∼ψ (A).

4. Let ϕ be an assignment and A ∈ wffα(Σ). Since J is a Σ-evaluation, we
have Eϕ?(A) ≡ Eϕ?(A↓β). Since Eϕ?(A) ∈ D∼α , we can pass to equivalence
classes and obtain E∼ϕ (A) ≡ E∼ϕ (A↓β) as desired.

So, E∼ is an evaluation function
We now define υ∼ : D∼o → {T, F} by υ∼(A) := υ(A?) for A ∈ D∼o . For each

a ∈ D∼o , from ∂υ we conclude

υ∼([[a]]∼) ≡ υ([[a]]?∼) ≡ υ(a)

We can show υ∼ is surjective using ∂TF since υ∼([[t]]∼) ≡ T and υ∼([[f]]∼) ≡ F

(where t, f ∈ D∼o are given by ∂TF).
An important property of υ∼ is that if A ∈ D∼o and a ∈ A, then υ∼(A) ≡ υ(a).

This follows from ∂υ, since A? ∼ a. This will be used several times to verify
the required properties of υ∼ below. In particular, E(A) ∈ D∼o implies E(A) ∈
E∼(A) and so υ∼(E∼(A)) ≡ υ(E(A)) as required. We finally check that M is a
model by checking the conditions on υ∼.

1. υ∼(E∼(¬)@∼A) ≡ T, iff υ(E(¬)@A?) ≡ T, iff (by ∂¬) υ(A?) ≡ F, iff υ∼(A) ≡
F

2. υ∼(E∼(∨)@∼A@∼B) ≡ T, iff υ(E(∨)@A?@B?) ≡ T, iff (by ∂∨) υ(A?) ≡ T

or υ(B?) ≡ T, iff υ∼(A) ≡ T or υ∼(B) ≡ T,
3. Let P ∈ D∼α→o be given. υ∼(E∼(Πα)@∼P) ≡ T, iff υ(E(Πα)@P?) ≡ T, iff

(by ∂Π) υ(P?@a) ≡ T for each a ∈ D∼α , iff υ∼(P@∼A) ≡ T for each A ∈ D∼α .
This last equivalence is true since for every a ∈ D∼α , we can use [[a]]∼ ∈ D∼α
with a ∼ [[a]]?∼ to determine υ(P?@a) ≡ T, and for every A ∈ D∼α , we can
use A? ∈ D∼α to determine υ∼(P@∼A) ≡ T.

So, we have the desired Σ-model M. Now, we check the other properties.

1. Suppose P satisfies ∂q. We must show M satisfies property q. Let α be
a type and qα ∈ D∼α→α→o be the element guaranteed to exist by ∂q. We
will show [[qα]]∼ ∈ D∼α→α→o is the required witness for q. Let A,B ∈ D∼α be
given. We have υ∼([[qα]]∼@∼A@∼B) ≡ T, iff υ(qα@A?@B?) ≡ T, iff (by ∂q)
A? ∼ B?, iff A ≡ B. So, if P satisfies ∂q, then M satisfies q.

2. Suppose P satisfies ∂η. To check that the model M satisfies property η,
let A ∈ wffα(Σ) and an assignment ϕ for M be given. By ∂η, we have
Eϕ?(A) ∼ Eϕ?(A↓βη) and so E∼ϕ (A) ≡ E∼ϕ (A↓βη).

3. Suppose P satisfies ∂ξ. To check property ξ, suppose M,N ∈ wffβ , ϕ is an
assignment into (D∼,@∼), Xα is a variable and E∼ϕ,[A/X](M) ≡ E∼ϕ,[A/X](N)

for every A ∈ D∼α . This implies Eϕ?,[a/X](M) ∼ Eϕ?,[a/X](N) for every

a ∈ D∼α . Since ϕ? ∼ ϕ? we conclude Eϕ?(λX M) ∼ Eϕ?(λX N) from ∂ξ .
That is, E∼ϕ (λXα M) ≡ E∼ϕ (λXα N).

4. Suppose P satisfies ∂f. It easily follows that M satisfies property f. Let
G,H ∈ D∼α→β be such that for every A ∈ D∼α we have G@∼A ≡ H@∼A. This

implies G?@a ∼ H?@a for every a ∈ D∼α . If we take any a, b ∈ Dα with
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a ∼ b, then we have G?@a ∼ H?@a ∼ H?@b by ∂@ since H? ∈ D∼α→β . By

∂f, we have G? ∼ H?. Hence G ≡ H, as desired.
5. Finally, if P satisfies ∂b, then D∼o has only two elements and soM satisfies

property b. a

7.2. Possible Values Structures. We now develop in the abstract the
structures which will be used to construct many models. The elements of our
semantical domains Dα will consist of tuples 〈T, t〉 associating terms (T) with
possible values (t). The semantic techniques used by Takahashi (cf. [14]) and
Prawitz (cf. [11]) to prove cut-elimination for “relational” formulations of sim-
ple type theory (without extensionality) were extended by Andrews (cf. [1]) for
Church-style formulations (without extensionality). The idea is to define Do to
determine the truth value of some sentence and delay determining the truth value
of others. We have adopted the phrase “possible values” from Prawitz (cf. [11]).
A similar abstract theory of possible values structures is also developed in [6].

Definition 7.6 (Possible Values Structure). A possible values structure [with
η] F ≡ (D,@) is an applicative structure (D,@) where

1. For each type α, a ∈ Dα implies a ≡ 〈A, a〉 for some β-normal [βη-normal]
term A ∈ cwffα(Σ) and some value a.

2. At each base type α, for every A ∈ cwffα(Σ) in β-normal form [βη-normal
form], there exists an a with 〈A, a〉 ∈ Dα.

3. For each function type α → β, 〈G, g〉 ∈ Dα→β iff G ∈ cwffα→β(Σ) is
β-normal [βη-normal], g : Dα → Dβ and for every 〈A, a〉 ∈ Dα the first
component of g(〈A, a〉) is the β-normal form [βη-normal form] of GA.

4. For each 〈G, g〉 ∈ Dα→β and 〈A, a〉 ∈ Dα, 〈G, g〉@〈A, a〉 ≡ g(〈A, a〉).

We use the notation A↓∗ to mean the β-normal form in the β case and βη-
normal form in the βη case. We also use the term “normal” ambiguously to
consider both cases.

Definition 7.7 (Possible Value). Let F ≡ (D,@) be a possible values struc-
ture [with η]. We will call a a possible value for A ∈ cwffα(Σ) if 〈A↓∗, a〉 ∈ Dα.

Lemma 7.8 (Possible Values Existence). Let F be a possible values structure
[with η]. For each closed term A ∈ cwffα(Σ), there is a possible value p for A
in F .

Proof. The proof is by induction on the type α (following [1]). If α is a base
type, we know there is a possible value for A by condition (2) of Definition 7.6.
Suppose α is β → γ. By the induction hypothesis, there are possible values pAB

for AB for each 〈B, b〉 ∈ Dβ . Using the axiom of choice (at the meta-level),
there is a function p : Dβ → Dγ such that p(〈B, b〉) ≡ 〈(AB)↓∗, pAB〉. This p is a
possible value for A. a

Since we are interested in interpreting a term A ∈ cwffα(Σ) as a pair of the
form 〈A↓∗, a〉 we let DA

α denote

{〈A↓∗, a〉|a is a possible value for A}.
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Remark 7.9. Note that DA
α ⊆ Dα for each type α and that the syntactic

condition on Dα→β guarantees that if 〈G, g〉 ∈ Dα→β , then g : Dα → Dβ restricts
to a mapping g : DA

α → DGA
β for any A ∈ cwffα(Σ).

Definition 7.10 (Possible Values Evaluation). A possible values evaluation
[with η] is a Σ-evaluation J := (D,@, E) where (D,@) is a possible values struc-
ture [with η] and E(c) ∈ Dcα for each constant c ∈ Σα.

Let ϕ be a variable assignment. Note that we can extract a substitution θϕ

from ϕ by taking θϕ(x) := A whenever ϕ(x) ≡ 〈A, a〉. Also, for each variable
xα, θϕ(x) is a closed normal term of type α.1

We can always extend an interpretation of constants in a possible values struc-
ture to obtain a (ξ-functional) possible values evaluation.

Theorem 7.11. Let F := (D,@) be a possible values structure [with η] and
I : Σ −→ D be a typed function such that I(c) ∈ Dcα for every c ∈ Σα. There is an
evaluation function E so that (D,@, E) is a ξ-functional possible values evaluation

[with η] such that E
∣∣
Σ
≡ I. Also, Eϕ(A) ∈ Dθ

ϕ(A)
α for each A ∈ wffα(Σ),

assignment ϕ. Furthermore, if F is a possible values structure with η, then
Eϕ(A) ≡ Eϕ(A↓βη) for every A ∈ wffα(Σ) and assignment ϕ.

Proof. We extend I to an evaluation function E by induction on terms. At
each stage, we ensure that the first component of Eϕ(Aα) is (θϕ(A))↓∗, i.e.,

Eϕ(A) ∈ Dθ
ϕ(A)
α .

• For each cα ∈ Σ, we must let Eϕ(c) := I(c) ∈ Dcα.

• For variables xα, let Eϕ(x) := ϕ(x) ∈ Dθ
ϕ(x)
α . This ensures that E satisfies

the first condition to be an evaluation function.
• For application, we have Eϕ(G) ≡ 〈θϕ(G)↓∗, g〉 where g : Dθ

ϕ(A)
α → Dθ

ϕ(G)θϕ(A)
β

and Eϕ(A) ≡ 〈θϕ(A)↓∗, a〉. Let Eϕ(GA) := Eϕ(G)@Eϕ(A). This defini-
tion ensures the second condition for E to be an evaluation function. Also,

Eϕ(GA) ≡ g(〈A, a〉) ∈ Dθ
ϕ(GA)
β guarantees the first component of Eϕ(GA)

is (θϕ(GA))↓∗
• For abstraction, suppose we have Eϕ,[〈A,a〉/X](B) ∈ Dθ

ϕ([A/X]B)
β for each

〈A, a〉 ∈ Dα. This defines a function g from Dα to Dβ which properly

restricts as g : Dθ
ϕ(A)
α → Dθ

ϕ([A/X]B)
β . Let Eϕ(λXα B) := 〈(θϕ(λXα B))↓∗

, g〉 ∈ Dθ
ϕ(λX B)
α→β . Note that we have chosen the first component to be

(θϕ(λXα B))↓∗, thus maintaining this invariant.

To complete the verification that E is an evaluation function, we must check
two more conditions.

• Suppose ϕ and ψ coincide on free(A). An easy induction using the defini-
tion of E shows Eϕ(A) ≡ Eψ(A).
• To show E respects β-reduction, we show E respects a single reduction, then

use induction on the number of reductions.
First, we show Eϕ,[Eϕ(B)/X](A) ≡ Eϕ([B/X ]A) by induction on A. If A

is X , then Eϕ,[Eϕ(B)/X](X) ≡ Eϕ(B) ≡ Eϕ([B/X ]X). If A is a constant or

1Technically, θϕ is an infinite substitution. However, in any particular case we can consider
θϕ(A) to be θ(A) where θ is θϕ restricted to the finite set free(A).
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any variable other than X , then Eϕ,[Eϕ(B)/X](A) ≡ Eϕ(A) ≡ Eϕ([B/X ]A).
If A is an application FC, then the induction hypothesis implies

Eϕ,[Eϕ(B)/X](FC) ≡ Eϕ,[Eϕ(B)/X](F)@Eϕ,[Eϕ(B)/X](C)

≡ Eϕ([B/X ]F)@Eϕ([B/X ]C)

≡ Eϕ([B/X ]FC)

If A is an abstraction λYβ Cγ , then we check that the first and second com-
ponents are equal. The first component of Eϕ,[Eϕ(B)/X](A) is (θϕ, [θϕ(B)↓∗ /X ])(A)↓∗.
This simplifies to θϕ([B/X ]A)↓∗, which is the first component of Eϕ([B/X ]A).
So, we know the first components are equal. The second component of
Eϕ,[Eϕ(B)/X](A) is the function g : Dβ −→ Dγ such that g(b) ≡ Eϕ,[Eϕ(B)/X],[b/Y ](C)
for every b ∈ Dβ . The second component of Eϕ([B/X ]A) is the function
h : Dβ −→ Dγ such that h(b) ≡ Eϕ,[b/Y ]([B/X ]C) for every b ∈ Dβ . The
induction hypothesis implies g(b) ≡ h(b) for every b ∈ Dβ . That is, g ≡ h.
Hence, the second components are also equal and we are done.

Now, using the definition of E on applications and abstractions, we have

Eϕ((λX A)B) ≡ Eϕ(λX A)@Eϕ(B) ≡ Eϕ,[Eϕ(B)/X](A) ≡ Eϕ([B/X ]A)

Next, if C β-reduces to D in a single step, then induction on the position
of the redex in C shows Eϕ(C) ≡ Eϕ(D). Finally, induction on the number
of β-reduction steps shows Eϕ(C) ≡ Eϕ(C↓β).

Therefore, E is an evaluation function.
Next we show (D,@, E) is ξ-functional. Suppose M,N ∈ wffβ(Σ) and for

every a ∈ Dα we have Eϕ,[a/X](M) ≡ Eϕ,[a/X](N). We must show Eϕ(λX M) ≡
Eϕ(λX N). First, we know Eϕ(λX M) is of the form 〈(θϕ(λX M))↓∗, g〉 and
Eϕ(λX N) is of the form 〈(θϕ(λX N))↓∗, h〉. For every a ∈ Dα, we have

g(a) ≡ Eϕ,[a/X]((λX M)X) ≡ Eϕ,[a/X](M) ≡ Eϕ,[a/X](N)

≡ Eϕ,[a/X]((λX N)X) ≡ h(a)

using the properties of the evaluation function E . Thus g ≡ h. It only remains
to show the first components are equal. Choose a parameter wα which does not
occur in either M or N and let w be E(w). The first component of Eϕ([w/X ]M)
is (θϕ([w/X ]M))↓∗ and the first component of Eϕ([w/X ]N) is (θϕ([w/X ]N))↓∗.
By the Substitution-Value Lemma (cf. Lemma 3.20 in [4]),

Eϕ([w/X ]M) ≡ Eϕ,[w/X](M) ≡ Eϕ,[w/X](N) ≡ Eϕ([w/X ]N).

Hence (θϕ([w/X ]M))↓∗≡ (θϕ([w/X ]N))↓∗. Let M′ be ((θϕ, [X/X ])(M))↓∗ and N′

be ((θϕ, [X/X ])(N))↓∗. Note that (λX M′)↓∗ is (θϕ(λX M))↓∗ (the first component
of Eϕ(λX M)) and (λX N′)↓∗ is (θϕ(λX N))↓∗ (the first component of Eϕ(λX N)).
Hence it is enough to show M′ ≡ N′. We know [w/X ]M′ and [w/X ]N′ are β-
normal (or βη-normal) since M′ and N′ are normal and w is a parameter. Thus

[w/X ]M′ ≡ (θϕ([w/X ]M))↓∗≡ (θϕ([w/X ]N))↓∗≡ [w/X ]N′.

An easy induction on terms shows that for any terms A,B ∈ wffβ(Σ) and pa-
rameter wα, if [w/X ]A ≡ [w/X ]B and w does not occur in either A or B, then
A ≡ B. We conclude M′ ≡ N′ and so Eϕ(λX M) ≡ Eϕ(λX N). Therefore,
(D,@, E) is ξ-functional.
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In caseF is an possible values structure with η, we can show Eϕ(λXβ Aα→βX) ≡
Eϕ(A) if X /∈ free(A). The first components are equal using the invariant and
the fact that θϕ(λX AX)

y
βη
≡ θϕ(A)

y
βη

. Let g : Dα → Dβ be the second com-

ponent of Eϕ(λXβ AX) and h : Dα → Dβ be the second component of Eϕ(A).
By definition of Eϕ, we know

g(a) ≡ Eϕ,[a/X](AX) ≡ Eϕ,[a/X](A)@Eϕ,[a/X](X) ≡ Eϕ(A)@a

By definition of @, we know Eϕ(A)@a ≡ h(a). So, g ≡ h.
Now, just as in the β-reduction case, we can show that Eϕ(C) ≡ Eϕ(D) when-

ever C η-reduces to D in one step by induction on the position of the η-redex
in C. Then we have Eϕ(A) ≡ Eϕ(A↓βη) by induction on the number of βη-
reductions. a

§8. The Strong Model Existence Theorem. Suppose ΓΣ is an acceptable
abstract consistency class in Acc∗ and Φ ∈ ΓΣ. Our goal in this section is to find
a model in M∗ with M |= Φ. This will be used to prove completeness of the
sequent calculi G∗ and the Saturated Extension Theorem.

Theorem 8.1 (Model Existence for Acc∗). Let ∗ ∈ , ΓΣ be an acceptable
Acc∗, and let Φ ∈ ΓΣ be a sufficiently Σ-pure set of Σ-sentences. There exists a
model M∈M∗, such that M |= Φ.

Proof. Suppose we have a sufficiently Σ-pure Φ ∈ ΓΣ where ΓΣ is an accept-
able abstract consistency class in Acc∗. Let Γ′Σ be the acceptable compactification
of ΓΣ given by Theorem 4.3. Let H be an acceptable Hintikka set in Γ′Σ such that
Φ ⊆ H guaranteed to exist by Theorem 6.3. We now construct a model M in
M∗ such that M |= H, hence M |= Φ.

Accβ,Accβη, Accβξ, Accβf: These cases follow from the model existence the-
orem 8.6 proven in the next subsection using (essentially) Andrews’ υ-
complex construction.

Accβfb: This case follows from the model existence theorem 8.12 which we
develop in Subsection 8.2. Andrews’ υ-complex construction gives possible
values structures which do not satisfy property b. Using compatibility we
can construct a possible values structure and an appropriate per. The
quotient by the per will give the desired model.

a
Consequently, we can conclude completeness of G∗ for M∗ where ∗ ∈ . We

also conclude G(cut) is admissible in G∗.
Corollary 8.2. Let ∗ ∈ . The sequent calculus G∗ is complete for M∗.

Furthermore, G(cut) is admissible in G∗.
Proof. Suppose `̀G∗ ∆ does not hold. By Lemmas 3.5 and 5.2, ¬∆ ∈ ΓG∗Σ .

By Theorem 5.4, ΓG∗Σ is acceptable in Acc∗. By Theorem 8.1, there is a model
M ∈M∗ such that M |= ¬∆ (since ¬∆ is finite, hence sufficiently pure). Thus
∆ is not valid in M∗. Therefore, G∗ is complete.

To show G(cut) is admissible, assume `̀G∗ ∆ ∗C and `̀G∗ ∆ ∗ ¬C hold but
`̀G∗ ∆ does not. By soundness (cf. Theorem 5.3), ∆ ∗C and ∆ ∗ ¬C are valid
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for M∗. By completeness, there is a modelM∈M∗ such thatM |= ¬∆. Either
M |= C (contradicting validity of ∆ ∗ ¬C) or M |= ¬C (contradicting validity
of ∆ ∗C). Thus G(cut) is admissible in G∗. a

8.1. Model Existence for β, βη, βξ and βf. We will now use the machinery
developed so far to prove our first model existence theorems. Note that in three
of these case, we need not be concerned with acceptability conditions, since for
β, βη and βξ all Hintikka sets are acceptable (see Definition 6.1).

Definition 8.3 (H-Possible Booleans). Let H ⊆ cwffo(Σ) and A ∈ cwffo(Σ).
We define the set BA

H of H-possible Booleans for A by

BA
H :=





{T, F} if A /∈ H and ¬A /∈ H
{T} if A ∈ H and ¬A /∈ H
{F} if A /∈ H and ¬A ∈ H
∅ if A ∈ H and ¬A ∈ H

Definition 8.4 (Andrews Structure). Let H ⊆ cwffo(Σ) and let � be some
fixed arbitrary value. We define a structure (D,@) we will call the Andrews
Structure [with η] FH := (D,@) [FHη := (D,@)] for H as follows:

• Let Do be the set of pairs 〈Ao, p〉 where A ∈ cwffo(Σ) is β-normal [βη-
normal] and p ∈ BA

H.
• Let Dι be the set of pairs 〈Aι, �〉 where A ∈ cwffι(Σ) is β-normal [βη-

normal].
• Let Dα→β be the set of pairs 〈G, g〉 where G ∈ cwffα→β(Σ) is β-normal

[βη-normal] and g : Dα → Dβ such that for every 〈A, a〉 ∈ Dα, g(〈A, a〉) ≡
〈B, b〉 implies B is the β-normal form [βη-normal form] of GA.

We define @ by 〈G, g〉@〈A, a〉 ≡ g(〈A, a〉), where B is the β-normal form [βη-
normal form] of GA for each 〈G, g〉 ∈ Dα→β and 〈A, a〉 ∈ Dα.

Assuming H satisfies ~∇c, we can show the Andrews Structure is a possible
values structure and the Andrews Structure with η is a possible values structure
with η.

Lemma 8.5. Let H ⊆ cwffo(Σ) be a set of sentences. If H satisfies ~∇c, then
the Andrews Structure [with η] is a possible values structure [with η].

Proof. For any set H, every condition in Definition 7.6 except (2) holds for
FH and FHη directly by the definitions of FH and FHη . We only check condition

(2). Let Dα denote the domain of type α. For any β-normal (βη-normal if FHη )
A ∈ cwffι(Σ), we know 〈A, �〉 is in Dι. Suppose A ∈ cwffo(Σ) is β-normal [βη-

normal]. By ~∇c, we cannot have A,¬A ∈ H, so p ∈ BA
H for p either T or F.

Hence 〈A, p〉 is in Do. a
We can use the Andrews structure to construct models for Hintikka sets in

Hintβ and Hintβξ. We can use the possible values structure with η to construct
models for Hintikka sets in Hintβη. If we have a Hintikka set H ∈ Hintβf which

satisfies ~∇η, then we can also use the possible values structure with η to construct
a model for H. Hence we are in a position to prove a model existence theorem
for acceptable Hintikka sets in these four classes. (Note that the assumption of
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acceptability of H is only useful if ∗ is βf, in which case we assume H satisfies
~∇η .)

Theorem 8.6 (Model Existence (β, βη, βξ, βf)).
Let ∗ ∈ {β,βη,βξ,βf} and H be an acceptable Hintikka set in Hint∗. There is a
model M in M∗ such that M |= H.

Proof. By the Impredicativity Gap (cf. Theorem 6.5), we know H is satu-
rated or Leibniz-free. If H is saturated, we already constructed a term model
modulo Leibniz in Theorem 6.33 in [4]. Hence we assumeH is Leibniz-free. (This
will be important when we check the model satisfies property q.)

We directly follow Andrews’ υ-complex construction [1]. If ∗ ∈ {β,βξ}, then
let F := (D,@) be the Andrews Structure for H (a possible values structure by
Lemma 8.5). Otherwise, let F := (D,@) be the Andrews Structure with η for
H (a possible values structure with η by Lemma 8.5).

By Lemma 7.8, every closed term has a possible value. For each parameter
cα ∈ Σ, choose pc to be some possible value for c, so 〈c, pc〉 ∈ Dα. For the logical
constants ¬, ∨ and Πα, we must take particular values.

We define values for the logical constants as follows:

¬: Let p¬ : Do → Do be defined by p¬(〈A, a〉) := 〈¬A, b〉 where b is T if a is

F and b is F if a is T. The ~∇¬ and ~∇c properties of H guarantees this is
well-defined. So, p¬ is a possible value for ¬.

∨: For each 〈A, F〉 ∈ Do, let p∨〈A,F〉 : Do → Do be the function defined by

p∨〈A,F〉(〈B, b〉) := 〈A ∨B, b〉. For each 〈A, T〉 ∈ Do, let p∨〈A,T〉 : Do → Do be

the function defined by p∨〈A,T〉(〈B, b〉) := 〈A ∨ B, T〉. The properties ~∇∨,

~∇∧ and ~∇c of H guarantees these are well-defined and 〈∨A, p∨〈A,a〉〉 ∈ Do→o.
Now, let p∨ : Do → Do→o be the function defined by p∨(〈A, a〉) := 〈∨A, p∨〈A,a〉〉.
Clearly, p∨ is a possible value for ∨.

Πα: Let pΠα : Dα→o → Do be the function defined by pΠα(F, f) := 〈ΠαF, p〉
where p ≡ T if for every 〈A, a〉 ∈ Dα, the second component of f(〈A, a〉) is

T, and p ≡ F otherwise. This is well-defined by ~∇∀, ~∇∃ and ~∇c, and pΠα is
a possible value for Πα.

Let E be the evaluation function extending I guaranteed to exist by Theo-
rem 7.11 so that (D,@, E) is a ξ-functional possible values evaluation [with η].

To make this a Σ-model, we must define a valuation υ : Do −→ {T, F}. We
take the obvious choice υ(〈A, p〉) := p. Let M := (D,@, E , υ). To check M is
a Σ-model, we must check the requirements for υ.

¬: υ(E(¬)@a) ≡ T, iff υ(a) ≡ F by the definition of p¬.
∨: υ(E(∨)@a@b) ≡ T, iff υ(a) ≡ T or υ(b) ≡ T by the definition of p∨.
Π: υ(E(Πα)@f) ≡ T, iff υ(f@a) ≡ T for each a ∈ Dα by the definition of pΠα .

We verify M |= H. Suppose A ∈ H and let B be A↓∗. Note that E(A) ≡
〈B, p〉 ∈ Do for some p ∈ BB

H. Since A ∈ H, we have B ∈ H by ~∇β (if ∗ ∈ {β,βξ})
or ~∇η (if ∗ ∈ {βη,βf}).2 Thus BB

H ≡ {T}, p ≡ T and so M |= A.

2This is where the construction would fail if H ∈ Hintβf did not satisfy ~∇η.
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If ∗ ∈ {βη,βf}, then Theorem 7.11 guarantees M satisfies property η. We
also knowM satisfies property ξ since (D,@, E) is ξ-functional by Theorem 7.11.3

If ∗ is βf, then M satisfies property f since M satisfies properties η and ξ (cf.
Theorem 6.31 in [4]).4

In general, we can use Theorem 3.62 in [4] to obtain a model of H satisfying
property q, though this would not preserve properties ξ or f (cf. Remark 3.57 in
[4]). Instead, we use the assumption that H is Leibniz-free to show the possible
values model M already satisfies property q. To see this, for each 〈A, a〉 ∈
Dα, let s〈A,a〉 : Dα → Do be defined by s〈A,a〉(〈A, a〉) := 〈(A .

= A)↓∗, T〉 and
s〈A,a〉(〈B, b〉) := 〈(A .

= B)↓∗, F〉 for 〈B, b〉 6≡ 〈A, a〉. This is well-defined since we
never have ¬(A

.
= A)↓∗∈ H, and (A

.
= B)↓∗ /∈ H since H is Leibniz-free. Then,

define qα := 〈 .=α
, l〉 where l(〈A, a〉) := 〈(λX A

.
= x)↓∗, s〈A,a〉〉. This witnesses

M satisfies property q.
Therefore, we know M∈M∗ as desired. a
8.2. Model Existence for βfb. We now turn to the cases where a Hintikka

set H is acceptable in Hintβfb and we wish to obtain a model of H satisfying
properties f and b. We construct such models by putting a per evaluation over
a possible values structure similar to the Andrews Structure.

Definition 8.7 (H-Compatibility Structure). Let H be a Hintikka set. We
define a structure (D,@) we will call theH-Compatibility StructureFHc := (D,@)
and a binary relation ∼ on D by induction on types as follows:

• Let Do be the set of pairs 〈Ao, p〉 where A ∈ cwffo(Σ) is β-normal and
p ∈ BA

H. For each 〈A, p〉, 〈B, q〉 ∈ Do, 〈Ao, p〉 ∼ 〈Bo, q〉 holds if p ≡ q.
• Let Dι be the set of pairs 〈Aι, S〉 where A ∈ cwffι(Σ) is β-normal, A ∈ S

and S is an H-compatible subset of cwffι(Σ) (cf. Definition 6.7). For each
〈A, S〉, 〈B, S′〉 ∈ Dι, 〈Ao, S〉 ∼ 〈Bo, S

′〉 holds if S ≡ S′.
• Let Dα→β be the set of pairs 〈G, g〉 where G ∈ cwffα→β(Σ) is β-normal and
g : Dα → Dβ such that for every 〈A, a〉 ∈ Dα, g(〈A, a〉) ≡ 〈B, b〉 implies
B is the β-normal form of GA. For each 〈Gα→β , g〉, 〈Hα→β , h〉 ∈ Dα→β ,
〈Gβ→γ , g〉 ∼ 〈Hβ→γ , h〉 holds if g(a) ∼ h(b) for every a, b ∈ Dβ with a ∼ b.

We define @ by

〈G, g〉@〈A, a〉 ≡ g(〈A, a〉)
for each 〈G, g〉 ∈ Dα→β and 〈A, a〉 ∈ Dα.

As in Definition 7.1, at each type α we let

D∼α := {〈A, a〉 ∈ Dα|〈A, a〉 ∼ 〈A, a〉}
Combining this with the notation restricting the first components, we let DA

α be
DA
α ∩ D∼α .

Lemma 8.8 (Compatibility Structures). If H is an acceptable Hintikka set in
Hintβfb, then the applicative structure FHc is a possible values structure.

3We do not need to assume H satisfies ~∇ξ in this case. The condition ~∇ξ was needed in the

case where H is saturated.
4Again we do not need to assume H satisfies ~∇f in this case. The condition ~∇f is used in the

saturated case.
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Proof. Every condition in Definition 7.6 except (2) is trivial to check, so we
only check (2). Let Dα denote the domain of FHc of type α. By Lemma 6.10,
A‖A for every closed term A. In particular, for every β-normal A ∈ cwffι(Σ)

we know A‖A and so 〈A, {A}〉 ∈ Dι. By ~∇c, BA
H is nonempty. Hence there is

some p ∈ BA
H such that 〈A, p〉 ∈ Do. a

Since every A ∈ cwffα(Σ) has a possible value by Lemma 7.8 in FHc , we choose
a particular one rA for each A to act as a default value when necessary.

The binary relation ∼ on FHc is a typed per.

Lemma 8.9. Let H be a Hintikka set and FHc ≡ (D,@) be the H-compatibility
structure with binary relation ∼ (cf. Definition 8.7). The relation ∼ is a typed
per on D.

Proof. One can show ∼ is symmetric and transitive on each Dα by induction
on types. The only interesting aspect of the proof is that symmetry of ∼β is
used to show transitivity of ∼β→γ . a

Lemma 8.10. Let H be an acceptable Hintikka set in Hintβfb and FHc ≡ (D,@)
be the H-compatibility structure. For each type α, we have

1. If 〈A, a〉 ∼ 〈B, b〉 in Dα, then A‖B.
2. If S ⊆ cwffα(Σ) is H-compatible, then there is a family of possible values

(pA)A∈S where pA is a possible value for A ∈ S in FHc and 〈A↓β , pA〉 ∼
〈B↓β , pB〉 for each A,B ∈ S.

Proof. These two statements are proven by a mutual induction over the type
α. We consider three cases for the first statement.

o: Assume 〈A, a〉 ∼ 〈B, b〉 and so a ≡ b ∈ {T, F}. If A and B were H-
incompatible, then, without loss of generality, we can assume A,¬B ∈ H.
Since A ∈ H, a cannot be F, and so a ≡ T. Since ¬B ∈ H, b cannot be T,
and so b ≡ F. Since T 6≡ F, we have a contradiction.

ι: 〈A, A〉 ∼ 〈B, B〉 implies A ≡ B. So, A‖B as members of the H-compatible
set A.

β → γ: Suppose 〈G, g〉 ∼ 〈H, h〉. Let A‖B in cwffβ(Σ) be given. Applying the
induction hypothesis for part 2 at type β to the set S := {A,B}, we obtain
pA and pB with 〈A↓β , pA〉 ∼ 〈B↓β , pB〉. So, g(〈A↓β , pA〉) ∼ h(〈B↓β , pB〉).
The first components of g(〈A↓β , pA〉) and h(〈B↓β , pB〉) are (GA)

y
β

and

(HB)
y
β
, resp. Applying the induction hypothesis for part 1 to these terms

at type γ, we have (GA)
y
β
‖ (HB)

y
β
. By Lemma 6.8, (GA)‖(HB). Gen-

eralizing over A and B, we have G‖H.

We now consider three cases for the second statement.

o: We must either be able to let pA := T for every A ∈ S or let pA := F for
every A ∈ S. If neither is the case, then by the definition of Do there must
be A,B ∈ S with A↓β ,¬ B↓β ∈ H. But this contradicts H-compatibility
of S and Lemma 6.8.

ι: Let For each A ∈ S, let pA := Sβ where Sβ is {A↓β |A ∈ S}. H-

compatibility of Sβ follows from Lemma 6.8. By definition of Dι and ∼,
〈A↓β , Sβ〉 ∈ Dι and 〈A↓β , Sβ〉 ∼ 〈B↓β , Sβ〉 for all A,B ∈ S.
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β → γ: Suppose we are given the set S ⊆ cwffβ→γ(Σ).

For 〈B, b〉 ∈ Dβ \Dβ and G ∈ S, we let pGB be the default possible value
rGB for GB.

For each 〈B, b〉 ∈ Dβ , we choose a particular representative 〈B∼, b∼〉 in
the equivalence class of 〈B, b〉 with respect to ∼. For a particular 〈B∼, b∼〉,
let

B := {〈B, b〉|〈B, b〉 ∼ 〈B∼, b∼〉}
and let

GB := {GB|G ∈ S, 〈B, b〉 ∈ B for some b}
For each 〈B, b〉, 〈C, c〉 ∈ B, Applying the induction hypothesis for part 1 to
〈B, b〉 ∼ 〈C, c〉 at type β, we have B‖C. By the definition of ‖ at function
types, the set GB is H-compatible since S is H-compatible

By applying the induction hypothesis for part 2 to GB at type γ we obtain
related possible values pGB for each GB ∈ GB. This defines pGB for each
G ∈ S and B ∈ Dβ .

Now, for each G ∈ S, we can use the axiom of choice (at the meta-level)
to define a function pG : Dβ → Dγ such that

pG(〈B, b〉) ≡ 〈 (GB)
y
β
, pGB〉

This pG does map into Dγ since each pGB is a possible value for GB. Note
that the choices of pGB imply the functions pG are related as

pG(〈B, b〉) ≡ 〈 (GB)
y
β
, pGB〉 ∼ 〈 (HC)

y
β
, pHC〉 ≡ pH(〈C, c〉)

whenever 〈B, b〉 ∼ 〈C, c〉 for each G,H ∈ S. So, 〈G, pG〉 ∼ 〈H, pH〉 for
each G,H ∈ S.

a
Theorem 8.11. Let H is an acceptable Hintikka set in Hintβfb. Every closed

term A ∈ cwffα(Σ) has a possible value a with 〈A↓β , a〉 ∈ Dα. That is, (Dα)A

is nonempty.

Proof. This follows simply by applying Lemma 8.10(2) to the singleton set
{A} since A‖A by Lemma 6.10. a

In particular, we now know ∼ is a nonempty per on each domain Dα. We can
now use this construction to prove the following theorem.

Theorem 8.12 (Model Existence (βfb)). Let H is an acceptable Hintikka set
in Hintβfb. There exists a model M in Mβfb such that M |= H.

Proof. First, if H is not Leibniz-free, then it is saturated by Theorem 6.5.
In this case, we are done by Theorem 6.33 in [4]. So, we may assume H is
Leibniz-free.

Let F := FHc ≡ (D,@) be the H-Compatibility Structure. This is a possible
values structure by Lemma 8.8. To apply Theorem 7.11, we must interpret
the constants in Σ. For parameters cα ∈ Σ, then choose any possible value pc

with 〈c, pc〉 ∈ D∼α for c. Such a possible value exists by Theorem 8.11. Let
I(c) := 〈c, pc〉.
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To interpret the logical constants, we must check we can interpret ¬, ∨, and
each Πα for each α in the intended way. So, we define the appropriate function
and then check that this is an appropriate possible value.

We define a function υ : Do → {T, F} by υ(〈A, p〉) := p. Later, this will serve
as the valuation in our per evaluation.

Let n : Do → Do be the function taking 〈A, a〉 to 〈¬A, b〉 where b ≡ F if a ≡ T

and b ≡ T if a ≡ F. It is easy to check using ~∇¬ and ~∇c that 〈¬, n〉 ∈ Do→o. It
is also easy to check that 〈¬, n〉 ∈ D∼o→o using Lemma 6.10 and the definition of
∼. Let I(¬) := 〈¬, n〉.

For each 〈A, a〉 ∈ Do, let d〈A,a〉 : Do → Do be defined by d〈A,a〉(〈B, b〉) := 〈A∨
B, c〉 where c ≡ T if a ≡ T or b ≡ T, and c ≡ F otherwise. Using ~∇∧,
~∇∨ and ~∇c, Lemma 6.10 and the definition of ∼, we can easily check that
each 〈A, d〈A,a〉〉 ∈ D∼o→o. Furthermore, we can use these properties to show
〈A, d〈A,a〉〉 ∼ 〈A′, d〈A′,a〉〉 for any other 〈A′, a〉 ∈ Do. That is, ∼-related val-
ues in Do give ∼-related values d∗. So, we let d : Do → Do→o be defined by
d(〈A, a〉) := 〈∨A, d〈A,a〉〉, and conclude 〈∨, d〉 ∈ D∼o→o→o. Let I(∨) := 〈∨, d〉.

The most interesting case is Πα. Here we let 〈Πα, πα〉 where πα : Dα→o → Do
is defined by πα(〈F, f〉) := 〈ΠαF, p〉 where p ≡ T if υ(f(a)) ≡ T for every a ∈ D∼α
and p ≡ F otherwise. Note that we have relativized the Πα quantifier to D∼α .
In general, this will not give a Σ-model directly on the structure F . But it will
give an appropriate per evaluation on the evaluation we will build over F .

We must check that 〈Πα, πα〉 ∈ D∼(α→o)→o. First, ~∇∀, ~∇∃, ~∇β and ~∇c (along

with I(w) ∼ I(w) for parameters) imply πα is well-defined and 〈Πα, πα〉 ∈
D(α→o)→o. To check 〈Πα, πα〉 ∼ 〈Πα, πα〉, let 〈F, f〉 ∼ 〈G, g〉 be given. By

the definition of ∼, this implies υ(f(a)) ∼ υ(g(a)) for every a ∈ D∼α . So,
υ(πα(〈F, f〉)) ≡ υ(πα(〈G, g〉)) which precisely means πα(〈F, f〉) ∼ πα(〈G, g〉).
So, let I(Πα) := 〈Πα, πα〉.

Now we have an interpretation function I such that the first component of
each I(c) is c for every c ∈ Σ. Furthermore, I(c) ∼ I(c) for every c ∈ Σ, so by
Theorem 7.11, there is an evaluation function E such that

1. E
∣∣
Σ
≡ I,

2. J := (D,@, E) is a possible values evaluation, hence a Σ-evaluation, and

3. Eϕ(A) ∈ Dθ
ϕ(A)
α for each A ∈ wffα(Σ).

Using ~∇β , this last condition implies υ(E(A)) ≡ T for each A ∈ H, since BA
H ≡

{T}.
We now show (J ,∼, υ) is a Σ-per evaluation satisfying ∂Σ, ∂sub, ∂υ, ∂TF, ∂¬,

∂∨, ∂Π, ∂q, ∂f and ∂b. Then we will apply Theorem 7.5. We already know J is
a Σ-evaluation. We know ∼ is a typed per on the domains Dα by Lemma 8.9.
To show ∼ is nonempty on Dα, we can simply choose a parameter wα and note
there is some pw such that 〈w, pw〉 ∈ Dα and 〈w, pw〉 ∼ 〈w, pw〉 by Lemma 8.11.

Thus P := (J ,∼, υ) is a Σ-per evaluation. We now check P has each of the
desired properties.

∂Σ: For each constant c ∈ Σ, E(c) ≡ I(c) ∼ I(c) ≡ E(c).
∂@: By the definition of ∼ on function domains Dα→β , for each g, h ∈ Dα→β

and a, b ∈ Dα, if g ∼ h and a ∼ b, then g@a ∼ h@b.
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∂f: Let g, h ∈ Dα→β be given. Suppose for every a, b ∈ Dα a ∼ b implies
g@a ∼ h@b. Again by the definition of ∼ on function domains, we know
g ∼ h.

∂sub: This follows from ∂Σ, ∂@ and ∂f using Lemma 7.4.
∂υ: We have a ∼ b implies υ(a) ≡ υ(b) for each a, b ∈ Do by the definition of
∼ at type o.

∂TF: By ~∇c, ~∇¬ and ~∇β , there must be a normal A ∈ cwffo(Σ) with ¬A /∈
H. Hence 〈A, T〉, 〈¬A, F〉 ∈ Do. Let p := 〈A, T〉 and q := 〈¬A, F〉. Thus
υ(p) ≡ T and υ(q) ≡ F as desired.

∂¬: This follows from the definition of n : Do → Do above.
∂∨: This follows from the definition of d above.
∂Π: This follows from the definition of πα (which was relativized to the smaller

domains D∼α ) above.
∂q: We will use the fact that H is Leibniz-free. Let a type α be given.

We must find an element qα ∈ Dα→α→o such that for all a, b ∈ D∼α ,
υ(qα@a@b) ≡ T iff a ∼ b. For each a ≡ 〈A, a〉 ∈ Dα, let sa : Dα → Do
be defined by sa(b) := 〈 (A .

=
α

B)
y
β
, T〉 for b ≡ 〈B, b〉 if b ∼ a in Dα,

and sa(b) := 〈 (A .
=
α

B)
y
β
, F〉 otherwise. To show this is well-defined, we

must check sa(b) really is in Do. If a ∼ b and sa(b) ≡ ( (A
.
=
α

B)
y
β
, T) /∈

Do, then we must have ¬ (A
.
=
α

B)
y
β
∈ H. This contradicts a ∼ b by

Lemma 8.10(1). If a 6∼ b and sa(b) ≡ ( (A
.
=
α

B)
y
β
, F) /∈ Do, then we must

have (A
.
=
α

B)
y
β
∈ H, contradicting the assumption that H is Leibniz-

free. Note that this includes the case where a 6∼ a. So we now have
〈 (λXα A

.
=
α
x)
y
β
, sa〉 ∈ Dα→o.

Now, define l : Dα → Dα→o by l(a) := 〈 (λXα A
.
=
α
x)
y
β
, sa〉 for any a ≡

〈A, a〉 ∈ Dα. Since each sa ∈ Dα→o, this is well-defined. Let qα := 〈 .=α
, l〉.

We must check qα ∼ qα. Let a ≡ 〈A, a〉 ∈ Dα and b ≡ 〈B, b〉 ∈ Dα with
a ∼ b be given. We must check l(a) ∼ l(b). That is, we must check that
sa and sb sends ∼-related values to ∼-related results. Let c ≡ 〈C, c〉 ∈ Dα
and d ≡ 〈D, d〉 ∈ Dα with c ∼ d be given. υ(sa(c)) ≡ T iff a ∼ c iff b ∼ d iff
υ(sb(d)) ≡ T. So, sa(c) ∼ sb(d).

∂b: We clearly have only two ∼-equivalence classes in Do since there are only
two possibilities for the second component of each a ∈ Do.

We can now apply Theorem 7.5 to obtain a model M≡ (D∼,@∼, E∼, υ∼) in
Mβfb such that υ∼(E∼(A)) ≡ υ(E(A)) for all A ∈ cwffo(Σ). Note that M |= H
since for each A ∈ H υ∼(E∼(A)) ≡ υ(E(A)) ≡ T. a

§9. The Saturated Extension Theorem. For each class of models M∗,
we can produce saturated abstract consistency classes in Acc∗. For ∗ ∈ , this
class will be a saturated extension of all acceptable ΓΣ in Acc∗. Let ΓM∗

Σ be the
class of all Φ such that there exists a model M ∈ M∗ such that M |= Φ. We

prove below that each ΓM∗
Σ is in Acc∗.

Definition 9.1 (ΓM∗
Σ ). For each ∗ ∈ , we define ΓM∗

Σ to consist of the class
of all Φ ∈ cwff(Σ) such that there exists a model M∈M∗ with M |= Φ.



36 CHRISTOPH BENZMÜLLER, CHAD E. BROWN, AND MICHAEL KOHLHASE

Theorem 9.2. For each ∗ ∈ , ΓM∗
Σ is in Acc∗ and saturated.

Proof. Let Φ ∈ ΓM∗
Σ be given and let M ≡ (D,@, E , υ) be a Σ-model in

M∗ such that M |= Φ. Let A,B ∈ cwffo(Σ), F,G ∈ cwffα→β(Σ) and P ∈
cwffα→o(Σ)

∇c: Since M cannot model both A and ¬A, we cannot have A,¬A ∈ Φ.
∇¬,∇β, ∇∨, ∇∧, ∇∀: If ¬¬A ∈ Φ, then M |= Φ ∗A. So, Φ ∗A ∈ ΓM∗

Σ . The
other properties follow by the same argument.

∇∃: Suppose M |= ¬(ΠP). Then there is some a ∈ Dα with M |=ϕ ¬(PXα)
where ϕ(X) ≡ a. Let w ∈ Σα be any constant that does not occur in
Φ (note that the definition of ∇∃ does not require that there be such a
constant). By a standard parameter change argument we see that there is
a model M′ ≡ (D,@, E ′, υ) ∈ M∗ such that M′ |= Φ (since w does not
occur in any sentence in Φ) and E ′(w) ≡ a. So, M′ |= ¬(Pw).

∇η: We need only check this in case ∗ ∈ {βη,βηb}. In this case, η directly
implies E(A) ≡ E(A↓βη) for any A ∈ cwffo(Σ). As a result, M |= A iff

M |= A↓βη. Suppose Φ ∈ ΓM∗
Σ , A≡βηB and A ∈ Φ. So, there is a model

M∈M∗ withM |= Φ. We haveM |= A, and soM |= A↓βη andM |= B.

So, Φ ∗B ∈ ΓM∗
Σ .

∇f: We must check this if ∗ ∈ {βf,βfb}. Suppose M |= ¬(F
.
=
α→β

G). We
know E(F) and E(G) are distinct elements of Dα→β (cf. Lemma 4.2(1)
in [4]). By property f, there must be an element a ∈ Dα with E(F)@a 6≡
E(G)@a. Let Xα be a variable of type α and ϕ be any assignment. Using

property q, we know M |=ϕ,[a/X] ¬((FX)
.
=
β

(GX)) (cf. Lemma 4.2(2) in
[4]). Let w ∈ Σα be any constant which does not occur in Φ. By a standard
parameter change argument, there is a model M′ ≡ (D,@, E ′, υ) ∈ M∗
such that M′ |= Φ (since w does not occur in any sentence in Φ). Also,

M |=ϕ,[a/X] (FX)
.
=
β

(GX) impliesM′ |= ¬((Fw)
.
=
β

(Gw)) (since w does

not occur in F or G and ¬((Fw)
.
=
β

(Gw)) is closed). Thus, Φ ∗ ¬(Fw
.
=
β

Gw) ∈ ΓM∗
Σ .

∇ξ: We need only check this in case ∗ ∈ {βξ,βξb} and the proof is analogous

to the ∇f case. Suppose M |= ¬((λX M)
.
=
α→β

λX N). Then E(λX M) 6≡
E(λX N) and so Eϕ,[a/X](M) 6≡ Eϕ,[a,X](N) for some a ∈ Dα by property ξ.
Let w ∈ Σα be any constant which does not occur in Φ. By changing the
value of E(w), there is a modelM′ ≡ (D,@, E ′, υ) ∈M∗ such thatM′ |= Φ

and M′ |= ¬([w/X ]M
.
=
β

[w/X ]N). Thus Φ ∗ ¬([w/X ]M
.
=
β

[w/X ]N) ∈
ΓM∗
Σ .

∇b: We only must check this in case ∗ ∈ {βb,βηb,βξb,βfb}. In this case Do
has only two elements. Without loss of generality, assume Do is {T, F} and
υ is the identity function. If M |= ¬(A

.
=
o

B), then E(A) and E(B) must
be distinct elements of Do. There are only two possibilities. We could
have E(A) ≡ T (so, M |= A) and E(B) ≡ F (so, M |= ¬B). In this case,

Φ ∪ {A,¬B} ∈ ΓM∗
Σ . Otherwise, we must have E(A) ≡ F and E(B) ≡ T.

In this case, Φ ∪ {¬A,B} ∈ ΓM∗
Σ .
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We must finally show that each ΓM∗
Σ is saturated. Let Φ ∈ ΓM∗

Σ be given and
let A ∈ cwffo(Σ). Let M ∈M∗ be a model of Φ. This model either satisfies A

or ¬A. So, M either witnesses Φ ∗A ∈ ΓM∗
Σ or Φ ∗ ¬A ∈ ΓM∗

Σ . Hence, ΓM∗
Σ is

saturated. a
We now present the proof of the Saturated Extension Theorem. For each
∗ ∈ , one can consider the collection Acc∗ of abstract consistency classes, the
smaller collection of acceptable classes or the even smaller collection of saturated
classes. A primary goal of this paper was to show that a saturated extension
result would have proof strength at least as strong as cut-elimination. This
fact follows from Theorem 3.10. For Theorem 3.10 we only needed to know
every acceptable ΓΣ in Acc∗ has a saturated extension. However, in the end,
we realized we could show the stronger result that there is a single saturated
Γ′Σ in Acc∗ (defined from the model class M∗) which uniformly extends every

acceptable ΓΣ in Acc∗ (for ∗ ∈ ). On the other hand, one should not believe
that this uniform saturated extension Γ′Σ is maximal in the entire class Acc∗
(unless ∗ ∈ {β,βη,βξ}). In particular, Examples 3.2 and 3.3 indicate how to
construct abstract consistency classes in Accβf, Accβb, Accβηb, Accβξb and Accβfb

which have no saturated extension.

Theorem 9.3 (Saturated Extension Theorem).

Let ∗ ∈ . There is a saturated abstract consistency class Γ′Σ in Acc∗ such
that for every acceptable abstract consistency class ΓΣ in Acc∗, Γ′Σ is a saturated
extension of ΓΣ.

Proof. Let ΓΣ be an acceptable abstract consistency class in Acc∗. We know
ΓM∗
Σ is a saturated abstract consistency class in Acc∗ by Theorem 9.2. To check

ΓM∗
Σ is an extension of ΓΣ, let Φ ∈ ΓΣ be sufficiently Σ-pure. By the Model

Existence Theorem 8.1, we have a model M in M∗ such that M |= Φ. This

verifies Φ ∈ ΓM∗
Σ and we are done. a

§10. Conclusion. In [4] we have introduced and studied eight different model
classes (including Henkin models) for classical type theory which generalize the
notion of standard models and which allow for complete calculi. These model
classes are motivated by different roles of extensionality and they adequately
characterize the deductive power of existing theorem-proving calculi. In [4] we
have also adapted the abstract consistency method (resp. Andrews Unifying
Principle) to these model classes and proved respective model existence theo-
rems. We have then exploited the framework to prove completeness (by syntactic
means) for different natural deduction calculi introduced for each of the model
classes. Due to the strong saturation condition employed in this framework it
is, however, not (easily) applicable to investigate the completeness of machine-
oriented calculi such as higher-order sequent, resolution or tableaux calculi.

In this paper we have therefore addressed the saturation problem and our
contributions in summary are:

• We have introduced prototypical machine-oriented (cut-free) higher-order
sequent calculi for five of the eight model classes as counterparts to the
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human-oriented natural deduction calculi developed in [4] and we have
proven their soundness.
• By studying their completeness with respect to the model classes within

our framework we have illustrated that the saturation condition of [4] may
be as hard to show for machine-oriented calculi as cut-elimination.
• Another interesting insight is the Leibniz Gap: Hintikka sets are either

saturated or free of positive Leibniz equations. The problem in general is
related to impredicativity.
• In some cases, we have developed acceptability conditions which may re-

place the saturation condition and and which are easier to show for machine-
oriented calculi. Our saturated extension theorem proves that the accept-
ability conditions actually still guarantee model existence.
• We have proven an unexpectedly strong formulation of the saturated ex-

tension theorem: There exists one saturated abstract consistency class that
is an extension of all acceptable abstract consistncy classes.
• Our model constructions employ Peter Andrews’ υ-complexes [1] as a point

of origin.
• We have applied our extended framework to show completeness (by syn-

tactical means) of five prototypical sequent calculi with respect to their
associated model classes.

Together with [4] we have thus achieved a framework that supports the develope-
ment and proof-theoretical investigation of human-oriented as well as machine-
oriented (ground) calculi for classical type theory. It remains to develop accept-
ability conditions and prove model existence for the three cases with Boolean
extensionality but without full functional extensionality.

For non-ground machine-oriented calculi the lifting issue has to be additionally
addressed and extending our framework by tools that may also support lifting
arguments remains future work.
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