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1 General Information (Allgemeine Angaben)

1.1 Applicants (Antragsteller)
This is a joint application by two partner universities: Saarland University (1 researcher) and
International University Bremen (1 researcher). It is also based on substantial international co-
operation with american and english universities (hence we use English for this document).

(A) Saarland University

1.1.1 • Serge R. Autexier, Dr.
• Senior researcher
• 2.10.1971, German and French
• German Research Centre for Artificial Intelligence (DFKI GmbH)

Mailing address: Stuhlsatzenhausweg 3, 66123 Saarbrücken, Germany
Tel: +49 681 302-5073 Fax: +49 681 302-5076
E-mail: autexier@dfki.de
• Private address: Großherzog-Friedrich Str. 73, 66111 Saarbrücken

Tel.: +49 681 375620
• Curriculum vitae and list of publications (see appendix A)

1.1.2 • Christoph E. Benzmüller, Dr.
• Hochschuldozent (C2)
• 8.9.1968, German
• Universität des Saarlandes, Fachrichtung 6.2 Informatik

Mailing address: P.O. Box 15 11 50, 66041 Saarbrücken, Germany
Tel: +49 681 302-4574 Fax: +49 681 302-5076
E-mail: chris@ags.uni-sb.de
• Private address: Am Landwehrplatz 6-7, 66111 Saarbrücken

Tel.: +49 681 9659107
• Curriculum vitae and list of publications (see appendix B)

1.1.3 • Jörg H. Siekmann, Prof. Dr. (Ph.D.), grad. Ing.
• Professor
• 5.8.1941, German
• Universität des Saarlandes, Fachrichtung 6.2 Informatik

Mailing address: P.O. Box 15 11 50, 66041 Saarbrücken, Germany
Tel: +49 681 302-5276 Fax: +49 681 302-5076
E-mail: siekmann@ags.uni-sb.de
• Private address: Robert-Koch Str. 6, 66119 Saarbrücken

Tel.: +49 681 55447
• Curriculum vitae and list of publications (see appendix C)

(B) International University Bremen

1.1.4 • Michael Kohlhase, Prof. Dr.
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• Professor for Computer Science
• 13.9.1964, German
• International University Bremen, School of Engineering and Science

Mailing address: P.O. Box 750 561, 28725 Bremen, Germany
Tel: +49 421 200-3140 Fax: +49 421 200-3103
E-mail: m.kohlhase@iu-bremen.de

1. Private address: Mühlental 5, 28717 Bremen, Germany
Tel: +49 421 6396849

2. Curriculum vitae and list of publications (see appendix D)

1.2 Topic (Thema) . . . . . . . . . . . . . . . . . . . . . . . . Distributed Mathematical Problem Solving

1.3 Code name (Kennwort) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VERMATH

1.4 Scientific discipline (Fachgebiet und Arbeitsrichtung)

Artificial Intelligence, Deduction Systems, Distributed Systems

1.5 Scheduled duration (Voraussichtliche Gesamtdauer) . . . . . . . . . . . . .4 years

1.6 Application period (Antragszeitraum) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 years

1.7 Start of funding (Gewünschter Beginn der Förderung) . . . . . August 2004

1.8 Summary (Zusammenfassung)

The Internet provides a vast collection of data and computational resources. For example, a
travel booking system combines different information sources, such as the search engines, price
computation schemes, and the travel information in distributed very large databases, in order to
answer complex booking requests. The access to such specialized travel information sources has
to be planned, the obtained results combined and, in addition the consistency of time constraints
has to be guaranteed.

We want to transfer and apply this methodology to mathematical problem solving and de-
velop a system that plans the combination of several mathematical information sources (such as
mathematical databases), computation engines (such as computer algebra systems), and reason-
ing processes (such as theorem provers or constraint solvers) to solve mathematical problems.
The project will be based on the well-developed MathWeb-SB network of existing mathematical
services, whose client-server architecture will be extended by advanced problem solving capa-
bilities and semantic brokering of mathematical services. The current MathWeb-SB is already
well established internationally with up to 500 theorems and small lemmata being submitted
and processed per hour. These mathematical problems come from unification systems, semantic
natural language processing as well as genuine mathematical theorems. We intend to describe

2



the mathematical services in a formal service description language. Reasoning over such ser-
vice descriptions with for instance AI planning techniques, can then be used to find appropriate
sequences of services to solve the particular mathematical problem at hand.

This is a joint project between the University of Saarbrücken (Prof. Siekmann) and the
International University Bremen (Prof. Kohlhase).

2 State of the art, preliminary work
(Stand der Forschung, eigene Vorarbeiten)

2.1 State of the art (Stand der Forschung)

Traditionally, mathematical problem solving systems for symbolic reasoning and symbolic com-
putation, are stand-alone systems. Typical systems are the first-order automated theorem provers
Otter [McC90], Spass [Wei97], or VAMPIRE [RV01] and computer algebra systems such as
Mathematica [Wol99] or Maple [Red96]. A recent trend, however, is to gradually open the archi-
tectures of such systems. This is particularly the case for interactive theorem proving environ-
ments like NuPrl [ACE+00], HOL [GM93], , PVS [ORS92], Coq [Tea], and ΩMEGA [SBB+02].
Instead of a fixed and hardwired control, the idea is to out-source and exchange specialized
mathematical services like decision procedures, simplification tools, mathematical databases,
presentation tools, logic- and proof-transformation components, etc.

Several networks for such distributed mathematical service systems are currently under de-
velopment. Prominent examples are our MathWeb-SB [ZK02] (which will be discussed in more
detail in section 2.2), the Prosper Toolkit [DCN+00], or MetaPrl [HNC+03] (discussed in more
detail in section 2.1.1). In these mathematical service networks client systems may employ ser-
vice systems via the provided network infrastructure. Thereby communication is supported by
respective communication protocols. A typical example is a theorem prover calling a computer
algebra system to perform some computational task or a decision procedure, e.g. a SAT-solver,
to decide the satisfiability of a sub-problem. Clearly, some mathematical tools in these scenarios
generally qualify as client systems and as service systems simultaneously.

The brokering of mathematical service systems in such networks is still not well understood
and several recent research projects try to address this problem. For example, the projects Math-
Broker [SC01] and MONET [Con02] (see further details below) aim at the development of a
service description language and a taxonomy of existing systems in order to improve the seman-
tical brokering of computational services.

European research networks in which this research plays a major role are the CALCULEMUS

Network1 (which investigates the Integration of Computation and Deduction Systems) [Ben03],
the MONET project2, and the new MKM initiative3 (for research in Mathematical Knowledge
Management). Our group coordinates the CALCULEMUS Network and it is also part of the MKM

1http://www.eurice.de/calculemus
2http://monet.nag.co.uk/cocoon/monet/index.html
3http://monet.nag.co.uk/mkm/index.html
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initiative as well as the MOWGLI consortium4, which shall enable us to closely cooperate with
these research initiatives.

2.1.1 Networks of mathematical service systems

The MathWeb Software Bus (MathWeb-SB) [ZK02] is a distributed system for the integration
of reasoning systems, i.e., deduction systems and symbolic computation systems. It has been
developed at Saarbrücken and Edinburgh and is described in more detail in section 2.2.

The PROSPER project [DCN+00] developed a technology to deliver formal specification and
verification to system designers in industry. The central idea of the PROSPER project is that of
a proof engine (a custom built verification engine) which can be accessed by applications via
an application programming interface (API). This API supports the construction of CASE-tools5

incorporating a user-friendly access to formal techniques. The API of PROSPER mainly allows
the modularization of CASE tools and software systems and the inter-operation of these modules
with a proof engine. However, the components of the PROSPER toolkit still use a proprietary
protocol for communication.

MetaPRL [HNC+03] is a logical framework where multiple logics can be defined and related.
In MetaPRL, mathematical knowledge can be exchanged between the different logic contexts.
Furthermore, it is a system with support for interactive proving and automated reasoning. The
development of the MetaPRL system is motivated by the enormous investment in systems like
PVS, HOL, Coq, ELF, Nuprl, and others, which use different logics and different methodolo-
gies, but have a common goal and their results share fundamental mathematical underpinnings.
MetaPRL tries to expose the logical foundations of these systems and to share the results be-
tween the systems. MetaPRLs incremental module construction allows logical re-use: logics can
share a common core with properties that are inherited as the logics are extended.

2.1.2 Mathematical Services

The MathBroker project [SC01] develops a software framework for brokering symbolic compu-
tation services that are distributed among networked servers. The foundation of this framework
is a language for describing the mathematical problems and a taxonomy of pre-defined mathe-
matical problems. Servers register their problem solving capabilities with a “semantic broker” to
which clients submit corresponding task descriptions. For a given task, the broker determines a
service suitable to tackle that task and returns the description of that service to the client for invo-
cation. Embedded into XML documents and interpreted by browser applets, service descriptions
can act as interactive hyper-media interfaces for distributed mathematical applications.

One area of interest of the MONET project [Con02] are mathematical algorithms offered via
web services that can be accessed from a wide variety of software packages. The challenge is
to develop a framework in which such services can describe their capabilities in as much detail
as is necessary to allow a sophisticated software agent to select a suitable service based on an
analysis of the characteristics of a user’s problem.

4http://mowgli.cs.unibo.it
5CASE: Computer Aided Software Engineering
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Both the MathBroker and the MONET project have goals similar to the research proposed
here. However, both projects deliver web services by existing standards and existing web tech-
nology, such as RDF [BG00] and WSDL [CCMW01]. Furthermore, both projects focus on
computer algebra systems and numerical algorithms. In our research, we focus on the combi-
nation of heterogeneous reasoning systems and service tools, such as theorem provers, decision
procedures, computer algebra systems, logic- and proof transformation services, and constraint
solvers. In contrast to MathBroker and MONET we intend to build a framework on top of exist-
ing standards of multi-agent technology, such as the FIPA specification [Fip02]. We also want to
replace the rather simple semantical brokering approach proposed in MathBroker by an advanced
plan based semantical brokering mechanism: while service requests in MathBroker are directly
linked to particular service systems whose semantical description matches the request, we pro-
pose to plan how available service systems can be suitably combined in order to cooperatively
tackle a problem.

We shall build on our longterm experience in theorem proving and on the integration of het-
erogeneous reasoning systems in the MathWeb-SB. This is particularly important since the Math-
Web-SB already provides the service systems that are required for the advanced theorem proving
brokering we envisage. In order to ensure compatibility with MathBroker and the MONET
project, however, we want to further improve our existing cooperation — in particular for the
definition of a description language for mathematical services as proposed in the following sec-
tion.

2.1.3 Capability Descriptions in Multi-Agent Systems

Distributed AI and multi-agent systems in particular use special description languages to describe
the capabilities of intelligent agents or services provided by these agents. Two languages, the ca-
pability description language (CDL) [Wic99] developed at the University of Edinburgh and The
Language for Advertisement and Request for Knowledge Sharing (LARKS) [SWKL01], seem of
particular importance for our project. These languages combine a high expressivity with the pos-
sibility to reason on these capability descriptions, as the semantics of a capability is essentially
described by Horn-clauses which allows the use of standard Prolog engines. LARKS descrip-
tions can be based on heterogeneous ontologies formalise in the ontology language ITL [Gua91]

2.1.4 The Semantic Web Initiative

The Semantic Web Initiative [FHLW03] shares the vision of using common standards to annotate
data on the web with meta-data such that it can be used and understood by machines. Several
XML-based standards are emerging to express meta-data in the semantic web, such as the Re-
source Description Framework (RDF) [BG00], and to define ontologies and reason on them, such
as the DAML+OIL [HvHPS01] and the Web Ontology Language (OWL) [SMVW02].

TRIPLE [SD02] is a query, inference, and transformation language for reasoning about RDF
descriptions and provides access to external programs (like classifiers of description logics).
Reasoning engines like TRIPLE will be interesting in our proposed research, because a broker
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for mathematical services will eventually need to reason about concepts and their relationships
in a mathematical ontology (cf. section 3.1.1).

2.1.5 Content Languages for Mathematics

The OPENMATH language [CC98] provides a standard for representing mathematical objects
and their semantics such that they can easily be exchanged between computer programs, stored
in databases, or published in the worldwide web. While the original design was mainly for com-
puter algebra systems, OPENMATH is now attracting interest from other areas of scientific com-
putation as well as from many publishers of electronic documents with mathematical content.
Our research group has many years of experience in the use of OPENMATH for the communica-
tion between deduction and computer algebra systems.

There is a strong relationship between OPENMATH and the Content MathML recommenda-
tion of the Worldwide Web Consortium [CIMP01] and the new versions of Content MathML
and OPENMATH are equally expressive and formulae can be translated from one language into
the other. Content MathML also allows semantic information encoded in OPENMATH to be em-
bedded into a MathML structure. Presentation MathML deals principally with the presentation
of mathematical objects, while OPENMATH is concerned with their semantic markup. Thus the
two technologies may be seen as highly complementary.

The OMDoc language [Koh01] for advanced semantical markup of mathematical content has
been developed by Michael Kohlhase. It is described in more detail in section 2.2.

2.2 Preliminary work (Eigene Vorarbeiten)
The MathWeb Software Bus. The MathWeb Software Bus (MathWeb-SB) [ZK02] is a dis-
tributed system for the integration of reasoning systems, i.e., deduction systems and symbolic
computation systems. The main idea of MathWeb-SB is to extend existing reasoning systems,
such as automated theorem provers (ATPs), computer algebra systems (CASs), model generators
(MGs), and constraint solvers (CSs) with a generic interface that allows them to communicate
over a common software bus. Figure 1 shows the current structure of the MathWeb-SB. Mathe-
matical applications are integrated homogeneously as “servers” in a network whose central nodes
are the so-called “MathWeb brokers”. However, these brokers have currently very restricted ca-
pabilites, and they are essentially just yellow-page servers. When started, the servers register
themselves to their local “broker”. Brokers register and de-register dynamically to other brokers
in the Internet or an Intra-net, which are called remote brokers. Client applications connect to a
known broker and request access to a reasoning system. In case the requested system is available
locally, i.e., it is offered by a local server, a new instance of the reasoning system is created and
a reference to this instance is sent back to the client application. If a reasoning system is not
offered by a local server, the broker forwards the request to all known remote brokers.

MathWeb-SB Client Applications. The MathWeb-SB was developed originally to integrate
external reasoning systems into the ΩMEGA system [SBB+02] and to make these reasoning sys-
tems accessible for human users as well as for knowledge-based proof planning.
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Figure 1: The MathWeb Software Bus

In the last years, we have further developed the MathWeb-SB into a stable and generic plat-
form and many new reasoning systems are now integrated. There is also a growing number of
client applications using the MathWeb-SB:

• The OMEGA and MBASE projects (Saarland University and International University Bre-
men, Germany)
• The MAYA project (Deutsches Forschungszentrum für Künstliche Intelligenz, Germany)
• The DREAM group of Prof. Alan Bundy (University of Edinburgh, Scotland)
• The research group of Dr. Manfred Kerber and Dr. Volker Sorge (University of Birming-

ham, England)
• Projects at Carnegie Mellon University, USA
• The DORIS system of Dr. Johan Bos (University of Edinburgh, Scotland)

The mathematical services available via MathWeb-SB are:

• Proof assistants: ΩMEGA, CORE, PVS.
• Mathematical database: MBASE.
• Theory formation system: HR.
• Constraint solver: CoSIE .
• Proof explanation system: P.rex; an external system developed by the ΩMEGAgroup [Fie01].
• Generalization module of LEARNΩMATIC.
• Proof planners: MULTI, λCLAM.
• Computer algebra systems: MAPLE, GAP, COCOA, MAGMA.
• Automated higher-order theorem provers: TPS, LEO.
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• Automated first-order theorem provers: BLIKSEM, OTTER, PROTEIN, SPASS, VAMPIRE.
• Automated equational provers: E, EQP, WALDMEISTER.
• Model generators/checkers: SEM, FINDER, MACE, SATCHMO.
• Proof transformation system: TRAMP.
• Translators for OMDoc and TPTP.

Mathematical Services in the MathWeb-SB. The reasoning systems in the MathWeb-SB of-
fer mathematical services, however, these services have not been formally specified. Client ap-
plications can only use a reasoning system of MathWeb-SB if they know the name of the system
and if they have exact knowledge about the application programming interface (API) of the rea-
soning system. Sometimes, a client application has to know even the input syntax and other
peculiarities of the underlying reasoning system (e.g, Maple syntax). This is too much of a bur-
den in particular if the developer has no or only limited knowledge about the reasoning systems
involved, as e.g. the DORIS system developed in the computational linguistics department of
the University of Edinburgh. It is important to abstract from the implementational details of a
reasoning system and to make it easier for client applications to use the services already available
in the MathWeb-SB. One step towards this goal is the specification of (parts of) the functionality
of reasoning systems as a mathematical service.

The OMDoc language. OMDoc [Koh01] is a markup format and data model for Open Mathe-
matical Documents on the Web. OMDoc differs from other presentation-based approaches in that
it concentrates on representing the structure of mathematical concepts and documents instead of
their presentation. OMDoc is an extension of OPENMATH and content MATHML, by a markup
for the document and theory level of mathematical documents. The document author specifies
the semantics of a mathematical concepts with these mark-ups such that the consumer (an OM-
Doc reader or a mathematical software system) can use it. In general, the standard languages
OPENMATH [CC98] and OMDoc [Koh01] are used as content languages for the client-server
communication in the MathWeb-SB.

3 Goals and work schedule (Ziele und Arbeitsprogramm)

3.1 Goals (Ziele)
The reasoning systems currently integrated in MathWeb-SB have to be accessed directly via
their API, thus the interface to MathWeb-SB is system-oriented. However, reasoning systems
are used by applications that are not necessarily theorem provers, e.g. for the semantical analysis
of natural language, small verification tasks, etc. The main goal of this project is twofold:

Problem-Oriented Interface: to develop a more abstract communication level for MathWeb-
SB, such that general mathematical problem descriptions can be sent to the MathWeb-SB
which in turn returns a solution to that problem. Essentially, this goal is to move from
a service oriented interface to a problem oriented interface for the MathWeb-SB. This is
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a very old idea in the development of AI programming languages (early work included
PLANNER and other languages driven by the problem matching of general descriptions).
To this end the project is concerned with the development of an appropriate language and
an ontology for the description of mathematical problems. The ontology will serve as the
basis for the new interface of MathWeb-SB.

Advanced Problem Solving Capabilities: Second, the project aims at integrating even more
advanced problem solving capabilities into MathWeb-SB. Typically, a given problem can-
not be solved by a single service but only by a combination of several services. So far,
the decomposition of a given mathematical problem into subproblems which are in the do-
main of the existing services is left entirely to the user of MathWeb-SB. Thus, the project is
also concerned with developing enhanced solving capabilities that decompose the problem
into subproblems such that their solution is within the range of a combination of existing
services.

In order to support the automatic selection and combination of existing services, the key
idea is as follows: the ontology developed in the first part of the project will be used for the
qualitative description of MathWeb-SB services and these descriptions will then be used
as AI planning operators, in analogy to todays proof-planning approach. We can then use
AI planning techniques [CBE+92, EHN94] to automatically generate a plan that describes
how existing services must be combined to solve a given mathematical problem.

In the current MathWeb-SB the notion of service denotes an existing reasoning system, like a
theorem prover, a computer algebra system, a constraint solver, or others. We envision on the one
hand to make the notion of a mathematical service more concrete by using fine-grained service
descriptions. On the other hand, we also want to extend this notion by allowing a service to be
also a reference to a publication that describes a mathematical technique without an available
implementation. This allows us to further enhance the problem solving capabilities of the Math-
Web-SB beyond problems that can only be solved by existing systems. The solution to these
mathematical problems amounts to a description of how techniques known in the literature could
be combined in order to solve the problem.

This provides also the basis for the use of MathWeb-SB as a tool for mathematicians and the
theorem proving communities to query the literature of problem solving techniques, as soon as
it is available in the upcoming semantic web for mathematics. The answer to such a query not
only contains a list of publications, but also a description of how the described techniques can be
combined.

3.1.1 Description Language for mathematical Tasks and Services

An XML-based Service Descriptions Language. A description of a mathematical service
should not only describe the input and output parameters of a service but also, to a certain extent,
the semantics of the service, i.e. the relationship between the input and the output. Similar to
say a LARKS specification (cf. section 2.1.3), we intend to express the semantics of a service
as constraints over the output and input parameters of a service using statements in a first-order
logic fragment (for instance, horn-clauses).
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Service descriptions should be readable and understandable by both humans and machines.
The extensible markup language (XML) [Mar01] seems to offer currently the best compromise
between human and machine-readability. XML is playing an increasingly important role in the
exchange of a wide variety of data in the Internet and elsewhere. For this reason and to pre-
serve compatibility with other projects like OPENMATH, OMDoc, MONET, and MathBroker,
we intend to base our service description language fully on XML.

In Figure 2 we show how a simplified version of the specification of a first-order theorem
proving service FO-ATP may look in an XML service description language.

<provingService name=" FO-ATP">
<comment>

Tries to prove the validity of a first-order
theorem proving problem within the number of
seconds given as a timeout.

</comment>
<input>

<parameter name="problem" type=" ProvingProblem"/>
</input>
<output>

<parameter name="result" type=" FO-ATP-Result"/>
</output>

<inConstraints>
has_some_equality(problem), real_first_order(problem).
.........

</inConstraints>
</provingService>

Figure 2: Example XML specification of a first-order theorem proving service

The FO-ATP service expects a problem description as input. It always returns an object of
type FO ATP Result (see below). The inConstraints of the service say that the service is
most suitable if the problem has some equalities in it and also that it should really be a first-order
problem (and not essentially propositional).

An Ontology for mathematical Service Descriptions. Figure 3 illustrates an ontology for
first-order automated theorem provers, as it was used above. Such an ontology could, for in-
stance, be defined in the ontology language OWL [SMVW02].

Our ontology consists of concepts (classes), slots (attributes), and pre-defined instances of
concepts. Figure 3 shows the “is-a” (subclass) relationship between concepts as solid arrows.
Slots and their cardinality restrictions are denoted with dashed lines. Instances are connected to
their concepts by dotted lines. Fig. 3 contains some of the concepts needed to describe first-order
theorem proving services and their results. One crucial concept (circled in Fig. 3) is the FO-ATP-
Result which denotes results of first-order ATPs. A FO-ATP-Result can have a time slot which
contains an instance of a time resource description (Time-Resource), and a proof of a conjecture
(an instance of Proof). Most important, the state slot of a FO-ATP-Result always contains one
of the valid states of first-order ATPs that we developed jointly with GEOFF SUTCLIFFE and
STEPHAN SCHULZ [SZS03] for the MathWeb-SB. This state defines the prover’s result for the
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Figure 3: An ontology for first-order theorem provers.

conjecture given. For instance, the state Theorem says that the prover has found out that the
given conjecture is a theorem.

3.1.2 Capability-based Selection and Combination of Mathematical Services

The second part of the project is concerned with the integration of problem solving capabilities
into MathWeb-SB. The scenario can be sketched as follows: MathWeb-SB is given a mathemat-
ical problem or task formulated in the description language and ontology as defined in the first
part of the project. The problem solver uses the declarative descriptions of the capabilities of the
integrated mathematical services in order to come up with an adequate selection and combination
of those services, that can potentially solve that problem.

A necessary prerequisite for the design of a procedure that searches for a combination is
the definition of the primitives of a combination language. An example for such a primitive is
sequential composition S;S ′ of services, where S ′ tackles the subtask that remains after S. An-
other example is a divide-and-conquer approach that divides a conjunctive task into independent
subtasks. This is expressed by parallel composition of services S ‖ S ′, where S and S ′ both
solve a subtask.

Based on the combination language we want to design and integrate a search procedure into
MathWeb-SB. The primitives essentially impose a partial ordering on the combined services.
This corresponds to the structure of AI plans, which are composed of partially ordered plan
operators. Thus, the key idea is to wrap a service inside of a plan operator that describes its
capabilities, and to use AI planning techniques as the search procedure. The resulting partially
ordered plan is then straightforwardly transformed into an adequate combination.

Up to now we distinguish three different types of services:
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Proving and Computing services are services that actually solve given problems: Examples
are theorem provers, that try to prove a given formula, and computer algebra systems that
simplify mathematical problems or solve polynomials.

Transformation and translation services are used to change the representation of a problem or
a result. Examples are the transformation of some first-order logic problem into a proposi-
tional representation, or into a constraint problem, or into a mathematical problem that is
in the domain of some computer algebra system.

Categorisation services are services that come up with a refined classification of a given prob-
lem. Examples are services that recognize that a problem is essentially a propositional
problem, or that it belongs to the guarded fragment, or that it is a constraint problem over
real numbers, or other subclasses that can be tackled by special decision procedures. The
categorisation services may also recognize that a problem consists of different subprob-
lems, each falling into a different class. The inherent problem modeling these services as
plan operators is that although the precondition can be formulated in a declarative way, the
actual postconditions depend on the computation of the involved categorisation service.
This problem needs to be taken into account for the design of the AI planning procedure.

These different types of services influence the actual planning procedure, as some of the
planning operators are useless unless its corresponding service is executed. This is typically the
case for the categorisation services. The plan operators for the other services contain sufficient
declarative descriptions that allow for planning without actually executing the service. The ben-
efit of avoiding the execution of a service is that the time required by such a service is saved at
planning time. Only when a plan is actually found are the services executed.

Since some services need to be executed during plan formation, this requires an interleaving
of plan formation and plan execution, which is a well-known technique in AI planning. This
requires usually a linearization of some part of a partially ordered plan, in order to allow for
its execution. This is, however, certainly not adequate for our purpose, as the partial order of
our plan represents exactly the sequential and parallel composition of services. But fortunately
a linearization of the plan is not necessary in our case, since only intermediate steps need to
be executed, namely those plan steps that involve categorisation services. This is a new style
of interleaved plan formation and plan execution, which needs to be taken into account for the
design of the planning procedure.

Once a plan is found, there are several ways to communicate the results: First, not every plan
is completely executable, since it may involve services which are only references to techniques
described in a publication. In those cases the result returned by the broker must contain both the
results obtained for the executable parts as well as the non-executable parts of the plan. Secondly,
even for fully executable plans, there are different possibilities to return a result, depending on
what kind of result the requesting program or user is interested in. For example, the result may
simply be the result obtained at the end of plan execution, i.e. the results returned by the last
services of the plan. Alternatively the sequence of intermediate results or even the plan itself
can be useful information, e.g. when using MathWeb-SB as a problem solver. In that case the
sequence of steps and intermediate results provide some evidence how the given problem was
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solved. In the final phase of the project we will therefore develop modalities to communicate
the solution, ranging from pure results computed by the used services, via the description of a
combination of the used services, up to a heterogenous proof that provides evidence about the
validity of the result.

3.1.3 An Example for Advanced Brokering

Given a subproblem of a large proof development undertaken with a higher-order theorem prov-
ing environment like ΩMEGA (based on a variant of simple type theory) or NuPrl (based on
constructive type theory) the user may want to call one or more theorem provers available within
a mathematical service network to tackle the problem. More specifically, let us assume that the
subproblem consists of a set of (local) proof assumptions Γ and a conjecture ψ. Then the user or
the proof assistant may pose the following two queries to a MathWeb broker:

• Query 1: Given Γ and ψ, determine if ψ is a logical consequence of Γ. We denote this

query with the sequent Γ
?

`HO ψ, where the subscript HO means that we deal with some
variant of a higher-order logic.

• Query 2: Given Γ and ψ, find a natural-deduction proof object for ψ using Γ. We denote

this query with the sequent Γ
P ?

`HO ψ, where P? expresses that the user is actually asking
for an explicit proof object.

Assuming now that formal descriptions of the following mathematical services are available to
the MathWeb broker:

HO2FO: Transforms higher-order problems (e.g., in type theory) into first-order logic if possible (such
a service is implemented in the ΩMEGA system).

FO2CNF: Transforms first-order problems into their clause normal form (CNF) including Skolemization
(there are already several different implementations of efficient CNF transformations available).

FOP2ND: Transforms a first-order resolution proof into a natural deduction proof. This service is, for
instance, offered by the TRAMP system [Mei00] (available in the MathWeb-SB).

HOP2ND: Transforms a higher-order resolution proof into a natural deduction proof.

HO-ATP: Calls a higher-order theorem prover such as LEO (resolution approach) or TPS (matrix search).
They take a problem description as an input and deliver an ATP-Result, i.e. either a valid state or
a proof object.

FO-ATP: Calls a classical resolution-based first-order theorem prover which tries to find a proof for a
given conjecture, and returns also an ATP-Result.

Dec-Proc: A decision procedure for a decidable fragment of first-order logic (e.g., Presburger Arithmetic
or some guarded fragment). It takes the CNF of a first-order problem and returns a valid decision
procedure state (DP-State), i.e. either valid or unsatisfiable.
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The challenge consists in providing a brokering mechanism that plans the selection and suit-
able combination of logic-transformation-services, proving services, and proof transformation
services in order deliver finally a customized solution. Figure 4 shows all possible sequences
of services that may answer Query 1 in a disjunctive tree. Probably, the problem can be solved
directly by one of the available higher-order theorem provers. It may however essentially be a
first-order problem and is therefore transformable using HO2FO. After this transformation, the
problem can then be sent to the available first-order ATPs or it may be translated into clause-
normal-form (FO2CNF) which can then be used as input for a decision procedure.

HO2FO

Dec−Proc

HO−ATP 2

HO ATPResult HO ATPResult

Γ |−− ψHO Proving Problem

ATPResult

FO−ATP1 FO−ATP2

DP−state

HO−ATP1

Γ |−− ψ
FO

CNF of

HO

Γ => ψ

?

?

FO2CNF

ATPResult

Figure 4: Possible sequences of service calls to answer Query 1.

In the case of Query 2, a proof object in a natural deduction calculus has to be delivered.
Therefore, most decision procedures are no longer admissible because, in general, they only
determine if an input formula is valid or unsatisfiable. Figure 5 shows possible sequences of
services that may deliver the desired proof object. The most important aspect here is the trans-
formation service HOP2ND which transforms a HO resolution-proof into a Natural Deduction
proof. The disjunctive plans shown in Figure 4 and 5 could also be used to model parallel ser-
vice invocations either to obtain a second, independent result for a problem or to increase the
overall performance. Similar scenarios could be sketched with respect to the combination of
decision procedures or symbolic computation engines. Or alternatively, a customized combina-
tion of problem re-representation services, and (one or more) decision procedures may be able
to successfully answer a service request.

These scenarios show our approach to model semantical brokering as a planning problem
based on the service descriptions of the service systems. This view of semantical brokering is
well in accord with the new proof planning paradigm, which was invented and largely established
by Alan Bundy (University of Edinburgh) and the applicants of this project.
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HO−ATP 2
HO−ATP1

FO−ATP1 FO−ATP2

HO2FO

Γ |−− ψHO Proving Problem

Γ |−− ψ
FO

HO

FOP2ND

ATPResult

ND proof

P?

P?

ND proof

ND proof

HOP2ND

HO ATPResult

Figure 5: Possible sequences of service calls for Query 2.

3.2 Work Schedule (Arbeitsprogramm)

Task 1 Development of a service description language in close cooperation with MONET
and MathBroker project. (IU Bremen)

Task 1.1 Definition and implementation of a description language for mathematical ser-
vices based on existing XML standards.

Task 1.2 Ontology engineering for the language developed in Task 1.1.

Task 1.3 Description of existing services in the MathWeb-SB using the language and on-
tology developed in Task 1.1 and 1.2.

Task 2 Intelligent brokering of mathematical services. (Saarland Univ., IU Bremen)

Task 2.1 Translation of service descriptions into planning operators.

Task 2.2 Development of a planner for intelligent service brokering

Task 2.3 Case studies in combining heterogeneous mathematical services with focus on
deduction systems.

Task 3 Maintenance and adaptation of current MathWeb-SB. (Saarland Univ.)

Task 3.1 Support for current MathWeb-SB users named in section 2.2.

Task 3.2 Porting parts of the current MathWeb-SB according to the results of the research
made in Task 1 and Task 2.
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TASK 2

Task 2.1

Task 2.2

Task 2.3

TASK 1

0

TASK 3

Task 3.1

Task 3.2

Months

Task 1.1

Task 1.2

Task 1.3

0

12 24

2412

Figure 6: Scheduling of project tasks over 24 months.

4 Funds requested (Beantragte Mittel)

4.1 Staff (Personalbedarf)

1. Two researchers BAT IIa (1 Saarland University, 1 International University Bremen) for
the complete application period.

2. Four research assistants (Hilfskräfte, 2 Saarland University, 2 International University Bre-
men, jeweils eine als wissenschaftliche und eine als studentische Hilfskraft) for 19 hours
per week for the complete application period.

In Saarbrücken we plan to employ Dipl.-Inform Jürgen Zimmer. In 2000, Mr. Zimmer com-
pleted his Diploma Thesis in the Saarbrücken group which was about the combination of proof
planning with constraint solving techniques. Since then he was responsible for the development
of the MathWeb-SB system and participated in writing this project proposal. As a Young Visiting
Researcher of the EU Training Network CALCULEMUS he independently worked on the integra-
tion of client-services at the University of Genova, Italy, and Edinburgh, Scotland. Hence, the
main developer of MathWeb-SB, the largest network of mathematical service to-date, will be
available for the realization of the project.

The high need of research assistants is due to the large amount though necessary implemen-
tational work to be realized in the project. As the implementation work will need a high level
academic maturity, we ask that two of the research assistants be salaried as “wissenschaftliche
Hilfkraft”, so that we can also take candidates with a Diplom or Master’s degree into considera-
tion.
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4.2 Scientific equipment (Wissenschaftliche Geräte) . . . . . . . . . . . . . . . . . . . None

4.3 Consumables (Verbrauchsmaterial) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .None

4.4 Travel expenses (Reisen)

2000 Euro per annum (1000 Euro/year for Saarland Univ., 1000 Euro/year for IU Bremen)

4.5 Publication costs (Publikationskosten) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . None

4.6 Other costs (Sonstige Kosten) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . None

5 Preconditions for carrying out the project
(Voraussetzungen für die Durchführung des Vorhabens)

5.1 Our team (Zusammensetzung der Arbeitsgruppe)

5.1.1 Saarland University

• Prof. Dr. J. Siekmann (C4, Univ. des Saarlandes)

• Dr. S. Autexier (Deutsches Forschungszentrum für Künstliche Intelligenz)

• Dr. C. Benzmüller (C2, Univ. des Saarlandes)

• Dr. D. Hutter (Deutsches Forschungszentrum für Künstliche Intelligenz)

• Dr. A. Meier (Deutsches Forschungszentrum für Künstliche Intelligenz)

• Dr. E. Melis (Deutsches Forschungszentrum für Künstliche Intelligenz)

• Dr. C.-P. Wirth (Bat IIa, Univ. des Saarlandes)

5.1.2 International University Bremen

• Prof. Dr. M. Kohlhase

• Dipl.-Phys. Immanuel Normann

5.2 Co-operation with other scientists
(Zusammenarbeit mit anderen Wissenschaftlern)

At Saarland University we will cooperate with the OMEGA project funded in the SFB 378
Resource-adaptive Cognitive Processes (Prof. Siekmann), to which this work is complementary.
At DFKI we will cooperate with the VSE group (Dieter Hutter and Werner Stephan) and the
ACTIVEMATH-group (Erica Melis).
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5.3 Foreign contacts and co-operations
(Arbeiten im Ausland und Kooperation mit ausländischen Partnern)

The VERMATH project will be linked to the CALCULEMUS and MKM research initiatives. The
aim is to provide an infrastructure that spins the web of mathematical services developed by the
partners and supports their problem oriented selection and combination.

One of the applicants is the coordinator of the EU Research Training Network CALCULEMUS
and of the successor proposal CALCULEMUS-II. Both partners are active nodes in the European
MKM research initiative.

More specifically, research collaboration is planned with the following foreign partners:

• Tasks 1 & 2: The group of Manfred Kerber and Volker Sorge (University of Birmingham,
UK).
• Task 1: Members of the MONET-project, the MathBroker-project, and the Mowgli-project,

e.g. Prof. B. Buchberger (RISC Linz, Austria), Prof. Th. Hardin (Univ. Paris VI, France),
Prof. A. Asperti (Univ. Bologna, Italy).
• Task 2 & 3: The Dream group of Prof. A. Bundy (University of Edinburgh, Scotland).
• Task 2 & 3: Members of the LOGOSPHERE-project6 , e.g. Prof. F. Pfenning and Prof.

P. Andrews (CMU, Pittsburgh, USA), Prof. C. Schürmann (Yale University, New Haven
USA), N. Shankar (SRI, Menlo Park, USA).

5.4 Scientific equipment available (Apparative Ausstattung)
The scientific equipment will be covered by the Grundausstattungen of Prof. J. Siekmann at
Saarland University and Prof. M. Kohlhase at IU Bremen.

5.5 General contribution (Laufende Mittel für Sachausgaben)
• The yearly general contribution of consumables from the Saarland University via the Grun-

dausstattung of Prof. J. Siekmann will be approx. 1000 Euro/year.

• The yearly general contribution of consumables from the IU Bremen via the Grundausstat-
tung of Prof. M. Kohlhase will be approx. 1000 Euro/year.

5.6 Other requirements (Sonstige Voraussetzungen) . . . . . . . . . . . . . . . . . . . None

6 Declarations (Erklärungen)

6.1
Ein Antrag auf Finanzierung dieses Vorhabens wurde bei keiner anderen Stelle eingereicht.
Wenn wir einen solchen Antrag stellen, werden wir die Deutsche Forschungsgemeinschaft un-
verzüglich benachrichtigen.

6http://www.logosphere.org
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6.2
• The Vertrauensdozent of the Saarland University, Prof. Dr. Janocha, has been informed

about this research grant application.

• The International University Bremen is not yet a member university of DFG. Prof. Dr.
Gerhard Haerendel, Dean of the School of Engineering and Science has been notified of
this grant proposal.

6.3 Does not apply

7 Signatures (Unterschriften)

Dr. S. Autexier Dr. C. Benzmüller

Prof. Dr. M. Kohlhase Prof. Dr. J. Siekmann

8 Appendices (Anlagen)
(A) Curriculum vitae and list of publication Dr. S. Autexier

(B) Curriculum vitae and list of publication Dr. C. Benzmüller

(C) Curriculum vitae and list of publication Prof. Dr. J. Siekmann

(D) Curriculum vitae and list of publication Prof. Dr. M. Kohlhase
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